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ABSTRACT 

SUPRAMOLECULAR NANOASSEMBLIES FOR THE SEPARATION AND 

MASS SPECTROMETRIC ANALYSIS OF PEPTIDES AND MODIFIED 

PROTEINS 

 

SEPTEMBER 2019 

 

MEIZHE WANG, B.S., JILIN UNIVERSITY 

 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

 

Directed by: Professor Richard W. Vachet 

 

 

Protein post-translational modifications (PTMs) play key roles in cellular 

physiology and disease, and identifying their locations on proteins can be beneficial for 

understanding more deeply protein chemistry. The methods applied for PTM analysis are 

most often based on mass spectrometry (MS). In the past few years, considerable progress 

has been made in developing MS-based proteomics technologies for global PTM analysis. 

Novel mass spectrometric peptide sequencing and analysis technologies allow for 

modification site mapping at molecular level. However, detecting PTMs on proteins and 

peptides by MS is challenging because of their low abundance and heterogeneity. 

Therefore, separation prior to MS analysis is typically required. This dissertation describes 

the use of supramolecular nanoassemblies, formed by amphiphilic polymers, as novel 

enrichment tools for the detection and analysis of peptides and proteins that are 

phosphorylated and glycosylated. The selectivity of the amphiphilic nanoassemblies were 

changed by loading metal ions  for the enrichment of phosphopeptides and by incorporating 

hydrazide functional groups for the enrichment of glycopeptides. In addition to developing 

new nanoassemblies for the enrichment of phosphopeptides and glycopeptides, we also 

explored how supramolecular systems could be tuned to enhance extraction selectivity and 
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efficiency via structural variations to the amphiphilic polymers. The utility of these 

materials for the enrichment of phosphopeptides and glycopeptides from complexed 

samples is also demonstrated.  
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CHAPTER I 

 

ANALYSIS OF POST-TRANLATIONS MODIFICATIONS BY MASS 

SPECTROMETRY  

 

Introduction 

Post-Translational Modifications and Clinical Relevance  

Cells need to detect and react to changes that are from inside and outside. One 

strategy is by chemically modifying proteins. Proteins are the chief actors within the cell, 

serving enzymatic, signaling and structural functions.1 They are formed by the end 

products of gene expression, which may then undergo post-translational modifications 

(PTMs), referring to the covalent cleavage or addition of modifying groups to amino acids. 

These processes play key roles in sensing and responding to the conditional chemical 

changes. A single PTM can re-establish the entire downstream trafficking transforming the 

protein function and cell fate. Hence PTMs contribute significantly to cellular physiology 

and disease.2-5  

Post-translational modifications can happen at any step of the protein lifespan in 

diverse ways, which may include modification short after translation to mediate proper 

folding, confer stability, or translocate proteins, such as proteolysis, glycosylation, 

phosphorylation, etc.6-8 Other modifications may occur after the folding and localization 

for activation or inactivation of catalytic activity and functions, like the reversible 

phosphorylation and the acetylation, etc.8-10 Proteins can also be post-translationally tagged 

by ubiquitin for degradation.11 Besides these most common PTMs (Figure 1.1),12 there are 
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as many as 300 PTMs of proteins are known to occur physiologically, and their importance 

in biological processes and disease has led them be the focus of clinical and pharmaceutical 

research as potential drug targets.13-16 

 

Figure 1.1. Types of post-translational modifications (PTMs).12 

 

 

Since PTMs determine the protein-protein interactions and form the basis of some 

cellular signaling pathways, which also regulate the cell–cell and cell–matrix interactions, 

so they have comprised the basis of several drug targeting strategies and diagnostic tests 

and been reported to have clinical relevance in disease of inflammation, host-pathogen 

interactions, immune modulation, and degenerative and proliferative disorders.17-22 Among 

those phosphorylation and glycosylation are the most common and well-studied post-

translational modifications (Figure 1.2).23 
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Figure 1.2. Human proteins with PTM currently available in the UnitProt database.23 

 

 

Phosphorylation. Protein 

phosphorylation is one of the most 

common and important post-

translational modifications.24 It occurs 

through kinases adding one phosphate 

group (PO4) to the serine (Ser), 

threonine (Thr) or tyrosine (Tyr) 

residues. As a result, the protein 

becomes hydrophilic polar, providing 

the flexibility of conformational change when interacting with other molecules.  The 

 

Figure 1.3. Mechanism of phosphorylation. 
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reversibility of protein phosphorylation by kinase and dephosphorylation by phosphatase 

makes this type of PTM ideal for protein function regulation and signal transduction, as it 

allows cells to respond rapidly to intracellular and extracellular stimuli.23-25 The 

PhosphoSite Plus database has listed over 200,000 known human phosphorylation sites. It 

is estimated that over one-third of the 21,000 proteins encoded by the human genome are 

to be phosphorylated, and more than 350 phosphorylated proteins are under disease 

conditions.23 Indeed, the phosphorylation events plays critical roles in the control of 

biological processes such as differentiation, proliferation and apoptosis.26-28 Numerous 

examples have been found. For example, in chromic myeloid leukemia, the retinoblastoma 

(pRb), a kinase generated by the translocation of Philadelphia chromosome was found to 

be always “on”, which leads to the proliferation of tumor cells.29 In fact, the kinase 

regulated signaling pathways contribute to the start and progression of almost all types of 

cancer. Another common concern is Alzheimer’s disease (AD). Back in 1980s, 

hyperphosphorylated neurofibrillary tangles (NFT) was reported to be found in brains with 

Alzheimer disease.30 And the detection of Tau phosphorylation in the cerebrospinal fluid 

suggests the pathological mechanisms under this disease.31 In addition, the phosphorylation 

of α-synuclein at S129 has been used a biomarker in dementia and Parkinson’s disease 

(PD).32 Because of all these and other negative modulation of the phosphorylation, the 

study of the signaling pathways regulated by kinases with blocking possibility has become 

the major drug target for treatment in clinical and pharmaceutical research.  

Glycosylation. Glycosylation, the attachment of sugar moieties to specific amino 

acids, is another common PTM. It has been found in almost all the living organisms that 

have been studied and is estimated that half of all the proteins are glycosylated.33 There are 
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two major types of glycosylation: N-linked and O-linked (Figure 1.4).34 However, the 

diversity that the two types of glycosylation add to the proteome to a level that is 

unparalleled by any other PTMs, which allow the glycoproteins to adapt to various 

functions in a wide range of biological processes, including molecule transportation, 

enzyme production, cell attachment recognition, etc.35,36 

 

Figure 1.4. The two major types of protein glycosylaiton (left) and N-linked glycosylation 

(right).34 

 

Numerous glycoproteins are N-linked that the glycans are covalently attached to 

the asparagine (Asn) residue of the protein. It mostly happens when the newly translated 

proteins are transported into the ER. Not all Asn can be glycosylated, but only when the 

amino acid motif be Asn-X-Ser/Thr, where X can be any amino acid except Pro, then the 

Asn could accept an N-glycan. All N-glycans share a common core sequence, and be 

classified into three types: high mannose, hybrid and complex depending on the difference 

of types of sugar units (Figure 1.4).37 There are also a variety of glycoproteins that are O-

linked, which means that short glycan chains are attached to the proteins on Ser and/or Thr 
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residues. Therefore, the result of protein glycosylation is a complex array of 

monosaccharides or glycan structures with different glycosidic linkages (sugar-peptide 

bond), glycan composition (types of sugars), glycan structure (branched or unbranched 

sugar chains) and glycan length (short or long chain of oligosaccharides).  

Glycoproteomics is a rapidly emerging field and its clinical relevance have been 

made clear in recent years. For example, in neurodegenerative disease, the glycosylation 

of acetylcholinesterase or butyrylcholinesterase has been reported as a maker of disease 

progression in AD patient,38 and specific glycosylation pattern was observed in frontal 

cortex in PD patient.39 Also, glycan changes have also been found in breast cancer patient 

mediating the disease progression,40 and glycated haemoglobin changes have been used as 

diagnostic test in diabetes.41 Therefore, glycoproteomics has been widely used for 

diagnosis of various diseases. Since protein modifications influence and even define cell 

functions, identifying PTMs is critical for the understanding of cell biology. Many 

modification sites are implicated in the catalytic function of key enzymes, which suggests 

identification of the modification sites helps the understanding of  the mechanistic details 

of  protein-protein interactions and how PTMs modulate the protein functions.  

MS Detection of PTMs 

For the analysis of protein modifications, traditional strategies, such as radioactive 

labeling and western blotting, can be specific and relatively quantitative, but they require 

prior knowledge of the type of modification and are limited by antibody availability and 

specificity. Mass spectrometry (MS), as a fast and sensitive analytical tool, become the 

method of choice. It can rapidly identify proteins and provide universal information of their 
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primary structures and modification without the need for prior knowledge.42-46 Currently, 

there are two major complementary strategies for MS analysis of proteins PTM 

identification: the bottom-up and top-down approaches (Figure 1.5).47 

 

 

Figure 1.5. Protein primary structure determination by mass spectrometry.47 

 

 

Bottom-Up Strategy. The bottom-up approach is the traditional proteomic 

approach and has been widely used to identify proteins and determine the details of the 

sequence and the PTMs.45 In this approach, proteins of interest are digested with an enzyme 

like trypsin into small peptides. These peptides will first be ionized by matrix-assisted laser 

desorption/ionization (MALDI) or electrospray ionization (ESI). These “soft ionization” 

techniques allow peptide ions to be put into gas phase with minimal to no fragmentation 

for subsequent MS analysis. Then the MALDI- or ESI-MS can provide two types of 

information of the peptides. First, the peptide masses can be determined, and then the 

detailed information about peptide sequence and modifications can be achieved by 
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fragmenting the peptide ions in the gas phase. The bottom-up approach is especially useful 

for protein identification as peptides are easily solubilized, separated and detected by MS, 

which is not easy for parent proteins. Also, many peptides can be easily fragmented and 

analyzed to provide enough information for the parent protein determination. Though 

bottom-up strategy provides higher sensitivity than top-down (in later discussion), there 

are some limitations in using bottom-up approach characterizing protein modifications. 

First, there is only a fraction of the peptides that is normally detected, so the modification 

in the unrecovered sequence will remain undiscovered. In addition, because the sequence 

digested by trypsin are relatively small, there might be a loss of correlation that is between 

modifications on different parts of the protein.45,47 

Top-Down Strategy. The top-down approach is a more powerful way to analyze 

unknown protein modifications as the intact protein is injected and fragmented 

subsequently inside the mass spectrometer without digestion, so the molecular masses of 

both the protein and all the fragment ions can be acquired and analyzed. Therefore, it is 

possible to get full information of the primary structure, all the modifications of the protein, 

and the relationship between amino acid sequence and modifications belonging to a 

specific proteoform. This relationship cannot be preserved in bottom-up approaches 

characterizing peptides after proteolytic digestion. However, it’s very important for the 

understanding of biological system as different proteoforms can function very differently. 

Although this strategy has shown being able to measure the molecular masses of intact 

protein, it has proved challenging for top-down approach to produce extensive gas-phase 

fragmentation of intact protein, especially for large proteins. Great effort has been put into 

the method developments for fragmenting large proteins or peptides.47,48  
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It is also worth mentioning that middle-down proteomics, as a variant of the top-

down strategy, has recently emerged as a high throughput strategy in PTM 

characterization.49 In this approach, the proteins are proteolyzed to large peptides, so to 

preserve more sequence and modification information, and then be fragmented and 

analyzed like top-down. Because of the different challenges in bottom-up and top-down 

approaches and depending on the different questions that researchers try to answer, the two 

approaches are still coevolving.47  

Mass Spectrometry Fragmentation Strategies. In MS-based protein detection, 

tandem mass spectrometry (MS/MS) is the key technique for protein and peptide 

sequencing and PTM analysis.50 It is essential to have proper fragmentation to produce 

enough fragment ion information for the sequence identification and modification site 

localization. There are several fragmentation methods available, including collision-

induced dissociation (CID), electron-capture dissociation (ECD), electron-transfer 

dissociation (ETD) and higher energy collisional dissociation (HCD).51 

CID, also known as collisionally activated dissociation (CAD), has been the most 

widely used MS/MS technique. In this dissociation method, gas phase peptide or protein 

cations are heated by collisions with rare gas atoms, resulted in fragmentation of C-N bond 

in the peptide backbone, producing a series of b- and y-fragment ions. This method is not 

friendly for labile PTMs because of the slow-heating and high energy required in the 

fragmentation process. Other internal fragmentation and neutral loss of H2O or NH3 can 

also occur. And this technique usually works for small peptides (< 15 amino acids).52,53 

A later developed fragmentation technique, ECD, works by capturing a thermal 

electron causes the protonated peptide or protein cation be fragmented on the N-Cα bond, 
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resulting in a series of c- and z-fragments ions. ECD can preserve the labile modifications 

and provide more extensive fragmentation and higher sequence coverage, thus become a 

powerful technique but mostly constrained to the expensive and sophisticated FTICR 

instruments.54  

ETD is a similar technique to ECD but could be more commonly used in bench top 

mass spectrometers. In this method, the electrons transfer from radical anions with low 

electron affinity to protonated peptide or protein cations, to produce fragmentation 

resulting in c- and z-types of ions. It is very complementary to conventional CID in 

analyzing very large peptides because of its higher efficiency and has shown great potential 

in labile PTM analysis.55   

PTM Enrichment Strategies  

The bottom-up proteomics, such as shotgun proteomics, provide high sensitivity in 

characterizing modifications after protein proteolysis. Although the mass spectrometers 

have evolved dramatically in recent decades, it is still impossible to directly identify most 

of the PTMs in a standard MS analysis from complex protein digests. The general 

workflow for protein PTM analysis always includes efficient peptide enrichment prior to 

MS detection because of the low abundance of modified proteins and low stoichiometry of 

PTMs. The presence of huge amount of unmodified peptides significantly suppresses the 

detection of modified peptides.56,57  
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Figure 1.6. Major strategies for enrichment of PTM peptides.56 

 

 

Various available enrichment methods can be divided into two types: chemical 

approaches and biochemical approaches (Figure 1.6),56 where chemical approaches make 

use of the different chemical properties of modified and unmodified peptides while 

biochemical approaches utilize the specific interactions between biomolecules. In the first 

approach, for example, chromatography-based methods, such as immobilized metal ion 

affinity chromatography (IMAC) and hydrophilic interaction chromatography (HILIC), 

enrich phosphopeptides and glycopeptides because that phosphate groups have higher 

affinity to metal ions and glycosylated peptides are more hydrophilic than non-modified 

peptides. Also, glycopeptide enrichment can be enriched by hydrazide chemistry because 
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oxidized glycans can react with hydrazide groups while non-glycopeptides cannot. 

Biochemical approaches, however, are based on the specific recognition of enzyme and 

substrate, such as enzymatic labelling methods, of antibody and antigen, like 

immunoaffinity purification. The enzymatic labeling methods have been used for 

enrichment of peptides with O-GlcNAc and S-glutathionylation, and immunoaffinity 

purification has been applied for a bunch of PTM peptide enrichment, such as acetylation, 

methylation, ubiquitination and phosphorylation. Chemical approaches, providing more 

flexibility and universality, has been kept developing and optimizing to acquire more in-

depth PTMs information, which can be clearly seen in the evolution of phosphopeptide 

enrichment (Figure 1.7).56  

 
 

Figure 1.07. Evolution of phosphopeptide enrichment methods.56 
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Conventional IMAC for the enrichment of phosphopeptides is based on the 

chelating interactions between phosphate group and metal ions that are immobilized on 

solid beads with iminodiacetic acid (IDA) or nitrilotriacetic (NTA) as the chelating groups. 

Fe3+ was the initial metal ions, and then a lot of ions, such as Ni2+, Ga3+, Gu2+, Co2+, Al3+, 

etc. have been applied to IMAC.58 This conventional IMAC has been developed for a long 

time but still suffer a great challenge of non-specific binding from Glu and Asp. This 

problem was tried to be overcome by the methyl esterification of carboxyl groups on Asp 

and Glu prior to phosphopeptide enrichment.59 However, this method was rarely used 

because of the incomplete esterification, side reaction and possible peptide loss, then 

optimizing loading buffer became a more practical and simple way to improve the 

enrichment specificity. Higher selectivity could be achieved by protonating the carboxylic 

groups on Asp and Glu, while leaving the phosphate groups deprotonated in the loading 

buffer of pH 2-2.5 as the pKa of E and D is around 4 while of phosphate group is about 

2.60 Later the conventional IMAC was mostly replaced by the metal oxide affinity 

chromatography (MOAC) especially in large-scale phosphoproteome studies, because of 

the higher enrichment efficiency and easier availability shown by ZrO2 and TiO2.
61  More 

recently, a new type of IMAC that tries to combine the advantages of IMAC and MOAC 

has been developed, where Zr4+ and Ti4+ are used as the chelating metal ions because of 

the higher specificity between metal (IV) ions and phosphate groups than that of 

conventional IMAC metal ions. In addition, compared to MOAC, Zr4+- or Ti4+-IMAC 

shows higher efficiency because of the flexible arms introduced in IMAC that can reduce 

the steric hindrance.62,63 Based on that, some new matrix materials have been developed to 

further improve their enrichment efficiency. Among those, incorporating nanomaterials 
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has become the most attractive method as it can provide higher surface area for higher 

capacity and can be easily modified on the material surface and on the chelating ligands 

for simple optimization.64-66  

Supramolecular Nanoassemblies as Selective Extraction Agents for MS Analysis of 

PTMs 

Supramolecular nanoassemblies, including micelles, reverse micelles, vesicles, 

polymersomes, and gels, have been widely studied for encapsulation, detection, and 

targeted delivery of biomolecules.67,68 A key characteristic of supramolecular systems is 

their ability to be tuned via changes at the molecular level. Non-covalent interactions, 

including electrostatic interactions, H-bonding, π-π stacking, metal-ligand coordination, 

and general host-guest interactions, are often used for this purpose.69,70 Supramolecular 

assemblies formed by amphiphilic polymers as enrichment agents for the selective 

detection of biomolecules through electrostatic interactions have been explored in our 

group. These amphiphilic polymers, either homopolymers or copolymers, consist of 

hydrophobic and functional hydrophilic moieties that can self-assemble into reverse 

micelles in apolar solvents. Once assembled, they act as nanocontainers that selectively 

enrich biomolecules from aqueous solution into their interiors, by bringing them across the 

solution-solution interface (Figure 1.8).71-81  

These nanoassemblies have shown great features for biomarker extraction. 1) They 

can be easily synthesized and can be widely used by changing the functional groups based 

on the property of target biomolecules. For example, to target positively-charged peptides 

or proteins, carboxylate, sulfonate or phosphonate-containing polymers can be synthesized, 

either as homopolymers or random co-polymers, and for negatively-charged peptides or 
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proteins, the hydrophilic part of polymer can be replaced as positively-charged quaternary 

amine groups.71,72,79,80  2) After the functional groups recognize and bind with the peptides 

or proteins of interest via two-phase liquid-liquid extraction, they can be easily collected 

in the organic phase because they tend to be trapped only in the toluene phase where they 

are initially assembled. The use of two immiscible phases allows easy isolation of the 

extracted peptides after centrifugation.77 3) Enhanced detection has been observed which 

is significant for the detection of usually low-abundant biomarkers. The MALDI signal 

enhancement was found to be due to the donor-acceptor and electrostatic interactions in 

the supramolecular systems during MS analysis, where the donor-acceptor interactions 

drive a formation of ternary assembly of the polymer, peptide and matrix, which produces 

peptide-rich zones or ‘hot spots’ that maximize the ion signal in the mass spectrum.76 

Detection of peptides of interest can also be enhanced by selective removal of interfering 

peptides or proteins using the corresponding polymers. For example, abundant acidic 

proteins in serum can be depleted using positively-charged polymers and so allow for the 

enhanced detection of higher pI proteins.78 This depletion efficiency can be further 

improved by varying the polymer structure, concentration and charge density.79,80 4) A 

systemic study of how polymer structure influences extraction shows that the inherent 

feature of the functional group of the polymer like its pKa affects not only selectivity as in 

free aqueous solution, but also affects the extraction capacity because of the hydrophilic-

lipophilic balance (HLB) of the polymer, which allows the materials to be used as a more 

predictable separation method.79 These fundamental studies have given us insight that has 

allowed us to extract peptides with specific pI values,72,73 generate titration curves for 

individual peptides in a mixture,74 efficiently release peptides for quantitative analysis,81 
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enrich biomarkers in human serum and breast milk by specific pI bracketing, and reduce 

sample complexity with concurrent pI bracketing for high sensitive MS detection of the 

biomarkers of interest.75,78 

 

Figure 1.8. Amphiphilic polymers self-assemble into micelle-type assembly or reverse 

micelle-type assemblies, which can be used for two-phase liquid-liquid extraction of 

peptides prior to MS analysis.72 

 

While these supramolecular materials have been effective at enriching molecules 

based on complementary charge, the electrostatic interaction-based affinity cannot satisfy 

the need for the selectivity of extracting modified peptides. To study a wider range of 

biomolecules, altering the selectivity of these promising materials is an important goal in 

this dissertation. In chapter II, a simple approach for changing the enrichment selectivity 

of these materials instead of synthesizing new functional polymers has been explored, 

which is via the addition of metal ions. A series of polymer with varying phosphonate 

architecture have been synthesized and loaded with different amount of Zr4+ and their 
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extraction performance have been studied. With the best selectivity and efficiency achieved 

by certain polymer and ratio to metal ions, these materials are used for selectively enrich 

phosphorylated peptides present in low levels in protein mixtures. 

Although non-covalent interactions have proved successful in extraction, the 

selectivity achieved by non-covalent bond cannot be competitive to that of covalent bonds, 

as non-specific interactions can be washed off thoroughly. In chapter III, we used covalent 

binding via hydrazide groups to achieve high selectivity for glycopeptide. At the same time, 

a non-covalent interaction was incorporated to catalyze this normally slow covalent 

binding reaction, thereby improving extraction efficiency. We find that in the confined 

environment of the nanoassembly the reaction of hydrazide with glycans is faster than in 

existing approaches. Moreover, the extraction efficiency can be further increased by 

placing functional groups in the assemblies that catalyze the reaction of hydrazide moieties 

with glycans. 

In chapter IV, another effective way of expanding the scope of the material’s 

selectivity is demonstrated. Besides of selective extraction using the nanomaterials, we add 

another dimensional control over the peptide separation, which is controlled release. The 

release behavior of the peptides from nanoassemblies into stripping buffer has been studied, 

and it shows great potential in isolating desired peptides after peptide synthesis.  
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CHAPTER II 

 

SUPRAMOLECULAR NANOASSEMBLIES FOR PHOSPHOPEPTIDE 

ENRICHMENT  

 

The majority of this chapter was published in Wang, M.; Zhao, B.; Gao, J.; He, H.; 

Castellanos, L.J.; Thayumanavan, S.; Vachet, R. W. Altering the Peptide Binding 

Selectivity of Polymeric Reverse Micelle Assemblies via Metal Ion Loading. Langmuir 

2017, 33, 14004-14010. 

 
Figure 2.1. Langmuir journal cover of selective extraction of phosphopeptides by Zr(IV)-

loaded polymeric reverse micelles. 
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Introduction  

Supramolecular nanoassemblies formed by amphiphilic polymers have been 

proved very effective at enriching molecules based on complementary charge, 1-6 altering 

the selectivity of these promising materials is an important goal that typically requires 

synthesis of new functional polymers. In this chapter, we have explored a simpler approach 

for changing the enrichment selectivity of these polymeric reverse micelles via the addition 

of metal ions. We find that by loading the reverse micelles with Zr ions, we can 

dramatically change the selectivity of the materials so that they specifically bind 

phosphopeptides (Figure 2.1). Further tuning of the selectivity and efficiency of the 

enrichment process can be accomplished by varying the polymer architecture. The 

resulting materials can selectively enrich phosphorylated peptides, which are present in 

low-levels in protein mixtures, thereby offering a potentially new approach for studying 

protein phosphorylation, which is important for a variety of biological phenomena.7-11 

 
 

Figure 2.2. Schematic illustration of polymeric reverse micelles having phosphonate 

functional groups loaded with Zr(IV) that can selectively bind phosphopeptides.  
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Results and Discussion  

An aqueous phase peptide mixture created by digestion of the proteins α-casein, β-

casein, chicken ovalbumin, bovine serum albumin (BSA), and lysozyme was extracted 

using reverse micelles of polymer P1, containing phosphonate moieties (Figure 2.2), and 

analyzed by MALDI-MS (Figure 2.3). Before extraction, the mass spectrum (Figure 2.3a 

and Table 2.1) is dominated by peptides with low pI values, which is consistent with the 

fact that four of the five proteins are acidic. After extraction using polymer P1, peptides 

with pI values close to or above the aqueous solution pH of 7 are detected (Figure 2.3b and 

Table 2.2), which is consistent with our previous work that showed reverse micelles of 

negatively charged polymers extract positively charged peptides.1-6 

 
 

Figure 2.3. Chemical structures of amphiphilic random copolymers P1-P4 and 

amphiphilic homopolymer P5. 

 

The goal of the current work is to test whether the selectivity of these polymers 

could be varied by the simple addition of something to the reverse micelle solution. To test 

this idea, we loaded the reverse micelle interiors with Zr(IV), which has high affinity for 

phosphate groups. We hypothesized that the addition of this metal would convert the 

interior from being negatively-charged to an interior that presented coordinated Zr(IV) ions 

capable of selectively binding phosphopeptides. We were indeed pleased to find that upon 

extracting the same protein digest, which contains three phosphoproteins (i.e. α-casein, β-
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casein, and ovalbumin), the polymer assembly’s selectivity changes dramatically. The 

mass spectrum is now dominated by phosphopeptides (Figure 2.3c and Table 2.3), 

indicating that the driving force for extraction has been converted from electrostatic 

interactions to Zr(IV)-phosphate interactions. It should be stated that the extraction with 

the Zr(IV)-loaded polymer is selective for phosphopeptides and not just acidic peptides, as 

positively charged polymer P5 extracts acidic peptides, including non-phosphorylated ones 

(Figure 2.3d and Table 2.4). 

 

 
 

Figure 2.4. MALDI mass spectra of a protein digest mixture of α-casein, β-casein, chicken 

ovalbumin, bovine serum albumin (BSA) and lysozyme each at 0.5 μM, acquired in the 

negative ion mode (a) before enrichment, (b) after enrichment at pH 7 using reverse 

micelles of polymer P1, (c) after enrichment at pH 7 using reverse micelles of polymer P1 

loaded with Zr(IV), and (d) after enrichment at pH 7 using reverse micelles of polymer P5. 

The numbers above the peaks indicate the calculated pI values of the peptides, and the 

asterisks indicate the phosphorylated peptides. 
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Table 2.1. Most abundant peptides detected from protein mixture consisting of α-casein, 

β-casein, chicken ovalbumin, BSA and lysozyme by MALDI-TOF-MS analysis in negative 

mode before enrichment. 

 

Peptide sequence  pI [M-H]- (Da) Protein 

YLGYLEQLLR 6.00 1265.7 α-casein 

FFVAPFPEVFGK 6.00 1382.7 α-casein 

SLHTLFGDELCK 5.30 1417.7 BSA 

DAFLGSFLYEYSR 4.37 1565.7 BSA 

GGLEPINFQTAADQAR 4.37 1685.8 ovalbumin 

DSTRTQINKVVRFDK 9.99 1805.0 ovalbumin 

ELINSWVESQTNGIIR 4.53 1857.0 ovalbumin 

LFTFHADICTLPDTEK 4.54 1905.9 BSA 

RHPYFYAPELLYYANK 8.39 2043.0 BSA 

VTEQESKPVQMMYQIGLFR 6.92 2282.1 ovalbumin 

LPGFGDSIEAQCGTSVNVHSSLR 2.84 2509.1 ovalbumin 

FDKLPGFGDSIEAQCGTSVNVHSSLR 1.88 2889.3 ovalbumin 

ELEELNVPGEIVESLSSSEESITR 1.55 2963.3 β-casein 

RELEELNVPGEIVESLSSSEESITR        1.48 3120.5 β-casein 

 

 

 

 

 

Table 2.2. Positively charged peptides detected from protein mixture consisting of α-

casein, β-casein, chicken ovalbumin, BSA and lysozyme by MALDI-TOF-MS analysis in 

negative mode after enrichment using polymer P1 at pH 7. 

 

Peptide sequence  pI 
[M-H]- 

(Da) 
Protein 

HIATNAVLFFGR 9.76 1343.7 ovalbumin 

YLGYLEQLLRLKKYK 9.70 1926.1 α-casein 

RHPYFYAPELLYYANK 8.39 2043.0 BSA 

VTEQESKPVQMMYQIGLFR 6.92 2282.1 ovalbumin 

VHHANENIFYCPIAIMSALAMVYLGAK 7.24 3031.5 ovalbumin 
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Table 2.3. Phosphopeptides detected from protein mixture consisting of α-casein, β-casein, 

chicken ovalbumin, BSA and lysozyme by MALDI-TOF-MS analysis in negative mode 

after enrichment using Zr loaded polymer P1 at pH 7. 

 

 

Peptide sequence 

No. of 

phosphorylation 

sites 

 

[M-H]- 

(Da) 

 

Protein 

TVDMESTEVFTK 1 1464.6 α-casein 

TVD[Mo]ESTEVFTK 1 1480.6 α-casein 

VPQLEIVPNSAEER 1 1658.8 α-casein 

YLGEYLIVPNSAEER 1 1830.9 α-casein 

DIGSESTEDQA[Mo]EDIK 2 1941.7 α-casein 

YKVPQLEIVPNSAEER 1 1950.0 α-casein 

FQSEEQQQTEDELQDK 1 2059.8 β-casein 

EVVGSAEAGVDAASVSEEFR 1 2087.9 ovalbumin 

LPGFGDSIEAQCGTSVNVHSSLR 1 2509.1 ovalbumin 

FDKLPGFGDSIEAQCGTSVNVHSSLR 1 2889.3 ovalbumin 

ELEELNVPGEIVESLSSSEESITR 4 2963.3 β-casein 

RELEELNVPGEIVESLSSSEESITR 4 3120.5 β-casein 

[Mo], Oxidation on methionine; S: phosphorylated residue. 

 

Table 2.4. Negatively charged non-phosphorylated peptides detected from protein mixture 

consisting of α-casein, β-casein, chicken ovalbumin, BSA and lysozyme by MALDI-TOF-

MS analysis in negative mode after enrichment using positively charged polymer P5 at pH 

7. 

 

Peptide sequence  pI [M-H]- (Da) Protein 

YLGYLEQLLR 6.00 1265.7 α-casein 

TVMENFVAFVDK 4.37 1397.7 BSA 

DAFLGSFLYEYSR 4.37 1565.7 BSA 

LKPDPNTLCDEFK 4.56 1517.7 BSA 

DAFLGSFLYEYSR 4.37 1565.7 BSA 

AEFVEVTKLVTDLTK 4.68 1690.9 BSA 

 

 

The Zr(IV)-polymer assemblies were characterized in several ways to assess the 

nature of the resulting materials. First, DLS of the polymers in toluene with and without 

Zr(IV) demonstrate the formation of assemblies with narrow size distributions (Figure 2.4a) 
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that change from about 90 nm to 120 nm upon adding Zr. These sizes are consistent with 

the sizes of polymeric reverse micelles that have been studied previously.12,13 Measuring 

the sizes of the assemblies after extraction of the aqueous phase is complicated by the 

formation of a interfacial layer between the phases. Second, complexation of Zr by the 

phosphonate groups in polymer P1 was confirmed by FT-IR measurements (Figure 2.4b). 

After loading metal, the P=O stretch of the phosphonate group shifts from 1241 cm-1 to 

1192 cm-1, which is consistent with coordination between Zr(IV) and the phosphonate 

group causing the formation of longer P-O bonds in the polymer.14,15 The disappearance of 

the 993 cm-1 band and appearance of a new band around 948 cm-1 in the Zr-loaded 

polymer suggests the replacement of P-O-H with P-O-Zr. Third, the concentration of Zr in 

the polymeric assemblies, as assessed by ICP-MS (Table 2.5), confirm that (i) Zr is present 

in the polymer assemblies, as Zr itself is not soluble in toluene alone, and (ii) the Zr-

phosphonate stoichiometry can be varied by changing the amount of Zr that is added. 

 
Figure 2.5. (a) DLS of polymer P1 (black) and Zr loaded polymer P1 (red) in toluene at 

concentrations of 0.1 mM in terms of phosphonate groups. (b) FT-IR of polymer P1 

(black) and Zr loaded polymer P1 (red) after drying the solutions from toluene. 
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Table 2.5. ICP-MS determined Zr concentrations of the polymer-containing toluene phase 

upon adding 0.07 mg/mL of polymer P1 (100 µM phosphonate groups) and different molar 

ratios of Zr. 

 

 
 

 

We next studied how Zr(IV) loading influenced phosphopeptide binding selectivity 

and efficiency for polymer P1. Selectivity is reported as the percentage of detected peptides 

that are phosphopeptides and provides a measure of the specificity of the enrichment 

process. We used total phosphopeptide intensity as an indicator of the efficiency of the 

enrichment process, as a greater number of enriched phosphopeptides should give rise to 

higher MALDI-MS ion signals. It was found that the selectivity levels off when the 

polymer is loaded with a 0.5 Zr/P ratio (Figure 2.5a). Presumably, this amount of Zr is the 

minimum amount necessary to shield the effect of the negatively charged phosphonate 

groups in the reverse micelles such that positively charged peptides are no longer 

selectively extracted. Interestingly, further increases in the Zr/P ratios up to about 3 lead to 

greater enrichment efficiencies (Figure 2.5b), suggesting that increases in Zr 

concentrations lead to more open coordination sites for phosphopeptide binding. Increases 

in Zr/P ratios beyond 3 cause decreases in extraction efficiency. This effect might arise due 

Added Zr/P 

ratio Measured Zr/P ratio 

0 0* 

0.1 0.0187 ±0.0008 

0.2 0.058 ±0.002 

0.5 0.239 ±0.005 

1 0.58 ±0.01 

2 1.21 ±0.02 

5 2.69 ±0.05 

* Zr concentrations are below detectable levels. 
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to MALDI-MS signal suppression in the presence of higher Zr concentrations or 

overloading of the reverse micelles that lead to leaching of Zr back into the aqueous phase 

during the two-phase extraction process. In the latter case, presumably free Zr in the 

aqueous phase could form complexes with phosphopeptides,16 thereby decreasing the 

efficiency with which they are extracted into the reverse micelles. Support for this idea is 

found upon measuring the Zr concentration in the aqueous phase after extraction. When 

the Zr/P ratio is 5, 12.0 ±0.4% of the added Zr ends up back in the aqueous phase, whereas 

only 0.21 ±0.01% to 3.00 ±0.03% of the added Zr is found in aqueous phase when the Zr/P 

ratio is between 0.5 and 3.0. 

 
Figure 2.6. (a) Selectivity and (b) efficiency of extracting phosphopeptides from a protein 

digest mixture of α-casein, β-casein and chicken ovalbumin each at 0.5 μM at pH 7 using 

polymer P1 loaded with Zr at different molar ratios of Zr/P. 

 

We then investigated whether the binding selectivity could be further tuned by 

varying the phosphonate composition of the polymer. We hypothesized that there would 

be an optimal number of phosphonate groups that would yield the proper balance between 

immobilizing Zr inside the reverse micelle assemblies while providing replaceable 

coordination sites for phosphopeptide binding. To test this idea, we designed a series of 
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random copolymers P1-P4 (Figure 2.2) having different percentages of phosphonate and 

PEG groups. The PEG groups were chosen to act as weak Zr coordination sites that could 

be replaced by phosphopeptides. 

Phosphopeptide enrichment selectivity and efficiency was found to be the highest 

when the random co-polymers had both phosphonate and PEG groups (P1 and P2), rather 

than just phosphonate groups or just PEG groups (Figure 2.6). For example, at pH 7 

polymers P1 and P2 are very selective with percentages of 89 ±8 and 81 ±7, respectively, 

whereas polymers P3 and P4 (without the PEG-based co-monomer and the phosphonate-

based monomer in the polymer respectively) have selectivity percentages of 36 ±9 and 36 

±5, respectively. Likewise, polymers P1 and P2 more efficiently extract phosphopeptides 

as indicated by the higher phosphopeptide intensities (Figure 2.6b). The relatively low 

enrichment selectivity and efficiency of polymer P3 are attributed to the inability of some 

of the polymer phosphonate groups to be displaced from Zr(IV) inside the reverse micelles 

upon exposure to phosphopeptides, resulting in inefficient phosphopeptide capture. The 

low enrichment selectivity and efficiency for polymer P4 might be caused by the poor 

coordinating ability of the PEG groups such that Zr(IV) does not remain stably bound 

inside the reverse micelles upon exposure to the phosphopeptides, thereby preventing 

efficient peptide capture. Evidence for this idea comes from ICP-MS measurements of the 

aqueous phase after extraction. When P4 is used for extraction, 16.5 ±0.5% of the added 

Zr is found in the aqueous phase, whereas for polymers P1, P2, and P3 3.00 ±0.03%, 2.73 

±0.07%, and 1.64 ±0.02%, respectively are found in the aqueous phase. Overall, polymers 

P1 and P2 seem to provide the right balance of Zr(IV) coordination strength and the ability 

to open up coordination sites for entering phosphopeptides. It should be noted that an 
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analogous effect has been observed in immobilized metal affinity chromatography, where 

an optimum coordination number for the immobilized metal leads to more efficient 

extractions.16  

Another interesting feature of these materials is that their selectivity and efficiency 

are somewhat independent of pH (Figure 2.6), emphasizing the role that Zr-phosphate 

interactions play in the binding selectivity. Moreover, this behavior contrasts with most 

immobilized metal affinity approaches that suffer from Zr(IV) hydrolysis at higher pH 

values and thus only work well under acidic conditions.7-11 Perhaps the confined 

environment inside the reverse micelles limits hydroxide levels, thereby minimizing 

hydrolysis. 

 
 

Figure 2.7. Phosphopeptide enrichment (a) selectivity and (b) efficiency using the 

polymers P1-P4 in Scheme 2 to extract a three-protein digest mixture from an aqueous 

phase pH of 3, 5 and 7. 

 

Upon better understanding the polymer features that influence phosphopeptide 

binding, we explored the scope of the binding specificity by extracting phosphopeptides 

from digests of the phosphoprotein β-casein in the presence of 10 and 100-fold molar 

excesses of BSA. Before extraction of the protein digest mixture, analysis by MALDI-MS 
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reveals a spectrum dominated by numerous non-phosphorylated peptides originating from 

BSA (Figure 2.7a). The presence of exclusively BSA-related peptides is not surprising as 

digestion of this protein can produce more than 200 peptides, while β-casein typically 

produces only 20 peptides, of which only 3 are phosphorylated. Upon using polymer P1 or 

P2 to enrich the phosphopeptides of β-casein, MALDI-MS spectra are now much simpler 

with 3 or 2 phosphopeptides detected (Figure 2.7b and c, respectively). These results 

highlight the high degree of selectivity possible when Zr(IV) is loaded into these polymeric 

reverse micelles. 

 
Figure 2.8. MALDI mass spectra of protein digests of β-casein and BSA (a) before 

enrichment; (b) after enrichment using Zr loaded polymer P1 and a β-casein: BSA ratio of 

1:10 (β-casein 50 nM; BSA 0.5 μM) at pH 7; (c) after enrichment using Zr loaded P2 and 

a β-casein: BSA ratio of 1:100 (β-casein 10 nM; BSA 1 μM) at pH 3. The peaks labeled 

with asterisks indicate the phosphorylated peptides. 

 

 

Conclusions  

We have developed a simple method of varying the binding selectivity of polymeric 

reverse micelles by changing the chemistry of their interiors via the addition of Zr(IV) ions. 

Metal addition resulted in reverse micelle capable of selectively enriching phosphopeptides 

from protein digest mixtures. We further tuned the selectivity of these materials by varying 

the ratio of hydrophilic functional groups in the reverse micelle interior and found that a 

combination of PEG groups and phosphonate groups provided the optimum binding 
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selectivity and efficiency. Finally, the optimized polymer structure, loaded with Zr(IV) 

ions, allowed us to selectively bind phosphorylated peptides that are present at very low 

levels in a more complicated sample. This study demonstrates that supramolecular 

materials based on polymeric reverse micelles can be readily designed to selectively target 

biomolecules of interest. Future work will further develop these Zr(IV)-loaded polymers 

so that it can be used to improve the detection of phosphopeptides, which could make them 

valuable materials for phosphoproteomics studies.  

Experimental Methods  

Materials and Reagents  

α-Casein, β-casein, chicken ovalbumin, BSA, lysozyme, DL-dithiothreitol (DTT), 

iodoacetamide (IAM), phosphoric acid (H3PO4), and zirconium(IV) oxychloride 

octahydrate (ZrOCl2·8H2O) were obtained from Sigma-Aldrich. 2, 5-dihydroxybenzoic 

acid (DHB), Tris hydrochloride, toluene, and tetrahydrofuran (THF) were purchased from 

Fisher Scientific. Trypsin was obtained from Promega. Urea was purchased from MP 

Biomedicals.  Ammonium bicarbonate (NH4HCO3) was obtained from Fluka. Water was 

purified using a Milli-Q water purification system (Millipore, Bedford, MA). All other 

chemicals were used as obtained from commercial sources.  

Polymer Synthesis 

 The amphiphilic random copolymers bearing hydrophobic p-alkoxy moieties and 

hydrophilic variable phosphonate, pentaethylene glycol monomethyl ether (PEG), or 

carboxylate groups that were used in this study are shown in Figure 2.2. All monomers 

were synthesized through Wittig reactions of the corresponding aldehydes and the 
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polymerizations were carried out using nitroxide mediated radical polymerization (NMP). 

The molecular weight of each polymer was measured by gel permeation chromatography 

(GPC). The ratios of repeating units in each polymer were calculated by nuclear magnetic 

resonance (NMR). 

 

 
 

Figure 2.9. Synthetic scheme for monomer M2. 

 

Synthesis of Monomers. Synthesis of compound M1: To a solution of acetone 

mixed with K2CO3 (11.84 g, 85.65 mmol) and 18-crown-6 (1.13 g, 4.28 mmol), 4-

hydroxybenzaldehyde (5.23 g, 42.83 mmol) was added and stirred for 5 min. To this 

mixture, 1-bromodecane (14.21 g, 64.24 mmol) was added and stirred at reflux for 20 h. 

The reaction mixture was then cooled to room temperature and filtered to afford the crude 

product in acetone solution. The solvent was evaporated to dryness and purified by silica 

gel column chromatography (8-10% ethyl acetate in hexanes) to obtain 10.5 g (95% yield) 

of M1. 1H NMR (400MHz, CDCl3) δ 9.86 (s, 1H), δ 7.80-7.82 (d, 2H), δ 6.96-6.99 (d, 2H), 

δ 4.00-4.04 (t, 2H), δ 1.76-1.83 (quint, 2H), δ 1.47-1.26 (m, 14H), δ 0.85-0.89 (t, 3H); ESI-

MS (expected: [m+H]+= 263.2, obtained: [m+H]+= 263.2). 

Synthesis of monomer M2: Methyltriphenylphosphonium bromide (6.58 g, 25.11 

mmol) and potassium tert-butoxide (3.94 g, 35.15 mmol) were mixed in a round bottom 
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flask, and dry THF (20 mL) was added to the mixture. The mixture was stirred under argon 

atmosphere in an ice bath for 15 min to yield a bright yellow solution. M1 (6.58 g, 25.11 

mmol) was slowly added to the mixture. The reaction mixture was further stirred for 5 h. 

After the reaction, saline and ethyl acetate were added for extraction. The combined 

organic layer was separated and washed with saline (3 x). The organic layer was evaporated 

to dryness and purified by silica gel column chromatography (3-5% ethyl acetate in 

hexanes) to afford 5.5 g (85% yield) of M2. 1H NMR (400MHz, CDCl3) δ 7.31-7.33 (d, 

2H), δ 6.83-6.85 (d, 2H), δ 6.61-6.68 (q, 1H), δ 5.57-5.61 (d, 1H), δ 5.09-5.12 (d, 1H), δ 

3.93-3.96 (t, 3H), δ 1.73-1.80 (quint, 2H), δ 1.27-1.46 (m, 14H), δ 0.86-0.89 (t, 3H); ESI-

MS (expected: [m+H]+= 261.2, obtained: [m+H]+= 261.2). 

 
 

Figure 2.10. Synthetic scheme for monomer M4. 

 

 

Synthesis of compound M3: To a solution of acetone mixed with K2CO3 (1.17 g, 

8.45 mmol), and 18-crown-6 (0.56 g, 2.11 mmol), 4-hydroxybenzaldehyde (0.52 g, 4.23 

mmol) was added and stirred for 5 min. To this mixture, tosylate of pentaethyleneglycol 

monomethyl ether (2.06 g, 5.07 mmol) was added and stirred with reflux for 20 h. The 

reaction mixture was then cooled to room temperature and filtered to afford the crude 

product in acetone solution. The solvent was evaporated to dryness and purified by silica 

gel column chromatography (3-5% MeOH in DCM) to obtain 1.0 g (65% yield) of M3. 1H 
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NMR (400MHz, CDCl3) δ 9.88 (s, 1H), δ 7.82-7.84 (t, 2H), δ 7.01-7.03 (d, 2H), δ 4.20-

4.22 (t, 2H), δ 3.88-3.90 (t, 2H), δ 3.53-3.73 (m, 16H), δ 3.37 (s, 3H); ESI-MS (expected: 

[m+H]+= 357.2, obtained: [m+Na]+= 379.2). 

Synthesis of monomer M4: Methyltriphenylphosphonium bromide (1.35 g, 3.79 

mmol) and potassium tert-butoxide (0.42 g, 3.74 mmol) were mixed in a round bottom 

flask, and dry THF (15 mL) was added to the mixture. The mixture was stirred under argon 

atmosphere in an ice bath for 15 min to yield a bright yellow solution. M3 (0.9 g, 2.53 

mmol) was slowly added to the mixture. The reaction mixture was further stirred for 5 h. 

After the reaction, saline and ethyl acetate were added for extraction. The combined 

organic layer was separated and washed with saline (3 x). The organic layer was evaporated 

to dryness and purified by silica gel column chromatography (30-40% ethyl acetate in 

hexanes) to afford 0.54 g (60% yield) of M4. 1H NMR (400MHz, CDCl3) δ 7.31-7.32 (d, 

2H), δ 6.85-6.86 (d, 2H), δ 6.61-6.67 (q, 1H), δ 5.57-5.61 (q, 1H), δ 5.09-5.12 (q, 1H), δ 

4.10-4.12 (t, 2H), δ 3.83-3.85 (t, 2H), δ 3.53-3.72 (m, 16H), δ 3.37 (s, 3H); ESI-MS 

(expected: [m+H]+= 355.2, obtained: [m+Na]+= 377.2). 

 
 

Figure 2.11. Synthetic scheme for monomer M6. 

 

 

Synthesis of compound M5: To a solution of acetone mixed with K2CO3 (6.79 g, 

49.13 mmol), NaI (7.36 g, 49.13 mmol) and 18-crown-6 (0.65 g, 2.46 mmol), 4-
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hydroxybenzaldehyde (3.00 g, 24.57 mmol) was added and stirred for 5 min. To this 

mixture, tert-butyl-bromoacetate (9.58 g, 49.13 mmol) was added and stirred with reflux 

for 20 h. The reaction mixture was then cooled to room temperature and filtered to afford 

the crude product in acetone solution. The solvent was evaporated to dryness and purified 

by silica gel column chromatography (10-13% ethyl acetate in hexanes) to obtain 5.5 g (95% 

yield) of M5. 1H NMR (400MHz, CDCl3) δ 9.88 (s, 1H), δ 7.82-7.84 (d, 2H), δ 6.97-6.99 

(d, 2H), δ 4.59 (s, 2H), δ 1.47 (s, 9H); ESI-MS (expected: [m+H]+= 237.1, obtained: 

[m+Na]+= 259.1). 

Synthesis of monomer M6: Methyltriphenylphosphonium bromide (7.94 g, 22.24 

mmol) and potassium tert-butoxide (2.50 g, 22.24 mmol) were mixed in a round bottom 

flask, and dry THF (15 mL) was added to the mixture. The mixture was stirred under argon 

atmosphere in an ice bath for 15 min to yield a bright yellow solution. 1c (3.5 g, 14.83 

mmol) was slowly added to the mixture. The reaction mixture was further stirred for 5 h. 

After the reaction, saline and ethyl acetate were added for extraction. The combined 

organic layer was separated and washed with saline (3 x). The organic layer was evaporated 

to dryness and purified by silica gel column chromatography (3-5% ethyl acetate in 

hexanes) to afford 3.1 g (90% yield) of M6. 1H NMR (400MHz, CDCl3) δ 7.33-7.35 (d, 

2H), δ 6.84-6.87 (d, 2H), δ 6.63-6.68 (q, 1H), δ 5.60-5.64 (q, 1H), δ 5.13-5.15 (q, 1H), δ 

4.51 (s, 2H), δ 1.49 (s, 9H); ESI-MS (expected: [m+H]+= 235.1, obtained: [m+Na]+= 

257.1). 
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Figure 2.12. Synthetic scheme for random copolymer P1-P4. 

 

Synthesis of Polymers. Synthesis of polymers 1a-3a and P4: A mixture of the 

compound M2 (200 mg, 0.77 mmol), M4 (109 mg, 0.31 mmol), commercial available 

compound 4-vinylbenzyl chloride (70 mg, 0.46 mmol) and N-tert-Butyl-N-(2-methyl-1-

phenylpropyl)-O-(1-phenylethyl)hydroxylamine (NMP initiator, 10 mg, 0.031 mmol) were 

degassed by three freeze/thaw cycles, sealed under argon, and heated at 125 °C under argon 

for 12 h. After the reaction cooled down to room temperature, the reaction mixture was 

dissolved in DCM, and dialyzed against DCM/MeOH (v/v= 6/1) for 2 days. The solution 

was collected and dried under vacuum to yield 290 mg (75% yield) of 1a. GPC 

(PMMA/THF): Mn= 12K Da, Đ=1.5; Same method was applied for polymers 2a, 3a and 

P4 except for feeding ratios. For 2a, compound M2 (200 mg, 0.77 mmol), M4 (163 mg, 

0.46 mmol), 4-Vinylbenzyl chloride (47 mg, 0.31 mmol) were added. For 3a, compound 

M2 (200 mg, 0.77 mmol), 4-Vinylbenzyl chloride (117 mg, 0.77 mmol) were added. For 

P4, compound M2 (200 mg, 0.77 mmol), M4 (117 mg, 0.77 mmol) were added. 
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Figure 2.13. 1 H NMR Spectrum of polymer 1a. 

 

 
 

Figure 2.14. 1 H NMR Spectrum of polymer 2a. 

 

 
 

Figure 2.15. 1 H NMR Spectrum of polymer 3a. 
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Figure 2.16. 1 H NMR Spectrum of polymer P4. 

 

Synthesis of polymers 1b-3b: Polymer precursors 1a was added to 2mL of 

triethylphosphite in a round bottom flask and stirred with reflux at 110 °Cfor 24 h. The 

reaction mixture was then cooled to room temperature and dialyzed against DCM/MeOH 

(v/v= 6/1) for 2 days to remove excess triethylphosphite. The solution was collected and 

dried under vacuum to yield 1b. 1H NMR indicates that there is a quantitative conversion 

from benzyl chloride to benzyl phosphonate functional group. Same method was applied 

for polymers 2b and 3b. 

 
 

Figure 2.17. 1 H NMR Spectrum of polymer 1b. 
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Figure 2.18. 1 H NMR Spectrum of polymer 2b. 

 

 

 
 

Figure 2.19. 1 H NMR Spectrum of polymer 3b. 

 

 

Synthesis of polymers P1-P3: Polymer 1b was dissolved in 3 mL of DCM in a 

round bottom flask and stirred in an ice bath for 15 min. Bromotrimethylsilane (0.27 mL, 

2.07 mmol) was slowly added to the solution. The reaction mixture was further stirred for 

12 h. After the reaction, the solvent and excess bromotrimethylsilane was evaporated to 

obtain dark yellow solids. 3 mL DCM was added to re-dissolve the compounds and 1 M 

HCl aqueous solution (1 mL) was added. The reaction mixture was stirred at room 

temperature for 1 hour. After the reaction, DCM was evaporated and water was removed 
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by lyophilizing to obtain the final polymer P1. Same method was applied for polymers P2 

and P3. 

 
 

Figure 2.20. 1 H NMR Spectrum of polymer P1. 

 

 

 
 

Figure 2.21. 1 H NMR Spectrum of polymer P2. 
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Figure 2.22. 1 H NMR Spectrum of polymer P3. 

 

Preparation of Zirconium (IV) Ion Loaded Polymeric Reverse Micelles 

 Reverse micelle solutions of polymer P1 were prepared by dissolving 0.7 mg of 

polymer P1 in 10 mL toluene to obtain the phosphonate functional group concentration of 

100 µM. ZrOCl2·8H2O was dissolved in water and added into the toluene solution at 

different molar ratios of Zr to phosphonate group (0.1, 0.2, 0.5, 1, 2, 3 and 5). Sonication 

was conducted until the solution became optically clear. Zr loaded reverse micelle solutions 

of polymer P2-P4 were prepared in the same way to obtain 100 µM of phosphonate or PEG 

groups. These solutions were used for the liquid-liquid extraction.  

Preparation of Protein Digests 

 50 µM of α-casein and β-casein were dissolved in 50 mM NH4HCO3 (pH 8.2) and 

digested for 12 h with trypsin at an enzyme-to-protein ratio of 1:100 (wt/wt). 50 µM of 

chicken ovalbumin, BSA and lysozyme were dissolved in 50 mM NH4HCO3 (pH 8.2) 

containing 8 M urea. DTT was added to a final concentration of 5 mM and the mixture was 

incubated at 37 ºC for 1 h with gentle agitation to reduce the disulfide bonds in the proteins. 
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IAM was added to a final concentration of 10 mM in the solution and was incubated at RT 

for 30 min in the dark to alkylate the reduced disulfide bonds. DTT was added to obtain a 

final concentration of 5 mM again and incubated at RT for 30 min in the dark to stop over-

alkylation. The solution was diluted with 50 mM NH4HCO3 to reduce the urea 

concentration to 1.6 M. Trypsin was added at an enzyme-to-protein ratio of 1:100 and 

incubated for 12 h at 37 ºC. 

Liquid-Liquid Extractions 

Protein digests were diluted with 50 mM Tris buffer and adjusted to the desired pH 

using HCl or NH4OH. 200 L of the polymeric reverse micelle solution was added to 1 

mL of the peptide solution and vortexed vigorously for 1.5 hours. Centrifugation at 15,000 

rpm for 30 minutes was employed to break the resulting emulsion and separate the two 

phases. The aqueous phase was removed, and the organic phase was dried by blowing N2 

gas. This dried residue was re-dissolved in 20 L of THF and mixed with 20 µL of a DHB 

matrix solution (25 mg/mL in 70% (vol/vol) acetonitrile containing 1% (wt/vol) H3PO4). 1 

µL of this solution was directly spotted on the MALDI target for analysis.  

Instrumentation 

 MALDI-MS analyses were performed on a Bruker Autoflex III time-of-flight mass 

spectrometer. All mass spectra were obtained in negative linear mode and represent an 

average of 400 shots acquired at 34% laser power with an accelerating voltage of 19 kV. 

Dynamic light scattering (DLS) measurements were performed using a Malvern Zetasizer. 

FT-IR spectra were recorded on a PerkinElmer Spectrum 100 FT-IR spectrometer. ICP-

MS data were obtained on a PerkinElmer Nexion 300 ICP mass spectrometer. Zr 
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concentrations loaded into polymer P1 were determined by adding 0.5 mL of fresh aqua 

regia for 30 min after evaporation of toluene in 10 L of polymer solutions. Zr 

concentrations in aqueous phase after extraction were measured by directly adding 0.5mL 

of fresh aqua regia into 100 L of the aqueous solutions for 30 min. The resulting solutions 

were then diluted to 10 mL with deionized water for the ICP-MS measurements. A series 

of Zr standard solutions (0, 0.2, 0.5, 1, 2, 5, 10, and 20 ppb) were prepared in 5% aqua 

regia for calibration of ICP-MS measurements. 1H-NMR spectra were recorded on a 400 

MHz NMR spectrometer using residual proton resonance of the solvents as internal 

standard. Chemical shifts are reported in parts per million (ppm). 
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CHAPTER III  

 

SUPRAMOLECULAR NANOASSEMBLIES FOR GLYCOPEPTIDE 

EXTRACTION AND RELEASE FOR MASS SPECTROMETRIC DETECTION 

 

Introduction 

Protein glycosylation plays an important role in biological process, such as cell 

recognition,2 signaling pathways3 and development of genetic disorders.4 Also, it has 

recently gained attention in the pharmaceutical industry as part of monoclonal antibody 

drug characterization.5–7 The methods applied for glycosylation analysis are most often 

based on mass spectrometry (MS), but because of the low abundance and heterogeneity of 

glycosylated sites, separation prior to MS analysis is typically required.8–10  

Efforts have been made to improve the separation of glycosylated proteins or 

peptides through noncovalent and covalent interactions.9,11 Noncovalent interactions 

include hydrophilic, lectin and chelation interactions that are relatively easy to incorporate 

into online analysis before MS detection.11–14 Covalent binding using beads with boronic 

acid or hydrazine/ hydrazide functional groups are also widely used because of their higher 

specificity, which is essential for complex mixtures.15–20 For better selectivity and 

efficiency in extraction, covalent and noncovalent interactions have also been used 

complementarily. For example, Wang et al. used boronic acid nanoparticles for specific 

binding with glycopeptides and poly(methyl methacrylate) nanobeads for non-specific 

interactions with non-glycopeptides to achieve better selectivity.21 Also, glycoprotein 

enrichment based on lectin affinity chromatography and on hydrazide chemistry have been 
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used separately by Song, et al. to determine and confirm glycoprotein/glycopeptide 

biomarkers in human blood serum more efficiently.22 Based on the continued need for both 

high selectivity and efficiency in glycopeptide enrichment approaches, we designed a new 

strategy that is inspired by the use of covalent and non-covalent interactions. Instead of 

using both covalent and non-covalent interactions to target peptides, we used covalent 

binding via hydrazide groups to achieve high selectivity for glycopeptide and a secondary 

non-covalent interaction to catalyze this normally slow covalent binding reaction, thereby 

improving extraction efficiency. We employ this strategy in a two-phase liquid-liquid 

extraction platform because of its advantageous ability to extract, purify and concentrate 

in one step.23,24 To achieve this two-phase extraction, we have designed a supramolecular 

nanoassembly that can be readily tuned for optimal extraction efficiency. The 

supramolecular nanoassembly described here is based on an amphiphilic polymer design 

that we recently developed to selectively enrich phosphopeptides and other peptides 

according to their isoelectric point.25–30 We find that in the confined environment of the 

nanoassembly the reaction of hydrazide with glycans is faster than in existing approaches. 

Moreover, the extraction efficiency can be further increased by placing functional groups 

in the assemblies that catalyze the reaction of hydrazide moieties with glycans. 

Results and Discussion 

Glycopeptide Enrichment Using Hydrazide-Containing Nanoassemblies  

The extraction procedure for glycopeptides by the hydrazide-containing 

nanoassemblies is illustrated in Figure 3.1. IgG1, with its four well characterized glycans 

on Asn292,30 was used as a model protein to evaluate the extraction performance of 
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nanoassemblies of polymer P6 (Figure 3.2). Before enrichment, the two most abundant 

glycopeptides from the IgG1 digest are detected (Figure 3.3a), while the other two 

glycopeptides are not detected. After mild oxidation, enrichment with the nanoassemblies 

and release, only the four glycopeptides are detected (Figure 3.3b). Some heterogeneity in 

the detected glycopeptides is observed due to the oxidation reaction, but most of the glycan 

information is retained after enrichment (Figure 3.4). The extraction selectivity is further 

confirmed by PNGase F treatment of the enriched/released glycopeptides. Only a single 

peptide containing the glycosylated residue Asn292 is measured after deglycosylation 

(Figure 3.3c), indicating that only glycopeptides are extracted. 

 

 

 
 

Figure 3.1. Workflow of glycopeptide enrichment using supramolecular nanoassemblies 

and analysis using mass spectrometry. 
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Figure 3.2. Structural features of polymer P1, P4, P6-P9. 

 

 

 

 

 
 

Figure 3.3. MALDI-TOF mass spectra of the oxidized IgG1 tryptic digests before and 

enrichment. (a) Mass spectrum before enrichment; (b) mass spectrum after enrichment 

using nanoassemblies of the hydrazide polymer P1 at pH 4; and (c) mass spectrum after 

enrichment and deglycosylation by PNGase F. 
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Figure 3.4. Glycopeptide analysis before and after enrichment with polymer P6. (a) 

Tandem mass spectrum of the precursor ion at m/z 2602.1 from the IgG1 digest and (b) 

Tandem mass spectrum of m/z 2600.4 after oxidation and enrichment (b). Symbol: ( ) 

GlcNAc ( ) Mannose ( )Fucose. 

 

Improved Enrichment Efficiency via Proximity-Assisted Reactivity  

For more heterogeneous glycoproteins, enrichment using polymer P6 can 

sometimes lead to relatively inefficient detection of some low level glycopeptides. As an 

example, enrichment of HRP using nanoassemblies of P6 can enable the selective detection 

of all 7 known glycosylation sites (Figure 3.5a), even though most are undetectable before 

enrichment (Figure 3.5c), but some of the glycopeptides have low relative abundance. To 

improve the enrichment efficiency, we hypothesized that a copolymer with both hydrazide 

and weak acid functional groups would facilitate the binding in the nanoassemblies as the 

hydrazide-aldehyde conjugation reaction is known to be catalyzed by an acid and conjugate 

base.31 We reasoned that a nearby acid and conjugate base in the local microenvironment 

would accelerate the reaction via a proximity-based effect. We tested this idea using mixed 
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nanoassemblies with 10 nm diameters (Figure 3.5d) of polymer P6 and P1 (Figure 3.2). A 

polymer containing phosphonate groups (i.e. polymer P1) was chosen because it is a 

polyprotic acid with pKa values of 2.5 and 7.5 that could provide both acidic and conjugate 

base functionality at the enrichment pH of 5.0. Upon extraction of the HRP digest by the 

mixed nanoassembly, we find a significant intensity increase in the total ion intensity of 

the glycosylated peptides (Figure 3.5b), and even detect new glycopeptides that are due to 

enzymatic mis-cleavages that were not detected upon enrichment with nanoassemblies of 

P6 (Figure 3.5a).  

 
 

Figure 3.5. Enhanced glycopeptide detection after proximity-assisted enrichment. (a) 

MALDI-TOF mass spectrum of an oxidized HRP tryptic digest after enrichment using 

nanoassemblies of the hydrazide polymer P6; (b) MALDI-TOF mass spectrum after 

enrichment using nanoassembly mixtures of hydrazide polymer P6 and phosphonate 

polymer P1; (c) MALDI spectrum of oxidized HRP digests before enrichment. No 

glycopeptides are detected; (d) Dynamic light scattering data for nanoassemblies formed 

by polymers P6, P1 and P6+P1. 
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Figure 3.6. Enhanced glycopeptide detection after proximity-assisted enrichment. (a) Total 

intensity of glycopeptides extracted by nanoassemblies of P6 and of P6+P1, P6+P7 and 

P1+P4; and (d) proposed proximity effects that improve the extraction efficiency of 

glycopeptides.  

 

Two sets of control experiments were employed to further test our hypothesis that 

a nearby acid and conjugate base improve enrichment efficiency. Mixed nanoassemblies 

of P6 and (i) a quaternary amine containing polymer, P7, that does not yield a proton or 

conjugate base or (ii) an ethyleneglycol-containing polymer, P4, without acidic or basic 

functionality were also studied. Using total glycopeptide intensity as an indicator of the 

enrichment efficiency, we find that mixed assemblies with the phosphonate polymer P1 

increase glycopeptide signal by almost a factor of 2 compared to P6 alone, while mixed 

assemblies with polymers P7 and P4 decrease glycopeptide signal by factors of 3 and 2.3, 

respectively (Figure 3.6a). The increased glycopeptide signal caused by the presence of P1 

in the nanoassemblies together with the decreased signal in the presence of the other 

polymers supports our hypothesis that nearby proton donors and acceptors are responsible 
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for the improved enrichment efficiency. We postulate that the improved efficiency is due 

to proximity effects that accelerate the hydrazide-glycan conjugation reaction (Figure 3.6b). 

To further understand how acidic functional groups in the polymer nanoassemblies 

influence the enrichment efficiency, we synthesized polymers with carboxylate (P8) and 

sulfonate (P9) groups (Figure 3.2) and tested their enrichment efficiencies as a function of 

pH. These functional groups, along with the phosphonate functional groups, provide pKa 

values that range from ~ -1 (-SO3H) to 7.5 (-PO3H
-), providing a test of the importance of 

both the acid and conjugate base functionality in enhancing the enrichment reaction. We 

find that the enrichment efficiency is improved by forming mixed assemblies with all the 

acidic polymers when the extraction is done at low pH (Figure 3.7). At higher pH values, 

however, the enrichment efficiencies become more similar to the hydrazide assembly alone,  

 

Figure 3.7. Total intensity of glycopeptides extracted from tryptic digests of oxidized HRP 

at pH values ranging from 3 to 7 using nanoassemblies of P6, P6+P1, P6+P9 and P6+P8. 
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suggesting that deprotonation of the acidic group leads to less enhancement. Interestingly, 

the drop in the enhancement as the pH is increased is more extensive for the sulfonate 

polymer (P9), which has the lowest pKa and is the least extensive for the phosphonate 

polymer (P1), which has the highest pKa. Indeed, the phosphonate group has two acidic 

protons causing its enhancement to exist over a wider range of pH values. As a whole, 

these results provide additional evidence for a proximity-based effect in the 

nanoassemblies that improve glycopeptide enrichment. These improvements, together with 

previous work from our group using similar materials, highlights the advantages of using 

supramolecular nanomaterials for peptide enrichment in general.   

Extraction of Glycopeptides from Complexed Samples  

With a better understanding of the polymer features that influence enrichment 

efficiency, we then tested the ability of mixed nanoassemblies to extract trace-level 

glycopeptides in a mixture. For this purpose, IgG1 and HRP were digested in the presence 

of 100-fold molar excesses of BSA. Before enrichment of the protein digest mixture, no 

glycopeptides for IgG1 or HRP can be detected (Figure 3.8a and d). After using 

nanoassemblies of P6 (Figure 3.8b) or mixed nanoassemblies of P6 and P9 (Figure 3.8c), 

the glycopeptide from IgG1 is selectively detected after release and deglycosylation, with 

higher signal being observed for the mixed nanoassemblies. A similar effect is observed 

for the glycopeptides from HRP. The mixed nanoassemblies containing P6 and P9 allow 

the selective detection of more glycopeptides (Figure 3.8f) than the nanoassembly with 

hydrazide polymer (P6) alone (Figure 3.8e). These results highlight the high degree of 

selectivity possible with these supramolecular nanoassemblies. Future work will explore 

the ability of these materials to selectively enrich even more complicated mixtures. 
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Figure 3.8. Enrichment and sensitive detection of trace-level glycopeptides in protein 

digest mixtures. (a) MALDI-TOF mass spectra of a tryptic digest of IgG1 (10 nM) and 

BSA (1 µM) before enrichment; (b) after enrichment using nanoassemblies of polymer P6 

at pH 4 followed by release and deglycosylation; and (c) after extraction using mixed 

nanoassemblies of polymers P6 and P9 at pH 4 followed by release and deglycosylation. 

(d) MALDI mass spectra of a tryptic digest mixture of HRP (50 nM) and BSA (5 µM) 

before enrichment; (e) after enrichment using nanoassemblies of polymer P6 at pH 4 

followed by release and deglycosylation; and (f) after extraction using mixed 

nanoassemblies of polymers P6 and P9 at pH 4 followed by release and deglycosylation. 

 

Conclusions 

We have developed a simple method to improve glycopeptide enrichment 

efficiency and MS detection using supramolecular nanoassemblies based on amphiphilic 

polymers with hydrazide functional groups. The hydrazide-containing polymer itself forms 

nanoassemblies that are highly selective for oxidized glycopeptides. Co-assembly of the 

hydrazide polymer together with acidic polymers further improve enrichment efficiency 

via a proximity effect that catalyzes the hydrazide-glycan conjugation reaction. Using the 
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nanoassembly mixtures allow the selective and efficient enrichment and detection of 

glycopeptides that are present at low levels in mixtures. This study further demonstrates 

the value of designer supramolecular materials based on amphiphilic polymers as a 

platform for enriching and detecting biomolecules of interest. Future work will apply these 

nanoassemblies for the detection of glycosylated peptides or proteins in cell lysate, which 

would make them valuable materials for glycoproteomics studies. 

Experimental Section 

Materials and Reagents  

Horseradish peroxidase (HRP), bovine serum albumin (BSA), DL-dithiothreitol 

(DTT), iodoacetamide (IAM), trifluoracetic acid (TFA) and potassium acetate were 

obtained from Sigma-Aldrich. The monoclonal antibody (IgG1) was purchased from 

Waters. PNGase F was obtained from New England Biolabs. Trypsin was purchased from 

Promega. Sodium periodate, 2, 5-dihydroxybenzoic acid (DHB), MOPS, acetic acid, 

toluene, tetrahydrofuran (THF) and acetonitrile (ACN) were purchased from Fisher 

Scientific. Urea was purchased from MP Biomedicals. Ammonium bicarbonate 

(NH4HCO3) was obtained from Fluka. THF was distilled before use. Water was purified 

using a Milli-Q water purification system. All chemicals were used as received from 

commercial sources. 
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Polymer Synthesis, Self-assembly and Co-assembly in Toluene 

 
Figure 3.9. Synthesis of amphiphilic random copolymer P6. 

 

Synthesis of Polymer. Polymer P0 was prepared according to previous 

procedures.27 P0 (100 mg) and carbonyldiimidazole (61 mg, 2 equivalents of carboxylate 

group) were dissolved in 5 mL tetrahydrofuran and stirred at room temperature for 2 hours. 

Then, this mixture was added to a hydrazine monohydrate/THF (2 mL/2 mL) solution 

dropwise and allowed to reflux overnight. The solvent was removed by a rotavapor, and 

the crude oil was purified by precipitating it 3 times in methanol. Yield: 90%, GPC (THF) 

Mn: 11.5 K. Đ: 1.08. 1H NMR (400 MHz, CDCl3): δ 6.57-6.2, 4.53, 3.89, 1.77, 1.48-1.26, 

0.90. 13C NMR (100 MHz, CDCl3) δ 157.1, 128.5, 114.2, 67.9, 31.9, 29.6, 29.3, 29.1, 26.2, 

25.5, 22.7, 14.1. From 1H NMR, integration of the proton peaks at 0.90 ppm and 4.53 ppm 

confirmed the molar ratio of these two components to be 53:47.  

 

 P0                                                P6 
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Figure 3.10. 1 H NMR Spectrum of polymer P6. 

 

The hydrazide functional group attachment was confirmed by IR (Figure 3.10) 

showing a broad peak at 3319 cm-1 corresponding to N-H bond, C=O bond shift from 1731 

cm-1 to 1693 cm-1 due to the conversion of -OH to -NHNH2. 

 
 

 

Figure 3.11. FT-IR of polymer carboxylate polymer P0 and hydrazide polymer P6. 
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Polymers P1, P4 and P7-P9 were synthesized as previously described.25,28,29 

Nanoassembly solutions of individual polymers were prepared by dissolving solid 

polymers in toluene. Nanoassemblies of co-assembled polymers were prepared by mixing 

their already prepared nanoassembly solutions. The concentration of P6 is 0.3 mg/mL and 

of P1, P4 and P7-P9 are 0.6 mg/mL. Dynamic light scattering on the resulting polymer 

solutions after self-assembly and co-assembly were conducted (Figure 3.5d).  

Protein Oxidation and Digest  

To facilitate enrichment of the glycosylated peptides by the hydrazide-containing 

nanoassemblies, samples of 0.5 mg of IgG1 or 1 mg of HRP were mildly oxidized with 10 

mM sodium periodate in 1 mL of 0.1 M sodium acetate buffer at pH 5.5 to produce free 

aldehydes capable of reacting with hydrazide. Samples were incubated in the dark at room 

temperature for 30 min and then were washed 3 times and desalted by a 10 kDa molecular 

weight cutoff filter to remove excess periodate before digestion. To prepare the samples 

for proteolytic digestion, they were dissolved in 500 µL denaturing buffer containing 8 M 

urea, 50 mM NH4HCO3 and 5 mM DTT and incubated for 1 h at 37 °C with gentle agitation 

to reduce the disulfide bonds in the proteins. The protein solutions were brought to room 

temperature and 10 mM IAM was added into the solutions, before incubating in the dark 

at room temperature for 30 min to alkylate the reduced disulfide bonds. 5 mM DTT was 

added again, and the samples were incubated in the dark at room temperature for another 

30 min to stop overalkylation. The solutions then were diluted with 50 mM NH4HCO3 to 

reduce the urea concentration to 1.2 M. Trypsin was added at an enzyme-to-protein ratio 

of 1:50 and incubated for 12 h at 37 °C. BSA was digested in the same manner as the other 

proteins.  
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Liquid-Liquid Extraction and Release  

Before extraction with the nanoassemblies, the protein digests were diluted to the 

desired pH and concentration. 200 µL of the nanoassembly solution was added to 500 µL 

of the protein digest and vortex mixed vigorously for 30 min. The sample was incubated 

in a sand bath at 50 °C for 1 h, vortexed again for 30 min, and then incubated again at 50 °C 

for 1 h. After extraction, centrifugation at 14000 rpm for 30 min was used to separate the 

two phases. The aqueous phase was removed, and 500 µL of fresh acetate buffer was added 

to wash the organic phase by mixing the two phases for 30 min and removing the aqueous 

phase after centrifugation. The organic phase was dried by vacuum centrifuge. 300 µL of 

THF was added to break the supramolecular assembly and 200 µL of MOPS buffer (pH 7) 

was added to wash the polymer thoroughly. Then, the THF was evaporated and aqueous 

phase was removed. To release the glycopeptides from the polymer, the dry residue was 

re-dissolved in 300 µL of fresh THF and 200 µL of 0.1 M HCl was added to hydrolyze the 

hydrazone group between the polymer and the glycopeptides.  The mixture was incubated 

for 1 h at 60 °C to complete peptide release. The aqueous phase with released glycopeptides 

was collected after centrifugation. Before adding PNGase F, vacuum centrifugation was 

used to remove the remaining THF, and the pH was adjusted to 8.4 in 50 mM NH4HCO3. 

1 µL of PNGase F was then added to 20 µL of the peptide solution and incubated at 37 °C 

with gentle agitation for 12 h.  

Mass Spectrometry Analysis 

The peptide solutions resulting from nanoassembly enrichment before and after 

deglycosylation were analyzed by MALDI-MS. 0.5 µL of peptide solution was mixed with 

0.5 µL of DHB matrix solution (25 mg/mL in 70% ACN, 29% H2O and 1% TFA) and 
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spotted on MALDI target for analysis. MALDI analysis was performed on a Bruker 

UltrafleXtreme MALDI-TOF/TOF. Spectra were obtained in positive ionization mode 

using reflectron detection with a repetition rate of 2 kHz and an acceleration voltage of 20 

kV. Peptides were identified using MS/MS using the LIFT mode33 at a 1 kHz laser 

repetition rate, applying 7.5 kV for initial acceleration of ions and 19 kV for reacceleration 

of the product ions in the LIFT cell. 5000 laser shots were accumulated per spectrum. 
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CHAPTER IV  

 

SELECTIVE CAPTURE AND CONTROLLED RELEASE OF PEPTIDES USING 

AMPHIPHLIC NANOASSEMBLIES 

Introduction 

Peptide-based drugs fill a gap between traditional small molecule therapies and 

more recent protein therapies and biologics. Compared with small molecules, peptides have 

higher efficacy, safety and tolerance in the human body, and their production complexity 

and cost are lower than protein-based biopharmaceuticals.1-4 Therefore, peptides are 

becoming more and more attractive as potential drug candidates. Whether peptides are 

made by solid phase synthesis, solution phase synthesis or purified from natural sources, 

most peptides begin as part of complex mixtures that require purification.5-8 Although 

solid-phase synthesis reactions can be carefully controlled, impurities are inevitably 

formed, and often include missing, truncated or chemically modified sequences resulting 

from cleavage of adducts or other by-products formed during processing.9-12 For peptide 

therapeutics, purity and target peptide yield are key factors to be considered, which offer 

great challenges in the development of peptide separation methods. Often, the goal of a 

given separation strategy is to rapidly purify peptides with the highest degree of purity. For 

typical laboratories that synthesize many different peptides, it is useful to establish a 

standard purification protocol that can be used for most samples while allowing for simple 

optimization when necessary.  

Reversed-phase chromatography is by far the most popular peptide purification 

method due to its reliability and wide applicability. C18-bonded silica is the most common 
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reversed-phase column packing, but other stationary phases, such as C4, C8 and phenyl 

groups, can also provide alternative selectivity for optimizing peptide separation.9,13-15 

Though reversed-phase chromatography is commonly used, some peptides can be more 

efficiently separated by other selective methods such as ion-exchange or size-exclusion. 

Ion exchange chromatography can be used for peptide separation because the amino acids 

in the peptide can be either positively charged or negatively charged. Size-exclusion 

chromatography (SEC) separates molecules based on their molecular size rather than 

chemical properties such as charge or polarity. It is a low-resolution technique, and the 

resolution can be affected by the volume and concentration of the sample.14 SEC is 

generally not effective for separating peptides of similar size. Due to their limitations, these 

other separation techniques are sometimes combined with reversed-phase chromatography 

to create a two-step process for the purification of difficult samples. 

While numerous separation techniques are available for different purposes, they are 

usually require specialized instrumentation, for example, the most commonly used HPLC. 

Simpler approaches for the isolation of desired peptides are needed. Here, we describe 

polymeric supramolecular assemblies that can purify peptides based on their chemical 

characteristics, including attributes such as isoelectric point (pI) or modifications.15-18 

Through selective capture and sequential release, peptides can be isolated by the self-

assembling nanoassemblies (Figure 4.1). These nanoassemblies, formed by amphiphilic 

polymers that consisting of a styrene scaffold and a functional group, can combine the 

advantages of the separation techniques for good separation efficiency. They can work over 

a wide pH range, and the self-assembly feature of these materials allows for flexibility of 

simple optimization for peptides that are difficult to separate. 
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Figure 4.1. Selective capture and controlled release of peptides using amphiphilic 

nanoassemblies. 

 

Results and Discussion 

Selective Capture and Release of Peptides based on Charge  

To develop a means of selectively isolating peptides of interest, we first explored 

separations based on peptide charge. In previous work, we had demonstrated that peptides 

could be selectively extracted from an aqueous phase into an organic phase by utilizing the 

isoelectric point (pI) of peptides and the aqueous phase pH. In this work, we investigated 

whether peptides extracted into an organic phase could be selectively released back into an 

aqueous phase having a different pH. A mixture of seven peptides with pI values ranging 

from 3.37 to 12.4 were chosen to test this possibility (Figure 4.2). After extraction of the 

peptide mixture at pH 6 using polymer P1, the two negatively charged peptides with pI 

values < 6 are left in aqueous phase because of the charge repulsion they experience with 

the phosphonate groups of polymer P1 (Figure 4.2c). In contrast, the five positively-charge 

peptides with pI values > 6 are extracted into the organic phase because of their 

complementary charge (Figure 4.2d). This extraction behavior is identical to previous work 

with reverse micelle-like nanoassemblies containing negatively charged hydrophilic 
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groups.20 To test the possibility of selectively releasing some of the peptides from the 

organic phase, a fresh aqueous phase at pH 9.5 was mixed with the organic phase 

containing the five peptides in the nanoassemblies of polymer P1. We predicted that the 

two peptides with pI values below 9.5 would be released into the new aqueous phase as the 

pH of the water pool inside the nanoassemblies equilibrated with the new aqueous phase 

and changed the charge state of these peptides. The two peptides with pI values of 7.91 and 

6.92 would become negatively charged, causing repulsion with the negatively charged 

phosphonate groups in the interior of the nanoassemblies. Indeed, upon analyzing the new  

 
 

Figure 4.2. MS analysis of peptides before and after separation using polymer P1. (a) 

Structural features of polymer P1; (b) MALDI mass spectrum of peptide mixture before 

extraction. The peptides include bradykinin (pI 12.40), kinetensin (pI 11.13), angiotensin 

I (pI 7.91), β-amyloid 1-11 (pI 4.04),  β-amyloid 10-20 (pI 6.92), malantide (pI 10.69) and 

preproenkephalin (pI 3.37); (c) MALDI mass spectrum of peptides left in aqueous phase 

after selective extraction by polymer P1 at pH 6; (d) MALDI mass spectrum of peptides 

extracted into the organic phase by polymer P1 at pH 6; (e) MALDI mass spectrum of 

peptides selectively released from the organic phase containing polymer P1 into a new 

aqueous buffer of pH 9.5; (f) MALDI mass spectrum of peptides left in polymer phase after 

release at pH 9.5.  
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aqueous phase after peptide release, we detect only the two peptides in this phase (Figure 

4.2e). The nanoassemblies in the organic phase remain intact as the other positively 

charged peptides remain in the organic phase (Figure 4.2f). In effect, two selective capture 

steps and one controlled release step offer an opportunity to separate the seven peptides 

into three separate groups according to pI: (1) pI < 6; (2) 6 < pI < 9.5; and (3) pI > 9.5. 

Sequential Release Peptides for Peptide Isolation 

We also explored the possibility of sequentially releasing peptides one-by-one via 

a step-wise increase in the pH of the aqueous buffer that was mixed with the organic phase 

containing the extracted peptides.  This approach is illustrated with a three-peptide mixture 

(Figure 4.3). From an aqueous solution of pH 3, β-amyloid 1-11, β-amyloid 1-16 and 

ACTH 1-13 were extracted by polymer P1 (Figure 4.3a) as the net charge of the peptides 

is positive (Figure 4.3b). After mixing the polymer phase with an aqueous phase at pH 5, 

β-amyloid 1-11 was selectively released (Figure 4.3c) since the net charge of this peptide 

became negative, which is repulsive to the polymer phase. Upon further sequential mixing 

of the remaining polymer phase with new aqueous phases at pH 9 and pH 11, β-amyloid 

1-16 and ACTH 1-13 were selectively released and isolated (Figure 4.e and g). This peptide 

isolation method is easily operated in the two-phase liquid-liquid separation technique. An 

interesting observation is that the release behavior of these peptides as a function of pH 

follows the trend that would be expected for the negatively-charged species of these 

peptides based on the pKa values of their different functional groups (Figure 4.3d, f, and 

h). As the pH of the aqueous phase is increased, the peptides are released as they become 

negatively-charged, although there is a slight shift to higher pH values, which is likely 



 

75 

 

attributed to increases in the pKa of the peptide functional groups upon interacting with the 

phosphonate groups in the polymer.  

 
 

Figure 4.3. Sequential release of peptides into new buffer and their release behavior study. 

(a) MALDI mass spectrum of β-amyloid 1-11, β-amyloid 1-16 and ACTH 1-13; and (b) 

their net charge distribution over pH. c) MALDI mass spectrum of β-amyloid 1-11 being 

isolated at the first releasing pH 5 and (d) its release behavior is studied from pH 3 to 6; (e) 

MALDI mass spectrum of β-amyloid 1-16 isolated at the second releasing pH 9 and (f) its 

release behavior is studied from pH 4 to 12; and (g) MALDI mass spectrum of the ACTH 

1-13 isolated at the third releasing pH 11 and (h) its release is studied from pH 4 to 12. 

 

When this peptide isolation method was further evaluated with mixtures containing 

several peptides with high pI values, it was found that the high pI peptides could not be 

properly released. As an example, when the peptides ACTH 1-13, ACTH 6-24 (pI 12.2), 

and bradykinin (pI 12.4) are in a mixture, ACTH 6-24 and bradykinin are released at pH 

values that are too low (Figure 4.4a). This unexpected release was attributed to the 

instability of polymeric nanoassemblies at high pH.20 Therefore, polymer P10 was 

synthesized (Figure 4.4b), as we previously found that polymers with a lower percentage 

of the negatively-charged functional group could maintain their stability and ability to bind 
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positively-charged peptides in the organic phase when exposed to aqueous phases with 

high pH values.20 The greater stability of polymers like P10 at higher pH is thought to be 

 
 

Figure 4.4. The capture and release ability of nanoassemblies formed by different 

amphiphilic polymers. (a) Unexpected release of high pI peptides ACTH 6-24 (pI 12.2) 

and bradykinin (pI 12.4) from nanoassemblies formed by polymer P1 at high pH; (b) 

Structural features of polymer P10 and ACTH 1-13 (pI 9.3) cannot be properly released by 

overly stable nanoassemblies formed by polymer P10 and (c) MALDI spectra of peptides 

separated using acetonitrile as co-solvent by P10, which cannot be separated by polymer 

P1 due to the unexpected release (d).  
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due to the decreased charge density in the interiors of the nanoassemblies when the high 

pH causes almost complete deprotonation of the phosphonate groups. While 

nanoassemblies of P10 are more capable of binding peptides at high pH, release from P10 

is not efficient (Figure 4.4b) as it barely releases any ACTH 1-13 (pI 9.3) even at pH 11.5, 

as compared to the release of ACTH 1-13 starting at pH 10 using polymer P1 (Figure 4.3h). 

However, by modifying the release solution with 10% acetonitrile, which has a polarity 

between toluene and water, we are able to disrupt the nanoassembly of polymer P10 to a 

greater extent and release peptides more effectively, while maintaining release selectivity. 

With the addition of 10% acetonitrile, ACTH 1-13 can now be separated from ACTH 6-24 

by selective release at pH 10.89 (Figure 4.4c), while the same separation could not be 

achieved by polymer P1 under the same release conditions, due to the unexpected release 

of ACTH 6-24 (Figure 4.4d). These results highlight the flexibility of this method for 

simple optimization.  

The performance of the method on separation of a complex mixture was evaluated 

using BSA digests (Figure 4.5). After forward extraction of a BSA digest (Figure 4.5a) at 

pH 4 using polymer P1, primarily peptides with pI values < 4 remained in the aqueous 

phase (Figure 4.5b), while peptides with pI > 4 were extracted and enriched (Figure 4.5c). 

The organic phase containing the reverse micelles and extracted peptides was then mixed 

with a new aqueous solution at pH 6, and primarily peptides with pI values between 4 and 

6 were released (Figure 4.5d). Because BSA has a pI of 5, a large number of peptides were 

released. Mixing the remaining polymer phase with an aqueous solution at pH 8, further 

releases more peptides, including ones that were ineffectively released at the lower pH 

(Figure 4.5e and f). After these extraction and releases, the peptides in the BSA digest were 
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in effect sorted according to their pI values. In addition, because the mixtures were 

simplified along the way, overall more peptides (34 vs. 29) are detected as compared to the 

direct analysis by MALDI (Figure 4.5a). From the data in Figure 4.5, it is clear that the pI-

based separation is not perfect because other factors, such as peptide hydrophobicity, have 

not been taken into account yet, but 76% of the peptides are sorted according to their pI 

values. Future work will investigate the peptide-dependent release behavior for more 

complex mixtures to determine if selective release from even more complicated digests is 

possible.  

Separate Peptides of Protein Digests 

 
 

Figure 4.5. MS analysis of protein (BSA) digest separation by selective extraction and 

controlled release. (a) MALDI mass spectrum of direct analysis of BSA digests; (b) 

MALDI mass spectrum of peptides left in aqueous phase after extraction at pH 4 using 

polymer P1; (c) MALDI mass spectrum of peptides extracted by polymer P1 at pH 4; (d) 

MALDI mass spectrum of peptides first released at pH 6 and further released at pH 8 from 

organic phase and (f) MALDI mass spectrum of peptides left in organic phase after 

sequential release.  
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Conclusions 

We have developed a simple method that can selectively capture and controllably 

release peptides from peptide mixtures. This new method relies on anionic polymeric 

nanoassemblies that bind and release peptides based on charge complementarity. The 

materials can isolate peptides through sequential release of a mixture of extracted peptides, 

and the release pattern follows closely to the calculated fractional composition of the 

negatively-charged species. Release of high pI peptides and high pH values requires 

optimization of the polymer architecture and the release buffer to ensure efficient release 

of high pI peptides. Future work will apply these methods for peptide purification after 

solid-phase peptide synthesis.  

Experimental Section 

Materials and Reagents  

Peptides bradykinin (RPPGFSPFR, MW 1060), kinetensin (IARRHPYFL, MW 

1172), angiotensin I (DRVYIHPFHL, MW 1296), β-amyloid 1-11 (DAEFRHDSGYE, 

MW 1325),  β-amyloid 10-20 (YEVHHQKLVFF, MW 1446), malantide 

(RTKRSGSVYEPLKI, MW 1633), preproenkephalin (SSEVAGEGDGDSMGHEDLY, 

MW 1954) and ACTH 6-24  (HFRWGKPVGKKRRPVKVYP, MW 2336) were acquired 

from the American Peptide Company. Peptides β-amyloid 1-16 

(DAEFRHDSGYEVHHQK, MW 1955) and ACTH 1-13 (SYSMEHFRWGKPV, MW 

1624) were purchased from Bachem Company. Bovine serum albumin (BSA), DL-

dithiothreitol (DTT), iodoacetamide (IAM), trifluoracetic acid (TFA) and potassium 

acetate were obtained from Sigma-Aldrich. BSA digests were obtained according to our 
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previously reported procedure.21 Trypsin was purchased from Promega. Sodium periodate, 

sodium phosphate, 2, 5-dihydroxybenzoic acid (DHB), acetic acid, toluene, 

tetrahydrofuran (THF) and acetonitrile (ACN) were obtained from Fisher Scientific. Urea 

was purchased from MP Biomedicals. Ammonium bicarbonate (NH4HCO3) was obtained 

from Fluka. Water was purified using a Milli-Q water purification system. THF was 

distilled before use. All other chemicals were used as received from commercial sources. 

Polymer Synthesis and Nanoassembly Formation in Toluene 

Polymers P1 and P10 were synthesized as previously described.20,21 The 

nanoassembly solution of  polymer was prepared by dissolving the polymer in toluene at 

the concentration of 1 mg/mL. The solution was sonicated until clear before being used for 

the two-phase liquid-liquid extraction. 

Peptide Extraction and Selective Release  

Before extraction with the nanoassemblies, the peptide mixture or protein digests 

were diluted to the concentration of 1 µM and to the desired pH. 200 µL of the 

nanoassembly solution was added to 1 mL of the peptide solution and vortex mixed 

vigorously for 1.5 h. After extraction, centrifugation at 13000 rpm for 20 min was used to 

separate the two phases. The aqueous phase was removed for MS analysis, and 1 mL of 

fresh buffer with desired pH was added to the left organic phase and shaken for 1 h for 

selective release. Centrifugation and peptide release were repeated as needed to accomplish 

sequential release of different peptides. 
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Mass Spectrometry Analysis  

The peptide solutions resulting from the nanoassembly separations were analyzed 

by MALDI-MS. 0.5 µL of peptide solution was mixed with 0.5 µL of DHB matrix solution 

(25 mg/mL in 70% ACN, 29% H2O and 1% TFA) and spotted on MALDI target for 

analysis. MALDI analyses were performed on a Bruker Autoflex III time-of-flight mass 

spectrometer. All mass spectra were obtained in positive reflectron mode and represent an 

average of 300 shots acquired at 45% laser power with an accelerating voltage of 19kV.  
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CHAPTER V 

 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

 In this dissertation, amphiphilic nanoassemblies were utilized to selectively enrich 

peptides of interest from complex mixtures through modification-specific and 

complementary charge-based interactions. In chapter II, the selectivity of the polymeric 

nanoassemblies was easily changed from pI-based interactions into phosphonate-metal(IV) 

chelation-based extraction by loading metal ions into the supramolecular nanoassemblies. 

This means that this material has a broad application in biomarker study as a simple 

optimization of the material allows for the study of a new type of biomarkers. Besides the 

flexibility of changing its affinity to peptides, the extraction selectivity and efficiency of 

the material can also be easily optimized at the molecular level.  By evaluating the 

performance of the Zr loaded nanoassemblies on the phosphopeptide extraction under 

different conditions such as varying the amount of metal ion loading or changing the 

polymer structure, we found that an optimal chemical interactions between polymer 

functional groups, metal ion and phosphopeptides can provide the best extraction result. 

Though it has been commonly agreed that metal (IV) ions offer the best selectivity 

targeting phosphopeptides, how the metal ions are loaded to nanomaterials vary greatly. 

Previous work has mostly accomplished this by loading metal ions to polymers having 

phosphate group on the surface of the magnetic beads, which is easy for the phase 

separation after the extraction of phosphopeptides, while loading and maintaining the metal 

ions need harsh conditions, like very low pH to minimize hydrolysis of the metal ions.1,2 

However, loading metals ions into the amphiphilic nanoassemblies with the phosphonate 
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groups inside of the material provides a new possibility of keeping the metal ions balanced 

between being protected from hydrolysis and becoming accessible for phosphopeptide 

binding. However, comparing to the materials that have been applied to centrifuge filters 

or HPLC columns,2 metal-loaded nanoassemblies still require more systemic studies for 

wider application in mass spectrometry experiment.  

A promising direction following the work in Chapter II would be to develop ways 

to enrich phosphorylated proteins since some phosphorylation happens only on a specific 

proteoform.3,4 Specific detection of phosphorylated proteins would provide a potentially 

powerful way to measure biomarkers that cannot be unambiguously detected at peptide 

level. Our method has shown good extraction performance over a broad pH range from 

acidic to physiological pH, which then has the potential to study a broad range of 

biomarkers from gastric acid (pH = 1.0-2.0) to urine (pH = 5.0-7.5), and to human milk 

(pH = 6.9-7.0 ) and blood (pH = 7.35-7.45). More importantly, these extractions could be 

done without disturbing the structure of the biomarker proteins. We are also encouraged 

by a recent study by our collaborator who has shown that these supramolecular 

nanoassemblies can transport proteins from aqueous phase to organic phase through 

electrostatics and ligand-protein interactions and maintain the tertiary structure and 

function of the transported proteins.5 Therefore, extraction of the intact phosphorylated 

protein, coupled with top-down MS approach has a very good potential in providing 

information of a specific proteoform biomarker. 

Another interesting direction would be applying the metal-loaded nanoassemblies 

to on-line separation strategies, which would allow us to quantitatively analyze biomarkers 

more efficiently and with better reproducibility, especially for analyzing large numbers of 
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samples for reliable comparison between diseased and normal patient groups. A monolithic 

HPLC column can provide both the nanoassembly structure and its function in targeting 

phosphopeptides. Also, our new understanding about the chemistry between metal, 

phosphopeptides, and the phosphonate/PEG groups would allow currently available online 

phosphopeptide enrichment strategies work in a broader pH range and in milder conditions.  

To further explore the possibility of using this material in targeting types of 

biomarkers with heterogeneity like glycopeptides, we utilized a covalent binding-based 

interaction in the supramolecular system for higher selectivity and a non-covalent 

interaction for higher extraction efficiency (i.e. chapter III). Both the covalent and non-

covalent interactions have been explored in the previous glycopeptide enrichment studies.6-

10 Non-covalent interactions, such as hydrophilic, lectin and chelation-based interactions 

are widely used as they can be easily incorporated into column-based separation 

methods.6,7 Covalent binding using hydrazide chemistry or boronic acid recognition are 

also used because they can offer better selectivity than non-covalent interactions.8,9 We 

then provided a strategy that combines these two interactions in a way different from 

previous work. Most previous work has used non-covalent and covalent interactions in 

sequence, which limits how much the chemical interactions in peptide binding can improve 

enrichment efficiency. For example, Song, et al used lectin affinity chromatography and 

hydrazide chemistry separately and so be able to determine and confirm glycopeptide/ 

glycoprotein biomarkers in human blood serum.10 However, using non-covalent and 

covalent interactions at the same time provides the opportunity to improve enrichment 

efficiency in a way that is not just additive. As our work is in the early development stage, 

it may require more studies to obtain new scientific insight for its further development.  
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In chapter III, nanoassembly containing hydrazide functional groups was designed, 

which showed selective covalent interactions to peptides modified with glycans. Co-

assembled with the hydrazide polymer, acidic polymers in the micro extraction 

environment were found to be able to facilitate the reaction between hydrazide polymer 

and the oxidized glycans on the glycopeptides. These co-assembled polymers provide 

adjacent proton donors and conjugate base functionality that are needed in the coupling 

reaction. These encouraging results show that not only can we improve the selectivity by 

utilizing different chemical interactions in the supramolecular system, but also, we can 

catalyze the binding reaction once nanoassemblies interact with low abundant biomarkers, 

which could significantly improve the biomarker recovery. Although nanoreactors have 

been well studied mainly due to high reaction efficiency,11 they are not used in peptide 

enrichment, while our work shows the possibility of utilizing that strategy in high specific 

binding of biomarkers using supramolecular materials in the future.  

Another significant difference of our method comparing to most currently available 

glycopeptide enrichment methods is that after extraction of the glycopeptides to their 

nanomaterials, an enzyme has to be added to the aqueous phase so that peptides, free of 

glycans, can be collected for MS analysis. Though, by our method, glycopeptides are 

released from polymer by acid and so that the glycans can be analyzed on the peptide 

sequence. This means of analysis is important for peptide biomarkers when we need the 

information about what specific sugar composition on a specific amino acid sequence, but 

we found that removing glycans from peptides after releasing them with acid allows more 

sensitive MS detection. Therefore, it would be interesting and more efficient if we could 

release the peptides from glycans in the reverse micelles after extraction. Perhaps this 
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release could even be more efficient in the confined environment of the reverse micelles. 

A future work following the studies described in Chapter III could be to load the enzyme 

peptide-N(4)-(N-acetyl-beta-D-glucosaminyl)asparagine amidase F (PNGase F) into 

separate reverse micelles and then merge these loaded reverse micelles with those reverse 

micelles having the extracted glycopeptides. If the two sets of reverse micelles could merge 

effectively, PNGaseF could be transferred into the micelles with the glycopeptides, 

allowing them to be deglycosylated. Subsequent analysis of these deglycosylated peptides 

could then benefit from the enhanced MALDI-MS analysis that occurs due to ‘hot spot’ 

formation.12 The optimal working pH of the PNGaseF is pH 7.4, and the pI of the enzyme 

is 8.3, so it is positively-charged at the working pH. Therfore, a negativley-charged 

polymers like the phosphonate polymer, which also improves the reaction efficiecy of 

hydrazide and glycan, can be used for the extraction of PNGase F. Another option could 

be modifiying PNGase F with a tag like glutathione-S-transferase (GST) by expressing it 

as a GST fusion protein and then glytathione-containg nanoassemblies that have affinity 

for GST could be used for the extraction of PNGase F.13   

Besides selective extraction, the possibility of controlled release was studied with 

amphiphilic nanoassemblies in Chapter IV, which could be very useful in sorting 

biomarkers into different categories and even isolating one specific biomarker for more 

careful study. This method was investigated with complementary charge-based interactions 

as peptides are either positively charged or negatively charged and their net charges are 

affected by the pH of environment. By taking advantage of that feature, we can change the 

charge state of the peptides and let them be extracted and sequentially released. This idea 

was proved successful in peptide isolation from relatively simple mixture and show a good 
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potential for peptide sorting from complex mixtures like protein digests. In addition, this 

method has shown great potential in peptide isolation after solid-phase synthesis, which 

could be a follow up application in the future.  

In summary, these studies demonstrate that supramolecular materials formed by 

amphiphilic polymers can be readily designed to selectively target a broad range of 

biomarkers. The performance of these materials has been preliminarily evaluated in peptide 

mixture, and their performance in enriching protein biomarkers are expected to be 

evaluated in more complex samples like serum and cell lysates in the future. Especially, 

more enzyme loading work needs to be studied as it will open more possibilities, besides 

the reaction with extracted glycopeptides, other modifications, such as ubiquitination, 

which requires more specific ubiquitin receptors with tertiary structure can also be 

investigated by this method. In addition to exploring new science using these 

supramolecular nanoassemblies, they also show good potential as separation materials. 

Investigations of the relationship between polymer structure and their resulting 

performance has provided us novel insight so we can develop more efficient biomarker 

enrichment strategies that could one day allow us to diagnose some diseases at an earlier 

stage.     
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