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ABSTRACT

EXTRACTING AND REPRESENTING
ENTITIES, TYPES, AND RELATIONS

SEPTEMBER 2019

PATRICK VERGA

B.S., UNIVERSITY OF MASSACHUSETTS AMHERST

B.A., UNIVERSITY OF MASSACHUSETTS AMHERST

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Andrew McCallum

Making complex decisions in areas like science, government policy, finance, and

clinical treatments all require integrating and reasoning over disparate data sources.

While some decisions can be made from a single source of information, others require

considering multiple pieces of evidence and how they relate to one another. Knowl-

edge graphs (KGs) provide a natural approach for addressing this type of problem:

they can serve as long-term stores of abstracted knowledge organized around con-

cepts and their relationships, and can be populated from heterogeneous sources in-

cluding databases and text. KGs can facilitate higher level reasoning, influence the

interpretation of new data, and serve as a scaffolding for knowledge that enhances

the acquisition of new information. A symbolic graph over a fixed, human-defined

vi



schema encoding facts about entities and their relations is the predominant method

for representing knowledge, but this approach is brittle, lacks specificity, and is in-

evitably highly incomplete. On the other extreme, recent work on purely text-based

knowledge models lack abstractions necessary for complex reasoning.

In this thesis I will present work incorporating neural models, rich structured

ontologies, and unstructured raw text for representing knowledge. I will first discuss

my work enhancing universal schema, a method for learning a latent schema over

both existing structured resources and unstructured free text, embedding them jointly

within a shared semantic space. Next, I inject additional hierarchical structure into

the embedding space of concepts, resulting in more efficient statistical sharing among

related concepts and improved accuracy in both fine-grained entity typing and linking.

I then present initial work representing knowledge in context, including a single model

for extracting all entities and long-range relations simultaneously over full paragraphs

while jointly linking these entities to a KG. I will conclude by discussing possible

future directions for representing knowledge in context.
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CHAPTER 1

INTRODUCTION

Over their lifetimes, humans acquire and build up representations about the world

that help them to make decisions, act, and survive. Through direct personal expe-

rience and explicit instruction the world is partitioned into relevant concepts and

the ways in which they relate and interact with one another. This allows humans

to think, reason, and make complex decisions by integrating many various pieces of

information derived from explicit personal experiences and abstract generalizations.

Throughout the past century, scientists have attempted to algorithmically define

these mechanisms to build artificial agents. Since the beginning of the field, artificial

intelligence (AI) researchers have made strives in the area of knowledge representation

and reasoning – how computers should represent information about the world in a

computable form that they can use to solve complex problems. The earliest models

were meant to be general purpose systems capable of solving any problems in any

domain (Newell and Simon, 1956; Newell et al., 1959). These systems operated on

symbolic logic and hand-written rules. Over time, the field expanded leading to

research in various related areas with vastly different high level motivations. For

example, cognitive architectures (Anderson, 1983; Laird et al., 1987) attempted to

define and implement a theory of human cognition where the emphasis was often on

understanding abstract mechanisms of knowledge representation and reasoning rather

than solving any particular problem. On the other hand, expert systems focused on

building useful tools which were capable of operating intelligently within a narrowly
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defined problem area and were less concerned with biological plausibility or general

application (Feigenbaum, 1980; Buchanan, 1984).

These systems typically consist of two subcomponents: an inference engine that

uses logical rules to create new facts and a knowledge base which represents and

stores those facts and rules. These systems suffer from two primary interconnected

limitations: 1) facts and rules have to be predefined by humans and 2) their rigid

symbolic representations do not easily generalize. When working within a narrow

domain this paradigm may be sufficient to solve the given task, but when consider-

ing more complex areas like medicine or a general problem solver, this approach is

untenable. For example, the longest running AI project CYC (Lenat et al., 1990) is

attempting to codify all of human commonsense and has employed a staff to hand

engineer facts and rules since 1984.

To address the first issue of acquiring facts, researchers have more recently focused

on automatic knowledge base construction (AKBC), methods for building extensive

sources of facts with minimal human effort. AKBC consists of many interconnected

pieces that we will go over in greater detail in Chapter 2. In brief, knowledge is struc-

tured around concepts or entities along with their types and relationships. These

methods often leverage existing human defined resources as weak supervision to au-

tomatically gather new facts without extensive further human effort. New concepts

and their properties are extracted from raw text or inferred based on co-occurrence

statistics of existing facts.

The second issue with early knowledge representation systems is their reliance on

purely symbolic representations. Symbols have many desirable properties, particu-

larly that they can be manipulated based on rules to perform logical inference and

steps of reasoning. The downside however, is that they are very brittle and do not

readily generalize to new concepts without additional explicit annotation. An al-

ternative to purely symbolic representations that evolved alongside symbolic AI was
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based on subsymbolic neural representations (Rosenblatt, 1958; Rttmelhart et al.,

1986). Rather than relying on human defined semantics, neural representations can

be learned directly from data and capture regularities, similarities, and relationships

between different concepts. The past decade has seen huge advances in the abilities of

neural network architectures (Collobert et al., 2011; Hinton et al., 2012; Krizhevsky

et al., 2012; Silver et al., 2017) and they have become a fundamental component in

knowledge representation, reasoning, and extraction models.

In this thesis we will introduce new methods for representing knowledge that build

on embedded knowledge graphs, grounding symbolic concepts in sub-symbolic neural

representations. These flexible representations facilitate both higher level reasoning

and the automatic acquisition of new knowledge from text. In Chapters 3 and 4, we

expand the generalization of universal schema (Riedel et al., 2013a) which combines

explicit structured ontological types with latent types derived from raw textual ex-

pressions in a unified embedding space. Next, in Chapter 5 we enhance this embedded

space with hierarchical information between entities and types. Lastly, in Chapters

6 and 7 we develop methods for large context information extraction that jointly

consider both entity and relation prediction decisions to more effectively discover

knowledge from text.

Before presenting the new work contained in this thesis, I will first go over the

preliminary background materials on AKBC.
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CHAPTER 2

AUTOMATIC KNOWLEDGE BASE CONSTRUCTION
(AKBC)

As we discussed above, one of the major drawbacks of early symbolic systems was

the knowledge base - the store of facts and rules - was populated by humans. Today,

knowledge bases are still widely used in real world applications such as organizing

biomedical findings (Bodenreider, 2004) and aiding search at large tech companies

(Google, 2012; Dong, 2017). Unfortunately, because these knowledge bases tend to be

built by human curators, they are inevitably incomplete. Automatic knowledge base

construction (AKBC) is the task of populating a structured knowledge base (KB) of

facts using raw text evidence, and often an initial seed KB to be augmented (Carlson

et al., 2010; Suchanek et al., 2007a; Bollacker et al., 2008a) (See Figure 2.1).

2.1 Knowledge Bases/Graphs

The exact definition and instantiation of knowledge bases has evolved over time,

but the most prominent form today refers to binary valued (s, p, o) facts (ie subject,

predicate, object) that exist within a fixed pre-defined schema. The same information

can equivalently be represented as a graph (knowledge graph or KG), in which entities

are nodes and relations are labeled edges. KBs generally contain entity-type facts

such as (Melinda Gates, IsA, Person) and relation facts such as (Melinda Gates,

co-founded, Bill and Melinda Gates Foundation).
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Figure 2.1: In general, the goal of automatic knowledge base construction is to go
from a corpus of text documents to a knowledge graph of entities (nodes) and relations
(edges). In addition to a an unstructured text corpus, methods often incorporate an
initial incomplete structured knowledge graph as input.
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2.1.1 Link Prediction

One method for discovering new facts in our KG is with knowledge graph comple-

tion. This task is akin to link prediction, assuming an initial set of (s, p, o) triples.

See Nickel et al. (2015) for a review. No accompanying text data is necessary, since

links can be predicted using properties of the graph, such as transitivity. In order to

generalize well, prediction is often posed as low-rank matrix or tensor factorization. A

variety of model variants have been suggested, where the probability of a given edge

existing depends on a multi-linear form (Nickel et al., 2011b; Garćıa-Durán et al.,

2016; Yang et al., 2015a; Bordes et al., 2013; Wang et al., 2014; Lin et al., 2015), or

non-linear interactions between s, p, and o (Socher et al., 2013). Other approaches

model the compositionality of multi-hop paths, typically for question answering (Bor-

des et al., 2014; Gu et al., 2015; Neelakantan et al., 2015a). While these methods are

effective they are unable to discover new entities, types, or relations and are limited

by to training on the existing structured knowledge source.

2.2 Information extraction

As the amount of available text data has exploded over the past several decades, re-

searches have focused on developing methods for automatically extracting knowledge

from text (Grishman and Sundheim, 1996). These information extraction approaches

focused on mining large amounts of unstructured free text with the goal of converting

it to a machine readable structured form. A common approach is to define a pipeline

of mention finding (Ratinov and Roth, 2009), entity typing (Ling and Weld, 2012a;

Shimaoka et al., 2017), entity linking and relation extraction. The resulting extracted

facts can then be added to an existing knowledge base or used to create a new one.
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Figure 2.2: Example of named en-
tity recognition. In this exam-
ple, all instances of people (yel-
low), organizations (blue), and lo-
cations (green) have been identi-
fied and assigned their appropri-
ate type.

2.2.1 Mention Detection

The goal of mention detection is to segment a sequence of text into a set of entity

mentions. An input text string S is first split into n tokens, each denoted as si. Many

early works relied on rules and lexicons to perform this task and these approaches

are still used in low resource scenarios. However, most modern approaches utilize

supervised machine learning methods.

This problem can be set up as a supervised sequence labeling task where the goal

is to assign a label yi to each token drawn from the label set Y . A common encoding

for mention boundaries is to define a set of boundary labels Yb to be BIO or BILOU.

BIO represents the Beginning, Inside, and Outside of mentions where the first token

of a mention would be labeled B, all subsequent tokens would be labeled I, and any

tokens which are not part of any mention are labeled O. BILOU encoding adds two

additional labels. L is the last token of any mention, and U is given to any mention

which is a single token.
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In addition to simply identifying the boundaries of entity mentions, it is common

to simultaneously predict a small set of coarse grained types (ie named entity recog-

nition (NER)) (See Figure 2.2). For example, in the CoNLL 2003 shared task dataset

(Tjong Kim Sang and De Meulder, 2003), the type set Yt are Person, Organization,

and Location. To encode with BIO, the label set Y would be the cross product of Yt

and Yb (except for O which is untyped). More recent work has attempted to predict

a very large set of fine-grained entity types which we will discuss further in Chapter

5.

The basic model would map each token si to a feature vector xi which would then

be mapped through some other function producing per token logits ŷi. The entire

model can be learned by stochastic gradient descent, for example, by minimizing the

cross entropy between Y and Ŷ .

xi = fner(si)

ŷi = gner(xi)

Two primary approaches are to have fner be a mapping to hand engineered features

and gner to be a linear model (Ratinov and Roth, 2009) or for fner to be a mapping

to word embeddings and g to be a neural network model such as a recurrent neural

network (Lample et al., 2016) or convolution neural network (Strubell et al., 2017).

In both cases, it is also common to incorporate a linear chain conditional random

field (Lafferty et al., 2001) to learn explicit dependencies over the outputs such as the

fact that an Inside label can only follow a Begin label.

2.2.2 Coreference/Entity Linking

In our corpus, many of the entity mentions we discover will actually be individual

instances of the same global entity. For example, there could be many sentences
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Figure 2.3: An example of coref-
erence and entity linking. The
four highlighted mentions in the
document are all coreferent, re-
ferring to the same entity ‘Bill
Gates’. Entity linking typically
refers to the act of connecting
these mentions to an entity node
in the knowledge graph.

talking about ‘Bill Gates’. Each of those sentences would constitute a mention or

instance and they are all referring to a single concept that is the entity ‘Bill Gates’ (See

Figure 2.3). In order to aggregate these entity mentions together into our knowledge

base, we need to cluster them such that each cluster contains all the mentions of a

single entity. Broadly, this can take two different forms. The first is agglomerative

where there are no predefined entities, and mentions determined to be referring to

the same entity are merged into the same cluster. The second approach, typically

referred to as entity linking, uses a predefined set of entities and each entity mention

is assigned to one of these entity targets.

A common approach to entity linking is to cast the problem as classification. Given

a mention me, the goal is to classify it as being an instance of exactly one entity ei

out of a set of known entities E. Because |E| is typically very large, heuristics are

often employed to prune the set of candidate entities to a reduced plausible set C

based on surface form features of me. For example, given a mention ‘Gates’, one

could restrict C to only contain entities whose canonical string name contains Gates

such as ‘Melinda Gates’, ‘Bill Gates’, etc. We can then predict a link from me to ê by
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mapping me and each candidate entity to feature vectors and finding the maximum

scoring candidate entity for me.

m̄e = flink(me)

C̄ = glink(C)

ê = maxc̄i∈c̄h(m̄e, c̄i)

2.2.3 Relation Extraction

A crucial component of understanding and representing knowledge is not simply

identifying and categorizing entities but also discerning the relationships between the

entities. Relation extraction is the task of automatically identifying these relation-

ships from unstructured text. The input is an entity pair mention mep, typically a

sentence containing a pre-identified pair of entities me1 and me2 . The goal is then to

classify mep as expressing one of k predefined relation types R, which includes the

null relation, ie no relation is being expressed between the two mentions me1 and me2

in mep.

ēep = frel(eep)

R̂ = grel(ēep)

2.2.3.1 Distant Supervision

Given labeled training data this model can be trained in the straight forward

supervised learning setup, for example minimizing cross entropy between R̂ and R.

However, in many cases we do not have access to this type of mention level annota-

tion but instead have access to a large number of entity level annotations. We can
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leverage human annotated facts from existing structured knowledge bases as distant

supervision (Craven and Kumlien, 1999) to train mention level relation extraction

classifiers (Bunescu and Mooney, 2007; Mintz et al., 2009a).

For every fact in a knowledge base – for example, (Melinda Gates, co-founder,

Bill Gates) – the simplest version of a distant supervision relation classifier would

construct a training set by labeling every mention of the entity pair (Melinda Gates

and Bill Gates) as expressing the relation co-founder. However, this naive assumption

introduces noise into the training procedure because not every mention of (Melinda

Gates and Bill Gates) is expressing the relation co-founder. For example, the sentence

‘Melinda Gates resides in Seattle with her husband Bill ’ expresses an entirely different

relation married.

To address this, researchers have used versions of multi-instance learning (Craven

and Kumlien, 1999; Riedel et al., 2010; Yao et al., 2010; Hoffmann et al., 2011;

Surdeanu et al., 2012; Min et al., 2013; Zeng et al., 2015a). Instead of assigning

all known labels of an entity pair to every mention of that entity pair, the mentions

are pooled together into a single bag and the labels are instead applied to the bag.

Intuitively this means that for each relation between an entity pair, atleast one of

their mentions must express that relation which is a much softer assumption than the

previous approach which stated that every mention must express every relation.

2.2.3.2 Open-Domain Relation Extraction

In the previous two approaches, prediction is carried out with respect to a fixed

schema R of possible relations r. This may overlook salient relations that are ex-

pressed in the text but do not occur in the schema. In response, open-domain in-

formation extraction (OpenIE) lets the text speak for itself: R contains all possible

patterns of text occurring between entities s and o (Banko et al., 2007; Etzioni et al.,

2008; Yates and Etzioni, 2007). These are obtained by filtering and normalizing the
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raw text. The approach offers impressive coverage, avoids issues of distant supervi-

sion, and provides a useful exploratory tool. On the other hand, OpenIE predictions

are difficult to use in downstream tasks that expect information from a fixed schema.

Table 2.1 provides examples of OpenIE patterns. The examples in row two and

three illustrate relational contexts for which similarity is difficult to be captured by an

OpenIE approach because of their syntactically complex constructions. This concept

is explored further in universal schema (Section 3.2.1)

Sentence (context tokens italicized) OpenIE pattern

Khan ’s younger sister, Annapurna Devi, who
later married Shankar, developed into an equally ac-
complished master of the surbahar, but custom pre-
vented her from performing in public.

arg1 ’s * sister arg2

A professor emeritus at Yale, Mandelbrot was born
in Poland but as a child moved with his family to
Paris where he was educated.

arg1 * moved with * family
to arg2

Kissel was born in Provo, Utah, but her family also
lived in Reno.

arg1 * lived in arg2

Table 2.1: Examples of sentences expressing relations. Context tokens (italicized)
consist of the text occurring between entities (bold) in a sentence. OpenIE patterns
are obtained by normalizing the context tokens using hand-coded rules. The top
example expresses the per:siblings relation and the bottom two examples both express
the per:cities of residence relation.

2.3 Universal Schema

Universal schema (Riedel et al., 2013a; Yao et al., 2013) in many ways combines

aspects of all of the components above. The core idea of universal schema is to

jointly model both fixed structure schema types and unstructured types expressed in

raw text. Similar to the concept of open information extraction, this gives the model

greater expressibility than one restricted to a small set of predefined schema types.

This idea also extends to jointly modeling multiple sources of structured data which

can naturally align partially disjoint schema.
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Figure 2.4: Universal schema matrix. a: Relation extraction. Relation types are
represented as columns and entity pairs as rows of a matrix. Both KB relation types
and textual patterns from raw text are jointly embedded into the same semantic space.
b: Entity type prediction. Entity types are represented as columns and entities as
rows of a matrix.

2.3.1 Modeling Universal Schema as Matrix Factorization

Universal schema relation extraction and entity type prediction is typically mod-

eled as a matrix completion task1. In relation extraction, entity pairs and relations

occupy the rows and columns of the matrix (Figure 2.4-a), while in entity type pre-

diction, entities and types occupy the rows and columns of the matrix (Figure 2.4-b).

During training, we observe some positive entries in the matrix and at test time, we

predict the missing cells in the matrix. This is achieved by decomposing the observed

matrix into two low-rank matrices resulting in embeddings for each column entry and

each row entry. Test time prediction is performed using the learned low-rank column

and row representations.

Modeling of a small set of of k predefined relation types reduces to a clustering over

k centroids, mapping textual mentions to membership within one of these clusters.

This bounds the representational power of the model to that directly encoded in

the schema. On the other hand, the number of clusters represented within universal

1refereed to as Model F in Riedel et al. (2013a)
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schema is equal to the number of entity pairs e used to fit the model. This leads

to a level of specificity and expressiveness proportional to |e| and the diversity and

distribution of the training data.

Let T be the training set consisting of examples of the form (r, c), where row r ∈ U

and column c ∈ V , denote an entity pair and relation type in the relation extraction

task, or entity and entity type in the entity type prediction task. Let v(r) ∈ Rd and

v(c) ∈ Rd be the vector representations or embeddings of row r ∈ U and column c ∈ V

that are learned during training. Given a positive example, (r, c) ∈ T in training, the

probability of observing the fact is given by,

P (yr,c = 1) = σ(v(r).v(c))

where yr,c is a binary random variable that is equal to 1 when (r, c) is a fact and 0

otherwise, and σ is the sigmoid function. The embeddings are learned using Bayesian

Personalized Ranking (BPR) (Rendle et al., 2009) in which the probability of the

observed triples are ranked above unobserved triples.

Toutanova et al. (2015) extended USchema to not learn individual pattern em-

beddings vr, but instead to embed text patterns using a deep architecture applied to

word tokens. This shares statistical strength between OpenIE patterns with similar

words. We employ a similar approach that we will discuss next in Chapter 3.
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CHAPTER 3

COLUMNLESS UNIVERSAL SCHEMA

As previously discussed, Universal schema builds a knowledge base (KB) of en-

tities and relations by jointly embedding all relation types from input KBs as well

as textual patterns observed in raw text. In most previous applications of universal

schema, each textual pattern was represented as a single embedding, preventing gen-

eralization to unseen patterns. More recently, extensive work in NLP has employed

neural networks to capture patterns’ compositional semantics, providing generaliza-

tion to all possible input text. In this chapter, we put forth further improvements

to the coverage and flexibility of universal schema relation extraction: predictions

for entities unseen in training and multilingual transfer learning to domains with no

annotation. We evaluate our model through extensive experiments on the English

and Spanish TAC KBP benchmark, outperforming the top system from TAC 2013

slot-filling using no handwritten patterns or additional annotation. We also consider

a multilingual setting in which English training data entities overlap with the seed

KB, but Spanish text does not. Despite having no annotation for Spanish data, we

train an accurate predictor, with additional improvements obtained by tying word em-

beddings across languages. Furthermore, we find that multilingual training improves

English relation extraction accuracy.

3.1 Introduction

The goal of automatic knowledge base construction (AKBC) is to build a struc-

tured knowledge base (KB) of facts using a noisy corpus of raw text evidence, and
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perhaps an initial seed KB to be augmented (Carlson et al., 2010; Suchanek et al.,

2007a; Bollacker et al., 2008a). AKBC supports downstream reasoning at a high level

about extracted entities and their relations, and thus has broad-reaching applications

to a variety of domains.

One challenge in AKBC is aligning knowledge from a structured KB with a text

corpus in order to perform supervised learning through distant supervision. Universal

schema (Riedel et al., 2013a) along with its extensions (Yao et al., 2013; Gardner

et al., 2014; Neelakantan et al., 2015a; Rocktaschel et al., 2015), avoids alignment by

jointly embedding KB relations, entities, and surface text patterns. This propagates

information between KB annotation and corresponding textual evidence.

The above applications of universal schema express each text relation as a distinct

item to be embedded. This harms its ability to generalize to inputs not precisely seen

at training time. Recently, Toutanova et al. (2015) addressed this issue by embed-

ding text patterns using a deep sentence encoder, which captures the compositional

semantics of textual relations and allows for prediction on inputs never seen before.

In this chapter, we further expand the coverage abilities of universal schema re-

lation extraction by introducing techniques for forming predictions for new entities

unseen in training and even for new domains with no associated annotation. In the

extreme example of domain adaptation to a completely new language, we may have

limited linguistic resources or labeled data such as treebanks, and only rarely a KB

with adequate coverage. Our method performs multilingual transfer learning, pro-

viding a predictive model for a language with no coverage in an existing KB, by

leveraging common representations for shared entities across text corpora. As de-

picted in Figure 3.1, we simply require that one language have an available KB of

seed facts. We can further improve our models by tying a small set of word embed-

dings across languages using only simple knowledge about word-level translations,
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learning to embed semantically similar textual patterns from different languages into

the same latent space.

In extensive experiments on the TAC Knowledge Base Population (KBP) slot-

filling benchmark we outperform the top 2013 system with an F1 score of 40.7 and

perform relation extraction in Spanish with no labeled data or direct overlap between

the Spanish training corpus and the training KB, demonstrating that our approach

is well-suited for broad-coverage AKBC in low-resource languages and domains. In-

terestingly, joint training with Spanish improves English accuracy.

English Low-resource

in KB

not in KB

Figure 3.1: Splitting the entities in a multilingual AKBC training set into parts. We
only require that entities in the two corpora overlap. Remarkably, we can train a
model for the low-resource language even if entities in the low-resource language do
not occur in the KB.

3.2 Model

3.2.1 Universal Schema as Sentence Classifier

As we discussed in Chapter 3.2.1, Riedel et al. (2013a) perform transductive learn-

ing, where a model is learned jointly over train and test data. Predictions are made

by using the model to identify edges that were unobserved in the test data but likely

to be true. The approach is vulnerable to the cold start problem in collaborative

filtering (Schein et al., 2002): it is unclear how to form predictions for unseen entity

pairs, without re-factorizing the entire matrix or applying heuristics.
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(a)

(b)

Figure 3.2: Universal Schema jointly embeds KB and textual relations from Spanish
and English, learning dense representations for entity pairs and relations using matrix
factorization. a) Green cells indicate triples observed during training. Using transi-
tivity through KB/English overlap and English/Spanish overlap (such as the entity
pair ‘Melinda, Bill’ occurring in both languages), our model can predict that a text
pattern in Spanish evidences a KB relation despite no overlap between Spanish/KB
entity pairs. b) At test time we score compatibility between embedded KB relations
and encoded textual patterns using cosine similarity. In our Spanish model we treat
embeddings for a small set of English/Spanish translation pairs as a single word, e.g.
casado and married.
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In response, this work re-purposes USchema1 as a means to train a sentence-level

relation classifier. This allows us to avoid errors from aligning distant supervision

to the corpus, but is more deployable for real world applications. It also provides

opportunities in Section 3.2.4 to improve multilingual AKBC.

We produce predictions using a very simple approach: (1) scan the corpus and

extract a large quantity of triplets (s, rtext, o), where rtext is an OpenIE pattern. For

each triplet, if the similarity between the embedding of rtext and the embedding of

a target relation rschema is above some threshold, we predict the triplet (s, rschema, o),

and its provenance is the input sentence containing (s, rtext, o). We refer to this

technique as pattern scoring. In our experiments, we use the cosine distance between

the vectors (Figure 7.2). In Section A.3, we discuss details for how to make this

distance well-defined.

3.2.2 Using a Compositional Sentence Encoder to Predict Unseen Text

Patterns

The pattern scoring approach is subject to an additional cold start problem: input

data may contain patterns unseen in training. This section describes a method for

using USchema to train a relation classifier that can take arbitrary context tokens

(Section 2.2.3.2) as input.

Fortunately, the cold start problem for context tokens is more benign than that of

entities since we can exploit statistical regularities of text: similar sequences of context

tokens should be embedded similarly. Therefore, similar to Toutanova et al. (2015),

we embed raw context tokens compositionally using a deep architecture. Unlike Riedel

et al. (2013a), this requires no manual rules to map text to OpenIE patterns and can

embed any possible input string. The modified USchema likelihood is:

1While universal schema is the general concept of jointly modeling text and structured data
together, we will use USchema to refer to a particular concrete model which is equivalent to the
matrix factorization model F from Riedel et al. (2013a)
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P ((s, r, o)) = σ
(
u>s,oEncoder(r)

)
. (3.1)

Here, if r is raw text, then Encoder(r) is parameterized by a deep architecture. If r is

from the target schema, Encoder(r) is a produced by a lookup table (as in traditional

USchema). Though such an encoder increases the computational cost of test-time

prediction over straightforward pattern matching, evaluating a deep architecture can

be done in large batches in parallel on a GPU.

Both convolutional networks (CNNs) and recurrent networks (RNNs) are reason-

able encoder architectures, and we consider both in our experiments. CNNs have been

useful in a variety of NLP applications (Collobert et al., 2011; Kalchbrenner et al.,

2014; Kim, 2014). Unlike Toutanova et al. (2015), we also consider RNNs, specifically

Long-Short Term Memory Networks (LSTMs) (Hochreiter and Schmidhuber, 1997a).

LSTMs have proven successful in a variety of tasks requiring encoding sentences as

vectors (Sutskever et al., 2014; Vinyals et al., 2014). In our experiments, LSTMs

outperform CNNs.

There are two key differences between our sentence encoder and that of Toutanova

et al. (2015). First, we use the encoder at test time, since we process the context

tokens for held-out data. On the other hand, Toutanova et al. (2015) adopt the trans-

ductive approach where the encoder is only used to help train better representations

for the relations in the target schema; it is ignored when forming predictions. Second,

we apply the encoder to the raw text between entities, while Toutanova et al. (2015)

first perform syntactic dependency parsing on the data and then apply an encoder to

the path between the two entities in the parse tree. We avoid parsing, since we seek

to perform multilingual AKBC, and many languages lack linguistic resources such

as treebanks. Even parsing non-newswire English text, such as tweets, is extremely

challenging.
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3.2.3 Modeling Frequent Text Patterns

Despite the coverage advantages of using a deep sentence encoder, separately

embedding each OpenIE pattern, as in Riedel et al. (2013a), has key advantages.

In practice, we have found that many high-precision patterns occur quite frequently.

For these, there is sufficient data to model them with independent embeddings per

pattern, which imposes minimal inductive bias on the relationship between patterns.

Furthermore, some discriminative phrases are idiomatic, i.e.. their meaning is not

constructed compositionally from their constituents. For these, a sentence encoder

may be inappropriate.

Therefore, pattern embeddings and deep token-based encoders have very differ-

ent strengths and weaknesses. One values specificity, and models the head of the

text distribution well, while the other has high coverage and captures the tail. In

experimental results, we demonstrate that an ensemble of both models performs sub-

stantially better than either in isolation.

3.2.4 Multilingual Relation Extraction with Zero Annotation

The models described in previous two sections provide broad-coverage relation

extraction that can generalize to all possible input entities and text patterns, while

avoiding error-prone alignment of distant supervision to a corpus. Next, we describe

techniques for an even more challenging generalization task: relation classification for

input sentences in completely different languages.

Training a sentence-level relation classifier, either using the alignment-based tech-

niques of Section 2.2.3.1, or the alignment-free method of Section 3.2.1, requires an

available KB of seed facts that have supporting evidence in the corpus. Unfortu-

nately, available KBs have low overlap with corpora in many languages, since KBs

have cultural and geographical biases. In response, we perform multilingual relation

extraction by jointly modeling a high-resource language, such as English, and an alter-

21



native language with no KB annotation. This approach provides transfer learning of

a predictive model to the alternative language, and generalizes naturally to modeling

more languages.

Extending the training technique of Section 3.2.1 to corpora in multiple languages

can be achieved by factorizing a matrix that mixes data from a KB and from the two

corpora. In Figure 3.1 we split the entities of a multilingual training corpus into sets

depending on whether they have annotation in a KB and what corpora they appear

in. We can perform transfer learning of a relation extractor to the low-resource

language if there are entity pairs occurring in the two corpora, even if there is no

KB annotation for these pairs. Note that we do not use the entity pair embeddings

at test time: They are used only to bridge the languages during training. To form

predictions in the low-resource language, we can simply apply the pattern scoring

approach of Section 3.2.1.

In Section 4.3, we demonstrate that jointly learning models for English and Span-

ish, with no annotation for the Spanish data, provides fairly accurate Spanish AKBC,

and even improves the performance of the English model. Note that we are not per-

forming zero-shot learning of a Spanish model (Larochelle et al., 2008). The relations

in the target schema are language-independent concepts, and we have supervision for

these in English.

3.2.5 Tied Sentence Encoders

The sentence encoder approach of Section 5.3.2 is complementary to our mul-

tilingual modeling technique: we simply use a separate encoder for each language.

This approach is sub-optimal, however, because each sentence encoder will have a

separate matrix of word embeddings for its vocabulary, despite the fact that there

may be considerable shared structure between the languages. In response, we propose
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a straightforward method for tying the parameters of the sentence encoders across

languages.

Drawing on the dictionary-based techniques described in Section 3.2.6, we first

obtain a list of word-word translation pairs between the languages using a translation

dictionary. The first layer of our deep text encoder consists of a word embedding

lookup table. For the aligned word types, we use a single cross-lingual embedding.

Details of our approach are described in Appendix A.5.

3.2.6 Multilingual Embeddings

Much work has been done on multilingual word embeddings. Most of this work

uses aligned sentences from the Europarl dataset (Koehn, 2005) to align word em-

beddings across languages (Gouws et al., 2015; Luong et al., 2015; Hermann and

Blunsom, 2014). Others (Mikolov et al., 2013b; Faruqui et al., 2014) align sepa-

rate single-language embedding models using a word-level dictionary. Mikolov et al.

(2013b) use translation pairs to learn a linear transform from one embedding space

to another.

However, very little work exists on multilingual relation extraction. Faruqui and

Kumar (2015) perform multilingual OpenIE relation extraction by projecting all lan-

guages to English using Google translate. However, as explained in Section 2.2.3.2 the

OpenIE paradigm is not amenable to prediction within a fixed schema. Further, their

approach does not generalize to low-resource languages where translation is unavail-

able – while we use translation dictionaries to improve our results, our experiments

demonstrate that our method is effective even without this resource.

3.3 Task and System Description

We focus on the TAC KBP slot-filling task. Much related work on embedding

knowledge bases evaluates on the FB15k dataset (Bordes et al., 2013; Wang et al.,
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2014; Lin et al., 2015; Yang et al., 2015a; Toutanova et al., 2015). Here, relation

extraction is posed as link prediction on a subset of Freebase. This task does not

capture the particular difficulties we address: (1) evaluation on entities and text

unseen during training, and (2) zero-annotation learning of a predictor for a low-

resource language.

Also, note both Toutanova et al. (2015) and Riedel et al. (2013b) explore the

pros and cons of learning embeddings for entity pairs vs. separate embeddings for

each entity. As this is orthogonal to our contributions, we only consider entity pair

embeddings, which performed best in both works when given sufficient data.

3.3.1 TAC Slot-Filling Benchmark

The aim of the TAC benchmark is to improve both coverage and quality of re-

lation extraction evaluation compared to just checking the extracted facts against a

knowledge base, which can be incomplete and where the provenances are not verified.

In the slot-filling task, each system is given a set of paired query entities and rela-

tions or ‘slots’ to fill, and the goal is to correctly fill as many slots as possible along

with provenance from the corpus. For example, given the query entity/relation pair

(Barack Obama, per:spouse), the system should return the entity Michelle Obama

along with sentence(s) whose text expresses that relation. The answers returned by

all participating teams, along with a human search (with timeout), are judged man-

ually for correctness, i.e. whether the provenance specified by the system indeed

expresses the relation in question.

In addition to verifying our models on the 2013 and 2014 English slot-filling task,

we evaluate our Spanish models on the 2012 TAC Spanish slot-filling evaluation. Be-

cause this TAC track was never officially run, the coverage of facts in the available

annotation is very small, resulting in many correct predictions being marked incor-

rectly as precision errors. In response, we manually annotated all results returned by
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the models considered in Table 3.3. Precision and recall are calculated with respect

to the union of the TAC annotation and our new labeling2.

3.3.2 Retrieval Pipeline

Our retrieval pipeline first generates all valid slot filler candidates for each query

entity and slot, based on entities extracted from the corpus using Factorie (Mc-

Callum et al., 2009) to perform tokenization, segmentation, and entity extraction.

We perform entity linking by heuristically linking all entity mentions from our text

corpora to a Freebase entity using anchor text in Wikipedia. Making use of the fact

that most Freebase entries contain a link to the corresponding Wikipedia page, we

link all entity mentions from our text corpora to a Freebase entity by the following

process: First, a set of candidate entities is obtained by following frequent link anchor

text statistics. We then select that candidate entity for which the cosine similarity

between the respective Wikipedia and the sentence context of the mention is highest,

and link to that entity if a threshold is exceeded.

An entity pair qualifies as a candidate prediction if it meets the type criteria for

the slot.3 The TAC 2013 English and Spanish newswire corpora each contain about

1 million newswire documents from 2009–2012. The document retrieval and entity

matching components of our relation extraction pipeline are based on RelationFac-

tory (Roth et al., 2014a), the top-ranked system of the 2013 English slot-filling task.

We also use the English distantly supervised training data from this system, which

2Following Surdeanu et al. (2012) we remove facts about undiscovered entities to correct for
recall.

3Due to the difficulty of retrieval and entity detection, the maximum recall for predictions is
limited. For this reason, Surdeanu et al. (2012) restrict the evaluation to answer candidates returned
by their system and effectively rescaling recall. We do not perform such a re-scaling in our English
results in order to compare to other reported results. Our Spanish numbers are rescaled. All scores
reflect the ‘anydoc’ (relaxed) scoring to mitigate penalizing effects for systems not included in the
evaluation pool.
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aligns the TAC 2012 corpus to Freebase. More details on alignment are described in

Appendix A.4.

As discussed in Section 3.2.3, models using a deep sentence encoder and using a

pattern lookup table have complementary strengths and weaknesses. In response, we

present results where we ensemble the outputs of the two models by simply taking the

union of their individual outputs. Slightly higher results might be obtained through

more sophisticated ensembling schemes.

3.3.3 Model Details

All models are implemented in Torch (code publicly available4). Models are tuned

to maximize F1 on the 2012 TAC KBP slot-filling evaluation. We additionally tune

the thresholds of our pattern scorer on a per-relation basis to maximize F1 using

2012 TAC slot-filling for English and the 2012 Spanish slot-filling development set

for Spanish. As in Riedel et al. (2013b), we train using the BPR loss of Rendle

et al. (2009). Our CNN is implemented as described in Toutanova et al. (2015),

using width-3 convolutions, followed by tanh and max pool layers. The LSTM uses

a bi-directional architecture where the forward and backward representations of each

hidden state are averaged, followed by max pooling over time. See Section A.2

We also report results including an alternate names (AN) heuristic, which uses

automatically-extracted rules to detect the TAC ‘alternate name’ relation. To achieve

this, we collect frequent Wikipedia link anchor texts for each query entity. If a high

probability anchor text co-occurs with the canonical name of the query in the same

document, we return the anchor text as a slot filler.

4https://github.com/patverga/torch-relation-extraction
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Model Recall Precision F1

CNN 31.6 36.8 34.1
LSTM 32.2 39.6 35.5
USchema 29.4 42.6 34.8

USchema+LSTM 34.4 41.9 37.7
USchema+LSTM+Es 38.1 40.2 39.2

USchema+LSTM+AN 36.7 43.1 39.7
USchema+LSTM+Es+AN 40.2 41.2 40.7
Roth et al. (2014a) 35.8 45.7 40.2

Table 3.1: Precision, recall and F1 on the English TAC 2013 slot-filling task. AN
refers to alternative names heuristic and Es refers to the addition of Spanish text at
train time. LSTM+USchema ensemble outperforms any single model, including the
highly-tuned top 2013 system of Roth et al. (2014a), despite using no handwritten
patterns.

3.4 Experimental Results

In experiments on the English and Spanish TAC KBC slot-filling tasks, we find

that both USchema and LSTM models outperform the CNN across languages, and

that the LSTM tends to perform slightly better than USchema as the only model.

Ensembling the LSTM and USchema models further increases final F1 scores in all

experiments, suggesting that the two different types of model compliment each other

well. Indeed, in Section 3.4.3 we present quantitative and qualitative analysis of

our results which further confirms this hypothesis: the LSTM and USchema models

each perform better on different pattern lengths and are characterized by different

precision-recall trade-offs.

3.4.1 English TAC Slot-filling Results

Tables 3.1 and 3.2 present the performance of our models on the 2013 and 2014

English TAC slot-filling tasks. Ensembling the LSTM and USchema models improves

F1 by 2.2 points for 2013 and 1.7 points for 2014 over the strongest single model

on both evaluations, LSTM. Adding the alternative names (AN) heuristic described

in Section 3.3.3 increases F1 by an additional 2 points on 2013, resulting in an F1
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Model Recall Precision F1

CNN 28.1 29.0 28.5
LSTM 27.3 32.9 29.8
USchema 24.3 35.5 28.8

USchema+LSTM 34.1 29.3 31.5
USchema+LSTM+Es 34.4 31.0 32.6

Table 3.2: Precision, recall and F1 on the English TAC 2014 slot-filling task. Es
refers to the addition of Spanish text at train time. The AN heuristic is ineffective
on 2014 adding only 0.2 to F1. Our system would rank 4/18 in the official TAC
2014 competition behind systems that use hand-written patterns and active learning
despite our system using neither of these additional annotations (Surdeanu and Ji.,
2014).

score that is competitive with the state-of-the-art. We also demonstrate the effect

of jointly learning English and Spanish models on English slot-filling performance.

Adding Spanish data improves our F1 scores by 1.5 points on 2013 and 1.1 on 2014

over using English alone. This places are system higher than the top performer at

the 2013 TAC slot-filling task even though our system uses no hand-written rules.

The state of the art systems on this task all rely on matching handwritten patterns

to find additional answers while our models use only automatically generated, indirect

supervision; even our AN heuristics (Section 3.3.2) are automatically generated. The

top two 2014 systems were Angeli et al. (2014) and RPI Blender (Surdeanu and Ji.,

2014) who achieved F1 scores of 39.5 and 36.4 respectively. Both of these systems

used additional active learning annotation. The third place team (Lin et al., 2014)

relied on highly tuned patterns and rules and achieved an F1 score of 34.4.

Our model performs substantially better on 2013 than 2014 for two reasons. First,

our RelationFactory (Roth et al., 2014a) retrieval pipeline was a top retrieval pipeline

on the 2013 task, but was outperformed on the 2014 task which introduced new

challenges such as confusable entities. Second, improved training using active learning

gave the top 2014 systems a boost in performance. No 2013 systems, including ours,

use active learning. Bentor et al. (2014), the 4th place team in the 2014 evaluation,
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Model Recall Precision F1

LSTM 9.3 12.5 10.7
LSTM+Dict 14.7 15.7 15.2
USchema 15.2 17.5 16.3

USchema+LSTM 21.7 14.5 17.3
USchema+LSTM+Dict 26.9 15.9 20.0

Table 3.3: Zero-annotation transfer learning F1 scores on 2012 Spanish TAC KBP
slot-filling task. Adding a translation dictionary improves all encoder-based models.
Ensembling LSTM and USchema models performs the best.

used the same retrieval pipeline (Roth et al., 2014a) as our model and achieved an

F1 score of 32.1.

3.4.2 Spanish TAC Slot-filling Results

Table 3.3 presents 2012 Spanish TAC slot-filling results for our multilingual rela-

tion extractors trained using zero-annotation transfer learning. Tying word embed-

dings between the two languages results in substantial improvements for the LSTM.

We see that ensembling the non-dictionary LSTM with USchema gives a slight boost

over USchema alone, but ensembling the dictionary-tied LSTM with USchema pro-

vides a significant increase of nearly 4 F1 points over the highest-scoring single model,

USchema. Clearly, grounding the Spanish data using a translation dictionary provides

much better Spanish word representations. These improvements are complementary

to the baseline USchema model, and yield impressive results when ensembled.

In addition to embedding semantically similar phrases from English and Spanish to

have high similarity, our models also learn high-quality multilingual word embeddings.

In Table 3.4 we compare Spanish nearest neighbors of English query words learned by

the LSTM with dictionary ties versus the LSTM with no ties, using no unsupervised

pre-training for the embeddings. Both approaches jointly embed Spanish and English

word types, using shared entity embeddings, but the dictionary-tied model learns

qualitatively better multilingual embeddings.
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Figure 3.3: Precision-Recall curves for USchema and LSTM on 2013 TAC slot-filling.
USchema achieves higher precision values whereas LSTM has higher recall.
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Figure 3.4: F1 achieved by USchema vs. LSTM models for varying pattern token
lengths on 2013 TAC slot-filling. LSTM performs better on longer patterns whereas
USchema performs better on shorter patterns.

3.4.3 USchema vs LSTM

We further analyze differences between USchema and LSTM in order to better

understand why ensembling the models results in the best performing system. Figure

3.3 depicts precision-recall curves for the two models on the 2013 slot-filling task. As

observed in earlier results, the LSTM achieves higher recall at the loss of some pre-

cision, whereas USchema can make more precise predictions at a lower threshold for

recall. In Figure 3.4 we observe evidence for these different precision-recall trade-offs:
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USchema scores higher in terms of F1 on shorter patterns whereas the LSTM scores

higher on longer patterns. As one would expect, USchema successfully matches more

short patterns than the LSTM, making more precise predictions at the cost of being

unable to predict on patterns unseen during training. The LSTM can predict using

any text between entities observed at test time, gaining recall at the loss of precision.

Combining the two models makes the most of their strengths and weaknesses, leading

to the highest overall F1.

Qualitative analysis of our English models also suggests that our encoder-based

models (LSTM) extract relations based on a wide range of semantically similar pat-

terns that the pattern-matching model (USchema) is unable to score due to a lack

of exact string match in the test data. For example, Table 3.5 lists three examples

of the per:children relation that the LSTM finds which USchema does not, as well as

three patterns that USchema does find. Though the LSTM patterns are all seman-

tically and syntactically similar, they each contain different specific noun phrases,

e.g. Lori, four children, toddler daughter, Lee and Albert, etc. Because these specific

nouns weren’t seen during training, USchema fails to find these patterns whereas the

LSTM learns to ignore the specific nouns in favor of the overall pattern, that of a

parent-child relationship in an obituary. USchema is limited to finding the relations

represented by patterns observed during training, which limits the patterns matched

at test-time to short and common patterns; all the USchema patterns matched at

test time were similar to those listed in Table 3.5: variants of ’s son, ’.

3.5 Conclusion

By jointly embedding English and Spanish corpora along with a KB, we can train

an accurate Spanish relation extraction model using no direct annotation for relations

in the Spanish data. This approach has the added benefit of providing significant ac-

curacy improvements for the English model, outperforming the top system on the
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2013 TAC KBC slot filling task, without using the hand-coded rules or additional

annotations of alternative systems. By using deep sentence encoders, we can per-

form prediction for arbitrary input text and for entities unseen in training. Sentence

encoders also provides opportunities to improve cross-lingual transfer learning by

sharing word embeddings across languages. In future work we will apply this model

to many more languages and domains besides newswire text. We would also like to

avoid the entity detection problem by using a deep architecture to both identify entity

mentions and identify relations between them.
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CEO
Dictionary No Ties

jefe (chief) CEO
CEO director (principle)
ejecutivo (executive) directora (director)
cofundador (co-founder) firma (firm)
president (chairman) magnate (tycoon)

headquartered
Dictionary No Ties

sede (headquarters) Geológico (Geological)
situado (located) Treki (Treki)
selectivo (selective) Geof́ısico(geophysical)
profesional (vocational) Normand́ıa (Normandy)
basándose (based) emplea (uses)

hubby
Dictionary No Ties

matrimonio (marriage) esposa (wife)
casada (married) esposo (husband)
esposa (wife) casada(married)
casó (married) embarazada (pregnant)
embarazada (pregnant) embarazo (pregnancy)

alias
Dictionary No Ties

simplificado (simplified) Weaver (Weaver)
sabido (known) interrogación (question)
seudónimo (pseudonym) alias
privatización (privatization) reelecto (reelected)
nombre (name) conocido (known)

Table 3.4: Example English query words (not in translation dictionary) in bold with
their top nearest neighbors by cosine similarity listed for the dictionary and no ties
LSTM variants. Dictionary-tied nearest neighbors are consistently more relevant to
the query word than untied.
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LSTM

McGregor is survived by his wife, Lori, and four children, daughters Jordan, Taylor
and Landri, and a son, Logan.

In addition to his wife, Mays is survived by a toddler daughter and a son, Billy Mays
Jr., who is in his 20s.

Anderson is survived by his wife Carol, sons Lee and Albert, daughter Shirley Engle-
brecht and nine grandchildren.

USchema

Dio ’s son, Dan Padavona, cautioned the memorial crowd to be screened regularly by
a doctor and take care of themselves, something he said his father did not do.

But Marshall ’s son, Philip, told a different story.

“I’d rather have Sully doing this than some stranger, or some hotshot trying to be the
next Billy Mays,” said the guy who actually is the next Billy Mays, his son Billy Mays
III.

Table 3.5: Examples of the per:children relation discovered by the LSTM and Uni-
versal Schema. Entities are bold and patterns italicized. The LSTM models a richer
set of patterns
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CHAPTER 4

ROWLESS UNIVERSAL SCHEMA

In its original form, universal schema can reason only about row entries and col-

umn entries explicitly seen during training. Unseen rows and columns observed at test

time do not have a learned embedding. This problem is referred to as the cold-start

problem in recommendation systems (Schein et al., 2002).

In Chapter 3, we discussed ‘columnless’ versions of universal schema models that

generalize to unseen column entries. They learn compositional pattern encoders to

parameterize the column matrix in place of individual column embeddings. However,

these models still do not generalize to unseen row entries.

In this chapter, we present a ‘row-less’ extension of universal schema that general-

izes to unseen entities and entity pairs. Rather than representing each row entry with

an explicit dense vector, we encode each entity or entity pair as aggregate functions

over their observed column entries. This is beneficial because when new entities are

mentioned in text documents and subsequently added to the KB, we can directly rea-

son on the observed text evidence to infer new binary relations and entity types for

the new entities. This avoids the cumbersome effort of re-training the whole model

from scratch to learn embeddings for the new entities.

To construct the row representation, we compare various aggregation functions in

our experiments. We consider query independent and dependent aggregation func-

tions. We find that query dependent attentional models that selectively focus on

relevant evidence outperform the query independent alternatives. The query depen-

dent attention mechanism also helps in providing a direct connection between the
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prediction and its provenance. Additionally, our models have a much smaller mem-

ory footprint since they do not store explicit row representations.

It is important to note that our approach is different from sentence level classifiers

that predict KB relations and entity types using a single sentence as evidence. First,

we pool information from multiple pieces of evidence coming from both text and

annotated KB facts, rather than considering a single sentence at test time. Second,

our methods are not limited to a fixed schema but instead predict a richer set of

labels (KB types and textual), enabling easier downstream processing closer to natural

language interaction with the KB. Finally, our model gains additional training signal

from multi-task learning of textual and KB types. Since universal schema leverages

large amounts of unlabeled text we desire the benefits of entity pair modeling, and

row-less universal schema facilitates learning entity pair representations without the

drawbacks of the traditional one-embedding-per-pair approach.

The majority of current embedding methods for KB entity type prediction operate

with explicit entity representations (Yao et al., 2013; Neelakantan and Chang, 2015a)

and hence, cannot generalize to unseen entities. In relation extraction, entity-level

models (Nickel et al., 2011b; Garćıa-Durán et al., 2016; Yang et al., 2015a; Bordes

et al., 2013; Wang et al., 2014; Lin et al., 2015; Socher et al., 2013) can handle unseen

entity pairs at test time. These models learn representations for the entities instead of

entity pairs. Hence, these methods still cannot generalize to predict relations between

an entity pair if even one of the entities is unseen. Moreover, Toutanova et al. (2015)

and Riedel et al. (2013b) observe that the entity pair model outperforms entity models

in cases where the entity pair was seen at training time.

Most similar to this work, Neelakantan et al. (2015a) classify KB relations by

finding the maximum scoring path between two entities. This model is also ‘row-less’

and does not directly model entities or entity pairs. There are several important

differences in this work. Neelakantan et al. (2015a) learn per-relation classifiers to
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predict only a small set of KB relations, while we instead predict all relations, in-

cluding textual relations. We also explore aggregation functions that pool evidence

from multiple paths while Neelakantan et al. (2015a) only chose the maximum scoring

path. Additionally, we demonstrate that our models can perform on par with those

with explicit row representations while Neelakantan et al. (2015a) did not perform

this comparison.

In this work we investigate universal schema models without explicit row repre-

sentations on two tasks: entity type prediction and relation extraction. We use entity

type and relation facts from Freebase (Bollacker et al., 2008a) augmented with textual

relations and types from Clueweb text (Orr et al., 2013; Gabrilovich et al., 2013). We

explore multiple aggregation functions and find that an attention-based aggregation

function outperforms several simpler functions and matches a model using explicit

row representations with an order of magnitude fewer parameters. More importantly,

we then demonstrate that our ‘row-less’ models accurately predict relations on unseen

entity pairs and types on unseen entities.

4.1 Model

In this section, we describe the model, discuss the different aggregation functions

and give details on the training objective.

4.1.1 ‘Row-less’ Universal Schema

While column-less universal schema addresses reasoning over arbitrary textual

patterns, it is still limited to reasoning over row entries seen at training time. Verga

et al. (2016a) use column-less universal schema for relation extraction. They address

the problem of unseen row entries by using universal schema as a sentence classifier –

directly comparing a textual relation to a KB relation to perform relation extraction.

However, this approach is unsatisfactory for two reasons. The first is that this cre-
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ates an inconsistency between training and testing. The model is trained to predict

compatibility between rows and columns, but at test time it predicts compatibility

between relations directly. Second, it considers only a single piece of evidence in

making its prediction.

We address both of these concerns in our ‘row-less’ universal schema. Rather

than explicitly encoding each row, we encode the row as a learned aggregation over

their observed columns (Figure 4.1). A row contains an entity for type prediction

and an entity pair for relation extraction while a column contains a relation type for

relation extraction and an entity type for type prediction. A learned row embedding

can be seen as a summarization of all columns observed with that particular row.

Instead of modeling this summarization as a single embedding, we reconstruct a row

representation from an aggregate of its column embeddings, essentially learning a

mixture model rather than a single centroid.

Figure 4.1: Row-less universal schema for relation extraction encodes an entity pair
as an aggregation of its observed relation types.

4.1.2 Aggregation Functions

In this work we examine four aggregation functions to construct the representa-

tions for the row. Let v(.) denote a function that returns the vector representation
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for rows and columns. To model the probability between row r and column c, we

consider the set ¯V (r) which contains the set of column entries that are observed with

row r at training time, i.e.,

∀c̄ ∈ ¯V (r), (r, c̄) ∈ T

The first two aggregation functions create a single representation for each row

independent of the query. Mean Pool creates a single centroid for the row by

averaging all of its column vectors,

v(r) =
∑

c̄∈ ¯V (r) v(c̄)

While this formulation intuitively makes sense as an approximation for the explicit

row representation, averaging large numbers of embeddings can lead to a noisy rep-

resentation.

Max Pool also creates a single representation for the row by taking a dimension-

wise max over the observed column vectors:

v(r)i = maxc̄∈ ¯V (r) v(c̄)i, ∀i ∈ 1, 2, . . . , d

where ai denotes the ith dimension of vector a. Both mean pool and max pool are

query-independent and form the same representation for the row regardless of the

query relation.

We also examine two query-specific aggregation functions. These models are more

expressive than a single vector forced to to act as a centroid to all possible columns

observed with that particular row. For example, the entity pair Bill and Melinda

Gates could hold the relation ‘per:spouse’ or ‘per:co-worker’. A query-specific aggre-

gation mechanism can produce separate representations for this entity pair dependent

on the query.

The Max Relation aggregation function represents the row as its most similar

column to the query vector of interest. Given a query relation c,
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cmax = argmaxc̄∈ ¯V (r)v(c̄).v(c)

v(r) = v(cmax)

A similar strategy has been successfully applied in previous work (Weston et al., 2013;

Neelakantan et al., 2014, 2015a) for different tasks. This model has the advantage of

creating a query-specific entity pair representation, but is more susceptible to noisy

training data as a single incorrect piece of evidence could be used to form a prediction.

Finally, we look at an Attention aggregation function over columns (Figure 4.2)

which is similar to a single-layer memory network Sukhbaatar et al. (2015). The soft

attention mechanism has been used to selectively focus on relevant parts in many

different models (Bahdanau et al., 2015; Graves et al., 2014; Neelakantan et al., 2016).

In this model the query is scored with an input representation of each column

embedding followed by a softmax, giving a weighting over each relation type. This

output is then used to get a weighted sum over a set of output representations for

each column resulting in a query-specific vector representation of the row. Given a

query relation c,

scorec̄ = v(c).v(c̄),∀c̄ ∈ ¯V (r)

pc̄ = exp(scorec̄)∑
ĉ∈ ¯V (r) exp(scoreĉ)

,∀c̄ ∈ ¯V (r)

v(r) =
∑

c̄∈ ¯V (r) pc̄ × v(c̄)

The model pools relevant information over the entire set of observed columns and

selects the most salient aspects to the query.

Model Parameters

Entity Embeddings 3.7 e6
Attention 3.1 e5
Mean Pool/Max Pool/Max Relation 1.5 e5

Table 4.1: Number of parameters for the different models on the entity type dataset.
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- arg1 co-founded the 
foundation  with arg 2{ }

Input Output

Query 
Encoder

Figure 4.2: Example attention model in a row-less universal schema relation extrac-
tor. In the attention model, we compute the dot product between the representation
of the query relation and the representation of an entity pair’s observed relation type
followed by a softmax, giving a weighting over the observed relation types. This out-
put is then used to get a weighted sum over the set of representations of the observed
relation types. The result is a query-specific vector representation of the entity pair.
The Max Relation model takes the most similar observed relation’s representation.

4.1.3 Training

The vector representation of the rows and the columns are the parameters of the

model. Riedel et al. (2013b) use Bayesian Personalized Ranking (BPR) (Rendle et al.,

2009) to train their universal schema models. BPR ranks the probability of observed

triples above unobserved triples rather than explicitly modeling unobserved edges as

negative. Each training example is an (entity pair, relation type) or (entity, entity

type) pair observed in the training text corpora or KB.

Rather than BPR, Toutanova et al. (2015) use 200 negative samples to approxi-

mate the negative log likelihood1. In our experiments, we use the sampled approxi-

mate negative log likelihood which outperformed BPR in early experiments.

1Many past papers restrict negative samples to be of the same type as the positive example. We
simply sample uniformly from the entire set of row entries
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Each example in the training procedure consists of a row-column pair observed

in the training set. For a positive example (r, c) ∈ T , we construct the set ¯V (r)

containing all the other column entries apart from c that are observed with row r.

To make training faster and more robust, we add ‘pattern dropout’ for entity pairs

with many mentions. We set ¯V (r) to be m randomly sampled mentions for entity

pairs with greater than m total mentions. In our experiments we set m = 10 and

at test time we use all mentions. We then use ¯V (r) to obtain the aggregated row

representation as discussed above.

We randomly sample 200 columns unobserved with row r to act as the negative

samples. All models are implemented in Torch2 and are trained using Adam Kingma

and Ba (2014a) with default momentum related hyperparameters.

4.2 Related Work

Relation extraction for KB completion has a long history. Mintz et al. (2009a)

train per relation linear classifiers using features derived from the sentences in which

the entity pair is mentioned. Most of the embedding-based methods learn representa-

tions for entities (Nickel et al., 2011b; Socher et al., 2013; Bordes et al., 2013) whereas

Riedel et al. (2013b) use entity pair representations.

‘Column-less’ versions of Universal Schema have been proposed (Toutanova et al.,

2015; Verga et al., 2016a). These models can generalize to column entries unseen

at training by learning compositional pattern encoders to parameterize the column

matrix in place of embeddings. Most of these models do not generalize to unseen

entity pairs and none of them generalize to unseen entities. Recently, Neelakantan

et al. (2015a) introduced a multi-hop relation extraction model that is ‘row-less’

having no explicit parameters for entity pairs and entities.

2data and code available at https://github.com/patverga/torch-relation-extraction/

tree/rowless-updates
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Entity type prediction at the individual sentence level has been studied extensively

(Pantel et al., 2012; Ling and Weld, 2012b; Shimaoka et al., 2016). More recently,

embedding-based methods for knowledge base entity type prediction have been pro-

posed (Yao et al., 2013; Neelakantan and Chang, 2015a). These methods have explicit

entity representations, hence cannot generalize to unseen entities.

The task of generalizing to unseen row and column entries is referred to as the cold-

start problem in recommendation systems. Methods proposed to tackle this problem

commonly use user and item content and attributes (Schein et al., 2002; Park and

Chu, 2009).

Multi-instance learning can be viewed as the relation classifier analogy of rowless

universal schema. Riedel et al. (2010) used a relaxation of distant supervision train-

ing where all sentences for an entity pair (bag) are considered jointly and only the

most relevant sentence is treated as the single training example for the bag’s label.

Surdeanu et al. (2012) extended this idea with multi-instance multi-label learning

(MIML) where each entity pair / bag can hold multiple relations / labels. Recently

Lin et al. (2016) used a selective attention over sentences in MIML.

Concurrent to our work, Weissenborn (2016) proposes a row-less method for rela-

tion extraction considering both a uniform and weighted average aggregation function

over columns. However, Weissenborn (2016) did not experiment with max and max-

pool aggregation functions or evaluate on entity-type prediction. They also did not

combine the rowless model with an LSTM column-less parameterization and did not

compare to a model with explicit entity-pair representations.

4.3 Experimental Results

In this section, we compare our models that have aggregate row representations

with models that have explicit row representations on entity type prediction and

relation extraction tasks. Finally, we perform experiments on a column-less universal

43



schema model. Table 4.1 shows that the row-less models require far fewer parameters

since they do not explicitly store the row representations.

4.3.1 Entity Type Prediction

We first evaluate our models on an entity type prediction task. We collect all

entities along with their types from a dump of Freebase3. We then filter all entities

with less than five Freebase types leaving a set of 844780 (entity, type) pairs. Ad-

ditionally, we collect 712072 textual (entity, type) pairs from Clueweb. The textual

types are the 5000 most common appositives extracted from sentences mentioning

entities. This results in 140513 unique entities, 1120 Freebase types, and 5000 free

text types.

All embeddings are 25 dimensions, randomly initialized. We tune learning rates

from {.01, .001}, `2 from {1e-8, 0}, batch size {512, 1024, 2048} and negative samples

from {2, 200}.

For evaluation, we split the Freebase (entity, type) pairs into 60% train, 20% vali-

dation, and 20% test. We randomly generate 100 negative (entity, type) pairs for each

positive pair in our test set by selecting random entity and type combinations. We

filter out false negatives that were observed true (entity, type) pairs in our complete

data set. Each model produces a score for each positive and negative (entity, type)

pair where the type is the query. We then rank these predictions, calculate average

precision for each of the types in our test set, and then use those scores to calculate

mean average precision (MAP).

Table 4.2a shows the results of this experiment. We can see that the query depen-

dent aggregation functions (Attention and Max Relation) performs better than the

query independent functions (Mean Pool and Max Pool). The performance of models

3Downloaded March 1, 2015.

44



Model MAP

Entity Embeddings 54.81
Mean Pool 39.47
Max Pool 32.59
Attention 55.66
Max Relation 55.37

(a)

Model MAP

Entity Embeddings 3.14
Mean columns 34.77
Max column 43.20
Mean Pool 35.53
Max Pool 30.98
Attention 54.52
Max Relation 54.72

(b)

Table 4.2: Entity type prediction. Entity embeddings refers to the model with explicit
row representations. Mean Columns and Max Column are equivalent to Mean Pool
and Max Relation respectively (Section 4.1.2) but use the column embeddings learned
during training of the Entity Embeddings model. b: Positive entities are unseen at
train time.

with query dependent aggregation functions which have far fewer parameters match

the performance of the model with explicit entity representations.

We additionally evaluate our model’s ability to predict types for entities unseen

during training. For this experiment, we randomly select 14000 entities and take all

(entity, type) pairs containing those entities. We remove these pairs from our training

set and use them as positive samples in our test set. We then select 100 negatives

(entity, type) pairs per positive as above.

Table 4.2b shows the results of the experiment with unseen entities. There is

very little performance drop for models trained with query dependent aggregation

functions. The performance of the model with explicit entity representations is close

to random.

4.3.1.1 Qualitative Results

A query specific aggregation function is able to pick out relevant columns to form

a prediction. This is particularly important for rows that are not described easily

by a single centroid such as an entity with several very different careers or an entity

pair with multiple highly varied relations. For example, in the first row in Table 4.3,
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Query Observed Columns

/baseball/baseball player /sports/pro athlete, /sports/sports award winner,
/tv/tv actor, /people/measured person,
/award/award winner, /people/person

/architecture/engineer engineer, /book/author, /projects/project focus,
/people/person, sir

/baseball/baseball player baseman, /sports/pro athlete,
/people/measured person, /people/person, dodgers,
coach

/computer/computer scientist /education/academic, /music/group member,
/music/artist, /people/person

/business/board member /organization/organization founder,
/award/award winner, /computer/computer scientist,
/people/person, president, scientist

/education/academic /astronomy/astronomer, /book/author

Table 4.3: Each row corresponds to a true query entity type (left column) and the
observed entity types (right column) for a particular entity. The maximum scoring
observed entity type for each query entity type is indicated in bold. The other types
are in no particular order. It can be seen that the maximum scoring entity types are
interpretable.

for the query /baseball/baseball player the model needs to correctly focus on aspects

like /sports/pro athlete and ignore evidence information like /tv/tv actor. A model

that creates a single query-independent centroid will be forced to try and merge these

disparate pieces of information together.

4.3.2 Relation Extraction

We evaluate our models on a relation extraction task using the FB15k-237 dataset

from Toutanova et al. (2015). The data is composed of a small set of 237 Freebase

relations and approximately 4 million textual patterns from Clueweb with entities

linked to Freebase Gabrilovich et al. (2013). In past studies, for each (subject, rela-

tion, object) test triple, negative examples are generated by replacing the object with

all other entities, filtering out triples that are positive in the data set. The positive

triple is then ranked among the negatives. In our experiments we limit the possible

generated negatives to those entity pairs that have textual mentions in our training
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set. This way we can evaluate how well the model classifies textual mentions as

Freebase relations. We also filter textual patterns with length greater than 35. Our

filtered data set contains 2740237 relation types, 2014429 entity pairs, and 176476

tokens. We report the percentage of positive triples ranked in the top 10 amongst

their negatives as well as the MRR scaled by 100.

Models are tuned to maximize mean reciprocal rank (MRR) on the validation

set with early stopping. The entity pair model used a batch size 1024, `2 = 1e-8,

ε = 1e-4, and learning rate 0.01. The aggregation models all used batch size 4096,

`2 = 0, ε = 1e-8, and learning rate 0.01. Each use 200 negative samples except for

max pool which performed better with two negative samples. The column vectors are

initialized with the columns learned by the entity pair model. Randomly initializing

the query encoders and tying the output and attention encoders performed better

and all results use this method. All models are trained with embedding dimension

25.

Our results are shown in Table 4.4a. We can see that the models with query

specific aggregation functions give the same results as models with explicit entity pair

representations. The Max Relation model performs competitively with the Attention

model which is not entirely surprising as it is a simplified version of the Attention

model. Further, the Attention model reduces to the Max Relation model for entity

pairs with only a single observed relation type. In our data, 64.8% of entity pairs

have only a single observed relation type and 80.9% have 1 or 2 observed relation

types.

We also explore the models’ abilities to predict on unseen entity pairs (Table

4.4b). We remove all training examples that contain a positive entity pair in either

our validation or test set. We use the same validation and test set as in Table 4.4a.

The entity pair model predicts random relations as it is unable to make predictions

on unseen entity pairs. The query-independent aggregation functions, mean pool

47



Model MRR Hits@10

Entity-pair Embed 31.85 51.72
Mean Pool 25.89 45.94
Max Pool 29.61 49.93
Attention 31.92 51.67
Max Relation 31.71 51.94

(a)

Model MRR Hits@10

Entity-pair Embed 5.23 11.94
Mean Pool 18.10 35.76
Max Pool 20.80 40.25
Attention 29.75 49.69
Max Relation 28.46 48.15

(b)

Table 4.4: The percentage of positive triples ranked in the top 10 amongst their
negatives as well as the mean reciprocal rank (MRR) scaled by 100 on a subset of the
FB15K-237 dataset. All positive entity pairs in the evaluation set are unseen at train
time. Entity-pair embeddings refers to the model with explicit row representations.
b: Predicting entity pairs that are not seen at train time.

and max pool, perform better than models with explicit entity pair representations.

Again, query specific aggregation functions get the best results, with the Attention

model performing slightly better than the Max Relation model.

The two experiments indicate that we can train relation extraction models with-

out explicit entity pair representations that perform as well as models with explicit

representations. We also find that models with query specific aggregation functions

accurately predict relations for unseen entity pairs.

4.3.3 ‘Column-less’ universal schema

The original universal schema approach has two main drawbacks: similar textual

patterns do not share statistics, and the model is unable to make predictions about

entities and textual patterns not explicitly seen at train time.
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Recently, ‘column-less’ versions of universal schema to address some of these is-

sues (Toutanova et al., 2015; Verga et al., 2016a). These models learn compositional

pattern encoders to parameterize the column matrix in place of direct embeddings.

Compositional universal schema facilitates more compact sharing of statistics by com-

posing similar patterns from the same sequence of word embeddings – the text pat-

terns ‘lives in the city’ and ‘lives in the city of’ no longer exist as distinct atomic

units. More importantly, compositional universal schema can thus generalize to all

possible textual patterns, facilitating reasoning over arbitrary text at test time.

The column-less universal schema model generalizes to all possible input textual

relations and the row-less model generalizes to all entities and entity pairs, whether

seen at train time or not. We can combine these two approaches together to make an

universal schema model that generalizes to unseen rows and columns.

The parse path between the two entities in the sentence is encoded with an LSTM

model. We use a single layer model with 100 dimensional token embeddings initialized

randomly. To prevent exploding gradients, we clip them to norm 10 while all the other

hyperparameters are tuned the same way as before. We follow the same evaluation

protocol from 4.3.2.

The results of this experiment with observed rows are shown in Table 4.5a. While

both the MRR and Hits@10 metrics increase for models with explicit row represen-

tations, the row-less models show an improvement only on the Hits@10 metric. The

MRR of the query dependent row-less models is still competitive with the model with

explicit row representation even though they have far fewer parameters to fit the data.

4.4 Conclusion

In this chapter we explored a row-less extension of universal schema that forgoes

explicit row representations for an aggregation function over its observed columns.

This extension allows prediction between all rows in new textual mentions – whether
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Model MRR Hits@10

Entity-pair Embed 31.85 51.72
Entity-pair Embed-LSTM 33.37 54.39
Attention 31.92 51.67
Attention-LSTM 30.00 53.35
Max Relation 31.71 51.94
Max Relation-LSTM 30.77 54.80

(a)

Model MRR Hits@10

Entity-pair Embed 5.23 11.94
Attention 29.75 49.69
Attention-LSTM 27.95 51.05
Max Relation 28.46 48.15
Max Relation-LSTM 29.61 54.19

(b)

Table 4.5: The percentage of positive triples ranked in the top 10 amongst their
negatives as well as the mean reciprocal rank (MRR) scaled by 100 on a subset
of the FB15K-237 dataset. Negative examples are restricted to entity pairs that
occurred in the KB or text portion of the training set. Models with the suffix “-
LSTM” are column-less. Entity-pair embeddings refers to the model with explicit
row representations. b: Predicting entity pairs that are not seen at train time.
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seen at train time or not – and also provides a natural connection to the provenance

supporting the prediction. Our models also have a smaller memory footprint.

In this work we show that an aggregation function based on query-specific atten-

tion over relation types outperforms query independent aggregations. We show that

aggregation models are able to predict on par with models with explicit row represen-

tations on seen row entries with far fewer parameters. More importantly, aggregation

models predict on unseen row entries without much loss in accuracy. Finally, we show

that in relation extraction, we can combine row-less and column-less models to train

models that generalize to both unseen rows and columns.
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CHAPTER 5

ENCODING HIERARCHIES

So far, we’ve discussed extraction from raw text to a knowledge base of entities

and fine-grained types that has cast the problem as a prediction into a flat set of

entity and type labels. However, this neglects the rich hierarchies that naturally exist

over types and entities and are already present in many curated ontologies. Previous

attempts to incorporate hierarchical structure have yielded little benefit and have been

restricted to very shallow ontologies. In this chapter, we present new methods using

real and complex bilinear mappings for integrating hierarchical information, yielding

substantial improvement over flat predictions in entity linking and fine-grained entity

typing, and achieving state-of-the-art results for end-to-end models on the benchmark

FIGER dataset. We also present two new human-annotated datasets containing wide

and deep hierarchies which we will release to the community to encourage further

research in this direction: MedMentions, a collection of PubMed abstracts in which

246k mentions have been mapped to the massive UMLS ontology; and TypeNet, which

aligns Freebase types with the WordNet hierarchy to obtain nearly 2k entity types.

In experiments on all three datasets we show substantial gains from hierarchy-aware

training.

5.1 Introduction

Identifying and understanding entities is a central component in knowledge base

construction Roth et al. (2015) and essential for enhancing downstream tasks such

as relation extraction Yaghoobzadeh et al. (2017b), question answering Das et al.
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(2017c); Welbl et al. (2017) and search Dalton et al. (2014). This has led to consider-

able research in automatically identifying entities in text, predicting their types, and

linking them to existing structured knowledge sources.

Current state-of-the-art models encode a textual mention with a neural network

and classify the mention as being an instance of a fine grained type or entity in a

knowledge base. Although in many cases the types and their entities are arranged in

a hierarchical ontology, most approaches ignore this structure, and previous attempts

to incorporate hierarchical information yielded little improvement in performance

(Shimaoka et al., 2017). Additionally, existing benchmark entity typing datasets

only consider small label sets arranged in very shallow hierarchies. For example,

FIGER Ling and Weld (2012a), the de facto standard fine grained entity type dataset,

contains only 113 types in a hierarchy only two levels deep.

In this chapter, we investigate models that explicitly integrate hierarchical in-

formation into the embedding space of entities and types, using a hierarchy-aware

loss on top of a deep neural network classifier over textual mentions. By using this

additional information, we learn a richer, more robust representation, gaining statis-

tical efficiency when predicting similar concepts and aiding the classification of rarer

types. We first validate our methods on the narrow, shallow type system of FIGER,

out-performing state-of-the-art methods not incorporating hand-crafted features and

matching those that do.

To evaluate on richer datasets and stimulate further research into hierarchical en-

tity/typing prediction with larger and deeper ontologies, we introduce two new human

annotated datasets. The first is MedMentions, a collection of PubMed abstracts in

which 246k concept mentions have been annotated with links to the Unified Medical

Language System (UMLS) ontology Bodenreider (2004), an order of magnitude more

annotations than comparable datasets. UMLS contains over 3.5 million concepts in

a hierarchy having average depth 14.4. Interestingly, UMLS does not distinguish be-
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tween types and entities (an approach we heartily endorse), and the technical details

of linking to such a massive ontology lead us to refer to our MedMentions experiments

as entity linking. Second, we present TypeNet, a curated mapping from the Freebase

type system into the WordNet hierarchy. TypeNet contains over 1900 types with an

average depth of 7.8.

In experimental results, we show improvements with a hierarchically-aware train-

ing loss on each of the three datasets. In entity-linking MedMentions to UMLS, we

observe a 6% relative increase in accuracy over the base model. In experiments on

entity-typing from Wikipedia into TypeNet, we show that incorporating the hierarchy

of types and including a hierarchical loss provides a dramatic 29% relative increase in

MAP. Our models even provide benefits for shallow hierarchies allowing us to match

the state-of-art results of Shimaoka et al. (2017) on the FIGER (GOLD) dataset

without requiring hand-crafted features.

5.2 New Corpora and Ontologies

5.2.1 MedMentions

Over the years researchers have constructed many large knowledge bases in the

biomedical domain Apweiler et al. (2004); Davis et al. (2008); Chatr-aryamontri et al.

(2017). Many of these knowledge bases are specific to a particular sub-domain en-

compassing a few particular types such as genes and diseases Piñero et al. (2017).

UMLS Bodenreider (2004) is particularly comprehensive, containing over 3.5 mil-

lion concepts (UMLS does not distinguish between entities and types) defining their

relationships and a curated hierarchical ontology. For example LETM1 Protein is-a

Calcium Binding Protein is-a Binding Protein is-a Protein is-a Genome Encoded

Entity. This fact makes UMLS particularly well suited for methods explicitly exploit-

ing hierarchical structure.
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Accurately linking textual biological entity mentions to an existing knowledge

base is extremely important but few richly annotated resources are available. Even

when resources do exist, they often contain no more than a few thousand annotated

entity mentions which is insufficient for training state-of-the-art neural network entity

linkers. State-of-the-art methods must instead rely on string matching between entity

mentions and canonical entity names Leaman et al. (2013); Wei et al. (2015a); Leaman

and Lu (2016). To address this, we constructed MedMentions, a new, large dataset

identifying and linking entity mentions in PubMed abstracts to specific UMLS con-

cepts. Professional annotators exhaustively annotated UMLS entity mentions from

3704 PubMed abstracts, resulting in 246,000 linked mention spans. The average depth

in the hierarchy of a concept from our annotated set is 14.4 and the maximum depth

is 43.

MedMentions contains an order of magnitude more annotations than similar bi-

ological entity linking PubMed datasets (Doğan et al., 2014; Wei et al., 2015a; Li

et al., 2016a). Additionally, these datasets contain annotations for only one or two

entity types (genes or chemicals and disease etc.). MedMentions instead contains an-

notations for a wide diversity of entities linking to UMLS. Statistics for several other

datasets are in Table 5.1 and further statistics are in Appendix-B.1.

Dataset mentions unique entities

MedMentions 246,144 25,507

BCV-CDR 28,797 2,356
NCBI Disease 6,892 753
BCII-GN Train 6,252 1,411
NLM Citation GIA 1,205 310

Table 5.1: Statistics from various biological entity linking data sets from scientific
articles. NCBI Disease (Doğan et al., 2014) focuses exclusively on disease entities.
BCV-CDR (Li et al., 2016a) contains both chemicals and diseases. BCII-GN and
NLM (Wei et al., 2015a) both contain genes.
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5.2.2 TypeNet

TypeNet is a new dataset of hierarchical entity types for extremely fine-grained

entity typing. TypeNet was created by manually aligning Freebase types Bollacker

et al. (2008b) to noun synsets from the WordNet hierarchy (Fellbaum, 1998), naturally

producing a hierarchical type set.

To construct TypeNet, we first consider all Freebase types that were linked to

more than 20 entities. This is done to eliminate types that are either very specific or

very rare. We also remove all Freebase API types, e.g. the [/freebase, /dataworld,

/schema, /atom, /scheme, and /topics] domains.

For each remaining Freebase type, we generate a list of candidate WordNet synsets

through a substring match. An expert annotator then attempted to map the Free-

base type to one or more synsets in the candidate list with a parent-of, child-of or

equivalence link by comparing the definitions of each synset with example entities of

the Freebase type. If no match was found, the annotator manually formulated queries

for the online WordNet API until an appropriate synset was found. See Table B.2 for

an example annotation.

Two expert annotators independently aligned each Freebase type before meeting

to resolve any conflicts. The annotators were conservative with assigning equivalence

links resulting in a greater number of child-of links. The final dataset contained 13

parent-of, 727 child-of, and 380 equivalence links. Note that some Freebase types

have multiple child-of links to WordNet, making TypeNet, like WordNet, a directed

acyclic graph. We then took the union of each of our annotated Freebase types, the

synset that they linked to, and any ancestors of that synset.

We also added an additional set of 614 FB → FB links. This was done by com-

puting conditional probabilities of Freebase types given other Freebase types from a

collection of 5 million randomly chosen Freebase entities. The conditional probabil-

ity P(t2 | t1) of a Freebase type t2 given another Freebase type t1 was calculated as
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#(t1,t2)
#t1

. Links with a conditional probability less than or equal to 0.7 were discarded.

The remaining links were manually verified by an expert annotator and valid links

were added to the final dataset, preserving acyclicity.

5.3 Model

5.3.1 Background: Entity Typing and Linking

We define a textual mention m as a sentence with an identified entity. The goal is

then to classify m with one or more labels. For example, we could take the sentence

m = “Barack Obama is the President of the United States.” with the identified entity

string Barack Obama. In the task of entity linking, we want to map m to a specific

entity in a knowledge base such as “m/02mjmr” in Freebase. In mention-level typing,

we label m with one or more types from our type system T such as tm = {president,

leader, politician} Ling and Weld (2012a); Gillick et al. (2014); Shimaoka et al. (2017).

In entity-level typing, we instead consider a bag of mentions Be which are all linked to

the same entity. We label Be with te, the set of all types expressed in all m ∈ Be Yao

et al. (2013); Neelakantan and Chang (2015b); Verga et al. (2017a); Yaghoobzadeh

et al. (2017a).

5.3.2 Mention Encoder

Our model converts each mention m to a d dimensional vector. This vector is

used to classify the type or entity of the mention. The basic model depicted in

Figure 5.1 concatenates the averaged word embeddings of the mention string with

the output of a convolutional neural network (CNN). The word embeddings of the

mention string capture global, context independent semantics while the CNN encodes

a context dependent representation.
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Barack
Obama
is the

president
of the USA

Mean Max Pool

MLP

                       CNN 

Figure 5.1: Sentence encoder for all our models. The input to the CNN consists of
the concatenation of position embeddings with word embeddings. The output of the
CNN is concatenated with the mean of mention surface form embeddings, and then
passed through a 2 layer MLP.

5.3.2.1 Token Representation

Each sentence is made up of s tokens which are mapped to dw dimensional word

embeddings. Because sentences may contain mentions of more than one entity, we

explicitly encode a distinguished mention in the text using position embeddings which

have been shown to be useful in state of the art relation extraction models (dos Santos

et al., 2015b; Lin et al., 2016) and machine translation (Vaswani et al., 2017b). Each

word embedding is concatenated with a dp dimensional learned position embedding

encoding the token’s relative distance to the target entity. Each token within the

distinguished mention span has position 0, tokens to the left have a negative distance

from [−s, 0), and tokens to the right of the mention span have a positive distance

from (0, s]. We denote the final sequence of token representations as M .

5.3.2.2 Sentence Representation

The embedded sequence M is then fed into our context encoder. Our context

encoder is a single layer CNN followed by a tanh non-linearity to produce C. The

58



outputs are max pooled across time to get a final context embedding, mCNN.

ci = tanh(b+
w∑

j=0

W [j]M [i− bw
2
c+ j])

mCNN = max
0≤i≤n−w+1

ci

EachW [j] ∈ Rd×d is a CNN filter, the bias b ∈ Rd, M [i] ∈ Rd is a token representation,

and the max is taken pointwise. In all of our experiments we set w = 5.

In addition to the contextually encoded mention, we create a global mention

encoding, mG, by averaging the word embeddings of the tokens within the mention

span.

The final mention representation mF is constructed by concatenating mCNN and

mG and applying a two layer feed-forward network with tanh non-linearity (see Figure

5.1):

mF = W2 tanh(W1

mSFM

mCNN

+ b1) + b2

5.4 Training

5.4.1 Mention-Level Typing

Mention level entity typing is treated as multi-label prediction. Given the sentence

vector mF, we compute a score for each type in typeset T as:

yj = tj
>mF

where tj is the embedding for the jth type in T and yj is its corresponding score. The

mention is labeled with tm, a binary vector of all types where tmj = 1 if the jth type
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is in the set of gold types for m and 0 otherwise. We optimize a multi-label binary

cross entropy objective:

Ltype(m) = −
∑
j

tmj log yj + (1− tmj ) log(1− yj)

5.4.2 Entity-Level Typing

In the absence of mention-level annotations, we instead must rely on distant su-

pervision Mintz et al. (2009a) to noisily label all mentions of entity e with all types

belonging to e. This procedure inevitably leads to noise as not all mentions of an

entity express each of its known types. To alleviate this noise, we use multi-instance

multi-label learning (MIML) Surdeanu et al. (2012) which operates over bags rather

than mentions. A bag of mentions Be = {m1,m2, . . . ,mn} is the set of all mentions

belonging to entity e. The bag is labeled with te, a binary vector of all types where

tej = 1 if the jth type is in the set of gold types for e and 0 otherwise.

For every entity, we subsample k mentions from its bag of mentions. Each mention

is then encoded independently using the model described in Section 5.3.2 resulting in

a bag of vectors. Each of the k sentence vectors mi
F is used to compute a score for

each type in te:

yij = tj
>mi

F

where tj is the embedding for the jth type in te and yi is a vector of logits correspond-

ing to the ith mention. The final bag predictions are obtained using element-wise

LogSumExp pooling across the k logit vectors in the bag to produce entity level

logits y:

y = log
∑
i

exp(yi)
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We use these final bag level predictions to optimize a multi-label binary cross entropy

objective:

Ltype(Be) = −
∑
j

tej log yj + (1− tej) log(1− yj)

5.4.3 Entity Linking

Entity linking is similar to mention-level entity typing with a single correct class

per mention. Because the set of possible entities is in the millions, linking models

typically integrate an alias table mapping entity mentions to a set of possible candi-

date entities. Given a large corpus of entity linked data, one can compute conditional

probabilities from mention strings to entities Spitkovsky and Chang (2012). In many

scenarios this data is unavailable. However, knowledge bases such as UMLS contain

a canonical string name for each of its curated entities. State-of-the-art biological

entity linking systems tend to operate on various string edit metrics between the en-

tity mention string and the set of canonical entity strings in the existing structured

knowledge base Leaman et al. (2013); Wei et al. (2015a).

For each mention in our dataset, we generate 100 candidate entities ec = (e1, e2, . . . , e100)

each with an associated string similarity score csim. See Appendix B.6.1 for more

details on candidate generation. We generate the sentence representation mF using

our encoder and compute a similarity score between mF and the learned embedding

e of each of the candidate entities. This score and string cosine similarity csim are

combined via a learned linear combination to generate our final score. The final

prediction at test time ê is the maximally similar entity to the mention.

φ(m, e) = α e>mF + β csim(m, e)

ê = argmax
e∈ec

φ(m, e)
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We optimize this model by multinomial cross entropy over the set of candidate entities

and correct entity e.

Llink(m, ec) = − φ(m, e) + log
∑
e′∈ec

expφ(m, e′)

5.5 Encoding Hierarchies

Both entity typing and entity linking treat the label space as prediction into a flat

set. To explicitly incorporate the structure between types/entities into our training,

we add an additional loss. We consider two methods for modeling the hierarchy of

the embedding space: real and complex bilinear maps, which are two of the state-of-

the-art knowledge graph embedding models.

5.5.1 Hierarchical Structure Models

Bilinear: Our standard bilinear model scores a hypernym link between (c1, c2) as:

s(c1, c2) = c1
>Ac2

where A ∈ Rd×d is a learned real-valued non-diagonal matrix and c1 is the child of

c2 in the hierarchy. This model is equivalent to RESCAL Nickel et al. (2011a) with

a single is-a relation type. The type embeddings are the same whether used on the

left or right side of the relation. We merge this with the base model by using the

parameter A as an additional map before type/entity scoring.

Complex Bilinear: We also experiment with a complex bilinear map based on the

ComplEx model Trouillon et al. (2016), which was shown to have strong performance

predicting the hypernym relation in WordNet, suggesting suitability for asymmetric,

transitive relations such as those in our type hierarchy. ComplEx uses complex valued

vectors for types, and diagonal complex matrices for relations, using Hermitian inner

products (taking the complex conjugate of the second argument, equivalent to treating
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the right-hand-side type embedding to be the complex conjugate of the left hand side),

and finally taking the real part of the score1. The score of a hypernym link between

(c1, c2) in the ComplEx model is defined as:

s(c1, c2) = Re(< c1, rIs-A, c2 >)

= Re(
∑
k

c1krkc̄2k)

= 〈Re(c1),Re(rIs-A),Re(c2)〉

+ 〈Re(c1), Im(rIs-A), Im(c2)〉

+ 〈Im(c1),Re(rIs-A), Im(c2)〉

− 〈Im(c1), Im(rIs-A),Re(c2)〉

where c1, c2 and rIs-A are complex valued vectors representing c1, c2 and the is-a

relation respectively. Re(z) represents the real component of z and Im(z) is the

imaginary component. As noted in Trouillon et al. (2016), the above function is

antisymmetric when ris-a is purely imaginary.

Since entity/type embeddings are complex vectors, in order to combine it with

our base model, we also need to represent mentions with complex vectors for scoring.

To do this, we pass the output of the mention encoder through two different affine

transformations to generate a real and imaginary component:

Re(mF) = WrealmF + breal

Im(mF) = WimgmF + bimg

1This step makes the scoring function technically not bilinear, as it commutes with addition but
not complex multiplication, but we term it bilinear for ease of exposition.
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where mF is the output of the mention encoder, and Wreal, Wimg ∈ Rd×d and breal,

bimg ∈ Rd .

5.5.2 Training with Hierarchies

Learning a hierarchy is analogous to learning embeddings for nodes of a knowledge

graph with a single hypernym/is-a relation. To train these embeddings, we sample

(c1, c2) pairs, where each pair is a positive link in our hierarchy. For each positive

link, we sample a set N of n negative links. We encourage the model to output high

scores for positive links, and low scores for negative links via a binary cross entropy

(BCE) loss:

Lstruct = − log σ(s(c1i, c2i))

+
∑
N

log(1− σ(s(c1i, c
′
2i)))

L = Ltype/link + γLstruct

where s(c1, c2) is the score of a link (c1, c2), and σ(·) is the logistic sigmoid. The

weighting parameter γ is ∈ {0.1, 0.5, 0.8, 1, 2.0, 4.0}. The final loss function that we

optimize is L.

5.6 Experiments

We perform three sets of experiments: mention-level entity typing on the bench-

mark dataset FIGER, entity-level typing using Wikipedia and TypeNet, and entity

linking using MedMentions.

5.6.1 Models

CNN : Each mention is encoded using the model described in Section 5.3.2. The

resulting embedding is used for classification into a flat set labels. Specific implemen-

tation details can be found in Appendix B.3.
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CNN+Complex : The CNN+Complex model is equivalent to the CNN model but

uses complex embeddings and Hermitian dot products.

Transitive : This model does not add an additional hierarchical loss to the training

objective (unless otherwise stated). We add additional labels to each entity corre-

sponding to the transitive closure, or the union of all ancestors of its known types.

This provides a rich additional learning signal that greatly improves classification of

specific types.

Hierarchy : These models add an explicit hierarchical loss to the training objective,

as described in Section 5.5, using either complex or real-valued bilinear mappings,

and the associated parameter sharing.

5.6.2 Mention-Level Typing in FIGER

To evaluate the efficacy of our methods we first compare against the current

state-of-art models of Shimaoka et al. (2017). The most widely used type system

for fine-grained entity typing is FIGER which consists of 113 types organized in a 2

level hierarchy. For training, we use the publicly available W2M data (Ren et al.,

2016) and optimize the mention typing loss function defined in Section-5.4.1 with

the additional hierarchical loss where specified. For evaluation, we use the manually

annotated FIGER (GOLD) data by Ling and Weld (2012a). See Appendix B.3 and

B.4 for specific implementation details.

5.6.2.1 Results

In Table 5.2 we see that our base CNN models (CNN and CNN+Complex) match

LSTM models of Shimaoka et al. (2017) and Gupta et al. (2017a), the previous state-

of-the-art for models without hand-crafted features. When incorporating structure

into our models, we gain 2.5 points of accuracy in our CNN+Complex model, match-

ing the overall state of the art attentive LSTM that relied on handcrafted features

from syntactic parses, topic models, and character n-grams. The structure can help
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Model Acc Macro F1 Micro F1

Ling and Weld (2012a) 47.4 69.2 65.5
Shimaoka et al. (2017) † 55.6 75.1 71.7
Gupta et al. (2017a)† 57.7 72.8 72.1
Shimaoka et al. (2017)‡ 59.6 78.9 75.3

CNN 57.0 75.0 72.2
+ hierarchy 58.4 76.3 73.6
CNN+Complex 57.2 75.3 72.9
+ hierarchy 59.7 78.3 75.4

Table 5.2: Accuracy and Macro/Micro F1 on FIGER (GOLD). † is an LSTM model.
‡ is an attentive LSTM along with additional hand crafted features.

our model predict lower frequency types which is a similar role played by hand-crafted

features.

5.6.3 Entity-Level Typing in TypeNet

Next we evaluate our models on entity-level typing in TypeNet using Wikipedia.

For each entity, we follow the procedure outlined in Section 5.4.2. We predict labels

for each instance in the entity’s bag and aggregate them into entity-level predictions

using LogSumExp pooling. Each type is assigned a predicted score by the model.

We then rank these scores and calculate average precision for each of the types in

the test set, and use these scores to calculate mean average precision (MAP). We

evaluate using MAP instead of accuracy which is standard in large knowledge base

link prediction tasks Verga et al. (2017a); Trouillon et al. (2016). These scores are

calculated only over Freebase types, which tend to be lower in the hierarchy. This

is to avoid artificial score inflation caused by trivial predictions such as ‘entity.’ See

Appendix B.5 for more implementation details.

5.6.3.1 Results

Table 5.3 shows the results for entity level typing on our Wikipedia TypeNet

dataset. We see that both the basic CNN and the CNN+Complex models perform

similarly with the CNN+Complex model doing slightly better on the full data regime.
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Model Low Data Full Data

CNN 51.72 68.15
+ hierarchy 54.82 75.56
+ transitive 57.68 77.21
+ hierarchy + transitive 58.74 78.59

CNN+Complex 50.51 69.83
+ hierarchy 55.30 72.86
+ transitive 53.71 72.18
+ hierarchy + transitive 58.81 77.21

Table 5.3: MAP of entity-level typing in Wikipedia data using TypeNet. The second
column shows results using 5% of the total data. The last column shows results using
the full set of 344,246 entities.

We also see that both models get an improvement when adding an explicit hierarchy

loss, even before adding in the transitive closure. The transitive closure itself gives

an additional increase in performance to both models. In both of these cases, the

basic CNN model improves by a greater amount than CNN+Complex. This could

be a result of the complex embeddings being more difficult to optimize and therefore

more susceptible to variations in hyperparameters. When adding in both the tran-

sitive closure and the explicit hierarchy loss, the performance improves further. We

observe similar trends when training our models in a lower data regime with ~150,000

examples, or about 5% of the total data.

In all cases, we note that the baseline models that do not incorporate any hierar-

chical information (neither the transitive closure nor the hierarchy loss) perform ~9

MAP worse, demonstrating the benefits of incorporating structure information.

5.6.4 MedMentions Entity Linking with UMLS

In addition to entity typing, we evaluate our model’s performance on an entity

linking task using MedMentions, our new PubMed / UMLS dataset described in

Section 5.2.1.
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Model original normalized

mention tfidf 61.09 74.66

CNN 67.42 82.40
+ hierarchy 67.73 82.77

CNN+Complex 67.23 82.17
+ hierarchy 68.34 83.52

Table 5.4: Accuracy on entity linking in MedMentions. Maximum recall is 81.82%
because we use an imperfect alias table to generate candidates. Normalized scores
consider only mentions which contain the gold entity in the candidate set. Mention
tfidf is csim from Section 7.2.2.

Tips and Pitfalls in Direct Ligation of Large Spontaneous Splenorenal Shunt during Liver
Transplantation Patients with large spontaneous splenorenal shunt . . .
baseline: Direct [Direct → General Modifier → Qualifier → Property or Attribute]
+hierarchy: Ligature (correct) [Ligature → Surgical Procedures → medical treatment
approach ]

A novel approach for selective chemical functionalization and localized assembly of one-
dimensional nanostructures.
baseline: Structure [Structure → order or structure → general epistemology]
+hierarchy: Nanomaterials (correct) [Nanomaterials → Nanoparticle Complex → Drug
or Chemical by Structure]

Gcn5 is recruited onto the il-2 promoter by interacting with the NFAT in T cells upon TCR
stimulation .
baseline: Interleukin-27 [Interleukin-27 → IL2 → Interleukin Gene]
+hierarchy: IL2 Gene (correct) [IL2 Gene → Interleukin Gene]

Table 5.5: Example predictions from MedMentions. Each example shows the sentence
with entity mention span in bold. Baseline, shows the predicted entity and its
ancestors of a model not incorporating structure. Finally, +hierarchy shows the
prediction and ancestors for a model which explicitly incorporates the hierarchical
structure information.

5.6.4.1 Results

Table 5.4 shows results for baselines and our proposed variant with additional

hierarchical loss. None of these models incorporate transitive closure information,

due to difficulty incorporating it in our candidate generation, which we leave to future

work. The Normalized metric considers performance only on mentions with an alias

table hit; all models have 0 accuracy for mentions otherwise. We also report the

overall score for comparison in future work with improved candidate generation. We
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see that incorporating structure information results in a 1.1% reduction in absolute

error, corresponding to a ~6% reduction in relative error on this large-scale dataset.

Table 5.5 shows qualitative predictions for models with and without hierarchy

information incorporated. Each example contains the sentence (with target entity in

bold), predictions for the baseline and hierarchy aware models, and the ancestors of

the predicted entity. In the first and second example, the baseline model becomes

extremely dependent on TFIDF string similarities when the gold candidate is rare (≤

10 occurrences). This shows that modeling the structure of the entity hierarchy helps

the model disambiguate rare entities. In the third example, structure helps the model

understand the hierarchical nature of the labels and prevents it from predicting an

entity that is overly specific (e.g predicting Interleukin-27 rather than the correct and

more general entity IL2 Gene).

Note that, in contrast with the previous tasks, the complex hierarchical loss pro-

vides a significant boost, while the real-valued bilinear model does not. A possible

explanation is that UMLS is a far larger/deeper ontology than even TypeNet, and

the additional ability of complex embeddings to model intricate graph structure is

key to realizing gains from hierarchical modeling.

5.7 Related Work

By directly linking a large set of mentions and typing a large set of entities with

respect to a new ontology and corpus, and our incorporation of structural learning

between the many entities and types in our ontologies of interest, our work draws

on many different but complementary threads of research in information extraction,

knowledge base population, and completion.

Our structural, hierarchy-aware loss between types and entities draws on research

in knowledge completion such as complexTrouillon et al. (2016) and RESCAL Nickel

et al. (2011a). Combining KB completion with hierarchical structure in knowledge
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bases has been explored in Dalvi et al. (2015); Xie et al. (2016). Recently, Wu et al.

(2017) proposed a hierarchical loss for text classification.

Linking mentions to a flat set of entities, often in Freebase or Wikipedia, is a long-

standing task in NLP Bunescu and Pasca (2006); Cucerzan (2007); Durrett and Klein

(2014); Francis-Landau et al. (2016). Typing of mentions at varying levels of granu-

larity, from CoNLL-style named entity recognition Tjong Kim Sang and De Meulder

(2003), to the more fine-grained recent approaches Ling and Weld (2012a); Gillick

et al. (2014); Shimaoka et al. (2017), is also related to our task. A few prior attempts

to incorporate a very shallow hierarchy into fine-grained entity typing have not lead

to significant or consistent improvements Gillick et al. (2014); Shimaoka et al. (2017).

The knowledge base Yago (Suchanek et al., 2007b) includes integration with Word-

Net and type hierarchies have been derived from its type system (Yosef et al., 2012).

Del Corro et al. (2015) use manually crafted rules and patterns (Hearst patterns

Hearst (1992), appositives, etc) to automatically match entity types to Wordnet

synsets.

Recent work has moved towards unifying these two highly related tasks by im-

proving entity linking by simultaneously learning a fine grained entity type predictor

Gupta et al. (2017a). Learning hierarchical structures or transitive relations between

concepts has been the subject of much recent work Vilnis and McCallum (2015);

Vendrov et al. (2016); Nickel and Kiela (2017)

We draw inspiration from all of this prior work, and contribute datasets and

models to address previous challenges in jointly modeling the structure of large-scale

hierarchical ontologies and mapping textual mentions into an extremely fine-grained

space of entities and types.
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5.8 Conclusion

We demonstrate that explicitly incorporating and modeling hierarchical informa-

tion leads to increased performance in experiments on entity typing and linking across

three challenging datasets. Additionally, we introduce two new human-annotated

datasets: MedMentions, a corpus of 246k mentions from PubMed abstracts linked

to the UMLS knowledge base, and TypeNet, a new hierarchical fine-grained entity

typeset an order of magnitude larger and deeper than previous datasets.

While this work already demonstrates considerable improvement over non-hierarchical

modeling, future work will explore techniques such as order embeddings Vendrov et al.

(2016) and Poincaré embeddings Nickel and Kiela (2017) to represent the hierarchical

embedding space, as well as methods to improve recall in the candidate generation

process for entity linking. Most of all, we are excited to see new techniques from the

NLP community using the resources we have presented.
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CHAPTER 6

FULL ABSTRACT RELATION EXTRACTION

Most work in relation extraction, including all that we have discussed up to this

point, form a prediction by looking at a short span of text within a single sentence

containing a single entity pair mention. This approach often does not consider in-

teractions across mentions, requires redundant computation for each mention pair,

and ignores relationships expressed across sentence boundaries. These problems are

exacerbated by the document- (rather than sentence-) level annotation common in

biological text. In response, we propose a model which simultaneously predicts re-

lationships between all mention pairs in a document. We form pairwise predictions

over entire paper abstracts using an efficient self-attention encoder. All-pairs men-

tion scores allow us to perform multi-instance learning by aggregating over mentions

to form entity pair representations. We further adapt to settings without mention-

level annotation by jointly training to predict named entities and adding a corpus

of weakly labeled data. In experiments on two Biocreative benchmark datasets, we

achieve state of the art performance on the Biocreative V Chemical Disease Relation

dataset for models without external KB resources. We also introduce a new dataset

an order of magnitude larger than existing human-annotated biological information

extraction datasets and more accurate than distantly supervised alternatives.

6.1 Introduction

With few exceptions (Swampillai and Stevenson, 2011; Quirk and Poon, 2017;

Peng et al., 2017), nearly all work in relation extraction focuses on classifying a short
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span of text within a single sentence containing a single entity pair mention. However,

relationships between entities are often expressed across sentence boundaries or oth-

erwise require a larger context to disambiguate. For example, 30% of relations in the

Biocreative V CDR dataset (§6.3.1) are expressed across sentence boundaries, such as

in the following excerpt expressing a relationship between the chemical azathioprine

and the disease fibrosis:

Treatment of psoriasis with azathioprine. Azathioprine treatment bene-
fited 19 (66%) out of 29 patients suffering from severe psoriasis. Haematological
complications were not troublesome and results of biochemical liver function
tests remained normal. Minimal cholestasis was seen in two cases and portal
fibrosis of a reversible degree in eight. Liver biopsies should be undertaken at
regular intervals if azathioprine therapy is continued so that structural liver
damage may be detected at an early and reversible stage.

Though the entities’ mentions never occur in the same sentence, the above exam-

ple expresses that the chemical entity azathioprine can cause the side effect fibrosis.

Relation extraction models which consider only within-sentence relation pairs can-

not extract this fact without knowledge of the complicated coreference relationship

between eight and azathioprine treatment, which, without features from a compli-

cated pre-processing pipeline, cannot be learned by a model which considers entity

pairs in isolation. Making separate predictions for each mention pair also obstructs

multi-instance learning (Riedel et al., 2010; Surdeanu et al., 2012), a technique which

aggregates entity representations from mentions in order to improve robustness to

noise in the data. Like the majority of relation extraction data, most annotation

for biological relations is distantly supervised, and so we could benefit from a model

which is amenable to multi-instance learning.

In addition to this loss of cross-sentence and cross-mention reasoning capability,

traditional mention pair relation extraction models typically introduce computational

inefficiencies by independently extracting features for and scoring every pair of men-

tions, even when those mentions occur in the same sentence and thus could share
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representations. In the CDR training set, this requires separately encoding and clas-

sifying each of the 5,318 candidate mention pairs independently, versus encoding each

of the 500 abstracts once. Though abstracts are longer than e.g. the text between

mentions, many sentences contain multiple mentions, leading to redundant computa-

tion.

However, encoding long sequences in a way which effectively incorporates long-

distance context can be prohibitively expensive. Long Short Term Memory (LSTM)

networks (Hochreiter and Schmidhuber, 1997b) are among the most popular token

encoders due to their capacity to learn high-quality representations of text, but their

ability to leverage the fastest computing hardware is thwarted due to their compu-

tational dependence on the length of the sequence — each token’s representation

requires as input the representation of the previous token, limiting the extent to

which computation can be parallelized. Convolutional neural networks (CNNs), in

contrast, can be executed entirely in parallel across the sequence, but the amount of

context incorporated into a single token’s representation is limited by the depth of the

network, and very deep networks can be difficult to learn (Hochreiter, 1998). These

problems are exacerbated by longer sequences, limiting the extent to which previous

work explored full-abstract relation extraction.

To facilitate efficient full-abstract relation extraction from biological text, we pro-

pose Bi-affine Relation Attention Networks (BRANs), a combination of network archi-

tecture, multi-instance and multi-task learning designed to extract relations between

entities in biological text without requiring explicit mention-level annotation. We

synthesize convolutions and self-attention, a modification of the Transformer encoder

introduced by Vaswani et al. (2017a), over sub-word tokens to efficiently incorporate

into token representations rich context between distant mention pairs across the en-

tire abstract. We score all pairs of mentions in parallel using a bi-affine operator, and

aggregate over mention pairs using a soft approximation of the max function in order
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to perform multi-instance learning. We jointly train the model to predict relations

and entities, further improving robustness to noise and lack of gold annotation at the

mention level.

In extensive experiments on two benchmark biological relation extraction datasets,

we achieve state of the art performance for a model using no external knowledge

base resources in experiments on the Biocreative V CDR dataset, and outperform

comparable baselines on the Biocreative VI ChemProt dataset. We also introduce

a new dataset which is an order of magnitude larger than existing gold-annotated

biological relation extraction datasets while covering a wider range of entity and

relation types and with higher accuracy than distantly supervised datasets of the

same size. We provide a strong baseline on this new dataset, and encourage its use

as a benchmark for future biological relation extraction systems.1

6.2 Model

We designed our model to efficiently encode long contexts spanning multiple sen-

tences while forming pairwise predictions without the need for mention pair-specific

features. To do this, our model first encodes input token embeddings using self-

attention. These embeddings are used to predict both entities and relations. The re-

lation extraction module converts each token to a head and tail representation. These

representations are used to form mention pair predictions using a bi-affine operation

with respect to learned relation embeddings. Finally, these mention pair predictions

are pooled to form entity pair predictions, expressing whether each relation type is

expressed by each relation pair.

1Our code and data are publicly available at: https://github.com/patverga/bran.
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Figure 6.1: The relation extraction architecture. Inputs are contextually encoded
using the Transformer(Vaswani et al., 2017a), made up of B layers of multi-head
attention and convolution subcomponents. Each transformed token is then passed
through a head and tail MLP to produce two position-specific representations. A bi-
a�ne operation is performed between each head and tail representation with respect
to each relation’s embedding matrix, producing a pair-wise relation a�nity tensor.
Finally, the scores for cells corresponding to the same entity pair are pooled with a
separate LogSumExp operation for each relation to get a final score.
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Figure 6.1: The relation extraction architecture. Inputs are contextually encoded
using the Transformer(Vaswani et al., 2017a), made up of B layers of multi-head
attention and convolution subcomponents. Each transformed token is then passed
through a head and tail MLP to produce two position-specific representations. A bi-
affine operation is performed between each head and tail representation with respect
to each relation’s embedding matrix, producing a pair-wise relation affinity tensor.
Finally, the scores for cells corresponding to the same entity pair are pooled with a
separate LogSumExp operation for each relation to get a final score.
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6.2.1 Inputs

Our model takes in a sequence of N token embeddings in Rd. Because the Trans-

former has no innate notion of token position, the model relies on positional em-

beddings which are added to the input token embeddings.2 We learn the position

embedding matrix Pm×d which contains a separate d dimensional embedding for each

position, limited to m possible positions. Our final input representation for token xi

is:

xi = si + pi

where si is the token embedding for xi and pi is the positional embedding for the ith

position. If i exceeds m, we use a randomly initialized vector in place of pi.

We tokenize the text using byte pair encoding (BPE) (Gage, 1994; Sennrich et al.,

2015). The BPE algorithm constructs a vocabulary of sub-word pieces, beginning

with single characters. Then, the algorithm iteratively merges the most frequent co-

occurring tokens into a new token, which is added to the vocabulary. This procedure

continues until a pre-defined vocabulary size is met.

BPE is well suited for biological data for the following reasons. First, biological

entities often have unique mentions made up of meaningful subcomponents, such as

1,2-dimethylhydrazine. Additionally, tokenization of chemical entities is challenging,

lacking a universally agreed upon algorithm (Krallinger et al., 2015). As we demon-

strate in §6.3.3.2, the sub-word representations produced by BPE allow the model

to formulate better predictions, likely due to better modeling of rare and unknown

words.

2Though our final model incorporates some convolutions, we retain the position embeddings.

77



6.2.2 Transformer

We base our token encoder on the Transformer self-attention model (Vaswani

et al., 2017a). The Transformer is made up of B blocks. Each Transformer block,

which we denote Transformerk, has its own set of parameters and is made up of two

subcomponents: multi-head attention and a series of convolutions3. The output for

token i of block k, b
(k)
i , is connected to its input b

(k−1)
i with a residual connection (He

et al., 2016). Starting with b
(0)
i = xi:

b
(k)
i = b

(k−1)
i + Transformerk(b

(k−1)
i )

6.2.2.1 Multi-head Attention

Multi-head attention applies self-attention multiple times over the same inputs

using separately normalized parameters (attention heads) and combines the results, as

an alternative to applying one pass of attention with more parameters. The intuition

behind this modeling decision is that dividing the attention into multiple heads make

it easier for the model to learn to attend to different types of relevant information

with each head. The self-attention updates input b
(k−1)
i by performing a weighted

sum over all tokens in the sequence, weighted by their importance for modeling token

i.

Each input is projected to a key k, value v, and query q, using separate affine

transformations with ReLU activations (Glorot et al., 2011). Here, k, v, and q are

each in R d
H where H is the number of heads. The attention weights aijh for head h

between tokens i and j are computed using scaled dot-product attention:

3The original Transformer uses feed-forward connections, i.e. width-1 convolutions, whereas we
use convolutions with width > 1.
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aijh = σ

(
qTihkjh√

d

)
oih =

∑
j

vjh � aijh

with � denoting element-wise multiplication and σ indicating a softmax along the

jth dimension. The scaled attention is meant to aid optimization by flattening the

softmax and better distributing the gradients (Vaswani et al., 2017a).

The outputs of the individual attention heads are concatenated, denoted [·; ·],

into oi. All layers in the network use residual connections between the output of the

multi-headed attention and its input. Layer normalization (Ba et al., 2016), denoted

LN(·), is then applied to the output.

oi = [o1; ...; oh]

mi = LN(b
(k−1)
i + oi)

6.2.2.2 Convolutions

The second part of our Transformer block is a stack of convolutional layers. The

sub-network used in Vaswani et al. (2017a) uses two width-1 convolutions. We add

a third middle layer with kernel width 5, which we found to perform better. Many

relations are expressed concisely by the immediate local context, e.g. Michele’s hus-

band Barack, or labetalol-induced hypotension. Adding this explicit n-gram modeling

is meant to ease the burden on the model to learn to attend to local features. We use

Cw(·) to denote a convolutional operator with kernel width w. Then the convolutional

portion of the transformer block is given by:
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t
(0)
i = ReLU(C1(mi))

t
(1)
i = ReLU(C5(t

(0)
i ))

t
(2)
i = C1(t

(1)
i )

Where the dimensions of t
(0)
i and t

(1)
i are in R4d and that of t

(2)
i is in Rd.

6.2.3 Bi-affine Pairwise Scores

We project each contextually encoded token b
(B)
i through two separate MLPs to

generate two new versions of each token corresponding to whether it will serve as the

first (head) or second (tail) argument of a relation:

eheadi = W
(1)
head(ReLU(W

(0)
headb

(B)
i ))

etaili = W
(1)
tail(ReLU(W

(0)
tailb

(B)
i ))

We use a bi-affine operator to calculate an N × L × N tensor A of pairwise affinity

scores, scoring each (head, relation, tail) triple:

Ailj = (eheadi L)etailj

where L is a d×L×d tensor, a learned embedding matrix for each of the L relations.

In subsequent sections we will assume we have transposed the dimensions of A as

d× d× L for ease of indexing.

6.2.4 Entity Level Prediction

Our data is weakly labeled in that there are labels at the entity level but not the

mention level, making the problem a form of strong-distant supervision (Mintz et al.,

2009a). In distant supervision, edges in a knowledge graph are heuristically applied

to sentences in an auxiliary unstructured text corpus — often applying the edge label
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to all sentences containing the subject and object of the relation. Because this process

is imprecise and introduces noise into the training data, methods like multi-instance

learning were introduced (Riedel et al., 2010; Surdeanu et al., 2012). In multi-instance

learning, rather than looking at each distantly labeled mention pair in isolation, the

model is trained over the aggregate of these mentions and a single update is made.

More recently, the weighting function of the instances has been expressed as neural

network attention (Verga and McCallum, 2016; Lin et al., 2016; Yaghoobzadeh et al.,

2017b).

We aggregate over all representations for each mention pair in order to produce

per-relation scores for each entity pair. For each entity pair (phead, ptail), let P head

denote the set of indices of mentions of the entity phead, and let P tail denote the

indices of mentions of the entity ptail. Then we use the LogSumExp function to

aggregate the relation scores from A across all pairs of mentions of phead and ptail:

scores(phead, ptail) = log
∑

i∈Phead

j∈P tail

exp(Aij)

The LogSumExp scoring function is a smooth approximation to the max function and

has the benefits of aggregating information from multiple predictions and propagating

dense gradients as opposed to the sparse gradient updates of the max (Das et al.,

2017a).

6.2.5 Named Entity Recognition

In addition to pairwise relation predictions, we use the Transformer output b
(B)
i

to make entity type predictions. We feed b
(B)
i as input to a linear classifier which

predicts the entity label for each token with per-class scores ci:

ci = W (3)b
(B)
i
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We augment the entity type labels with the BIO encoding to denote entity spans. We

apply tags to the byte-pair tokenization by treating each sub-word within a mention

span as an additional token with a corresponding B- or I- label.

6.2.6 Training

We train both the NER and relation extraction components of our network to

perform multi-class classification using maximum likelihood, where NER classes yi or

relation classes ri are conditionally independent given deep features produced by our

model with probabilities given by the softmax function. In the case of NER, features

are given by the per-token output of the transformer:

1

N

N∑
i=1

logP (yi | b(B)
i )

In the case of relation extraction, the features for each entity pair are given by the

LogSumExp over pairwise scores described in § 6.2.4. For E entity pairs, the relation

ri is given by:

1

E

E∑
i=1

logP (ri | scores(phead, ptail))

We train the NER and relation objectives jointly, sharing all embeddings and Trans-

former parameters. To trade off the two objectives, we penalize the named entity

updates with a hyperparameter λ.

6.3 Results

We evaluate our model on three datasets: The Biocreative V Chemical Disease

Relation benchmark (CDR), which models relations between chemicals and diseases

(§6.3.1); the Biocreative VI ChemProt benchmark (CPR), which models relations

between chemicals and proteins (§6.3.2); and a new, large and accurate dataset we
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describe in §7.3 based on the human curation in the Chemical Toxicology Database

(CTD), which models relationships between chemicals, proteins and genes.

The CDR dataset is annotated at the level of paper abstracts, requiring consid-

eration of long-range, cross sentence relationships, thus evaluation on this dataset

demonstrates that our model is capable of such reasoning. We also evaluate our

model’s performance in the more traditional setting which does not require cross-

sentence modeling by performing experiments on the CPR dataset, for which all

annotations are between two entity mentions in a single sentence. Finally, we present

a new dataset constructed using strong-distant supervision (§6.2.4), with annotations

at the document level. This dataset is significantly larger than the others, contains

more relation types, and requires reasoning across sentences.

6.3.1 Chemical Disease Relations Dataset

The Biocreative V chemical disease relation extraction (CDR) dataset4 (Li et al.,

2016a; Wei et al., 2016) was derived from the Comparative Toxicogenomics Database

(CTD), which curates interactions between genes, chemicals, and diseases (Davis

et al., 2008). CTD annotations are only at the document level and do not contain

mention annotations. The CDR dataset is a subset of these original annotations,

supplemented with human annotated, entity linked mention annotations. The relation

annotations in this dataset are also at the document level only.

6.3.1.1 Data Preprocessing

The CDR dataset is concerned with extracting only chemically-induced disease

relationships (drug-related side effects and adverse reactions) concerning the most

specific entity in the document. For example tobacco causes cancer could be marked

as false if the document contained the more specific lung cancer. This can cause true

4http://www.biocreative.org/

83



relations to be labeled as false, harming evaluation performance. To address this we

follow Gu et al. (2016, 2017) and filter hypernyms according to the hierarchy in the

MESH controlled vocabulary5. All entity pairs within the same abstract that do not

have an annotated relation are assigned the NULL label.

In addition to the gold CDR data, Peng et al. (2016) add 15,448 PubMed ab-

stracts annotated in the CTD dataset. We consider this same set of abstracts as

additional training data (which we subsequently denote +Data). Since this data does

not contain entity annotations, we take the annotations from Pubtator (Wei et al.,

2013a), a state of the art biological named entity tagger and entity linker. See §C.2

for additional data processing details. In our experiments we only evaluate our re-

lation extraction performance and all models (including baselines) use gold entity

annotations for predictions.

The byte pair vocabulary is generated over the training dataset — we use a budget

of 2500 tokens when training on the gold CDR data, and a larger budget of 10,000

tokens when including extra data described above Additional implementation details

are included in Appendix C.

Data split Docs Pos Neg

Train 500 1,038 4,280
Development 500 1,012 4,136
Test 500 1,066 4,270
CTD 15,448 26,657 146,057

Table 6.1: Data statistics for the CDR Dataset and additional data from CTD. Shows
the total number of abstracts, positive examples, and negative examples for each of
the data set splits.

5https://www.nlm.nih.gov/mesh/download/2017MeshTree.txt
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Model P R F1

Gu et al. (2016) 62.0 55.1 58.3
Zhou et al. (2016a) 55.6 68.4 61.3
Gu et al. (2017) 55.7 68.1 61.3
BRAN 55.6 70.8 62.1 ± 0.8
+ Data 64.0 69.2 66.2 ± 0.8
BRAN(ensemble) 63.3 67.1 65.1
+ Data 65.4 71.8 68.4

Table 6.2: Precision, recall, and F1 results on the Biocreative V CDR Dataset.

6.3.1.2 Baselines

We compare against the previous best reported results on this dataset not using

knowledge base features.6 Each of the baselines are ensemble methods for within- and

cross-sentence relations that make use of additional linguistic features (syntactic parse

and part-of-speech). Gu et al. (2017) encode mention pairs using a CNN while Zhou

et al. (2016a) use an LSTM. Both make cross-sentence predictions with featurized

classifiers.

6.3.1.3 Results

In Table 6.2 we show results outperforming the baselines despite using no linguistic

features. We show performance averaged over 20 runs with 20 random seeds as well

as an ensemble of their averaged predictions. We see a further boost in performance

by adding weakly labeled data. Table 6.3 shows the effects of ablating pieces of our

model. ‘CNN only’ removes the multi-head attention component from the transformer

block, ‘no width-5’ replaces the width-5 convolution of the feed-forward component of

the transformer with a width-1 convolution and ‘no NER’ removes the named entity

recognition multi-task objective (§6.2.5).

6The highest reported score is from Peng et al. (2016), but they use explicit lookups into the
CTD knowledge base for the existence of the test entity pair.
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Model P R F1

BRAN (Full) 55.6 70.8 62.1 ± 0.8
– CNN only 43.9 65.5 52.4 ± 1.3
– no width-5 48.2 67.2 55.7 ± 0.9
– no NER 49.9 63.8 55.5 ± 1.8

Table 6.3: Results on the Biocreative V CDR Dataset showing precision, recall, and
F1 for various model ablations.

6.3.2 Chemical Protein Relations Dataset

To assess our model’s performance in settings where cross-sentence relationships

are not explicitly evaluated, we perform experiments on the Biocreative VI ChemProt

dataset (CDR) Krallinger et al. (2017b). This dataset is concerned with classifying

into six relation types between chemicals and proteins, with nearly all annotated

relationships occurring within the same sentence.

6.3.2.1 Baselines

We compare our models against those competing in the official Biocreative VI

competition (Liu et al., 2017). We compare to the top performing team whose model

is directly comparable with ours — i.e. used a single (non-ensemble) model trained

only on the training data (many teams use the development set as additional training

data). The baseline models are standard state of the art relation extraction models:

CNNs and Gated RNNs with attention. Each of these baselines uses mention-specific

features encoding relative position of each token to the two target entities being

classified, whereas our model aggregates over all mention pairs in each sentence. It

is also worth noting that these models use a large vocabulary of pre-trained word

embeddings, giving their models the advantage of far more model parameters, as well

as additional information from unsupervised pre-training.
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Model P R F1

CNN† 50.7 43.0 46.5
GRU+Attention† 53.0 46.3 49.5
BRAN 48.0 54.1 50.8 ± .01

Table 6.4: Precision, recall, and F1 results on the Biocreative VI Chem-Prot Dataset.
† denotes results from Liu et al. (2017)

6.3.2.2 Results

In Table 6.4 we see that even though our model forms all predictions simultane-

ously between all pairs of entities within the sentence, we are able to outperform state

of the art models classifying each mention pair independently. The scores shown are

averaged across 10 runs with 10 random seeds. Interestingly, our model appears to

have higher recall and lower precision, while the baseline models are both precision-

biased, with lower recall. This suggests that combining these styles of model could

lead to further gains on this task.

6.3.3 New CTD Dataset

6.3.3.1 Data

Existing biological relation extraction datasets including both CDR (§6.3.1) and

CPR (§6.3.2) are relatively small, typically consisting of hundreds or a few thou-

sand annotated examples. Distant supervision datasets apply document-independent,

entity-level annotations to all sentences leading to a large proportion of incorrect

labels. Evaluations on this data involve either very small (a few hundred) gold an-

notated examples or cross validation to predict the noisy, distantly applied labels

Mallory et al. (2015); Quirk and Poon (2017); Peng et al. (2017).

We address these issues by constructing a new dataset using strong-distant su-

pervision containing document-level annotations. The Comparative Toxicogenomics

Database (CTD) curates interactions between genes, chemicals, and diseases. Each
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relation in the CTD is associated with a disambiguated entity pair and a PubMed

article where the relation was observed.

To construct this dataset, we collect the abstracts for each of the PubMed articles

with at least one curated relation in the CTD database. As in §6.3.1, we use PubTator

to automatically tag and disambiguate the entities in each of these abstracts. If both

entities in the relation are found in the abstract, we take the (abstract, relation) pair

as a positive example. The evidence for the curated relation could occur anywhere

in the full text article, not just the abstract. Abstracts with no recovered relations

are discarded. All other entity pairs with valid types and without an annotated

relation that occur in the remaining abstracts are considered negative examples and

assigned the NULL label. We additionally remove abstracts containing greater than

500 tokens7. This limit removed about 10% of the total data including numerous

extremely long abstracts. The average token length of the remaining data was 2̃30

tokens. With this procedure, we are able to collect 166,474 positive examples over 13

relation types, with more detailed statistics of the dataset listed in Table 6.5.

We consider relations between chemical-disease, chemical-gene, and gene-disease

entity pairs downloaded from CTD8. We remove inferred relations (those without

an associated PubMed ID) and consider only human curated relationships. Some

chemical-gene entity pairs were associated with multiple relation types in the same

document. We consider each of these relation types as a separate positive example.

The chemical-gene relation data contains over 100 types organized in a shallow

hierarchy. Many of these types are extremely infrequent, so we map all relations to the

highest parent in the hierarchy, resulting in 13 relation types. Most of these chemical-

gene relations have an increase and decrease version such as increase expression and

decrease expression. In some cases, there is also an affects relation (affects expression)

7We include scripts to generate the unfiltered set of data as well to encourage future research

8http://ctdbase.org/downloads/
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Types Docs Pos Neg

Total 68,400 166,474 1,198,493
Chemical/Disease 64,139 93,940 571,932
Chemical/Gene 34,883 63,463 360,100
Gene/Disease 32,286 9,071 266,461

Table 6.5: Data statistics for the new CTD dataset.

Train Dev Test

Total 120k 15k 15k
Chemical / Disease
marker/mechanism 41,562 5,126 5,167
therapeutic 24,151 2,929 3,059
Gene / Disease
marker/mechanism 5,930 825 819
therapeutic 560 77 75
Chemical / Gene
increase expression 15,851 1,958 2,137
increase metabolic proc 5,986 740 638
decrease expression 5,870 698 783
increase activity 4,154 467 497
affects response 3,834 475 508
decrease activity 3,124 396 434
affects transport 3,009 333 361
increase reaction 2,881 367 353
decrease reaction 2,221 247 269
decrease metabolic proc 798 100 120

Table 6.6: Data statistics for the new CTD dataset broken down by relation type.
The first column lists relation types separated by the types of the entities. Columns
2–4 show the number of positive examples of that relation type.

which is used when the directionality is unknown. If the affects version is more

common, we map decrease and increase to affects. If affects is less common, we drop

the affects examples and keep the increase and decrease examples as distinct relations,

resulting in the final set of 10 chemical-gene relation types.
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P R F1

Total
Micro F1 44.8 50.2 47.3
Macro F1 34.0 29.8 31.7
Chemical / Disease
marker/mechanism 46.2 57.9 51.3
therapeutic 55.7 67.1 60.8
Gene / Disease
marker/mechanism 42.2 44.4 43.0
therapeutic 52.6 10.1 15.8
Chemical / Gene
increases expression 39.7 48.0 43.3
increases metabolic proc 26.3 35.5 29.9
decreases expression 34.4 32.9 33.4
increases activity 24.5 24.7 24.4
affects response 40.9 35.5 37.4
decreases activity 30.8 19.4 23.5
affects transport 28.7 23.8 25.8
increases reaction 12.8 5.6 7.4
decreases reaction 12.3 5.7 7.4
decreases metabolic proc 28.9 7.0 11.0

Table 6.7: BRAN precision, recall and F1 results for the full CTD dataset by relation
type. The model is optimized for micro F1 score across all types.

6.3.3.2 Results

In Table 6.7 we list precision, recall and F1 achieved by our model on the CTD

dataset, both overall and by relation type. Our model predicts each of the relation

types effectively, with higher performance on relations with more support.

In Table 6.8 we see that our sub-word BPE model out-performs the model using

the Genia tokenizer Kulick et al. (2012) even though our vocabulary size is one-fifth

as large. We see a 1.7 F1 point boost in predicting Pubtator NER labels for BPE.

This could be explained by the increased out-of-vocabulary (OOV) rate for named

entities. Word training data has 3.01 percent OOV rate for tokens with an entity.

The byte pair-encoded data has an OOV rate of 2.48 percent. Note that in both the

word-tokenized and byte pair-tokenized data, we replace tokens that occur less than

five times with a learned UNK token.
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Figure 6.2: Performance on the CTD dataset when restricting candidate entity pairs
by distance. The x-axis shows the coarse-grained relation type. The y-axis shows F1
score. Different colors denote maximum distance cutoffs.

Model P R F1

Relation extraction
Words 44.9 48.8 46.7 ± 0.39
BPE 44.8 50.2 47.3 ± 0.19
NER
Words 91.0 90.7 90.9 ± 0.13
BPE 91.5 93.6 92.6 ± 0.12

Table 6.8: Precision, recall, and F1 results for CTD named entity recognition and
relation extraction, comparing BPE to word-level tokenization.

Figure 6.2 depicts the model’s performance on relation extraction as a function

of distance between entities. For example, the blue bar depicts performance when

removing all entity pair candidates (positive and negative) whose closest mentions

are more than 11 tokens apart. We consider removing entity pair candidates with

distances of 11, 25, 50, 100 and 500 (the maximum document length). The average

sentence length is 22 tokens. We see that the model is not simply relying on short

range relationships, but is leveraging information about distant entity pairs, with

accuracy increasing as the maximum distance considered increases. Note that all

results are taken from the same model trained on the full unfiltered training set.
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6.4 Related work

Relation extraction is a heavily studied area in the NLP community. Most work

focuses on news and web data (Doddington et al., 2004; Riedel et al., 2010; Hendrickx

et al., 2009).9 Recent neural network approaches to relation extraction have focused

on CNNs (dos Santos et al., 2015a; Zeng et al., 2015b) or LSTMs (Miwa and Bansal,

2016a; Verga et al., 2016b; Zhou et al., 2016b) and replacing stage-wise information

extraction pipelines with a single end-to-end model (Miwa and Bansal, 2016a; Ammar

et al., 2017b; Li et al., 2017). These models all consider mention pairs separately.

There is also a considerable body of work specifically geared towards supervised bi-

ological relation extraction including protein-protein (Pyysalo et al., 2007; Poon et al.,

2014; Mallory et al., 2015), drug-drug (Segura-Bedmar et al., 2013), and chemical-

disease (Gurulingappa et al., 2012; Li et al., 2016a) interactions, and more complex

events (Kim et al., 2008; Riedel et al., 2011). Our work focuses on modeling relations

between chemicals, diseases, genes and proteins, where available annotation is often

at the document- or abstract-level, rather than the sentence level.

Some previous work exists on cross-sentence relation extraction. Swampillai and

Stevenson (2011) and Quirk and Poon (2017) consider featurized classifiers over cross-

sentence syntactic parses. Most similar to our work is that of Peng et al. (2017), which

uses a variant of an LSTM to encode document-level syntactic parse trees. Our work

differs in three key ways. First, we operate over raw tokens negating the need for

part-of-speech or syntactic parse features which can lead to cascading errors. We

also use a feed-forward neural architecture which encodes long sequences far more

efficiently compared to the graph LSTM network of Peng et al. (2017). Finally, our

model considers all mention pairs simultaneously rather than a single mention pair

at a time.

9And TAC KBP: https://tac.nist.gov

92



We employ a bi-affine function to form pairwise predictions between mentions.

Such models have also been used for knowledge graph link prediction (Nickel et al.,

2011b; Li et al., 2016b), with variations such as restricting the bilinear relation matrix

to be diagonal (Yang et al., 2015b) or diagonal and complex (Trouillon et al., 2016).

Our model is similar to recent approaches to graph-based dependency parsing, where

bilinear parameters are used to score head-dependent compatibility (Kiperwasser and

Goldberg, 2016; Dozat and Manning, 2017).

6.5 Conclusion

We present a bi-affine relation attention network that simultaneously scores all

mention pairs within a document. Our model performs well on three datasets, in-

cluding two standard benchmark biological relation extraction datasets and a new,

large and high-quality dataset introduced in this work. Our model out-performs the

previous state of the art on the Biocreative V CDR dataset despite using no additional

linguistic resources or mention pair-specific features.

Our current model predicts only into a fixed schema of relations given by the

data. However, this could be ameliorated by integrating our model into open relation

extraction architectures such as Universal Schema Riedel et al. (2013a); Verga et al.

(2016c). Our model also lends itself to other pairwise scoring tasks such as hypernym

prediction, co-reference resolution, and entity resolution. We will investigate these

directions in future work.
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CHAPTER 7

JOINTLY MODELING ENTITIES AND RELATIONS

As we’ve discussed so far, understanding the meaning of language often involves

reasoning about entities and their relationships. In the context of text, this requires

identifying textual mentions of entities, linking them to a canonical concept, and

discerning their relationships. These tasks are nearly always viewed as separate com-

ponents within a pipeline, each requiring a distinct model and training data. The

same holds true for the work from the previous chapters.

While relation extraction can often be trained with readily available weak or dis-

tant supervision, entity linkers typically require expensive mention-level supervision

– which is not available in many domains. Instead, we propose a model which is

trained to simultaneously produce entity linking and relation decisions while requir-

ing no mention-level annotations. This approach avoids cascading errors that arise

from pipelined methods and more accurately predicts entity relationships from text.

We show that our model outperforms a state-of-the art entity linking and relation

extraction pipeline on two biomedical datasets and can drastically improve the overall

recall of the system.

7.1 Introduction

Making complex decisions in domains like biomedicine and clinical treatments

requires access to information and facts in a form that can be easily viewed by experts

and is computable by reasoning algorithms. The predominant paradigm for storing

this type of data is in a knowledge graph. Much of these facts are populated from
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Figure 7.1: Overview of the graph extraction task. Given a document represented as
a title and abstract. Text mentions are denoted with color and each can link to one of
several possible entities. The model considers the full set of entity linking and relation
edges (all lines) and predicts the graph of true entities and relations represented in
the text. Dashed lines show possible (incorrect) edges and solid lines show the true
edges.

hand curation by human experts, inevitably leading to high levels of incompleteness

(Bodenreider, 2004; Suchanek et al., 2007c; Bollacker et al., 2008b). To address this,

researchers have focused on automatically constructing knowledge bases by directly

extracting information from text (Ji et al., 2010; Roth et al., 2014b).

This procedure can be broken down into three major components; identifying

mentions of entities in text (Ratinov and Roth, 2009; Lample et al., 2016; Strubell

et al., 2017), linking mentions of the same entity together into a single canonical

concept (Cucerzan, 2007; Gupta et al., 2017b; Raiman and Raiman, 2018), and iden-

tifying relationships occurring between those entities (Bunescu and Mooney, 2007;

Wang et al., 2016; Verga et al., 2018).

These three stages are nearly always treated as separate serial components in an

extraction pipeline and current state-of-the-art approaches train separate machine

learning models each with their own distinct training data. More precisely, this
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data consists of mention-level supervision, that is individual instances of entities and

relations which are identified and demarcated in text. This type of data can be

prohibitively expensive to acquire, particularly in domains like biomedicine where

expert knowledge is required to understand and annotate relevant information.

In contrast, forms of distant supervision are readily available as database entries

in existing knowledge bases. This type of information encodes global properties about

entities and their relationships without identifying specific textual instances of those

facts. This form of distant supervision has been successfully applied to relation ex-

traction models (Mintz et al., 2009b; Surdeanu et al., 2012; Riedel et al., 2013a; Verga

et al., 2016c). However, all of these methods consume entity linking decisions as a

preprocessing step, and unfortunately, accurate entity linkers and the mention-level

supervision required to train them do not exist in many domains.

In this work, we instead develop a method to jointly consider and extract entities

and their relationships together. We train our models leveraging readily available

resources from existing knowledge bases and do not utilize any mention-level supervi-

sion. In experiments performed on two different biomedical datasets, we show that our

model is able to substantially outperform a state-of-the-art pipeline of entity linking

and relation extraction by jointly training and testing the two tasks together.

7.2 Model

The input to our model is the full title and abstract of an article and the output

is the predicted graph of entities and relations represented in the text (see Fig. 7.1).

This is done by first encoding the text using self-attention Vaswani et al. (2017a) to

obtain a contextualized representation of each entity mention in the input. These

contextualized representations are then used to predict both the distribution over en-

tities at the mention-level and the distribution over relations at the mention-pair-level.

These predicted probabilities are then combined for each mention-pair and pooled at
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Figure 7.2: Architecture of the model. The text of the title and abstract are mapped
to context independent token embeddings before being contextually encoded using a
transformer architecture. The left side of the figure shows the procedure for scoring an
individual relation mention using a separate head and tail MLP fed to a MLPrelation.
The right side shows the entity linking component. The MLPlinking model takes as in-
put, an entity mention, a context representation derived from the mean and max over
all contextualized token embeddings, and a candidate entity representation. These
three probabilities (relation prediction and the two entity linking predictions) make
up a single mention-level prediction. All mention-level predictions corresponding to
the same entities are then pooled together to make a final entity-level prediction.

the document-level to get a final probability for predicting the tuple (e1, r, e2) for the

text (see Fig. 7.2).

Notations: Let [N ] denote the set of natural numbers {1, . . . , N}. Each docu-

ment consists of a set of words {xi} indexed by i ∈ [V ] where V is the vocabulary

size. Entity mentions in the document are found using a named entity recognition

(NER) system Wei et al. (2013b). Let {mj} for j ∈ [M ] be the set of mention start
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indices for the document, where M is the number of mentions in the document. For

each mention string xmi
we generate up to C candidate entities (Section 7.2.2). Let E

be the set of all entities. Each document is annotated with the graph of entities and

relations, given as a set of tuples Gd = {(ek, r, el)}, where ek, el ∈ E and r ∈ [R]. This

is obtained from a knowledge base under the strong distant supervision assumption

Mintz et al. (2009b) (See 7.3.2). Let Ed ⊂ E be the set of entities in the annotations

for the document d. [a; b] denotes concatenation of vectors a and b.

7.2.1 Text Encoder

The initial input to our model is the full title and abstract of a biomedical ar-

ticle from PubMed1. The sequence is tokenized and each token is mapped to a

n-dimensional word embedding. The sequence of word embeddings are the input

to our text encoder. The text encoder is based on the Transformer architecture of

Vaswani et al. (2017a). The transformer applies multiple blocks of multi-head self

attention followed by width 1 convolutions. We follow Verga et al. (2018) and add

additional width 5 convolutions. The reader is referred to Verga et al. (2018) for the

specific details. The output of the text encoder is an n-dimensional contextualized

embedding hi for each token xi:

h1, . . . , hN = transformer(x1, . . . , xN)

From an efficiency perspective, we only encode the document once and use the con-

textualized token representations to predict both the entities and the relations.

7.2.2 Predicting entities

From the contextualized token representations {hi}, we first obtain a document

representation by concatenating the mean-pooled and max-pooled token representa-

1https://www.ncbi.nlm.nih.gov/pubmed/
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tions and projecting it through a multi-layer perceptron (MLP).

h̃ = W 2
doc(ReLU(W 1

doc[mean({hi}); max({hi})]))

where mean(·) denotes an element-wise mean of a set of vectors and max(·) denotes an

element-wise max of a set of vectors. Now, for each mention, we generate candidates

entities for the mention. Such a candidate generation step is often used in entity-

linking models Shen et al. (2015) and in many domains, such as for Wikipedia entities,

high quality candidates can be generated by using prior linking counts of mention

surface forms to entities obtained from Wikipedia anchor texts Ganea and Hofmann

(2017); Raiman and Raiman (2018). However, such high quality candidate generation

is not available in the biomedical domain and so we resort to an approximate string

matching approach for generating candidate entities.

Candidate Generation: We followed procedures from previous work (Leaman

and Lu, 2016; Murty et al., 2018). Each mention was first normalized by removing

all punctuation, lower-casing, and then stemming (Porter, 1980). Next, these strings

were converted to tfidf vectors consisting of both word and character ngrams. We

considered character ngrams of lengths two to five, and for words we considered

unigrams and bigrams. The same procedure was also applied to convert all canonical

string names and synonyms for entities in our knowledge base. Finally, candidates for

each mention were generated according to their cosine similarity amongst all entities

in the knowledge base.

For each candidate entity ei with type ti, we generate a n-dimensional entity em-

bedding as ẽi = êi+ti, by adding an entity-specific embedding êi and a n-dimensional

entity type embedding ti. The entity-specific embedding can be learned or it can be

a pre-trained embedding obtained from another source such as entity descriptions

Ganea and Hofmann (2017); Xie et al. (2016) or by a graph embedding method Yang

et al. (2014); Dettmers et al. (2018). Now, for the i-th mention in the document,
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with starting index mi, we consider hmi
as a contextualized mention representation

and define a score for predicting the candidate entity e for this mention using the

candidate representation ẽ, document representation h̃, and mention representation

hmi
. This is passed through a softmax function, normalizing over the set of candi-

dates Cmi
for the mention to get a probability p(e|mi, text) for linking the mention

mi to entity e.

l(e,mi, text) = W 2
l (ReLU(W 1

l [ẽ; h̃;hmi
])

p(e|mi, text) = softmax
e∈Cmi

(l(e,mi, text)) (7.1)

We thus obtain a (M × C) matrix of linking probabilities for the document, where

M is the maximum number of entity mentions in the document and C is the maxi-

mum number of candidates per mention. Note that there is no direct mention-level

supervision available to train these probabilities.

7.2.3 Predicting relations

Given the contextualized mention representation, we obtain a head and tail rep-

resentation for each mention to serve as the head or tail entity of a relation tuple

(ei, r, ej). This is done by using two MLP to project each mention representation.

ehead
mi

= W 2
head(ReLU(W 1

headhmi
))

etail
mj

= W 2
tail(ReLU(W 1

tailhmj
))

The head and tail representations are then passed through an MLP to predict a score

for every relation r for a pair of mentions mi and mj. We pass this score vector

through a sigmoid function to get a probability of predicting the relation from the

mention-pair.
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s(r,mi,mj) = W 2
r (ReLU(W 1

r [ehead
mi

; etail
mi

]))

p(r|mi,mj) = σ(s(r,mi,mj)) (7.2)

We thus obtain a (M × M × R) matrix of probabilities for predicting all relations,

where R is the maximum number of relations, from all pairs of entity mentions.

7.2.4 Combining entity and relation predictions

To predict the graph of entities and relations from the document, we need to

assign a probability to every possible relation tuple (ek, r, el). We first obtain the

probability of predicting a tuple (ek, r, el) from a mention-pair (mi,mj) by combining

the probability for predicting the candidates for each of the mentions (7.1) and the

relation prediction probability (7.2). If an entity is not a candidate for a mention

then it’s entity prediction probability is zero for that mention.

p ((ek, r, el)|mi,mj, text) =

p(ek|mi, text)p(r|mi,mj)p(el|mj, text) (7.3)

Then, the probability of extracting the tuple (ek, r, el) from the entire document can

be obtained by pooling over all mention pairs (mi,mj). For example, we can use

max-pooling, which corresponds to the inductive bias that in order to extract a tuple

we must find at least one mention pair for the corresponding entities in the document

that is evidence for the tuple.

p ((ek, r, el)|text) = max
i,j

p ((ek, r, el)|mi,mj, text) (7.4)

Soft maximum pooling: It has been observed previously that the hard max

operation is not ideal for pooling evidence as it leads to very sparse gradients Verga

et al. (2017b); Das et al. (2017b). Recent methods Verga et al. (2018) thus use
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the logsumexp function for pooling over logits, which allows for more dense gradient

updates. However, we cannot use the logsumexp function in our case to pool over

the probabilities (7.3) as the result of logsumexp over independent probabilities is not

guaranteed to be a probability (in [0, 1]). Thus, we use a different operator that is

considered a smooth relaxation of the maximum Bansal et al. (2015). Given a set of

elements {ai}, the smooth-maximum (smax) with temperature τ is defined as:

wi = softmax
i

(ai
τ

)
; smax({ai}) =

∑
i

wiai

Note that for τ → 0 the result of smax tends to the maximum of the set and for

τ → ∞ the result is the average of the set. Thus, smax can smoothly interpolate

between these extremes. We use this smax pooling over probabilities in (7.4) with a

learned temperature τ .

7.2.5 Training

We are given ground-truth annotation for the set of tuples in the document,

Gd = {(ek, r, el)}. We train based on the cross-entropy loss from predicted tuple

probabilities (7.4). Since we only have a subset of positive annotations, there is

uncertainty in the set of negatives, and we deal with this by weighting the positive

annotations by a weight wt in the cross-entropy loss. Let ykrl = 1 if document is

annotated with the relation tuple (ek, r, el) and 0 otherwise, and pkrl be its predicted

probability in (7.4), then we maximize log p(Gd|text):

1

|Gd|
∑
k,r,l

wtykrl log pkrl + (1− ykrl) log(1− pkrl)

In addition, since we can obtain document-level entity annotations from the set of

annotated relation tuples, we can provide an additional document-level entity super-

vision to better train our entity linking probabilities. To do this, we perform max-

pooling over all mentions for each candidate entity for the document in (7.1), to obtain
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a document-level entity prediction score p(e|text) = maxm p(e|m, text). We compute

a weighted cross-entropy for these document-level predictions, again up-weighting

the positive entities with a weight we. In summary, we combine graph prediction and

document-level entity prediction objectives similar to multi-task learning (Caruana,

1993), so if Ed is the set of entities in annotation, we maximize:

log p(Gd|text) + α log p(Ed|text) (7.5)

Note that since we only have some positive annotations, there could be many

mentions in the document for which the correct entity is not annotated. Thus, we

down-weight the document-entity prediction term by α in the objective.

Technical Details: Since the size of Gd can be very large, in order to improve

training efficiency we subsample the set of unannotated entities as the negative entities

to a maximum of n− per document. Pooling over the joint mention-level probability

(7.4) requires an intermediate (L×L×M×M×R) tensor, where L is the total number of

candidate entities for the document. Since this can be computationally prohibitive, we

compute the top-k mentions per candidate entity based on the predicted probabilities

(7.1) and only backpropagate the gradients through the top-k. We consider k as a

hyperparameter and tune it on the validation set.

7.3 Experiments

Our experimental setting is that, for each test document (title and abstract), the

model should produce the full graph of known entity-relationships expressed in that

document (a single example is depicted in Fig. 7.1). Thus, we evaluate on micro-

averaged precision, recall and F1 for predicting the entire set of annotated relation

tuples across documents. Our experimental results show significant improvement in
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F1 over a pipelined approach Verga et al. (2018). Implementation details can be

found in the Supplementary 2.

7.3.1 Baselines

All of our models use the same basic architecture described in Section 7.2, consume

the same predicted entity mentions from an external NER model (Wei et al., 2013b),

and differ only in how they produce entity linking decisions (see Section 7.2.2). The

first two baselines take hard entity linking decisions as inputs and do not do any

internal entity linking inference. This is analogous to the typical pipelined approach.

Top Candidate produces entity linking decisions based on the highest scoring can-

didate entity (See ‘Candidate Generation’ in Section 7.2.2).

Linker produces entity linking decisions from a trained state-of-the-art entity linker.

In this work we took annotations from a recent data dump from Wei et al. (2013b).

This method is roughly equivalent to the BRAN model from Verga et al. (2018).

The only difference is that our relation scoring function uses an MLP (Section 7.2.3),

rather than the bi-affine scorer of the original work.3

End-to-End is our proposed model that does not take in any hard entity linking

decisions as input and instead jointly predicts the full set of entities and relations

within the text. For this model we considered 25 candidates per mention.

7.3.2 CTD Dataset

Our first set of experiments are on the CTD dataset first introduced in Verga et al.

(2018)4. The data is derived from annotations in the Chemical Toxicology Database

2Code and data will be made publicly available

3In our experiments we found the MLP scoring function to perform slightly better than the
bi-affine scorer.

4We slightly modified the data splits from the original dataset in order for the train, dev, and test
sections to be consistent with those in the CDR dataset, allowing us to accurately evaluate entity
linking (Section 7.3.3). Though the vast majority of document split assignments remain unchanged
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Model Linker Candidates
Top Candidate 91.8% 67.0%
Linker 100% 60.4%
End-to-End 99.0% 80.0%

Table 7.1: Maximum recall on development set for each of the models on the two CTD
dataset splits. Linker column refers to the data where relations were kept only if the
external entity linker identified both entities in the title or abstract. Candidates
column refers to the data filtered to relations where both entities were in top 250
candidates for mentions in the title or abstract.

(Davis et al., 2018), a curated knowledge base containing relationships between chem-

icals, diseases, and genes. Each fact additionally contains a reference to the document

(a scientific publication) where the annotator identified the relationship5. This allows

us to treat these annotations as a form of strong distant supervision (Mintz et al.,

2009b). Here annotations are at the document-level rather than the mention-level (as

in typical supervised learning) or corpus-level (as in standard distant supervision).

An aspect of the document-level supervision is that the original facts were an-

notated over complete documents. However, due to paywalls we often only have

access to titles and abstracts of papers. Therefore, there is no guarantee that the

relationship is actually expressed in the title or abstract, and further, even if it is

there is no guarantee our model will be able to correctly identify the pair of entities

in the text. Because of this we considered two different scenarios for filtering which

set of relationships and documents to consider (maximum recall for different filtering

techniques can be seen in Table 7.1).

and overall result scores and trends will be consistent, our numbers are not directly comparable to
the original paper.

5This type of document annotation is fairly common in biomedical knowledge bases, further
motivating this work.
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Model Precision Recall F1
Top Candidate 30.5 29.5 30.0
Linker 33.2 28.1 30.5
End-to-End 41.1 43.4 42.2

Table 7.2: Precision, Recall, and F1 for the CTD evaluation data filtered by recall of
the 25 entity linking candidates. Top values in each column are in boldface.

7.3.2.1 Candidate-Based Filtering

The first method we evaluate is considering all relationships where both entities

appear as candidates in the title and abstract of the document. That is, for each

annotated tuple between entities e1 and e2 in document D, we consider that tuple if

both e1 and e2 are candidates for at least one entity mention each in D. For creating

the data split, we consider up to 250 candidates entities per mention6. The number

of documents in dev and test set are 8177 and 8284.

In table 7.2, we can see that the End-to-End model that jointly considers both

entity and relations together drastically outperforms the models that take hard linking

decisions from an external model. This is primarily due to the huge drop in recall

caused by cascading errors (See Table 7.1).

7.3.2.2 Linker-Based Filtering

The second data filtering approach we evaluated, is only considering the rela-

tionships where the external entity linking model was able to identify at least one

mention of each of the two entities in the title or abstract of the document. This

leads to a higher precision subset of data at the cost of recall. Importantly, this

approach gives a substantial advantage to the external entity linker baseline as the

data is filtered to only consider the relationships for which it could potentially make

6In our CTD experiments the end-to-end model uses top 25 candidates for every mention as we
found that it performs better due to lesser training noise.
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a prediction. The number of documents in dev and test set in this setting are 5857

and 5804 (significantly less than before).

In table 7.3, we can see that even under this disadvantage, the end-to-end model

is able to perform comparably to the Linker baseline, even slightly outperforming it7.

Model Precision Recall F1
Top Candidate 43.5 47.9 45.6
Linker 46.1 52.5 49.1
End-to-End 47.0 52.0 49.4

Table 7.3: Precision, Recall, and F1 for the CTD evaluation data filtered by entity
linker recall. Top values in each column appear in bold.

7.3.3 CDR Entity Linking Performance

In order to evaluate how much of the success of the End-to-End model can be

attributed to the entity linking component (7.1), we evaluated its performance on

the BioCreative V Chemical Disease Relation dataset (CDR) introduced in Wei et al.

(2015b). Similar to the CTD dataset, CDR was also originally derived from the

Chemical Toxicology Database. Expert annotators chose 1,500 of those documents

and exhaustively annotated all mentions of chemicals and diseases in the text. Ad-

ditionally, each mention was assigned its appropriate entity linking decision. We use

this dataset as a gold standard to validate our entity linking models. Note that we

do not use this data for training, but only for evaluation purposes.

We use the model that was trained on the CTD data and make it predict entities

for every mention on the test set of CDR. For this evaluation we used the gold mention

boundaries in the data. In order to analyze the effect of jointly predicting entities and

relations on the entity linking performance, we also trained a model which learns to

only predict entities (and ignores relations) from document-level entity supervision.

7Note that the numbers in Tables 7.2 and 7.3 are not comparable as the evaluation sets are
significantly different.
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We do this by only maximizing p(Ed|text) in (7.5). Note that this model is also

trained from document-level supervision on the CDT dataset and does not use any

mention-level training data from CDR.

In Table 7.4, we see that our End-to-End model does learn to link entities better

than the top candidate. Interestingly, on this particular data, the top candidate

does perform quite well. As is common when evaluating on this data, we consider

document-level rather than mention-level entity linking evaluation (Leaman and Lu,

2016), that is, how does the set of predicted entities compare to the gold set annotated

in the document. Note that the model trained to jointly predict entities and relations

performs slightly better than the model which predicts only entities. Breakdown

of the results into Chemical and Disease prediction performance can be found in

Supplementary.

Model P R F1

Top Candidate 79.0 86.8 82.7
End-to-End
– Entities only 82.9 90.0 86.3
– Entities & Relations 83.3 90.2 86.6

Table 7.4: Results for entity linking on the CDR dataset.

7.3.4 Disease-Phenotype Relations

To further probe the performance of our model we created a dataset of disease /

phenotype (aka symptom) relations. The goal here is to identify specific symptoms

caused by a disease. This type of information is particularly important in clinical

treatments as it can lead to earlier diagnosis of rare diseases, faster application of

appropriate interventions, and better overall outcomes for patients. This task also

serves to further motivate our methods as accurate entity linking models for pheno-

types are not readily available, nor is sufficient mention-level training data to build a

supervised classifier.
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Relation Annotations: We created this dataset with a similar technique to

the construction of the CTD dataset. We started from the relations in the Human

Phenotype Ontology (Köhler et al., 2018) that were annotated with a document

containing that relationship.

Mention Detection: For disease mention detection we followed the same pro-

cedure from section 7.3 and used the annotated mentions from Wei et al. (2013b).

Because there is not a readily available phenotype tagger, we trained our own model

to identify mentions of phenotypes in text. We trained an iterated dilated convolu-

tion model Strubell et al. (2017).8 Our training data came from Groza et al. (2015),

which we split into train, dev, and test sets (see Supplementary). Our final NER

model achieved a micro F1 score of 72.57.

We observed that disease and phenotype entity spans are often overlapping and

nested. We thus over-generate the set of mentions by taking the predictions from

both the taggers and adding them to the set of all mentions for the document, since

our model is able to pool over all theses mentions even if they overlap.

Entity Linking: We followed a similar procedure as described in section 7.2.2

to generate phenotype entity linking candidates. Using the small set of gold entity

linked text mentions from Groza et al. (2015) we were able to estimate our candidate’s

entity linking accuracy. In Figure 7.3 we show the recall of our candidate sets given

different values of K. Our top candidate achieved an accuracy of 46.8 while the recall

for 100 candidates was 76.5. This demonstrates the additional difficulty of the disease-

phenotype dataset as these candidate accuracies are much lower than the results from

Section 7.3.3.

Köhler et al. (2018) annotations make use of several disease vocabularies from

OMIM (Hamosh et al., 2005), ORHPANET (Pavan et al., 2017) and DECIPHER

8https://github.com/iesl/dilated-cnn-ner
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(Bragin et al., 2013) databases. For generating disease candidates, we use disease

name strings from all of these.

The external entity linker that we used from Wei et al. (2013b) links diseases to

the MeSH disease vocabulary. To align these with our disease-phenotype relation

annotations, we use the MEDIC database (Davis et al., 2012) for mapping OMIM

disease terms into the MeSH vocabulary.

The final dataset annotations were selected by filtering based on entities that

can be found in document when considering up to 250 candidates per mention. See

Supplementary for dataset statistics.

Figure 7.3: Recall
for different num-
bers of candidates
for phenotype en-
tity linking

7.3.4.1 Pre-training Entity Embedding

Since the dataset has many unseen entities at test time, we need a method to

address these unseen entities as generating the linking probabilities in (7.1) requires

an entity embedding. For this, we obtained entity descriptions for the phenotypes

and encoded them using pre-trained sentence embedding from BioSentVec Chen et al.

(2018). However, not all test entities have descriptions. So, in addition to the descrip-

tions we trained a graph embedding model, DistMult Yang et al. (2014), on the graph

obtained from the set of all annotations in Human Phenotype Ontology excluding the

dev/test annotations. We project both these pre-trained embeddings using a learned
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linear transformation and sum the description and graph embedding to obtain the

entity-specific embedding ê.

7.3.4.2 Baselines

The Top Candidate baseline uses the highest scoring candidate generated from

the procedure described above for both diseases and phenotypes.

Linker uses the disease entity links from Wei et al. (2013b). Since we don’t have

access to an accurate pretrained phenotype entity linking model, this model also uses

the top phenotype candidate as a hard phenotype entity linking decision.

End-to-End does not take any hard entity linking decisions and jointly reasons over

entity linking and relation extraction decisions.

7.3.4.3 Results

Our disease-phenotype results show a similar trend to those from the CTD exper-

iments (Section 7.3). Overall, the Top Candidate model performs the worst and the

End-to-End model outperforms both models that use hard entity linking decisions.

Overall, our results indicate that this particular task is extremely challenging.

This is likely the combination of several difficulties. The first is that the candidate

set itself is not as accurate as the ones from the CTD experiment which we can

see from comparing Figure 7.3 with the Top Candidate results in Table 7.4. Since

we rely on the candidate set to filter the annotations for the documents, we might

end up with significant annotations that are not present in the title and abstract.

Secondly, the amount of training data is significantly less (see Supplementary) than

in the CTD experiments, requiring research into unsupervised approaches Devlin

et al. (2018) for this data. Lastly, dealing with out-of-vocabulary entities at test

time required additional pre-training (described in Section 7.3.4.1), and our analysis

indicated that these are not highly predictive for mention-level disambiguation due

to the sparsity of the graph training data. Looking into more sophisticated methods
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Model Precision Recall F1
Top Candidate 8.9 5.3 6.6
Linker 11.3 6.6 8.3
End-to-End 12.8 10.9 11.8

Table 7.5: Results on the disease phenotype dataset

Xie et al. (2016); Gupta et al. (2017b) for dealing with unseen entities on this data

would be an important problem for future work.

7.4 Related Work

Extracting entities and relations from text has been widely studied over the past

few decades. In the biomedical domain specifically, there has been substantial progress

on entity mention detection Greenberg et al. (2018); Wei et al. (2015a) and entity

linking (often referred to as normalization in the bio NLP community) (Leaman

and Gonzalez, 2008; Leaman et al., 2013, 2015; Leaman and Lu, 2016), and relation

extraction (Wei et al., 2016; Krallinger et al., 2017a).

There have also been numerous works that have identified both entity mentions

and relationships from text in both the general domain (Miwa and Bansal, 2016b) and

in the biomedical domain (Li et al., 2017; Ammar et al., 2017a; Verga et al., 2018).

Leaman and Lu (2016) showed that jointly considering named entity recognition

(NER) and linking led to improved performance.

A few works have shown that jointly modeling relations and entity linking can

improve performance. Le and Titov (2018) improved entity linking performance by

modeling latent relations between entities. This is similar to coherence models Ganea

and Hofmann (2017) in entity linking which consider the joint assignment of all linking

decisions, but is more tractable as it focuses on only pairs of entities in a short context

rather than complete sets within a document.

Luan et al. (2018) created a multi-task learning model for predicting entities,

relations, and coreference in scientific documents. This model required supervision for
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all three tasks and predictions amongst the different tasks were made independently

rather than jointly.

7.5 Conclusion

In this chapter, we presented a model to simultaneously predict entity linking and

entity relation decisions. This model can be trained without any mention-level super-

vision for entities or relations, and instead relies solely on weak and distant supervision

at the document-level, readily available in many knowledge bases. To the best of our

knowledge this is the first such model to consider this particular approach. The pro-

posed model performs favorably as compared to a state-of-the-art pipeline approach

to relation extraction by avoiding cascading error, while requiring less expensive an-

notation, opening possibilities for knowledge extraction in low-resource and expensive

to annotate domains. Future work will look into a fully end-to-end model for doc-

ument graph extraction, which does not rely on a trained NER system, as well as

methods to simultaneously extract entity and relations from even weaker corpus-level

distant supervision Mintz et al. (2009b).
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CHAPTER 8

CONCLUSIONS

In this thesis we have presented methods for knowledge representation and extrac-

tion that combine neural architectures with structured ontologies. In Chapters 3 and 4

we built upon the work of universal schema, expanding its capacity for generalization

to consider arbitrary text and newly encountered entities. In Chapter 5, we leveraged

existing hierarchical ontologies to explicitly model hypernym relationships amongst

concepts and types and enforcing these constraints over our learned embedding space.

Finally, in Chapters 6 and 7 we developed methods that extract knowledge by con-

sidering a greater textual context while jointly reasoning about entity and relation

decisions.

8.1 Future Directions

While we’ve presented new methods for enhancing knowledge representation, there

is much left to be done. Some of this work involves general improvements to existing

methods. For example, these tools are at the level where they can be quite useful

in domains with adequate amounts of annotated training data. But in the more

general case when we are considering low resource domains and very fine grained

open semantic analysis, the accuracy of the models still needs to improve substantially

before they can be fully exploited. Other areas are more open ended and I will next

briefly describe a few of them.

114



8.1.1 Contextual Knowledge Graphs

One of the biggest areas lacking in current knowledge representation research is

the notion of encoding knowledge in context. In general, KGs encode knowledge at

an abstract level disentangled from concrete instances. While this can be very useful

in many situations, such as reasoning about generalities of a concept, in other cases

this can lead to ambiguities. For example, in the CTD knowledge base (Chapter 6),

the data encodes the fact that the chemical Zonisamide both treats and causes the

disease symptom Tremors. By tracing these facts back to their provenance, its clear

that what is missing is the context. In experiments on rats, they found Zonisamide

to be a treatment, while in experiments on humans, they found the opposite.

This example helps to illustrate the fact that KGs would benefit from more explic-

itly capturing context and modeling not just abstract general concepts, but also the

specific concrete instances they occur in. Our work in Chapter 4 took steps in this

direction by modeling general entity representations as a function of their concrete

instances. Chapters 6 and 7 also considered this question by modeling larger textual

contexts. Future work can leverage these ideas further to create contextual knowledge

graphs that capture concepts and relationships and multiple levels of abstraction (See

Figure 8.1).

8.1.1.1 Temporal Knowledge Graphs

Another often neglected concept in knowledge representation research is a notion

of knowledge over time. In particular, research nearly always focuses on a a static

world at a given single time slice. However, this neglects a lot of valuable information.

One component of this is how facts evolve over time. In the simplest case this could

be facts that are only true at a particular time step, such as a person’s current

job or location. But this can also be extended to the evolution of relationships

between entities or groups of entities as well as events and their temporal ordering and
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Figure 8.1: A schematic of a contextual knowledge graph incorporating the various
ideas presented in this thesis. The highest level corresponds to the current instanti-
ation of a knowledge graph consisting of generalized representations of concepts and
entities abstracted away from specific concrete instances. At the bottom level are
individual mentions contained within specific documents. Sentence and document
level graphs are built up at the lower levels building upon the ideas in Chapters 6
and 7. The lower more concrete levels connect to higher more abstract levels with
hypernym edges, as instances of concepts can be thought of as satisfying this hyper-
nym property (as in Chapter 5). These higher level concept representations could
potentially be only implicitly instantiated and actually represented as a function over
their concrete instances (similar to the aggregation functions in Chapter 4). Finally,
all of these representations can exist within a shared embedding space of structure
and text encoded with neural architectures (Chapter 3), enabling interpretability,
injecting useful biases, and human intervention.

dependencies. Moving forward, part of representing more contextualized knowledge

could include representations of temporal properties.

8.1.1.2 Cognitively Inspired Models

Another fruitful future direction could be to have a greater focus on cognitively in-

spired models of knowledge representation. There has been substantial research over

the years in developing cognitive architectures for more biologically plausible repre-

sentations of knowledge (Anderson, 1983; Laird et al., 1987; Anderson, 1996; Laird

et al., 2017). While building purely biologically plausible systems can enhance our

understanding of human memory systems, there can also be benefit from a softer fo-
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cus on modeling knowledge representation systems with inspiration from our existing

understanding human cognition. One of these for example is related to the contextual

knowledge discussed in Section 8.1.1. Rather than having a purely instance based or

abstract based memory systems, humans retain both episodic and semantic memories

capable of capturing different aspects of concepts and events (Tulving et al., 1972).

Notions of episodic memory have begun to be used in reinforcement learning agents

(Hassabis et al., 2017) and could potentially be leveraged for the type of general

knowledge representation systems that we have been discussing.

8.1.2 Explicit vs Implicit Structure and Representations

Recent advances in neural modeling have called into question whether or not we

need to be explicitly modeling structure at all. For example, open domain question

answering systems have coupled an information retrieval system with neural reader

module (Chen et al., 2017; Clark and Gardner, 2018). In this paradigm, their is

no explicit structure or representation of knowledge. Instead, the knowledge is the

text itself along with the parameters of the model. A related strand of research

has shown that extremely large language models (Peters et al., 2018; Devlin et al.,

2018; Radford et al., 2019) can capture a surprising amount of information and can

be leveraged by machine reading models. These two developments along with their

natural combination has led many researchers to question whether this constitutes

the correct path forward for knowledge representation and reasoning research.

However, these models still have many shortcomings as they are less interpretable,

difficult to augment with human knowledge, and have not yet been shown to be as

capable at reasoning over many sources of information at once (though this is another

area of active research (Welbl et al., 2018; Yang et al., 2018)). It will be interesting to

see how knowledge representation research evolves in the future and to what extent

explicit structured representations will play a part in the long term. There is reason
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to believe that structure will continue to play a part going forward, particularly in the

near term. Explicit structure will remain extremely useful in low resource domains

that can benefit from priors and human knowledge, as well as in high value areas like

medical treatments where interpretable predictions and provenance are both crucial

and necessary for enhancing human decision making.
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APPENDIX A

COMPOSITIONAL UNIVERSAL SCHEMA
SUPPLEMENTARY

A.1 Additional Qualitative Results

Our model jointly embeds KB relations together with English and Spanish text.

We demonstrate that plausible textual patterns are embedded close to the KB rela-

tions they express. Table A.1 shows top scoring English and Spanish patterns given

sample relations from our TAC KB.

A.2 Implementation and Hyperparameters

We performed a small grid search over learning rate 0.0001, 0.005, 0.001, dropout

0.0, 0.1, 0.25, 0.5, dimension 50, 100, `2 gradient clipping 1, 10, 50, and epsilon 1e-8,

1e-6, 1e-4. All models are trained for a maximum of 15 epochs. The CNN and LSTM

both use 100d embeddings while USchema uses 50d. The CNN and LSTM both

learned 100-dimensional word embeddings which were randomly initialized. Using

pre-trained embeddings did not substantially affect the results. Entity pair embed-

dings for the baseline USchema model are randomly initialized. For the models with

LSTM and CNN text encoders, entity pair embeddings are initialized using vectors

from the baseline USchema model. This performs better than random initialization.

We perform `2 gradient clipping to 1 on all models. Universal Schema uses a batch

size of 1024 while the CNN and LSTM use 128. All models are optimized using

ADAM (Kingma and Ba, 2014a) with ε = 1e − 8, β1 = 0.9, and β2 = 0.999 with
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a learning rate of .001 for USchema and .0001 for CNN and LSTM. The CNN and

LSTM also use dropout of 0.1 after the embedding layer.

A.3 Details Concerning Cosine Similarity Computation

We measure the similarity between rtext and rschema by computing the vectors’

cosine similarity. However, such a distance is not well-defined, since the model was

trained using inner products between entity vectors and relation vectors, not between

two relation vectors. The US likelihood is invariant to invertible transformations of

the latent coordinate system, since σ
(
u>s,ovr

)
= σ

(
(A>us,o)

>A−1vr
)

for any invertible

A. When taking inner products between two v terms, however, the implicit A−1

terms do not cancel out. We found that this issue can be minimized, and high quality

predictive accuracy can be achieved, simply by using sufficient `2 regularization to

avoid implicitly learning an A that substantially stretches the space.

A.4 Data Pre-processing, Distant Supervision and Extrac-

tion Pipeline

We replace tokens occurring less than 5 times in the corpus with UNK and normal-

ize all digits to # (e.g. Oct-11-1988 becomes Oct-##-####). For each sentence,

we then extract all entity pairs and the text between them as surface patterns, ignor-

ing patterns longer than 20 tokens. This results in 48 million English ‘relations’. In

Section A.6, we describe a technique for normalizing the surface patterns. We filter

out entity pairs that occurred less than 10 times in the data and extract the largest

connected component in this entity co-occurrence graph. This is necessary for the

baseline US model, as otherwise learning decouples into independent problems per

connected component. Though the components are connected when using sentence

encoders, we use only a single component to facilitate a fair comparison between

modeling approaches. We add the distant supervision training facts from the Rela-

120



tionFactory system, i.e. 352,236 entity-pair-relation tuples obtained from Freebase

and high precision seed patterns. The final training data contains a set of 3,980,164

(KB and openIE) facts made up of 549,760 unique entity pairs, 1,285,258 unique

relations and 62,841 unique tokens.

We perform the same preprocessing on the Spanish data, resulting in 34 million

raw surface patterns between entities. We then filter patterns that never occur with

an entity pair found in the English data. This yields 860,502 Spanish patterns.

Our multilingual model is trained on a combination of these Spanish patterns, the

English surface patterns, and the distant supervision data described above. We learn

word embeddings for 39,912 unique Spanish word types. After parameter tying for

translation pairs (Section 3.2.5), there are 33,711 additional Spanish words not tied

to English.

A.5 Generation of Cross-Lingual Tied Word Types

We follow the same procedure for generating translation pairs as Mikolov et al.

(2013b). First, we select the top 6000 words occurring in the lowercased Europarl

dataset for each language and obtain a Google translation. We then filter duplicates

and translations resulting in multi-word phrases. We also remove English past partici-

ples (ending in -ed) as we found the Google translation interprets these as adjectives

(e.g., ‘she read the borrowed book’ rather than ‘she borrowed the book’) and much

of the relational structure in language we seek to model is captured by verbs. This

resulted in 6201 translation pairs that occurred in our text corpus. Though higher

quality translation dictionaries would likely improve this technique, our experimental

results show that such automatically generated dictionaries perform well.
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A.6 Open IE Pattern Normalization

To improve US generalization, our US relations use log-shortened patterns where

the middle tokens in patterns longer than five tokens are simplified. For each long

pattern we take the first two tokens and last two tokens, and replace all k remaining

tokens with the number log k. For example, the pattern Barack Obama is married

to a person named Michelle Obama would be converted to: Barack Obama is

married [1] person named Michell Obama. This shortening performs slightly better

than whole patterns. LSTM and CNN variants use the entire sequence of tokens.
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per:sibling
arg1 , según petición the primeros ministro,

su hermano gemelo arg2
arg1 , sea the principal favorito para esto
oficina
que también ambiciona su hermano arg2

arg1 , y su hermano gemelo, the primeros
ministro arg2
arg1 , for whose brother arg2
arg1 inherited his brother arg2
arg1 on saxophone and brother arg2

org:top members employees
arg2 , presidente y director generales the
arg1
arg2 , presidente of the negocios especial-
izada arg1
arg2 (CIA), the director of the entidad,
arg1
arg2 , vice president and policy director of
the arg1
arg2 , president of the German Soccer arg1
arg2 , president of the quasi-official arg1

per:alternate names
arg1 (como también son sabido para arg2
arg2 -cuyos verdaderos nombre sea arg1
arg1 también sabido como arg2
arg1 aka arg2
arg1 , who also creates music under the
pseudonym arg2
arg1 ( of Modern Talking fame ) aka arg2

per:cities of residence
arg1 , poblado dónde vive arg2
arg1 , una ciudadano naturalizado american

y nacido in arg2
arg1 , que vive in arg2
arg1 was born Jan. # , #### in arg2
arg1 was born on Monday in arg2
arg1 was born at Keighley in arg2

Table A.1: Top scoring patterns for both Spanish (top) and English (bottom) given
query TAC relations.
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APPENDIX B

HIERARCHICAL MODELING SUPPLEMENTARY

B.1 MedMentions Additional Details

Statistic Train Dev Test

#Abstracts 2,964 370 370
#Sentences 28,457 3,497 3,268
#Mentions 199,977 24,026 22,141
#Entities 22,416 5,934 5,521

Table B.1: MedMentions statistics.

B.2 TypeNet Construction

Freebase type: musical chord

Example entities: psalms chord, power chord
harmonic seventh chord

chord.n.01: a straight line connecting two points on a curve

chord.n.02: a combination of three or more
notes that blend harmoniously when sounded together

musical.n.01: a play or film whose action and dialogue is
interspersed with singing and dancing

Table B.2: Example given to TypeNet annotators. Here, the Freebase type to be
linked is musical chord. This type is annotated in Freebase belonging to the entities
psalms chord, harmonic seventh chord, and power chord. Below the list of example
entities are candidate WordNet synsets obtained by substring matching between the
Freebase type and all WordNet synsets. The correctly aligned synset is chord.n.02
shown in bold.

B.3 Model Implementation Details

For all of our experiments, we use pretrained 300 dimensional word vectors from

Pennington et al. (2014). These embeddings are fixed during training. The type
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Typeset Count Depth Gold KB links

CoNLL-YAGO 4 1 Yes
OntoNotes 5.0 19 1 No
Gillick et al. (2014) 88 3 Yes
Figer 112 2 Yes
Hyena 505 9 No
Freebase 2k 2 Yes
WordNet 16k 14 No
TypeNet* 1,941 14 Yes

Table B.3: Statistics from various type sets. TypeNet is the largest type hierarchy
with a gold mapping to KB entities. *The entire WordNet could be added to TypeNet
increasing the total size to 17k types.

Freebase Types 1081
WordNet Synsets 860

child-of links 727
equivalence links 380
parent-of links 13
Freebase-Freebase links 614

Table B.4: Stats for the final TypeNet dataset. child-of, parent-of, and equivalence
links are from Freebase types → WordNet synsets.

vectors and entity vectors are all 300 dimensional vectors initialized using Glorot

initialization Glorot and Bengio (2010). The number of negative links for hierarchical

training n ∈ {16, 32, 64, 128, 256}.

For regularization, we use dropout Srivastava et al. (2014b) with p ∈ {0.5, 0.75,

0.8} on the sentence encoder output and L2 regularize all learned parameters with

λ ∈ {1e-5, 5e-5, 1e-4}. All our parameters are optimized using Adam (Kingma and

Ba, 2014b) with a learning rate of 0.001. We tune our hyper-parameters via grid

search and early stopping on the development set.

B.4 FIGER Implementation Details

To train our models, we use the mention typing loss function defined in Section-5.2.

For models with structure training, we additionally add in the hierarchical loss, along

with a weight that is obtained by tuning on the dev set. We follow the same inference
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time procedure as Shimaoka et al. (2017) For each mention, we first assign the type

with the largest probability according to the logits, and then assign additional types

based on the condition that their corresponding probability be greater than 0.5.

B.5 Wikipedia Data and Implementation Details

At train time, each training example randomly samples an entity bag of 10 men-

tions. At test time we classify bags of 20 mentions of an entity. The dataset contains

a total of 344,246 entities mapped to the 1081 Freebase types from TypeNet. We

consider all sentences in Wikipedia between 10 and 50 tokens long. Tokenization and

sentence splitting was performed using NLTK Loper and Bird (2002). From these

sentences, we considered all entities annotated with a cross-link in Wikipedia that

we could link to Freebase and assign types in TypeNet. We then split the data by

entities into a 90-5-5 train, dev, test split.

B.6 UMLS Implementation details

We pre-process each string by lowercasing and removing stop words. We consider

ngrams from size 1 to 5 and keep the top 100,000 features and the final vectors are

L2 normalized. For each mention, In our experiments we consider the top 100 most

similar entities as the candidate set.

B.6.1 Candidate Generation Details

Each mention and each canonical entity string in UMLS are mapped to TFIDF

character ngram vectors. We pre-process each string by lowercasing and removing

stop words. We consider ngrams from size 1 to 5 and keep the top 100,000 features

and the final vectors are L2 normalized. For each mention, we calculate the cosine

similarity, csim, between the mention string and each canonical entity string. In our

experiments we consider the top 100 most similar entities as the candidate set.
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APPENDIX C

BRAN SUPPLEMENTARY

C.1 BRAN Implementation Details

The model is implemented in Tensorflow (Abadi et al., 2015) and trained on a

single TitanX gpu. The number of transformer block repeats is B = 2 . We optimize

the model using Adam Kingma and Ba (2014a) with best parameters chosen for ε,

β1, β2 chosen from the development set. The learning rate is set to 0.0005 and batch

size 32. In all of our experiments we set the number of attention heads to h = 4.

We clip the gradients to norm 10 and apply noise to the gradients Neelakantan

et al. (2015b). We tune the decision threshold for each relation type separately and

perform early stopping on the development set. We apply dropout Srivastava et al.

(2014a) to the input layer randomly replacing words with a special UNK token with

keep probability .85. We additionally apply dropout to the input T (word embedding

+ position embedding), interior layers, and final state. At each step, we randomly

sample a positive or negative (NULL class) minibatch with probability 0.5.

C.2 Chemical Disease Relations Dataset

Token embeddings are pre-trained using skipgram Mikolov et al. (2013a) over a

random subset of 10% of all PubMed abstracts with window size 10 and 20 negative

samples. We merge the train and development sets and randomly take 850 abstracts

for training and 150 for early stopping. Our reported results are averaged over 10

runs and using different splits. All baselines train on both the train and development

set. Models took between 4 and 8 hours to train.
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ε was set to 1e-4, β1 to .1, and β2 to 0.9. Gradient noise η = .1. Dropout was ap-

plied to the word embeddings with keep probability 0.85, internal layers with 0.95 and

final bilinear projection with 0.35 for the standard CRD dataset experiments. When

adding the additional weakly labeled data: word embeddings with keep probability

0.95, internal layers with 0.95 and final bilinear projection with 0.5.

C.3 Chemical Protein Relations Dataset

We construct our byte-pair encoding vocabulary using a budget of 7500. The

dataset contains annotations for a larger set of relation types than are used in evalu-

ation. We train on only the relation types in the evaluation set and set the remaining

types to the Null relation. The embedding dimension is set to 200 and all embeddings

are randomly initialized. ε was set to 1e-8, β1 to .1, and β2 to 0.9. Gradient noise

η = 1.0. Dropout was applied to the word embeddings with keep probability 0.5,

internal layers with 1.0 and final bilinear projection with 0.85 for the standard CRD

dataset experiments.

C.4 Full CTD Dataset

We tune separate decision boundaries for each relation type on the development

set. For each prediction, the relation type with the maximum probability is assigned.

If the probability is below the relation specific threshold, the prediction is set to

NULL. We use embedding dimension 128 with all embeddings randomly initialized.

Our byte pair encoding vocabulary is constructed with a budget of 50,000. Models

took 1 to 2 days to train.

ε was set to 1e-4, β1 to .1, and β2 to 0.9. Gradient noise η = .1.Dropout was

applied to the word embeddings with keep probability 0.95, internal layers with 0.95

and final bilinear projection with 0.5
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chiotti, M., Romano, L., and Szpakowicz, S. (2009). Semeval-2010 task 8: Multi-
way classification of semantic relations between pairs of nominals. In Proceedings
of the Workshop on Semantic Evaluations: Recent Achievements and Future Di-
rections, pages 94–99. Association for Computational Linguistics.

Hermann, K. M. and Blunsom, P. (2014). Multilingual models for compositional
distributed semantics. arXiv preprint arXiv:1404.4641.

Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-r., Jaitly, N., Senior, A.,
Vanhoucke, V., Nguyen, P., Sainath, T. N., et al. (2012). Deep neural networks for
acoustic modeling in speech recognition: The shared views of four research groups.
IEEE Signal processing magazine, 29(6):82–97.

Hochreiter, S. (1998). The vanishing gradient problem during learning recurrent
neural nets and problem solutions. International Journal of Uncertainty, Fuzziness
and Knowledge-Based Systems, 6(2):107–116.

Hochreiter, S. and Schmidhuber, J. (1997a). Long short-term memory. In Neural
Computation.

Hochreiter, S. and Schmidhuber, J. (1997b). Long short-term memory. Neural com-
putation, 9(8):1735–1780.

135



Hoffmann, R., Zhang, C., Ling, X., Zettlemoyer, L., and Weld, D. S. (2011).
Knowledge-based weak supervision for information extraction of overlapping re-
lations. In Proceedings of the 49th Annual Meeting of the Association for Com-
putational Linguistics: Human Language Technologies-Volume 1, pages 541–550.
Association for Computational Linguistics.

Ji, H., Grishman, R., Dang, H. T., Griffitt, K., and Ellis, J. (2010). Overview of
the tac 2010 knowledge base population track. In Third Text Analysis Conference
(TAC 2010), volume 3, pages 3–3.

Kalchbrenner, N., Grefenstette, E., and Blunsom, P. (2014). A convolutional neural
network for modelling sentences. Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics.

Kim, J.-D., Ohta, T., and Tsujii, J. (2008). Corpus annotation for mining biomedical
events from literature. BMC bioinformatics, 9(1):10.

Kim, Y. (2014). Convolutional neural networks for sentence classification. EMNLP.

Kingma, D. P. and Ba, J. (2014a). Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980.

Kingma, D. P. and Ba, J. (2014b). Adam: A method for stochastic optimization.
CoRR, abs/1412.6980.

Kiperwasser, E. and Goldberg, Y. (2016). Simple and accurate dependency parsing
using bidirectional lstm feature representations. Transactions of the Association
for Computational Linguistics, 4:313–327.

Koehn, P. (2005). Europarl: A parallel corpus for statistical machine translation. In
MT summit, volume 5, pages 79–86. Citeseer.
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