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ABSTRACT

GALAXIES AND GAS IN DARK MATTER HALOS
AND THE COSMIC WEB

SEPTEMBER 2019

SEUNGHWAN LIM

B.Sc., POHANG UNIVERSITY OF SCIENCE AND TECHNOLOGY

M.Sc., SEOUL NATIONAL UNIVERSITY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Houjun Mo

In the current understanding of galaxy formation, galaxies are believed to form

and evolve in dark matter halos. The dark matter halos are collapsed objects that

form and grow via gravitational instability of small initial density fluctuation in the

cosmic field. They are not only the hosts of galaxies but are tracers of the cosmic web

of the Universe. They are thus crucial components for understanding how galaxies

form and evolve within the cosmic web. This dissertation is a systematic investigation

of the galaxies and gas in the dark matter halos and the cosmic web, using observa-

tion data of large galaxy surveys such as the Sloan Digital Sky Survey (SDSS), and of

the Cosmic Microwave Background (CMB) survey such as the Planck, together with

simulations and modellings for comparison and interpretation. Specifically, we have

identified dark matter halos in the low-redshift Universe, and constructed the largest

viii



to date all-sky group catalog. We also investigated correlations between many of the

galaxy and halo properties, particularly finding, for the first time, an observational

proxy of halo age. Then, I developed a series of novel approaches to maximize the

detection of the Sunyaev-Zel’dovich effect (SZE), and from it explored the gas prop-

erties in halos to find that the gas mass fraction even in Milky Way-size halos is about

the cosmic mean fraction. The analysis identified the baryons in a warm-hot medium

on halo scales. We also show that the thermal SZE can be used to constrain the mean

relationship between thermal energy of IGM gas and local total matter density for the

first time. We support the reliability of our methods and results with tests where the

methods are applied to the mock CMB maps constructed from simulations. Finally,

we present comparisons with simulations of the SZE, and discuss the implications for

its constraining power of galaxy formation models.
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5.1 The M500-Ỹ500 relationa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.1 The K̃200-M200 relation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

7.1 The medians and 68% ranges (95% ranges, in parentheses) of the
posterior distribution of the parameters in the double power-law
model. The values are obtained from the marginalized
distributions of the parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

8.1 The pressure profile fitting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

8.2 The density profile fitting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

xvi



LIST OF FIGURES

Figure Page

1.1 The redshift distributions of galaxies in the four samples we use to
identify galaxy groups. The bin size of the histograms is
∆z = 0.004. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2 The galaxy distributions in Galactic coordinates (Aitoff projection) of
the 2MRS (blue), 6dFGS (red), SDSS (orange), and 2dFGRS
(black) samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 Dependence of halo mass on the luminosity or stellar mass of the
central galaxy and the GAP parameter (defined to be the
difference in luminosity or stellar mass between the central galaxy
and the n-th brightest satellite; see text for detailed definition) as
given by EAGLE. The left panel is the result based on the
K-band luminosity, while the right panel shows result based on
stellar mass. For clarity, only the GAP correction using the
brightest satellite (i.e. n = 1) is shown. . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.4 The relation between the K-band (left) and the r-band (right)
luminosity of central galaxies and the halo mass, as obtained from
the EAGLE simulation. The gray points are individual systems,
while the black line and bars show the median and scatter of the
relation, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.5 The correlations of the halo masses given by a mass proxy for groups
containing a single member galaxy (horizontal axis) with the true
halo mass (vertical axis), obtained from the 2MRS mock sample
constructed with the EAGLE simulation. The results shown use
proxies based on the K-band luminosity (L; left), and stellar mass
(M; right). The red straight line in each big panel shows a perfect
correlation, while the curves in the smaller panels show the
scatter in the correlation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.6 The same comparison as in Figure 1.5 but here for the SDSS mock
sample. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

xvii



1.7 The number of halos as a function of redshift from the EAGLE
simulation in several mass bins as indicated in the upper panels
for each mock sample. The vertical dotted lines show the redshift
limits to which the samples are complete for a given halo mass.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.8 Halo mass that is complete as a function of redshift for the mock
samples of the simulation (circles), and linear fits to it (lines). We
use the linear relation for abundance matching to assign halo
masses to the mock groups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

1.9 Comparison between true halo mass (vertical axis) and group mass
identified by our group finder (horizontal axis) using luminosity as
the proxy of halo mass for the mock samples of 2MRS, 6dFGS,
SDSS, and 2dFGRS constructed from the EAGLE simulation (see
text for the sample selections). The small rectangular panels plot
the scatter of true halo mass at given group mass. . . . . . . . . . . . . . . . . 41

1.10 Same comparison as Figure 1.9 but using stellar mass as the proxy of
halo mass. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

1.11 Membership assignments by the group finder applied to the mock
samples, in terms of the completeness (left), contamination
(middle), and purity (right). The vertical axis plots the
cumulative fraction of the groups identified via the group finder,
and the different lines are for halos of different masses as
indicated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

1.12 Global completeness, defined as the number of groups identified
relative to the number of true halos, for the mock samples as a
function of redshift for halos of different masses as indicated. . . . . . . 44

1.13 Comparison between the true halo mass of the EAGLE simulation
and the group mass identified by our group finder (left) and by
the group finder of Yang et al. (2007) (Y07; right) for the SDSS
mock samples restricted to z ≤ 0.09. The lower panels plot the
scatter of the true halo masses at a given group mass. . . . . . . . . . . . . 46

1.14 Comparison of membership assignment in terms of the completeness
(left), contamination (middle), and purity (right) between our
group finder (upper) and the group finder of Yang et al. (2007)
(Y07; lower) for the same mock samples as Figure 1.13. The
vertical axis plot the cumulative fraction of the groups, and the
different lines are for haloes of different masses as indicated. . . . . . . . . 47

xviii



1.15 Comparison between the true halo mass of the EAGLE simulation
and the group mass identified by our group finder (left) and by
the group finder of Lu et al. (2016) (L16; right) for the 2MRS
mock samples. The lower panels plot the scatter of the true halo
masses at a given group mass. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

1.16 The group distributions in Galactic coordinates (Aitoff projection) of
the 2MRS group catalog. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

1.17 Three dimensional distribution of the 2MRS galaxies (black dots) and
groups identified by the group finder (wire-framed green spheres
with radii of r180) in the local Universe with the Milky Way at the
center. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

1.18 Comparison of the distribution of the groups constructed by the
group finder in slices between different surveys. The upper and
the lower panels show different slices as indicated. . . . . . . . . . . . . . . . . . 53

1.19 Halo mass functions of galaxy systems constructed based on the four
surveys. The dashed lines are the theoretical mass function by
Sheth et al. (2001), which we used for abundance matching for
the group finder. The dotted short ticks in the lower two panels
indicate the lower limits of the halo masses of the group catalogs
by Yang et al. (2007) and Yang et al. (2005), respectively. . . . . . . . . . 54

1.20 The number of groups as a function of the number of members, halo
mass, and redshift for L (circle) and M (triangle) catalogs for each
survey, compared with Tully (2015) (T15; cross) and Lu et al.
(2016) (L16; square) for the 2MRS, with Yang et al. (2007) (Y07;
square) for the SDSS, and with Yang et al. (2005) (Y05; square)
for the 2dFGRS. The results from the +(L) catalogs (dots) are
also shown for comparison. The T15 results (crosses) should be
compared with the dashed lines, which are obtained by using only
groups with recession velocities between 3, 000 and 10, 000km s−1,
within which the T15 sample is complete. The comparison is only
made for groups that halo mass is complete at a given redshift.
The error bars shown represent Poisson errors. . . . . . . . . . . . . . . . . . . . . 61

1.21 Comparison of halo masses (based on Proxy-M) for individual groups
cross-identified between different group catalogs. We used the
tolerances of ≤ 10 arcsec and |∆z| ≤ 10−3 for the
cross-identification. The lower panels plot the scatter of the
2MRS halo masses at a given mass from the other catalogs. . . . . . . . . 62

xix



2.1 A demonstration how fc can be used as a proxy of halo assembly
time. Left : The correlation between half-mass assembly time zf
and fmain = Mmain/Mh (median) obtained from N-body
simulations, based on data published in W11, where Mmain is the
mass of the most massive sub-halo in each host halo. Results are
shown for halos in five mass ranges, as indicated. For comparison,
the result for the total halo sample is shown as the gray line.
Middle : The correlation between zf and fc ≡M∗,c/Mh (median),
where M∗,c is the stellar mass of the central (most massive)
galaxy, obtained from the mock galaxy catalog of Hearin &
Watson (2013), constructed using an age abundance matching
model combined with halos from the Bolshoi N -body simulation.
Different curves denote different host halo mass bins, as indicated.
The results for the total sample is shown as the gray line. Right :
The same as the middle panel, except that different curves show
different stellar mass bins of central galaxies, as indicated. Here
again the result for the total sample is shown as the gray line for
comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.2 The number distribution of galaxies in fc, with each panel
corresponding to different stellar mass bins, as indicated on the
top of each panel, for centrals (red) and satellites (blue). . . . . . . . . . . . 77

2.3 The correlation between (g − r) color, K + E corrected to z = 0.1,
and fc, for centrals. The curves plot the median values in fc bins.
The error bars on the leftmost sides are ‘typical’ [16%, 84%]
ranges for each mass bin. In the left panel different curves refer to
galaxies in different stellar mass bins, as indicated, while in the
right panel different curves are for galaxies residing in halos in
different halo mass bins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

2.4 The correlation between the fraction of quenched galaxies and fc for
central galaxies. Quenched galaxies are defined to be the ones
with star formation rate lower than the devision line defined by
equation (2.2). The curves plot the quenched fractions in fc bins.
Different curves refer to galaxies in different stellar mass bins, as
indicated. The error bars here are ‘typical’ 1-σ dispersions among
100 bootstrap re-sampling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

2.5 The correlation between gas phase oxygen abundance,
12 + log (O/H), and fc for central galaxies. The curves plot the
median values in fc bins. The error bars on the leftmost sides are
‘typical’ [16%, 84%] ranges for each mass bin. Different curves
refer to galaxies in different stellar mass bins, as indicated. . . . . . . . . 82

xx



2.6 The correlation between the bulge to total ratio (in r-band), B/T ,
and fc for central galaxies. The curves plot the median values in
fc bins. The error bars on the leftmost sides are ‘typical’
[16%, 84%] ranges for each mass bin. Different curves refer to
galaxies in different stellar mass bins, as indicated. . . . . . . . . . . . . . . . 83

2.7 The correlation between the half-light radius (r-band) R50 and fc for
central ellipticals. The curves plot the median values in fc bins.
The error bars on the leftmost sides are ‘typical’ [16%, 84%]
ranges for each mass bin. Different curves refer to galaxies in
different stellar mass bins, as indicated. . . . . . . . . . . . . . . . . . . . . . . . . . 84

2.8 The correlation between disk scale length (r-band) Rdisk and fc for
central spirals. The curves plot the median values in fc bins. The
error bars on the leftmost sides are ‘typical’ [16%, 84%] ranges for
each mass bin. Different curves refer to galaxies in different stellar
mass bins, as indicated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

2.9 The correlation between (g − r) color and fc for satellite galaxies
(thick lines). Individual panels show the medians in fc bins for
satellites of different stellar masses. Within each panel, satellites
are divided into four subsamples according to the masses of their
host halos, as denoted in the legend. The result for the total
satellite sample in a given stellar mass bin is shown as the
translucent thicker line in each panel. For comparison medians for
centrals shown in Fig. 2.3 are re-plotted here as the thin solid
lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

2.10 The correlation between the quenched fraction and fc for satellite
galaxies (thick lines). Individual panels show the medians in fc
bins for satellites of different stellar masses. Within each panel,
satellites are divided into four subsamples according to the masses
of their host halos, as denoted in the legend. The result for the
total satellite sample in a given stellar mass bin is shown as the
translucent thicker line in each panel. For comparison medians for
centrals shown in Fig. 2.4 are re-plotted here as the thin solid
lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

2.11 The correlation between R50 and fc for satellite ellipticals. The thick
curves are the medians in fc bins, while the ‘typical’ [16%, 84%]
ranges are indicated by the bars on the leftmost sides. For
comparison, results for central ellipticals shown in Fig. 2.7 are
re-plotted here as thin lines. Different panels show the results in
different stellar mass bins, as indicated. . . . . . . . . . . . . . . . . . . . . . . . . . 89

xxi



2.12 The correlation between Rdisk and fc for satellite spirals. The thick
curves are the medians in fc bins, while the ‘typical’ [16%, 84%]
ranges are indicated by the bars on the leftmost sides. For
comparison, results for central spirals shown in Fig. 2.8 are
re-plotted here as thin lines. Different panels show the results in
different stellar mass bins, as indicated. . . . . . . . . . . . . . . . . . . . . . . . . . 90

2.13 The observed correlation between fc and the specific star formation
rate, sSFRs (blue lines: solid for centrals and dashed for
satellites) in comparison to the predictions of the semi-analytical
model (SAM) of Lu et al. (2014a) (thin magenta) and the age
abundance matching model of Hearin & Watson (2013) (thin
green). Note that the sSFR of satellites in the first panel for the
SAM are too low to show, and are represented by a horizontal line
with down pointing arrows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.1 The average star formation rate of central galaxies as a function of
halo mass at different redshifts as predicted by the original L15
model (dashed lines) and the L15-U model (solid lines). . . . . . . . . . . . 108

3.2 The observed stellar mass function of galaxies (data points) in
comparison with the predictions of individual empirical models
(left) and hydrodynamical simulations (right), as indicated in the
panels. The vertical lines in the right panel show the resolution
limits of the two simulations, as given in the original papers
describing the simulations. The Poisson errors are presented for
the simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

3.3 The observed stellar mass function of central (data points in the
upper two panels) and satellite (data points in the lower two
panels) galaxies, in comparison with the predictions by individual
empirical models (left panels) and gas simulations (right panels),
as indicated. The completeness in stellar mass from the
observation of centrals is not guaranteed for M∗ < 108M�. The
vertical lines in the right panels show the resolution limits of the
two simulations, as given in the original papers describing the
simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

3.4 The observed (data points) and predicted (lines) conditional stellar
mass functions of galaxies in groups of different halo masses, as
indicated in individual panels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

xxii



3.5 The comparison between the observed conditional stellar mass
functions of galaxies (data points) with the results of EAGLE and
Illustris simulations (lines), for groups of different halos masses, as
indicated in each panel. The two vertical lines indicate the mass
limits of the two simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

3.6 The average stellar mass - halo mass relation for central galaxies from
the empirical models considered in this paper, along with the
results in the literature from recent studies that adopted empirical
approaches such as halo abundance matching, conditional
luminosity function and halo occupation distribution, for local
Universe (left) and z = 2 (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

3.7 The average star formation rate of central galaxies as a function of
redshift for halos of different masses, as predicted by various
empirical models, as indicated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

3.8 The average star formation rate of central galaxies as a function of
redshift for halos of different present-day masses, predicted by the
empirical models, as indicated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

3.9 The average stellar mass assembly history of central galaxies as a
function of redshift for halos of different present-day masses,
predicted by various empirical models as indicated. . . . . . . . . . . . . . . 126

3.10 The model predictions for the field stellar mass functions at high
redshifts (solid) in comparison with observations. . . . . . . . . . . . . . . . 129

4.1 Distribution of the position angles (PA) of the DR7 galaxies. They
are measured counterclockwise from north to east to be between 0
and 180 degree. The horizontal line is the expected random
distribution with the error bars presenting Poisson errors. . . . . . . . . . 138

4.2 Alignment between the orientation of galaxies and the tidal fields at
their locations. The bins are for the brightest (i.e. central), the
2nd and the 3rd brightest integrated, the 4th and the 5th
brightest integrated, the 6th and the 7th brightest integrated, and
total satellites. The error bars are 1σ scatters with 100 random
realizations of the PAs for each galaxy, which average around 45
degree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

4.3 Same as Figure 3, but binned into halo mass ranges, as indicated in
each panel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

xxiii



4.4 Alignment between the projected position vector of satellites and the
tidal field. The position vector is defined as a vector from the
brightest galaxy in each group to each galaxy. The brightness
ranking orders of galaxies are presented similarly to Figure 4.2.
The error bars are 1σ scatters with 100 random realizations of the
projected position vectors for each galaxy. . . . . . . . . . . . . . . . . . . . . . . 145

4.5 Same alignment as in Figure 4.4, but as a function of projected
distance of satellites from centrals divided by virial radii (blue
circles). Tidal and radial alignments are also shown by red
rectangles and green triangles. Of the three different alignments,
only the spatial alignment shows strong dependence on the
distance. The error bars are 1σ scatters with 100 random
realizations of the relevant angles for each galaxy. . . . . . . . . . . . . . . . . 146

4.6 Alignment between the orientation and the projected position vector
of satellites. The position vector is defined as a vector from the
brightest galaxy in each group to each galaxy. The brightness
ranking orders of galaxies are presented similarly to Figure 4.2.
The error bars are 1σ scatters with 100 random realizations of the
PAs for each galaxy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

4.7 Alignment between the projected position vector of satellites and the
orientation of centrals as a function of projected distance of
satellites from centrals divided by virial radii. The error bars are
1σ scatters with 100 random realizations of the projected position
vectors for each galaxy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

4.8 Alignment between the tidal fields of group pairs of
Mh ≥ 1012.5h−1M� as a function of separation, separately for
groups in clusters (left-), filaments (middle-), and sheets
(right-panel). The morphologies that galaxies reside in are
classified according to the signs of the mass tidal field, as
described in the section 4.2. The error bars are 1σ scatters with
100 random realizations of the tidal field vectors for each group.
The lower-right panels provide zoom-ins of the largest scale
regime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

xxiv



4.9 Alignment between the position angles of central galaxy pairs as a
function of separation, separately for groups in clusters, filaments,
and sheets. The morphologies that galaxies reside in are classified
according to signs of the mass tidal field, as described in the
section 4.2. The error bars are 1σ scatters with 100 random
realizations of the tidal field vectors for each central galaxy. Note
that three error bars assigned at each radial bin for those in
cluster, filament, and sheet, are dislocated slightly for visual
clarity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.1 An example of the matched filter constructed for the tSZ analysis.
Here a universal profile of Arnaud et al. (2010) is adopted as a
spatial filter for a group of logM500/M� = 14 and an angular
radius θ500 ∼ 6.2 arcmin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
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PROLOGUE

Since galaxies form and evolve in and with dark matter halos and the cosmic web,

it is required, not optional, to understand galaxy evolution within the context of the

large-scale environments. Galaxies with the same properties but in different environ-

ments follow totally different paths of evolution. Saying anything about galaxies but

not about their environments is almost, if not completely, meaningless. The key to

understanding of such environmental effects is dark matter halos. They are not only

the hosts of galaxies but are tracers of the large-scale structure. They naturally sepa-

rate environments into small scales (within halos) and large scales (filaments, sheets,

etc), making them also observationally important.

The small initial fluctuation in the cosmic density field grows by gravitational

instability in the cosmic web and collapses to form objects called dark matter halos.

While dark matters collapse and accrete, baryons, the ‘ordinary’ matter, also fall

together into the potential well of dark matter halos. The shock created by the

infall of matter heats up the baryons, which were initially ‘cold gas’, to form the hot

gaseous halo. Then the radiation via recombinations and line transitions of the gas

cools down the gas and condense it into disky structures and stars, thus galaxies.

The feedback from stars such as stellar winds and supernova explosion (SNe), and

from active galactic nuclei at the center of galaxies, however, introduce a tweak in

galaxy evolution, by heating or ejecting the gas into surroundings, regulating further

star formation. The accurate mechanisms and impact of the feedback on galaxies and

environment are the key question yet to be answered. Another component dictating

the galaxy evolution path is environmental regulation of star formation such as tidal

stripping (stripping via interaction between galaxies and potential well of dark matter
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halos; e.g. Merritt 1984), ram pressure stripping (stripping via interaction between

galaxies and gas in dark matter halos; e.g. Gunn & Gott 1972), and galaxy harassment

(quenching via quick and frequent, weak encounters between galaxies; e.g. Moore et

al. 1996). The merger between galaxies and between halos also plays an important

role in galaxy evolution and growth of the cosmic structures.

This dissertation is a coherent, comprehensive investigation of the galaxy evolution

and gas properties in dark matter halos and the cosmic web. Here, using well-defined

dark matter halos from observation, we examine correlations between the properties

of galaxy, halo, and environment, and its implications about galaxy evolution from

high-z to the present day. We use the dark matter halos as a tracer of the large-scale

structures to define environment via the reconstruction of density field, velocity field,

and tidal field. Then we construct the largest to date all-sky catalog of groups and

associated dark matter halos in the low-redshift Universe, by developing an improved

halo-based group finder and applying that to four large redshift galaxy surveys. The

catalog provides an accurate association of galaxies with dark matter halos as well as

an unbiased estimate of halo properties such as mass. Using the updated group cata-

logs, we cross-correlate the galaxy systems with the Sunyaev-Zel’dovich effect (SZE)

from the temperature maps of the Planck CMB observation, to infer the properties

of gas in halos. We also use the large-scale density field to infer the gas properties

in the cosmic web from the SZE. Our results clearly demonstrate that the SZE is a

promising tool to probe the gas properties and constrain galaxy formation models.

Because galaxy formation and evolution are governed by a number of physical

processes, each of which becomes effective at different characteristic scales, it is es-

sential to have a well-defined group catalog that covers a wide span of mass range. It

is also very important to have an accurate mass estimate of those halos since many of

the galaxy properties depend heavily on the halo mass. In Chapter 1, we improve the

halo-based group finder developed by Yang et al. (2005, 2007) by using a better mass
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proxy and by extending to about an order of magnitude lower halo mass. From tests

using realistic mock catalogs, we show that our group finder, on average, identifies

∼ 94% of the true member galaxies with an unbiased halo mass estimate with a typi-

cal uncertainty of ∼ 0.2 dex. We apply our group finder to four large redshift galaxy

surveys, the 2MRS, 6dF, SDSS, and 2dF, to construct and publicize the largest to

date all-sky group catalogs of the low-redshift Universe.

Most of the previous studies with attempt of linking galaxies to dark matter

halos relied only on using the halo mass while many studies have suggested that

galaxy properties are also determined by the other halo properties than mass. Among

those halo properties, it is well known that the halo age affects the galaxy properties

significantly. In Chapter 2, we propose the ratio between mass of central galaxy and

host halo, fc ≡ M∗,cen/Mh, as an observational proxy of halo age. The motiviation

behind the idea is from simulations where the ratio increases with time (e.g. Wang et

al. 2011) because the mass in halos is gravitationally attracted to and thus gradually

accreted onto central galaxies. Using the group catalogs of Yang et al. (2007),

we investigate the correlations between the galaxy properties and fc. We find that

galaxies with higher fc at same stellar mass are found to be redder, more quenched,

and smaller in size, except for fc < 0.02 where the trend is reversed because of

the down-sizing effect. These results clearly demonstrate the validity of fc as the

observational proxy of halo age.

Another way of studying galaxy evolution is to investigate the galaxy number

statistics. Specifically, the number of galaxies with given stellar mass, called the stellar

mass function or SMF, are one of the simplest measure from observation that can

constrain galaxy formation models. In Chapter 3, we use the conditional stellar mass

function (CSMF) of galaxy systems, measured by Lan et al. (2016), to test galaxy

formation models and compare their predictions about the star formation history

in halos of different mass. We show that the CSMF provides additional constraints
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compared to the total SMF, and that the observation data clearly prefer a model with

a characteristic redshift at which star formation in low-mass halos changes behavior.

Yet another non-mass property that may greatly affect galaxy evolution is the

flow of mass accretion along the cosmic web, which may be reflected in the alignment

of galaxies in position, shape, and angular momentum with the large-scale structures.

Previous studies that investigated these alignments often times reported conflicting

findings (e.g. Holmberg 1969, Zaritsky et al. 1997, Yang et al. 2006), mainly due to

the small size of samples. In Chapter 4, using the group catalog of Yang et al. (2007)

and the tidal field reconstructed by Wang et al. (2012) within the volume spanned

by the SDSS Data Release 7, we examine various alignments between galaxies and

the large-scale structures. Our results imply that galaxy formation occurs via the

coherent, anisotropic flow of mass accretion along the cosmic web, and that the large-

scale tidal field is a good tracer of the cosmic web.

While so far we have focused on stars, investigating gas is a more direct way to

study the evolution of galaxies and the cosmic web, and their interaction. With the

advent of large CMB surveys, the Sunyaev-Zel’dovich effect (SZE) provides a new,

promising avenue to probe the gas properties. The SZE refers to the change in the

CMB spectrum due to the scattering of the CMB photons with free electrons that

they encounter. It has, in particular, advantages over other popular tools used to

study the gas, including the quasar absorption line studies and X-ray observations.

In Chapter 5, we use the thermal SZE, which measures the integrated gas pressure

along line-of-sight (LOS), from the Planck CMB survey to infer the thermal energy

of gas in halos of different mass. To overcome the large beam size of the Planck as

well as the low signal-to-noise of the SZE, we employ the matched filter (MF) to

extract the signal. Our analysis also takes into account the projection effects of halos

along same LOS. Our results indicate that the thermal energy of halo gas does not

scale with halo mass in a self-similar way, but is found to be much lower in low-
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mass halos, instead. We then, in Chapter 6, cross-correlate the Planck temperature

maps and our group catalog to extract the kinematic SZE (kSZE) signals from halos.

From the integrated flux, we infer the gas mass fraction within halos of different

mass. We find that almost all baryons expected from cosmology are detected, but

the gas temperature is lower than the virial temperature when combined with the

tSZE results. We continue to probe the gas in Chapter 7, but now the gas outside

halos, by extending a similar method used in Chapter 5 and 6, using the reconstructed

density and tidal field by Wang et al. (2012, 2016). We constrain the thermal energy

of intergalactic medium (IGM) in different environments. We find that the IGM in

regions of higher tidal field has a higher thermal energy at a given density. This

may be owing to higher cumulative energy provided via feedback due to the earlier

formation of structures in those regions. In Chapter 8, we compare our results with

the predictions from simulations, to demonstrate that the SZE is a promising tool to

provide critical constraints on galaxy formation models.
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PART I: GALAXIES IN THE COSMIC WEB



CHAPTER 1

GALAXY GROUPS IN THE LOW-REDSHIFT
UNIVERSE1

We apply a halo-based group finder to four large redshift surveys, the 2MRS,

6dFGS, SDSS and 2dFGRS, to construct group catalogs in the low-redshift Universe.

The group finder is based on that of Yang et al. but with an improved halo mass

assignment so that it can be applied uniformly to various redshift surveys of galax-

ies. Halo masses are assigned to groups according to proxies based on the stellar

mass/luminosity of member galaxies. The performances of the group finder in group-

ing galaxies according to common halos and in halo mass assignments are tested using

realistic mock samples constructed from hydrodynamical simulations and empirical

models of galaxy occupation in dark matter halos. Our group finder finds ∼ 94% of

the correct true member galaxies for 90−95% of the groups in the mock samples; the

halo masses assigned by the group finder are un-biased with respect to the true halo

masses, and have a typical uncertainty of ∼ 0.2 dex. The properties of group catalogs

constructed from the observational samples are described and compared with other

similar catalogs in the literature.

1.1 Introduction

Grouping galaxies observed in a galaxy catalog into systems (clusters and groups)

is a practice of long history. In the early attempts, clusters of galaxies were identified

1 THE CONTENTS OF THIS CHAPTER ARE PUBLISHED IN LIM ET AL. 2017, MNRAS,
470, 2982.
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based on optical photometric data, using the local density contrast of galaxies in

the sky as a proxy of spatial density and using distance estimates that are based on

galaxy magnitudes. For example, Abell (1958) constructed a catalog of about 2,700

clusters from the POSS plates using local galaxy surface number densities. A similar

selection was used by Abell et al. (1989) to construct a catalog of 1,600 clusters from

the UKST plates. Zwicky et al. (1961-1968) identified 9, 133 clusters in the northern

celestial hemisphere using the POSS plates, and adopting a galaxy number density

criterion that is relative to the immediate neighborhood. Because these catalogs

are constructed from photographic plates and no redshift information is available

for individual galaxies, they suffer severely in in-homogeneity, incompleteness, and

projection effects.

With the advent of large redshift surveys in 1980s, a lot of efforts were made to

select galaxy clusters/groups on the basis of closeness of galaxies in redshift space.

Although differing in details, many of these investigations have adopted the so-called

friends-of-friends (FoF) method, which identifies galaxy systems as member galaxies

that are linked by some adopted linkage criteria. For example, Postman & Geller

(1984) identified galaxy groups from the CfA redshift survey (Huchra et al. 1983)

by applying the FoF algorithm, developed by Huchra & Geller (1982), which uses

two linking criteria, one on projected separation and the other on redshift difference,

to link galaxies. With modifications, the FoF algorithm has been applied to various

redshifts surveys of galaxies, including the Two Degree Field Galaxy Redshift Survey

(2dFGRS; e.g. Eke et al. 2004), the Two Micron All Sky Redshift Survey (2MRS;

e.g. Crook et al. 2007), and the Sloan Digital Sky Survey (SDSS; e.g. Goto 2005,

Berlind et al. 2006). Lavaux & Hudson (2011) applied the FoF group finder to their

own compilation combining the 2MRS, SDSS and Six Degree Field Galaxy Survey

(6dFGS).
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As high density regions in the galaxy distribution, clusters and groups of galaxies

have been widely used to study the environmental dependence of the galaxy popu-

lation and its evolution. For example, Dressler (1980) found that the morphology of

a galaxy is correlated with the local density of galaxies in that the fraction of ellip-

tical galaxies is higher in regions of higher density. Butcher & Oemler (1978, 1984)

studied the galaxy populations in rich and compact clusters at redshifts of ∼ 0.4 and

found that the ratio of blue galaxies is higher than that in nearby clusters of similar

richness and morphology, implying a strong recent evolution in galaxy color. Galaxy

systems have also been assumed to be associated with dark matter halos. In the 1930s,

Zwicky studied the motion of galaxies within the Coma Cluster and found that the

total mass of the cluster estimated using the virial theorem is more than 100 times

higher than that estimated from the total luminosity of member galaxies. This is the

first evidence for the presence of a large amount of non-luminous (dark) matter in

clusters of galaxies. While the result was not widely accepted at the time, subsequent

observations based on galaxy velocity dispersion, X-ray emission and gravitational

lensing effects have provided indisputable evidence that galaxy clusters and groups

are all associated with massive dark matter halos. Indeed, even isolated galaxies are

also found to be embedded in massive halos, as inferred from their rotation curves

and velocity dispersion of stars.

Theoretically, the current ΛCDM model predicts that all galaxies form and evolve

in dark matter halos. These halos are virialized clumps of dark matter that form in the

cosmic density field through gravitational instability (see Mo et al. 2010, for a review).

Therefore, galaxy systems, if selected properly so as to represent halos, can be used

to study how galaxies form and evolve in dark matter halos. Furthermore, since dark

matter halos are simple but biased tracers of the underlying mass density field (e.g.

Mo & White 1996), galaxy systems so selected can also be used to study the structure

and evolution of the mass density field in the universe. In particular, as shown in

9



Wang et al. (2009), a well-defined group sample can be used to reconstruct the cosmic

density field, which, in turn, can be used to reconstruct the initial conditions from

which the observed structures form and evolve (Wang et al. 2013, 2014, 2016).

A key in using galaxy systems as a proxy of the dark halo population is a group

finder that can group galaxies according to common dark matter halos. The widely

adopted FoF algorithm is not optimal for the purpose. More recently, Yang et al.

(2005) (Y05 hereafter) developed a halo-based group finder, which identify groups

based on dark matter halo properties, such as mass and velocity dispersion, expected

from the CDM cosmogony. This halo-based group finder has been extensively tested

using mock galaxies from simulations and found to perform much better than the tra-

ditional FoF algorithm, particularly in identifying poor systems. The group finder of

Y05 has been applied to redshift surveys such as the 2dFGRS (e.g. Yang et al. 2005),

the SDSS (e.g. Weinmann et al. 2006, Yang et al. 2007), and the 2MRS (e.g. Lu et

al. 2016). Similarly, Duarte & Mamon (2015) adopted an iterative group membership

assignment algorithm but in a probabilistic way using galaxy distribution statistics

extracted from N-body simulation. An important step in the halo-based group finder

is the use of a halo-mass proxy to assign halo masses to tentative groups/clusters in

the grouping process. Y05 suggested the use of the ranking of the total luminosity of

galaxies that have luminosities above a certain value as the proxy of halo mass, and

this mass proxy was adopted in the SDSS and 2dFGRS group catalogs mentioned

above. However, this mass proxy may not suitable for shallower surveys, such as the

2MRS, where many systems contain only a small number of galaxies. In order to

overcome this limitation, Lu et al. (2016) (L16 hereafter) proposed a “GAP correc-

tion” method, in which the luminosity/stellar mass of the most luminous/massive

member is combined with the “GAP” to form a mass proxy, where “GAP” is defined

to be the difference in luminosity/stellar mass between the most luminous/massive

member and n-th most luminous/massive member. Using a 2MRS mock sample, L16
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found that the GAP method yields a typical dispersion of ∼ 0.3 dex in the estimated

masses for galaxy systems of a given true halo mass.

In this paper, we modify the group finders of Y05 and L16, paying particular

attention to the extension of the methods to poor systems, such as groups containing

one member or a small number of members, in a uniform way. We use mock samples

constructed from numerical simulations and an empirical model to calibrate the halo

mass proxies and to test the performances of the group finder under different sample

selections. As we will see below, our modified group finder not only gives more

accurate halo mass estimates for groups than the original group finders, it also enables

us to uniformly extend the group samples to systems with halo masses that are about

an order of magnitude lower than in the existing group catalogs. We apply our

group finder to a number of redshift surveys in the local universe, including the

2MRS, the 6dFGS, the updated release of SDSS and the 2dFGRS. As mentioned

above, group catalogs have been constructed from some of these catalogs with various

group finders. Our goal here is to extend, update, and add values to, these catalogs

by providing group samples that are uniformly selected from improved data using

improved methods.

The outline of this paper is as followings. In Section 1.2, we describe the obser-

vational data to which we apply our group finder, and the simulation that we use to

calibrate and test the group finder. Section 1.3 explains in detail the group finder

and how to test and calibrate a variety of halo-mass proxies using mock galaxies. In

Section 1.4, we apply the group finder to the mocks of the same sample selection as

the observational data, and assess its performance by comparing halo masses, mem-

bership assignments, and global completeness between the constructed mock groups

and the simulations. In Section 1.5, we apply the group finder to real observations,

construct our group catalogs, describe their basic properties and how to use them,
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Figure 1.1. The redshift distributions of galaxies in the four samples we use to
identify galaxy groups. The bin size of the histograms is ∆z = 0.004.

and make comparisons with other catalogs in the literature. Finally, we summarize

our results and discuss applications of the catalogs in Section 2.6.

1.2 Observational data and mock samples

In this section, we describe in detail the galaxy samples we use to construct our

group catalogs. Since our goal is to provide well-defined group catalogs in the local

universe, we decide to use all major redshift surveys at low redshift (z <∼ 0.2) that

are publicly available. A brief summary of our sample selections is given in Table 1.1.

The redshift distributions of these samples are shown in Figure 1.1, and their sky

coverages are plotted in Figure 1.2.
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Figure 1.2. The galaxy distributions in Galactic coordinates (Aitoff projection) of
the 2MRS (blue), 6dFGS (red), SDSS (orange), and 2dFGRS (black) samples.

Table 1.1. A summary of galaxy samples.

Sample Sky Coverage Deptha Magnitude limit No. of Galaxiesb

(%) (z) (mag)

2MRS 91% 0.08 Ks ≤ 11.75 43, 249 (44, 310)

6dFGS 40% 0.11 Ks,tot ≤ 12.5 62, 987 (73, 386)

SDSS 21% 0.2 r ≤ 17.77 586, 025 (600, 458)

2dFGRS 3.3% 0.2 bJ ≤ 19.45 180, 967 (189, 101)

Notes.
a. Upper limit of redshift in CMB rest-frame.
b. The numbers in parentheses are for the extended (the catalogs with ‘+’)
catalogs.

1.2.1 The 2MRS catalog

Our first galaxy sample is selected from the 2MASS Redshift Survey (2MRS;

Huchra et al. 2012), which is based on the Two Micron All Sky Survey (2MASS;
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Skrutskie et al. 2006). 2MASS covers ∼ 91% of the entire sky in the near-infrared J ,

H, and Ks bands. Because of the reduced dust extinction in the NIR, 2MASS is an

almost uniform survey down to the magnitude limit Ks ≤ 13.5, except in the region

within ±5◦ of the Galactic plane (the “zone of avoidance” or ZoA). The extended

source catalog (the 2MASS XSC) contains ∼ 106 objects. The 2MRS attempted to

obtain redshifts, either from its own observation or from other data bases, for 45, 086

sources of the 2MASS XSC that meet the following criteria:

1. Ks ≤ 11.75 mag and detected at H,

2. E(B − V ) ≤ 1,

3. |b| ≥ 5◦ for 30◦ ≤ l ≤ 330◦; |b| ≥ 8◦ otherwise,

where b is the Galactic latitude, and E(B − V ) is the extinction based on the dust

map of Schlegel et al. (1998). As shown in Huchra et al. (2012), to the magnitude

limit Ks = 11.75 the completeness does not change significantly within the region

specified by criterion (iii). Of the 45, 086 sources, 2MRS rejected a small fraction

that is of galactic origin, only partially detected, or not clearly detected due to con-

tamination. This leaves a total of 44, 599 galaxies. The details about the selection can

be found in Huchra et al. (2012) and its appendix. For the 44, 599 galaxies, 2MRS

eventually obtained redshifts for 43, 533 systems, achieving a completeness of about

97.6%. These include 11, 000 galaxies measured by the 2MRS team, 7, 069 galaxies

with redshifts from SDSS, 11, 763 from 6dFGS DR3, 12, 952 from the NASA Extra-

galactic Database (NED), and 749 from J. Huchra’s personal compilation (ZCAT).

For objects with redshifts from more than one source, the preference was given in the

order of 2MRS, SDSS, 6dF, NED, and ZCAT.

For the 1, 066 galaxies that do not have redshifts from the 2MRS, we either adopt

redshifts of their nearest neighbors or use those given by the 2MASS Photometric

Redshift catalog (2MPZ; Bilicki et al. 2014). The 2MPZ uses the optical, NIR, and
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mid-IR photometry from SuperCOSMOS, 2MASS, and WISE respectively, to obtain

photometric redshifts for about 1 million galaxies, by employing an artificial neural

network approach trained with several redshift surveys. The photometric redshifts

obtained have a typical error of 12%. We first assign redshifts of the nearest neighbors

(zNN) to all galaxies without the spectroscopic redshift. Then, if a galaxy also has a

redshift from the 2MPZ (zpho) and zpho differs from zNN by more than 12%, we assign

zpho as the redshift of the galaxy instead of zNN .

With all these, we obtain redshifts for 288 additional galaxies from their nearest

neighbors, and redshifts for 778 galaxies from the 2MPZ, thus assigning redshifts

to all the 44, 599 galaxies. Because of the uncertainties in the nearest-neighbor and

photometric redshifts, we will provide two separate catalogs: the first is constructed

from the sample of galaxies that all have 2MRS redshifts; the second uses all galaxies

that have 2MRS redshifts, zpho, or zNN . The latter will have a flag that shows source

of redshifts for each galaxy, as well as the separation to the nearest neighbor for

galaxies with zNN so that a user can decide an uncertainty that may be allowed to

suit his/her scientific goal. For convenience, we refer to the 1st catalog as 2MRS and

the 2nd as 2MRS+.

Our sample also contains a number of refinements appropriate for our purpose.

First, we correct all the redshifts (radial velocities) of galaxies to the CMB rest-

frame. To do this, we assume that the heliocenter is moving with a velocity of

368 km/s towards (l, b) = (263.85◦, 48.25◦) with respect to the CMB (Bennett et

al. 2003). Second, we only use galaxies with corrected redshifts z ≤ 0.08, which

eliminates about 1% of the galaxies from the sample. The final numbers of galaxies

are then 43, 249 and 44, 310 for 2MRS and 2MRS+, respectively. As an example, the

redshift and sky distributions of the galaxies in 2MRS are shown in Figures 1.1 and

1.2, respectively, and a brief summary of the samples is given in Table 1.1.
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We use the extinction-corrected Ks isophotal magnitudes from the 2MRS. The

extinction-correction accounts for dust extinctions of the Milky Way relying on the

dust map by Schlegel et al. (1998). We use WMAP9 cosmology to convert apparent

magnitudes to absolute magnitudes in a bandpass Q as followings:

MQ = mQ + ∆mQ −DM(z)−KQ(z)− EQ(z)− SQ(z) (1.1)

where ∆mQ is the zero-point correction from the survey photometric system to the

Vega system (or the AB system for surveys introduced later in this section that use

the AB system), which is 0.017 for the 2MASS Ks-band filter (Cohen et al. 2003),

DM(z) is the distance modulus at z, KQ(z) and EQ(z) are the K- and evolution-

corrections at redshift z, respectively, and SQ(z) corrects for the effect of decreasing

aperture size within which flux is integrated with increasing redshift due to dimming

of surface brightness. The term SQ(z) is not needed when using extrapolated total

magnitudes. We follow Lavaux & Hudson (2011) to model KQ(z), EQ(z), and SQ(z),

and correct the values of MQ of individual galaxies to redshift z = 0.1. For nearby

galaxies that have negative recession velocities in the CMB rest-frame (a total of 25

galaxies in the 2MRS catalog), we adopt distances from ‘EDD distances’ available

at the Extragalactic Distance Database (EDD; Tully et al. 2009) to calculate the

absolute magnitudes. These distances, however, are not used in identifying galaxy

systems via the group finder, as our group finder works in redshift space. In the

cases where we do not find matches from the EDD (a total of 5 galaxies in the

2MRS catalog), we assign the distances of their nearest neighbors that have EDD

distances available. Later in §1.5 where we construct group catalogs, we estimate

stellar mass using the mean relation between stellar mass and Ks-band luminosity

from the simulation described in §1.2.5.
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1.2.2 The 6dFGS catalog

Our second sample is selected from the 6dF Galaxy Survey (6dFGS; Jones et al.

2004, 2005). Specifically we use the 6dFGS Data Release 3 (6dFGS DR3; Jones et al.

2009), the final redshift release of the survey. As 2MRS, the 6dFGS is based mainly on

the Ks-selected 2MASS, but is deeper, with a magnitude limit of Ks,tot = 12.65 mag,

where Ks,tot is the total magnitude from the 2MASS. Note that the magnitudes are

corrected for foreground dust extinction, as mentioned above. As shown in McIntosh

et al. (2006), these magnitudes are robust against uncertainties in surface brightness.

The survey has a sky coverage of ∼ 41% in the southern hemisphere.

According to Jones et al. (2009), the final 6dFGS catalog contains 126, 754 unique

redshifts from their own observations, 563 redshifts from the SDSS, 5, 210 redshifts

from the 2dFGRS, and 9, 042 redshifts from the ZCAT. For their own observations, the

catalog contains only the spectra with quality parameters Q = 3 and Q = 4, which are

appropriate for scientific analysis according to Jones et al. (2009). Redshifts with Q =

3 and Q = 4 have typical uncertainties of 55 km/s and 45 km/s, respectively (see Jones

et al. 2009, for details). However, the 6dFGS has poorer coverage in some regions,

such as those toward the Large Magellanic Cloud (LMC) and the South Pole. This can

affect the performance of our group finder. To reduce this effect we select a shallower

sample, using the 2MASS Extended Source Catalog (2MASS XSC) with a flux limit of

Ks,tot = 12.5 mag as an input catalog. The 2MASS XSC with this flux limit contains

75, 098 entries. For galaxies that have spectroscopic redshifts from the 6dFGS catalog,

we assign the 6dF redshift. We also find redshifts for 1, 533 galaxies from the 2M++

galaxy redshift catalogue (2M++; Lavaux & Hudson 2011), which are originally from

the NED. For galaxies without spectroscopic redshifts available, we assign redshifts of

their nearest neighbors or from the 2MPZ in the same way as for the 2MRS described

above. Of all the 2MASS XSC galaxies, 62, 929 have redshifts from the 6dFGS DR3,

1, 533 redshifts from the 2M++, 3, 354 redshifts from the nearest neighbor, and 7, 282
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redshifts from the 2MPZ. This, of course, corresponds to 100% redshift completeness.

In the end, we will provide two separate catalogs: one constructed using only galaxies

with spectroscopic redshifts, and the other using all galaxies, including the ones with

nearest-neighbor and 2MPZ redshifts. For convenience, we refer to the 1st catalog as

6dFGS, and the 2nd catalog as 6dFGS+.

For our analysis, we correct all the radial velocities (redshifts) to the CMB rest-

frame, as we did for the 2MRS, and we only use galaxies with corrected redshift

z ≤ 0.11. This leaves 62, 987 and 73, 386 galaxies in our final 6dFGS and 6dFGS+

samples, respectively. The redshift distribution and a summary of the final samples

are given in Figure 1.1 and Table 1.1, respectively.

The absolute magnitudes of individual galaxies are again calculated using equation

(1). The same K-, E-, and surface brightness corrections as those for the 2MRS are

used to correct the Ks-band magnitudes to z = 0.1. For galaxies with negative

recession velocity, we again use the EDD distances to compute their luminosities. We

approximate stellar mass using the mean relation between stellar mass and Ks-band

luminosity obtained from the simulation described in §1.2.5.

1.2.3 The SDSS catalog

Our third sample is selected from the Sloan Digital Sky Survey Data Release 13

(SDSS DR13; Albareti et al. 2016). DR13 is the first data release of the fourth

phase of the Sloan Digital Sky Survey (SDSS-IV) and is built upon prior releases.

It includes updated data for the SDSS Legacy Survey, which is a magnitude limited

redshift survey completed in SDSS-II, as well as objects from the Baryon Oscillation

Spectroscopic Survey (BOSS; Dawson et al. 2013), the selection of which barely

overlaps with that of the legacy survey. The main part of the SDSS Legacy Survey was

already released in DR7, and remained more or less steady through DR12. Significant

changes were made to photometric calibration in the DR13, including updated zero
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points and flat-fields in the g, r, i, and z bands from the hypercalibration procedure of

Finkbeiner et al. (2016). These affect all photometric quantities of the galaxies in the

Legacy Survey. In addition to the updated photometry calibration, another significant

improvement in DR13 relative to, for example, DR7 is that some of the fiber-collision

galaxies in DR7 have their redshifts measured in DR13. The SDSS spectrograph used

for the Legacy Survey did not allow two fibers to be positioned within 55 arcsec, and

so no spectroscopic measurement was available for galaxies that have close neighbors

within the fiber separation, the so-called ‘fiber-collision’ galaxies. Many of the ‘fiber-

collision’ galaxies (∼ 60%, e.g. Guo et al. 2015) have been measured spectroscopically

in the later data releases through DR13. The Legacy Survey covers approximately

∼ 23% of the sky, and is complete to an extinction-corrected Petrosian magnitude of

17.77 mag in the r-band.

From the full photometric catalog of DR13, we select all objects that are in the

Legacy Survey region and identified as galaxies (type = 3) brighter than the r-band

magnitude limit of 17.77. We take the photometric quantities only from the primary

observation in the cases where an object was observed multiple times (mode = 1). We

also get rid of galaxies in the Southern Galactic Cap, as its narrow angular boundary

makes our group finder unreliable for many systems close to the boundary. Note

that these selections may include some of the BOSS galaxies that pass the selection

criteria. The selections leave a total of 638, 191 entries, of which 16, 251 galaxies do

not have redshifts for reasons such as fiber-collisions, broken or unplugged fibers, bad

spectra, or poor fit to models. Of the 621, 940 galaxies that have redshifts, 20, 780

(∼ 3.3%) are BOSS galaxies in the Legacy region.

For the 16, 251 galaxies without SDSS redshifts, we find redshifts from other

sources: the 2dFGRS, 6dFGS, the Korea Institute for Advanced Study Value-Added

Galaxy Catalog (KIAS VAGC; Choi et al. 2010), a complementary galaxy sample in

the LAMOST Survey (Luo et al. 2015, Shen et al. 2016), the nearest neighbors, or
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the 2MPZ, to achieve 100% redshift completeness. For galaxies that have redshifts

available from more than one sources, preferences are given in the order given above,

i.e. from 2dFGRS to 2MPZ. As a result, 294, 29, 168, 227, 13, 548, and 1, 985 ad-

ditional redshifts are obtained from 2dFGRS, 6dFGS, KIAS VAGC, LAMOST, the

nearest neighbors, and 2MPZ, respectively. In the following, we will construct two

different kinds of group catalogs from the SDSS data, one using only galaxies that

have spectroscopic redshifts, and the other using all galaxies including the ones with

estimated redshifts from nearest neighbors and from 2MPZ. For brevity, we refer to

the 1st catalog as the SDSS and the 2nd as the SDSS+. We covert all the recession

velocities (redshifts) to the CMB rest-frame, and restrict our samples to z ≤ 0.2.

This leaves a total of 586, 025 and 600, 458 galaxies as our final SDSS and SDSS+

samples, respectively.

We compute the absolute magnitudes in the r-band of the sample according to

equation (1), using the WMAP9 cosmology, with K- and evolution- corrections to

z = 0.1 following Poggianti (1997). We also calculate the (g − r) color, corrected to

z = 0.1, for each galaxy. From the DR13 photometric catalog, we adopt the cmodel

magnitude to calculate the flux, and the model magnitudes to compute the color,

following the recommendations of the SDSS team. The zero-point offset between the

DR13 magnitude and the AB magnitude is practically zero for g- and r- bands within

the error of 0.01 mag. Galaxies with colors outside the 3σ of the color distribution at

a given luminosity are assigned the median color. For galaxies with negative redshifts,

their luminosities are obtained from their EDD distances. Finally, we estimate the

stellar masses of individual galaxies from their r-band absolute magnitudes and (g−r)

colors, following the formula of Bell et al. (2003):

logM∗ = −0.306 + 1.097(g − r) + 0.4(4.67−Mr), (1.2)

where 4.67 is the absolute magnitude of the Sun in the r-band.
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1.2.4 The 2dFGRS catalog

Finally, we also select a sample from the 2dF Galaxy Redshift Survey (2dFGRS;

Colless et al. 2001). The 2dFGRS provides redshifts for about 250, 000 galaxies,

measured with the Two-degree Field (2dF) multifibre spectrograph on the Anglo-

Austrailian Telescope, down to a magnitude limit of bJ = 19.45 after Galactic ex-

tinction correction. The survey consists of two strips in the northern and southern

Galactic hemispheres (the northern and southern Galactic caps, respectively), and 99

‘random’ fields of 2◦ each over and around the southern Galactic cap. The full survey

covers about 2, 000deg2 with a median redshift of z ∼ 0.11. Because the random

fields are not contiguous and our group finder can be affected severely at the edges of

these field, we use only the two Galactic caps for our purpose. The final sky coverage

of our sample is about 3.5%.

The quality of a spectrum is characterized by a quality parameter, Q = 1 - 5, with

a higher value of Q indicating higher quality. From the final release spectroscopic

catalog, we use only galaxies with Q ≥ 3, for which the redshifts are 98.4 per cent

reliable, with a typical uncertainty of 85 km/s (Colless et al. 2001). Of all the 245, 591

galaxies from the 2dFGRS catalog, 12, 340 systems do not have spectroscopic redshifts

from the survey. For these galaxies, we find matches and assign redshifts from the

SDSS DR13, the 6dFGS, the nearest neighbors, and the 2MPZ. In the cases where

a galaxy has redshifts from more than one of these sources, the priority is given,

in the order of decreasing priority, to the SDSS, the 6dFGS, the nearest neighbor

redshift, and the 2MPZ. As a result, we have 233, 251 redshifts from the 2dFGRS,

322 from the SDSS, 43 from the 6dFGS, 11, 852 from the nearest neighbors, and

123 from the 2MPZ. Again, we will provide two catalogs, one using only galaxies

with spectroscopic redshifts, and the other using all galaxies. We refer to these two

catalogs as the 2dFGRS and 2dFGRS+ samples, respectively.
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Redshifts are corrected to the CMB rest-frame, and we limit our sample to z ≤

0.2. The final samples contain 180, 967 and 189, 101 galaxies for the 2dFGRS and

2dFGRS+, respectively. When selecting galaxy groups from these samples, we adopt

the survey masks provided in the 2dFGRS website 2. For reference, the redshift

distribution of 2dFGRS is shown in Figure 1.1.

We use equation (1) to convert the observed apparent magnitudes to absolute

magnitudes, assuming WMAP9 cosmology. To do this, we first make K- and E-

corrections to z = 0.1 following the method given in Poggianti (1997). The stellar

masses of individual galaxies are obtained from their bJ -band absolute magnitudes

and bJ −R colors using the approximation of Bell et al. (2003):

logM∗ = −0.976 + 1.111(bJ −R) + 0.4(5.48−Mbj), (1.3)

where 5.48 is the absolute magnitude of the Sun in the bJ -band. For a small number

of galaxies that have colors outside the 3σ range of the bJ −R distribution, and for a

total of 276 galaxies without the R-band photometry, each of them has been assigned

a (bJ − R) color that is equal to the median value given by the galaxies which have

bJ luminosities similar to the galaxy in question and have bJ −R colors. Here again,

the EDD distances have been used to convert the observed flux to the luminosity for

galaxies with negative redshifts.

1.2.5 Mock samples used to test methods

The quality of the group samples to be constructed depends on the performance

of the group finder used to identify the groups from the observational data. To

test the performance of our group finder (to be described in §1.3), we use mock

2http://www.2dfgrs.net/
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samples constructed from a hydrodynamical simulation of galaxy formation, where

information about dark matter halos and their galaxy memberships are all known.

The hydrodynamical simulation used here is the Evolution and Assembly of GaLax-

ies and their Environments (EAGLE; Schaye et al. 2015, Crain et al. 2015, McAlpine

et al. 2015). EAGLE follows the evolution of gas, stars, dark matter, and massive

black holes in a cosmological context, implementing physical models for gas cooling,

star formation, stellar and AGN feedback. Sub-grid processes, in particular feedback

processes, are modeled with simple parametric forms, with model parameters tuned

to match observations, such as the stellar mass function and stellar mass - black hole

mass relation at z ∼ 0, as detailed in Crain et al. (2015). The simulation starts from

z = 127 and adopts the Planck cosmology with (Ωm,ΩΛ, h) = (0.307, 0.693, 0.678)

(Planck 2014). This cosmological model is not exactly the same as the WMAP9 cos-

mology we adopt in this paper. However, since the purpose here is to test our group

finder and halo mass proxies (see below), this difference in cosmology should not be

a concern, as long as the analysis is done in a self-consistent way. EAGLE provides a

set of simulations assuming different sets of model parameters and different box sizes.

Here we use the simulation with the largest box size of 100Mpc3, their fiducial sim-

ulation. The simulation contains about 11, 500 dark matter halos with masses above

1011M�, and ∼ 10, 000 galaxies with masses comparable to or above that of the Milky

Way. EAGLE adopted the Chabrier (2003) IMF and the spectral synthesis model of

Bruzual & Charlot (2003) to get luminosities and stellar masses of individual galaxies

from their star formation histories, and these are used in our analysis as well. A few

galaxies are found to have extremely low halo masses for their stellar masses. These

extreme outliers are excluded from our analysis.

We construct realistic mock catalogs of galaxies from EAGLE. Since the original

simulation box, 100 Mpc, is smaller than the volumes of our samples, we stack the

duplicates of the original box side by side as many times as is required to cover the
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volume of the sample in question. A location is chosen for the observer in the stack,

and apparent magnitudes of individual galaxies are calculated from their luminosities

and their distances to the observer. The same sample selections as those for the

observational samples, as detailed earlier in this section, are applied to construct

the mock samples. Specifically, we choose galaxies in the simulation box that are

in the same sky regions as the observational samples, as well as apply the apparent

magnitude and redshift limits of each survey to eliminate faint galaxies from the

mock samples. Finally, we also apply the same masks, if any, as provided for the

observational samples by each survey. Since all the galaxies in the simulation are

linked to dark matter halos, we can use these mock catalogs to quantify the accuracy

of our methods.

As an independent check, we have also constructed mock samples using an em-

pirical model of galaxy formation. The details of these mock samples are given in

Appendix A.

1.3 The halo-based group finder

1.3.1 The basic algorithm

The method adopted here is similar to the ‘halo-based’ group finder developed by

Yang et al. (2005) (Y05 hereafter). This group finder makes use of physical properties

of dark matter halos expected from the current cold dark matter (CDM) cosmogony,

such as halo mass, virial radius and velocity dispersion, in assigning galaxies into

groups. The group finder has been tested extensively using mock galaxies, and is

found to be more effective than the traditional Friends-of-Friends (FoF) algorithm in

grouping galaxies according to common halos, and particularly in dealing with poor

groups associated with small halos. This allows the identification of systems over

a wide range of masses. However, in the original group finder of Y05, halo masses

assigned to galaxy groups are based on the ranking order of the total luminosity of
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member galaxies (or the sum of the luminosities of member galaxies above a certain

luminosity limit). It becomes inaccurate for groups that contain only a small number

of members, and is not appropriate for shallow surveys where a large number of the

identified groups contain only one or a small number of relatively bright galaxies. In

order to overcome this limitation, we make some modifications to the group finder

of Y05, in particular in the assignments of masses to galaxy groups. Specifically, for

systems containing more than one member galaxy, we adopt a modified version of

the ‘GAP’ model developed by Lu et al. (2016). For systems containing only one

member, we use halo mass proxies that are calibrated by realistic mock catalogs. As

we will show below, these modifications not only provide more accurate halo mass

estimates, but also allow us to reach to systems with lower halo masses in a uniform

way. The detailed steps of the group finder are as followings:

Step 1. Assign preliminary halo mass to every galaxy.

While the group finder of Y05 starts by linking galaxies using the FoF algorithm

with a small linking length to identify preliminary group centers, we start by treating

all galaxies as isolated galaxies associated with distinct tentative dark matter halos

with preliminary halo masses computed according to the halo mass proxies described

in §1.3.2. We have checked that this leads to no significant differences in membership,

mass, and the number of final groups in comparison to that of Y05.

Step 2. Membership assignment using halo properties.

For all groups identified at each iteration, we compute the size and the line-of-sight

velocity dispersion, which are used to determine which galaxies should be assigned to

a certain group,
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r180

Mpc
= 1.33 h−1

( Mh

1014h−1M�

)1/3

(1 + zgroup)−1

σ

km s−1
= 418

( Mh

1014h−1M�

)0.3367

, (1.4)

where zgroup is the redshift of the group in question, and r180 is the radius of the halo,

within which the mean mass density is 180 times the mean density of the universe

at the given redshift. The numbers used are appropriate for the WMAP9 cosmology

(e.g. Lu et al. 2016). Next, we assume that the phase-space distribution of galaxies

in dark matter halos follows that of dark matter particles and that the group center is

the same as the halo center. The number density contrast of galaxies at the redshift

of zgroup can then be expressed as

PM(R,∆z) =
H0

c

Σ(R)

ρ̄
p(∆z) (1.5)

where R is the projected distance, c is the speed of light, ρ̄ is the mean density of

the Universe, Σ(R) is the surface density, and ∆z = z − zgroup. We assume that the

redshift distribution of galaxies within a halo, p(∆z), has the Gaussian form,

p(∆z) =
c√

2πσ(1 + zgroup)
exp

(
−c2∆z2

2σ2(1 + zgroup)2

)
(1.6)

where σ is the line-of-sight velocity dispersion. Furthermore, halos are assumed to

follow a spherical NFW density profile, so that the surface density Σ(R) can be written

as

Σ(R) = 2rsδ̄ρ̄f(R/rs) (1.7)
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where rs is the scale radius, and

f(x) =



1
x2−1

[
1− ln 1+

√
1−x2

x√
1−x2

]
, if x < 1

1
3
, if x = 1

1
x2−1

[
1− atan

√
x2−1√

x2−1

]
, if x > 1

δ̄ =
180

3

c3
180

ln(1 + c180)− c180/(1 + c180)
(1.8)

with the concentration, c180 = r180/rs, given by the model of Zhao et al. (2009).

Finally, we calculate PM(R,∆z) for each of all the galaxy-group pairs. If the value of

PM is above a certain background value, PB, an association between the galaxy and

the group is assumed. If a galaxy is associated with more than one group according

to this criterion, the galaxy is assigned to the group with the largest PM(R,∆z).

As demonstrated in Y05 using realistic mock samples, a compromise between the

completeness and contamination can be achieved with PB ∼ 10, and the performance

of the group finder is not very sensitive to the exact value of PB. Note that PB ∼ 10

is also in agreement with theoretical expectations for dark matter halos (see the

discussion in section 3.2 of Y05 for details). We therefore adopt PB = 10 throughout

this paper.

After the membership of a group is determined, we define the stellar mass-weighted

center of member galaxies as the group center, if stellar masses are available. Other-

wise, we use luminosity-weighted center as the group center.

Step 3. Rank groups according to halo mass proxies.
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Table 1.2. The best-fit parameters for the GAP correction
from the EAGLE.

Sample α1 α2 β γ δ1 δ2 δ3

(×105) (×106)

2MRS −2.3 −1.1 6.6 5.1 0.28 0.13 0.035

6dFGS −1.1 −3.9 4.8 6.1 0.13 −0.15 0.037

SDSS −3.6 −6.0 5.3 5.2 0.11 −0.039 0.0014

2dFGRS −3.6 −5.9 5.5 5.7 0.12 −0.046 0.0035

As described in §1.3.2.1 and §1.3.2.2, in the beginning of each iteration, tentative

halo masses are assigned to groups identified in the previous step by ranking groups

according to a mass proxy. In short, for tentative groups containing only one mem-

ber galaxy in the previous step, we use the galaxy stellar mass (luminosity) - halo

mass relation obtained from a hydrodynamical simulation to assign the preliminary

halo mass, as described in §1.3.2.2. For tentative groups that contain more than one

member at a given iteration, we use the ‘GAP correction’ method of Lu et al. (2016),

modified with our own re-calibrations (see below).

Step 4. Group mass update and iteration.

To assign masses to groups, we use abundance matching between the mass function

of the preliminary groups and an adopted theoretical halo mass function. A new halo

mass, Mhalo, is assigned to a group to replace the preliminary group mass, Mpre,

according to

N(> Mhalo) = N(> Mpre)
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where N is the cumulative number density of groups (halos) more massive than Mpre

(Mhalo). We use the theoretical halo mass function of Sheth et al. (2001) for this.

Note that for flux-limted samples, halos of a given mass are complete only to a certain

redshift. The abundance matching used to assign halo mass is applied only for groups

in samples that are complete (see §1.4.2). For groups residing in volumes within which

the samples are not complete, we use the mean relation between the halo mass and the

mass proxy from the last iteration to assign halo masses to them. Once group masses

are updated, we iterate Steps 2 through 4 until convergence in group membership is

achieved.

1.3.2 Halo mass proxies of galaxy groups

As mentioned in the previous section, our group finder relies on the reliability of

the halo mass model for groups. Here we test different halo mass proxies by comparing

their predictions with the results obtained from the hydrodynamical simulation. We

have also made similar tests using a mock sample of galaxies constructed by applying

the empirical model of Lu et al. (2015) to the simulated halos. The results obtained

from the empirical model are very similar to those obtained from the hydrodynamical

simulation, and are presented in Appendix A.

1.3.2.1 Halo mass proxies for groups containing more than one galaxy

In the original paper presenting the halo-based group finder, Y05 uses the sum

of the luminosities of member galaxies down to some luminosity limit as a proxy of

group masses. However, this proxy may not be appropriate for a shallow galaxy survey

where many groups have only a small number of members. Because of this, Lu et al.

(2016) (L16 hereafter) suggested the use of a combination of the luminosity/stellar

mass of the central galaxies, and the luminosity/stellar mass GAP (the difference in

luminosity/stellar mass between the central galaxy and the n-th brightest galaxy) as
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Figure 1.3. Dependence of halo mass on the luminosity or stellar mass of the central
galaxy and the GAP parameter (defined to be the difference in luminosity or stellar
mass between the central galaxy and the n-th brightest satellite; see text for detailed
definition) as given by EAGLE. The left panel is the result based on the K-band
luminosity, while the right panel shows result based on stellar mass. For clarity, only
the GAP correction using the brightest satellite (i.e. n = 1) is shown.

a group mass proxy. Based on mock galaxy samples, L16 came up with the following

model for the halo mass,

logMh(Lc, Lgap) = logMh(Lc) + ∆ logMh(Lc, Lgap) (1.9)

where Lc is the luminosity of the central galaxy, Mh(Lc) is the mean halo mass at

a given Lc, and Lgap = Lc/Ln with Ln the luminosity of the n-th brightest satellite.

The masses and luminosities here are in units of M�/h and L�/h
2, respectively.

Using mock samples constructed for the 2MRS, L16 found that their group masses

are consistent with true halo masses obtained from the simulation used in their mock

samples, and the best result is achieved with n = 4. For groups with less than four

satellites, L16 used the faintest satellite in a group for the GAP correction. The basic

motivation behind the GAP correction is that groups of the same central galaxy
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luminosity but with more contribution from satellites should possess more massive

halos.

Here we adopt the same idea of the GAP correction, but use our own functional

form for ∆ logMh(Lc, Lgap):

∆ logMh(Lc, Lgap) = α(Lgap)× (logLc − β)γ + δ(Lgap)

with

α(Lgap) = α1 + α2 log(Lgap)

δ(Lgap) = δ1 + δ2 log(Lgap) + δ3[log(Lgap)]2 (1.10)

where the free parameters α1, α2, β, γ, δ1, δ2, and δ3 are constants, and the masses and

luminosities are again in solar units. We use mock catalogs constructed from EAGLE

to calibrate these free parameters. For example, from the 2MRS mock catalog we

obtain (α1, α2, β, γ, δ1, δ2, δ3) = (−2.3×10−5, −1.1×10−6, 6.6, 5.1, 0.28, 0.13, 0.035)

for Lgap = Lc/L2. The values of these parameters for other cases are given in Table 1.2.

As shown later in this section, the use of stellar masses gives better halo proxies

than the use of luminosities. Thus, halo masses based on stellar masses are preferred

to those based on luminosities whenever stellar masses are available. The halo mass

proxy using stellar mass is modeled in the same way as that given above, except with

Lc and Lgap replaced by M∗,c and M∗,gap, respectively. Figure 1.3 shows the relations

given by equations (9) and (10) using galaxy luminosities or galaxy stellar masses.

1.3.2.2 Halo mass proxies for groups containing one galaxy

Next we consider systems that contain only one member galaxy. Here we present

the best proxy for such systems for each catalog based on tests with a number of

proxies. Note that the GAP correction from the previous section is not applicable for
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Figure 1.4. The relation between the K-band (left) and the r-band (right) luminos-
ity of central galaxies and the halo mass, as obtained from the EAGLE simulation.
The gray points are individual systems, while the black line and bars show the median
and scatter of the relation, respectively.

isolated galaxies, as by definition there is no observed satellite in systems containing

only one member. In L16, it was assumed that each isolated galaxy has, with 50%

chance, one potential satellite galaxy with Ks = 11.75, which is the magnitude limit

of 2MRS catalog. The average of the corresponding GAP-corrected group mass and

Mh(Lc) were used as the halo mass proxy in L16, if the GAP-correction ∆ logMh is

larger than 0.5. Such a prescription sometimes leads to too high or too low a halo

mass for a given Lc according to our test with the mock samples used here. Because

of this, here we attempt to revise the proxy so that it is more reliable for groups with

only one member.

1.3.2.2.1 Proxy-L: Galaxy luminosity Our first halo mass proxy is based on

the luminosities of galaxies. To do this, we first obtain the luminosity - halo mass

relation of central galaxies from EAGLE. Figure 1.4 shows such relations in the K-

band and r-band. The distribution of the halo masses at a given luminosity is roughly
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axis), obtained from the 2MRS mock sample constructed with the EAGLE simulation.
The results shown use proxies based on the K-band luminosity (L; left), and stellar
mass (M; right). The red straight line in each big panel shows a perfect correlation,
while the curves in the smaller panels show the scatter in the correlation.

log-normal. In the K-band, which will be used for both 2MRS and 6dFGS, the mean

relation can be well described by

logMh = 10.789 + 2.109× 10−4 exp (logLc/1.184) (1.11)

and the typical width is about 0.2 dex. The units of Mh and Lc are in M�/h and

L�/h
2, respectively. In the r-band, which will be used for SDSS and 2dFGRS, the

mean relation is given by

logMh = 10.595 + 4.370× 10−4 exp (logLc/1.214) (1.12)
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Figure 1.6. The same comparison as in Figure 1.5 but here for the SDSS mock
sample.

and the width of the log-normal distribution is about 0.22 dex. We assign the mean

halo mass at a given luminosity as the tentative halo mass to each galaxy. We also

tested generating a random mass at given luminosity around the mean halo mass and

using it as the mass proxy, and found that the resulting scatter between the true halo

mass and final halo mass from the group finder is larger by ∼ 0.1 dex than that given

by using the mean relation.

Figure 1.5 compares the group masses given by the group finder with true halo

mass from EAGLE for the 2MRS mock sample. The overall agreement between true

mass and group mass using this proxy is found to have scatter of 0.2−0.25 dex. Note

that Figure 1.5 only includes isolated galaxies, which are expected to have larger

scatter than groups of more than one member for which the GAP correction will be

used.
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1.3.2.2.2 Proxy-M: Galaxy stellar mass We also test a halo mass proxy based

on stellar mass of the central galaxy. To do this, we use the mean relation between

the halo mass and stellar mass of isolated galaxies from EAGLE to assign preliminary

halo mass. Figure 1.5 shows the comparison of the resulting final group mass with true

halo mass. It is clear that the scatter in the group mass is significantly reduced, by

∼ 0.05 dex or more, relative to Proxy-L, suggesting that stellar mass is a better halo

mass proxy for isolated galaxies. In real observations, however, stellar mass estimates

introduce additional uncertainties. Thus we provide catalogs based on both Proxy-L

and Proxy-M in §1.5, where we construct and present our group catalogs.

Figure 1.6 shows the same comparisons between the true and estimated halo

masses for the SDSS mock sample. The two mass proxies, Proxy-L and Proxy-M

are used in the same way as described above for the 2MRS mock, except that the

parameters in the mass models are obtained for the SDSS r magnitude. We see that

for the SDSS mock catalog, the two mass proxies give very similar scatter in the halo

mass, ∼ 0.15−0.2 dex. This is different from 2MRS, for which Proxy-M appears to be

significantly more accurate than Proxy-L. This may be due to the fact that isolated

galaxies in the SDSS mock are dominated by low-mass galaxies (because of its fainter

magnitude limit) for which the galaxy color does not depend systematically on halo

mass. We also found the same level of scatter, with perhaps a slight increase at

the massive end, in tests based on the mock samples constructed from the empirical

model, where uncertainties such as that in the stellar mass measurements, are taken

into account.

1.3.2.2.3 Other proxies tested We have tested a number of other quantities

available from the EAGLE such as velocity dispersion and metallicity of galaxies,

as well as halo formation time and local density of galaxies. While some of these

quantities are also found to be strongly correlated with halo mass according to the

simulations, we found that halo mass proxies based on these quantities are not as
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accurate as those given by stellar mass and luminosity. We have also tested using

combinations of stellar mass/luminosity and one of these additional quantities as halo

mass proxies and found that none of them makes significant improvement in the halo

mass estimate, at least according to the simulation we use here. Note also that these

additional quantities are usually not available from actual observations, making them

less useful in practice.

Motivated by L16 who used a ‘GAP limit’ as a second parameter in the halo mass

proxy for isolated galaxies, we have also made tests with the use of some measurements

of the ‘GAP limit’. The GAP limit, as defined in L16, is the GAP correction described

in the previous section but using Ggap,lim = Lc/Llim instead of Ggap = Lc/Ln, where

Llim is the luminosity that corresponds to the observational magnitude limit at the

redshift of the galaxy in question. Thus, an isolated galaxy with smaller Ggap,lim

should have, on average, a more massive satellite that is not observed due to the

magnitude limit. The ‘GAP limit’ is an attempt to take such an effect into account.

However, our test showed that using ‘GAP limit’ does not lead to further improvement

in the final halo mass.

Given all these test results, we use the stellar mass when it is available, and use

luminosity otherwise, as the halo mass proxy for isolated galaxies. However, given

the observational uncertainties in stellar mass estimates. we will provide two catalogs

for each data set: a catalog constructed based on Proxy-L and a catalog based on

Proxy-M.

1.4 Testing the group finder with mock samples

Before we apply the group finder to observational samples, we test its perfor-

mances by applying it to realistic mock samples described in §1.2.5, and analyzing

the accuracy of group masses, and the completeness, contamination and purity of

group memberships that are expected from each of the observational samples.
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tion in several mass bins as indicated in the upper panels for each mock sample. The
vertical dotted lines show the redshift limits to which the samples are complete for a
given halo mass.
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1.4.1 Applying the group finder to the mock samples

As we have shown, stellar mass is theoretically a better proxy of group mass

than luminosity (see §1.3) but only when observational uncertainties in stellar mass

estimate are negligible. Therefore, we present catalogs that use both luminosity and

stellar mass as mass proxies. We use the GAP correction in luminosity (or stellar

mass) for groups with more than one member, and Proxy-L (or Proxy-M) for isolated

galaxies.

1.4.2 Group mass estimates

In the end of each iteration of the group finder, we finalize group masses using

abundance matching. The abundance matching is applied only to volumes within

which groups of a given mass are complete. As the surveys and the mock samples are

flux-limited, halos of a given mass are only complete to a certain redshift. Figure 1.7

shows the number of halos as a function of redshift for each mock sample from the

simulation. As one can see, in each case the number of groups first follows well

the expectation of a constant density indicated by the dashed curve in each panel,

and starts to go below the expectation at some redshift as incompleteness becomes

severe. We can therefore define a limiting redshift, within which the group sample

in question is approximately complete. The limiting redshift, zlim, is indicated as the

dot vertical line in each panel, and Figure 1.8 shows the value of zlim as a function of

halo/group mass for the four mock samples corresponding to the four observational

samples. These relations can all be well described by a power law, (1 + zlim) ∝ M ζ
h ,

as shown in Figure 1.8. The limiting redshifts obtained in this way are used to define

complete samples for abundance matching. For groups that are outside the limiting

redshift, we use the mean relation between halo mass and the mass proxy to assign

halo masses to them.

39



0.00 0.05 0.10 0.15 0.20
redshift

10

11

12

13

14

lo
g

(M
h

/h
-1

M
)

2MRS

6dF

SDSS

2dF

Figure 1.8. Halo mass that is complete as a function of redshift for the mock samples
of the simulation (circles), and linear fits to it (lines). We use the linear relation for
abundance matching to assign halo masses to the mock groups.

Figure 1.9 compares the true halo masses from the simulation with the final group

masses obtained by our group finder using the Ks-band (r-band, for the SDSS and

2dFGRS) luminosity as the mass proxy. It is clear that the group finder performs

quite well in assigning correct masses to groups over the whole range of halo mass

for various samples. No significant bias is seen in the assigned mass for any of the

samples. The horizontal stretching of the data points appearing at the massive end

is due to the stacking of the simulation box and the small number of massive halos in

the original simulation box. The true halo masses are exactly the same for some of the

halos that are the duplicates of the same halo in the original simulation, but the group

masses assigned to them can be different because they are located at different redshifts

in the mock sample. For a given true mass, the typical scatter in the assigned mass is
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Figure 1.9. Comparison between true halo mass (vertical axis) and group mass
identified by our group finder (horizontal axis) using luminosity as the proxy of halo
mass for the mock samples of 2MRS, 6dFGS, SDSS, and 2dFGRS constructed from
the EAGLE simulation (see text for the sample selections). The small rectangular
panels plot the scatter of true halo mass at given group mass.
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Figure 1.10. Same comparison as Figure 1.9 but using stellar mass as the proxy of
halo mass.

∼ 0.2 dex. The scatter is larger for the 2MRS and 6dFGS mock samples, reflecting the

less tight Ks-luminosity vs. halo-mass relation than the r-luminosity vs. halo-mass

relation in the simulation. Table 1.3 compares the total number of groups (halos)
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Figure 1.11. Membership assignments by the group finder applied to the mock
samples, in terms of the completeness (left), contamination (middle), and purity
(right). The vertical axis plots the cumulative fraction of the groups identified via
the group finder, and the different lines are for halos of different masses as indicated.

and the number of groups (halos) of given richness between the mock group catalogs

and the original simulation.

Figure 1.10 shows the same comparison of halo mass but obtained using stellar

mass as the mass proxy for all surveys. It is seen that, unlike in Figure 1.9, the scatter

in halo mass is almost identical for all surveys, and that stellar mass performs as a

better mass proxy than the Ks-band luminosity by ∼ 0.05 dex or more, as seen earlier
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to the number of true halos, for the mock samples as a function of redshift for halos
of different masses as indicated.

in Figure 1.5, while the r-band luminosity is an as good proxy as the stellar mass for

the deeper surveys.

1.4.3 Completeness, contamination, and purity

In addition to group masses, comparisons are also made between the membership

assignment by the group finder and the true membership given by the simulation.

To do this, we first assume that each mock group identified corresponds to the sim-

ulation halo that is associated with the brightest member of the mock group. As a

quantitative assessment of the membership assignment, we follow Yang et al. (2007)

and define the following quantities,

• Completeness: fc ≡ Ns/Nt;

• Contamination: fi ≡ Ni/Nt;

• Purity: fp ≡ Nt/Ng

where Nt is the total number of member galaxies of each halo from the simulation,

Ns is the number of member galaxies of the corresponding mock group that are
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true members of the simulation halo (thus Ns ≤ Nt), Ni is the number of member

galaxies of the mock group that are not true members of the simulation halo, and

Ng = Ni+Ns is the total number of members of the mock group. For a perfect group

finder, Ns = Nt = Ng and Ni = 0, and so fc = fp = 1 and fi = 0.

Figure 1.11 shows the completeness, contamination, and purity for the mock

groups of different masses. The 2MRS and 6dFGS mock samples appear to have

better membership assignments than the deeper SDSS and 2dFGRS mock samples.

This happens because, in the two shallower samples, larger fractions of groups have

a single member galaxy, which by definition have perfect completeness and zero con-

tamination. For the 2MRS and 6dFGS mocks, ∼ 90% of all groups have completeness

∼ 100%, being lower for more massive halos. For the SDSS and 2dFGRS, about 85%

(95%) of the groups have completeness ≥ 95% (∼ 70%). On the other hand, about

95% and 90% of the groups have zero contamination for the shallower two and deeper

two surveys, respectively. Overall 80 − 90% of the groups have purity between 0.95

and 1.05, indicating that there is only a 5% difference in the total number of members

between the true and selected memberships. We also check the global completeness

of the identified groups as a function of redshift, and the results are shown in Fig-

ure 1.12. As expected, it declines beyond the redshift to which halos of a given mass

is complete.

1.4.4 Comparison with other group finders

As mentioned above, our group finder is built upon the group finders of Y05 and

L16, but there are differences in details, especially in the halo mass proxies. Here we

compare the performance of our group finder with respect to the earlier group finders

by applying them to the same mock samples.
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Figure 1.13. Comparison between the true halo mass of the EAGLE simulation and
the group mass identified by our group finder (left) and by the group finder of Yang
et al. (2007) (Y07; right) for the SDSS mock samples restricted to z ≤ 0.09. The
lower panels plot the scatter of the true halo masses at a given group mass.

1.4.4.1 Comparison with Yang et al.

In Yang et al. (2007) (Y07), the total group luminosity (group stellar mass) of

member galaxies brighter than Mr = −19.5 + 5 log(h) in the r-band was used as the

proxy of the halo mass. These group luminosity and stellar mass will be denoted

as L19.5 and M∗,19.5, respectively. For galaxies at redshifts where the survey limit

corresponds to an absolute magnitude brighter than the limit, Y07 used the observed

luminosity function to account for the contribution to L19.5 from the missing galaxies

due to the magnitude limit. However, as found in Y07, this correction introduces

uncertainties in the group masses. This is not surprising given that most groups

identified have only a few member galaxies even for the SDSS, and an extrapola-
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Figure 1.14. Comparison of membership assignment in terms of the completeness
(left), contamination (middle), and purity (right) between our group finder (upper)
and the group finder of Yang et al. (2007) (Y07; lower) for the same mock samples
as Figure 1.13. The vertical axis plot the cumulative fraction of the groups, and the
different lines are for haloes of different masses as indicated.

tion according to an average luminosity function is not expected to give an accurate

estimate of L19.5 (M∗,19.5) for individual groups. Y07 found that the uncertainty

introduced by this is larger than that introduced by the group finder itself, and is

comparable to the intrinsic scatter in the true halo mass at a given L19.5 (or M∗,19.5).

As a more demanding test of our group finder against that of Y07, we restrict the

mock sample to z ≤∼ 0.09, the redshift limit to which the selection is complete to

Mr = −19.5+5 log(h) so that no extrapolation is needed in the group mass proxy used

in Y07. The mock sample here is that constructed for the SDSS from the EAGLE

simulation, as described in §1.2.5.

Figure 1.13 shows the group masses obtained from our group finder and the Y07

group finder with respect to the true halo masses of the simulation. When applying

the Y07 group finder, the ranking of groups in M∗,19.5 is used to assign group masses,

while our group finder uses the halo mass proxy (stellar mass based) as described
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of the true halo masses at a given group mass.

in §1.3.2. As one can see, our group finder matches the true halo masses with an

accuracy slightly higher than that of Y07, with scatter typically of 0.15 − 0.2 dex.

This indicates that Proxy-M and the GAP correction work as well as using M∗,19.5

to assign halo masses to groups. However, had we included groups at z > 0.09,

where extrapolation is needed in Y07’s group mass proxy, the scatter given by Y07

would become 0.25 − 0.3 dex while that given by our group finder remains at the

level of 0.2 dex. In addition, our group finder performs equally well even for halos

with masses as low as 1011h−1M�, about an order of magnitude lower than that

reached by Y07. Many of these low mass halos contain only galaxies with Mr fainter

than −19.5 + 5 log h, which are not assigned halo masses in the original Y07 method.

48



However, while the group finder of Y07 itself does not include these low-mass groups

in the SDSS group catalog, halo mass assignment can be extended to lower masses by

using a relation between halo mass and central galaxy, as given in, e.g., Yang et al.

(2012). The number of groups identified by our group finder and the Y07 group finder

are 180, 835 and 184, 833, of which 35, 376 and 32, 343 have more than one member,

respectively. These are very close to the true number of halos of 177, 013, of which

35, 439 have more than one member.

Figure 1.14 shows the comparison of the two group finders in group completeness,

contamination, and purity. For both of the group finders, the completeness decreases

and the contamination increases with increasing halo masses, as we have seen in §1.4.3.

The two group finders perform almost equally well in membership assignments.

1.4.4.2 Comparison with Lu et al.

L16 developed and calibrated their group finder with their 2MRS mock samples

constructed from an empirical conditional luminosity function model (see L16 for

details). Here we apply our group finder and that of L16 to our own 2MRS mock

sample, and make comparisons in their performances. For both of the group find-

ers, we adopt the functional forms given by equation (9) and equation (10), and the

corresponding best parameters for the GAP correction for groups of more than one

member. Otherwise we follow the methodology of L16 as closely as possible to repro-

duce their group finder. The major difference between the two group finders is in the

prescription for isolated galaxies. While our group finder uses Proxy-L to assign halo

masses, we follow the prescription of L16 for their group finder. There are a total of

29, 464 true halos, of which 5, 158 have more than one member, and the number of

groups identified by our group finder (by L16) are 30, 118 (29, 968), of which 4, 980

(4, 522) have more than one member. Furthermore, our group finder identifies 879
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groups with three members and 364 with four members. The corresponding numbers

by L16 are 888 and 362.

The group masses obtained by the two group finders are compared to the true halo

masses in Figure 1.15. One can see that our group finder reduces the overall scatter

by ∼ 0.1 dex relative to that given by L16. As the two group finders work in a similar

way for groups of more than one member, the improvement in our group finder is

mainly due to a better mass proxy for groups containing only one member. Note also

that the mass proxy used by L16 is calibrated with a mock catalog constructed from

the observed conditional luminosity functions in the r band and scaled to the K band

using abundance matching, while our mass proxies are calibrated with the EAGLE

simulation. Part of the difference may also be due to the different calibrations. The

scatter we obtain here for the L16 group finder is very similar to that obtained in

the original L16 paper from a completely different mock sample, suggesting that the

test results are not particularly sensitive to the mock samples adopted for the test.

This is also demonstrated in Appendix A, where it is shown that our group finder

performs equally well for an independent mock sample constructed from an empirical

model of galaxy formation.

1.5 The group catalogs

In this section, we present the group catalogs we construct by applying the group

finder, as described in §1.3, to the observational samples described in §1.2. As men-

tioned earlier, we provide four catalogs for each observation sample:

1. a catalog constructed with galaxies that have spectroscopic redshifts, using

Proxy-L to estimate halo masses;

2. a catalog constructed with galaxies that have spectroscopic redshifts, using

Proxy-M to estimate halo masses;
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3. a catalog constructed with all galaxies, using Proxy-L to estimate halo masses;

4. and a catalog constructed with all galaxies, using Proxy-M to estimate halo

masses.

For convenience we will use the name of the galaxy sample together with the halo mass

proxy adopted to refer to a group catalog. For example, the catalogs constructed from

the SDSS survey are referred to as SDSS(L), SDSS(M), SDSS+(L), and SDSS+(M),

respectively. For brevity, the following presentations are mainly based on catalogs (i)

and (ii), unless stated otherwise.

1.5.1 The catalogs and their basic properties

For SDSS and 2dFGRS, Proxy-L uses the r- and R-band luminosities, respectively,

and Proxiy-M uses the stellar masses of galaxies as described in §1.2.3 and §1.2.4.

For 2MRS and 6dFGS, Proxy-L is based on the Ks-band luminosities of galaxies.

The Proxy-M for these two samples are based on the stellar masses obtained from

the mean relation between the Ks-band luminosity and stellar mass from the EAGLE

simulation. We use the same calibrations of the halo mass proxies as described in

§1.3.2. Our tests show that it is not necessary to re-calibrate the mass proxies for

individual samples, as the outcomes with and without such a re-calibration converge

in the end. This is expected, because our group finder uses the mass proxies only to

rank group masses, and the halo masses are re-adjusted at the end of each iteration

using abundance matching. In the tables and figures shown in this section, we exclude

groups that are not assigned halo masses by abundance matching because of sample

incompleteness at the given halo mass and redshift (see §1.4.2). In the catalogs,

however, we include these groups (with a flag), and assign them masses according to

the mean relation between the halo mass and the mass proxy obtained from the last

iteration of the group finder.
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The distribution in the sky of the 2MRS groups selected by our group finder

is shown in Figure 1.16, and Figure 1.17 shows the three dimensional distributions

of galaxies and groups in the local Universe from the 2MRS catalogs. Also, the

distributions of groups from different surveys in the same slices are compared in

Figure 1.18.

Figure 1.19 compares the mass function of the halos from the group catalogs with

the theoretical model of Sheth et al. (2001), which was used for abundance matching

for the group finder. The good agreement between the observational data and the

theoretical model is largely by design. However, the plots do show the halo-mass and

redshift ranges covered by different samples, as well as the statistical uncertainties in

the number densities of groups.

Table 1.4 lists the total number of groups, as well as the number of groups of

given richness and halo masses selected from different samples. Figure 1.20 shows in

more detail the distributions of groups with respect to richness (number of member

galaxies), halo mass, and redshift. Note, again, that these distributions are obtained

from groups for which halo masses are complete at a given redshift, as shown in

Figure 1.8. It is seen that the results from (L) and (M) catalogs are consistent with

each other within the Poisson uncertainties. For comparison, we also show the results

for the +(L) catalogs [the results for the +(M) catalogs are very similar] as the small

dots. As one can see, results from the extended (+) catalogs are consistent with the

non-extended catalogs, except for the 6dFGS which has the poorest completeness in

spectroscopic redshifts. Also, some massive clusters in the catalogs have only one

galaxy particularly for 2MRS and 6dFGS, because of their shallow depths that make

satellites not observable.

Figure 1.21 compares halo masses (based on Proxy-M) for individual groups cross-

identified between the group catalogs. While we do not present the comparison for

the 2dFGRS because the number of such groups is small, we did check that the
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mean relation and scatter for the 2dFGRS are similar to those for the SDSS. We

used the tolerances of angular separation less than 10 arcsec and |∆z| ≤ 10−3 for

the cross-identifications. One can see that there is a very tight correlation in halo

masses between the 2MRS and the 6dFGS group catalogs, while a larger dispersion of

0.2−0.3 dex is found between the 2MRS and SDSS, mainly because of the differences

in the stellar mass estimates.

1.5.2 Comparison with other catalogs

Here we compare our catalogs with a number of other catalogs in the literature,

including the 2MRS catalogs of L16 and Tully (2015) (T15), the SDSS catalog of

Y07, and the 2dFGRS catalog of Y05.

1.5.2.1 Comparison of the 2MRS group catalog with L16

As mentioned earlier, L16 built a group catalog based on the same sample of the

2MRS galaxies as ours using a similar methodology. Figure 1.20 shows the comparison

between the two catalogs in the number of groups as functions of richness, mass, and

redshift, and it is clear that the two catalogs are in good agreements. We also checked

the mass of individual haloes for groups that are cross-identified between the two

catalogs, and found that our mass assignments are in general agreement with those

of L16 with a typical dispersion of ∼ 0.25 dex between them.

As described earlier, our group finder is different from that of L16 in two ways.

The first is that we re-calibrated the gap-based mass model of L16, so that the

mass assigned to a group may be different from that of L16 even if it has the same

membership of galaxies. Second, L16 used a ‘Gap limit’ prescription to assign masses

for groups containing only one member (see §1.3.2.2), while our group finder does

not. We believe that these are the sources of the dispersions and discrepancies found

in the comparison of halo mass between the two catalogs.
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1.5.2.2 Comparison of the 2MRS group catalog with T15

Tully (2015) (T15) constructed a 2MRS group catalog using an empirical rela-

tion between halo mass (and the corresponding size and velocity dispersion) and a

characteristic group luminosity to assign galaxies into groups. Figure 1.20 shows the

comparison of our catalog with theirs in the number of groups as functions of richness,

mass, and redshift. As T15 stated that their group catalog is less reliable outside the

recession velocity range between 3, 000 and 10, 000km s−1, we make comparisons only

for the groups within the velocity range. One can see that T15 contains more massive

clusters than our catalogs, while the richness and redshift distributions are in better

agreements. T15 compared the mass function of their groups with a theoretical halo

mass function and found that, although the shape of their group mass function is

similar to that of the theoretical function, the normalization is about a factor of 4.6

higher. As mentioned above, T15 used an empirical model for their group masses,

which is different from the mass proxies used in our group finder. Furthermore, their

definition of halo masses is also different from ours. All these produce the differences

seen between the two catalogs.

1.5.2.3 Comparison of the SDSS group catalog with Yang et al.

Y07 built a group catalog of the SDSS DR7 galaxies. As we described earlier,

their group finder is similar to ours in that it uses halo mass and velocity dispersion

of groups identified to update galaxy memberships at each iteration until its iteration

reaches convergence in the membership assignments. The main difference is that it

uses a summed stellar mass (or luminosity) of member galaxies brighter than Mr =

−19.5+5 log h as a halo mass proxy. However, as the group catalogs are dominated by

groups containing one galaxy (see Table 1.4), it results in no significant net difference

except that our group catalog extends to lower mass. Figure 1.20 compares the SDSS

group catalog of Y07 with that given by our group finder. The Y07 catalog contains
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smaller number of low-mass systems at relatively low redshifts, mainly because of the

magnitude limit of Mr = −19.5 + 5 log h adopted by Y07 in their halo mass proxy,

which is brighter than the observational flux limit at z <∼ 0.09.

1.5.2.4 Comparison of the 2dFGRS group catalog with Yang et al.

Y05 also constructed a group catalog of the 2dFGRS galaxies. Again, their group

finder is similar to ours but differs in that Y05 uses a summed stellar mass of member

galaxies brighter than MbJ = −18 + 5 log h as a halo mass proxy instead of stellar

mass (luminosity) of central galaxy and the n-th most massive (brightest) galaxy,

which our group finder uses. The sample selection for the 2dFGRS is almost identical

to our sample selection. Figure 1.20 shows comparisons between the two catalogs

in the number of groups of given richness, mass, and redshift. The lower number

of groups in Y05 in low-mass end and low-redshift is again because of the limit of

MbJ = −18 + 5 log h used by Y07 for the halo mass proxy, which is brighter than the

flux limit in the observation at z <∼ 0.12. Otherwise, the agreement between the

two catalogs is reasonably good.

1.5.3 Contents of the catalogs

The group catalogs list the properties of groups, while the galaxy samples present

not only the properties of galaxies but also their links to groups. Object indexes

are also provided for galaxies so that one can identify them from the original galaxy

catalogs. As mentioned above, there are four group catalogs for each galaxy sample,

and so in total we provide 16 group catalogs, as summarized in Table 1.4. Tables 1.5

and 1.6 show the structures of the catalogs we provide, using the 2MRS as an example.

In what follows we explain the different columns in more detail.

1.5.3.1 The group catalogs

The following items are provided for individual groups.
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Column (1) group ID: an unique ID of a group within a given group catalog;

Column (2) cen ID: galaxy ID of the central galaxy of a group in the corresponding

galaxy sample;

Column (3) ra (in degrees): right ascension (J2000) of the luminosity-weighted (for

catalogs using Proxy-L) or mass-weighted (for catalogs using Proxy-M)

group center;

Column (4) dec (in degrees): declination (J2000) of the group center;

Column (5) z: redshift of group center in the CMB rest-frame;

Column (6) log(Mh/h
−1M�): 10-based logarithm of the halo mass of a group in

units of h−1M�;

Column (7) Nmem: number of member galaxies in a group;

Column (8) fedge: the volume fraction that is not cut out from the halo of a group

(assumed to be spherical) by the survey boundary or mask;

Column (9) i-o: A flag that indicates whether a group is inside or outside the

region of completeness for a given halo mass. For a group inside the

completeness region (value = 1), mass is obtained directly from the

abundance matching. For a group that is outside the completeness

region (value = 0), mass is estimated using the relation between the

halo mass and its proxy from the last iteration of the group finder.

Column (10) known as: conventional name of a system, identified only for well-

known massive clusters.

1.5.3.2 The galaxy catalogs

The following items are provided for individual galaxies.
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Column (1) galaxy ID: unique ID of galaxies within each sample. This can be used

to match galaxies across the galaxy and group catalogs;

Column (2) survey ID: ID of galaxies from the original survey data release. This can

be used to match galaxies across our catalogs and the original surveys;

Column (3) group ID: ID of the group of which a galaxy is a member;

Column (4) ra (in degrees): right ascension (J2000);

Column (5) dec (in degrees): declination (J2000);

Column (6) l (in degrees): Galactic longitude;

Column (7) b (in degrees): Galactic latitude;

Column (8) zCMB: redshift in the CMB rest-frame. This is used for the group finder;

Column (9) zEDD: redshift for nearby galaxies based on the EDD distances. Other-

wise equals to 0. This is only used for converting apparent magnitude

to luminosity;

Column (10) zcomp: redshift completeness along the direction on the sky where a

galaxy lies;

Column (11) zsrc: a numerical value indicating the source of zCMB. As the sources

vary for different samples, please refer to the individual catalogs for

more detailed descriptions;

Column (12) distNN: angular separation to the nearest neighbor (deg) for galaxies

that zsrc is the nearest neighbor. Otherwise equals to 0.

Column (13) log(L/h−2L�): 10-based logarithm of the luminosity in units of h−2L�.

Luminosities are in the Ks-band for 2MRS and 6dFGS, in the r-

band for SDSS, and in the R-band for 2dFGRS. K- and evolutionary
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corrections to z = 0.1 are made following Lavaux & Hudson (2011)

(for 2MRS and 6dFGS) and Poggianti (1997) (for SDSS and 2dFGRS).

All quantities are calculated with the assumption of the WMAP9

cosmology;

Column (14) log(M∗/h
−2M�): 10-based logarithm of the stellar mass in units of

h−2M�. Please refer to the relevant sections for how the stellar masses

are estimated in different samples;

Column (15) color: provided only for SDSS (g − r) and 2dFGRS (bJ −R).

1.6 Summary

In this paper, we have constructed group catalogs from four large redshift surveys

in the low-z universe: the 2MRS, 6dFGS, SDSS, and 2dFGRS. The groups are iden-

tified with a halo-based group finder that is based on the group finders developed

in Y05, Y07 and L16 but has improved halo mass assignments that can be applied

uniformly to various observations. The group finder uses stellar mass or luminosity of

central galaxies combined with the luminosity/stellar mass gap between the central

galaxy and the n-th brightest/most massive satellite as halo mass proxies. It assigns

galaxies into groups using halo properties, such as halo size and velocity dispersion,

and iterates with updated halo properties until the membership converges. We use

an abundance matching technique to assign final halo masses to individual groups

selected. For groups that are not assigned mass by abundance matching, due to the

fact that they are outside the redshift limit within which groups of a given mass is

complete, halo masses are assigned based on the mean relation between halo mass

and its proxy obtained from the last iteration of the group finder.

We have used realistic mock galaxy samples constructed from a hydrodynamical

simulation (EAGLE) to test the performance and to calibrate our group finder, and
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used another set of mock samples constructed from an empirical model of galaxy

formation as an independent check. The tests showed that our group finder can find

∼ 95% of the ‘true’ member galaxies for about 95% (85%) of the groups for the 2MRS

and 6dFGS samples (for the SDSS and 2dFGRS samples), with better membership

assignment for lower mass halos. The tests on mock samples also showed that the

halo masses of individual groups estimated by the group finder are consistent with

the true halo masses, with scatter of ∼ 0.2 dex. The scatter in the estimated mass -

true mass relation obtained here for the SDSS sample is similar to Y07, but it extends

uniformly to halo masses that are about 0.7 dex lower.

We have constructed group catalogs by applying our group finder to the real red-

shift surveys of galaxies. From each survey, two samples of galaxies are constructed,

one using only galaxies with spectroscopic redshifts, and the other using all galaxies,

including the ones with redshifts estimated from nearest neighbors or from photom-

etry (photometric redshifts). For each galaxy sample, two group catalogs are con-

structed, one using the luminosity-based halo mass proxy (Proxy-L) and the other

using the stellar mass-based halo mass proxy (Proxy-M). Thus, we provide a total

of 16 group catalogs, four different sets of catalogs for each of the four surveys. A

summary of the all the group catalogs and how to use them are presented in §1.5.

We have also described some of the basic properties of the group catalogs, such as

the distributions in richness, redshift, and mass. Comparisons are made with other

similar catalogs in the literature.

It should be noted that the group catalogs constructed are cosmology dependent,

and we have adopted WMAP9 cosmology in the present paper. This dependence

comes from both the properties of dark matter halos (halo size and velocity dispersion

as functions of halo mass) adopted in grouping galaxies into common halos, and the

halo mass function used in abundance matching. However, as demonstrated in Y07,

the grouping of galaxies into groups is not sensitive to the cosmological model, unless
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the adopted model is very different from that favored by current observations. The

cosmology dependence in the halo mass assignments is also not a significant problem,

as it is straightforward to convert the masses to other cosmologies with abundance

matching.
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CHAPTER 2

AN OBSERVATIONAL PROXY OF HALO ASSEMBLY
TIME AND ITS CORRELATION WITH GALAXY

PROPERTIES1

We show that the ratio between the stellar mass of central galaxy and the mass

of its host halo, fc ≡ M∗,c/Mh, can be used as an observable proxy of halo assembly

time, in that galaxy groups with higher fc assembled their masses earlier. Using SDSS

groups of Yang et al., we study how fc correlates with galaxy properties such as color,

star formation rate, metallicity, bulge to disk ratio, and size. Central galaxies of a

given stellar mass in groups with fc > 0.02 tend to be redder in color, more quenched

in star formation, smaller in size, and more bulge dominated, as fc increases. The

trends in color and star formation appear to reverse at fc < 0.02, reflecting a down-

sizing effect that galaxies in massive halos formed their stars earlier although the

host halos themselves assembled later (lower fc). No such reversal is seen in the size

of elliptical galaxies, suggesting that their assembly follows halo growth more closely

than their star formation. Satellite galaxies of a given stellar mass in groups of a given

halo mass tend to be redder in color, more quenched in star formation and smaller in

size as fc increases. For a given stellar mass, satellites also tend to be smaller than

centrals. The trends are stronger for lower mass groups. For groups more massive

than ∼ 1013M�, a weak reversed trend is seen in color and star formation. The

observed trends in star formation are qualitatively reproduced by an empirical model

1 THE CONTENTS OF THIS CHAPTER ARE PUBLISHED IN LIM ET AL. 2016, MNRAS,
455, 499.
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based on halo age abundance matching, but not by a semi-analytical model tested

here.

2.1 Introduction

In the current standard ΛCDM model, dark matter halos form through gravita-

tional instability - induced hierarchical clustering, and galaxies are believed to form

at the centers of dark matter halos through cooling and condensation of baryonic gas

(e.g. Mo et al. 2010, for a review). The formation and evolution of galaxies are,

therefore, expected to be closely linked to the assembly history of their host halos.

There have been continuous efforts to establish the connections between galaxies of

different properties and dark matter halos using empirical models, such as halo occu-

pation distribution (HOD) (e.g. Jing et al. 1998, Peacock & Smith 2000, Seljak 2000,

Soccimarro et al. 2001, Berlind & Weinberg 2002, Zheng et al. 2007, Leauthaud et

al. 2012, Watson et al. 2012), conditional luminosity function (CLF) (Yang et al.

2003, van den Bosch et al. 2007), and halo abundance matching (HAM) (Mo et al.

1999, Kravtsov et al. 2004, Vale & Ostriker 2004, 2006, Conroy & Wechsler 2009,

Guo et al. 2010, Neistein et al. 2010, Watson et al. 2012, Kravtsov 2013). The CLF

and HOD models assign galaxies into dark matter halos predicted by a given cosmol-

ogy, so that the predicted galaxy population matches the observed luminosity (stellar

mass) functions and spatial clustering properties of galaxies. The HAM approach, on

the other hand, populates galaxies into halos and sub-halos, assuming that there is

a roughly monotonic correspondence between the ranking orders of the luminosities

(or stellar masses) of galaxies and those of the masses of dark matter halos.

Most of the studies based on these approaches have so far focused on using the

mass of halos to link galaxies with halos, thus implicitly assuming that galaxy prop-

erties are determined by halo mass alone. In reality, however, other properties of

halos, such as assembly history, spin, and shape, may also play an important role in
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galaxy formation and evolution. These halo properties, therefore, should also be used

in understanding the relationships between galaxies and halos.

In this paper, we investigate how the properties of galaxies of a given stellar mass

are correlated with the assembly time of their host halos. To this end, we propose

an observational proxy of halo assembly time motivated by the results of Wang et al.

(2011). Using high-resolution N -body simulations, Wang et al. investigated a large

number of halos properties, such as formation time, substructure fraction, spin and

shape, and their correlations among themselves and with large scale environments.

Most of these halo properties are, unfortunately, not directly observable, and so it

is difficult to test directly their effects on galaxy formation with observational data.

One exception is the sub-structure fraction, which is defined as fs = 1− (Mmain/Mh),

where Mh is the mass of the halo, and Mmain is the mass of the main sub-halo located

at the center of the host halo. This quantity is found to be correlated tightly with

many other halo properties, in particular the formation time, spin and shape. More

importantly, this quantity may be estimated from observations. Indeed, with a well-

defined galaxy system, such as a galaxy group selected with the halo-based group

finder of Yang et al. (2005), a good proxy of Mmain is M∗,c, the stellar mass of the

central galaxy in a group according to halo-galaxy abundance matching, and Mh can

be estimated from the total stellar mass of the group, as demonstrated in Yang et

al. (2005, 2007). Thus, one can use fc ≡ M∗,c/Mh as an observational proxy of the

assembly time of the host halo of the group, and study how galaxy properties change

with fc. The goal of the present paper is to use this proxy to study the correlations

between galaxy properties and the assembly time of their host groups (halos).

This paper is organized as follows. In Section 2.2, we describe the observational

galaxy catalogs from which our galaxy and group samples are selected. In Section 2.3

we demonstrate how fc can be used as a reliable proxy of halo assembly time. Detailed

analyses of the correlations between galaxy properties and fc of their host groups are
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Figure 2.1. A demonstration how fc can be used as a proxy of halo assembly time.
Left : The correlation between half-mass assembly time zf and fmain = Mmain/Mh

(median) obtained from N-body simulations, based on data published in W11, where
Mmain is the mass of the most massive sub-halo in each host halo. Results are shown
for halos in five mass ranges, as indicated. For comparison, the result for the total
halo sample is shown as the gray line. Middle : The correlation between zf and fc ≡
M∗,c/Mh (median), where M∗,c is the stellar mass of the central (most massive) galaxy,
obtained from the mock galaxy catalog of Hearin & Watson (2013), constructed using
an age abundance matching model combined with halos from the Bolshoi N -body
simulation. Different curves denote different host halo mass bins, as indicated. The
results for the total sample is shown as the gray line. Right : The same as the middle
panel, except that different curves show different stellar mass bins of central galaxies,
as indicated. Here again the result for the total sample is shown as the gray line for
comparison.

presented in Section 2.4, and a preliminary comparison of our results with models is

made in Section 2.5. Finally, in Section 2.6, we summarize our main conclusions.

2.2 Observational data

2.2.1 SDSS galaxies

The galaxy samples used in this paper are obtained from the Sloan Digital Sky Sur-

vey (SDSS). Specifically, the galaxy catalog, as described in Wang et al. (2012) (W12

hereafter) and publicly available at http://gax.shao.ac.cn/data/Group.html, is

constructed from the New York University Value-Added Galaxy Catalogue (NYU-

VAGC; Blanton et al. 2005), which is based on SDSS Data Release 7 (SDSS DR7;
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Abazajian et al. 2009), but updated with a set of improvements over the origi-

nal pipeline. From this catalog, we select all galaxies in the Main Galaxy Sample

with extinction-corrected apparent r-band magnitude brighter than 17.72, with red-

shifts in the range 0.01 ≤ z ≤ 0.20, and with redshift completeness Cz > 0.7. This

leaves 639,359 galaxies in total, with a sky coverage of 7,748 deg2. Of these, 599,301

galaxies have redshifts from the SDSS DR7, 2,450 galaxies with redshifts from the

2dFGRS (Colless et al. 2001), 819 with redshifts from the Korea Institute for Ad-

vanced Study Value-Added Galaxy Catalogue (KIAS-VAGC; Choi et al. 2010), 36,759

galaxies with redshifts from their nearest neighbors (since they do not have spectro-

scopic redshift measurements due to fiber collisions), and 30 galaxies with redshifts

from ROSAT X-ray clusters. We exclude galaxies with assigned redshifts that have

0.1Mr − 5 log h ≤ −22.5 to prevent fiber-collided galaxies with real redshifts much

lower than the nearest neighbors so that their luminosities are vastly over-estimated.

The catalog also contains, for each galaxy, the (g− r) and other colors, which are all

K + E-corrected to z = 0.1. In the following, this catalog will be referred to as the

SDSS DR7 catalog to distinguish it from other catalogs we use in our study.

For all galaxies, we adopt stellar masses (M∗) from the data release of Brinchmann

et al. (2004), available at http://www.mpa-garching.mpg.de/SDSS/DR7/. The data

release also provides star formation rates (SFRs), and specific star formation rates

(sSFRs, defined to be SFR divided by M∗). The SFRs are obtained by fitting the

SDSS spectra with a spectral synthesis model. Specifically, Hα luminosities are used

for star forming galaxies and the D4000 breaks are used for galaxies without significant

emission lines. Gas phase metallicities [for example, oxygen abundance, in terms of

log(O/H)] are also available for a fraction of the galaxies, as described in Tremonti et

al. (2004). In total, about 6% of the galaxies in the SDSS DR7 catalog are missing in

the Brinchmann et al. data release, most of which are fiber-collided galaxies missing

spectra. The number of galaxies for which a given quantity is actually available varies
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from quantity to quantity. For example, gas phase metallicity is available only for

emission line galaxies.

2.2.2 Disk-bulge decomposition

We also make use of the results of Simard et al. (2011) obtained from bulge-disk

decompositions of galaxies, which fit each galaxy image with the sum of a pure expo-

nential disk and a de Vaucouleurs bulge using GIM2D. The code returns parameters

such as the total flux, the bulge to total ratio B/T , the bulge half-light radius R50

and the disk scale length Rdisk. In this paper we use the results based on the r-band

images. About 92% of our SDSS DR7 galaxies can be cross identified in Simard et

al.’s data base.

2.2.3 Information from the Galaxy Zoo

The Galaxy Zoo is a project in which volunteers are asked to classify images of

over 900,000 SDSS DR7 galaxies into six morphological categories. The Galaxy Zoo

2 (GZ2 hereafter; Willett et al. 2013), the successor of the original Galaxy Zoo,

continued the spirit of the original project but asking volunteers much more detailed

morphological questions such as the number of spiral arms, tightness of the arms, etc.

To enable such detailed questions, GZ2 uses a subsample of the brightest 25% of the

resolved galaxies in the SDSS North Galactic Cap region within the redshift range of

0.0005 < z < 0.25 along with a few more selection criteria (see Willett et al. 2013).

This leaves a grand total of 245,609 SDSS DR7 galaxies.

The SDSS metadata for GZ2 (available at http://data.galaxyzoo.org/) adds

a series of useful information for SDSS DR7 galaxies, in particular, morphological

classifications made by volunteers’ votes. Whenever ‘ellipticals’ or ‘spirals’ are seen

in our following analyses, the classification is based on GZ2. Out of all galaxies

cross-matched between SDSS DR7 and GZ2, 97,785 are ellipticals and 135,634 are

spirals.
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2.2.4 SDSS groups

Given that galaxy groups are defined as galaxies that reside in the same dark

matter halo, galaxy groups can be used to directly probe the connections between

galaxies and their host halos. Yang et al. (2005, 2007) have developed a halo-

based group finder optimized for grouping galaxies in common dark matter halos.

The performance of this group finder has been tested extensively using mock galaxy

redshift surveys constructed from CLF models (Yang et al. 2003, van den Bosch et

al. 2003, Yang et al. 2004) and from a semi-analytical model (Kang et al. 2005).

It was found that this group finder is more successful than the traditional friends-of-

friends (FoF) algorithm in grouping galaxies into their common dark matter haloes

(see Yang et al. 2007, (Y07 hereafter)). The group finder performs consistently even

for very poor systems such as isolated galaxies in small mass haloes, which enables its

suitability to probe the galaxy-halo connection over a wide range of different haloes.

In the present paper, we use the DR7 group catalog, publicly available at http://

gax.shao.ac.cn/data/Group.html to associate galaxies with groups. This catalog

is made basically by applying exactly the same group finder of Y07 to SDSS DR7

galaxies. The details of the group finder is described in Y07. WMAP5 cosmology

was used to calculate distances from redshifts and to assign halo masses to selected

groups. We adopt the group catalog ‘modelC’, which uses model magnitudes rather

than Petrosian magnitudes. For each group in the group catalog, the fraction, fedge,

of each group’s volume that falls inside of the SDSS DR7 survey volume is given.

Only groups with fedge ≥ 0.6 are used here, which removes about 1.6% of all groups.

The group halo masses Mh in the catalog are estimated using the ranking of

groups either in the combined luminosity (L19.5) or in the combined stellar mass

(Mstellar) of all member galaxies with 0.1Mr − 5 log h ≤ −19.5. The conversion from

L19.5 or Mstellar to Mh is made by adopting the halo mass function of Tinker et al.

(2008) and the method of abundance matching assuming one-to-one correspondence
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Figure 2.2. The number distribution of galaxies in fc, with each panel corresponding
to different stellar mass bins, as indicated on the top of each panel, for centrals (red)
and satellites (blue).

between L19.5 (Mstellar) and Mh. As shown in Y07, while both L19.5 and Mstellar are

tightly correlated with Mh, the Mh - Mstellar relation is slightly tighter, with a typical

dispersion of ≈ 0.2 dex in Mh for a given Mstellar over the halo mass range considered

here. We therefore use Mh based on Mstellar, although our tests showed that using L19.5

does not change any of our results. For very small groups, no masses are assigned,

and they are excluded from our analysis.

The identification of central galaxies for each group is also provided in two different

ways: the brightest galaxy or the most massive galaxy in terms of stellar mass. In

this study, we choose the latter as the definition of centrals.
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Figure 2.3. The correlation between (g − r) color, K + E corrected to z = 0.1,
and fc, for centrals. The curves plot the median values in fc bins. The error bars on
the leftmost sides are ‘typical’ [16%, 84%] ranges for each mass bin. In the left panel
different curves refer to galaxies in different stellar mass bins, as indicated, while in
the right panel different curves are for galaxies residing in halos in different halo mass
bins.

2.3 An observational proxy of halo assembly time

As mentioned in the introduction, Wang et al. (2011) (hereafter W11) explored

the correlations among various halo properties using dark matter halos identified

from high-resolution N -body simulations. One of the most important properties of a

halo is its formation time, zf , which is defined to be the redshift at which the main

progenitor of the halo has first assembled half of its final mass. This formation time

is believed to have significant impact on the properties of the galaxies the halo hosts,

such as galaxy age, color, star formation rate (SFR), etc. Unfortunately, zf itself is

not directly observable, and so it is not possible to examine the correlation between

zf of a halo and the properties of the galaxies the halo host. However, as shown in

figure 1 of W11, and reproduced in the left panel of Figure 2.1, the halo formation

time zf shows a tight correlation with the sub-structure fraction, fs = 1− fmain with
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fmain = (Mmain/Mh), where Mmain is the mass of the main sub-halo at the center of

each host halo, quite independent of the mass of the host halo. This suggests that

fmain can be used as a proxy of zf . Since Mh can be estimated for halos using halo

abundance matching, as described in the previous section, and Mmain can be estimated

using sub-halo abundance matching, we can define an ‘observable’ quantity,

fc ≡
M∗,c
Mh

, (2.1)

as a proxy of zf . Here M∗,c is the stellar mass of the central galaxy obtained from

the rank of Mmain. If there were no scatter in the halo-galaxy abundance matching,

so that there is a one-to-one relation between galaxy stellar mass and sub-halo mass,

M∗,c would be a perfectly faithful indicator of Mmain. By definition M∗,c would also be

the stellar mass of the most massive galaxy in a group because the main sub-halo is

the most massive one among all sub-halos. In reality, however, the halo mass - galaxy

mass relation may not be one-to-one. Given this and that fs is not perfectly correlated

with zf , fc defined above can only be used as a proxy of zf . As an illustration, the

middle and right panels of Fig. 2.1 shows the correlation between zf and fc obtained

from the HAM model of Hearin & Watson (2013) applied to dark matter halos in

a high-resolution N -body simulation. As one can see, there is a tight correlation

between fc and zf both for halos of a given mass (middle panel) and for centrals of

a given stellar mass (right panel). In particular, the zf - fc relation does not seem to

depend strongly on halo mass or on galaxy mass, although massive systems extend

further towards the low-fc end because of the fact that M∗.c only increases slowly

with halo mass at the massive end (e.g. Yang et al. 2012). All these validate the use

of fc as an observational proxy of zf .

In what follows we will examine how galaxy properties are correlated with fc,

and use the results to understand the connection between galaxy properties and halo

assembly histories as represented by the formation redshift zf . For reference, we show
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the distribution of galaxies in fc for the entire SDSS DR7 sample in Figure 2.2. Each

panel corresponds to a given stellar mass bin, as indicated in individual panels, and

results are shown for both centrals and satellites. As expected, the centrals, defined to

be the most massive ones in groups, have on average a higher fc value than satellites,

since groups with lower fc tend to have more satellites in them.

2.4 Correlation of galaxy properties with fc

This section examines the correlation of galaxy intrinsic properties with the value

of fc of the host group in which the galaxy resides. Results will be shown separately

for central and satellite. While our presentation includes all groups, our test using

only groups with more than one member galaxies brighter than 0.1Mr−5 log h = −19.5

gives qualitatively similar results.

2.4.1 Central galaxies

2.4.1.1 Color and star formation

Figure 2.3 shows the correlation between the (g − r) color of central galaxies and

fc of their host groups. In the left panel, results are shown separately for galaxies in

five different stellar mass ranges, as indicated in the inner panel, while in the right

panel results are shown separately for five different halo mass bins. The lines are the

median values within narrow fc bins, while the bars present the typical [16%, 84%]

range of the distribution in the corresponding halo mass or stellar mass range.

As one can see from the right panel, for a given halo mass, the (g−r) color depends

strongly on fc, with centrals in halos with higher fc being redder, except for the most

massive halos, where the centrals are all equally red. Note that for halos with masses

below 1012.6M�, the dependence of color on halo mass is not strong for a given fc.

By definition, for a given halo mass, fc is directly proportional to M∗,c, and it is well

known that the intrinsic properties of galaxies depend strongly on their stellar mass.

80



10-3 10-2 10-1

fc

0.0

0.2

0.4

0.6

0.8

1.0

f q
u
e
n
ch

e
d

Morph = total
central only

log M * =[10,10.3]

log M * =[10.3,10.6]

log M * =[10.6,10.9]

log M * =[10.9,11.2]

log M * =[11.2,11.5]

Figure 2.4. The correlation between the fraction of quenched galaxies and fc for
central galaxies. Quenched galaxies are defined to be the ones with star formation rate
lower than the devision line defined by equation (2.2). The curves plot the quenched
fractions in fc bins. Different curves refer to galaxies in different stellar mass bins,
as indicated. The error bars here are ‘typical’ 1-σ dispersions among 100 bootstrap
re-sampling.

Thus, the strong dependence of color on fc for a given halo mass bin see here is not

surprising. However, given that fc is strongly correlated with halo formation time (see

Fig. 2.1), our results suggest that halo formation time may play an important role in

determining the color of the central galaxies. This is demonstrated more clearly in

the left panel of Figure 2.3, where the (g − r) color is shown as a function of fc for

centrals of fixed stellar mass. As one can see, massive galaxies are more or less all

red, independent of fc, while for galaxies with M∗ < 1011M�, their colors depend

strongly on fc. There seems to be a characteristic value fc ∼ 0.01 - 0.02, below and

above which the color shows the opposite trends with fc. At the high fc end, galaxies
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Figure 2.5. The correlation between gas phase oxygen abundance, 12 + log (O/H),
and fc for central galaxies. The curves plot the median values in fc bins. The error
bars on the leftmost sides are ‘typical’ [16%, 84%] ranges for each mass bin. Different
curves refer to galaxies in different stellar mass bins, as indicated.

become increasingly redder as fc increases, which may be produced by the fact that

groups with higher fc on average assembled their halos earlier. In contrast, galaxies

in groups with fc < 0.02 seem to have a reversed, albeit weak, trend between color

and fc. Note that for a given central stellar mass, lower fc corresponds to higher halo

mass. The reversed trend at low fc reflects a ‘down-sizing’ effect of massive halos,

in that centrals in massive halos formed their stars earlier than in low mass halos

(e.g. Lu et al. 2015), although the massive host halos themselves assembled (half

of their masses) later (lower fc). This is consistent with the fact that in situ star

formation in massive halos is quenched once their masses reached a few times 1012M�
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Figure 2.6. The correlation between the bulge to total ratio (in r-band), B/T , and
fc for central galaxies. The curves plot the median values in fc bins. The error bars on
the leftmost sides are ‘typical’ [16%, 84%] ranges for each mass bin. Different curves
refer to galaxies in different stellar mass bins, as indicated.

(e.g. figure 14 of Lu et al. 2014b), and, for high mass halos, more massive ones on

average assembled a fixed amount of mass earlier (Li et al. 2008).

Figure 2.4 shows the quenched fraction of centrals as a function of fc. Because

for a given halo mass, fc and stellar mass is strongly degenerated for centrals, here

and in the following we only show results for centrals divided into different stellar

mass bins but not divided further according to halo mass. For galaxies in each stellar

mass bin, we separate them into quenched and star forming sub-populations using

the definition of Moustakas et al. (2013),

log

(
SFR

M�yr−1

)
= −0.49 + 0.65 log

(
M∗

1010M�

)
+1.07(z − 0.1) . (2.2)
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Figure 2.7. The correlation between the half-light radius (r-band) R50 and fc for
central ellipticals. The curves plot the median values in fc bins. The error bars on
the leftmost sides are ‘typical’ [16%, 84%] ranges for each mass bin. Different curves
refer to galaxies in different stellar mass bins, as indicated.

For a given M∗, galaxies with star formation rate (SFR) above the value given by the

above equation are defined to be star forming, and those with SFR below the value

are defined to be quenched. Given that the the specific star formation rate (sSFR,

defined as the ratio between SFR and M∗) of a galaxy is closely related to its color, it

is not surprising that the general trends seen in this plot are similar to those shown

in Fig. 2.3. Low-mass centrals are dominated by star forming galaxies in halos of low

fc but become dominated by quenched galaxies at the high end of fc. A reversal of

trend is again seen at fc ∼ 0.02.

Finally, let us look at the gas phase metallicity of galaxies, which is shown as a

function of fc in Figure 2.5. The gas phase metallicity estimates are available only
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Figure 2.8. The correlation between disk scale length (r-band) Rdisk and fc for
central spirals. The curves plot the median values in fc bins. The error bars on the
leftmost sides are ‘typical’ [16%, 84%] ranges for each mass bin. Different curves refer
to galaxies in different stellar mass bins, as indicated.

for a limited fraction of galaxies, mostly star forming ones. The result for the highest

stellar mass bin is quite noisy because here only a small fraction of galaxies are star

forming. For a given stellar mass, there is a clear trend that the gas phase metallicity

decreases with increasing fc. For centrals with M∗ > 1010.3M�, the decrease with

fc is quite rapid, by almost 0.1 dex. This decrease is comparable to the scatter in

the gas phase metallicity - stellar mass relation obtained by Tremonti et al. (2004),

suggesting that the scatter may be dominated by the variance in halo assembly, with

galaxies formed in older dark matter halos tend to have lower gas-phase metallicities.
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2.4.1.2 Structure and size

The bulge to total ratio, B/T , as described in the data section, is plotted against

fc in Figure 2.6. There are a number of interesting trends. Overall, the B/T increases

with stellar mass, simply owing to the fact that earlier type galaxies are on average

more massive. For massive galaxies with M∗ higher than about 1011M�, the B/T

ratio on average decreases with fc. For galaxies with lower stellar masses, the trend

changes at fc ∼ 0.02. While the B/T ratio decreases with increasing fc at the low fc

end, it increases with fc rapidly at fc > 0.02.

As mentioned above, for a given central mass M∗,c, a lower fc on average corre-

sponds to a higher halo mass Mh. Since a higher halo mass on average corresponds

to a higher group richness, the decline of B/T with fc may, therefore, be understood

in terms of the morphology-density relation found by Dressler (1980) that early-type

galaxies (higher B/T ) are preferentially found in high density environments, while

late-type galaxies are more likely to be found in poor groups and in the lower density

fields. The increase of B/T with decreasing fc at the low fc end shown in Fig. 2.6

follows such a morphology-density relation. However, our results also contain new

information, in that the morphology-density relation is present even for centrals of a

given stellar mass.

The strong increase of B/T with increasing fc seen for low-mass central galaxies

with M? < 1011M� at fc > 0.02 runs against the morphology-density relation. Since

larger fc means an earlier assembly time, as shown in the last section, the trend of

B/T with fc indicates an dependence on halo assembly time, in that central galaxies

in older halos tend to have higher B/T . In the current CDM paradigm of structure

formation, the formation of halos of a given mass at earlier time is on average more

dominated by major mergers and older halos are on average more compact (e.g. Li et

al. 2007, Zhao et al. 2009). If the bulge components are formed through major merg-

ers or through secular evolutions of the disk components, their formation is expected

86



0.4

0.5

0.6

0.7

0.8

0.9

1.0 log(M */M ) =[10.0,10.3]

(g
-r

)

log(M */M ) =[10.3,10.6]

10-3 10-2 10-1

log(M */M ) =[10.6,10.9]

Mh /M =10[11.8,12.2]

Mh /M =10[12.2,12.6]

Mh /M =10[12.6,13]

Mh /M =10[13,14]

central

satellilte (total)

10-3 10-2 10-1
0.4

0.5

0.6

0.7

0.8

0.9

1.0 log(M */M ) =[10.9,11.2]

10-3 10-2 10-1

fc

log(M */M ) =[11.2,11.5]

Morph = total
satellite only

Figure 2.9. The correlation between (g−r) color and fc for satellite galaxies (thick
lines). Individual panels show the medians in fc bins for satellites of different stellar
masses. Within each panel, satellites are divided into four subsamples according to
the masses of their host halos, as denoted in the legend. The result for the total
satellite sample in a given stellar mass bin is shown as the translucent thicker line in
each panel. For comparison medians for centrals shown in Fig. 2.3 are re-plotted here
as the thin solid lines.

to be promoted by both major mergers and a compact structure of dark matter ha-

los. The positive correlation between B/T and fc obtained here may follow directly

from such formation. The reversal of the trend at fc < 0.02 is also consistent with

such interpretation, because central galaxies in massive halos actually have earlier

formation due to the down-sizing effect described above.

Figures 2.7 and 2.8 show how the sizes of central galaxies of a given stellar mass

correlate with fc. Results are shown separately for the half-light radius (R50) of

ellipticals and the disk scale-length (Rdisk) of spiral galaxies. Here the morphological

separation is made according to the visual classification from GZ2, and the sizes are

taken from the r-band bulge-disk decompositions of Simard et al. (2011). For both
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Figure 2.10. The correlation between the quenched fraction and fc for satellite
galaxies (thick lines). Individual panels show the medians in fc bins for satellites of
different stellar masses. Within each panel, satellites are divided into four subsamples
according to the masses of their host halos, as denoted in the legend. The result for
the total satellite sample in a given stellar mass bin is shown as the translucent
thicker line in each panel. For comparison medians for centrals shown in Fig. 2.4 are
re-plotted here as the thin solid lines.

ellipticals and spirals, more massive galaxies are larger, as expected. For a given

stellar mass, the sizes of centrals decrease with fc at fc > 0.02. This is consistent

with the interpretation that halos formed earlier on average are smaller. However,

unlike star formation, there is no strong reversal of trend at fc < 0.02, in particular for

massive galaxies. For elliptical galaxies, this may be due to the fact that the assembly

of the stellar component follows halo assembly more closely than star formation (e.g.

figure 5 in Lu et al. 2015). For spiral galaxies, this result may indicate that disks can

continue to accrete cold gas from halos as the halos grow, even in relatively massive

systems.
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Figure 2.11. The correlation between R50 and fc for satellite ellipticals. The thick
curves are the medians in fc bins, while the ‘typical’ [16%, 84%] ranges are indicated
by the bars on the leftmost sides. For comparison, results for central ellipticals shown
in Fig. 2.7 are re-plotted here as thin lines. Different panels show the results in
different stellar mass bins, as indicated.

2.4.2 Satellite galaxies

Figure 2.9 shows the (g − r) color of satellite galaxies as a function of fc of their

host groups. The five panels show the results of galaxies in five stellar mass bins,

as indicated. For each stellar mass bin, results are shown separately for galaxies in

groups of four different halo mass bins, as indicated in the small panel. For given fc

and halo mass, more massive galaxies on average are redder. For the most massive

galaxies with M∗ > 1011M�, which are only found in massive halos, their (g − r)

colors are all red, quite independent of fc. For satellites with lower stellar masses

(M∗ < 1011M�), there is a marked trend that the (g − r) color becomes increasingly

redder as fc increases. The trend is weaker for groups with higher halo masses, and

becomes almost totally flat for halo masses above ∼ 1013M� (the magenta dotted
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Figure 2.12. The correlation between Rdisk and fc for satellite spirals. The thick
curves are the medians in fc bins, while the ‘typical’ [16%, 84%] ranges are indicated
by the bars on the leftmost sides. For comparison, results for central spirals shown in
Fig. 2.8 are re-plotted here as thin lines. Different panels show the results in different
stellar mass bins, as indicated.

curve in each panel). We do not see a reversal in the trend in any ranges of fc as seen

in central galaxies shown in Fig. 2.3 (reproduced here as the black solid curves for

comparison), because here results are shown separately for groups in different halo

mass bins. If we consider all satellites of a given stellar mass regardless of their host

halo mass, then we get the results as shown by the thick shaded line in each panel.

Here we do see a change of trend at fc ∼ 0.02, which is similar to, albeit weaker than

that for central galaxies. Clearly, satellites at the low-fc end are dominated by the

ones in massive groups. The reversed trend at fc < 0.02, is consistent with the fact

that galaxies in massive halos actually have earlier formation due to the down-sizing

effect described earlier.
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Figure 2.10 shows the quenched fraction of satellites as a function of fc of their host

groups. The format of this figure is exactly the same as Fig. 2.9, and the quenched

fraction is again determined by using equation (2.2). The trends shown here are very

similar to those in Fig. 2.9, again because the (g − r) color is closely correlated with

the sSFR used to separate quenched from star-forming galaxies.

Finally let us look at the sizes of galaxies. Here we consider ellipticals and spirals

separately. Our tests showed that the dependence of size on halo mass is weak for

satellites and the current samples are too small to give significant results for the

halo-mass dependence. Thus, we only divide galaxies into stellar mass bins, but not

further into halo mass bins. Figures 2.11 and 2.12 show how the sizes of satellite

galaxies of a given stellar mass correlate with fc (thick solid curves). Here results are

shown separately for the half-light radius (R50) of ellipticals and the disk scale-length

(Rdisk) of spiral galaxies, both taken from the r-band bulge-disk decompositions of

Simard et al. (2011). For both ellipticals and spirals, the trend with fc is rather

weak, although for low-mass galaxies the size seems to decrease as one moves away

from fc ∼ 0.01 toward both the low and high ends of fc. This trend suggests that

galaxies of a given stellar mass on average have smaller sizes if formed earlier.

Compared with central galaxies of the same stellar mass (shown by the thin

curves), satellites are smaller. This is true for both spirals and ellipticals, and the

difference is larger for lower mass galaxies. It is interesting to note that the average

sizes of satellites are comparable to those of centrals with the highest fc, which indi-

cates that sub-halos which host satellites may have as early formation as the oldest

halos of similar masses that host centrals.

Weinmann et al. (2009) found that, at fixed stellar mass, late-type satellite galax-

ies have smaller radii than late-type central galaxies. Our results confirm theirs.

However, Weinmann et al. (2009) found no difference in size for early-type galaxies,

while Fig. 2.11 shows clearly that such difference also exists for ellipticals, particularly
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for ellipticals with low stellar masses. The discrepancy may arise from the difference

in the separation of early versus late types. While Weinmann et al. (2009) used the

concentration parameter, defined as the ratio between R90 (radius within which 90%

of the total light is included) and R50, we use morphological classifications from GZ2.

Weinmann et al. (2009) interpreted their finding as owing to the fading of stellar

disks due to the aging of stars. However, it is unclear if such an interpretation can

also explain the systematic change of disk size of central galaxies with fc. Passive

stellar evolution alone is also difficult to explain the difference between centrals and

satellites for elliptical galaxies. Based on our results, the more likely reason is that

halos formed earlier are more compact, and that the difference in sizes between cen-

trals and satellites is due to differences in formation time, just as centrals in halos of

different fc.

2.5 Comparison with models

In order to explore the implications of our findings, we make comparisons of our

results with some theoretical models. Since our results are derived from galaxy groups

selected from a redshift catalogue, a detailed comparison between our observational

results with theoretical models requires the construction of theoretical mock catalogs

that take into account all observational selection effects. This is beyond the scope of

this paper, and we will come back to this in a forthcoming paper. In this paper, we use

halo occupations of galaxies predicted directly by models, ignoring all observational

selection effects. As a demonstration, we use two specific models: the empirical age

abundance matching (AAM) model published in Hearin & Watson (2013), Hearin et

al. (2014), and the semi-analytical model (SAM) as described in Lu et al. (2014a).

While traditional abundance matching techniques only exploit the correlation be-

tween luminosity of galaxies and mass of their host haloes to assign galaxies in haloes

from simulations, the AAM connects galaxies to haloes as a function of both color
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Figure 2.13. The observed correlation between fc and the specific star formation
rate, sSFRs (blue lines: solid for centrals and dashed for satellites) in comparison
to the predictions of the semi-analytical model (SAM) of Lu et al. (2014a) (thin
magenta) and the age abundance matching model of Hearin & Watson (2013) (thin
green). Note that the sSFR of satellites in the first panel for the SAM are too low to
show, and are represented by a horizontal line with down pointing arrows.

and luminosity. Specifically, it assigns stellar masses to galaxies according to the

mass ranking of their host halos, and assign colors to galaxies of a given stellar mass

according to the formation time ranking of their halos. The SAM approach, on the

other hand, attempts to model physical processes using simplified receipts parame-

terized in simple functional forms. A SAM generally contains a large number of free

parameters. Lu et al. (2014a) used a Monte Carlo Markov Chain method to infer

their model parameters from observational constraints such as luminosity functions of

galaxies at different redshifts. The Lu et al. SAM contains many of the same compo-

nents as other SAMs. In particular it assumes a strong star formation feedback and

an efficient gas stripping to prevent too much star formation in dark matter halos.
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Since none of the models provides reliable predictions for the structural properties

of galaxies, here we focus only on the star formation properties as represented by the

specific star formation rate (sSFR) of galaxies. Figure 2.13 shows the sSFR as a

function of fc as predicted by the models of Hearin & Watson (2013) and Lu et al.

(2014a). As in the observation, we identify the most massive galaxy in a halo to be

the central galaxy, and use the ratio between Mc∗,c and the halo mass to define fc.

Here results are shown separately for centrals and satellites in five different stellar

mass bins. For comparison, our observational results are included in each panel.

As one can see, the AAM model reproduces the observational trends qualitatively.

In particular, the rapid decreases of sSFR with increasing fc for central galaxies in

the low stellar mass bins are well reproduced. The trends for satellite galaxies are

also well produced, although the predicted sSFR are systematically lower than the

observational results. This discrepancy should not be taken too seriously, as the

satellite population in observational groups may be contaminated by centrals that on

average have higher SFR than the satellites of the same mass. As mentioned above,

such contaminations can only be taken into account properly by applying the same

group finder to the mock catalog constructed from the AAM model.

In contrast, the predictions of the SAM are very different from the observational

results. The model predicts too much quenching of star formation in low mass satel-

lites, while the star formation rates in centrals, particularly in groups with high fc,

are over-predicted by more than an order of magnitude. The SAM also fails to catch

the overall trends in the observation, even qualitatively. These results suggest that

the halo assembly plays an important role in regulating star formation, and the un-

derlying physical processes are still poorly captured in the SAM considered here. It

is clearly interesting to compare our results with other SAMs and simulation results,

not only in sSFR, but also in other properties, such as size, B/T , and metallicity, to

explore the implications of our results.

94



2.6 Summary

We have showed that the ratio, fc ≡ M∗,c/Mh, can be used as a reliable observa-

tional proxy of halo assembly time, with higher fc for halos that assembled earlier.

This use was motivated by the results of W11, who used N-body simulations to show

that there is a tight correlation between Mmain/Mh (Mmain being the main sub-halo

mass) and halo half-mass assembly redshift (zf ), combined with (sub)halo abundance

matching. We used the SDSS groups by Yang et al. to investigate how galaxy prop-

erties are correlated with the assembly times of their host halos.

Central galaxies of a given stellar mass with higher fc are found to be redder and

more quenched in star formation while fc > 0.02. This implies that star formation in

centrals in this regime is dictated by their halo assembly history. A reversed albeit

weak trend is seen for centrals with fc < 0.02, which reflects the down-sizing effect

that a more massive halo on average reaches the mass of most efficient in situ star

formation, ∼ 1012M�, earlier. Similar trends with fc are found for the bulge to total

ratio, B/T : central galaxies hosted by older halos tend to have higher B/T ratios. We

suggest that this is because older halos are more compact and their formation is more

dominated by major mergers. For a given stellar mass, the sizes of central galaxies

are also correlated with fc for both ellipticals (in terms of the half-light radius, R50)

and spirals (in terms of the disk scale-length, Rdisk), with centrals hosted by older

halos being smaller. This trend is again consistent with the fact that halos of a given

mass are more compact at higher redshifts.

We have also analyzed how the intrinsic properties of satellite galaxies change

with the value of fc of their host halos. Here we found that, for a given stellar mass,

satellites residing in older halos are redder and more quenched, and this trend is

stronger for lower mass halos. Satellites also appear smaller than centrals of the same

mass, and this is true for both ellipticals and spirals. These results can again be

explained by the fact that halos that assembled earlier are more compact. As for

95



centrals, a weak down-sizing effect in the quenching of star formation is also seen for

satellites hosted by massive halos with fc < 0.02. These results, together with those

found for the centrals, demonstrate clearly that halo assembly plays an important

role in determining the properties of galaxies the halos host.

We present our preliminary comparisons of our observational results with the

predictions by the AAM model of Hearin & Watson (2013) and by the SAM of Lu et

al. (2014a). The AAM model reproduces well the general trends in the observational

data, while the SAM fails to do so. The SAM predicts too many quenched low-mass

satellites and too small fraction of quenched high-mass galaxies. These imply that

halo assembly history is another important factor in addition to halo mass that can

affect star formation in galaxies, and such effects have yet to be properly modeled

in the SAM. In this context, the observational results obtained here are expected to

provide stringent constraints on theoretical models of galaxy formation and evolution.

We will come back to detailed comparison between our observational results and

model predictions in a forthcoming paper.
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CHAPTER 3

TESTING GALAXY FORMATION MODELS WITH
GALAXY STELLAR MASS FUNCTIONS1

We compare predictions of a number of empirical models and numerical simula-

tions of galaxy formation to the conditional stellar mass functions (CSMF) of galaxies

in groups of different masses obtained recently by Lan et al. to test how well differ-

ent models accommodate the data. The observational data clearly prefer a model in

which star formation in low-mass halos changes behavior at a characteristic redshift

zc ∼ 2. There is also tentative evidence that this characteristic redshift depends on

environment, becoming zc ∼ 4 in regions that eventually evolve into rich clusters of

galaxies. The constrained model is used to understand how galaxies form and evolve

in dark matter halos, and to make predictions for other statistical properties of the

galaxy population, such as the stellar mass functions of galaxies at high z, the star

formation and stellar mass assembly histories in dark matter halos. A comparison

of our model predictions with those of other empirical models shows that different

models can make vastly different predictions, even though all of them are tuned to

match the observed stellar mass functions of galaxies.

3.1 Introduction

In the current paradigm of structure formation within the Λ cold dark matter

(ΛCDM) framework, initial small fluctuations in the cosmic density field are amplified

1 THE CONTENTS OF THIS CHAPTER ARE PUBLISHED IN LIM ET AL. 2017, MNRAS,
464, 3256.
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by gravitational instability, eventually forming highly nonlinear structures called dark

matter halos (see Mo et al. (2010) for a review). Galaxies then form at the centers

of the gravitational potential wells of the dark matter halos by radiative cooling and

condensations of baryonic gas (e.g. White & Rees 1978, Fall & Efstathiou 1980, Mo et

al. 1998). In order to reproduce the observed stellar mass function of galaxies in the

CDM scenario, however, star formation in dark matter halos has to be inefficient (e.g.

Yang et al. 2003), and various feedback processes have been proposed to suppress

the star formation efficiency in dark matter halos.

In this framework, therefore, galaxy formation and evolution are governed by

a number of physical processes which, in turn, are characterized by a number of

characteristic scales. First, cosmological N -body simulations have shown that the

assembly histories of dark matter halos in general consist of two distinctive phases:

an earlier phase of fast mass acquisition during which the potential well of a halo

deepens rapidly with time, and a later phase of slow accretion, with a time scale

longer than the Hubble time (e.g. Zhao et al. 2003). Zhao et al. (2009) found that

the two phases are separated at a time when a halo obtains about ∼ 4% of its final

mass (see also van den Bosch et al. 2014). Second, hydrodynamical simulations have

demonstrated that radiative cooling is effective in halos with masses smaller than

Mh ∼ 6 × 1011M�, so that the accretion rate of cold gas into galaxies is determined

by the halo mass accretion rate, independent of radiative cooing (e.g. Keres̆ et al.

2005, 2009). Above this mass scale, on the other hand, radiative cooling is ineffective,

so that the cold gas accretion is delayed by the cooling time scale. For massive halos

with masses above 1013M�, a significant fraction of the baryonic gas is expected to

be in the hot halo in the absence of a heating source. Third, supernova feedback from

star formation is believed to be effective for halos with masses below ∼ 1011M� (e.g.

Dekel & Silk 1986, Somerville et al. 2008, Lu et al. 2012). Finally AGN feedback from

accreting super-massive black holes has been proposed as a mechanism to suppress
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star formation in massive halos, with masses above Mh ∼ 1013M� (e.g. Ferrarese &

Merritt 2000, McConnell et al. 2011).

A number of approaches have been adopted to explore the physical processes that

govern galaxy formation and evolution, and to facilitate comparisons between the-

ory and observation. The first is hydrodynamical simulation that includes both dark

matter and baryonic components (e.g. Dubois et al. 2014, Khandai et al. 2015,

Vogelsberger et al. 2014, Schaye et al. 2015). However, due to limited resolution

and subgrid implementations of some key processes, the results obtained from such

simulations are still questionable, even though they can match some observational

data (e.g. Governato et al. 2004, 2010, Okamoto et al. 2005, Guedes et al. 2011).

Furthermore, high resolution hydrodynamical simulations are computationally expen-

sive, which prohibits the explorations of a large parameter space. Because of this, an

alternative approach, the semi-analytic model (SAM) of galaxy formation, has been

developed (e.g. White & Frenk 1991, Kauffmann et al. 1999, Kang et al. 2005,

Bower et al. 2006, Croton et al. 2006, Somerville et al. 2008, Guo et al. 2011, Lu

et al. 2011). The SAM approach combines halo merger histories, obtained either

from dark-matter only simulations or from analytical models, with gas and star for-

mation processes using parametrized functions that describe the underlying physical

processes. This approach is computationally inexpensive, allowing one to investigate

a large set of different models. However, since all the physical processes are approxi-

mated with simple empirical functions, the reliability and accuracy of this approach

needs to be checked. More recently, a third approach has been adopted to understand

how galaxies form and evolve in the cosmic density field. The goal of this approach

is to establish the connections between galaxies and dark matter halos through an

empirical approach, using observational data as constraints. Models developed along

this line include the halo occupation distribution (HOD; e.g. Jing et al. 1998, Peacock

& Smith 2000, White 2001, Berlind & Weinberg 2002, Bullock et al. 2002, Zehavi et

99



al. 2004, 2011), the conditional luminosity function (CLF; Yang et al. 2003, 2012,

van den Bosch et al. 2003), the halo abundance matching model (HAM; Kravtsov et

al. 2004, Vale & Ostriker 2004, 2006, Conroy et al. 2006, Behroozi et al. 2010, Guo

et al. 2010, Moster et al. 2010, Reddick et al. 2013), and the halo-based empirical

model (Lu et al. 2014, 2015).

To a certain degree, both the SAM and empirical approaches are methods to

summarize observational data in terms of model parameters characterizing the galaxy-

halo connections. Much progress has been made recently in this area. Using the CLF

model and constraints of the observed luminosity function and correlation function

of galaxies, Yang et al. (2003) found a characteristic halo mass scale, ∼ 1012M�,

in the relationship between galaxy luminosity/stellar mass and halo mass relation,

suggesting that star formation efficiency declines rapidly toward both the higher and

lower mass ends. With the use of galaxy groups selected from the 2dF (Yang et

al. 2005) and SDSS (Yang et al. 2007), Yang et al. (2005) found a similar mass

scale from the observed galaxy luminosity/stellar mass - halo mass relations obtained

directly from galaxy groups. In particular, Yang et al. (2005) suggested the existence

of another characteristic mass scale, ∼ 1011M�, where the galaxy luminosity-halo

mass relation may change its behavior. Similar results have since been obtained at

higher z with the use of the observed luminosity/stellar mass functions of galaxies.

In particular, the presence of the mass scale at ∼ 1012M� seems to extend to higher

z without showing strong evolution (Moster et al. 2010, Behroozi et al. 2013, Guo et

al. 2010, Yang et al. 2012).

More recently, Lu et al. (2014, 2015) developed a halo-based empirical model to

follow the star formation and stellar mass assembly histories of galaxies in dark matter

halos. In particular, they used the observed conditional luminosity functions of clus-

ter galaxies obtained by Popesso et al. (2006) as an constraint in addition to the field

stellar mass functions at different redshifts. They found that the observational data
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require two additional characteristic scales, a characteristic redshift, z ∼ 2 − 3, and

a corresponding mass scale at 1011M�, below which star formation changes behavior

at the characteristic redshift. These results clearly demonstrate that the observed

conditional luminosity/stellar mass function of galaxies in clusters can provide im-

portant information about galaxy formation and evolution at high redshift. However,

since clusters of galaxies only contain a small fraction of the total galaxy population,

the results may be affected by some environmental effects that are specific only to

clusters of galaxies.

Using the galaxy groups of Yang et al. (2007) combined with galaxies in the

SDSS photometric catalogue, Lan et al. (2016) have recently measured the condi-

tional luminosity/stellar mass functions (hereafter CSMFs) that cover four orders of

magnitude in galaxy luminosity, and three orders of magnitude in halo mass, from

∼ 1012 to 1015M�. They found a characteristic luminosity scale, L ∼ 109L�, below

which the slope of the CSMF becomes systematically steeper, and that this trend is

present for all halo masses. This ubiquitous faint-end upturn suggests that it is for-

mation, rather than cluster-specific environmental effect, that plays the dominating

role in regulating the stellar masses of faint satellites. Clearly, these observational

results will provide new constraints on models.

This paper consists of two parts. First, we use the new CSMFs to update the

empirical model of Lu et al. (2014, 2015) and show that there is only marginal

difference between the original model and the updated model. Second, we compare

model predictions from empirical models and numerical simulations to the CSMFs

of Lan et al. to test how well different models accommodate the new data. We will

show that, among all the models considered, only the Lu et al. (2014, 2015) model

can match the observational data reasonably well. Also, we present predictions of the

different models for other statistical properties of the galaxy population.
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Table 3.1. A list of the models and
the simulations.

Model Reference

/ Simulation

Y12 Yang et al. (2012)

M13 Moster et al. (2013)

B13 Behroozi et al. (2013)

L15 Lu et al. (2015)

L15-U this work

Illustris Vogelsberger et al. (2014)

EAGLE Schaye et al. (2015)

The organization of this paper is as follows. Section 3.2 describes the empirical

models to be tested and two recent numerical simulations, Illustris (Vogelsberger et al.

2014) and EAGLE (Schaye et al. 2015), to be compared. In Section 3.3, we describe

the observational data that are used in our analysis, and present comparisons of the

empirical models and the simulations with them. In Section 3.4, we present a more

detailed comparison of the model predictions in star formation rate, stellar mass -

halo mass relation, mass assembly history, and stellar mass function for high redshifts.

Finally, we summarize and discuss our results in Section 3.5.

3.2 Models

In this paper we select a number of popular empirical models and two recent

hydrodynamical simulations to test against observational data. Here we describe

these models and simulations briefly. Table 1 lists the models and the simulations

that we test. Readers are referred to the original papers for details.
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3.2.1 Empirical models

One of the simplest way to link galaxies to their dark matter halo/subhalo pop-

ulation is to use halo abundance matching (e.g. Mo et al. 1999). This approach

assumes a monotonic relation between halo mass and galaxy stellar mass. Satellite

galaxies observed at a given redshift were all once central galaxies before they were

accreted onto larger halos. Since satellites are expected to evolve differently due to

environmental effects such as tidal stripping and ram pressure stripping, many abun-

dance matching models apply a monotonic relation between galaxy stellar mass and

halo mass at the time when a halo first became a subhalo, instead of at the time

of observation. Most of previous investigations make the assumption that the halo

mass - galaxy mass relation is independent of when a sub-halo is accreted into its

host (e.g. Vale & Ostriker 2004, 2006, Conroy et al. 2006, Behroozi et al. 2010,

Guo et al. 2010, Moster et al. 2010). With this assumption, at a given redshift,

halos of a given mass are therefore always linked to galaxies of the same stellar mass.

However, it was found that applying this method to different redshifts actually leads

to different stellar mass - halo mass relation (e.g. Conroy et al. 2006), suggesting

that the method implemented in this way is not self-consistent. As an improvement,

models have been developed in which the galaxy-halo relation is allowed to depend

on both halo mass (defined e.g. at the time when a halo first becomes a sub-halo)

and the time when a halo becomes a sub-halo. We test four models in this category,

by Yang et al. (2012), Moster et al. (2013), Behroozi et al. (2013), and Lu et al.

(2015), respectively.

3.2.1.1 Yang et al. model

The model of Yang et al. (2012) (Y12, hereafter) takes the same functional form

as that proposed in Yang et al. (2003) for the halo mass - galaxy luminosity/stellar

mass relation:
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M∗
Mh

= N

[(
Mh

M1

)−β
+

(
Mh

M1

)γ]−1

. (3.1)

This is basically a double power law specified by two asymptotic slopes, β and γ,

describing the low- and high-mass end behaviors, respectively, and by a characteristic

mass scale M1 where the transition between the two power laws occurs, and with N

being an overall amplitude. The four free parameters were assumed to be redshift de-

pendent and the dependencies were modeled by simple functions. The above relation

was used to assign stellar masses to halos at different redshifts. They adopted the halo

mass function of Sheth et al. (2001) to model the halo population. For sub-halos, the

model of Yang et al. (2011) was used to follow both the mass function and the distri-

bution in the accretion time (the time when a halo first becomes a subhalo). A stellar

mass is assigned to a sub-halo at the time of accretion according to its mass at that

time using equation (3.1). The subsequent evolution of the satellite associated with a

sub-halo was followed according to its orbit determined through a dynamical friction

model. The model parameters were then obtained by fitting the model predictions

to the observed stellar mass functions (SMFs) of galaxies from z = 0 to 4, and the

correlation function of z ∼ 0 galaxies as a function of galaxy luminosity/stellar mass.

3.2.1.2 Moster et al. model

Moster et al. (2013) (M13) adopted a similar double power-law for the stellar mass

- halo mass relation as described by equation (3.1), and simple functional forms to

describe the redshift dependencies of the model parameters. They applied the relation

to halos and sub-halos obtained from N -body simulations. Individual halos and sub-

halos are matched and traced across different snapshots (i.e. different redshifts), so

that merger trees are generated to track their evolutions. Galaxies hosted at the

centers of halos and sub-halos were referred to as centrals and satellites, respectively.

For centrals, the stellar masses were given by the stellar mass - halo mass relation
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using the redshift and halo mass at the snapshot in question. For satellites, the stellar

masses were obtained by applying the stellar mass - halo mass relation at the redshift

when their halos first became sub-halos using their halo masses at this redshift, as

in Y12. The stellar mass of a satellite was assumed to remain unchanged in the

subsequent evolution. Some uncertainties in the stellar mass - halo mass relation

were taken into account. Model parameters characterizing the stellar mass - halo

mass relation were then tuned to match a set of observed SMFs from z = 0 to 4.

3.2.1.3 Berhoozi et al. model

The approach adopted by Behroozi et al. (2013) (B13) was similar to those of Y12

and M13, but the stellar mass - halo mass relation assumed was more complicated

and was designed in part to reproduce the observed SMFs at the faint ends. Here

again, halo merger trees extracted from N -body simulations were used to trace the

formation of dark matter halos. As in Y12 and M13, they applied their stellar mass -

halo mass relation to ‘infall’ mass at the time of accretion to assign stellar masses to

subhalos. Subsequent stellar mass loss of satellites after their accretion into their host

halos was also taken into account. Finally, they used the observed SMFs at z = 0

- 8, as well as the cosmic star formation rates and specific star formation rates, to

constrain their model parameters.

3.2.1.4 Lu et al. model

The Lu et al. (2014, 2015) model (hereafter L15) was based on the star formation

rate (SFR) - halo mass relation as a function of redshift:

Ṁ∗(Mh, z) = ε
fbMh

τ
(x+ 1)α

(x+R

x+ 1

)β( x

x+R

)γ
(3.2)

where fb = Ωb,0/Ωm,0, τ = [10H0(1 + z)3/2]−1 approximates the dynamical time of

halos, x ≡ Mh/Mc, with Mc being a characteristic mass scale and R is parameter
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of 0 ≤ R ≤ 1. Thus, Ṁ∗/Mh ∝ M
{α,β,γ}
h for {Mh � Mc, RMc < Mh < Mc, and

Mh � RMc}, respectively. This relation is applied only to central galaxies. After a

galaxy becomes a satellite, Lu et al. assumed that it moves on an orbit determined

by its initial energy and orbital angular momentum together with dynamical friction.

A satellite galaxy is assumed to merge with the central galaxy once it sinks to the

center of the halo. At this time, it adds a fraction (treated as a free parameter, fsc)

of its mass to the central galaxy, and the rest is assumed to become halo stars. The

SFRs in satellites were modeled with a simple exponential model,

Ṁ∗,sat ∝ exp
[
− t− tacc

τs

]
(3.3)

where tacc is the time when the galaxy becomes a satellite, and τs = τs,0 exp
[
−

M∗/M∗,c
]

is adopted to reflect halo mass dependence of the time scale, with τs,0

and M∗,c being free parameters. The stellar mass in a galaxy is then obtained by

integrating the SFR over time, taking into account mass loss due to stellar evolution.

Lu et al. used halo merger trees generated with the algorithm developed by Parkinson

et al. (2008), which is based on the extended Press-Schechter formalism calibrated

with N -body simulations.

Lu et al. adjusted both their functional forms and free parameters to match the

SMFs at 0 < z < 4 and the CSMFs of galaxies in clusters of galaxies as given by

Popesso et al. (2006). They found that the model assuming all the parameters to

be independent of redshift is not able to match the observed SMFs at high redshift.

They therefore extended their model by allowing α to change with redshift as α =

α0(1 + z)α
′
. This model was referred to as Model II in Lu et al.. Model II was found

to be able to describe all the stellar mass functions (SMFs) at both low and high

redshifts, but fails to match the faint-end upturn in the CSMF of cluster galaxies.

Because of this, Lu et al. extended their model once more by allowing the parameter

γ, which dictates the SFR in low-mass halos, to depend on redshift:
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γ = γa if z ≤ zc

= (γa − γb)
( 1 + z

1 + zc

)γ′
if z > zc

In this model, referred to as Model III by Lu et al., γ → γb at z � zc, and the free

parameter, γ′, controls how rapidly the transition to γb occurs above the characteristic

redshift zc. This Model III was found to be able to fit both the SMFs at different

redshifts and the CSMF of cluster galaxies simultaneously.

3.2.1.5 Updating the parameters of the L15 model

Instead of using the model parameters of Lu et al., we use only the observed

CSMFs as constraints to update the model parameters. We use the MULTINEST

method developed by Feroz et al. (2009), which makes use of the nested sampling

algorithm of Skilling et al. (2006), to compute the posterior distribution of the model

parameters. The MULTINEST is found to yield practically the same results as the

traditional MCMC method but with ∼ 10 times smaller number of likelihood calcu-

lations for the problem concerned here. The reader is referred to the original papers

for details.

Table 2 compares the updated parameters with the model parameters of Lu et al.

The average star formation rates predicted with the updated parameters at various

redshifts are very similar to those obtained by L15, as shown in Figure 3.1. We also

found that the differences in the two parameter sets result only in marginal changes

in the CSMFs in that the updated model (hereafter L15-U) predicts slightly flatter

slopes at the faint-ends for massive haloes. This is owing to the fact that the Lan

et al. CLFs have shallower faint-end slopes for massive halos than the cluster galaxy

luminosity function used by L15. The marginal difference between the two parameter

sets demonstrates that the low-z CSMFs alone can constrain models in a similar way

as the field SMFs at different redshifts. Furthermore, as we will see in §3.4), they

also contain information about the low-mass end of the SMF at high z, where direct
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Figure 3.1. The average star formation rate of central galaxies as a function of halo
mass at different redshifts as predicted by the original L15 model (dashed lines) and
the L15-U model (solid lines).

observations are still uncertain. We use L15-U to present results throughout this

paper.

3.2.1.6 Need for a more extended model family?

As mentioned above, L15 assumed the characteristic redshift, zc, the redshift at

which the SFR in low mass progenitors changes behavior, to be independent of the

host halo mass. However, it is plausible that zc depends on the host halo mass,

because structure formation, and presumably star formation, are expected to occur

earlier in regions that correspond to higher mass halos at the present day. Motivated

by this, we test a more extended model family in which the characteristic redshift

changes with host halo mass at z = 0, Mh(0):
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Table 3.2. A list of the model parameters.
The medians and the standard deviations are
presented.

parameters L15 L15-U

α0 −3.0± 1.0 −2.7± 0.79

α′ −0.36± 0.16 −0.32± 0.21

β 3.7± 0.73 3.5± 1.0

γa 2.0± 0.55 1.3± 0.69

γb −0.84± 0.14 −1.1± 0.21

γ′ −4.4± 0.52 −3.1± 0.88

zc 1.8± 0.31 2.0± 0.28

log10Mc 1.6± 0.15 1.6± 0.11

log10R −0.86± 0.18 −0.92± 0.20

ε 0.20± 0.29 0.050± 0.11

log10H0τs,0 −0.90± 0.16 −0.85± 0.11

log10M∗,c 0.34± 0.28 0.18± 0.19

fsc 0.44± 0.22 0.52± 0.15

(1 + zc) = (1 + zc,0)
( Mh(0)

1012M�

)ζ
(3.4)

where ζ controls the halo mass dependence of zc, and zc,0 is zc for halos of Mh(0) =

1012M�. We use the same CSMFs as used in the earlier subsection to constrain model

parameters.

To test if such an extension is necessary, we use the Bayes factor,

K =
P (D|M1)

P (D|M2)
=

∫
P (D|θ1,M1)P (θ1|M1)dθ1∫
P (D|θ2,M2)P (θ2|M2)dθ2

, (3.5)

where D is a given data set, M1 and M2 are two different models, and θ1 and θ2 are

the parameter space of the models. This factor quantifies the preference of a given
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data set for one model family over the other. As it integrates over all parameter space

of each of the model families, it naturally penalizes over-fitting.

When all the data points of the CSMFs are used as constraints, the Bayes factor

between the extended model (the one including ζ) and the original L15 parametriza-

tion is given by 2 lnK ≈ 56, which indicates a strong need for having ζ statistically.

The median value of ζ ≈ 0.064 thus obtained implies that the characteristic redshift

zc is z ≈ 3.8 for halos of Mh(0) = 1015M�, in comparison to zc ≈ 2.1 for halos with

Mh(0) = 1012M�. This increase of zc with host halo mass leads to flatter faint-end

slopes for massive halos, giving better matches to the faint-ends of the CSMFs for

both low-mass and high-mass halos.

It is worth noting, however, that the uncertainties in the stellar mass estimates

may change the CSMFs in both the lowest and highest mass ends, where the slopes

of the CSMF are steep. As a test, we use only the CSMFs in the range M∗ =

[108, 1011]M� as the observational constraints. In this case, the models with or without

ζ are almost equally favored in terms of the Bayes factor. Given these, we conclude

that the original form of the L15 model can still accommodate the new CSMFs, and

that the current data are still too uncertain to determine if a more extended model

family is required.

3.2.1.7 Model implementations

We implement the empirical models described above to the dark matter halo

population. We use the algorithm developed by Parkinson et al. (2008) to generate

halo merger trees and to follow the build-up of dark matter halos. As mentioned

above, this algorithm is based on the extended Press-Schechter formalism calibrated

with results from N -body simulations. As shown in Jiang & van den Bosch (2014),

the predictions of this algorithm match accurately many properties of halo merger
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trees obtained directly from simulations, including halo mass assembly history, halo

merger rate, and sub-halo mass functions.

The empirical models described above also take into account some uncertainties in

the observational data and in the model assumptions, such as the intrinsic scatter in

the stellar mass - halo mass relation, uncertainties in the stellar population synthesis

and dust models, Eddington bias, and errors in redshift measurements. Unfortunately,

how these uncertainties change as a function of redshift is poorly established. They

are treated differently in different models. M13 adopted constant scatter in the stellar

mass - halo mass relation and in the stellar mass estimate, while B13 parametrized the

uncertainties as functions of redshift and treated them as a new set of free parameters

to be determined in their model fitting. The treatment by Y12 lies in between. In

our implementations, we follow each individual model as close as possible.

We use WMAP7 cosmology to obtain the halo mass function, to construct halo

merger trees, and to estimate distances from redshifts. We adopt the Chabrier (2003)

IMF, the stellar population synthesis model of Bruzual & Charlot (2003) to account

for stellar mass loss and to obtain stellar mass function from observations. These

assumptions are the same as adopted in the original models, except for Y12 where a

Kroupa (2001) IMF was adopted. We correct the stellar masses of Y12 model by a

factor of ∼ 1.4/1.7 to match the IMF we adopt.

3.2.2 Hydrodynamical simulations

We also test the predictions from two recent high-resolution, cosmological hydro-

dynamical simulations. The first is Illustris simulation (Nelson et al. 2015), which fol-

lows 18203 particles for each of the gas and dark matter components in a total volume

of (106.5 Mpc)3, assuming WMAP9 cosmology ({Ωm,ΩΛ, h} = {0.273, 0.727, 0.704}).

The other components the simulation traces are stars, stellar wind particles, and

super-massive black holes. The simulation starts from z = 127 and includes physical
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processes such as radiative cooling, star formation, and various feedback processes.

The free parameters in their model were constrained by using the star formation

efficiency obtained from separate simulations that are more accurate in resolving

small-scale structures. In our analysis, we use Illustris-1, their flagship simulation

that has the highest mass resolution (1.6 × 106M� and 6.3 × 106M� for baryon and

dark matter, respectively). To match the set of observations adopted here for model

testing, we use the snapshot at z = 0.03, which contains a total of 7, 647, 219 groups

identified by the FoF algorithm. In the simulation, galaxies are defined according to

the spatial distribution of stars and stellar wind particles, and the brightness profile

fit to them. The simulation assumes the Chabrier (2003) IMF and the stellar popu-

lation synthesis model of Bruzual & Charlot (2003). As the cosmological parameters

of WMAP9 are similar to those of WMAP7, the difference in cosmology is ignored in

our analysis. We bin their stellar masses to obtain the stellar mass function (SMF).

Another simulation we use is the Evolution and Assembly of GaLaxies and their

Environments (EAGLE; Schaye et al. 2015). EAGLE traces the evolution of gas,

stars, dark matter, and massive black holes, and implements physically motivated

models for gas cooling, star formation law, stellar and AGN feedback. The free

parameters of the feedback models were tuned to match the SMF and black hole

mass - stellar mass relation at z ∼ 0. The simulation starts from z = 127 and adopts

cosmological parameters from Planck: (Ωm,ΩΛ, h) = (0.307, 0.693, 0.678) (Planck

2014). We use their simulation of the largest volume of (100Mpc)3 for our analysis.

It contains ∼ 10, 000 galaxies with stellar masses similar to or above that of the Milky

Way. Unfortunately, recalibrating their result to account for different cosmology is not

trivial, since the impact of changing the parameters to the mass function is highly

non-linear in principle. However, the other uncertainties that enter the models or

the data must overpower the change in cosmology. We thus do not attempt any

recalibration of the simulation results to account for the difference in cosmology. The
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Figure 3.2. The observed stellar mass function of galaxies (data points) in compar-
ison with the predictions of individual empirical models (left) and hydrodynamical
simulations (right), as indicated in the panels. The vertical lines in the right panel
show the resolution limits of the two simulations, as given in the original papers
describing the simulations. The Poisson errors are presented for the simulations.

Chabrier (2003) IMF and the spectral synthesis model of Bruzual & Charlot (2003)

were assumed. We bin their stellar masses to get the stellar mass function.

3.3 Comparisons with observational data

3.3.1 The field stellar mass function of galaxies at z ∼ 0

We use the local (z ≈ 0.1) SMF obtained from the combination of the results

obtained by Baldry et al. (2008) and Moustakas et al. (2013). The data for stellar

masses below M∗ ≈ 109M� is from Baldry et al., while the data at larger stellar

masses is from Moustakas et al.. Here we briefly summarize the methodologies with

which the SMFs were computed, and refer the reader to their original papers for

details.

Baldry et al. used the New York University Value-Added Galaxy Catalogue

(NYU-VAGC; Blanton et al. 2005), which includes 49, 968 galaxies at z < 0.05,

to construct the local SMF. They adopted the stellar mass estimates from Kauff-
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mann et al. (2003), Gallazzi et al. (2005), and Panter et al. (2007). In the data set

we use, the stellar mass estimates are corrected to a Chabrier (2003) IMF.

Moustakas et al. estimated the local SMF using galaxies cross-identified between

the Sloan Digital Sky Survey Data Release 7 (SDSS DR7; Abazajian et al. 2009) and

the Galaxy Evolution Explorer (GALEX; Martin et al. 2011) Deep Imaging Survey.

This results in ∼ 170, 000 galaxies with a total sky coverage of 2505 deg2. Near-

infrared photometry of these galaxies was obtained from the Two Micron All Sky

Survey (2MASS; Skrutskie et al. 2006) and the Wide-field Infrared Survey Explorer

(WISE; Wright et al. 2010). The photometry in a total of 12 bands (near-UV and

far-UV of the GALEX, ugriz bands from SDSS model magnitudes, JHKs magnitudes

from the 2MASS, and the integrated photometry at 3.4 and 4.6µm from the WISE

All-Sky Data Release) was used to infer the galaxy stellar masses from spectral energy

distribution (SED) modelling. More specifically, Moustakas et al. used the Flexible

Stellar Population Synthesis model of Conroy et al. (2009), a Chabrier (2003) initial

mass function (IMF), exponentially declining star formation histories (SFHs), and

the dust attenuation curve of Charlot & Fall (2000), to model the SEDs of individual

galaxies. The SMF obtained by Moustakas et al. (2013) is in good agreement with

some previous measurements, such as those of Cole et al. (2001), Li & White (2009),

and Baldry et al. (2012). See their Appendix B for detailed analyses how variations

in the IMF, SFH, spectral synthesis model, and dust attenuation can affect the SMF

obtained.

The left panel of Figure 3.2 compares the predictions of the empirical models with

the observed local SMF described above. As one can see, the prediction of the Y12

model is too flat in the low-mass end to match the upturn seen in the observation.

This discrepancy owes partly to the simple functional form (a double power-law) they

adopted for the stellar mass-halo mass relation, and partly to the SMFs that they

used as observational constraints. In fact, Y12 found that the two sets of SMFs at
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high redshifts that they adopted led to significant differences in the inferred values

of model parameters. The results used here are the predictions of ‘SMF2’ referred in

the original paper. The model of M13 also predicts a shallower faint-end slope than

the observational data. Similar to Y12, M13 also adopted a simple double power-

law form for the stellar mass - halo mass relation, and used a local SMF that has

shallower faint-end slope than the one adopted here to constrain their parameters.

In contrast, the prediction of B13 matches well the observed SMF, even in the faint

end. B13 adopted a rather flexible functional form for the stellar mass - halo mass

relation, which is probably required to match the faint-end upturn in the SMF. In

addition B13 adopted the combined SMF of Baldry et al. (2008) and Moustakas et

al. (2013) as one of their observational constraints, and so the good match between

the model prediction and the data is not surprising. The prediction of the L15 model

also matches well the observational data. Note that L15 used the SMF of Baldry et

al. (2012) as an observational constraint. Their SMF extends only to 108.5M� and

so the faint-end upturn is not well represented. The faint-end upturn predicted by

L15 is largely due to the CSMF of galaxies in rich clusters, as given by Popesso et al.

(2006), they adopted to constrain their model.

The right panel of Figure 3.2 compares the numerical simulation results with the

observational data. Illustris simulation produces too many galaxies in the interme-

diate mass range as well as in the massive end, but too few low-mass galaxies. The

overall shape of the predicted SMF is very different from that of the observed SMF.

On the other hand, the prediction of EAGLE simulation matches the observational

data reasonably well above the resolution limit. This may not be very surprising,

because the free parameters in EAGLE simulation were tuned to match local ob-

servations. Unfortunately, the relatively poor mass resolution does not allow us to

investigate whether a faint-end upturn is predicted in the simulation.
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Figure 3.3. The observed stellar mass function of central (data points in the upper
two panels) and satellite (data points in the lower two panels) galaxies, in comparison
with the predictions by individual empirical models (left panels) and gas simulations
(right panels), as indicated. The completeness in stellar mass from the observation
of centrals is not guaranteed for M∗ < 108M�. The vertical lines in the right panels
show the resolution limits of the two simulations, as given in the original papers
describing the simulations.

3.3.2 Central and satellite galaxies

Using the group memberships provided by Yang et al. (2007) group catalog (see

next subsection for more details), we can separate galaxies into two populations,

centrals and satellites. A central galaxy is defined to be the most massive member

in a group, while all other members in a group are called satellites. The CSMFs can
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then be estimated separately for the centrals and satellites. Formerly the total SMF

can be expressed in terms of these conditional functions as

Φtot(M∗) =

∫ ∞
Mh,min

dMh n(Mh)× (3.6)

{Φcen(M∗|Mh) + Φsat(M∗|Mh)} ,

where Φcen(M∗|Mh) and Φsat(M∗|Mh) are the CSMFs of the centrals and satellites,

respectively, in halos of mass Mh, while n(Mh) is the halo mass function, which is the

number density of halos of masses between Mh and Mh + dMh. In Lan et al. (2016),

the CSMFs are given only for satellites in groups with halo masses above 1012M� (see

the next subsection for details). The satellite SMF used here is obtained directly from

their measurements by summing up the CSMFs of such halos. For central galaxies,

we use the results obtained by Yang et al. (2012) from their group catalog. Since

the group catalog is based on the SDSS spectroscopic data, the central SMF was

measured only for galaxies above 108M� (see table 6 in their paper).

The data points in Figure 3.3 show the SMFs for central and satellite galaxies, re-

spectively. Separating galaxies into centrals and satellites provides more information

about the galaxy population than the total SMF alone, and Figure 3.2 and Figure 3.3

demonstrate this point clearly. For instance, although the empirical model by B13

(see §3.2) matches well the faint-end upturn in the observed total SMF, this match

is now revealed as due to an excess in the SMF of central galaxies combined with

a deficit in the SMF of satellite galaxies. The M13 model has similar problems;

it under-estimates the number of satellite galaxies at the low-mass end even more

strongly than B13. The Y12 model matches the central SMF reasonably well, but it

fails to reproduce the strong upturn in the low-mass end seen in the observed SMF

of satellite galaxies. Overall, the L15 model can match both the observed central and

satellite SMFs, although some discrepancies in details can still be seen. This match

is not trivial, because these observations were not used as constraints in L15.
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The comparisons of the two gas simulations with the observational results are

shown in the right two panels of Figure 3.3. Here we see that the EAGLE simulation

matches the observational data reasonably well above its mass resolution limit. Illus-

tris simulation matches the SMF of satellites only in the intermediate mass range; it

over-predicts the central SMF over almost the entire mass range, except at the knee

of the SMF.

3.3.3 The conditional stellar mass functions of galaxies in groups

We use the CSMFs obtained by Lan et al. (2016) as our main data set to compare

with models. Here we summarize briefly their methodology and results. Lan et al.

used galaxy samples from the NYU-VAGC, which is based on the Sloan Digital Sky

Survey Data Release 7 (SDSS DR7; Abazajian et al. 2009). A K-correction was

applied using the model of Blanton et al. (2003). In order to associate galaxies with

clusters/groups of galaxies, they adopted the group catalog of Yang et al. (2007),

which was constructed by applying the halo-based group finder developed by Yang et

al. (2005) to the SDSS DR7. The group finder assigns galaxies into halos using certain

criteria in phase space, and galaxies residing in a common halo are considered to be

members of the same group. More specifically, a tentative halo mass is assigned to a

tentative group based on the galaxies that have already been assigned to the group,

assuming a monotonic relation between the total stellar mass of all assigned members

with Mr < −19.5 and halo mass. The tentative mass is then used to estimate the

virial radius and velocity dispersion of the halo, which in turn are used to update the

group membership. The procedure is iterated until both group memberships and halo

masses converge for all groups. Yang et al. (2007) used mock catalogs constructed

from N -body simulations to show that the dark matter halo masses estimated in this

way are consistent with those directly obtained from the simulations, with scatter

of ∼ 0.3 dex over three orders of magnitude in halo masses that cover the mass
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Figure 3.4. The observed (data points) and predicted (lines) conditional stellar mass
functions of galaxies in groups of different halo masses, as indicated in individual
panels.

range relevant to our analyses. When we compare the CSMFs obtained from models

with the observational results, an uncertainty of ∼ 0.3 dex is included in the model

predictions. The halo masses used here are M200, the total mass enclosed by a radius,

r200, within which the average density is 200 times the mean density of the universe.

Lan et al. used only groups at z < 0.05, where halos with masses ofM200 > 1012M�

are complete. To limit the uncertainty in redshifts due to peculiar velocities, they

also eliminated groups at z < 0.01. With the groups and their positions identified
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Figure 3.5. The comparison between the observed conditional stellar mass functions
of galaxies (data points) with the results of EAGLE and Illustris simulations (lines),
for groups of different halos masses, as indicated in each panel. The two vertical lines
indicate the mass limits of the two simulations.

in the SDSS DR7 survey area, Lan et al. estimated the excess of galaxy number in

each luminosity bin within a projected distance of r200 of each group. The conditional

luminosity function (CLF) of galaxies is then obtained by averaging galaxy counts

within all groups of a given halo mass, with subtractions of the background and

projection effects due to clustering on large scales (see Lan et al. 2016, for the detail).

Lan et al. applied this method to the photometric sample of SDSS DR7, down to
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a r-band model magnitude of 21. This corresponds to Mr ≈ −12 (or L ≈ 107L�)

and Mr ≈ −14 at z = 0.01 and 0.05, respectively. Since the number density of more

massive halos is smaller, Lan et al. was able to estimate the CLF down to Mr ∼ −12

for low-mass halos (M200 ∼ 1012M�), but only to Mr ∼ −14 for massive halos.

To convert their CLFs into the corresponding CSMFs, we use a mass-to-light

relation based on galaxy colors and luminosities (e.g. Bell et al. 2003) to obtain the

stellar masses of galaxies. However, the uncertainty in the observed galaxy colors,

especially for faint galaxies, may bias the stellar mass estimates and, therefore, the

stellar mass functions. To reduce such bias, we first separate galaxies into blue and

red populations by using the u-r color separation suggested by Baldry et al. (2004)

[see their equation (11)]. We then use the observed luminosity of a galaxy and the

mean u-r color for the galaxy population at that luminosity, instead of the observed

color of the galaxy, to estimate the stellar mass. The mean u-r color-luminosity

relations for the blue and red populations are derived in Lan et al. (2016) [their

equations (C2) and (C3)] based on the same data set. We have made tests either by

using the observed galaxy color or by artificially introducing some uncertainties in

the galaxy color, and found that all these do not lead to any qualitative change of our

results. Note again, as described in §3.2, our model predictions for the stellar masses

of individual galaxies also include some uncertainties in the stellar mass estimates

to mimic the uncertainties in the observational stellar masses. Lan et al. adopted a

Kroupa (2001) IMF for the CSMFs.

With the estimated stellar masses of individual galaxies, we measure the CSMFs

using the same method Lan et al. did for the CLFs. The stellar mass functions

are measured down to the limiting stellar masses at which both the stellar masses

of blue and red galaxies derived from the flux limit photometric sample (r < 21)

are complete. In addition, the limiting stellar mass bins are selected to ensure that
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they each contain at least five groups. We bootstrap the group catalog 200 times to

estimate the errors in the derived CSMFs.

Figure 3.4 compares the CSMFs to those predicted by the empirical models. The

predictions by the M13 and B13 models are qualitatively similar, with B13 predicting

more low-mass galaxies. Both models under-predict the CSMFs at the low stel-

lar mass ends, and the under-prediction is more significant for groups of lower halo

masses. Only for massive clusters are the predictions consistent with the observa-

tional data. The predictions of Y12 are too shallow in the low mass end; the model

systematically under-predicts the CSMF at the low mass end and over-predicts that

in the intermediate mass range. In particular, Y12 does not predict any upturn seen

in the data.

The L15 model matches the overall behaviors of the CSMFs over the entire halo

mass range. It also matches the CSMFs in detail for most of the halo mass bins.

However, the low-mass upturn it predicts for more massive halos may be too steep,
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especially for the two most massive samples. As mentioned above, the L15 model

used the composite CLF of galaxies in rich clusters given by Popesso et al. (2006)

as one of the constraints on their model. The faint-end upturn in this composite

CLF is significantly steeper than that of Lan et al. used here. The over-prediction

is therefore due to the observational data which the model was tuned to match with.

The model seems to under-predict the CSMF at the low-mass end in two mass bins:

the lowest mass bin of log(Mh/M�) = [12.01, 12.34], and the intermediate mass bin

of log(Mh/M�) = [13.03, 13.37]. It is unclear if these discrepancies are due to ran-

dom fluctuations in the data, or indicate that the L15 model has to be modified to

accommodate the data. We will come back to this in the following section.

Figure 3.5 compares the observational data with the two gas simulations. Illustris

simulation mismatches the observation over a wide range of stellar masses for almost

all the halo mass bins. Overall, the simulation significantly under-predicts the CSMFs

at the faint ends, and over-predicts them in both the massive and intermediate mass

ranges. EAGLE simulation appears to be in better agreement with the observation,

except that it does not reproduce sufficient number of massive galaxies in low-mass

halos. Unfortunately, its mass resolution prevents us from probing its behavior at the

faint end.

3.4 Model predictions

In this section, we compare all the empirical models in their predictions for the

stellar mass - halo mass relation, the star formation rates and stellar masses in halos

of different masses at different redshifts, and for the SMFs of high-redshift galaxies.

3.4.1 Stellar mass - halo mass relation

Figure 3.6 shows the stellar mass - halo mass relation predicted by our updated

model, in comparison with the predictions of the other three empirical models con-
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Figure 3.7. The average star formation rate of central galaxies as a function of
redshift for halos of different masses, as predicted by various empirical models, as
indicated.

sidered here and the results from the literature. Different models made different

assumptions for conversions from luminosity to stellar mass, for prescription of scat-

ter in the relation, and cosmological models. They also employed different observa-

tions as constraints for the models. Given all these differences, it is remarkable that

the predictions of most models are consistent with each other within ∼ 0.2 dex at

z ∼ 0.1 for a large range of halo masses. All models predict a characteristic mass

scale, Mh ∼ 1012M�, at which the stellar mass to halo mass ratio peaks. Among the

more recent results, B13 is an exception in that it predicts a strong upturn at the

low-mass end. The earlier result of Yang et al. (2003) was obtained by using their

luminosity - halo mass relation together with the assumption of a constant stellar

mass to luminosity ratio, M/L = 1.8 M�/L� (in the bJ band of 2dFGRS which they

used to constrain their model).

124



1 10
-3

-2.5

-2

-1.5

-1

-0.5

0

lo
g

S
FR

[M
y
r-1

]

1+z

Mh(0) = 5 × 1010M

1 10
-3

-2.5

-2

-1.5

-1

-0.5

0

1+z

Mh(0) = 1011M

1 10
-1.5

-1

-0.5

0

0.5

1

1.5

1+z

Mh(0) = 1012M

1 10
2

1

0

1

2

3

1+z

Mh(0) = 1013M

1 10
2

1

0

1

2

3

1+z

Mh(0) = 1014M

Y12

M13

B13

L15-U

1 10
2

1

0

1

2

3

1+z

Mh(0) = 5 × 1014M

Figure 3.8. The average star formation rate of central galaxies as a function of
redshift for halos of different present-day masses, predicted by the empirical models,
as indicated.

At higher redshift, however, the predictions by different empirical models differ

significantly. In particular, the update of L15, L15-U, predicts a much higher star

formation efficiency for low mass halos at high redshift, because of the boost of star

formation rate at z > zc in low mass halos to match the upturns in the CSMFs.

3.4.2 Star formation histories in dark matter halos

Figure 3.7 compares the empirical models in terms of their predictions for the

average star formation rate (SFR) of central galaxies in halos at different redshifts.

Some models predict complicated star formation histories that are clearly due to over-

fitting of the observational data. The L15-U model predicts much higher SFRs at

z ≥ 2 in low-mass halos than other models, which is clearly a consequence of the strong

upturns at the faint-ends of the CSMFs used to constrain the model. The existence
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Figure 3.9. The average stellar mass assembly history of central galaxies as a func-
tion of redshift for halos of different present-day masses, predicted by various empirical
models as indicated.

of a characteristic redshift, z ∼ 2, is clearly seen in halos with Mh < 1012 M�, and its

physical implications will be discussed later.

Figure 3.8 shows the model predictions for the average star formation histories of

central galaxies in halos of different present-day masses. The predictions of different

models are very different. In particular, for present-day dwarf galaxies that reside

in halos of Mh(0) < 1011M�, L15-U predicts a very active star formation episode at

z > 2. In contrast, most of the stars in such halos are formed at z < 2 in all other

models. This difference has other observational consequences. Indeed, as discussed

in Lu et al. (2014) and Lu et al. (2015), the early starburst in low-mass halos

predicted by L15 is consistent with the observations that a significant fraction of old

stellar population exists in local dwarf galaxies (e.g. Weisz et al. 2011) and that the

star formation rate function at the low-rate end is very steep at z > 4 (e.g. Smit
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et al. 2012). For Milky-Way sized halos, the star formation history predicted by

L15-U is broader than those predicted by the other three models. For massive halos

with Mh(0) ≥ 1014M�, L15-U predicts a decline of the SFR with decreasing redshift

starting from relatively high redshifts, in contrast to the predictions of B13 and Y12

that the star formation rates remain relatively high all the way to the present time,

and to the prediction of M13 that a rapid decline only occurs at z < 1.

All these results demonstrate that different empirical models can make vastly

different predictions for the star formation histories for present-day galaxies, even

though all the models are tuned to match the observed SMFs.

3.4.3 Stellar mass assembly histories

Figure 3.9 shows the average stellar mass assembly histories for the central galaxies

in halos of different present-day masses predicted by different models. The model

predictions take into account in situ star formation, accretion of satellites, and stellar

mass loss due to stellar evolution. Again, for low-mass halos, where the increase of

stellar mass is dominated by in situ star formation (Lu et al. 2015), L15-U is distinct

from the other models in that about half of their stellar mass at the present was

already in place by z ∼ 2 via star formation (see Figure 3.8).

For Milky-Way sized halos, however, the differences between the model predictions

are milder. All the models predict that about half of stellar mass was in place by

z ∼ 1. There is a significant difference between L15-U and other models at high z.

For example, L15-U predicts that about 15% of the final stellar mass was assembled

by z ∼ 2, while less than 10% was predicted by the other models.

For central galaxies in present-day massive halos with Mh(0) > 1014M�, the pre-

dictions of different models again become very different. M13 predicts a much later

assembly for these galaxies than any other models. The predictions of B13 look sim-

ilar to L15-U, but the increase in stellar mass with time is due to different reasons.
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While L15-U predicts that the increase at z < 2 is dominated by accretion of stars

from satellites, B13 predicts that a significant fraction of the increase at z < 2 is

actually due to in situ star formation (see Figure 3.8). This difference is again due

to the boost of star formation in low-mass halos at high z in the L15-U model. The

increased amount of stars formed in progenitors at high z makes the accretion of stars

more important in the growth of stellar mass in a massive galaxy, and the fraction

of stars formed in situ has to be decreased proportionally in order to match the final

stellar mass of the galaxy. The results demonstrate the importance of properly mod-

eling the star formation in low-mass progenitors at high z in order to understand the

star formation and stellar mass assembly histories of massive galaxies at the present

day.

3.4.4 Stellar mass functions of high-redshift galaxies

Figure 3.10 shows the predictions of the empirical models for the stellar mass

functions of galaxies at a number of redshifts. The predictions of B13 and M13

are similar in both slopes and amplitudes at the low mass ends, but B13 predicts

many more massive galaxies than M13, particularly at high redshifts. Y12 predicts

significantly flatter slopes at the low-mass ends, and more galaxies in the intermediate

mass range, than the other three models. The stellar mass functions predicted by the

L15-U model match the predictions of B13 at M∗ > 1010M�, but are significantly

steeper at the low-mass ends.

We select some observational SMFs of high redshift galaxies from the literature

to compare with the model predictions. Specifically, we use the SMFs at 1.3 < z <

3.5 given by Pérez-González et al. (2008) and Marchesini et al. (2009). Pérez-

González et al. used a sample combining data in three different fields with a total

area of 664 arcmin2 that have a total ∼ 28, 000 systems selected with the 3.6−4.5µm

photometry of Spitzer Space Telescope (Werner et al. 2004). The sample is complete
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Figure 3.10. The model predictions for the field stellar mass functions at high
redshifts (solid) in comparison with observations.

down to M∗ = 1010M�. Marchesini et al. combined data from the deep NIR MUSYC,

the ultra-deep FIRES, and the GOODS-CDFS surveys to derive the SMFs from the

optical to MIR broad bands photometry. Pérez-González et al. assumed a Salpeter

(1955) IMF while Marchesini et al. adopted a pseudo-Kroupa (2001) IMF. It is known

that the stellar mass estimated using a Salpeter IMF is roughly a factor of 1.4 higher

than that given by a pseudo-Kroupa or Chabrier IMF, and we correct all the stellar

masses to the IMF we adopt here. For the SMFs at even higher redshifts, z = 4− 5,
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we use the results by Lee et al. (2012) and Song et al. (2016). Both B13 and L15-

U match the observational data well at M∗ > 109M�, while the other two models

match the high-z data poorly at the high-mass end. The prediction of the L15-U is

significantly steeper than the observational results given by Song et al. at z > 4. If

the high-z SMFs are as shallow as those given by Song et al., then there may be a

tension between the observed CSMFs at low z and the observed SMFs at high z, at

least within the model family represented by the halo-based empirical model of L15.

3.5 Summary and discussion

Galaxy formation and evolution within the current cosmological frame are con-

trolled by a number of physical processes, many of which are still poorly understood

from first principles. In the absence of a proper understanding of these processes,

halo-based empirical models provide a useful way to establish the link between galax-

ies and CDM halos purely on the basis of observations and the current cosmology. In

this paper we use a variety of galaxy stellar mass functions to test a number of pop-

ular empirical models. In particular, we focus on using the conditional stellar mass

functions (CSMFs) of galaxies in galaxy groups as obtained by Lan et al. (2016) to

test the models. We find that the CSMFs predicted by different models can be very

different, even though they are all tuned to match the observed stellar mass function

of the total galaxy population. This clearly demonstrates the power of the CSMFs in

constraining models. Since the CSMFs are measured from observations in the nearby

Universe, the samples that can be used are larger, and the stellar mass functions

can be measured to the low-mass ends. As the galaxies that reside in present-day

galaxy systems, such as clusters and groups of galaxies, are expected to have formed

at various redshifts, the CSMFs in groups/halos of different masses carry important

information about galaxy formation in dark matter halos at different redshifts.
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The CSMFs are then used as constraints to update the original model by Lu et al.

(2014, 2015). The model parameters obtained here are very similar to those obtained

in the original paper which uses a completely different set of observational constraints,

demonstrating that the different data sets are consistent with each other. The obser-

vational constraints clearly prefer a model in which star formation in low-mass halos

changes behavior at a characteristic redshift zc ∼ 2. There is also a tentative evidence

that this characteristic redshift depends on environments, becoming zc ∼ 4 in regions

that eventually evolve into rich clusters of galaxies. However, given the uncertainties

of the current observed CSMFs in the low-mass ends, this environmental dependence

of zc needs to be confirmed with better data.

We compare the predictions of a number of popular halo-based empirical models

and two numerical simulations of galaxy formation. We find that the two numerical

simulations fail to match the observational data one way or another. The empirical

models by Yang et al. (2012) and Moster et al. (2013) fail to reproduce the faint-end

upturn of the field SMFs from observations. The model by Behroozi et al. (2013)

reproduces the faint-end upturn, but it is a combined result of over-prediction for

central galaxies and under-prediction for satellites at the faint-end. In contrast, the

model by Lu et al. (2014, 2015) matches reasonably well the CSMFs in halos of

different masses. The Lu et al. model predicts a much higher star formation efficiency

than the other models for low-mass halos at redshifts higher than a characteristic

redshift after which the star formation is suppressed.

We use our constrained model to make predictions for a number of statistical

properties of the galaxy population. These include the stellar mass functions of

galaxies at high z, the stellar mass - halo mass relations at different redshifts, and

the star formation and stellar mass assembly histories of galaxies in dark matter

halos of different masses. A comparison of our model predictions with those of other

empirical models shows that different models can make vastly different predictions
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for these properties, even though all of them are tuned to match the observed stellar

mass functions of galaxies. In particular, our constrained model predicts a much

higher in situ star formation rate at z ≥ 2 for present-day dwarf galaxies than the

other models. As a result, such galaxies have about 40% of their current-day stellar

mass already in place by z ∼ 2. Because of this boosted star formation in low-mass

halos at high z, the role of accretion of stars from satellite galaxies, relative to in situ

star formation, in the build up of massive galaxies is more important in our model

than in the other models.

One of the main predictions of our constrained model is the existence of a char-

acteristic redshift that separates an active star formation phase from a subdued star

formation phase in low-mass halos. This change in star formation mode is likely re-

lated to the feedback processes that regulate star formation. As discussed in Lu et

al. (2014, 2015), energy feedback from stars and AGNs associated with active star

formation and super-massive black hole accretion at high redshift may preheat the

gas media around dark matter halos and suppress gas accretion and star formation

at lower redshift (Mo & Mao 2002, 2004). Based on plausible assumptions about the

star formation histories of the universe and the density of the intergalactic medium,

the pre-heating is expected to occur around z = 2 − 3, and the specific entropy of

the preheated gas is ∼ 10KeVcm2, which is important in affecting star formation in

low-mass halos, because of their relatively shallow gravitational potential wells, but

has no significant effects on halos with masses above ∼ 1012 M� (e.g. Lu & Mo 2007).

This preheating may also explain why the cold gas mass function at z ∼ 0 is shallow

(Mo et al. 2005). In such a scenario, the pre-heating is expected to occur earlier in

regions occupied by present-day massive halos, because intensive star formation and

AGN activity are expected to occur earlier in higher density regions where gravita-

tional collapse is more accelerated. Our tentative finding of the positive dependence

of the characteristic redshift on halo mass is in agreement with such an expectation,
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but better observational data are needed in order to examine such dependence in

more detail.
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CHAPTER 4

LARGE-SCALE TIDAL FIELD, A KEY TO
UNDERSTANDING ALIGNMENTS OF GALAXIES

Using the SDSS DR7 galaxy and group catalogs by Yang et al. and the large

scale tidal field constructed by Wang et al., we explore various alignments of galaxies

with their large scale structures characterized by the tidal field. We find that both

orientation and spatial distribution of galaxies tend to preferentially align with the

tidal field. The orientation alignment is found stronger for centrals (the brightests in

groups) due to weaker non-linear effects on them, which weakens such alignment. In

massive halos, the spatial distribution of satellites in outer regions of halos is more

aligned with the tidal field, but less aligned with the orientation of centrals than those

in inner regions. The alignment between the orientation and the spatial distribution

of galaxies is also found as a combined result of their alignments with the tidal field.

Lastly, we probe alignment between the tidal fields of group pairs as a function of

separation and find that it extends out to 80 − 100h−1Mpc while the alignment of

groups in sheets continues until even larger scales. Similar alignment of the position

angles between central galaxy pairs also is detected but at much weaker strength. All

these results are consistent with a scheme on the galaxy formation that galaxies form

via coherent but anisotropic mass inflow along the large scale structures, and that

the large scale tidal field is a reliable measure to quantify and characterize the large

scale structures.
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4.1 Introduction

In the standard paradigm, galaxies form in dark matter halos by gravitational

collapse of the cosmic density field (e.g., Mo et al. 2010). Being formed via flow of

mass accretion, properties of halos such as shape, angular momentum, and formation

time are expected to be affected by their environments. Therefore, being formed inside

dark matter halos, properties of galaxies may also reflect such environmental effects,

which can give us important implications on galaxy formation processes. Especially,

given that galaxy formation is a dynamical process via mass flow, alignments of

galaxies have been vigorously studied and considered as one of the key properties

characterizing galaxy formation.

The alignment of galaxies has been analyzed in many different ways. Spatial dis-

tribution of satellites was first studied and has been studied long to yield mutually

conflicting results. Holmberg (1969) analyzed the spatial distribution of satellites

using 218 satellites around 58 prominent spirals and claimed their preferential align-

ments along minor axis of the spirals. The study, however, was not only restricted by

small number of samples and maximum projected distance of ' 50kpc, but disputed

by subsequent studies that failed to confirm such alignment (Hawley & Peebles 1975,

Sharp et al. 1979, MacGillivray et al. 1982). A while later, Zaritsky et al. (1997)

failed to observe such alignment within the scale of 200kpc, but reported the align-

ment on larger scales of 300− 500kpc. Sales & Lambas (2004) used ' 3000 satellites

from the 2dFGRS observation and claimed the same alignment on similar physical

scales regardless of morphology of the centrals. However, while such alignment has

been even claimed for the inner (≤ 250kpc) region of the Milky Way (e.g., Majewski

1994, Kroupa et al. 2005), Brainerd (2005) and Agustsson & Brainerd (2006b) found

the opposite trend, i.e. alignment along major axis by analyzing SDSS galaxies with

a very similar method and similar number of samples to Sales et al. Yang et al.

(2006) used about an order of magnitude more central-satellite pairs of 24728 from
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the SDSS Data Release 2 and detected alignments of satellites along major axis of

central galaxies at a highly convincing level. Yang et al. added that the conflicting re-

sults from the previous studies may be due to small number statistics or confusion on

the definition of the position angles. Their results are in agreement with subsequent

studies (e.g., Azzaro et al. 2007, Faltenbacher et al. 2007, 2009).

There have been studies on various alignments with different approaches other

than the spatial distribution of satellites. Li et al. (2013) reported alignments between

galaxies and the large scale structures that the galaxies reside in. A recent study

by Smargon et al. (2012) confirmed such alignment among the SDSS clusters of

galaxies as well. Radial alignment was also consistently found in that satellites tend

to orient toward their centrals (Agustsson & Brainerd 2006a, Donoso et al. 2006,

Faltenbacher et al. 2007, Okumura et al. 2009, Rong et al. 2015). The correlations

between such alignments and density or galaxy properties have also been explored

(e.g., Mandelbaum et al. 2006, Hirata et al. 2007, Blazek et al. 2011, Joachimi et al.

2011).

The alignments may be owing to that the collapse of the cosmic density field

occurs in a coherent but yet highly anisotropic way. The quantity that best describes

such collapse processes is the tidal fields. These fields are coherent on large scale but

strongly anisotropic, as demonstrated in Zel’dovich approximation. The observed

alignments thus may be a manifestation of galaxy alignment with the tidal field. In

this context, Zhang et al. (2013) used the tidal field constructed using the method of

Wang et al. (2012) to characterize the large scale structures and study the alignments

between galaxy shapes and the large scale structures. They found that the strength

of the alignment is stronger for more massive, redder galaxies, and galaxies in more

massive halos.

In this paper, using the galaxy samples from the Sloan Digital Sky Survey Data

Release 7 (SDSS DR7; Abazajian et al. 2009), we examine various alignments among
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the tidal field, orientation and distribution of galaxies, with an aim to understand

how the alignments may be interpreted in terms of the tidal field. We adopt as the

orientation of galaxies their position angles computed by Simard et al. (2011) through

the GIM2D bulge+disc decomposition. We use the tidal field constructed based on

the SDSS DR7 galaxies by Wang et al. (2011).

This paper is organized as follows. In Section 4.2, we describe the observational

data as well as position angles and the tidal field we use. We show our main results

on different types of alignments in Section 4.3. In Section 4.4, we summarize our

main conclusions.

4.2 Observational data

4.2.1 Galaxy samples

We use the New York University Value-Added Galaxy Catalogue (NYU-VAGC;

Blanton et al. 2005), which is based on the SDSS DR7 but with improvements over

the pipeline. From the catalog, we only select galaxies with extinction-corrected

Petrosian r-band magnitude brighter than 18, redshifts 0.01 ≤ z ≤ 0.20, and redshift

completeness Cz > 0.7. We also exclude galaxies with 0.1Mr − 5 log h ≤ −22.5,

to prevent fiber-collided galaxies from being assigned much lower redshifts than their

actual redshifts and thus the luminosities largely overestimated. The resulting sample

consists of 639,359 galaxies. We refer to this sample as DR7 galaxies throughout this

paper.

4.2.2 Galaxy morphology and position angles

We study the alignment of galaxies with the large scale environments. The orien-

tation of a galaxy in the sky is represented by the position angle of its major axis. It

is measured counterclockwise from north to east to be between 0 and 180 degree. We

adopt position angles from Simard et al. (2011) where they used the GIM2D software
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Figure 4.1. Distribution of the position angles (PA) of the DR7 galaxies. They are
measured counterclockwise from north to east to be between 0 and 180 degree. The
horizontal line is the expected random distribution with the error bars presenting
Poisson errors.

to perform two dimensional PSF-convolved bulge+disc decompositions in the g and

r bands on a sample of 1, 123, 718 galaxies from the Legacy area of the SDSS DR7.

It fits each galaxy image with a combination of a pure exponential disc and a de Vau-

couleurs bulge. The resulting structural parameters include total flux, bulge to total

ratio B/T , sizes, position angle, and many other parameters. The work by Simard

et al. is by far the largest catalog of bulge+disc structural parameters estimated of

the SDSS DR7 galaxies. The photometric errors reconstructed with their resulting

fitting parameters are below 0.1 mag down to bulge and disc magnitudes of g ' 19

and r ' 18.5. About 90% of the DR7 galaxies are cross-identified with the catalog

by Simard et al. Figure 4.1 shows that the distribution of the position angles for the

DR7 samples thus obtained is unbiased.
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As using the position angles as orientation of galaxies is only valid for elliptical

galaxies, we limit ourselves only to elliptical galaxies as our sample. We classify

galaxies of (B/T )r ≥ 0.6 as ellipticals and use only these throughout this paper unless

stated otherwise. We checked that changing the selection criteria to (B/T )r ≥ 0.5 or

0.7 does not change our results qualitatively.

4.2.3 SDSS group samples

Given that galaxy groups are defined as galaxies that reside in common dark

matter halo, galaxy groups can be used to directly probe the connections between

galaxies and their host halos. To this end, this study uses the SDSS DR7 group

catalog constructed by Yang et al. (2005, 2007) where their halo-based group finder

has been applied to DR7 galaxies to group them into common dark matter halos. The

performance of their halo-based group finder has been tested extensively using mock

galaxies constructed from CLF models (Yang et al. 2003, van den Bosch et al. 2003,

Yang et al. 2004) and a semi-analytic model (Kang et al. 2005), and was found better

than friends-of-friends (FoF) method in assigning galaxies to dark matter halos (Yang

et al. 2007). The group finder also performs consistently even for very poor systems

such as isolated galaxies in small mass halos, which enables its suitability to probe the

galaxy-halo association over a wide range of different halos. This DR7 group catalog

thus obtained (publicly available at http://gax.shao.ac.cn/data/Group.html) is

used for this study. WMAP7 cosmology was adopted for calculating distances and

assigning halo masses to groups in the catalog.

The catalog provides halo mass estimates using either ranking of groups in the

total luminosity (L19.5) or total stellar mass (Mstellar) of all member galaxies with

0.1Mr − 5 log h ≤ −19.5 in each group. Specifically, a monotonic one-to-one corre-

spondence is assumed between L19.5 or Mstellar and the halo mass function of Tinker et
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al. (2008) to assign halo mass to each group. This study uses halo masses estimated

from L19.5 throughout.

The identification of centrals of each group in the catalog is also provided twofold

: brightest or most massive ones. Throughout this study, we define centrals to be the

brightest ones, and center of each group to be position of the central galaxy.

4.2.4 Tidal fields

We use halo tidal field for this study, which is different from the conventionally

defined mass tidal field in that it excludes self-gravity of halos, thus is better at

focusing on the environmental effect. It is computed as follows. Total tidal force on

surface of each halo exerted by all the other halos of mass above a certain threshold is

first calculated. It, then, is normalized by the halo’s self-gravity so that it measures

only environmental tidal effect by surrounding halos on the halo in question. The

surface on which the tidal force is calculated is defined to be the shell at the halo’s

radius, and the threshold mass of 1012h−1M� was used.

Following the methods above, one can construct the tidal tensor and its eigen-

vectors and eigenvalues t1, t2 and t3. Then by the definition, the direction of t1 is

approximately along stretch of materials in large scale environments at the position

of each halo, while t3 is along compression of materials and t2 is to be perpendicular

to both t1 and t3. Unlike the mass tidal field, t1 + t2 + t3 = 0 always. And, if, for ex-

ample, only t1 is positive while the others are negative, then as the material stretches

along t1, but compresses along the other two, the large scale structure is identified as

‘filament’.

As already indicated, the main difference between the halo and the mass tidal field

is that the former excludes the self-gravity while the latter includes. However, except

that, they have much similarity and show tight correlations in their alignments, as
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have been shown by Wang et al. (2011). We refer the readers to Wang et al. (2011)

for more details on how to compute both tidal fields and how they differ or correlate.

4.2.5 Morphological classification of large scale structures

One of our results includes an attempt to study alignments of groups in different

morphological large scale structures. To this end, we classify the morphology based

on the eigenvalues of the conventional mass tidal field tensor, defined as,

Tij = ∂i∂jφ (4.1)

where φ is the peculiar potential. When we define the eigenvalues of the tensor T1, T2

and T3 with T1 > T2 > T3, as the tensor measures basically the 2nd-derivatives of the

gravitational potential, T1 is along the most compressed direction of large scale mass

distribution, and each T being positive (negative) means the compression (stretch) of

materials along that direction. Therefore, if only T3 is negative for a certain halo, it is

in a filamentary structure, while if only T1 is positive then it is identified as a sheet. If

all three eigenvalues are positive, it is a cluster. Only groups of Mh ≥ 1012h−1M� were

used to construct the tidal field, and we use the smoothing length scale of 1013h−1M�

as this scale is known to best trace the visual classification of large scale structures

(Hahn et al. 2007). The more details of the calculation of the mass tidal field used

for this study can be found in Wang et al. (2012).

4.3 Analyses and results

4.3.1 Alignments of group galaxies

4.3.1.1 Alignments of group galaxies with tidal fields

Here we analyze alignments between orientations of galaxies and the tidal fields.

We project the three dimensional tidal vectors onto two dimensional celestial sphere.

Then the angles between the projected tidal vectors and the position angles of member
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Table 4.1. Group and galaxy samples.

logMh(h−1M�) Ngrp Ncen N2nd+3rd N4th+5th N6th+7th Nsat

≥ 12.5 32662 11056 9115 3348 2009 23643

[12.5, 13] 23657 7738 3686 363 83 4185

[13, 13.5] 6747 2485 3531 1286 418 5582

[13.5, 14] 1894 712 1578 1417 1128 7029

[14, 14.5] 334 120 315 379 376 6830

Column 2 contains the number of groups in each halo mass bin as indicated in column1.
Column 3 provides the total number of the brightest galaxies in groups. Columns 4-6
list combined counts of the 2nd and the 3rd, the 4th and the 5th, and the 6th and the
7th brightest galaxies in groups, respectively. Column 7 shows the total number of
satellites in each halo mass bin. While all groups with the tidal field value available are
counted in column 2, columns 3-7 provide only the number of galaxies of B/T ≥ 0.6.

galaxies are measured to be within [0, 90] degrees. Thus its zero value means, in

principle, perfect alignment of a galaxy with its large scale tidal field, while noise is

introduced inevitably since we are using projected ones for both the direction galaxies

and the tidal vectors.

Figure 4.2 shows the alignments with the tidal field vectors, t1, t2, and t3, sepa-

rately, as a function of the brightness ranking orders of galaxies in their groups. It is

seen that galaxies are aligned along t1, thus stretches of large-scale structures, while

perpendicular to t3, the direction of mass compression, whether they are centrals or

satellites. However, there are also some clear differences in strength of the align-

ment. In particular, central galaxies show much stronger alignment than satellites,

and it tends to monotonically decrease as it goes down to the lower-ranked galaxies

in brightness. It is worth noting that the second and the third brightest combined

show much weaker alignment relative to the centrals. It has been often pointed out

that there are much uncertainties in defining centrals observationally and it is nei-

ther meaningful nor accurate to strictly distinguish centrals from the others. The

significantly stronger alignments shown for the centrals, however, may indicate that
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Figure 4.2. Alignment between the orientation of galaxies and the tidal fields at
their locations. The bins are for the brightest (i.e. central), the 2nd and the 3rd
brightest integrated, the 4th and the 5th brightest integrated, the 6th and the 7th
brightest integrated, and total satellites. The error bars are 1σ scatters with 100
random realizations of the PAs for each galaxy, which average around 45 degree.

the centrals are indeed in distinct positions in their groups. We checked that there

is nearly no dependence of the alignment on distance from centrals (Figure 4.5), and

thus the dependence on the brightness rank is not a reflection of distance dependence.

In principle, the monotonic decrease of the alignments with the brightness rank may

be a result of mass dependence, as low-mass groups have only a few satellites and

thus do not contribute much to, for example, the 6th or the 7th brightest. Figure 4.3,

however, shows that the dependence on the brightness rank is still found when halos

of narrow mass bins are separately considered.

Another thing that is consistently found in both Figure 4.2 and 4.3 is that satellites

show much weaker alignments than centrals. There are two possible reasons. The

143



42

44

46

48

50

<
B

t i
(d

e
g
)
>

log(Mh /h-1 M ) =[12.5,13.0] log(Mh /h-1 M ) =[13.0,13.5]

Cen 2nd
& 3rd

4th
& 5th

6th
& 7th

all
Sat

42

44

46

48

50

<
B

t i
(d

e
g
)
>

log(Mh /h-1 M ) =[13.5,14.0]

Cen 2nd
& 3rd

4th
& 5th

6th
& 7th

all
Sat

log(Mh /h-1 M ) =[14.0,14.5]

t1

t2

t3

Figure 4.3. Same as Figure 3, but binned into halo mass ranges, as indicated in
each panel.

alignments found in Figure 4.2 is believed to reflect that the accretion of mass occurs

via mass flow into halos along the surrounding large scale structures and the tidal

fields trace the large scale structures. However, during the accretion, satellites are

more likely affected by non-linear effects than centrals, which can perturb and deviate

such a flow of accretion from an uniform one, suppressing the alignment. Another

reason is that while satellites orbit after their accretions, their position angles may

evolve with time, changing depending on their initial dynamical conditions.
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Figure 4.4. Alignment between the projected position vector of satellites and the
tidal field. The position vector is defined as a vector from the brightest galaxy in
each group to each galaxy. The brightness ranking orders of galaxies are presented
similarly to Figure 4.2. The error bars are 1σ scatters with 100 random realizations
of the projected position vectors for each galaxy.

4.3.1.2 Alignments between tidal fields and group shape

We also investigate alignment between the tidal field and the spatial distribution

of satellites. In each group, we draw a vector from the brightest member galaxy,

which we define as the center of the group, to each member galaxy as its position

vector. Then we project both the position vectors and the tidal field onto two di-

mensional celestial sphere, and measure the subtending angle. Figure 4.4 shows the

average of the angles thus obtained as a function of the brightness ranking order for

t1 and t3 separately, in which we can clearly see that galaxies are preferentially dis-

tributed along the large scale structure that they are embedded in as predicted, but

the alignment shows no dependence on the brightness rank.
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Figure 4.5. Same alignment as in Figure 4.4, but as a function of projected distance
of satellites from centrals divided by virial radii (blue circles). Tidal and radial
alignments are also shown by red rectangles and green triangles. Of the three different
alignments, only the spatial alignment shows strong dependence on the distance. The
error bars are 1σ scatters with 100 random realizations of the relevant angles for each
galaxy.

In Figure 4.4, however, we examine the spatial alignment as a function of the

projected distance of each member galaxy relative to the virial radius of their hosts,

and clearly see a strong dependence that galaxies at outer region of groups are more
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Figure 4.6. Alignment between the orientation and the projected position vector
of satellites. The position vector is defined as a vector from the brightest galaxy in
each group to each galaxy. The brightness ranking orders of galaxies are presented
similarly to Figure 4.2. The error bars are 1σ scatters with 100 random realizations
of the PAs for each galaxy.

aligned with the t1 vectors. This may reflect that the tidal fields are calculated on

the surface of halos, and that, in inner regions, the self-gravity of the host halo plays

a role, reducing the relative influence of the large scale tidal fields.

4.3.1.3 Radial alignments

In this section, we examine radial alignment, i.e. alignment between the position

angles and the position vectors. The position vectors are defined in same way as in

the previous subsection. Then, we measure angles between the position angles and

the projected position vectors onto the celestial sphere. Figure 4.6 shows that there

is such radial alignment. This can be understood by combining the results from the

two previous subsections. In other words, the galaxies are spatially distributed along
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Figure 4.7. Alignment between the projected position vector of satellites and the
orientation of centrals as a function of projected distance of satellites from centrals
divided by virial radii. The error bars are 1σ scatters with 100 random realizations
of the projected position vectors for each galaxy.

the tidal field, and orientation of galaxies is also aligned with the tidal field, thus

there is also an alignment between orientation and spatial distribution of galaxies.

For spirals, however, we found no radial alignment.

This result is consistent with the findings by Rong et al. (2015), where the radial

alignment of the position angles has been claimed both using Monte Carlo simulation

and from observation on the cluster Abell 2744. As there is no clear dependence
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of the radial alignment on distance from centrals as shown in Figure 4.5, the radial

alignment should be interpreted as alignment by the large scale tidal field rather than

alignment by the self-gravity. The weaker alignment of galaxies of the lower brightness

rank can be due to stronger non-linear effects. According to a recent study by Shi

et al. (2015), halos from N-body simulations tend to be very weakly aligned or even

anti-aligned with the large scale tidal field when they are under strong tidal field,

opposed to the positive alignment they show under a weak up to moderate tidal field.

Given that the galaxies of the lower brightness rank mainly reside in massive halos

which form more recently when the tidal field is stronger, the weaker alignment of

those may reflect the finding by Shi et al. (2015).

4.3.1.4 Alignments between group shape and central galaxies

As briefed in the introduction, there have been a series of conflicting studies on

alignment between distribution of satellites and orientation of centrals until recently.

With about 30000 central-satellite elliptical pairs, we confirm that distribution of

satellites is aligned with orientation of their centrals as shown in Figure 4.7, which is

consistent with other recent studies. The alignment is found stronger for galaxies in

inner region in intermediate to massive halos. Galaxies in low mass halos, however,

show no significant distance dependence. Interestingly, the galaxies right outside

the virial radius in massive halos appear to be as much aligned as galaxies in inner

to intermediate distances, despite that, due to large error bars, more statistics are

needed to show any clear trend.

4.3.2 Large scale alignments

4.3.2.1 Tidal field alignments on large scales

Here we turn our focus onto the alignment between the tidal fields at the location

of groups. We measure the angle between the projected tidal vectors for each group-

group pair. Figure 4.8 shows the average angle as a function of three dimensional

149



100 101 102

r(h-1 Mpc)

15

20

25

30

35

40

45

50

<
t i

t
i(d

e
g
)
>

cluster

t1

t2

t3

40 60 80 100
44.7

44.8

44.9

45.0

100 101 102

r(h-1 Mpc)

filament

log(
Mh

h-1 M
) 12.5

40 60 80 100
44.7

44.8

44.9

45.0

100 101 102

r(h-1 Mpc)

sheet

40 60 80 100
44.7

44.8

44.9

45.0

Figure 4.8. Alignment between the tidal fields of group pairs of Mh ≥ 1012.5h−1M�
as a function of separation, separately for groups in clusters (left-), filaments (middle-
), and sheets (right-panel). The morphologies that galaxies reside in are classified
according to the signs of the mass tidal field, as described in the section 4.2. The
error bars are 1σ scatters with 100 random realizations of the tidal field vectors for
each group. The lower-right panels provide zoom-ins of the largest scale regime.

distance between pairs, separately for groups in cluster, filament, and sheet structure.

In sheets, t3 is the eigenvector defined with the least ambiguity, while the directions

of t1 and t2 can be perturbed in sheets. We thus see t3 is most aligned in sheets in

the figure. On the other hand, t1 is best defined in filamentary structure due to its

morphology and that is the reason why the alignment of t1 is found most strongly

in filaments than in the other structures. It is expected that t2 is difficult to be

unambiguously defined due to how it is determined, which is the reason t2 shows

generally weaker alignments than t1 and t3. Also, for all three t’s, groups in sheets

show largest scales that the alignment extends out to, as expected, as filaments and

clusters are identified where sheets are intersected, and thus sheets are of the largest

scale among those. It is clearly seen that the large scale alignments extend as far as

up to 80− 100h−1Mpc,
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Figure 4.9. Alignment between the position angles of central galaxy pairs as a
function of separation, separately for groups in clusters, filaments, and sheets. The
morphologies that galaxies reside in are classified according to signs of the mass tidal
field, as described in the section 4.2. The error bars are 1σ scatters with 100 random
realizations of the tidal field vectors for each central galaxy. Note that three error
bars assigned at each radial bin for those in cluster, filament, and sheet, are dislocated
slightly for visual clarity.

4.3.2.2 Galaxy-galaxy alignments on large scales

We also probe the alignment of galaxy pairs as a function of distance. Figure 4.9

plots the average difference of the position angles of the pairs, and shows a certain

degree of such alignment despite the strength is much weaker than that of t1. In

addition, possibly being affected by smaller number of samples than the tidal field

case, there is no clear sign of its dependence on the morphology of large scale struc-

ture. It is worth mentioning that alignment extended up to large scales in Figure

4.9 is partly due to not perfectly uniform distribution of the position angles of the

elliptical centrals in our sample, despite of its uniform distribution shown in Figure
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4.1 for centrals and satellites combined. Therefore, even though the clear qualitative

dependence on distance is shown, the exact numbers should be taken carefully.

4.4 Summary

Using the SDSS DR7 samples and the large scale tidal field constructed by Wang

et al. (2011, 2012), we investigated a variety of alignments of ellipticals with the tidal

field. The tidal field, more specifically, was calculated by applying the group finder

developed by Yang et al. (2005, 2007) to the DR7 galaxies and using the distribution

of the halos thus obtained to compute the tidal fields exerted on each halo. This way

the halo tidal field is different from the mass tidal field in that it excludes the self-

gravity of halo in question and that it is normalized by the self-gravity. Thus, the halo

tidal field is better by design to examine the environmental effects on the alignments

of galaxies. As orientation of galaxies, we used the position angle estimates from the

GIM2D two-dimensional bulge+disc decomposition by Simard et al. (2011), which is

based on the SDSS g and r band pass images. The distribution of the position angles

is found to be very uniform (Figure 4.1), and thus does not bias our results.

Figure 4.2 and Figure 4.3 show that galaxies tend to preferentially orient along

the stretch of their surrounding mass distribution. The alignment is found stronger

for galaxies of the higher brightness ranking orders in their groups. Interestingly,

the centrals, defined to be the brightest galaxy in each group, show much stronger

alignment than satellites. This may imply that the centrals are indeed in distinct

positions in their groups. The dependence on the brightness rank may be owing to

non-linear effects, as non-linear effects are expected to be larger for satellites and

disturb such alignment.

The spatial distribution of galaxies is also found to be aligned with the tidal field.

Unlike the orientation, no clear dependence on the brightness rank is found. Instead,

there is a radial dependence in that galaxies at outer region of groups are more aligned
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with the tidal field. This, however, could be due to that the tidal field used here is

calculated on the surface of each halo, and also neglect the self-gravity of halos, which

will increase going toward inner regions.

We found radial alignment in that the shapes of satellites tend to preferentially

orient toward the brightest galaxy in their groups. This can be understood as a

combined result of both the orientation and the spatial distribution alignments of

satellites with the tidal field : Galaxies are distributed along the tidal field, their

orientations are also along the tidal field, and thus their orientations are aligned with

their spatial distributions. This is also consistent with the recent finding by Rong

et al. (2015) where the radial alignment has been claimed both analytically and

observationally. The weaker alignment of galaxies of the lower brightness rank may

reflect that the tidal field and thus non-linear effects, which disturb the alignment,

are stronger for those as they formed recently on average.

We also revisited alignment between orientation of centrals and spatial distribution

of satellites with ' 30000 central-satellite pairs, and detected the positive alignment,

which is consistent with other recent studies. The alignment strength is increasing

with decreasing distance from centrals for massive halos, while such trend is not found

for low mass halos. Satellites outside the virial radius is more aligned than those in

outer region, while more samples are required to further study this region.

We also probed alignment between the tidal fields of group pairs as a function of

distance, separately for groups in different morphologies of their surrounding large

scale structures. We confirmed that such large scale alignments are extended out to

80−100h−1Mpc. In terms of morphologies, the alignments of groups in sheets extend

out most as expected, as they are of the largest scales when considering the process

of collapse and the structure formation. As best characterizing the orientation of

sheets, t3 is found to be most aligned in sheets. Similarly, t1, which well characterizes

filaments, is most strongly aligned among groups in filaments.
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Similarly, alignment of orientations is also found among central galaxy pairs,

though much more weakly in strength, as shown in Figure 4.9. While the study

of such alignment suffers from poor statistics of small number samples, no clear de-

pendence on the morphology of the large scale structures is found.

All these results of various alignments imply that galaxy formation occurs via the

coherent but highly anisotropic mass inflow and accretion along the large scale struc-

ture. The results are also in good agreements with previous studies where alignments

with the large scale structure have been probed in various forms. This agreement

indicates that the large scale tidal field indeed characterizes well the collapse process

of the cosmic density field toward the formation of large scale structures.
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PART II: PROBING THE GAS COMPONENT OF THE
COSMIC WEB WITH THE SZ EFFECTS



CHAPTER 5

GAS CONTENTS OF GALAXY GROUPS FROM
THERMAL SUNYAEV-ZEL’DOVICH EFFECTS1

A matched filter technique is applied to the Planck all-sky Compton y-parameter

map to measure the thermal Sunyaev-Zel’dovich (tSZ) effect produced by galaxy

groups of different halo masses selected from large redshift surveys in the low-z Uni-

verse. Reliable halo mass estimates are available for all the groups, which allows us

to bin groups of similar halo masses to investigate how the tSZ effect depends on halo

mass over a large mass range. Filters are simultaneously matched for all groups to

minimize projection effects. We find that the integrated y-parameter and the hot gas

content it implies are consistent with the predictions of the universal pressure profile

model only for massive groups above 1014 M�, but much lower than the model pre-

diction for low-mass groups. The halo mass dependence found is in good agreement

with the predictions of a set of simulations that include strong AGN feedback, but

simulations including only supernova feedback significantly over predict the hot gas

contents in galaxy groups. Our results suggest that hot gas in galaxy groups is either

effectively ejected or in phases much below the virial temperatures of the host halos.

5.1 Introduction

In the current paradigm of galaxy formation, galaxies are thought to form and

evolve within dark matter halos (see Mo et al. 2010, for a review). During the

1 THE CONTENTS OF THIS CHAPTER ARE PUBLISHED IN LIM ET AL. 2018, MNRAS,
854, 181.
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formation of dark matter halos, the cosmic gas component first moves along with

the dark matter, then gets shock-heated as the halos collapse, and eventually forms

hot gaseous halos. In an adiabatic case, the resulting distribution of the hot gas

component follows roughly that of dark matter, and the amount of the hot gas per

dark matter is roughly a constant, about the universal baryon fraction of the universe.

In reality, however, a myriad of other physical processes, such as radiative cooling,

star formation, feedback from supernovae (SNe) and active galactic nuclei (AGN),

etc, can change the hot gas content of the halos. Indeed, the hot gas fractions in

low-mass halos are found to be lower than the universal baryon fraction both in

observations (e.g. David et al. 2006, Gastaldello et al. 2007, Pratt et al. 2009,

Sun et al. 2009) and in numerical simulations (e.g. McCarthy et al. 2010, Battaglia

et al. 2013, Le Brun et al. 2014). Even in massive systems, such as rich clusters

of galaxies where the total hot gas is found to be closer to the universal value, the

distribution of the hot gas is found to be different from that of dark matter (e.g.

Arnaud et al. 2010, Battaglia et al. 2012). However, current observational results

are still uncertain, particularly for low-mass systems, and many competing theoretical

models have been proposed to describe the formation and structure of gaseous halos.

Clearly, an accurate determination of the hot gas content in dark matter halos is

crucial for understanding galaxy formation and evolution in a way complimentary to

the information provided by stars and cold gas.

The thermal Sunyaev-Zel’dovich effect (tSZ hereafter; Sunyaev & Zeldovich 1972)

provides a promising avenue to probe the hot gas in halos. As the CMB photons

pass through galaxy systems, such as clusters and groups of galaxies (collectively

referred to as groups of galaxies), they are scattered by the hot electrons by the

inverse Compton process, producing a net energy gain in the photon gas and changing

the CMB temperatures in the directions to the groups. Thus, studying the cross-

correlation of the imprints of tSZ effect on the CMB with galaxy groups allows one to
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probe the hot gas components in halos associated with galaxy systems. Compared to

X-ray observations, the tSZ effect is less sensitive to the hot gas density, thus making

it possible to explore the hot gas in the outskirts of halos and also in low-mass halos

where the gas density is expected to be low.

However, extracting the tSZ signal reliably from CMB observations is not easy.

First, the signal to be detected is usually comparable to or lower than the primary

CMB, and there are also contaminations, such as Galactic emissions, dust, and point

sources. As a result, individual detection and analysis of the tSZ effect are currently

only possible for rich clusters of galaxies (e.g. Planck Collaboration V 2013). For

low-mass groups, stacking of many systems is required to increase the signal-to-noise.

Second, the beam sizes of current instruments are usually insufficient to resolve low-

mass systems, so that assumptions about the spatial distribution of the hot gas are

required. Finally, the signal from low-mass systems can be contaminated by the

projections of larger halos along the same line-of-sights, and such contamination is

not straightforward to eliminate.

Recently, Planck Collaboration XI (2013) used the all-sky Planck multi-frequency

temperature maps and a sample of locally brightest galaxies as tracers of dark matter

halos to investigate the tSZ effects produced by galaxy systems with halo masses down

to ∼ 4× 1012 M�. Remarkably, their results show that the universal pressure profile

(UPP) model, in which the hot gas fraction relative to halo mass is independent of

halo mass, matches their data well. This finding is in conflict with the results obtained

from X-ray observations and hydrodynamic simulations where a much lower fraction

is found for hot gas in low-mass systems. Using a hydrodynamic simulation, Le Brun

et al. (2015) that the universal pressure profile of Arnaud et al. (2010) adopted

by Planck Collaboration XI (2013) in their matched filter method may lead to over-

estimations of the integrated tSZ signal within R500 for low-mass systems, although

they found that the flux within 5R500 is robust to the change in the adopted profile.

158



However, Greco et al. (2015) showed that adopting another popular pressure profile

of Battaglia et al. (2012), instead of that of Arnaud et al. (2010), leads to differences

that are well within the observational uncertainties, and so the high gas fraction found

by Planck Collaboration XI (2013) cannot be explained by the adopted profile. Ma

et al. (2015) cross-correlated the Planck tSZ map with gravitational lensing map

from CFHTLenS survey and found that the prediction of UPP model is 20% higher

than the data. Vikram et al. (2017) cross-correlated the Planck tSZ map with the

group catalog of Yang et al. (2007) and found that the two-halo terms dominate the

tSZ signal for systems of M200 ≤ 1013 h−1M�, indicating that projection effect is an

important issue.

In this paper, we extract the tSZ signal from the Planck all-sky Compton param-

eter map for galaxy systems of different halo masses, using the group catalog of Lim

et al. (2017a). The catalog is constructed for four large redshift surveys with the use

of the halo-based group finder of Yang et al. (2005, 2007). This provides the largest

sample of galaxy groups in the low-z universe to study the tSZ effects over a large

range of galaxy systems. In particular, reliable halo mass estimates are provided for

all groups, so that we can bin groups of similar masses to investigate how the tSZ

effect depends on halo mass. We employ the matched filter technique (Haehnelt &

Tegmark 1996, Herranz et al. 2002, Melin et al. 2005, 2006) to extract the tSZ

signal from the Planck map. In particular, we simultaneously match the filters to all

galaxy systems in the catalog, so that projection effects produced by halos along the

line-of-sights are properly taken care of.

The outline of this paper is as followings. We describe the observational data used

in our analysis in Section 5.2, and our method to extract the tSZ signal in Section 5.3.

We present our main results as well as comparisons with results from earlier studies

and from numerical simulations in Section 5.4. Finally, we summarize and conclude

in Section 5.5.
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We adopt the cosmological parameters from the Planck observation (Planck Col-

laboration XIII 2016) throughout this paper unless specified otherwise.

5.2 Observational data

5.2.1 The Planck y-map

The Planck (Tauber et al. 2010, Planck Collaboration I 2011), a space mission to

measure the CMB anisotropy, is an all-sky observation in nine frequency bands rang-

ing from 30 to 857 GHz, with angular resolutions from 31 to 5 arcmin. For our analy-

sis of the thermal Sunyaev-Zel’dovich (tSZ) effects, we use the Planck NILC (Needlet

Independent Linear Combination; Remazeilles et al. 2011) all-sky tSZ Compton pa-

rameter map (Planck Collaboration XXII 2016), also referred to as the NILC y-map,

which is part of the publicly released Planck 2015 data2. The map is constructed

from the full mission data set, using a combination of different frequency maps to re-

move the primary CMB fluctuations and to minimize contamination from foreground

sources. For more details of the y-map construction, the readers are referred to the

original paper cited above. To limit the Galactic foreground contamination, which

is mainly due to thermal dust emissions, we mask the brightest 40% of the sky by

applying the corresponding mask provided in the Planck 2015 data release. For con-

tamination from extra-galactic sources, such as radio and infrared galaxies, we apply

the mask provided in the same data release for point sources.

5.2.2 Galaxy groups

In order to determine the tSZ signals from halos associated with different galaxy

systems, we need a well-defined group catalog that provides reliable information for

both the positions and halo masses of the galaxy systems in the universe. Further-

more, since the tSZ signals are typically weak for individual groups, and since it is

2https://pla.esac.esa.int
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necessary to stack many systems to increase the signal to noise ratio, a well-defined

group catalog is also needed to interpret the stacking results. In this paper we use the

group catalogs given in Lim et al. (2017a), which uses four redshift catalogs of galax-

ies (2MRS, 6dF, SDSS, and 2dF) to achieve an almost all-sky (91%) coverage and

the best depth reachable by these galaxy catalogs in each region of the sky. Groups

are identified with the adaptive halo-based group finder of Yang et al. (2005, 2007)

with some modifications (see Lim et al. (2017a) for the detail). Tests with realistic

mock galaxy catalogs show that the halo masses assigned by the group finder match

well the true masses, with typical scatter of 0.2 − 0.3 dex. The catalogs provide two

different halo mass estimates based either on the luminosities and stellar masses of

member galaxies, and we use the masses based on the stellar masses. We combine

2MRS, 6dF, and SDSS to construct our sample of groups with logM500/M� ≥ 12

for the tSZ analysis. For sky regions covered by more than one catalog, the prefer-

ence is given in the order of SDSS, 6dF, and 2MRS. The sample contains a total of

471, 696 galaxy systems (groups), of which 3, 851 have logM500/M� ≥ 14, 112, 494

have 13 ≤ logM500/M� ≤ 14, and 240, 747 have 12 ≤ logM500/M� ≤ 13. Following

conventions in previous SZ effect analyses, we define a halo by a radius R500, within

which the mean density is 500 times the critical density at the redshift in question.

The mass, M500, used above is the halo mass within R500. The halo masses and radii

provided in the group catalogs are M200 and R200, respectively. To convert these

quantities to the corresponding M500 and R500, we assume NFW profiles (Navarro et

al. 1997) and concentration parameters as given by Neto et al. (2007).

5.3 Method and analysis

5.3.1 The matched filter technique

Detecting the SZ signals physically related with a galaxy system is not trivial, as

other effects, such as the primary CMB anisotropies, Galactic foreground, and other
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sources, can all contaminate the signals we want to obtain (see Section 5.4). Using a

simple aperture photometry to extract the signals may thus lead to large uncertain-

ties in the extracted signals (see e.g. Melin et al. 2006). To limit source confusions

and background contamination, we employ the matched filter (MF) technique, first

proposed for SZ analyses by Haehnelt & Tegmark (1996), which is designed to max-

imize the signal-to-noise for a SZ source by imposing prior knowledge of the signals

given the noise power spectra. For the case considered here, this means to optimally

extract the tSZ signals from groups of galaxies, under the constraint of the power

spectrum of the noise of the Planck maps. In practise, we closely follow Melin et al.

(2005, 2006), who presented an extended and general formalism to extract signals

from SZ surveys using the multi-filtering technique of Herranz et al. (2002). Such a

MF technique has been applied in many recent analyses of the SZ effects in different

surveys (e.g. Planck Collaboration V 2013, Planck Collaboration XI 2013, Planck

Collaboration LIII 2017, Li et al. 2014, Le Brun et al. 2015).

In the MF approach, the Fourier transform of the filter that maximizes the signal-

to-noise is given by:

F̂ (k) =
[ ∫ |τ̂(k′)B̂(k′)|2

P (k′)

d2k′

(2π)2

]−1 τ̂(k)B̂(k)

P (k)
(5.1)

where τ̂(k) is the Fourier transform of the assumed spatial profile of groups, B̂(k) is

the Fourier transform of a Gaussian beam function that mimics the convolution in

Planck observation with the FWHM of 5 arcmin, and P (k) is the noise power spectra.

As the NILC y-map used here is already cleaned of the primary CMB anisotropies,

P (k) = Pnoise, where Pnoise is the power spectrum of the noise map for the Planck

y-map, as provided in the data release. The choice of the spatial filter function is

not straightforward, and it can affect the integrated signals extracted. Indeed, using

hydrodynamic simulations, Le Brun et al. (2015) found that the extracted tSZ signals

can change significantly depending on the filter shape adopted. In our analysis, we

162



40 30 20 10 0 10 20 30 40
[arcmin]

1.0

0.5

0.0

0.5

1.0

F
(

)

log M500 = 14; 500 6. 2

Figure 5.1. An example of the matched filter constructed for the tSZ analysis. Here
a universal profile of Arnaud et al. (2010) is adopted as a spatial filter for a group of
logM500/M� = 14 and an angular radius θ500 ∼ 6.2 arcmin.

adopt the universal pressure profile (UPP) given in Arnaud et al. (2010, hereafter

A10), the form of which can be written as

P (r) = A[E(z)]8/3P(r/R500,M500) , (5.2)

where E(z) ≡ H(z)/H0, P specifies the shape of the profile, and A is an overall

amplitude (see A10 for details). This profile was derived from a combination of X-ray

observations of XMM-Newton REXCESS cluster sample (Böhringer et al. 2007) at

r ≤ R500 and hydrodynamic simulations at larger radii. As a test, we have also used

the spatial filter adopted in Le Brun et al. (2015) but did not find any significant

changes in our results.
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Figure 5.1 shows an example of the constructed filters, which assumes a group

with log(M500/M�) = 14 and an angular radius θ500 ∼ 6.2′, and the universal pressure

profile given above.

5.3.2 Extracting the tSZ signal

Theoretically, the tSZ signal is characterized by a Compton y-parameter,

y ≡ σT

mec2

∫
Pe dl, (5.3)

where σT is the Thompson cross-section, me the rest-mass of electron, c the speed of

light, Pe = nekBTe the electron pressure, and the integration is over the line-of-sight

to the observer.

The filters described above are then put at the group centers and ‘matched’ to

the y-map to yield an estimate of the tSZ flux within R500, Y500 defined by

dA(z)2Y500 =
σT

mec2

∫
R500

Pe dV , (5.4)

where dA(z) is the angular diameter distance to a group at redshift z. Since Y500

depends mainly on halo mass at a given z and evolves with z as E2/3(z), at a fixed

halo mass, it is useful to define a new quantity,

Ỹ500 ≡ Y500E
−2/3(z)

( dA(z)

500Mpc

)2

, (5.5)

which is expected to be a function of only halo mass scaled to z = 0, if the intrinsic

tSZ flux is indeed only a function of mass.

To extract the SZ signals associated with galaxy groups from the observed y-map,

a matched filter is put at each of all the groups in our group sample according to its

halo mass and redshift. We then tune simultaneously the amplitudes of the filters
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for individual M500 bins as listed in Table 5.1, assuming the amplitudes for all the

groups in a given M500 bin to be the same. The overall best match between the

matched filters and the observed y-map is sought on the basis of the sum of the χ2

over all the pixels covered by the filters. The simultaneous matching of individual

groups allows us to take into account the line-of-sight contributions from other halos,

which is important, particularly for low-mass systems (see next section). For most of

our analyses, we truncate the filter at 3 θ500 and only use fluxes within it to estimate

the integrated flux, where θ500 = R500/dA. Note that R500 ∼ 0.5R200. As shown

later in Section 5.4, truncation of the filters at 10 θ500 leads to little change in our

results. Finally, the mean flux within R500 for groups in a given mass bin is estimated

from the assumed spatial profile together with the amplitude obtained from the best

match. The fluxes within R500 for individual groups in a M500 bin are also estimated

by fixing the amplitudes of the matched filters of other mass bins to their best fitting

values, while tuning the amplitudes of the filters for individual groups in the M500

bin in question to achieve the best match.

5.4 Results

5.4.1 The M500-Ỹ500 relation and the hot gas content

Figure 5.2(a) shows our main result for the tSZ flux-halo mass relation. The values

obtained from our fiducial sample are also given in Table 5.1 for reference. In all our

analyses, we use only groups at z > 0.03, to avoid the domination by a small number

of nearby groups each covering a large number of pixels. The error-bars shown are

each the 1σ dispersion among individual groups in the corresponding mass bin. For

comparison, we also divide the total sample into three independent sub-samples that

have about the same amount of sky coverage, and apply the MF method to them

separately. The results are shown by the green crosses in the figure. As one can see,
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Figure 5.2. Panel (a): The M500-Ỹ500 relations obtained by applying the matched
filters, with shapes following that of Arnaud et al. (2010) (A10) truncated at 3R500

(triangles). The green crosses show the results obtained from three independent
sub-samples of total sample. The results are compared with those from Planck Col-
laboration XI (2013) (cyan dot), the universal pressure profile of A10 (UPP; dashed),
Le Brun et al. (2015) (the two solid lines, with the upper one for their AGN8.0 and
the lower one for AGN8.5), and van de Voort et al. (2016) (dotted line). The error
bars indicate the variance among the signals from individual systems in each mass
bin. The unfilled symbols with downward arrows are used for cases where the tSZ
fluxes are negative. Panel (b): The M500-Ỹ500 relations obtained by masking out the
pixels covered by groups at z < 0.03 (stars) and by truncating the matched filters at
10R500 (squares). The case where the filters for groups with log(M500/M�) < 13.4
are offset by 3θ500 is shown by diamonds. The red crosses plot the difference between
the results from the co-added map and the added component (see text for details of
this test). The data points for some tests are shifted by up to 0.05 dex horizontally
for clarity. For comparison, the triangles with error bars and the dashed line in panel
(a) are repeated in this panel.

the scatter among these sub-samples is comparable to the variance among individual

groups, indicating that the uncertainties are dominated by systematic effects.

Comparing the result obtained from the fiducial case, where the matched filters are

truncated at 3R500 with that obtained by using a larger truncation radius, 10R500,
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Figure 5.3. Hot gas mass fraction with respect to halo mass within r200 as a function
of halo mass inferred from Ỹ500 by assuming the virial temperature, compared with
that from Le Brun et al. (2015) (solid; the upper for AGN8.0 and the lower for
AGN8.5) and van de Voort et al. (2016) (dotted), which are based on hydrodynamic
simulations. The gas content is lower than the universal baryon fraction of fB = 0.16
(dashed) in low-mass systems by a factor of up to ∼ 10. Note that the gas mass
ratio estimated is inversely proportional to a temperature assumed. The error bars
indicate the variance of the signals among individual systems in each mass bin. The
crosses show the results obtained from three independent sub-samples. The unfilled
symbols are used for those with the tSZ flux below zero.

as shown in Figure 5.2(b), shows that 3R300 is sufficient to cover the signals from

individual groups.

Because the hot gas halos of groups are extended and the observational beam size is

relatively large, projection effects may contaminate the signals, particularly for small

groups, even though our simultaneous matching of filters is supposed to eliminate
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Table 5.1. The M500-Ỹ500 relationa.

logM500/M� Ỹ500 Varianceb No. of systems

[10−6 arcm2] [10−6 arcm2]

12.3 −0.0600 0.360 40, 689

12.5 −0.0480 0.174 41, 848

12.7 0.0564 0.231 40, 521

12.9 0.0675 0.330 37, 344

13.1 0.144 0.450 32, 063

13.3 0.735 0.600 25, 744

13.5 2.85 1.17 19, 020

13.7 6.60 1.77 12, 500

13.9 30.3 3.00 6, 203

14.1 59.7 7.50 2, 163

14.3 273 22.8 484

14.5 756 45.3 195

14.7 1520 83.7 71

Notes.
a. These data are presented in Fig. 5.2 by triangles.
b. These are the 1σ dispersion among individual systems
in each mass bin.

such effects. We thus carry out a number of further tests to examine any possible

residuals due to projection effects. In our first test, we remove all pixels covered by

the groups at z < 0.03, and the results are shown by stars in Fig. 5.2(b). As one

can see, the signals for low-mass systems are changed relative to the fiducial case,

suggesting that our results for low mass groups may still be affected by projection

effects. In the second test, the filters for groups below a halo mass limit are shifted

by a given amount with respect to the group centers. Thus, if the signals extracted

for these groups were not associated with them but produced by diffuse electrons

associated with larger structures, such a shift would not change the signals obtained
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for these groups. As an example, the diamonds in Fig. 5.2(b) show the result in

which filters for groups with logM500/M� < 13.4 are shifted randomly by 3R500,

while the filters for more massive groups are still located at the group centers. As one

can see, while no significant change is seen for groups with logM500/M� > 13.4, the

signals for the lower mass groups are reduced. This suggests that the signals detected

in the matched filters are associated with these low-mass groups. Finally, we make

another test by adding to each group an artificial y-parameter profile which is given

by the observed mean profile corresponding to its mass and redshift. The artificial y-

parameter profile has the same shape as given by the adopted pressure profile and its

amplitude is determined from a broken power-law fit to the observed mean amplitude

as a function of halo mass. The test is intended to examine the robustness of the

results against a change in the signal-to-noise. As the artificial signals added are the

mean values at given masses, the test changes the signal-to-noise of the composite

y-map in each pixel compared to that of the original map, which changes the weights

given to individual pixels when matching filters. The matched filter technique is then

applied to the sum of this artificial map with the original map. The original signals

are well recovered by the differences between the results obtained from the co-added

map and the added component, as shown by the crosses in Fig. 5.2(b), demonstrating

that our method can extract the signals we put in reliably.

Based on the test results presented above, we conclude that the results for groups

with masses above 1013.5M� are stable. For groups of lower masses, however, signif-

icant variations are still present from sample to sample. We have also applied the

same methods to different maps, such as the Planck MILCA (Modified Internal Lin-

ear Combination Algorithm; Hurier et al. 2013) all-sky tSZ Compton parameter map

(Planck Collaboration XXII 2016), which is known to have different degree of dust

contamination, and Planck multi-frequency temperature maps at 100 and 143 GHz, in

which dust effects are expected to be smaller than in other bands. We found that the
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results do not change significantly, especially for groups above 1013.5M�, indicating

that our results are robust against residual dust emissions from galaxies.

Assuming virial temperatures, we estimate the hot gas contents of galaxy groups

within R200 from the integrated fluxes of Ỹ500. Here the NFW profile and the hot gas

profile of A10 are used to convert quantities to the corresponding ones within R200,

and the virial temperature is defined as

Tvir =
µmpGM200

2kBR200

(5.6)

where µ is the mean molecular weight, mp the proton mass, and kB the Boltzmann

constant. The results obtained from the fiducial sample and the three sub-samples are

shown in Fig. 5.3. Here we see that the inferred hot gas contents of low-mass groups

within R200 are lower than the universal baryon fraction, shown by the horizontal

line, by a factor of ∼ 10. Even for groups with M200 ∼ 1014M�, the hot gas fraction

is only about a half; only in the most massive groups (clusters) is the fraction close

to unity. Of course, the gas fraction could be much higher if the gas temperature is

much lower than the virial temperature, and measurements of tSZ effect alone can-

not break the density-temperature degeneracy. In any case, the implied low density

and/or temperature of the halo gas in low-mass groups have important implications

for theories of galaxy formation, as to be discussed in the following.

5.4.2 Comparisons with earlier results and theoretical models

Planck Collaboration XI (2013) (PCXI hereafter) used the same Planck data and

a similar matched filter approach to extract the tSZ signals around locally brightest

galaxies (LBGs) selected from the SDSS survey. An isolation criterion is adopted so

that each LBG is the dominating one (in terms of luminosity) in its neighborhood,

probably representing the central galaxy of a halo. Based on the mean relation

between the stellar masses of central galaxies and the halo masses obtained from the

170



semi-analytic galaxy formation model of Guo et al. (2013), a halo mass is assigned to

each of the LBGs. The Ỹ500-M500 relation obtained by PCXI is plotted in Fig. 5.2(a)

as circles, and matches well the expectation of the UPP model of A10, shown by the

dashed line. As one can see, our results are in good agreement with that of PCXI only

for massive groups with M500 > 1014M�, but the amplitudes we obtain for groups of

lower masses are much lower. Indeed, our Ỹ500-M500 relation is very different from

that given by the UPP model. We suspect that there are two factors that may cause

the difference between our and PCXI results.

First, we simultaneously match all groups in our sample, which takes into account

the projection effects by larger halos along the line-of-sights of low-mass groups,

while PCXI matches individual filters separately. In a test where we first subtracted

the local flat backgrounds averaged over annulus between [2R200, 3R200] around each

group, and then matched individual filters and stacked the signals for groups of similar

masses, we found that we can roughly recover the results of PCXI for low-mass

halos, despite of the differences in other details between our method and theirs. This

indicates that the contamination by other groups is not flat, and that it is important

to match the filters to all groups simultaneously in order to correct for such projection

effects. In principle, there could be residual projection effects from halos not included

in the catalogs either because they are located outside the redshift ranges of the

catalogs or because they are too faint to be included in the group catalogs. The

contribution from halos beyond the redshift range is expected to be uncorrelated

with the groups at lower z, and so it increases the noise level but does not bias

the average signals obtained for these groups. Groups that are located within the

sample volume but missing because they fall below the observational limits have halo

masses M500 < 1013M�. Our tests by matching filters only to groups with higher

masses showed that the signals obtained for groups above 1013M� are not affected

significantly by excluding lower mass groups in the filter matching. This demonstrates
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that the projection effects produced by halos below the mass completeness limit do

not have a significant impact on our results.

Second, PCXI uses the mean relation between the central galaxy mass and halo

mass to estimate halo mass, while our halo masses are estimated from our halo-based

group finder. Given that the central galaxy mass increases only slowly with halo mass

at M200 > 1013M� (Yang et al. 2003), and the relation has significant amounts of

scatter (e.g. Yang et al. 2008), binning based on central galaxy mass may mix halos

of very different masses.

Greco et al. (2015) used a LBG sample similar to that used by PCXI, together

with the Planck temperature aperture photometries, instead of the matched filter,

to extract tSZ signals associated with the LBGs. They found that their results are

consistent with the UPP model within the uncertainties of the data. It is unclear

if the difference between their results and ours is produced by the different mass

proxies used to bin the data or by the different methods used to extract the tSZ

signals. In a forthcoming paper, we will address this issue by examining how different

methods adopted in the literature affect the extracted SZ signals. Vikram et al.

(2017) examined the cross-correlation between groups in the catalog of Yang et al.

(2007) and the Planck y-map, and found that two-halo terms dominate the signals

around halos of M200 ≤ 1013−13.5 h−1M�. This is in qualitative agreement with our

finding that the stacked signals for low-mass groups are dominated by projection

effects. Taking account of the projection effects based on Vikram et al. (2017), Hill

et al. (2017) found some evidence for a broken power-law relation between M500 and

Ỹ500, which is in qualitative agreement with our results.

We also compare our results with results from two hydrodynamic simulations. The

first is that presented in Le Brun et al. (2015), who used the cosmo-OWLS suite of

cosmological simulations (Le Brun et al. 2014), an extension of the OverWhelmingly

Large Simulations (OWLS; Schaye et al. 2010), to model the tSZ effects. The simu-
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lation has a box size of 400h−1 Mpc on a side, and assumes cosmological parameters

either from the WMAP7 or the Planck. Their fiducial runs include both stellar and

AGN feedbacks. In Figs. 5.2(a) and 5.3, the predictions of two of their models are

plotted as the two solid curves. The upper curves correspond to their AGN feedback

model AGN8.0, which assumes that accreting black holes heat their surrounding gas

to a temperature ∆Theat = 108 K, while the lower curves are for their AGN8.5, which

assumes ∆Theat = 3× 108 K. Clearly, our results are in a good agreement with their

results, particularly from that of the AGN8.5 run.

van de Voort et al. (2016) used a suite of cosmological zoom-in simulations from

the Feedback In Realistic Environments (FIRE; Hopkins et al. 2014, Faucher-Giguère

et al. 2015, Feldmann et al. 2016) project, to study the tSZ effects around halos with

M500 = 1010–1013 M�. Sixteen and thirty six zoom-in simulations were run to z = 0

and z ∼ 2, respectively. In Figs. 5.2(a) and 5.3, we use straight lines to roughly

represent their low-z results. Here the universal profile of A10 is used to convert

the predictions, which are integrated quantities within projected radius, to quantities

within spheres needed in the comparison. It is seen that the predicted tSZ signals are

much stronger than both our results and the simulations of Le Brun et al. (2015).

We note, however, that the simulations used by van de Voort et al. (2016) do not

include AGN feedback, which may be important for the halo mass range concerned

here.

5.5 Summary and conclusion

In this paper, we use the measurements of the thermal Sunyaev-Zel’dovich (tSZ)

effect from the Planck NILC all-sky Compton parameter map, together with the group

catalogs of Lim et al. (2017a) to investigate the hot gas contents of galaxy groups.

The catalogs contain a large number of uniformly selected groups with reliable halo

mass estimates, which allows us to bin groups of similar halo masses to investigate
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the dependence of the tSZ effect on halo mass over a large mass range. We adopt the

matched filter approach (Haehnelt & Tegmark 1996, Herranz et al. 2002, Melin et al.

2005, 2006), which optimizes the signal-to-noise ratio by imposing prior knowledges

of the expected signals, to extract the tSZ signals produced by galaxy groups from

the map. We jointly match the filters to all groups to minimize projection effects.

We test the robustness of our method by retaining or eliminating pixels covered by

local galaxy systems, by truncating the matched filters at different radii, by shifting

the filters for low-mass groups, and by adding artificial signals to the observational

map. We find that our method performs well in these tests. We also found that

the background fluctuations around low-mass systems are significantly affected by

projections of massive halos. Such a projection effect can lead to overestimation of the

tSZ signals associated with low-mass groups if filters are not matched simultaneously

to all groups.

We find that the integrated y-parameter and the hot gas content it implies are

consistent with the predictions of the UPP model only for massive groups with masses

above 1014 M�, but much lower, by a factor of ∼ 10, than the model prediction for

low-mass groups. Our results are in conflict with the findings from some previous

studies (e.g. Planck Collaboration XI 2013, Greco et al. 2015), which reported that

their data are in agreement with the predictions of UPP model. The disagreement

likely comes from the different treatments of projection effects and the different halo

mass models used in these studies. The halo mass dependence we find is in good

agreement with the predictions of a set of hydro simulations presented in Le Brun et

al. (2015) that include strong AGN feedback, but the simulations of van de Voort et

al. (2016), which include only supernova feedback, over-predict the hot gas contents

in galaxy groups by a factor of 5 to 10.

Since the integrated y-parameter is a measure of the thermal energy content of

the hot halo gas, our results indicate that this energy content in low-mass groups
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is much lower than that expected from the universal baryon fraction in a hot halo

at the virial temperature. This has important implications for galaxy formation and

evolution. Since the total baryon fraction of stars and cold gas in galaxy groups and

clusters is found to be well below the universal baryon fraction (e.g. Fukugita &

Peebles 20040, it has been speculated that the missing baryons may be in hot defused

halos. However, if the low energy content found here is due to a low gas content in the

hot phase, then hot gas halos cannot account for the missing baryons. Alternatively,

baryons originally associated with galaxy groups may be heated and ejected by some

processes. The agreement of our results with the predictions of the simulation results

of Le Brun et al. (2015) suggests that strong AGN feedback may be able to provide

such a process and to accommodate the observational results. Yet another possibility

is that a large fraction of baryons may be in phases with temperatures much lower

than the virial temperatures of the groups. In this case, the low thermal energy

contents observed in low-mass halos are produced by the low gas temperature rather

than by a reduced amount of gas. To distinguish the different possibilities, it is crucial

to estimate the total mass in the warm-hot phase, so as to obtain a complete inventory

of the baryons in low-mass halos. This can be done either through quasar absorption

studies (e.g. Werk et al. 2014), or by investigating the kinetic SZ effect of galaxy

groups (e.g. Hernández-Monteagudo et al. 2015, Planck Collaboration XXXVII 2016,

Hill et al. 2016, Schaan et al. 2016, Lim et al. 2017b), which depends on the electron

density but not the temperature of the halo gas.
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CHAPTER 6

THE DETECTION OF MISSING BARYONS IN GALAXY
HALOS WITH KINETIC SUNYAEV-ZEL’DOVICH

EFFECT1

We present the detection of the kinetic Sunyaev-Zel’dovich effect (kSZE) signals

from groups of galaxies as a function of halo mass down to log(M500/M�) ∼ 12.3,

using the Planck CMB maps and stacking about 40, 000 galaxy systems with known

positions, halo masses, and peculiar velocities. A multi-frequency matched filter

technique is employed to maximize the signal-to-noise, and the filter matching is

done simultaneously for different groups to take care of projection effects of nearby

halos. The total kSZE flux within halos estimated from the amplitudes of the matched

filters implies that the gas fraction in halos is about the universal baryon fraction,

even in low-mass halos, indicating that the ‘missing baryons’ are found. Various

tests performed show that our results are robust against systematic effects, such

as contamination by infrared/radio sources and background variations, beam-size

effects and contributions from halo exteriors. Combined with the thermal Sunyaev-

Zel’dovich effect, our results indicate that the ‘missing baryons’ associated with galaxy

groups are contained in warm-hot media with temperatures between 105 and 106 K.

6.1 Introduction

According to the current scenario of galaxy formation, galaxies form and evolve

in dark matter halos (see Mo et al. 2010 for a review). As a dark matter halo forms

1 THE CONTENTS OF THIS CHAPTER ARE ORIGINALLY FROM LIM ET AL. 2017
(ARXIV:1712.08619).
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in the cosmic density field, the cold gas associated with it falls into its potential well

and gets shock-heated, eventually forming a hot gaseous halo, with a temperature

roughly equal to the virial temperature of the halo. However, various processes, such

as radiative cooling, star formation, and feedback from supernovae and active galactic

nuclei (AGN), can affect the evolution of galaxies and the properties of the gaseous

halos, so that the distribution of baryons may be very different from that of the

dark matter. Indeed, observations have shown that both the hot gas fraction and the

total baryon fraction in present-day galaxy systems are much lower than the universal

baryon fraction, especially in low-mass systems (e.g. David et al. 2006, Gastaldello et

al. 2007, Pratt et al. 2009, Sun et al. 2009). Even for massive clusters of galaxies, the

distribution of the gas is found to be different from that of the dark matter, although

the total amount of the hot gas is found to be close to the universal fraction (e.g.

Arnaud et al. 2010, Battaglia et al. 2012). It has been suggested that a significant

portion of the ‘missing baryons’ may be in the form of diffuse warm-hot intergalactic

media (WHIM), with temperature in the range of 105 - 107 K, within and/or around

dark matter halos (e.g. Cen & Ostriker 1999, Dave et al. 1999, 2001, Smith et al.

2011), but the detection of the WHIM from observation has so far been uncertain

(e.g. Bregmann 2007).

The Sunyaev-Zel’dovich effect (SZE; Sunyaev & Zel’dovich 1972) offers a promis-

ing way to probe the WHIM. As the cosmic microwave background (CMB) photons

pass through galaxy systems, such as clusters and groups of galaxies, they are scat-

tered by the free electrons in these systems. The effect produced on the CMB by

the thermal motion of electrons is referred to as the thermal SZE (tSZE), while that

produced by the bulk motion of electrons is called the kinetic SZE (kSZE). Thus,

cross-correlating galaxy systems (clusters and groups of galaxies, collectively referred

to as galaxy groups hereafter) and their SZE in the CMB provides a promising way

to probe the WHIM associated with dark matter halos. X-ray observations can also
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be used to study the hot gas, but are effective only in probing dense and hot regions,

such as the central parts of galaxy systems, and not sensitive to the diffuse WHIM

in which the bulk of the missing baryons are expected to reside.

Great efforts have been made to measure the tSZE from observations and to use

it to constrain the gas associated with galaxy systems. Planck Collaboration XI

(2013) used the Planck multi-frequency CMB temperature maps and dark matter

halos identified based on isolation criteria, to study the tSZE down to a halo mass ∼

4×1012M�. Remarkably, they found that the hot gas fraction in halos is independent

of halo mass, as expected from the simple self-similar model. Similarly, Greco et al.

(2015) used the locally brightest galaxies to represent dark matter halos to extract

the tSZE and found that their results are consistent with the self-similar model. In

a recent paper, Lim et al. (2018a) used a large sample of galaxy groups (Lim et al.

2017b) to extract the tSZE associated with galaxy systems from the Planck Compton

parameter map (Planck Collaboration XXII 2016). By stacking about half a million

galaxy systems, they were able to obtain the tSZE as a function of halo mass down

to log(M500/M�) ∼ 12, where M500 is the halo mass enclosed by a radius in which

the mean mass density is 500 times the critical density. They found that the thermal

contents of the gas in low-mass halos are much lower than that expected from the

cosmic mean baryon fraction and the virial temperature of halos, in contrast to the

results obtained by Planck Collaboration XI (2013) and Greco et al. (2015).

Detecting the kSZE signals from CMB observations is not a trivial task. First,

the signals are weak; even for massive clusters of galaxies, the kSZE amplitude is an

order of magnitude lower than the tSZE and two orders of magnitude smaller than

the primary CMB fluctuation. As such, stacking a large number of similar galaxy

systems is needed to detect the effect. Second, since the kSZE is directly proportional

to the radial peculiar velocity of the galaxy system, and since the peculiar velocities

of different systems have a symmetric distribution around zero, stacking individual
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systems without using the peculiar velocity information leads to cancellation rather

than enhancement of signals. Third, the large beam sizes of current CMB experiments

require assumptions of the locations and gas profiles of the galaxy systems to be

stacked, in order to extract the kSZE they produce. Finally, since the observed

effects are projected on the sky, signals from low-mass systems may be contaminated

by projections of the more massive systems along the same line-of-sight.

The detection of kSZE has so far been made only for cluster-size systems (e.g.

Kashlinsky et al. 2010) and from statistical measurements based on, e.g., the pair-

wise and cross correlation methods (Hand et al. 2012, Hernandez-Monteagudo et al.

2015, Planck Collaboration XXXVII 2016, Hill et al. 2016, Schaan et al. 2016, Soergel

et al. 2016, De Bernardis et al. 2017). Using peculiar velocity fields reconstructed

from galaxy distributions and the aperture photometry, Hernandez-Monteagudo et

al. (2015), Planck Collaboration XXXVII (2016), Schaan et al. (2016) found that

a significant fraction of baryons may be associated with the large-scale structure

traced by galaxies. A similar conclusion was reached by Hill et al. (2016) by cross-

correlating galaxies with CMB maps. The signals measured in these investigations

are the averages over individual galaxies in the galaxy samples used, including effects

both confined to galaxy halos and unbound over large scales. These results, therefore,

constrain the total amount of free electrons associated with the large-scale structure

traced by galaxies, but cannot be interpreted directly in terms of baryon fractions in

halos of different masses. Thus, the missing baryon problem on halo scales, which has

important implications for galaxy formation in dark matter halos, was unresolved.

In this paper, we investigate the kSZE from halos of different mass, using group

catalog and the Planck temperature maps, by extending the same methods as in Lim

et al. (2018) to kSZE. As described below, our analysis differs from earlier studies

in that the halo-based group catalog with reliable halo mass allows us to probe the

kSZE and baryon fractions in halos of different masses, and in that the simultaneous
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matching of filters to the CMB maps takes into account the line-of-sight contamination

by projection effects. In addition, the combination of the kSZE measurements here

with the tSZE measurements obtained in Lim et al. (2018) not only allows us to

obtain the total mass, but also the effective temperature of the WHIM associated

with galaxy systems.

The structure of the paper is as follows. We describe the observational data for our

analysis in Section 6.2, and our method to extract the kSZE in Section 6.3. We present

our main results and inferences from combining kSZE with tSZE in Section 6.4.

Finally, we summarize and conclude in Section 6.5.

6.2 Observational data

6.2.1 The Planck CMB map

The Planck observation (Tauber et al. 2010, Planck Collaboration I 2011) mea-

sures the all-sky CMB anisotropy in nine frequency bands from 30 to 857 GHz, with

angular resolutions ranging from 31 to 5 arcmin. In our analysis for the kSZE, we

use the 100, 143, and 217 GHz channel maps from the Planck 2015 data release2. To

minimize Galactic contamination, the brightest 40% of the sky is masked using the

masks provided in the data release. We also mask known radio and infrared point

sources using the corresponding masks. From the reduced maps, subtractions are

made of the tSZE,

(
∆T

TCMB

)
tSZ

= g(x)y ≡ g(x)
σT

mec2

∫
Pedl, (6.1)

where TCMB = 2.7255 K, y is the Compton parameter, g(x) = x coth(x/2) − 4 is the

conversion factor at a given x ≡ hν/(kBTCMB), σT is the Thompson cross-section, c is

2https://pla.esac.esa.int
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the speed of light, me is the electron rest-mass, and Pe = nekBTe is the electron pres-

sure with ne and Te being the free electron density and temperature, respectively. The

electron pressure is integrated over the path length, dl, along the line-of-sight (LOS).

We adopt the Compton parameter y from the Planck NILC (Needlet Independent

Linear Combination; Remazeilles et al. 2011) all-sky y-map (Planck Collaboration

XXII 2016), which is constructed from the full mission data set of the Planck, using

a combination of different frequency maps to minimize the primary CMB fluctua-

tions and contamination from foreground sources. Integrating over the Planck bands

gives the conversion factor g(x)TCMB = −4.031, −2.785, and 0.187 K for the 100,

143, and 217 GHz maps, respectively. As a test, we also applied the same analysis

to the Planck MILCA (Modified Internal Linear Combination Algorithm; Hurier et

al. 2013) y-map, which is known to have a different level of dust contamination,

and found no significant changes in our results, indicating that our results are robust

against residual dust emissions from galaxies. The readers are referred to the original

papers for more details about the constructions of the y-maps. Finally, each of the

resulting maps is subtracted by a constant to zero the average background. The final

maps still contain components other than the kSZE, such as the primary CMB and

instrumental noise. These are included in our multi-frequency matched filter (MMF),

to be described in §6.3.

6.2.2 Galaxy groups

To extract the SZ signals associated with galaxy groups requires a well-defined

group catalog. In our analysis, we use the group catalog of Yang et al. (2007),

which is constructed from the Sloan Digital Sky Survey Data Release 7 (SDSS DR7;

Abazajian et al. 2009) with the use of the halo-based group finder developed in

Yang et al. (2005). All the groups in the original catalog have accurate estimates

of halo masses, spatial positions, and peculiar velocities. Halo masses of the groups
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are estimated from abundance-matching based on the ranking of their characteristic

luminosities. Tests using realistic mock catalogs show that the halo masses given by

the group finder match well the true halo masses, with typical scatter of 0.2−0.3 dex.

Following conventions in SZE studies, we define a halo by a radius, R500, within which

the mean density is 500 times the critical density at the redshift of the halo. The

corresponding halo mass is M500. The masses provided in the group catalog, M200, are

converted to M500 by assuming the NFW profile (Navarro et al. 1997) and a model for

the halo concentration parameter (Neto et al. 2007). These properties of individual

groups are used in a MMF technique (see below) to optimize the signal-to-noise and

to extract kSZE from galaxy groups over a large range of masses. They are also used

to interpret the kSZE in terms of the total amount of ionized gas associated with

these groups. We adopt the radial peculiar velocities, vr, reconstructed for the same

sample of groups by Wang et al. (2012). Tests with mock catalogs show that the

errors in the reconstructed peculiar velocities have a symmetric distribution around

zero, with dispersion of about 90 km s−1. Our final sample contains all groups with

z ≤ 0.12, within which groups with M200 > 1012.5 h−1M� are complete (Yang et al.

2007).

6.3 Method and analysis

6.3.1 The multi-frequency matched filter technique

Because the SZE signals are typically lower than various other sources (contamina-

tion), such as the primary CMB anisotropy, Galactic foreground and cosmic infrared

background, it is essential to optimize the signal-to-noise in order to extract the sig-

nals reliably. Using a simple aperture photometry may lead to large uncertainties (see

e.g. Melin et al. 2006). Here we employ the multi-frequency matched filter (MMF)

technique (Haehnelt & Tegmark 1996, Herranz et al. 2002, Melin et al. 2005, 2006),

which is designed to minimize source confusions and background contamination, and
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to maximize the signal-to-noise by imposing priors on the signals and the noise power

spectra. A general formalism of applying the MMF to SZE measurements has been

developed by Melin et al. (2006), and we adopt it for our analysis. In the MMF

formalism, the Fourier transform of the filter that maximizes the signal-to-noise is

given by

F̂I(k) =

[∫
d2k′

(2π)2
|τ̂(k′)|2B̂

∗
(k′) · P−1(k′) · B̂(k′)

]−1

× τ̂(k) jν,I {P−1(k) · B̂(k)}I (6.2)

where F̂I(k) is the Fourier transform of the filter for each of the three frequencies,

‘I’, τ̂(k) is the Fourier transform of the projection of the assumed spatial profile of

the gas distribution, the elements of B̂(k) are the Fourier transform of the Gaussian

beam function that mimics the convolution of the Planck observation in in individ-

ual frequency bands, and P (k) is the noise power spectra. For the kSZE analysis,

PIJ(k) = PCMB B̂IB̂
∗
J + Pnoise,IδIJ where PCMB is the CMB spectrum and Pnoise,I the

power spectra of the Planck noise map at frequency ‘I’, as given by the Planck data

release. The quantity jν,I in the above equation is a frequency-dependent conversion

factor between the differential temperature of the CMB and the filter at the fre-

quency ‘I’; jν = g(x) for tSZE, and is frequency-independent for kSZE. The choice

of the spatial profile is not straightforward. For our analysis, we adopt an empirical

β-profile,

ne(r) = ne,0[1 + (r/rc)
2]−3β/2, (6.3)

where rc = rvir/c is the core radius of a group with concentration c, and β = 0.86 is

the best-fit value obtained from South Pole Telescope (SPT) cluster profiles (Plagge

et al. 2010). Note that rvir and c are determined by the halo mass and redshift

of the galaxy group in question. In principle, the integrated signals extracted can
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depend on the assumed filter shape. However, because of the beam size of the Planck

instrument, which is comparable to halo radius for a significant fraction of the groups

in our sample, the results do not depend strongly on the specific choice of the spatial

filter (see §6.4.2).

6.3.2 Extracting the kSZE signal

The CMB spectrum is distorted when CMB photons interact with free electrons

that are moving collectively. In this kinetic Sunyaev-Zel’dovich effect (kSZE), tem-

perature change is characterized by a dimensionless parameter,

k ≡
(

∆T

TCMB

)
kSZ

= −σT

c

∫
ne(v · r̂)dl, (6.4)

where v is the velocity of bulk motion, and r̂ is the unit vector along a LOS. Assuming

that electrons are moving together with the galaxy system containing them, which is

justified by the fact that the correlation length of the peculiar velocity field is much

larger than a halo size (e.g. Hand et al. 2012, Hernandez-Monteagudo et al. 2015),

we have

k = −vr
c
τ, τ(R) = σT

∫
ne(
√
R2 + l2)dl (6.5)

where vr is the CMB rest-frame peculiar velocity of the galaxy system along the LOS.

Note that the Fourier transform of τ(R) gives τ̂(k) in equation (6.2).

To extract the kSZE of a group from the Planck data, we use the matched filter,

{Fi}I , defined in equation (6.2) with redshift, virial radius and concentration appro-

priate for the group, ‘i’, in question, at the frequency ‘I’ to estimate the signal within

the filter,

{AD,i}I =

∫
{Fi(θ)}I{Di(θ)}Id2θ , (6.6)
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where θ is the projected position relative to the group center in the sky, and {Di(θ)}I

is the data map around the group. The uncertainty of the estimate is given by

σi =

[∫
d2k′

(2π)2
|τ̂i(k′)|2B̂

∗
(k′) · P−1(k′) · B̂(k′)

]−1/2

, (6.7)

as shown in Haehnelt & Tegmark (1996) and Melin et al. (2006).

The values of {AD,i}I obtained this way can be affected by projection effects by

other groups along the same line of sight. Because of this, we do not use these values

to represent the signal produced by individual groups and to obtain the average

quantities for groups of a given mass. Instead, we construct model maps that take

into account the projection effects to compare with data. As described above, the

kSZE signal expected from a given group is determined by its peculiar velocity and

its gas density profile, which is modeled by equation (6.3). In our analysis, we use

the reconstructed peculiar velocities described in §6.2.2. The virial radius, rvir, and

concentration, c, of a group are given by its halo mass, as described above. To model

the total ionized mass associated with a halo, we assume that the amplitude of the

profile, ne,0, depends only on halo mass. We specify the halo mass dependence by the

values of ne,0 at log(M500/M�) = 12.3, 12.7, 13.1, 13.5, 13.9, and 14.3, together with

linear interpolations in log(ne,0) - log(M500) space to predict the profile amplitude

for any given M500. Thus, the model is completely specified by a set of six model

parameters that give the profile amplitudes at the six values of M500. The numbers

of groups in the six mass bins are listed in Table 6.1, together with the median values

of M200. For a given set of model parameters, denoted collectively by Θ, we first

generate a theoretical map by convolving the center of each group with the 2-d profile

appropriate for its halo mass, redshift and peculiar velocity. We then add to the map

the primary CMB anisotropy using PCMB. Finally, we convolve the resulting map with

the beam function, and add the instrument noise using Pnoise to obtain a model map.

Note that we have three model maps, containing the same CMB but corresponding to
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the beam sizes and noise of the three channel data we use. Note also that the model

maps include the projection effects generated by the superposition of the profiles of

halos along a LOS, because they are constructed with the positions of all groups.

To extract signals from the model maps, we put a MMF at the center of each of

all the groups in the model map, again according to the halo mass and redshift of the

group, to extract the corresponding model signal,

{AM,i}I =

∫
{Fi(θ)}I{Mi(θ)}Id2θ, (6.8)

where {Mi(θ)}I stands for the model map at frequency ‘I’ around group ‘i’. With

these measurements, we compute a χ2-based likelihood function,

L(Θ|AD) ∝ exp(−χ2/2), (6.9)

where

χ2 =
∑
i

|AD,i −AM,i(Θ)|2

σ2
i

. (6.10)

To efficiently explore the parameter space, we make use of the MULTINEST method

developed in Feroz et al. (2009), which implements the nested sampling algorithm

developed in Skilling et al. (2006). The posterior distribution of the model parame-

ters, i.e. the values of ne,0 at the six halo masses, is used to make inferences from the

data.

6.4 Results

6.4.1 The K̃500-M500 relation

The amplitude of the density profile obtained from the matched filters, together

with the assumed spatial profile shape, can be used to estimate the total number of

electrons within R500 for a group of a given mass,
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Figure 6.1. The K̃500-M500 relations obtained from eight samples: all groups (yel-
low); groups with |vr| > 80 km s−1 (skyblue); groups with vr > 80 km s−1 (violet);
groups with vr < −80 km s−1 (green); groups with |vr| > 80 km s−1 in three parts of
the sky (blue), and groups with z < zr (red). The data points for some samples are
shifted by 0.05 dex horizontally for clarity. The dashed line shows the ‘self-similar’
model, Ne,500 = [(1 + fH)/2mp] · fBM500, where Ne,500 is the total number of elec-
trons within R500, fH = 0.76 the hydrogen mass fraction, mp the proton mass, and
fB = ΩB/Ωm = 0.16 the cosmic baryon fraction. All the data points are based on
the medians of the corresponding posterior distributions given by the MULTINEST
sampler. Error bars, plotted for two samples, indicate the 68 percentile ranges of the
corresponding posterior distributions.
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dA(z)2K500 ≡ σT

∫
R500

nedV . (6.11)

where dA(z) is the angular diameter distance of the group in question. We also define

the following quantity, analogous to the convention used in the tSZE studies,

K̃500 ≡ K500(dA(z)/500Mpc)2 . (6.12)

We emphasize, however, that we are not measuring K̃500 directly from the data, but

using it to represent the amplitude of the density profile, ne. Once K̃500 is obtained,

we can also obtain corresponding quantities within other choices of radius, such as

K̃200 within R200. The results obtained from the entire sample are shown as yellow

triangles in Fig. 6.1. The data points represent the median values obtained from the

posterior distribution, while the error bars are the 68 percentile range. The dashed

line in Fig. 6.1 shows the ‘self-similar’ model prediction in which the total number of

electrons within R500 is,

Ne,500 = [(1 + fH)/2mp] · fBM500 (6.13)

with fH = 0.76 the hydrogen mass fraction, mp the proton mass, and fB = ΩB/Ωm =

0.16 the universal baryon fraction. Our data points follow well the self-similar model,

indicating that the total ionized gas fractions in halos of different masses are compa-

rable to the universal baryon fraction (see §6.4.3 for the details).

Fig. 6.1 shows that the K̃500 - M500 relation is approximately a power law. This

motivates another way to extract the K̃500 associated with groups. Here we assume

that

K̃500 = A× (M500/1013.5M�)α (6.14)
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and use the matched filter method to constrain the values of α and A. The result

for the entire sample is shown in Fig. 6.2, with a yellow triangle. As comparison,

each of the small dots shows the result of a random sample. Each random sample is

constructed by shifting and rotating the group sample by some random amounts rel-

ative to the Planck maps before applying the matched filter method. In this case, the

relative positions of individual groups and their spatial clustering are preserved in the

random samples, but the cross correlation between the groups and the kSZE signals is

destroyed. The distribution of the 200 random realizations is around (A,α) = (0, 0),

as expected from a zeroed mean background. The symmetry relative to (0, 0) is be-

cause the peculiar velocities have a roughly symmetric distribution around zero. The

dipolar pattern of the random samples in (A,α) space, that positive (negative) values

of A tend to correspond to positive (negative) values of α, indicates the presence of

residual background fluctuation on scales larger then individual groups. In this case,

the flux associated with a group in a random sample due to background fluctuation is

proportional to the angular size of the group, with approximately the same probability

to be positive or negative. Thus, the distribution of random groups in the K̃500-halo

mass plane is expected to have a wedge-like pattern symmetric with respect to the

halo-mass axis. Since we have more lower-mass systems, the averages of the K̃500 in

the lower-mass bins are closer to zero and have lower random fluctuations. This has

the effect of increasing the opening angle of the wedge within which the average K̃500

versus halo mass relations from different random samples are confined. The assembly

of straight lines, each covering the whole halo mass range in such a wedge, thus tend

to show the dipolar pattern seen.

We have also used random samples in which each group in the observational sample

is assigned a random position in the Planck sky, and found very similar results. The

results indicate that the detection of the K̃500 is very significant relative to the random
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samples, as we will quantify below after the uncertainties in the measurements are

tested.

6.4.2 Tests of uncertainties

A number of contaminating effects can affect our measurements. Here we present

the analyses we have carried out to test the reliability of our results against the

contamination. One source of uncertainty comes from the errors in the peculiar

velocities of groups adopted in our analysis. As shown in detail by Wang et al. (2012)

using realistic mock samples, the errors in the reconstructed peculiar velocities have a

symmetric distribution around zero. Since the kSZE of a group is directly proportional

to its peculiar velocity, the uncertainty in the peculiar velocities is not expected to

produce any bias in our results, but will contribute to noise in the measurements. The

typical uncertainty in the radial component, vr, is between 70 and 90 km s−1 and so

the signals from groups with peculiar velocities lower than this are all dominated

by noise. To reduce the effect of this uncertainty, we separate the total sample into

two sub-samples, according to whether |vr| is smaller or larger than 80 km s−1. The

ratio in the total number of groups between these two sub-samples is about 1/2. The

model parameters, i.e. ne,0 at the six halo masses, are then tuned independently for

the two sub-samples to obtain a best match to the data. The blue squares with error

bars in Fig. 6.1 show the results obtained for the |vr| > 80 km s−1 sample. As we can

see, the results are not affected significantly by excluding low |vr| systems.

Another source of contamination is from fluctuations in the background and fore-

ground, such as the primordial CMB, signals produced by background sources that are

not included in our sample, and residual Galactic foreground. As discussed above,

our MMF is designed to minimize the background contamination by including the

background fluctuations in the noise spectrum [see equation (6.2)]. Furthermore, if

the background/foreground fluctuations are not correlated with the groups in our
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sample, then the contamination is not expected to lead to any bias in our results, but

can increase the noise in our measurements. To test this, we divide the total sample

into three sub-samples, each containing groups in a ∼ 1/3 portion of the sky coverage,

and repeat the procedures to obtain the K̃500 for groups with |vr| > 80 km s−1 in each

of the three sub-samples. The results of the three sub-samples, shown as the blue

crosses in Fig. 6.1, are similar for all the mass bins. In addition, as shown in our test

using random samples (Fig. 6.2), any residual background/foreground fluctuations are

well below the signals we detect. These tests show that this type of contamination

does not have a significant impact on our results.

Yet another source of contamination comes from the emissions of the groups in

the observational wavebands, such as radio and infrared emissions and the tSZE.

Although we have attempted to subtract the tSZE from the observational data,

some residual may still exist. One unique property of the kSZE is that two simi-

lar groups with opposite peculiar velocities produce temperature fluctuations with

opposite signs, in contrast to the contaminating emissions mentioned above, which

should be independent of the sign of the peculiar velocity. To check that the signals

we detect are indeed produced by the kSZE, we divide the |vr| > 80 km s−1 sample

into two sub-samples, one with vr > 80 km s−1 and the other with vr < −80 km s−1,

and tune the model parameters independently for the two sub-samples, along with

the |vr| < 80 km s−1 sample, to achieve the best match to the data. The results

obtained for these two sub-samples are shown in Fig. 6.1 as the violet and green tri-

angles, respectively. The two give consistent K̃500 in all the mass bins. The fact that

the sub-samples of opposite peculiar velocities give similar K̃500 - M500 relations [i.e.

opposite signals in k defined in equation (6.4)] suggests that the contamination by

emission sources does not change our results significantly, and that the signals we

detect are the kSZE.
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Table 6.1. The K̃200-M200 relation.

Bin no. 1 2 3 4 5 6

logM200 [M�] 12.4 12.8 13.2 13.6 14.0 14.4

number of systems 23, 997 9, 795 3, 780 1, 287 346 58

K̃200 [10−2arcmin2]a 0.18 0.36 0.86 3.1 8.9 20

σ(K̃200) [10−2arcmin2]b 0.091 0.13 0.30 1.3 4.5 9.4

δ(K̃200) [10−2arcmin2]c 0.053 0.13 0.24 1.1 3.1 5.7

zr
d 0.057 0.078 0.10 > 0.12 > 0.12 > 0.12

cov(i, 1)e (0.039)2

cov(i, 2) -0.00061 (0.15)2

cov(i, 3) -0.0017 -0.0046 (0.48)2

cov(i, 4) -0.0052 -0.013 -0.035 (0.81)2

cov(i, 5) -0.051 -0.12 -0.34 -1.0 (5.9)2

cov(i, 6) -0.095 -0.22 -0.62 -1.9 -19 (13)2

Notes.
a. The average of the median values of the posterior distribution from the eight
samples used for our test of systematic effects.
b. The variance of the median values of the posterior distribution among the eight
samples.
c. The variance divided by

√
6 among the six independent sub-samples, each con-

taining groups with |vr| > 80 km s−1 in a ∼ 1/6 portion of the sky, to represent the
statistical uncertainty in the estimates.
d. The redshift where the median θ200 of halos equals the Planck beam size of 5
arcmin.
e. cov(i, j) is the covariance of K̃200 between i-th and j-th bins, calculated for the
sample of groups with |vr| > 80 km s−1, according to the bin number assignment in
the first column of the table. The values are in units of 10−4arcmin4.

However, there is still the possibility that a fraction of the signals we detect

actually comes from the gas outside the virial radii of halos that moves together with

the halos, given that the typical correlation length of the peculiar velocity field is

large and that projection effects are enhanced by the large beam size of the Planck.

This contamination comes in two ways: the contamination by the gas outside halos
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that lies perpendicular to the LOS to groups, and that lies along the LOS to groups.

To check the contamination of the first kind, we make a test in which the halos

in each mass bin are divided roughly into two sub-samples: the ‘resolved’ one and

the ‘unresolved’ one. Specifically, we define a redshift, zr, at which the median θ200

of the halos in a given mass bin is equal to the Planck beam size, 5 arcmin. The

values of zr for individual mass bins are listed in Table 6.1. The model parameters

for the two sub-samples, z < zr (‘resolved’) and of z > zr (‘unresolved’), are then

tuned independently to match the observational data. The results so obtained for the

‘resolved’ sub-samples are shown as the red crosses in Fig. 6.1. Note that the results

for the massive mass bins obtained here are not identical to those obtained from the

total sample, even though all groups are resolved in these mass bin. This is because

the model parameters for these groups are re-adjusted so that they, together with

those for lower mass groups, produce the best match to the data (see Table 6.1 for

the covariance between different mass bins). Clearly, the results obtained from the

‘resolved’ sample are in good agreement with those obtained from the total sample

within the uncertainty.

As an independent test, we have used numerical simulations to check this directly.

For the simulated halos, we estimate the LOS momentum of dark matter particles

within a cylinder of a given length lcyl and compare it with that within R200. We

choose dark matter particles rather than gas particles for this test because the gas

distribution may depend on particular feedback models implemented in simulations.

As one can see from Fig. B.1 in Appendix B, on average, the momentum of particles

outside R200 is about 20% or less of that inside R200. Note that the projected density

profile used in the MMF is obtained from the LOS integration of the three dimensional

profile that extends beyond R200 [see equation (6.5)], but suppresses the contribution

from large distances, which reduces the contamination by mass outside halos, as shown

in Appendix B. These test results, therefore, indicate that the LOS contamination by
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large-scale coherent motion in the cosmic density field does not affect our results by

a large amount.

As a further, more comprehensive test, we apply our method to the realistic

kSZE mock maps for the Planck , constructed based on the Magneticum simulation

(Dolag et al. 2016). A brief summary of the simulation and the details of the map

construction are given in Appendix B. As seen in Fig. B.2, our method recovers the

‘true’ flux directly measured from the simulation within the uncertainty.

Finally, our MMF uses equation (6.3) to model the gas profile, while the true gas

profiles may be different. To examine how our results are affected by the assumed

profile, we have made tests by increasing the values of rc by a constant factor, µ. We

found that our results do not change significantly as long as µ < 1.5. When µ becomes

larger than 1.5, the values of K̃500 obtained start to decrease, particularly for low-mass

groups. The test shows that our results are insensitive to the gas density profile, as

may be expected from the low angular resolution of the Planck data. However, this

also indicates that the current data are not able to provide significant constraints on

the details of the gas profiles around halos.

To summarize, all the eight samples we have analyzed above, namely all groups,

groups with |vr| > 80 km s−1, groups with vr > 80 km s−1, groups with vr < −80 km s−1,

groups with |vr| > 80 km s−1 in three parts of the sky, and groups with z < zr, give

consistent results (as summarized in Fig. 6.1), demonstrating that our detection of

the kSZE is reliable. For reference we list, in Table 6.1, the averages and variances of

K̃200 for individual halo mass bins obtained from these 8 samples. Since these samples

are not independent, the variances listed can only provide a measure of systematic

effects we have tested, but cannot be used to represent the statistical uncertainties

in the estimates of the averages of K̃200. To get some insight into the statistical

uncertainties in our estimates, we divide the groups with |vr| > 80 km s−1 into six in-

dependent sub-samples, each containing groups in a∼ 1/6 portion of the sky coverage,
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and obtain K̃200 versus halo mass for each of the six sub-samples. The uncertainties

in the estimates of K̃200 obtained from these six independent sub-samples are also

listed in Table 6.1. The sample-to-sample variations among the eight samples are

only modestly larger than the statistical uncertainties obtained from the six indepen-

dent sub-samples. Table 6.1 also lists the covariance matrix of K̃200 among the six

mass bins for groups with |vr| > 80 km s−1, obtained by drawing from the posterior

distribution and then by calculating,

cov =

〈(
K̃200 − 〈K̃200〉

)(
K̃200 − 〈K̃200〉

)T
〉

(6.15)

where ‘〈· · ·〉’ denotes the mean. As expected from the nature of our simultaneous

matching, the off-diagonal elements are all negative. To estimate the joint signal-to-

noise from the six mass bins, we use the covariance matrix to define a multivariate nor-

mal distribution function, and calculate the cumulative probability of null detection.

The probability of our measurements thus calculated corresponds to a significance

level of about 6.3σ.

The results with the power-law model [see equation 8.8] for all the eight samples

we have analyzed above are shown as the colour points in Fig. 6.2. The data points are

clustered in a region (A,α) ∈ (0.015±0.0031, 1.12±0.55). The dispersion among the

eight samples is comparable to that of A at a given α obtained from the 200 random

samples, indicating that the errors in the estimates are dominated by fluctuations in

the background and foreground. With this dispersion to represent the uncertainty in

the results, our detection is at a level of more than 5σ, consistent with the estimate

from the binned data given above.

6.4.3 The gas fraction and temperature

Fig. 8.2 shows the gas fraction within R200 obtained from the best-fit parameters

and the assumed gas profile. The data points are the averages of and the dispersion
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Figure 6.3. The ratio between gas mass and halo mass within R200 as a function
of halo mass inferred from the observed K̃500 - M500 relations. Data points and error
bars are the averages of, and the dispersion among, all the eight samples, respectively.
The shaded band is based on the ellipse shown in Fig. 6.2. The dashed line shows the
universal baryon fraction of fB = 0.16. The dot-dashed line represents the gas mass
fraction inferred from the tSZE by Lim et al. (2018) assuming the gas to be at the
virial temperature, with the shaded band indicating the typical uncertainties in the
data. The dotted line shows the mass fraction in stars Lim et al. (2017a) and cold
gas (Popping et al. 2014), with the shaded band indicating the typical uncertainties
in the data.
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among the eight samples (see Table 6.1 for the averages and the dispersion for each

mass bins), while the shaded band contains the predictions of the power laws enclosed

by the ellipse in Fig. 6.2. The inferred gas fraction is consistent with the universal

baryon fraction, and much higher than the baryon fraction in stars and cold gas

(shown as the dotted line).

Recently, Lim et al. (2018) applied a MMF method similar to the one used here

to the Planck y-map to measure tSZE produced by galaxy groups using the nearly

all-sky group catalog of Lim et al. (2017b), which was constructed by applying the

halo-based group finder to four large redshift surveys. The gas fraction inferred from

the tSZE assuming the virial temperature, Tvir = µmpGM200/2kBR200, with µ = 0.59

the mean molecular weight, is shown in Fig. 8.2. This fraction is much lower than

that given by our kSZE data except for the most massive groups, indicating that

the average temperature of the gas responsible for the kSZE in lower-mass groups

is much lower than the virial temperature. The effective temperature, estimated by

combining the gas mass obtained from the kSZE and the thermal energy content given

by the tSZE is shown as a function of halo mass in Fig. 8.3. The derived effective

temperature is about 105-106K for halos with M200 ≤ 1013.5M�, and much lower than

the corresponding virial temperatures. This relatively low temperature has its origin

from the relatively low pressure measured in Lim et al. (2018), and we refer the

reader to that paper for a detailed discussion about the comparison with other tSZE

measurements.

The temperature obtained here can be compared with that obtained from X-

ray observations. As shown in Pratt et al. (2007), the gas temperature in clusters of

galaxies appears to decline in the outer parts. Since the effective temperature inferred

from SZE is sensitive to the low-density gas in the outer parts, this may partly explain

the lower temperature found here than that inferred from X-ray observations. In

addition, as shown in Wang et al. (2014), for a given halo mass, the scatter in the
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X-ray luminosity is very large; at M200 ∼ 1013.5−14M�, the scatter is more than one

order of magnitude (see their figure 7). As our SZE measurement is the average over

all systems of a given halo mass, the thermal content inferred from it is expected to

be lower than that obtained from X-ray selected samples (e.g. Planck Collaboration

X 2011).

6.5 Summary and conclusion

We have examined the kinetic Sunyaev-Zel’dovich effect (kSZE) from gas in dark

matter halos associated with galaxy groups as a function of halo mass down to

log(M500/M�) ∼ 12.3. Our analysis uses the stacking of about 40, 000 galaxy groups

to extract the kSZE from the Planck temperature maps in three different frequency

bands, and employs the multi-frequency matched filter (MMF) technique to maxi-

mize the signal-to-noise ratio. The MMF are matched simultaneously for individual

groups so as to minimize projection effects of halos along the same LOS. Accurate

reconstructed peculiar velocities of the groups are used so that we can convert reliably

the observed kSZE to the amounts of ionized gas associated with galaxy groups. A

number of tests are made to examine the uncertainties in our results, from errors in

the reconstructed peculiar velocities, from residual background/foreground fluctua-

tions, from contamination by the tSZE and emissions from galaxy groups, from the

large beam size of Planck observation, from contamination by large-scale coherent

motion, and from the gas density profile adopted in the MMF. We found that our

results are robust against these potential sources of uncertainties. In a forthcoming

paper, we will check in detail the significance of these uncertainties by applying the

methods in our analysis and in the literature to the SZE light-cone maps generated

from hydrodynamic simulations.

The strength of the kSZE as a function of halo mass is found to be consistent with

the ‘self-similar’ model, in which the baryon fraction is independent of halo mass,
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suggesting that the ‘missing baryons’ on halo scales are found. Combined with the

tSZE measured for galaxy groups by Lim et al. (2018), our results indicate that the

gas temperatures in low-mass halos are much lower than the corresponding halo virial

temperatures. This suggests that it is the low temperature of the gas, not the total

amount of baryons, that is responsible for the low thermal energy contents in low-mass

halos found in tSZE and X-ray observations. Our results, therefore, provide direct

support to the hypothesis that the missing baryons in galaxy groups are contained in

the WHIM with temperatures between 100, 000 and one million Kelvin.

Our results also demonstrate the potential of using SZE to study both the circum-

galactic media (CGM) and the galaxy formation processes that produce them. Such

studies have advantages over absorption line studies, in that they are not limited to

a small number of lines of sight, and that gas metallicity and ionization states are

not needed to obtain the total gas mass. In the future, when high-resolution SZE

data are available, the same analysis as carried out here can be used to constrain

not only the total amount of ionized gas associated with galaxy groups (dark matter

halos), but also to investigate the density and temperature profiles of the gas around

them. One may also use galaxy groups with different star formation and/or AGN

activities to study how the ionized gas distribution is affected by these activities.

Clearly, the synergy between the SZE and observations of galaxy systems in other

wavebands should be exploited in the future to provide detailed information both

about the WHIM and about the galaxy formation processes that produce them.
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CHAPTER 7

EXPLORING THE THERMAL ENERGY CONTENTS OF
THE INTERGALACTIC MEDIUM WITH THE

SUNYAEV-ZEL’DOVICH EFFECT1

We examine the thermal energy contents of the intergalactic medium (IGM) over

three orders of magnitude in both mass density and gas temperature using thermal

Sunyaev-Zel’dovich effect (tSZE). The analysis is based on Planck tSZE map and the

cosmic density field, reconstructed in the SDSS DR7 volume and sampled on a grid

of cubic cells of (1h−1Mpc)3, together with a matched filter technique employed to

maximize the signal-to-noise. Our results show that the pressure - density relation

of the IGM is roughly a power law given by an adiabatic equation of state, with an

indication of steepening at densities higher than about 10 times the mean density

of the universe. The implied average gas temperature is ∼ 104 K in regions of mean

density, ρm ∼ ρm, increasing to about 105 K for ρm ∼ 10 ρm, and to > 106 K for

ρm ∼ 100 ρm. At a given density, the thermal energy content of the IGM is also

found to be higher in regions of stronger tidal fields, likely due to shock heating by

the formation of large scale structure and/or feedback from galaxies and AGNs. A

comparison of the results with hydrodynamic simulations suggests that the current

data can already provide interesting constraints on galaxy formation.

1 THE CONTENTS OF THIS CHAPTER ARE PUBLISHED IN LIM ET AL. 2018, MNRAS,
480, 4017.
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7.1 Introduction

The baryon mass that has been identified by current observations in galaxies and

galaxy systems in the z ∼ 0 universe accounts for about 2% of the critical density

(e.g. Fukugita et al. 1998, Fukugita & Peebles 2004), which is about one third of the

cosmic baryon abundance predicted by the primordial nucleosynthesis (e.g. Olive et

al. 2000) and required to explain the fluctuations in the cosmic microwave background

radiation (CMB) (e.g. Hinshaw et al. 2013, Planck Collaboration XIII 2016). Thus,

a large fraction of baryons must be contained in the intergalactic medium. Indeed,

observations of the Lyα forest at low-z suggest that about 30 − 40% of the cosmic

baryons may be hidden in the forest (e.g. Danforth & Shull 2008), but the results

are still very uncertain, because the sample of low-z forest is small and because of

uncertainties in the ionization correction that is needed to obtain the total hydrogen

density.

Cosmological simulations have shown that the cosmic baryons in the low-z universe

can exist in a variety of forms. In addition to stars and cold gas that are associated

with galaxies, some baryons are predicted to be contained in the hot gaseous halos

that are produced by the collapse of dark matter halos and feedback of galaxy for-

mation. Furthermore, many gas simulations demonstrated that a large fraction of

the baryons in the low-z universe actually reside in a diffuse warm-hot intergalactic

medium (WHIM) (e.g. Cen & Ostriker 1999, Daé et al. 1999, 2001), with tempera-

ture in the range between 105 and 107 K. This medium is generated by a combination

of feedback from galaxy formation and shocks accompanying the formation of the

large-scale structure (e.g. Sunyaev & Zeldovich 1972, Nath & Silk 2001, Furlanetto

& Loeb 2004, Rasera & Teyssier 2006).

Clearly, a comprehensive investigation of all gas components is required to have

a complete understanding of how galaxies and larger scale structure form and evolve

in the universe. In particular, the study of the WHIM, which is potentially the
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dominating gas component in the low-z universe but yet poorly understood so far,

is important not only for obtaining a complete census of the cosmic baryons, but

also for understanding how galaxies and structure formation interact with the gas

component in the universe. Indeed, observations of Lyα absorption systems have

revealed that the intergalactic medium (IGM) at z ∼ 0 is significantly enriched in

metal, indicating that a significant fraction of baryons may have been ejected from

galaxies and moved to the IGM by dynamical processes, such as winds driven by

stellar and AGN feedback or by ram-pressure stripping (e.g. Aguirre et al. 2001). In

addition, the similarity in the metallicities of the intra-cluster media (ICM) observed

for different clusters suggests that the formation of the ICM is perhaps dominated

by inflow of the gas from the large scale cosmic web (e.g. Werner et al. 2013, Ettori

et al. 2015, McDonald et al. 2016, Mantz et al. 2017). Both of these demonstrate

the importance of the interaction between galaxies and gas in shaping the gas media

we observe. However, the detection of the WHIM in observations is challenging. At

a temperature of T ∼ 105-107 K, the gas is almost completely ionized, making it

difficult to detect in absorption. The low density of the WHIM also makes it difficult

to detect in UV and X-ray emission.

With the advent of large surveys of the cosmic microwave background (CMB), a

promising new avenue is opened up. As the CMB photons travel to reach us, they

are scattered by free electrons associated with hot gas via Compton scattering. This

produces a change in the energy distribution of the CMB photons, an effect referred

to as the thermal Sunyaev-Zel’dovich effect (tSZE; Sunyaev & Zeldovich 1972). The

tSZE is a measure of the projected electron pressure along the line of sight, and

so it provides a way to probe the thermal energy content of the ionized gas in the

universe. Compared to X-ray emissions, the tSZE is more sensitive to diffuse gas,

making it more suitable for probing relatively low-density media, such as WHIM. It
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also complements absorption studies of highly ionized gas, as ionization correction

and gas metallicity are not needed to obtain the total gas content.

Great amounts of effort have been made to measure the tSZE from observational

data. Planck Collaboration XI (2013) used the Planck multi-frequency CMB temper-

ature maps and a sample of locally brightest galaxies to study the tSZE produced by

galaxy systems down to a halo mass ∼ 4 × 1012 M�. Remarkably, they found that

their results are consistent with the self-similar model in which the hot gas fraction

in halos is independent of halo mass. A similar conclusion was also reached by Greco

et al. (2015) using a similar method. Tanimura et al. (2017) and de Graaff et al.

(2017) reported the detection of warm-hot gas in cosmic filaments by cross-correlating

filaments identified by galaxy pairs with the Planck tSZE map. By cross correlating

the Planck tSZE map with the mass density map obtained from the gravitational

lensing data of the CFHTLenS survey, Van Waerbeke et al. (2014), Ma et al. (2015),

Hojjati et al. (2015) found significant correlations between the gas and dark matter

distributions. Finally, Hill & Spergel (2014) reported a significant detection of cross-

correlation between the Planck CMB lensing potential map and the Planck tSZE

map. All these indicate that tSZE provides a powerful way to investigate the gas

distribution in the universe.

Recently, Lim et al. (2018a, b) used the group catalogs of Yang et al. (2007) and

Lim et al. (2017) to extract, from the Planck CMB observation, both the tSZE and

kinematic SZ effects (kSZE) of the warm-hot gas associated with halos of different

masses. They employed the matched filter technique (Haehnelt & Tegmark 1996,

Herranz et al. 2002, Melin et al. 2005, 2006) to maximize the signal-to-noise ratio.

In particular, they matched the filter simultaneously to all galaxy groups to constrain

the corresponding signals jointly as a function of group mass, so as to minimize

projection effects for groups lying closely in the sky. Combining the tSZE and kSZE,

they found that the total amount of the baryons associated with dark matter halos
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are consistent with the universal baryon fraction, even in low-mass halos, but that

the gas temperature is much lower than the virial temperature in low-mass halos.

Various tests performed demonstrate that the method is very powerful in extracting

the SZE signals effectively and reliably.

In this paper, we study the thermal contents of the IGM at z ∼ 0, extending

the analyses of Lim et al. (2018a, b) by going beyond scales of dark matter halos.

Specifically, we constrain the pressure of the gas in different environments, using the

total density field reconstructed by Wang et al. (2009, 2016) in the Sloan Digital Sky

Survey Data Release 7 (SDSS DR7) volume and using the Planck tSZE map as the

observational constraint. As we will see, our analysis is able to provide constraints

on the thermal energy contents of the WHIM in regions covering almost three orders

of magnitude in mass density. In particular, our results are shown to be capable

of providing constraints on models of galaxy formation. The outline of this paper

is as follows. We describe the data used in our analysis in Section 7.2, and our

method to constrain the gas pressure in Section 7.3. We present our main results and

comparisons with results from numerical simulations in Section 7.4. We summarize

and conclude in Section 7.5.

7.2 Data

7.2.1 The Planck y-map

The temperature change in the CMB spectrum by the tSZE is given by

(
∆T

TCMB

)
= g(x)y ≡ g(x)

σT

mec2

∫
Pedl, (7.1)

where y is the Compton parameter, g(x) = x coth(x/2)−4 is the conversion factor at

a given x ≡ hν/(kBTCMB), TCMB = 2.7255 K, σT is the Thompson cross-section, me is

the electron rest-mass, c is the speed of light, Pe = nekBTe is the electron pressure with
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ne the free electron density, and dl is the path length along each line-of-sight (LOS).

The Planck survey (Tauber et al. 2010, Planck Collaboration I 2011) is an all-sky

observation of the CMB in nine frequency bands from 30 to 857 GHz, with angular

resolutions ranging between 5 and 31 arcmin. We use the Planck MILCA (Modified

Internal Linear Combination Algorithm; Hurier et al. 2013) all-sky tSZ Compton

parameter map (Planck Collaboration XXII 2016), also known as the MILCA y-map,

which is part of the Planck 2015 data release 2. The MILCA y-map is constructed from

the full mission data set of the Planck, using a combination of different frequency maps

to minimize the primary CMB fluctuations and the contamination from foreground

sources. The details about the y-map construction can be found in the original papers.

We mask the brightest 40% of the sky to limit the Galactic foreground contamination,

by using the corresponding mask provided in the Planck 2015 data release. We also

apply the mask for point sources, provided in the same data release, to reduce the

contamination from radio and infrared sources.

As a test, we have also applied the same analysis to the NILC (Needlet Indepen-

dent Linear Combination; Remazeilles et al. 2011) y-map (Planck Collaboration XXII

2016), which treats dust contamination differently than the MILCA, as well as to the

three low HFI channel (100, 143 and 217 GHz) maps, which are less contaminated

by dust emission. In both cases, no significant change is found in our results.

7.2.2 The dark matter density field in the SDSS DR7 volume

Another set of data that we use for our analysis is the reconstructed cosmic density

field in Sloan Digital Sky Survey Data Release 7 (SDSS DR7; Abazajian et al. 2009)

volume given by Wang et al. (2016) (W16). The reconstruction uses galaxy groups

selected with the halo-based group finder (Yang et al. 2005, 2007) to represent dark

matter halos. Extensive tests using mock galaxy redshift surveys constructed from the

2https://pla.esac.esa.int
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conditional luminosity function (CLF) model (e.g. Yang et al. 2003, van den Bosch

et al. 2003) and semi-analytical models (Kang et al. 2005) revealed that this group

finder is very successful in grouping galaxies into their common dark matter halos

(see Yang et al. 2007). By partitioning the SDSS volume into domains associated

with individual groups, and by modelling the mass distribution in each domain using

profiles calibrated with N -body simulations, W16 reconstructed the real space density

field within the entire SDSS DR7 volume. W16 used groups of halo masses Mh ≥

1012h−1M� which are complete for z ≤ 0.12. The reconstruction was restricted to the

contiguous region of the SDSS DR7 in the Northern Galactic Cap of ∼ 7, 000 deg2.

While W16 provides the density field smoothed on various scales, we use the density

field smoothed on 1h−1Mpc for our analysis.

7.2.3 Hydrodynamic simulations for comparison

To compare with our results, we use two recent cosmological hydrodynamic sim-

ulations. The first is Illustris (Nelson et al. 2015), which follows the evolution of the

simulated Universe in a box of (106.5 Mpc)3, implementing physical processes such

as radiative cooling, star formation, and various feedback processes. The free pa-

rameters in sub-grid models were constrained by observations as well as simulations

of higher resolutions. We use Illustris-1, their flagship run, which has the highest

mass resolution, with gas particle mass of 1.6 × 106 M�. The simulation adopted

WMAP9 cosmology, with Ωm = 0.273, ΩΛ = 0.727, h = 0.704, and a baryon fraction,

ΩB/Ωm = 0.165 (Hinshaw et al. 2013).

Another simulation we use is the Evolution and Assembly of GaLaxies and their

Environments (EAGLE; Schayet et al. 2015, Crain et al. 2015, McAlpine et al.

2015). EAGLE implemented sub-grid physics models for cooling, star formation, and

stellar and AGN feedback to evolve different types of particles, such as gas, stars,

dark matter, and black holes. The parameters for these models are tuned to match
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Figure 7.1. The relations between the electron pressure and mass density for grid-
cells of 1 (h−1Mpc)3 obtained from Illustris and EAGLE. The solid lines show the
mean relations, and the gray bands show the 1σ and 2σ dispersion obtained from
Illustris. The thin lines show the mean relations obtained for the three sub-samples
of the grid-cells according to the ranking in the tidal field strength, t1, at given density,
obtained from Illustris.

a set of observations, such as the stellar mass function and stellar mass - black hole

mass relation at z ∼ 0. EAGLE provides a number of simulations assuming different

model parameters and box sizes. We present results based on the ‘RefL0100N1504’

run, their fiducial simulation, which has the largest box size, (100 Mpc)3, among all

the EAGLE runs. Our tests showed that the results used for our comparisons were

not significantly affected if other simulations were used. EAGLE assumes the Planck

cosmology, (Ωm,ΩΛ, h) = (0.307, 0.693, 0.678) (Planck Collaboration XIII 2016).

Fig. 7.1 shows the pressure - density relation averaged over grid-cells of 1 (h−1Mpc)3

in the simulations. The cell size chosen here is to match the size adopted in our anal-
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Figure 7.2. The ionized gas mass fraction, normalized by the cosmic mean baryon
fraction, in grid-cells as a function of mass density as obtained from Illustris. The
thick line shows the mean relation, while the shaded region indicates the 1σ dispersion.
For comparison the dashed line shows the average total baryon fraction as a function
of mass density.

ysis. The mean relations, presented by the thick solid lines, have slopes roughly

consistent with the adiabatic equation of state, Pe ∼ ρ5/3 for both simulations. How-

ever, the average pressure at ρm > ρm predicted by Illustris is about two to three

times as high as that predicted by EAGLE, presumably because of cosmic variance

and of the differences in the feedback models adopted in the two simulations. The

scatter in pressure at a given density (the gray bands showing the 1σ and 2σ disper-

sion given by Illustris) is also very large. This large scatter motivates us to explore

the possibility of a second parameter, in addition to density, that can affect the gas

pressure (see §7.2.4).
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On the scale of a grid cell, the distribution of baryons is expected to approximately

follow that of the dark matter. Since most of the baryons are expected to be in the

state of diffuse ionized gas, the total amount of ionized gas in a grid cell is roughly

that given by the universal baryon fraction. Fig. 7.2 shows that this is indeed the

case, at least in simulations. This result will be used to interpret the tSZE obtained

from the observational data.

7.2.4 The large-scale tidal field

We have tested a number of quantities available from the simulation to see how

they affect the gas pressure. These include stellar mass, star formation rate, black

hole mass, mean velocity, velocity dispersion, the fluctuation in dark matter density,

distance to nearest halos, fraction of mass contained in halos, and local tidal field,

all estimated for individual grid cells that are used to sample the density field. We

found that, among these quantities, the large-scale tidal field is the most significant

second parameter that can change the gas pressure on top of the dependence on local

dark matter density.

In our analysis, we tested two definitions of large-scale tidal field, one based on

dark matter halos and the other based on the mass density field. We find that both

definitions of the tidal field give practically the same results in our analysis [see Wang

et al. (2011) for details of how the two tidal fields are correlated]. In what follows, we

only present results using the halo-based tidal field. The estimate of the halo-based

tidal field is based on the halo tidal force along a direction t exerted on the surface

of a sphere of diameter 1h−1Mpc that approximates a grid-cell, normalized by the

self-gravity of the matter inside the grid-cell,

f(t) =

∑
iGMiRg(1 + 3 cos 2θi)/r

3
i

2GMg/R2
g

(7.2)
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where the summation is over all the halos, Mi is the mass of halo i, Rg = 0.5h−1Mpc

is the radius of the sphere that approximates the grid-cell, Mg is the mass enclosed

within the grid-cell in question, ri is the separation between the center of the grid-cell

and the i-th halo, and θi is the angle between t and ri (e.g. Wang et al. 2011). So

defined, the tidal field measures the total tidal force exerted on a grid-cell normalized

by its self-gravity. The ellipsoid of the local tidal field is then used to compute the

eigenvalues t1, t2, and t3 (t1 ≥ t2 ≥ t3) of the halo tidal tensor. We use t1 to describe

the strength of the halo tidal field at any given grid-cell of 1 (h−1Mpc)3.

Fig. 7.1 shows that grid-cells with higher t1 have higher mean pressure at a given

density in the Illustris simulation, and the result for the EAGLE simulation is quali-

tatively the same. Apparently, the formation of large scale structure and/or intense

feedback in regions of strong tidal field can heat the IGM on large scales.

7.3 Methods

7.3.1 The matched filter technique

Extracting the tSZE signals reliably requires to optimize the signal-to-noise, since

the signal is generally more than an order of magnitude lower than other sources,

such as the primary CMB anisotropy, Galactic foreground, and cosmic infrared back-

ground. Thus, using a simple aperture photometry can lead to large uncertainties

in the results (e.g. Melin et al. 2006). Here, we employ the matched filter (MF)

technique (Haehnelt & Tegmark 1996, Herranz et al. 2002, Melin et al. 2005, 2006),

which is designed to minimize source confusions and contamination, and to maximize

the signal-to-noise by imposing prior knowledge of the signals and the noise power

spectra. In the MF technique, the Fourier transform of the filter that optimizes the

signal-to-noise is given by

F̂ (k) =

[∫
|τ̂(k′)B̂(k′)|2

P (k′)

d2k′

(2π)2

]−1
τ̂(k)B̂(k)

P (k)
(7.3)
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where, in our application, τ̂(k) is the Fourier transform of the projected electron

pressure, B̂(k) is the Fourier transform of the Gaussian beam function that mimics

the convolution in the Planck observation with the FWHM of 5 arcmin, and P (k) is

the noise power spectra. Because the MILCA y-map is already cleaned of the primary

CMB anisotropy, P (k) = Pnoise where Pnoise is the power spectrum of the noise map

for the MILCA y-map, as provided in the Planck data release. Both the shape

and amplitude of the projected electron pressure profile, τ̂(k), are simultaneously

constrained by matching the filters to all pixels, as to be described in details below.

7.3.2 The pressure - density relation

We assign a value of electron pressure to each of the grid-cells by assuming a

simple double power-law relation between the reconstructed matter density field and

the pressure:

Pe =


A× (ρm/ρm,0)α1 , if ρm ≤ ρm,0

A× (ρm/ρm,0)α2 , if ρm > ρm,0.

(7.4)

The pressure field is smoothed with a Gaussian kernel of radius 1h−1Mpc, and is

integrated along each line of sight to obtain the predicted y-parameters for all the

pixels in in the Planck y-map. The predicted y-parameter profile at each pixel is used

in equation (8.3) to obtain the corresponding filter, and the filters for all the pixels

are matched to the Planck map. Finally, we perform the Monte Carlo Markov Chain

(MCMC) to constrain the parameters of the double power-law relation so as to yield

the best overall match between the filters and the observed y-map, based on the sum

of the χ2 over all the pixels. We assume a constant background contribution from free

electrons outside the volume in which the density reconstruction was made, and the

background level is treated as a free parameter to be constrained with the MCMC.

This is expected to be valid as long as the structures lying beyond the boundary of
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Table 7.1. The medians and 68% ranges (95% ranges, in parentheses) of the
posterior distribution of the parameters in the double power-law model. The
values are obtained from the marginalized distributions of the parameters.

Samples Aa ρm,0 / ρm α1 α2 Pe(ρm = ρm) b

all cells 20
+42 (65)
−9.5 (13) 3.0

+0.90 (1.6)
−0.31 (0.48) 1.7

+0.12 (0.27)
−0.41 (0.57) 2.2

+0.18 (0.26)
−0.15 (0.22) 2.6

+1.7 (4.0)
−1.5 (1.8)

high t1 25
+31 (70)
−7.3 (10) 1.1

+2.8 (3.2)
−0.35 (0.57) 1.9

+0.27 (0.38)
−0.63 (0.77) 1.8

+0.20 (0.29)
−0.31 (0.42) 20

+23 (61)
−5.8 (10)

mid t1 20
+33 (82)
−9.0 (11) 2.1

+3.5 (4.3)
−0.89 (1.6) 1.7

+0.58 (0.72)
−0.39 (0.51) 1.9

+0.29 (0.38)
−0.08 (0.17) 5.8

+2.8 (4.2)
−2.9 (3.7)

low t1 2.6
+3.9 (8.9)
−1.1 (1.4) 1.4

+2.7 (3.4)
−0.71 (0.97) 1.8

+0.36 (0.49)
−0.45 (0.63) 2.2

+0.19 (0.24)
−0.41 (0.61) 1.3

+1.2 (2.7)
−0.60 (0.80)

Notes.
a. The values are in units of 10−20 kg m−1 s−2.
b. The pressure at the mean density obtained from the posterior prediction of the
double power-law model, in units of 10−20 kg m−1 s−2.

the reconstruction volume are not correlated with the structures within the volume.

In this case, the fluctuations of the background do not lead to bias, but increase noise.

Since the cross-correlation of the tSZ signals with the residual contamination by the

Cosmic Infrared Background (CIB) is found to be insignificant (Planck Collaboration

XXII 2016), the assumption of a constant background is expected to be able to remove

any residual CIB contamination in a statistical sense.

7.4 Results

7.4.1 The pressure - density relation

Fig. 8.4 shows the pressure - density relation obtained from the data. The orange

band shows the 1σ scatter based on the uncertainties of the constrained parameters

given by the MCMC, representing the dispersion in the relation. For reference, we list,

in Table 7.1, the medians, 68, and 95 percentile ranges obtained from the marginal-

ization of the posterior distributions of the parameters. Since the overall relation is

roughly a single power law, the two parameters in the double power law model, A

and ρm,0, are highly degenerate. To describe the overall amplitude of the relation, we
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Figure 7.3. The pressure - density relation, compared with the simulations. The red
line shows the mean relation obtained with our method, with the orange band showing
the 1σ dispersion estimated from the uncertainties in the constrained parameters, as
given by the MCMC sample. The red dashed lines are the relations constrained
separately for the two nearly equal-sized sub-samples of the grid-cells according to
the sky region, one including the Sloan Great Wall (Gott et al. 2005), and the
other not. The black and green lines show the mean relations from Illustris and
EAGLE, respectively. Also, the mean relation obtained from shuffling the grid-cells
(dot-dashed), with the band showing the relations from 50 realizations, is compared
with that obtained from Illustris (orange dashed).

therefore also list, in the last column of the table, the median value, as well as the 68

and 95 percentile ranges, of the pressure measured at the mean density.

The slope of the relation for low-density region is close to that expected from an

adiabatic equation of state, Pe ∼ ρ5/3, but the relation is slightly steeper for dense

regions. This indicates that gas in the dense regions may be heated by additional
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sources, such as supernova and AGN feedback from galaxies residing in these regions,

and shocks associated with the formation of large scale structure. As a null test, we

randomly shuffle the grid-cells and apply the same method to constrain the relation.

The mean relation, plotted as the thick blue line, and the relations from a total of

50 realizations, plotted as the sky-blue band, are all flat, as expected from random

fluctuations. The mean pressure obtained from shuffling the grid-cells is determined

by the distribution of the cells in density combined with the pressure - density re-

lation. This demonstrates that our method is able to detect the true relation be-

tween the gas and dark matter distribution. Note that the scatter in the constrained

pressure - density relation is similar to that among the random samples, indicating

that the uncertainty in the constrained relation is dominated by fluctuations of the

background/foreground. Finally, we divide the grid-cells into two nearly equal-sized

sub-samples according to the sky region they belong to, one including the Sloan Great

Wall (Gott et al. 2005) and the other not, and constrain the relation separately for

the two sub-samples. The mean relations obtained for the two sub-samples, shown by

the red dashed lines, are within the 1σ scatter band obtained for the entire sample,

indicating that cosmic variance does not affect our results significantly.

We find that using a different smoothing scale, e.g. 2h−1Mpc, leads to no signifi-

cant change in our results. Choosing an even larger smoothing scale leads to bigger un-

certainties in the constrained relations, because of the decreased number of grid-cells.

Note that the uncertainty in the reconstructed peculiar velocities is about 100 km s−1

(see W16), which corresponds to ∼ 1h−1Mpc in real-space positions. Thus, choosing

a smoothing scale smaller than ∼ 1h−1Mpc may not be appropriate.

7.4.2 The temperature - density relation

Assuming that the ionized gas mass fraction with respect to the total mass within

the grid-cells approximately equals the cosmic mean baryon fraction, as is motivated
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Figure 7.4. The temperature - density relation derived assuming ρB,ion/ρm ∼
ΩB/Ωm = 0.16 and ne = ρB,ion · [(1 + fH)/2mp], where ρB,ion is the ionized gas density,
fH = 0.76 is the hydrogen mass fraction and mp is the proton mass. The red line
shows the mean relation obtained with our method, with the orange band showing
the 1σ dispersion estimated from the uncertainties in the constrained parameters.
The dotted and dashed lines show the mean relations from Illustris and EAGLE,
respectively.

by the simulation results shown in Fig. 7.2, one can convert the observed pressure -

density relation to a relation between gas temperature and mass density. Specifically,

we assume ρB,ion/ρm ∼ ΩB/Ωm = 0.16 and ne = ρB,ion · [(1 + fH)/2mp], where ρB,ion is

the ionized gas density, fH = 0.76 is the hydrogen mass fraction and mp is the proton

mass, to obtain the electron temperature. The mean temperature - density relation

thus derived for the entire observational sample is shown in Fig. 7.4 by the solid line,

along with the 1σ dispersion estimated from the uncertainties in the constrained

parameters. As one can see, the average temperature is about 104 K in regions of
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Figure 7.5. The pressure - density relations obtained for the three sub-samples of
the grid-cells according to their ranking in the tidal field strength, t1, at given density.
The red lines in both panels show the mean relations obtained from the data, which
are compared with the results of Illustris in the left panel and that of EAGLE in
the right panel. For each case, the results are normalized by the corresponding mean
relation shown in Fig. 8.4.

mean density, ρm ∼ ρm, increasing to ∼ 105 K for ρm ∼ 10 ρm, the typical density for

cosmic filaments and sheets (e.g. Shen et al. 2006), and to > 106 K for ρm ∼ 100 ρm,

the typical density of dark matter halos.

7.4.3 Dependence on local tidal field

To examine how the pressure - density relation depends on large-scale environ-

ment, we divide the grid-cells into three sub-samples, each containing a third of the

total number of cells at the density in question, according to the ranking in the halo

tidal field strength, t1. We then constrain the pressure - density relations for the

three sub-samples jointly, assuming different sets of the parameters for each of the

sub-samples The results are shown in Fig. 8.5, with the pressure - density relation for

each sample normalized by the mean relation shown in Fig. 8.4. For reference, we also
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list, in Table 7.1, the posterior model parameters and the predictions of the pressure

at the mean density. It is clear that, for a given density, the electron pressure is higher

in regions of stronger tidal field. As shown in Table 7.1, the pressures at the mean

density obtained from the three samples, which measure the overall amplitudes of

the corresponding pressure-density relations, are significantly different. However, the

shapes of the relations are not very different among the sub-samples. This result is

consistent with that obtained from gas simulations, as we will see in §7.4.4. The two

breaking points in the relations obtained from the data arise because the relations for

the sub-samples have different values of ρm,0 from that for the total sample.

As mentioned in §7.2.4, we have tested a number of environmental quantities other

than the tidal field as the second parameter that affects the thermal contents of the

IGM. Among them, the distance of a grid-cell to the nearest massive halo is found

to be nearly as a good indicator as the tidal field both from the simulation and from

the application of our method to the observation. This is not surprising, as the local

tidal field is strongly correlated with the presence of massive structures nearby.

7.4.4 Comparisons with simulations

In this subsection, we make comparisons of our results with gas simulations.

Fig. 8.4 shows that the pressure - density relation obtained from the data roughly

matches those given by the simulations. The result obtained from shuffling the grid-

cells is also found to be very similar to the total average pressure from the simulations,

as indicated by the horizontal dashed line in Fig. 8.4. In more detail, the observed

pressure - density relation matches well with that given by EAGLE in both amplitude

and shape, but Illustris significantly over-predicts the gas pressure in the intermediate

density range from ∼ ρm to ∼ 10 ρm. As mentioned earlier, the difference between

Illustris and EAGLE is likely caused by the different implementations of feedback

processes adopted in the two simulations. Indeed, as shown in Vogelsberger et al.
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(2014), the strong AGN feedback adopted in Illustris can heat a significant fraction

of the IGM at large distances from over-dense regions, which may explain the high

pressure seen in the intermediate density range. Our results, however, suggest that

such strong feedback may not be favored by the data.

The dotted and dashed lines in Fig. 7.4 are the average temperatures obtained

directly from Illustris and EAGLE, respectively. Thus, if the ionized baryon fraction

is approximately equal to the universal baryon fraction on scales of ∼ 1h−1Mpc in the

real universe, as is assumed in deriving the temperature - density relation from the

data, then the average IGM temperature predicted by Illustris in the density range

(1− 10)ρm is too high. The prediction of EAGLE is consistent with the observation,

given the uncertainty in the data. This again shows that the data are already capable

of providing interesting constraints on models of galaxy formation.

Finally, in Fig. 8.5, we compare observation and simulation results in their depen-

dence on the strength of local tidal field. Here the simulation results are normalized

by the corresponding mean relations shown in Fig. 8.4. The simulation results are

consistent with the observational data in that the gas pressure at a given mass den-

sity is higher in regions of stronger tidal field. We have checked that the average

ionized gas fraction is quite independent of the tidal strength in the simulations, and

so the higher pressure in stronger tidal field is due to higher gas temperature rather

than higher gas density. The dependence on the tidal field predicted by Illustris is

much stronger than that by EAGLE. If shock heating by gravitational collapse has

similar effects in both simulations, the difference in the tidal field dependence should

then be a result of the different prescriptions of feedback used in the two simulations.

The feedback effects on the IGM are expected to depend strongly on the local tidal

field. For example, a cell with relatively low density but high t1 must have some

massive structures nearby to produce the strong tidal field. Such massive structures

are also where strong stellar/AGN feedback is produced. In fact, as can be seen from
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figure 4 in Vogelsberger et al. (2014), feedback effects on the IGM are clearly more

important in the neighborhoods of more massive structures, where the tidal field is

also stronger. It is interesting to note that, in both simulations, the strongest tidal

field dependence occurs in regions with ρm ∼ ρm, although the signal is rather weak,

indicating that the gas temperatures in such regions may be affected the most by

feedback from nearby structures. The tidal field dependence obtained from the data

is weaker than that predicted by Illustris but stronger than that by EAGLE. We

have estimated the velocity dispersion of dark matter particles, σ, in individual grid

cells in the simulations, and examined the average of σ2 for cells of different ρm in

regions of different tidal strengths. We found that the dependence of σ2 on the tidal

strength in the intermediate density range, ρm ∼ (1 − 10)ρm, is weaker than that of

gas temperature, both in the observation and particularly in Illustris. If we take σ2

as a measure of heating by gravitational collapse, then non-gravitational processes,

such as stellar and AGN feedback, must have played an important role in heating the

IGM in the intermediate density range.

7.5 Summary and discussion

In this paper we examine the thermal energy contents of the IGM over three orders

of magnitude in both mass density and gas temperature using thermal Sunyaev-

Zel’dovich effect (tSZE). Our results are based on Planck tSZE map and the cosmic

density field, reconstructed in the SDSS DR7 volume and sampled on a grid of cubic

cells of (1h−1Mpc)3, together with a matched filter technique employed to maximize

the signal-to-noise.

Our results obtained by matching all the grid cells show that the pressure - density

relation of the IGM is roughly a power law given by an adiabatic equation of state,

with some indication of a steepening at densities higher than about 10 times the

mean density of the universe. The result from shuffling the grid-cells shows a nearly
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zero slope for the pressure-density relation, demonstrating that the relation obtained

by our method indeed captures the thermal properties of the gas that produces the

observed tSZE.

Using the simulation result that the ionized gas mass fractions within individual

grid cells are about equal to the universal baryon fraction, we convert the pressure

- density relation to a temperature - density relation. The result shows that the

average temperature is about 104 K in regions of mean density, ρm ∼ ρm, increasing

to about 105 K for ρm ∼ 10 ρm, the typical density for cosmic filaments and sheets,

and to > 106 K for ρm ∼ 100 ρm, the typical density of virialized dark matter halos.

The thermal energy content of the IGM is also found to be higher in regions of

stronger tidal fields. By dividing grid cells into three equal-sized sub-samples accord-

ing to the local tidal field strength, we find that the average gas temperature in the

sub-sample of highest tidal field is a factor of 10 higher than that in the lowest tidal

field sub-sample. Such an increase of temperature in intermediate density regions is

stronger by a factor of two than that expected from the increase of average veloc-

ity dispersion of dark matter in simulations, suggesting that feedback from galaxy

formation may be responsible for the increase in gas temperature.

We compare our results with those obtained from two hydrodynamic simulations,

Illustris and EAGLE. While the simulations can reproduce the general trends ob-

served in the observation, such as the increases of gas pressure and temperature with

dark matter density and the strength of local tidal field, there are significant dis-

crepancies between the two simulations, as well as between the simulations and our

observational results. Within the uncertainties of the data, the predictions of EA-

GLE are consistent with the data. However, Illustris predicts significantly higher gas

pressure and temperature in the intermediate density range, ρm ∼ (1 − 10)ρm, than

both the observation and EAGLE. The dependence on tidal field strength predicted

by Illustris is also too strong in comparison with the observational data and EAGLE.
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We suspect that these differences are produced by the strong AGN feedback adopted

in Illustris that can heat the IGM at large distances from massive structures.

Our results clearly demonstrate the promise of using SZE, combined with recon-

structed density field, to study both the IGM and the galaxy formation processes that

produce them. This approach is complementary to absorption line studies, in that

it is not constrained by a limited number of lines of sight, and that corrections for

metallicity and ionization effects are not needed to obtain the total gas mass. It also

complements X-ray observations, in that it is more sensitive to the diffuse warm-hot

gas that is expected to dominate the IGM. In the future, when high-resolution SZE

data are available, the same approach as developed here can be used to study not

only the detailed distribution and state of the IGM, but also to investigate how the

IGM is related to and affected by galaxies and AGNs in the cosmic web.
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CHAPTER 8

GAS CONTENTS OF THE CGM AND IGM AS
CONSTRAINTS ON GALAXY FORMATION MODELS

8.1 Introduction

The current understanding of galaxy formation is significantly limited due to the

complexity of the physical processes responsible for the interchange of mass and en-

ergy between galaxies and their surroundings (e.g. Mo et al. 2010). Gas and dark

matter falls into the potential wells of haloes, collapsed objects formed via gravity

from the initial matter fluctuations present in the early Universe. As gas passes the

though the virial shock it is heated, but it eventually cools to form stars. Obser-

vations, however, have accumulated evidence that there is an outflow ‘wind’ that

heats and returns the gas from galaxies to the circumgalactic medium (CGM) and

intergalactic medium (IGM), possibly driven by the stellar and AGN feedback (e.g.

Steidel et al. 2010, Jones et al. 2012, Martin et al. 2012, Newman et al. 2012, Rubin

et al. 2014, Heckman et al. 2015, Chisholm et al. 2016, Tumlinson et al. 2017).

The warm-hot gas returned to the surrounding medium is mixed with the cold gas

newly accreted on to haloes from the cosmic web. It is still an open question whether

the wind velocities are fast enough to return the gas from haloes to the IGM, or

whether a substantial portion of the gas recycles back on to galaxies (Stocke et al.

2013, Werk et al. 2014, 2016, Borthakur et al. 2016, Prochaska et al. 2017, Rudie

et al. 2019). Recent ‘zoom-in’ simulations predict that the dominate source of gas in

Milky Way-like haloes is the cosmic accretion on to haloes in mass, and even the gas

in the outflow returns back to haloes and is recycled. Therefore, the baryon fraction
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in such haloes is close to the cosmic mean fraction (e.g. Angles-Alcazar et al. 2017,

Hafen et al. 2018). Some cosmological simulations, however, found a large fraction

of baryons ‘missing’ in haloes, completely ejected out of haloes by the feedback (e.g.

Vogelsberger et al. 2014, Schaye et al. 2015). As a result, a systematic investigation

of the CGM and IGM properties is required to understand the galaxy evolution.

With the advent of large CMB surveys, the Sunyaev-Zel’dovich effect (SZE; Sun-

yaev & Zel’dovich 1972) provides a promising way to probe the CGM and IGM gas

properties. The scattering of the CMB photons with the free electrons on their paths

from the last scattering surface to us changes the CMB spectrum, which is called the

Sunyaev-Zel’dovich effect. The SZE produced by the thermal motions of electrons is

referred to as the thermal SZE (tSZE), while that produced by the bulk motions of

electrons is called the kinetic SZE (kSZE). Recent studies have demonstrated that

the tSZE and kSZE from observations can be used to constrain the properties of the

ionized gas in the CGM and IGM (Hand et al. 2012, Planck Collaboration XI 2013,

Van Waerbeke et al. 2014, Hojjati et al. 2015, Ma et al. 2015, Hill et al. 2016,

2018, Lim et al. 2017b, 2018a, 2018b, de Graaff et al. 2019, Tanimura et al. 2019).

Using the SZE to trace the gas has advantages that it can probe relatively low-density

regions such as outskirt of haloes and the IGM compared to X-ray observations, and

that the derived gas properties do not depend on the gas metallicity and ionization

states unlike absorption line studies toward quasars.

Cosmological hydrodynamic simulations offer a theoretical framework to study the

physical processes involved in the galaxy evolution, and the resulting properties of the

CGM and IGM (e.g. Keres et al. 2005, 2009; Faucher-Giguere et al. 2011; Somerville

& Dave 2015; Oppenheimer 2018). Large simulations that trace the evolution of

the matter in a box with a few hundred Mpc scale (e.g. Vogelsberger et al. 2013,

2014; Crain et al. 2015; Schaye et al. 2015; Dolag et al. 2016; McCarthy et al.

2017; Pillepich et al. 2018), and high-resolution ‘zoom-in’ simulations that focus on
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the evolution of individual haloes (e.g. Hopkins et al. 2014, 2018; Muratov et al.

2015, 2017; van de Voort et al. 2016, 2019; Angles-Alcazar et al. 2017; Hafen et al.

2018), incorporate the relevant physics to reproduce the properties of galaxies and

gas from observations reasonably well (e.g. Faucher-Giguere et al. 2010, 2015, 2016;

Faucher-Giguere & Keres 2011; Hummels et al. 2013; Nelson et al. 2018). However,

simulations that are known to reproduce a few key observations have employed widely

different physical models. In order to break the degeneracy between the models, we

need to test the models with more detailed observational constraints.

In this paper, using the Planck observations and four large hydrodynamic simula-

tions, we demonstrate that the SZE is a useful tool to investigate the gas properties

of haloes and large-scale structures, and provides stringent constraints for simulation

models. We use the cross-correlations between the SZE signals, dark matter haloes

and large-scale environments as constraints. Our analysis closely follows that pre-

sented in Lim et al. (2017b, 2018a, 2018b). We employ the simultaneous matched

filter approach (Lim et al. 2017b) to increase signal-to-noise of the signal as well as to

disentangle the projection effects of haloes along same line-of-sight (LOS). With ex-

tensive tests, (Lim et al. 2017b) found that the results are robust against systematic

effects such as the residual foreground/background fluctuations, the uncertainties in

the reconstructed velocity field, the beam size of the Planck survey, and residual dust

emission from galaxies. We assume the Planck cosmology (Planck Collaboration XIII

2016) throughout the paper, and scale the results accordingly.

This paper is organized as follows. We present the observational data and the

simulations used for our analysis in Sec 8.2. The method used in our analysis is

described in Sec 8.3. We report our results in Sec 8.4. Finally, we discuss our results

and summarize our conclusions in Sec 8.5.
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8.2 Data

8.2.1 The Planck CMB map

The Planck (Tauber et al. 2010; Planck Collaboration I 2011) measured the all-sky

CMB anisotropy in nine frequency bands from 30 to 857 GHz with angular resolution

ranging between 5 and 31 arcmin. For our analysis of the tSZE, we make use of the

Planck NILC (Needlet Independent Linear Combination; Remazeilles et al. 2011) all-

sky tSZ Compton parameter map (Planck Collaboration XXII 2016), also referred to

as the NILC y-map, from the Planck 2015 data release. The differential temperature of

the CMB spectrum caused by the tSZE is characterized by a dimensionless parameter,

(
∆T

TCMB

)
tSZE

= g(x)y ≡ g(x)
σT

mec2

∫
Pedl, (8.1)

where TCMB = 2.7255 K, y is the Compton parameter, g(x) = x coth(x/2) − 4 is the

conversion factor at a given x ≡ hν/(kBTCMB), σT is the Thompson cross-section, me

is the electron rest-mass, c is the speed of light, Pe = nekBTe is the electron pressure

with ne and Te the number density and temperature, respectively, of the free electron,

and finally dl is the path length along given line-of-sight (LOS). The final map is

constructed by weighting the different frequency maps to remove components other

than the tSZE signal, such as the primary CMB fluctuations and foreground sources.

As a test, we also use the Planck MILCA (Modified Internal Linear Combination

Algorithm; Hurier et al. 2013), which is known to have a different degree of dust

contamination than the NILC, and found no significant change in our results.

The temperature change in the CMB spectrum by the kSZE is given by

(
∆T

TCMB

)
kSZE

= −σT

c

∫
ne(v · r̂)dl, (8.2)

where v is the velocity of the free electrons in bulk motion, and r̂ is the unit vector

along the LOS. For our analysis of the kSZE, we use the Planck CMB temperature
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maps at 100, 143, and 217 GHz frequency bands provided in the Planck 2015 data

release. From the three frequency maps, we subtract the tSZE using the y-map

and equation 8.1, with the conversion factor g(x)TCMB = −4.031, −2.785, and 0.187

integrated over the 100, 143, and 217 GHz bands, respectively. Again, we found no

significant change in our results between when using the NILC and MILCA y-maps

for the tSZE subtraction.

For both the tSZE and kSZE analysis, we minimize Galactic contamination by

masking out the brightest 40% of the sky using the masks provided in the data release.

We also mask radio and infrared point sources using the relevant masks provided in

the same data release to limit the contamination.

8.2.2 Hydrodynamic simulations

For our analysis, we use a number of state-of-the-art cosmological gas simulations

including Illustris, IllustrisTNG, EAGLE, and Magneticum. These simulations adopt

different numerical techniques, cosmological models, and different implementations

of physical processes, to trace the evolution of the simulated Universe. All these

simulations identify haloes using a friends-of-friends (FoF; Huchra & Geller 1982,

Davis et al. 1985) algorithm.

8.2.2.1 Illustris

The first simulation is Illustris (Vogelsberger et al. 2014a, Vogeslberger et al.

2014b, Genel et al. 2014, Sijacki et al. 2015), which was run with the moving-mesh

code AREPO (Springel 2010), assuming WMAP9 cosmology with h = 0.704, Ωm =

0.273, and ΩΛ = 0.727 (Hinshaw et al. 2013). The traced components include

gas cells, dark matter particles, stars and stellar wind particles, and super-massive

black holes. Sub-grid models are employed for the physical processes such as cooling

(Katz et al. 1996, Wiersma et al. 2009), star formation (Springel & Hernquist

2003) with a Chabrier (2003) initial mass function, stellar feedback (Vogelsberger et
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al. 2013, Torrey et al. 2014), and AGN feedback (Springel et al. 2005, Sijacki et

al. 2007). For the detailed implementation, we refer the reader to Vogelsberger et

al. (2013). The free parameters in the models were constrained using observations

as well as simulations of higher resolutions. In this paper, we use Illustris-1, their

fiducial run, that has a box size of L = 75h−1 Mpc and contains 2 × (1820)3 gas

and dark matter particles. The target baryon mass and dark matter particle mass

are mbaryon = 1.6× 106M� and mDM = 6.3× 106M�, respectively. The gravitational

softening lengths for the dark matter particles and gas cells particles are 1.4 kpc and

0.7 ckpc, respectively.

8.2.2.2 IllustrisTNG

The IllustrisTNG (TNG; Marinacci et al. 2018, Naiman et al. 2018, Nelson et

al. 2018, Pillepich et al. 2018, Springel 2018), the successor of the Illustris, is a

hydrodynamic simulation run with AREPO code assuming the cosmological model

given by Planck Collaboration XIII (2016) with σ8 = 0.816, h = 0.677, Ωm = 0.309,

and Ωb = 0.0486. It is sampled with (2500)3 dark matter particles and (2500)3 gas

particles in a periodic box of (205h−1 Mpc)3. The physical models used in TNG

build upon those developed for the original Illustris, but with a lot of improvements

including the prescriptions for magnetic field (Pakmor et al. 2011) and the black-hole-

driven feedback (Weinberger et al. 2017). One of the major changes in IllustrisTNG

is a new black-hole-driven kinetic feedback at low accretion rates (radio-mode), com-

pared to the original Illustris where thermal energy is injected into surrounding gas

in the form of ‘bubbles’. The target baryon mass and dark matter particle mass are

mbaryon = 1.1 × 107M� and mDM = 5.9 × 107M�, respectively. The z = 0 Plummer

equivalent gravitational softening of the collisionless component, and the minimum

comoving value of the adaptive gas gravitational softening are 1.5 kpc and 0.37 ckpc,

respectively.
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8.2.2.3 EAGLE

The Evolution and Assembly of GaLaxies and their Environments (EAGLE; Schaye

et al. 2015, Crain et al. 2015, McAlpine et al. 2015), run with a modified version of

GADGET-3 Smoothed Particle Hydrodynamics (SPH) code (Springel 2005) tracks

the evolution of gas, stars, dark matter, and massive black holes in the simulated

Universe, by implementing sub-grid models for cooling (Wiersma et al. 2009), star

formation (Schaye & Dalla Vecchia 2008), stellar and AGN feedbacks (Booth & Schaye

2009, Rosas-Guevara et al. 2016). The models are parameterized and the parameters

are tuned to match observations including the stellar mass function and stellar mass-

black hole mass relation at z ∼ 0. The simulation assumes the Planck cosmology

(Planck Collaboration XVI 2014). Throughout this paper, we use the simulation run

of the largest box of (100 Mpc)3 sampled by 2×(1504)3 particles. The initial baryonic

particle mass and dark matter particle mass are 1.8×106M� and 9.7×106M�, respec-

tively. The comoving Plummer-equivalent gravitational softening and the maximum

physical softening length are roughly 2.7 kpc and 0.70 ckpc, respectively.

8.2.2.4 Magneticum

The Magneticum simulations (e.g. Dolag et al. 2016) are a set of cosmological

hydrodynamic simulations of various volumes and resolutions, performed with an

improved version of GADGET-3. The simulations adopted a WMAP7 flat ΛCDM

cosmology with σ8 = 0.809, h = 0.704, Ωm = 0.272, and Ωb = 0.0456 (Komatsu et

al. 2011). The simulations include a variety of physical processes such as cooling and

star formation (Springel & Hernquist 2003), black holes and AGN feedback (Fabjan

et al. 2010, Hirschmann et al. 2014), and thermal conduction (Dolag et al. 2004).

The results presented in this paper are produced from a particular run that has a box

size of L = 352h−1 Mpc and is sampled by 2 × (1584)3 particles. The dark matter

particle mass and gas particle mass are 6.9 × 108M� and 1.4 × 108M�, respectively.
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The softening lengths are 3.8 kpc commonly for the dark matter particle and gas

particle.

8.3 Methods

8.3.1 The matched filter technique

Extracting the SZE signal is not a trivial task because the signal is very weak; for

massive clusters of galaxies, the kSZE amplitude is about an order of magnitude lower

than that of the tSZE and two orders of magnitude smaller than other sources such as

the primary CMB fluctuation, Galactic foreground, and cosmic infrared background.

As such, we employ the matched filter (MF) technique (Haehnelt & Tegmark 1996,

Herranz et al. 2002, Melin et al. 2005, 2006) in our analysis, which is designed to

maximize the signal-to-noise and minimize source contamination by imposing prior

knowledge of the signals and the noise power spectra. In the MF technique, the

Fourier transform of the filter that optimizes the signal-to-noise is given by

F̂I(k) =

[∫
d2k′

(2π)2
|τ̂(k′)|2B̂

∗
(k′) · P−1(k′) · B̂(k′)

]−1

× τ̂(k) jν,I {P−1(k) · B̂(k)}I (8.3)

where F̂I(k) is the Fourier transform of the filter for each of the three frequencies, ‘I’,

τ̂(k) is, in our application, the Fourier transform of the projected electron pressure

for tSZE analysis, and of the electron column density for kSZE analysis, the elements

of B̂(k) are the Fourier transform of the Gaussian beam function that mimics the

convolution of the Planck observation in each frequency band, and P (k) is the noise

power spectra. For the tSZE analysis, because the y-maps are already cleaned of the

primary CMB fluctuation, PIJ(k) = Pnoise,IδIJ where Pnoise,I is the power spectra of

the Planck noise map in frequency band ‘I’, as provided in the date release. For the

kSZE analysis, PIJ(k) = PCMB B̂IB̂
∗
J + Pnoise,IδIJ where PCMB is the CMB spectrum.
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The jν,I is a frequency-dependent conversion factor between the differential temper-

ature of the CMB and the filter; jν = g(x) for tSZE, and is frequency-independent

for kSZE.

8.3.2 Extracting the tSZE flux of haloes

To associate the SZE signals with haloes, we use the catalogs given in Lim et al.

(2017a). The catalogs were constructed for four redshift surveys including 2MRS, 6dF,

SDSS, and 2dF, by applying an adaptive halo-based group finder that was initially

developed by Yang et al. (2005, 2007) and improved by Lim et al. (2017a). The group

finder determines the membership and mass of groups using stellar mass or luminosity

of centrals and satellites as a halo mass proxy, and by using, in turn, the resulting halo

properties to update the galaxy membership, iteratively until membership converges.

Using realistic mock catalogs constructed based on simulations and empirical models,

they showed that the halo masses determined by the group finder is unbiased to the

true halo masses with a typical scatter of 0.2 − 0.3 dex. For our analysis, we use

the combined catalogs of the 2MRS, 6dF, and SDSS. The resulting catalog contains

471, 696 haloes with logM500/M� ≥ 12, of which 3, 851 haloes are logM500/M� ≥ 14

and 240, 747 haloes are 12 ≤ logM500/M� ≤ 13. We define the halo by a radius R500,

within which the mean density is 500 times the critical density at a given redshift,

with M500, a mass enclosed within R500.

We then cross-correlate the Planck y-map with the haloes in the catalog, using

information such as the position, redshift, and mass, to extract the tSZE signal as-

sociated with the haloes. For the extraction of the flux, we refer the reader to Lim

et al. (2017b, 2018a) (hereafter L17b and L18a, respectively) for details, and here

we provide only a brief summary of it. Note that the method used in L18a changed

significantly from L17b, and that we follow the new method presented in L17b for the

extraction of the flux in this paper. The first step is the construction of model maps.
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We adopt the universal pressure profile (UPP) from Arnaud et al. (2010), which was

derived from X-ray observations for r ≤ R500 combined with simulations for larger

radii. Then we employ a model that is fully specified by the amplitude of the UPP at

logM500/M� = 12.3, 12.5, 12.7, ..., and 14.7. Haloes of any mass are assigned the filter

amplitude by linear interpolation in the log-log space. The model map is constructed

by placing at the position of each galaxy groups the model profiles with the shape

and amplitude appropriate for each halo’s size, mass, and redshift. Then the map is

convolved with the beam function, and the instrument noise is added using Pnoise to

make the model map realistic. Then, at the center of each halo ‘i’ in each frequency

band ‘I’, we apply the matched filter, {Fi}I ,

{AD,i}I =

∫
{Fi(θ)}I{Di(θ)}Id2θ

{AM,i}I =

∫
{Fi(θ)}I{Mi(θ)}Id2θ , (8.4)

where θ is the projected position of a given pixel relative to the center of the group,

and {Di(θ)}I and {Mi(θ)}I are the data map and the model map around the group,

respectively. With the set of {Ai}I ’s from the data and the model map, we constrain

the filter amplitudes by minimizing the χ2,

χ2 =
∑
i

|AD,i −AM,i(Θ)|2

σ2
i

(8.5)

with the uncertainty,

σi =

[∫
d2k′

(2π)2
|τ̂i(k′)|2B̂

∗
(k′) · P−1(k′) · B̂(k′)

]−1/2

(8.6)

as given in Haehnelt & Tegmark (1996) and Melin et al. (2006). To explore the

parameter space, we use the MULTINEST (Feroz et al. 2009) that implements the

nested sampling developed in Skilling et al. (2006).
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8.3.3 Extracting the kSZE flux of haloes

For the kSZE flux, we adopt the result of L17b, which was obtained from a very

similar analysis to that for the tSZE described above except for some differences in the

details. Here we brifely describe the method and refer the reader to the original paper

for details. The kSZE also depends on the radial component of the peculiar velocity

(see equation 8.2). Therefore, we make use of the velocity field reconstructed by Wang

et al. (2012). Tests using mock catalogs show that the velocity field reconstructed by

this method is unbiased with a typical dispersion of ∼ 90 km s−1. The reconstructed

velocity field is available only for a subset of haloes with z ≤ 0.12. We also use the

haloes from the catalog by Yang et al. (2007) as our sample for the kSZE analysis.

For the profile shape, we adopt a β-profile,

ne(r) = ne,0[1 + (r/rc)
2]−3β/2, (8.7)

where rc = rvir/c is the core radius of a group with concentration c, and β = 0.86 is

the best-fit value obtained from South Pole Telescope (SPT) cluster profiles (Plagge

et al. 2010). Due to the lower signal-to-noise of the kSZE than the tSZE, the model

is specified by the amplitudes at logM500/M� = 12.3, 12.7, 13.1, 13.5, 13.9, and 14.3.

The model maps are constructed by adding the CMB fluctuation, convolved with the

beam function and adding the instrument noise at each of the three frequencies 100,

143, and 217 GHz. For the kSZE, {Di(θ)}I and {Mi(θ)}I in equation 8.4 are the

differential temperatures.

8.3.4 The pressure - density relation of IGM

The impact of feedback is believed not to be confined within haloes, but also

leaves its imprint in the intergalactic medium (IGM). For a better understanding of

feedback, it is helpful to investigate the SZE signal of the IGM. Here we adopt the

analysis and result of Lim et al. (2018b) as follows.
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Using the Planck y-map, we aim to constrain the average relation between the

thermal energy and matter density of the IGM. To do this, we use another set of

data, which is the reconstructed cosmic density field in the Sloan Digital Sky Survey

Data Release 7 (SDSS DR7; Abazajian et al. 2009) volume given in Wang et al.

(2016). The reconstruction uses the DR7 haloes from Yang et al. (2007) as a proxy

of the density field. We use the density field smoothed on 1h−1Mpc. To each of those

1h−1Mpc grid-cells, we assign a value of electron pressure by assuming a double

power-law relation between the pressure and the density field,

Pe =


A× (ρm/ρm,0)α1 , if ρm ≤ ρm,0

A× (ρm/ρm,0)α2 , if ρm > ρm,0.

(8.8)

The resulting pressure field is smoothed with a Gaussian kernel with the radius of

1h−1Mpc, and is integrated along each LOSs to obtain the model map of y. The shape

of the y-profile in each pixel is used as a filter shape for the MF. Similar to the SZE

flux analysis, the model parameters in equation 8.8 are constrained by minimizing the

χ2 over all pixels. We assume a constant background from gas outside the SDSS DR7

volume, which is treated as another free parameter to be constrained.

We also investigate the dependence of the pressure - density relation on the large-

scale tidal field. This is motivated by the findings based on simulations that, among

various quantities such as stellar mass, star formation rate, black hole mass, velocity

dispersion, etc, the large-scale tidal field is the most crucial second parameter that

affects the gas pressure (Lim et al. 2018b). Following Wang et al. (2011), the halo-

based tidal field for each grid-cell is estimated as the halo tidal force exerted on the

surface of a sphere along a direction t, normalized by the self-gravity of the sphere,

f(t) =

∑
iGMiRg(1 + 3 cos 2θi)/r

3
i

2GMg/R2
g

(8.9)
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where the summation is over all the haloes, Mi is the mass of halo i, Rg = 0.5h−1Mpc

is the radius of the sphere that approximates the grid-cell, Mg is the mass enclosed

within the grid-cell in question, ri is the separation between the center of the grid-

cell and the halo ‘i’, and θi is the angle between t and ri. The tidal field satisfies

t1 + t2 + t3 = 0 where t1, t2, and t3 (t1 ≥ t2 ≥ t3) are the eigenvalues of the tidal field

tensor. Wang et al. (2011) showed that t1 represents well the magnitude of the tidal

field. We thus use t1 to characterize the tidal field strength of the grid-cells.

8.4 Results

8.4.1 The thermal energy of halo gas

Using the assumed profile shape, i.e. UPP, and its amplitudes determined from

the χ2 minimization, we can infer the integrated tSZE flux within R500, Y500, defined

by,

dA(z)2Y500 ≡
σT

mec2

∫
R500

Pe dV , (8.10)

where dA(z) is the angular diameter distance to a group at given redshift. At a fixed

halo mass, Y500 evolves with redshift as E2/3(z). Thus we follow conventions to define

a new, redshift-independent quantity,

Ỹ500 ≡ Y500E
−2/3(z)

( dA(z)

500Mpc

)2

, (8.11)

which is expected to be a function of only halo mass scaled to z = 0, provided that the

intrinsic tSZE flux is indeed a function of only mass. The Ỹ500 thus inferred from the

medians and 68 percentile ranges of the posterior distribution of the model parameters

are shown by the yellow triangles and the error bars, respectively, in Fig. 8.1. L18a

demonstrated that the results are indeed dominated by the tSZE signals rather than
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Figure 8.1. Comparison of the tSZE flux from gas within R500 of haloes, Ỹ500,
between several observations (this work (triangle), Planck Collaboration XI (2013)
(cyan dot), Hill et al. (2018) (dotted), Arnaud et al. (2010) (dashed)), and sim-
ulations (cosmo-OWLS; Le Brun et al. (2015) (green solid), Illustris (blue dot),
IllustrisTNG (red dot), EAGLE (triangle), Magneticum (square)). The error bars
for the tSZE result obtained with the presented method represent the 68 percentile
ranges of the posterior distribution. The error bars for the simulations are obtained
from 200 bootstrap samples. The unfilled symbols represent the values below zero.
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the residual backgrounds, and are robust against truncation of the filters at different

radii, mass incompleteness of the halo catalog, moderate variations in the filter shape,

and fluctuations of the background. They suspect that the results are insensitive to

the different profile shapes assumed due to the relatively large beam size of the Planck

survey. They also showed that the projection effects of larger haloes along same LOSs

are significant for the signals from low-mass haloes.

We compare our results with other observational studies by Planck Collaboration

XI (2013) (PCXI hereafter; cyan dots) and Hill et al. (2018) (blue dotted line).

Using the Planck temperature maps, and locally brightest galaxies as a tracer of

haloes, PCXI found that the tSZE flux follows the self-similar case (dashed line) that

the hot gas mass fraction relative to halo mass is independent of halo mass. This is in

conflict with predictions from simulations and X-ray observations that a fraction of

gas is expelled out of the potential well in low-mass systems. L18a suspect that this

is due to the fact that PCXI did not fully take into account the projection effects of

other haloes. PCXI tested both aperture photometry and matched filter to extract

the flux, but in both cases they assumed flat local backgrounds to subtract. However,

as demonstrated in Vikram et al. (2017), the two-halo terms dominate the tSZE

signals around haloes of M200 ≤ 1013−13.5 h−1M�, thus even a very small deviation

from flat backgrounds can significantly change the estimation of the tSZE flux for

those haloes. L18a confirmed that they recover the PCXI results when assuming

flat backgrounds, implying that the local background indeed changes with distance

from halo centers due to the clustering of haloes. Taking into account the projection

effects based on Vikram et al. (2017), Hill et al. (2018) also found some evidence for

a deviation of the relation from the self-similar case. As seen in Fig. 8.1, their results

are consistent with our results even for low-mass systems. Hill et al. used the Planck

map and the group catalog by Yang et al. (2007), which is very similar to the data

set that we use here.
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Fig. 8.1 show that all the simulations considered in our analysis predict a certain

degree of deviations from the self-similar case, reflecting the effect of feedbacks in low-

mass systems. The error bars are obtained from 200 bootstrap samples. The level

of the deviation, however, differs significantly among different simulations, indicating

that the gas contents in haloes are significantly affected by models adopted to address

physical processes. In other words, the relation can be used to constrain the physics

of the feedback process. For example, Illustris, which is known to have a model with

much stronger AGN feedback implemented than the other simulations, predicts a

much lower electron pressure than the other simulations, and more than an order of

magnitude lower gas mass than the self-similar case for haloes with M500 ∼ 1013 M�.

Those haloes are the systems that are believed to be most affected by the AGN

feedback. The prediction from Illustris is vastly different even from that by TNG.

Since TNG differs significantly in the model for AGN feedback relative to Illustris

while retaining from Illustris many of the simulation techniques and sub-grid models,

the difference in the tSZE flux is dominated by the AGN feedback. The differences

between the TNG, EAGLE, and Magneticum are insignificant despite of differences

in details of the models for the physical processes as well as the resolution of the

simulations.

8.4.2 The mass and temperature of halo gas

Using the amplitudes of the β-profile, i.e. ne,0 in equation 8.7, determined as

described in section 8.3.3, we infer the total hot gas mass within R500,

Mgas = Ne,500 ·
2mp

1 + fH

, (8.12)

where Ne,500 =
∫
R500

nedV , fH = 0.76 is the hydrogen mass fraction, and mp is the

proton mass. Fig. 8.2 shows the averages (the yellow circles) and the dispersions (the

error bars) of the gas mass fraction from the eight samples described in L17b. The
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Figure 8.2. The gas mass fraction within haloes inferred from the kSZE analysis
(filled circle), compared with that from the simulations including the Illustris (blue
dot), IllustrisTNG (red dot), EAGLE (triangle), and Magneticum (square). The error
bars for the observational result represent the dispersion of the estimate among the
eight samples as described in Lim et al. (2017b). The shaded band spans the same
dispersion among the eight samples but obtained with a power-low model. The error
bars for the simulations are obtained from 200 bootstrap samples. The dashed line
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uncertainty.
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Tvir = µmpGM500/2kBR500, with µ = 0.59 the mean molecular weight.
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shaded band spans the dispersion among the eight samples, inferred from a power-

law model (see L17b for details). As seen in the figure, the inferred gas fraction is

consistent with the cosmic baryon fraction (black dashed), thus there is no missing

baryons in haloes. L17b showed that the results are robust against the uncertainties

in the reconstructed velocity field, residual background/foreground fluctuations, the

large beam size of Planck and residual tSZE signal and dust emission from galaxy

groups. Using simulations, L17b also quantified the contamination by the projection

of gas outside haloes along LOS. They found that the projection effect is, on average,

capped at about 20% of the total flux estimated, but is sensitive to the definition of

haloes, the fluctuation of matter distribution in large-scale structures, and the large-

scale velocity field coherence predicted from the linear theory. The projection effect

is also expected to strongly depend on the baryonic processes such as the stellar and

AGN feedback, with the higher projection effect from the stronger feedback.

We compare the gas fraction from the kSZE analysis with that inferred from

the tSZE results by assuming that the gas is at the virial temperature, Tvir =

µmpGM500/2kBR500 where µ = 0.59 is the mean molecular weight, which is shown

by the blue dot-dashed line with the band showing the errors in the estimate. The

inferred gas fraction from the tSZE is significantly lower particularly in low-mass sys-

tems than that from the kSZE. This implies that the effective temperature of the gas

is much lower than the virial temperature.

We also compare the results with the predictions from the simulations. The error

bars for the simulations are obtained from 200 bootstrap samples. Overall, the simu-

lations predict lower gas fractions than the observational results across the whole mass

range considered here, up to by a factor of ∼ 4 at the low-mass end of M500 ∼ 1012M�.

That also means that the simulations predict 20− 40% lower baryon fraction in low-

mass systems relative to the cosmic fraction. Illustris has a much higher fraction of

gas expelled out of the halo potential than the other simulations possibly due to the
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stronger AGN feedback implemented. Recent ‘zoom-in’ simulations focusing on indi-

vidual haloes with a much higher resolution, however, find almost all baryons expected

by cosmology within the virial radius even for lower-mass haloes of Mh ∼ 1012 M�,

indicating that the galactic wind is not effective in expelling gas completely out of

haloes (e.g. Angles-Alcazar et al. 2017, Hafen et al. 2018).

We also infer the effective temperature, Teff , obtained by dividing the total tSZE

flux with the total kSZE flux from the observational result, which is shown in Fig. 8.3.

The temperature is found to be much lower than that from X-ray observations. As

discussed in L17b, this may be due to a different weighting to average the temperature

as well as due to a selection bias in the sample for X-ray observations. Recent studies

using absorption lines toward quasars found that the CGM gas may be much cooler

than the virial temperature (e.g. Werk et al 2014, 2016). For comparison, we estimate

Teff from the simulations by dividing the total sum within R500 of the electron pressure

with that of the number of free electrons. As seen in Fig. 8.3, all the simulations

predict that the effective temperature of the gas is about the virial temperature, which

is up to an order of magnitude higher than that inferred from the SZE analysis. It

is interesting to note that the different feedback models implemented in simulations

predict different fraction of gas expelled out of haloes but predict same temperature

of gas in haloes.

8.4.3 The pressure - density relation of IGM

Fig. 8.4 shows the pressure - density relation obtained following the method de-

scribed in section 8.3.4 by the red solid line with the band showing the 1σ scat-

ter based on the posterior distribution. The median values of the parameters are

{ρm,0/ ρm, α1, α2} = {3.0, 1.7, 2.2} . We refer the reader to Lim et al. (2018b) for

more details of the posterior distribution of the parameters. As one can see from

the median values of the parameters, the relation closely follows that of an adiabatic
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equation of state, Pe ∼ ρ5/3, but with a steeper slope in dense regions. This may be

due to heating sources available in dense regions because of star formation such as

the AGN feedback.

In the figure, we compare the results with the predictions from the simulations.

As one can see, the match between the observational result and the TNG or EA-

GLE is remarkable. Illustris predicts a much higher thermal energy in regions with

1 ≤ ρm/ ρm ≤ 10, again, possibly due to the stronger radio-mode AGN feedback

implemented in the simulation.

We also convert the relations onto the temperature - density space, by assuming

that each grid-cells has the average ionized gas mass fraction equal to the cosmic

baryon fraction, as is motivated by the simulation results (see Lim et al. 2018b). The

temperature thus estimated is lower than 104K in regions with ρm ≤ ρm, and increases

with the density, up to 106K in regions with ρm ≥ 100 ρm, the regions of haloes. The
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Figure 8.6. Comparison of the pressure (left), temperature (middle), and electron
number density (right) profiles of gas associated with haloes of different mass between
the simulations. Different line styles were used for the profiles in haloes of different
mass as indicated.

TNG predicts higher gas temperature in regions with 3 ≤ ρm/ ρm ≤ 10, the regions

of cosmic filaments and sheets, while the EAGLE predicts higher temperature in less

dense regions with 0.3 ≤ ρm/ ρm ≤ 3.

Now we sub-sample the grid-cells into three according to the tidal field strength,

t1, each sub-samples containing a third of the total number of cells at a given density,

and constrain the pressure - density relation for the three sub-samples jointly. We

also compute t1 for the grid-cells in the simulations as described in section 8.3.4, and

divide the cells into three equal-sized sub-samples according to the ranking in t1.

The average relations between the pressure and matter density thus estimated from

the observation and the simulations are shown in Fig. 8.5. One can see that the

predictions from the TNG and EAGLE are clearly different, breaking the degeneracy

between the two simulations that have been seen in the gas contents of haloes and

the total average pressure of IGM at given density.

8.4.4 The profiles of halo gas properties

We also investigate the profiles of gas properties including the pressure, tempera-

ture, and number density of the free electrons, in the proximity of galaxy haloes from
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the different simulations. We take into account only the free electrons gravitationally

bound to the haloes. The median profiles are shown in Fig. 8.6 for a few halo mass

bins. For massive haloes, Illustris predicts shallower profiles of the pressure and tem-

perature compared to the other simulations, with lack of gas at halo center, implying

that the stronger AGN feedback implemented in Illustris removes the gas from halo

center to outskirt. That also explains the higher temperature in the outer region from

Illustris. TNG also shows shallower profiles than EAGLE with slightly lower electron

number density at r ≤ 0.5R500. For intermediate-mass haloes, the same trends as seen

for the massive haloes are found but enhanced much stronger. Illustris predicts more

than an order of magnitude lower density in the inner region, and much less smooth

temperature profile. For low-mass haloes, the difference among the simulations at

r ≤ 0.5R500 are much weaker. It is interesting to note, however, that the gas in the

outskirt of haloes is much less dense but is at a higher temperature in Illustris than

in the TNG and EAGLE. The temperature of the gas is also much more stochastic

in Illustris compared to the other two simulations.

The functional form of the UPP is a generalized NFW (GNFW) model which was

first introduced by Nagai et al. (2007),

P (r)

P0

=
1

(c500 r/R500)γ[1 + (c500 r/R500)α](β−γ)/α
, (8.13)

where P0 is a normalization parameter, and the parameters γ, α, and β describe the

slopes at r � rs, at r ∼ rs, and at r � rs, respectively, with rs = R500/c500. It was

shown that the pressure profile of X-ray groups and clusters from observations is well

described by the GNFW model (e.g. Arnaud et al. 2010, Plagge et al. 2010, Sun

et al. 2011) but only out to r ∼ R500 in most cases. Using a combination of X-ray

observation and simulations, Arnaud et al. (2010) found that the best parameter

values are {α, β, γ, c500} = {1.05, 5.49, 0.308, 1.18}.
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Table 8.1. The pressure profile fitting.

Profiles α β γ c500,0 δ

Illustris 1.17 29.8 0.131 0.0972 0.180

IllustrisTNG 1.08 6.28 0.331 0.842 0.197

EAGLE 0.821 6.74 0.398 1.26 0.212

Le Brun et al. (2015; LB15 hereafter), however, found that the pressure distri-

bution predicted from simulations is not well described by the GNFW for haloes of

different mass in general, but requires an additional parameter via a mass dependence

of c500 instead,

c500 = c500,0 (M500/1014M�)δ . (8.14)

As seen in the equation, this extended GNFW (EGNFW, hereafter) predicts that the

concentration parameter may be a function of mass, which is a reasonable expectation.

LB15 indeed found a non-zero mass dependence with δ ∼ 0.263, indicating that the

gas is more concentrated in massive haloes than in lower-mass haloes. This may be

because the gas at the center is blown out to the outskirt by galactic feedbacks more

effectively in lower-mass haloes, resulting in a shallower profile. We fit the profiles

from the TNG, Illustris, and EAGLE with both the GNFW and EGNFW models,

shown by the empty and filled symbols, respectively in Fig. 8.7. The best-fit param-

eters for the EGNFW model are listed in Table 8.1. Unlike LB15, the normalization

of the profile, P0, is treated as a free parameter, the value of which is independently

determined for haloes of different because our main interest is the profile shape. It

is clearly seen that the GNFW model, in which the shape is independent of mass,

is insufficient to describe the profiles accurately because the profiles from haloes of

different mass have different shapes thus are not matched only with normalizations.
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Table 8.2. The density profile fitting.

Profiles β γ0 ε c500,0 δ

Illustris 4.03 0.0498 -0.953 0.990 0.595

IllustrisTNG 11.0 0.602 -0.104 0.446 0.104

EAGLE 13.3 0.754 -0.195 0.454 0.354

Our results also show that gas distribution is flatter in lower-mass haloes, which con-

firms the finding from previous studies. We find, however, a significant degeneracy

between the parameters as well as correlations. We will explore this in more details in

a forthcoming paper (Lim et al. in prep) where we will apply the EGNFW functional

form as a filter shape for the matched filter to the CMB maps to constrain the model

parameters, thus the pressure profile, from observations as well as extract the tSZE

signal from halo gas.

We also fit the profile of electron number density with the β-profile. As seen

in Fig. 8.8, the shape of the profile strongly depends on mass, thus cannot be well

described by a mass-independent profile including the β-profile. Instead, we apply

the EGNFW in another form,

ne(r) ∝
1

(c500 r/R500)γ[1 + (c500 r/R500)2](β−γ)/2
, (8.15)

where

c500 = c500,0 (M500/1014M�)δ

γ = γ0 (M500/1014M�)ε . (8.16)

The best-fit values of the parameters for the EGNFW model are listed in Table 8.2.
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8.5 Summary and discussion

In this paper, we compared the gas contents of the circumgalactic medium (CGM)

and intergalactic medium (IGM) between observation and simulations, to explore

the possibility of using the gas contents to constrain models for physics of galaxy

evolution. Specifically, we used the recent Sunyaev-Zel’dovich effect (SZE) results

obtained by following Lim et al. (2017b, 2018a, 2018b) as our main observation data,

together with four state-of-art cosmological gas simulations. Briefly, the observation

data were obtained based on Planck CMB temperature maps, by cross-correlating the

CMB maps with galaxy groups identified by a group finder, and with reconstructed

large-scale environments such as density field, tidal field, and velocity field. We

adopted the matched filter (MF) technique to minimize contamination and maximize

the signal-to-noise. The filters are jointly implemented to automatically take into

account the two-halo terms.

For the tSZE signal from haloes, all observational results and predictions from the

simulations considered in our analysis except for that by PCXI indicate a certain de-

gree of deviations from the self-similar case, implying the effect of feedbacks on galaxy

systems with M500 ≤ 1013 M�. We suspect that the assumption of flat background

adopted by PCXI led to their finding that the tSZE flux follows the self-similar case

even for low-mass systems with M500 ∼ 1012 M�. Different simulations make different

predictions because of variations in physical models implemented in the simulations.

The Illustris, in particular, predicts a significantly lower thermal energy of gas in

haloes with M500 ∼ 1013−13.5 M�. This is believed to be due to the stronger AGN

feedback adopted in the simulation. The predictions from IllustrisTNG and EAGLE

are remarkably similar to each other even down to M500 ∼ 1012 M�.

The kSZE signal from the observation data infers that the gas fraction in haloes

is almost equal to the cosmic baryon fraction even in the low-mass systems, unlike

the predictions from simulations where that in haloes is only 20− 40% of the cosmic

251



mean fraction. There can be still, however, the residual contamination by gas along

the LOSs between haloes not taken into account by the method presented here. Such

contamination is found to be about 20% according to simulations but is expected to

strongly depend on the baryon physics. The effective temperature from the observa-

tion, obtained by dividing the tSZE flux with the kSZE flux, is also found to be much

higher than that from the simulations. Notably, even the simulations with completely

different predictions about the gas mass fraction produce very similar predictions that

the gas is at the virial temperature.

We then investigated the pressure - density relation of the IGM. The overall slope

of the relation closely follows that of an adiabatic equation of state, but with some evi-

dence for a steeper slope in the regions of haloes and large-scale structures. Our result

matches well the predictions from simulations except for the Illustris that predicts a

much higher thermal energy of IGM in the regions of intermediate mean density. The

pressure - density relation also depends on the strength of large-scale tidal field. This

may reflect that where the tidal field is strong, the structure formation occurs early

that the heating sources such as stellar and AGN feedback become available early.

We show that the tidal field dependence of the relation can help break degeneracy

between models that produce very similar predictions elsewhere.

Finally, we probed the radial profiles of gas properties in haloes from different

simulations. The simulations with stronger AGN feedback tend to predict shallower

profiles of gas pressure and temperature with lack of gas at the halo center. The

difference between the predictions is most prominent in intermediate-mass systems

with M500 ∼ 1013−13.5 M�. We show that the profiles from the different simulations

are not described well by a generalized NFW (GNFW) profile. We demonstrate that

a mass-dependent model describe the profiles well, instead.

Our results clearly demonstrate the power of using the Sunyaev-Zel’dovich effect

to infer the gas contents of the CGM and IGM, and its potential to constrain galaxy
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formation models. In particular, because most state-of-art simulations have their

model parameters tuned to match the galaxy properties averaged over a broad range

of galaxy population from observation, it is essential to disentangle the average galaxy

properties with the properties of their host haloes and large-scale structures, in order

to break the degeneracy between models. With future CMB surveys such as the

CMB-S4, Simons observatory, and Toltec, it is also expected that the SZE will allow

us to directly probe the gas profiles of low-mass systems down to M500 ∼ 1012 M� by

stacking. The same approach as developed here can be applied to the future surveys

to provide stringent constraints on the impact of galactic feedbacks.
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CHAPTER 9

CONCLUSION AND FUTURE WORK

9.1 Conclusion

In this dissertation, we studied the relations between galaxies, dark matter halos,

gas, and cosmic web in a comprehensive, systematic way. To do this, we developed an

improved halo-based group finder, and applied it to large redshift surveys including

2MRS, 6dF, SDSS DR13, and 2dF to construct the group catalogs. Using the well-

defined dark matter halo catalog and cross-correlating it with galaxy properties, we

found a proxy of halo age that can be applied to observation. We also demonstrated

that the conditional stellar mass function provides additional, tighter constraints on

galaxy formation models than the total stellar mass function. Using a parametrized

model, we found that observations of the conditional stellar mass function in the

low-redshift Universe requires a higher star formation at high redshift in low-mass

halos. We then probed the alignments between galaxies and cosmic web by using the

tidal field as a tracer of the large-scale structures, finding that both the orientation

and position of galaxies are aligned with the morphology of cosmic web. Then, we

cross-correlated the galaxy systems with the Sunyaev-Zel’dovich effect (SZE) signal

from the Planck CMB observation, to constrain the gas properties as a function

of halo mass. The results indicate that the gas in low-mass halos deviates from

the self-similar case due to its much lower temperature than the virial temperature,

while being as abundant as the cosmic baryon fraction. We also cross-correlated the

reconstructed large-scale properties with the SZE signal, to constrain the properties

of gas in different environment. Our results indicate that the gas in IGM closely
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follows the adiabatic equation of state, while the gas energy is higher in the regions

of stronger tidal field. This may be because the structures form earlier in those

regions, resulting in a more accumulated energy provided by feedbacks. Finally, we

compare our results from the SZE analysis with the predictions from the state-of-

art simulations, demostrating that the SZE is a useful tool to constrain the galaxy

formation models.

9.2 Future work

9.2.1 Testing the SZE flux extraction methods

Due to the low signal-to-noise of the SZE signals as well as the large statistical and

systematic uncertainties, the SZE results from the current data are sensitive to the

flux extraction methods, and thus consistent with a wide range of galaxy formation

models depending on which method to be used. Given the higher sensitivity and

better resolution of the upcoming CMB surveys such as the Toltec, CMB-S4, and

Simons Observatory, it is crucial to have an accurate extraction method to provide

the tighter constraints for the galaxy models. As briefly mentioned in this dissertation,

we are currently testing the performance of popular SZE flux extraction methods in

literature including our method, by applying them to the realstic mock CMB maps

constructed based on simulations (Lim et al. in prep; also see Fig. 9.1). In the

paper, we also test the impact of group finder such as a miss-centering and the mass

uncertainty of halos on the flux calculated from the mock maps of different resolutions.

9.2.2 Direct probe of the SZE profile

The relatively large beam size of the current CMB observations required assump-

tions on the profiles to interpret the results. The up-to-arcsecond resolution of the

future CMB surveys, however, will allow a direct probe of the SZE profile down to

1012M� halos by stacking many of similar systems (see Fig. 9.2), significantly reduc-
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Figure 9.1. Test of the flux extraction methods for the tSZE. Our simultaneous
matching method applied to the tSZE light-cone constructed from the Magneticum
simulation, shown by the red lines, recovers the true flux (black dots) directly from the
simulation, in particular, when it is applied to a survey of a high angular resolution
(solid lines) while aperture photometry (blue) over-predicts the flux.

ing the systematic uncertainties of the current SZE studies. In addition, the directly

probed SZE profile itself will provide additional constraint on galaxy formation mod-

els such as the impact of AGN feedbacks.

9.2.3 Extension to high-z

Most of the works presented in this dissertation has been done so far only in the

low-redshift Universe of z ≤∼ 0.2. As some of our results indicate, however, relying

only on the low-redshift observations results in a degeneracy and large uncertainties

to tightly constrain the galaxy formation models. It is essential, therefore, to extend

256



10-1 100 101

angular/beam size  [arcmin]

10-2

10-1

100

101

102

se
n

si
ti

vi
ty

[
K

a
rc

m
in

] TolTEC 
(LSS) SPT

Planck

tSZE

kSZE
(|vr| = 300km s-1)

z=2
z=1

z=0.2
0.1 0.05

10-2

10-1

100

101

102

T
[

K
]

logM200 12

logM200 13

logM200 14

Figure 9.2. The beam size and sensitivity of the CMB surveys compared with the
angular size and mean SZE signal (the vertical axis on the right) for halos of different
mass as indicated in the legend at different redshifts. The kSZE signal is calculated
for |vr| = 300 km s−1.

the works to the higher redshift up to z ∼ 2. This will become feasible very soon,

fortunately, with the upcoming galaxy surveys such as the Euclid, DESI and Subaru

PFS survey, which will scan more than hundreds of thousands galaxies at the high

redshift with an accurate redshift determination, together with the upcoming CMB

surveys. Preliminary results show that our group finder presented in this dissertation

can also identify well the groups at the high redshift with accurate halo mass estimates

(Fig. 9.3). Our predictions about the stellar mass function at the high redshift can

be also tested to provide a further constraints on the galaxy models. The cross-

correlation of the halos identified from the galaxy surveys with the SZE signals from

the future CMB surveys will allow us to study the evolution of gas properties during

the past ∼ 10 billion years in our Universe, which will significantly improve our
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group finder (horizontal axis) is unbiased with respect to the true halo mass (vertical)
with a scatter of 0.2 dex (lower panels), comparable to that for the low-redshift mock
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understanding of galaxy evolution, galactic feedbacks and their connection to the

cosmic web.
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APPENDIX A

TESTING THE GROUP FINDER WITH MOCK
SAMPLES CONSTRUCTED USING AN EMPIRICAL

MODEL

To further check the consistency of our group finder, which is calibrated with

galaxies in the EAGLE simulation, we have applied it to another set of mock samples

constructed using the empirical model of galaxy formation described in Lu et al.

(2015), which is based on Lu et al. (2014). The tests we have made are the same

as those with the EAGLE mock samples presented in §1.4, using exactly the same

methods described in §1.3. To do this, we first applied the empirical model to the

merger trees extracted from the EAGLE to assign stellar masses to galaxies. As an

example, Figure A.1 compares the true halo masses from the EAGLE simulation with

the final group masses obtained by applying our group finder to the mock samples

thus constructed. The scatter in the halo mass comparison is around 0.2 dex, very

similar to what was found in Figure 1.10 except for the very massive end which shows

slightly larger scatter. This demonstrates that the performance of our group finder is

not sensitive to the details of how galaxies form in dark matter halos, as represented

by the differences between the EAGLE and the empirical model of Lu et al. (2015).
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Figure A.1. Comparison between the true halo mass (vertical axis) and the group
mass identified by our group finder (horizontal axis) using stellar mass as the proxy
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halo merger trees extracted from the EAGLE simulation. The small rectangular
panels plot the scatter of the true halo masses at given group mass.
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APPENDIX B

CONTAMINATION BY PROJECTION EFFECTS

We use the ELUCID (Wang et al. 2016) simulation to check the contamination to

the kSZE by projection effects. ELUCID is a N-body simulation run with GADGET-

2 (Springel 05), using (3072)3 particles in a periodic box of ∼ (500h−1Mpc)3, and

assuming a cosmological model given by WMAP5 (Dunkley et al. 2009). Dark matter

halos are identified with the FoF algorithm.

For simulated halos in a given mass bin, we estimate the total momentum of dark

matter particles withinR200, K200,sph, and compare it with that in a cylinder defined by

r⊥ ≤ R200 and r‖ ≤ lcyl, K200,cyl, where r⊥ and r‖ are the distances from the halo center

that are perpendicular and parallel to the LOS, respectively, and lcyl is half the length

of the cylinder along the LOS. When estimating K200,cyl, we exclude contribution from

other halos with masses above M200 ∼ 1012.4M�, since our method takes into account

the projections of such halos. Fig. B.1 shows (K200,cyl−K200,sph)/K200,sph as a function

of lcyl for halos of different masses. We only select the halos with |vr| > 80 km s−1

because the results from halos with |vr| < 80 km s−1 are noisy. The solid lines are the

predictions from the simulation. Fig. B.1 also shows the mass fraction and the mass-

weighted velocity within the cylinder with respect to that within R200, in the middle

and right panels, respectively. Note that the quantities are plotted beyond the box

size of the simulation. We take the average matter density inside the simulation box

to extrapolate the matter distribution outside the box. We use the peculiar velocity

correlation predicted by the linear theory following Wang et al. (2018), to estimate

the mass-weighted velocity outside the simulation box. The momentum from the
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Figure B.1. The total momentum (left panel), total mass (middle), and average
velocity (right) of the dark matter particles within the cylinder of varying length,
lcyl, with respect to that within a sphere of R200 at the halo centers (see the text
for details on the construction of cylinders), predicted directly from the ELUCID
simulation (solid lines) and from the β-profile fit to the simulation (dashed). The
averages for halos with |vr| > 80 km s−1 are plotted, separately for halos of different
masses, as indicated. The thick solid ticks represent the values of R200 for the given
halo masses. The gray vertical tick in the right panel indicates half of the simulation
box size. The mass in cylinders outside the simulation box are estimated assuming
the average density inside the simulation box. The velocities and momenta outside
the simulation box are computed from the velocities predicted by the linear theory.

cylinder outside the simulation box is obtained by multiplying the extrapolation of

the matter distribution with the mass-weighted velocity from the linear theory. The

test result shows that the LOS contribution from particles outside halos is about 20%.

Because the Planck beam size is up to three times as large as R200 of the low-mass

halos in our sample depending on redshift, gas distributed at r⊥ > R200 may also

contaminate the signal to be detected from halos. To see this, we have carried out

similar tests for the cylinders of r⊥ ≤ 2R200 and 3R200, and found that the momentum

contribution from the particles outside halos is about 50% and 70%, respectively.

However, this does not mean that the results presented in §6.4 are over-estimated

by these amounts. In fact, our simultaneous matching method uses the projected β-

profile, which includes mass distributions outside halos on the one hand but suppress

the contributions from large distances on the other. To see this, we fit the projected

profiles from the simulation with the projected β-profile for each lcyl, and compute the
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corresponding LOS contamination. The results, shown by the dashed lines, indicate

that the momentum recovered over-estimates the true values by ∼ 10% or less. We

find similar results from the same test based on another simulation, the IllustrisTNG

(Pillepich et al. 2018).

To quantify the net impact of contamination more directly, we apply our matched

filter method to the kSZE light-cone map, constructed from the Magneticum sim-

ulation (Dolag et al. 2016), and examine how our method recovers the true K̃500
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directly measured from the simulation. The Magneticum is a set of cosmological

gas simulations of various volumes and resolutions, run with an improved version of

GADGET-3 (Springel 2005). They adopted a WMAP7 cosmology (Komatsu et al.

2011). The specific run chosen for our analysis samples a box of L = 352h−1Mpc

with 2 × (1584)3 particles, which results in a mass resolution of mDM ∼ 109M� for

the dark matter particles. Based on the simulation, we construct the kSZE light-cone

maps using the SMAC code (Dolag et al. 2005), which cover the redshift range of

0.0173 < z < 0.194 and 900 deg2 of the sky. We generate the kSZE based on the dark

matter particles only, assuming that gas particles follow the dark matter distribution

with a universal ratio between the gas and total mass densities. We then generate

the CMB temperature maps at the same three frequencies as used in our analysis,

and add the primordial CMB anisotropy using the CMB power spectrum. Finally,

we degrade the map with the Planck beam function, and add the instrument noise.

To the constructed temperature maps, we apply our method to constrain the model

parameters and estimate the corresponding K̃500 for halos in the same mass bins as

in our analysis. Fig. B.2 shows the K̃500 recovered by our method with respect to the

true value. The black solid line shows the result for all halos. The red and blue lines

show the results for halos with R500 greater (‘resolved’) or smaller (‘unresolved’) than

the Planck beam size, respectively, where two different sets of model parameters are

assumed for the ‘resolved’ and ‘unresolved’ halos to model the simulated maps. The

shaded bands show the 68% range of the posterior distribution for each case. Within

the statistical uncertainty, the K̃500 recovered by our method is unbiased relative to

the true value. The results for the ‘unresolved’ halos tend to be higher than both

those for the ‘resolved’ halos and the true K̃500, but the increase is insignificant given

the statistical uncertainty.

Based on the tests presented above, we conclude that our results shown in the

main text are not affected significantly by the contamination of projection effects.
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I., Wuyts S., 2009, ApJ, 701, 1765

[176] Marinacci F. et al., 2018, MNRAS, 480, 5113

[177] Martin D. C. et al., 2005, ApJL, 619, L1

[178] Martin C. L. et al., 2012, ApJ, 760, 127

[179] McAlpine S. et al., 2016, Astronomy and Computing, 15, 72

[180] McCarthy I. G. et al., 2010, MNRAS, 406, 822

[181] McCarthy I. G., Schaye J., Bird S., Le Brun A. M. C., 2017, MNRAS, 465,
2936

[182] McConnell N. J., Ma C. P., Gebhardt K., Wright S. A., Murphy J. D., Lauer
T. R., Graham J. R., Richstone D. O., 2011, Nature, 480, 215

[183] McDonald M. et al., 2016, ApJ, 826, 124

[184] McIntosh D. H., Bell E. F., Weinberg M. D., Katz N., 2006, MNRAS, 373, 1321

[185] Melin J.-B., Bartlett J. G., Delabrouille J., 2005, A&A, 429, 417

272



[186] Melin J.-B., Bartlett J. G., Delabrouille J., 2006, A&A, 459, 341

[187] Mo H. J., White S. D. M., 1996, MNRAS, 282, 347

[188] Mo H. J., Mao S., White S. D. M., 1998, MNRAS, 295, 319

[189] Mo H. J., Mao S., White S. D. M., 1999, MNRAS, 304, 175

[190] Mo H. J., Mao S., 2002, MNRAS, 333, 768

[191] Mo H. J., Mao S., 2004, MNRAS, 353, 829

[192] Mo H. J., Yang X., van den Bosch F. C., Katz N., 2005, MNRAS, 363, 1155

[193] Mo H. J., van den Bosch F. C., White S. D. M., 2010, Galaxy Formation and
Evolution. Cambridge University Press, New York, NY

[194] Moster B. P., Somerville R. S., Maulbetsch C., van den Bosch F. C., Macciò A.
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[211] Pakmor R., Hachinger S., Röopke F. K., Hillebrandt W., 2011, A&A, 528, 117

[212] Panter B., Jimenez R., Heavens A. F., Charlot S., 2007, MNRAS, 378, 1550

[213] Parkinson H., Cole S., Helly J., 2008, MNRAS, 383, 557

[214] Peacock J. A., Smith R. E., 2000, MNRAS, 318, 1144
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