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ABSTRACT 

CHANGES IN SOIL MICROBIAL COMMUNITIES AFTER LONG-TERM WARMING EXPOSURE 
 
 

SEPTEMBER 2019 
 

WILLIAM G. RODRIGUEZ REILLO, B.A., UNIVERSITY OF PUERTO RICO ARECIBO 
 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 
 

Directed by: Professor Jeffrey L. Blanchard 
 

Microbial metabolism is a key controller of ecosystem processes (e.g., carbon cycling). 

However, we are only starting to identify the molecular mechanisms and feedback in response 

to long-term warming. My dissertation integrates multi-omics techniques to capture changes in 

soil microbial communities after long-term warming exposure. The research projects leverage 

three warming sites (i.e., SWaN, Barre Woods, and Prospect Hill) located in Western 

Massachusetts at Harvard Forest. These sites provided a unique experimental setup to better 

understand microbes in response to long-term temperature change.  For the three research 

projects, we delved into the (i) microbial biodiversity across all three warming sites, (ii) 

integration of soil carbon chemistry and metatranscriptomics at the Barre Woods site, (iii) and a 

time series of soil metatranscriptomes at the Prospect Hill site. Overall, these studies revealed a 

broader scope of changes occurring with long-term warming than anticipated. The warming 

treatment induced shifts in fungi groups and recalcitrant carbon decomposer bacteria.  Changes 

in microbial functions involved metabolic pathways associated to biogeochemical and cellular 

stability as result of nutrient limitation. Further, our results provided new insights in microbial 

response to chronic temperature stress, suggested an ongoing change in community structure 

and function, and linked soil carbon decrease to cellular processes using high throughput 
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molecular techniques. This information will help to better understand interactions between 

microbial communities and the Earth’s climate.  
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CHAPTER 1 
 

TWO DECADES OF CHRONIC WARMING INTENSIFIES CHANGES IN BIODIVERSITY AND 
METABOLIC ACTIVITY AT HARVARD FOREST 

1.1 Abstract 

 

Soil microbial diversity is estimated to be immense, yet remains poorly understood due 

to challenges in the study of these complex communities. Nonetheless, microbial functions have 

been progressively recognized as key in driving biogeochemical cycles. Combining field 

experiments and high-throughput sequencing technologies represents a powerful tool to gain 

new insights of molecular functions controlling ecosystem-level processes. Here, we investigate 

soil community structure and function at three field warming experiments (SWaN, Barre Woods, 

and Prospect Hill) at the Harvard Forest Long-Term Ecological Research (LTER) site using 

metatranscriptomes to provide new insights into microbial response to simulated climate 

change. The experimental sites share a common treatment of being warmed continuously 5°C 

above ambient temperature. Adjacent plots, SWaN and Prospect Hill, were established 15 years 

apart which comparison of soils exposed to different durations of warming treatment. Bulk 

transcriptomes were extracted for soils in the organic horizon. Changes in cellular processes 

were measured by comparison of heated (+5°C) and control replicates. Results show that 

microbes consist of 26% eukaryotes and 73% bacteria, with the other 1% including viruses and 

archaea. Differences with the warming treatment included an increase in the bacteria to 

eukaryotes ratio, significant increases in Verrucomicrobia and Acidobacteria members, and 

decrease in fungi groups. Among other metabolic pathways, warming induced significant 

changes in proteins essential for structural integrity of the ribosome. Further, taxonomic 
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affiliation of ribosomal proteins has been linked to eukaryotic groups, including Basidiomycota 

and Ascomycota. 

1.2 Introduction 

Global surface temperature increased +0.70℃ in 2017 relative to records from 1981 to 

2010, marking a new record high (Arndt et al., 2018). Rising carbon dioxide (CO2) levels are 

mostly due to the burning of fossil fuels and the low rate of plant and bacterial belowground 

CO2 fixation. Terrestrial ecosystems serve as the largest global carbon reservoir, harboring 3000 

Pg of carbon (Pries et al., 2017). However, it is uncertain how climate change can influence 

carbon turnover in soil (Schmidt et al., 2011). Therefore, it is necessary to better understand 

biological mechanisms in control of biogeochemical cycles, which in turn shape major 

ecosystem-level processes (Wieder et al., 2013). 

Microorganisms are the most abundant and diverse form of life with up to 1012 species 

estimated on Earth (Locey and Lennon 2016). For instance, the prokaryotic diversity itself has 

been reported to account for up to 1.6 million species (Louca et al. 2019). Large efforts have 

been carried to link microbial diversity to ecosystem-level processes. The ability to capture bulk 

DNA and RNA from soil microbial communities circumvents previous culture-dependent 

constraints, including classic constraints of skewed isolation of readily culturable bacteria (Staley 

and Konopka, 1985). As high-throughput technologies become more accessible, our 

understanding of soil biodiversity will continue to expand. Investigations of soil microbial 

ecology using community approaches represent a powerful tool for biological discovery and 

formulate new hypotheses about the role of microorganisms in complex ecosystems. 

Soil organic matter is the most readily available substrate to microbes. Changes in 

chemical properties allow carbon stocks to range from labile to stable compounds. Labile carbon 
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pools are subject to high rate of microbial decomposition with direct ecosystem-level impacts. In 

contrast, stable pools reflected a slow carbon turnover with low mineralization rate. For 

example, the woody tissue of trees is made up of cellulose, which can be mineralized by 

specialized microbes (Wei et al., 2009). Microbes play a key role in soil organic matter decay in 

distant ecosystems (Allison et al., 2010; Fierer and Jackson, 2006; Wild et al., 2014).  

In Western Massachusetts, the Harvard Forest Long Term Ecological Research (LTER) site 

is home to three long-term warming experiments. These field sites share in common a 5°C 

increase above the ambient temperature using below ground heating cables. This warming 

effect has resulted in 33% carbon (C) losses and increased availability of nitrogen (N) to 

vegetation, degradation of the soil organic matter, shift in bacterial community composition, 

and decreased fungal biomass at the experimental sites (DeAngelis et al., 2015; Frey et al., 2008; 

Melillo, 2011; Melillo et al., 2017; Pisani et al., 2015). However, this is the first study to look at 

the soil metatranscriptomes across all three warming sites. Our objective was to determine 

changes in soil microbial biodiversity and functions in response to the warming treatment. We 

hypothesized microbial abundance shifts to access labile carbon over short-term warming 

exposure and/or changes in gene expression related to recalcitrant carbon substrates over long-

term warming. Combining field experiments and high-throughput sequencing technologies 

represents a powerful tool to gain new insights of molecular functions controlling ecosystem-

level processes. 

1.3 Methods 

1.3.1 Experimental Sites  

Our soil warming experiments are located at the Harvard Forest LTER site in a mixed 

hardwood forest. The Soil Warming and Nitrogen addition (SW), Barre Woods (BW), and 
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Prospect Hill (PH) sites were started on 2006, 2003, and 1991, respectively. Dominant tree 

species includes maple (Acer rubrum), oak (Quercus velutina), and American beech (Fagus 

grandifolia). Atmospheric temperature ranges on average from –6°C in winter to 20°C in 

summer. Experimental treatment consists of a 5°C elevation in soil temperature relative to 

ambient control plots, using buried heating cables at 10cm depth (Peterjohn et al., 1993). The 

experimental treatment is shared across all three experimental sites. 

1.3.2 Sample Collection and Sequencing 

Soil samples were collected from all three warming experiments on October 2011. At 

the time of soil collection, the experimental sites had experienced the warming treatment effect 

for 5 years at SWaN, 8 years at Barre Woods (BW), and 20 years at Prospect Hill (PH). Soil 

samples (n=48) were collected from 3 sites, 2 soil horizons, 2 temperature treatments, and 4 

replicates.   On site, the organic samples were split into sterile bags and flash frozen in a ethanol 

and dry-ice bath. Samples were stored on dry ice for transportation to UMass and stored long-

term at -80°C. Bulk RNA was extracted from  1 gram of soil using the MoBio PowerSoil kit for all 

mineral samples and an optimized CTAB protocol (DeAngelis et al., 2015). Samples were sent to 

the Joint Genome Institute (JGI) for library preparation and sequencing. Bacterial rRNA was 

depleted with the Illumina Ribo-Zero kit for all sequencing libraries. From the extracted RNA, 

cDNA libraries were prepared and sequenced on the Illumina HiSeq-2000 platform at the DOE 

JGI. 

1.3.3 Bioinformatics 

Sequenced libraries resulted in short (2x150 bp) pair-ended (PE) fragments. FastQC was 

employed to determine reads quality (Andrews, 2010). BBMap tools were used to remove 

adapters, trim, and filter low-quality reads (Bushnell, 2016). PE fragments were concatenated 
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using FLASH and rRNA sequences filtered with SortmeRNA (Kopylova et al., 2012; Magoč and 

Salzberg, 2011). Then, non-rRNA sequences were searched against the non-redundant NCBI 

database with DIAMOND and loaded into MEGAN for functional and taxonomic annotation 

(Buchfink et al., 2015; Huson et al., 2016). 

1.3.4 Statistics 

Statistical analyses were done using R and implemented in RStudio (R Core Team and R 

Development Core Team, 2008; RStudio Team, 2016). The R package edgeR was employed to 

determine enrichment of features (Lun et al., 2016; Zhou et al., 2013). Comparisons included by 

site (3 Sites x 2 Treatments x 4 replicates=24) and all three sites combined. Pooling all three sites 

together improves statistical power by increasing the total number of samples. Trimmed Mean 

of M-values (TMM) method was used to normalize genomic counts. Normalization factors were 

calculated for each experimental site and all sites together to reduce variance. Genomic features 

with significant treatment effect considered comparison with an FDR≤0.1.R package ggplot2 and 

Gephi software were used to visualize genomic data sets (Bastian and Heymann, 2009; 

Wickham, 2009). 

1.3.5 Data Availability 

Raw sequences are publicly available at https://img.jgi.doe.gov/m. IMG accession 

numbers are included in the Table 1.3. 

1.4 Results and Discussion 

Soil metatranscriptomes were compared to determine the (i) treatment effect within 

sites (SW (5yrs); BW (8yrs); and PH (20yrs)) and all sites together and (ii) long-term warming 

effect. The latter is based on comparison between the SW-5yrs and PH-20yrs heated (+5℃) soils 
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relative to the control. This study is centric to soil metatranscriptomes, but briefly compared 

metagenomes at the domain taxonomic resolution. Soil metagenomes were further described in 

a previous publication (Pold et al., 2016). Sequencing of metatranscriptomes extracted from 

soils collected at the Harvard Forest LTER produced a total of 21,305,735 protein coding reads 

(or mRNA reads) obtained from 24 organic soil samples (Table 1.1). Sequence reads were 

assigned to 1,667 taxonomic groups and 5,534 functional features. At the domain resolution, 

taxonomic breakdown resulted in 73% bacteria, 26% eukaryotes, and 1% others (including 

Archaea 0.07% and Viruses 0.37%) (Figure 1.1).  

 

Soil eukaryotes were better represented by the metatranscriptomes than the 

metagenomes, representing 26% of the total community in RNA as compared to 1.5% in the 

DNA (Figure 1.1). From a biological standpoint, it is expected for soil eukaryotes to be present 

and play an active role in the forest ecosystem (Wiesmeier et al., 2019). Although our study 

targeted all messenger RNA (mRNA) sequences, other metatranscriptomes studies using 

polyadenylated mRNA captured the rich functional diversity and contribution within soil 

eukaryotes (Bailly et al., 2007; Lehembre et al., 2013). Much more studies have been done to 

target fungi, which represent a high economic impact (Kennedy and Stajich, 2015; Ohm et al., 

2012). 

 At the Harvard Forest sites, the most abundant eukaryotic groups include fungi (e.g., 

Ascomycota, Basidiomycota), green plants (e.g., Streptophyta), and invertebrates (e.g., 

Arthropods), which are essential components of the soil food web (Figure 1.1). Transcripts 

related to bacteria accounted for 73% of all protein sequences. Most abundant groups included 

Proteobacteria, Acidobacteria, Actinobacteria, Planctomycetes, Verrucomicrobia, and 

Bacteroidetes (Figure 1.1). These groups have been described as ubiquitous soil-dwelling 



 

7 

bacteria based on genetic markers (Janssen, 2006). More recently new efforts categorized some 

of this bacterial groups (e.g., Acidobacteria, Actinobacteria and beta-proteobacteria) based on 

their lifestyle strategies, i.e. copiotroph or oligotroph (Fierer et al., 2007). For instance, previous 

studies in the oldest Harvard Forest site reported that long-term warming favors oligotrophic 

conditions and microbial communities (DeAngelis et al., 2015; Melillo et al., 2017). Under this 

lifestyle classification context, our warming treatment resulted in low nutrient available to soil 

bacteria as labile carbon become limited and enhanced over time. 

 

The experimental warming treatment resulted in an overall increase in the ratio of 

bacteria to fungi, which is more pronounced at the two oldest sites, Barre Woods (8 yrs of 

warming) and Prospect Hill (20 yrs of warming) (Figure 1.2). A similar community response has 

been reported previously for which quantitative PCR show a decrease in fungi and the 16S 

ribosomal RNA marker gene increase for some bacterial groups (DeAngelis et al., 2015). Other 

studies also refer to an imbalance of the bacteria to fungi biomass by predation of protist on 

fungi (Ruess et al., 1999; Schroter et al., 2003; Sjursen et al., 2005). Further, the interaction of 

fungi and their predators can alter feedbacks to ecosystem-level functions (Crowther et al., 

2015). In our field sites, the temperature increase may serve as mechanism to recruit more fungi 

predators, which can explain the observed decrease in fungal biomass. This potential 

recruitment of predators is conceivable as atmospheric temperature falls during the time of soil 

collection. Warming response across taxonomic ranks were presented as well (Table 1.2).  

The microbial response to warming was variable across sites, however, soil eukaryotes 

across taxonomic levels consistently decreased in abundance with warming (Figure 1.3). This 

fungi response to warming has been reported before using phospholipid fatty acid (PLFA) 

profiles (Frey et al., 2008). Also, soil metagenomes reported a decrease of carbohydrates 
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degrading enzymes from eukaryotes and a dual shift in carbohydrate degradative enzymes (Pold 

et al., 2016). In turn, this study captured the activity of soil eukaryotes and other soil microbes 

using protein coding sequences. Most eukaryotic sequences were linked to fungi, with 

saprotrophs and pathogens representing 15% of transcripts and showing the most sensitivity to 

warming. Warming effect within fungi resulted in significant changes of Dothideomycetes, 

Leotiomycetes,Sordariomycetes, Mortierellomycotina classes (Figure 1.3). This soil-dwelling 

fungi classes showed a significant treatment effect in the oldest site, Prospect Hill (20-yrs). At 

lower taxonomic rank, the Gloniaceae fungal family was the most represented group within 

Dethideomycetes. Members of this family are known to include ectomycorrhizae and 

saprophytic fungi (Spatafora et al., 2012). The Leotiomycetes class significantly decreased with 

warming and most transcripts linked to Myxotrichaceae and Pseudeurotiaceae families. 

Leotiomycetes group is notorious plant endophytes, which allow members to be present in large 

range of environments (Wang et al., 2006). Moreover, this group of endophytic fungi has been 

implicated to control carbon storage (Tong et al., 2017). The Sordariomycetes class decrease 

with most transcripts linked to Hypocreaceae family. Members within this fungal class has been 

described as pathogens, endophytes, and soil organic matter degraders (Uroz et al., 2013). 

Mortierellomycotina group are commonly associated to the plant rhizosphere and host for 

endosymbiotic bacteria (e.g., Betaproteobacteria and Mollicutes) (Bonfante and Desirò, 2017; 

Desirò et al., 2018; Summerbell, 2005). This is of interest as potential endosymbiotic bacteria 

has been detected in the metatranscriptomes and changed in abundance with warming (see 

below). 

Bacteria and Eukaryotes responded differently to the warming effect. As opposed to 

fungi, most bacteria groups increased with the warming treatment. The dominant bacterial 

groups reflected a significant treatment effect with Verrucomicrobiaceae, Gemmatimonadetes, 
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and Blastocatellia classes increasing in abundance with warming (Figure 1.3). These groups have 

been described as oligotrophic bacteria, which typically grow slowly and inhabit nutrient poor 

environmental niches (Bergmann et al., 2011; Cederlund et al., 2014; Eichorst et al., 2011; Fierer 

et al., 2012; Pascual et al., 2015; Smit et al., 2001). When the SW-5y and PH-20y heated plots 

were compared, the long-term warming effect reflected an increase in abundance of soil 

bacteria at the field site longer exposed to warming (PH-20y) (Figure 1.4). From a trophic 

lifestyle perspective, we expected to observe an oligotrophic community establish in the PH-20y 

site relative to SW-5y as carbon substrates became limited after long-term warming exposure. In 

both sites, we observed bacterial groups associated to oligotrophic conditions (e.g., 

Actinobacteria, Gammaproteobacteria, etc.). However, the overall abundance of bacterial 

groups was greater at the PH-20y site. 

Warming induced shifts in microbial processes related to biogeochemical cycles. 

Significant shifts in transcriptional abundance of ecosystem-level processes included sulfur 

oxidation, nitrate and nitrite ammonification, hemin transport system, iron acquisition, and 

benzoate degradation (Figure 1.4). Metabolism related to sulfur oxidation increase in 

abundance with warming at the BW-8y and PH-20 sites. Sulfur oxidation is a key metabolic 

process employed by chemolithotrophic bacteria for energetic budgets during respiration 

(Berben et al., 2019). In terrestrial ecosystem, this sulfur-oxidizing bacteria has been linked to 

Alphaproteobacteria and betaproteobacteria and isolated from bulk soil and the rhizosphere 

(Graff and Stubner, 2003; Wohl et al., 2004). Further, the microbial transformation of sulfur 

compounds (e.g., sulfite and sulfate) interconnect the sulfur cycle with other biogeochemical 

cycles (e.g., nitrogen, iron, and manganese) (Berben et al., 2019). There are three main 

pathways employed by sulfur-oxidizing bacteria (Ghosh and Dam, 2009). This includes the SOX 

pathway, which is mediated by a thiosulfate-oxidizing multi-enzyme complex. At the Harvard 
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Forest, the warming treatment has resulted in significant increase of transcripts encoding for 

the sulfite dehydrogenase cytochrome subunit SoxD and the sulfur oxidation molybdopterin C 

proteins.  

 

The experimental treatment also resulted in decrease of the nitrate and nitrite 

ammonification pathway at BW-8y site (Figure 1.4). This metabolic process is essential for 

microbial energy and vascular plants. After 4 years of warming increase in Harvard Forest, the 

treatment stimulated root exudation and promoted transformation of soil nitrogen compounds 

in the rhizosphere (Yin et al., 2013). There are three main mechanisms that bacteria employ to 

assimilate nitrate and nitrite, including ABC transporters driven by ATP hydrolysis, secondary 

transporters based on a proton gradient, and the NarK transport system (Moir and Wood, 

2001). The NarK system is analogous to the secondary transport mechanism and involved in 

denitrification processes. At the BW-8y site, all five annotated transcripts within the nitrate and 

nitrite ammonification pathway decreased with warming, however, not significantly affected at 

the gene resolution. The most abundant transcript encoded for the nitrate/nitrite transporter 

family NarK (pval=0.007 or after multiple test correction FDR=0.2). At our own BW site, it has 

been reported that the warming treatment increase inorganic nitrogen availability in soil to 

vegetation (Melillo et al., 2011). In the same site, the observed decrease in transcripts related to 

the nitrate and nitrite pathway with warming may result as inorganic nitrogen is readily 

available in the heated plots and cellular investment (e.g., ammonification) occurred at the 

control plots to compensate for the limitation. 

 

At the PH-20y, microbial processes related to iron metabolism depicted significant 

differences in the iron acquisition and hemin transport system pathways (Figure 1.4). Iron is an 
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essential element in aerobic bacteria for energy synthesis and heme production (Neilands, 

1995). Heme play an important role in electron transfer, redox activity, and function of 

conserved enzymes (e.g., nitric oxide) (Choby and Skaar, 2016; Faller et al., 2007). The warming 

effect on the hemin transport system was associated to the outer membrane receptor protein 

of iron transport. Based on the functional annotation, this protein has been detected in several 

bacterial groups, including Bacteroidetes and Betaproteobacteria. Both bacterial groups contain 

endosymbionts of insects and fungi (Bertaux et al., 2005; Gruwell et al., 2007; Sharma et al., 

2008). The Burkholderiales decreased with the warming treatment, with transcripts decreasing 

2% (control 7.7%; heated 5.3%) on average across the experimental sites. Burkholderiales has 

been described previously as endofungal bacteria (Partida-Martinez and Hertweck, 2005). 

Interestingly, the Burkholderiales and Fungi groups decreased both with the experimental 

treatment. Therefore, the warming effect can influence pathogenetic response and iron 

metabolism.  

Another significant effect with warming was detected on the increase of iron acquisition 

pathway linked to the TonB dependent receptor gene. This gene is among the most abundant 

mRNA and significantly increase with warming. The TonB system has been reported to be 

involved in metals (e.g., iron) uptake and aromatic metabolism (i.e., uptake and degradation) 

(Jordan et al., 2013; Miller et al., 2010). In this study, transcripts encoding for TonB dependent 

receptor were mostly linked to Acidobacteria, whose transcripts represent 6% for this gene. 

Acidobacteria as a phylum increased in response to warming as measured by 16S rDNA 

(DeAngelis et al., 2015). Overall, the Acidobacteria transcript abundance was not significantly 

different, however, specific genes like TonB associated to these phyla were more abundant. This 

highlights the significant role of this bacterial group to drive major ecosystem-level processes, 

including degradation of aromatic compounds. 
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  A small set of metabolic pathways doubled in abundance in response to warming 

(Figure 1.5). Most of these pathways were linked to carbohydrates and protein metabolism with 

a significant treatment effect recorded in the oldest warming sites (BW-8y and PH-20y). Cellular 

processes were linked to melibiose utilization, regulatory intramembrane proteolysis, 

mycofactocin system, ribosome small subunit (SSU) mitochondrial, and ribosome activity 

modulation. The melibiose utilization and ribosome activity modulation pathways were mostly 

associated to bacteria, whereas the regulatory intermembrane proteolysis and ribosome SSU 

mitochondrial pathways linked exclusively to eukaryotes (Figure 1.6). The pathways specific to 

eukaryotes were linked to Basidiomycota and Ascomycota fungal groups. 
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Table 1.1: Read abundance per soil metatranscriptomes. The columns show values for the 
sequenced sample (Sample ID), unprocessed reads (Raw reads), filtered and trimmed (Cleaned 
reads), concatenated pair-ended reads (Merged reads), ribosomal RNA reads as identified 
with sortmeRNA (rRNA reads), reads without hits with sortmeRNA (non-rRNA reads), and 
protein coding reads (mRNA reads). 
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Figure 1.1: Soil biodiversity at the Harvard Forest in the organic horizon. Stacked bar plots 
show relative abundance of microorganisms at domain resolution for metagenomics (MG) and 

metatranscriptomics (MT) datasets. Treemaps in the right side expand into the bacteria and 
eukaryotes groups. 

 

Figure 1.2: Warming effect in the abundance of bacteria relative to fungi mRNAs in the organic 
horizon for the three warming sites (SWaN, Barre Woods, and Prospect Hill) and all sites 

combined (All). The bar plot shows the experimental sites on the x-axis, ratio of Bacteria to 
Fungi on the y-axis, standard error as whiskers, and above the p-value (t-test) for the 

treatment effect. The dotted line compares heated plots for the adjacent warming sites SWaN 
and Prospect Hill. 
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Figure 1.3: Changes in soil biodiversity with the warming treatment. Bubble plot depicts 
selected taxonomic classes groups with fold change above relative changes with the warming 
treatment effect. Taxonomic groups with domain, phylum, and class classifications on x-axis. 
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Figure 1.4: Microbial metabolism associated to biogeochemical processes at the Harvard 
Forest warming sites. Large nodes in purple depict the three experimental sites (SWaN-5yrs, 
BW-8yrs, and PH-20yrs) with connecting nodes as metabolic pathways. Pathway-nodes were 
colored based on metabolism according to the key above, and red font depict pathways with 
significant (FDR≤0.1) treatment effect. Edges capture the treatment effect of transcriptional 
abundance; i.e. red means increase and blue decrease in abundance on metabolic pathways. 

pathways filtered to include processes for which the treatment effect (log2 fold change) is 
situated outside the interquartile range. 
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Figure 1.5: Taxonomic affiliation of metabolic pathways with significant treatment effect in 
the organic horizon. Large circles represent the metabolic pathways which contain smaller 

circles that represent the taxonomic groups. 
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Table 1.2: Overall shift in taxonomic groups across taxonomic resolution. Warming effect is 
capture with colors, red means increase, and blue means decrease in abundance of the taxon. 
Statistical significance recorded within parenthesis, non-significant (n.s.) or comparison id for 
significant taxon (FDR≤0.1). Comparisons include each site (SWaN (SW), Barre Woods (BW), 

Prospect Hill (PH)) and all together (All). 
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Table 1.3: IMG accession numbers for metatranscriptomes.  
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CHAPTER 2 

 
INTEGRATION OF SOIL METATRANSCRIPTOMES AND MASS SPECTROMETRY AFTER 15-YEAR OF 

CHRONIC WARMING 

2.1 Abstract 

In terrestrial ecosystems, soils contain about three times more carbon than is in the 

atmosphere. Microbial metabolism is a key controller of soil carbon dynamics and other soil 

biogeochemical transformations. However, we are only starting to identify the molecular 

processes and changes involved to the soil carbon pools in response to long-term warming. In 

our long-term soil warming experiment in the Barre Woods tract at Harvard Forest, a 5o 

elevation in soil temperature has increased respiration rates and the loss of soil carbon to the 

atmosphere. In order to link microbial metabolism with soil biogeochemistry, we measured 

cellular metabolism and soil organic matter chemistry using both next generation sequencing 

and high-resolution mass spectrometry (MS). The high resolving power and measurement 

accuracy of masses detected with MS enabled us to identify 16,814 carbon molecules, including 

58.7% with assigned molecular formula and 15.2% with hits to the KEGG database. Changes 

associated to lignin, hydrocarbons, and lipids reveal significant differences with the warming 

treatment. Microbial diversity also shows shifts in response to the temperature treatment, 

including metabolic changes associated to degradation of benzoic compounds, denitrification 

and ammonification, sulfur assimilation, and potassium uptake. Other metabolic changes 

associated with cellular processes such as dormancy and sporulation also increased with the 

experimental treatment. Taxonomic distribution differed between the heated soils and control, 

revealing a shift in the abundance of fungi, archaea viruses, and bacterial phyla in response to 

long-term warming. Network analysis integrated both MS and metatranscriptomes providing 

new insights on microbial carbon transformations. This integrative approach provides a 
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framework to inform soil respiration models that can be incorporated into ecosystem and 

biogeochemical processes. 

2.2 Introduction 

Large efforts have contributed to the understanding of carbon feedbacks in response to 

change in global temperature. The advancement has been constrained by limitations in our 

basic understanding of ecosystem processes. For instance, soil carbon reservoirs serve as a 

carbon sink, sequestering carbon from the atmosphere, but can switch to a source in response 

to climate change, thereby releasing carbon with the potential to contribute to further climatic 

shift. However, the magnitude and rate to which this can occur is not clear (Heimann and 

Reichstein, 2008). High complexity in soil reservoirs resides as mixture of compounds with 

variable turnover (Trumbore, 1997). These factors shape carbon pools and influence nutrients 

available to microorganisms (Dungait et al., 2012). Thereby influencing microbial communities 

and function (Carney et al., 2007; DeAngelis et al., 2015; Eichorst et al., 2011).   

Soil organic matter encompasses a broad spectrum of carbon substrates ranging from 

labile to recalcitrant compounds found in soil. Further, the heterogeneity among chemical 

properties within the C pools in the forest soil are not well-defined (Kleber et al., 2011). New 

high-resolution mass spectrometry methods (i.e., FTICR-MS) however reveal the molecular 

structure of constituents of the SOM (Simon et al., 2018; Tfaily et al., 2015). Some studies have 

shown the interconnection between soil chemistry and microbial diversity when coupled with 

amplicon and DNA probes (Ward et al., 2017; Wu et al., 2018).  

 

In our 15-year experiment, warming has resulted in increased respiration rates and loss 

of soil carbon to the atmosphere (Melillo et al., 2011). Here, we integrated soil chemistry and 
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microbial biodiversity to gain insights of carbon transformation linked to microbes. Soil 

metatranscriptomes captured microbial metabolism while FTICR-MS detected carbon molecules 

in the forest soil. Integration of data across these approaches depicted changes in chemical 

properties, microbial biodiversity, and carbon-enzyme groups acting on SOM transformation. 

2.3 Methods 

2.3.1 Sample collection and RNA extraction 

Soils were collected on May 24, 2017 from the Barre Woods long-term experimental 

warming plots located at the Harvard Forest Long Term Ecological Research (LTER) site in 

Petersham, MA. Fourteen soil cores were collected from subplots within the larger 30x30 meter 

plots. The experimental site has been further explained in previous publication (Melillo, 2002). 

Soil collection and RNA extractions were also explained in a former publication (Schulz et al., 

2018). Briefly, soils were separated into organic and mineral horizons by visual inspection and 

total RNA extracted from 28 samples (mineral; n=14 and organic; n=14) using the RNeasy 

PowerSoil RNA extraction kit (QIAGEN). cDNA libraries were prepared and sequenced on the 

Illumina NextSeq platform at the Joint Genome Institute (JGI). 

2.3.2 FT-ICR-MS solvent extraction and data acquisition 

Mass spectrometry analysis was carried on the same soil samples (n=28) collected for 

RNA extractions. For the solvent extraction procedure 500 mg of soil was weighed out into 2mL 

glass vials. We then performed a modified Folch extraction, protocol 6, by first extracting the 

soils with 1mL of MilliQ water (Tfaily et al., 2017a). This chemical extraction protocol combined 

with Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) is used to probe 

differences in metabolites among our samples. A 12 Tesla Bruker SolariX (Bruker solariX, 
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Billerica, MA) FTICR-MS was outfitted with a standard electrospray ionization (ESI) interface and 

operated in negative mode. Samples were directly infused at a flow rate of 3.0 μL min-1 into the 

mass spectrometer using a home built automated Pal Autosampler (HTX technologies) coupled 

with Agilent 1200 series pumps (Agilent Technologies) followed by two off line blanks.  

Experimental conditions were as follows: needle voltage, +4.2 kV; Q1 set to 50 m/z; and the 

heated resistively coated glass capillary operated at 180 °C.  Data were collected by co-adding 

144 scans from 100 m/z to 900 m/z at 4M and the ion accumulation time was optimized for 

each sample. 

2.3.3 FT-ICR-MS data processing 

One hundred forty-four individual scans were averaged for each sample and internally 

calibrated using an organic matter homologous series separated by 14 Da (–CH2 groups). The 

mass measurement accuracy was less than 1 ppm for singly charged ions across a broad m/z 

range (100 - 900 m/z).  Data Analysis software (BrukerDaltonik, v.4.2) was used to convert raw 

spectra to a list of m/z values applying FTMS peak picker module with a signal-to-noise ratio 

(S/N) threshold set to 7 and absolute intensity threshold to the default value of 100. Chemical 

formulae were then assigned using in-house software following the Compound Identification 

Algorithm (CIA), proposed by Kujawinski and Behn, modified by Minor et al., and described in 

Tolic et al. (Kujawinski and Behn, 2006; Minor et al., 2012; Tfaily et al., 2017b). Chemical 

formulae were assigned based on the following criteria: S/N >7, and mass measurement error < 

0.5 ppm, taking into consideration the presence of C, H, O, N, S and P and excluding other 

elements. 
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2.3.4 Bioinformatics and Statistics 

Raw pair-ended (2x150) sequences were merged and cleaned (i.e., filter and trimmed) 

using Flash and BBDuk, respectively (Bushnell, 2016; Magoč and Salzberg, 2011). FastQC tool 

was used to assess the quality of sequences (Andrews, 2010). Then, SortmeRNA was employed 

to remove ribosomal RNA sequences from further analyses (Kopylova et al., 2012). Retained 

sequences were searched against the non-redundant NCBI database with Diamond and output 

loaded into MEGAN for functional and taxonomic annotations (Buchfink et al., 2015; Huson et 

al., 2016). Statistics on both FTICR-MS and metatranscriptomes were performed in R 

environment (R Core Team and R Development Core Team, 2008). Data visualizations were 

performed in R with packages ggplot2 and plotly and Gephi (Bastian and Heymann, 2009; Chen 

et al., 2015; Wickham, 2009). 

 

2.3.5 Data Integration 

 Soil chemistry and microbial profiles were integrated using the Kyoto Encyclopedia of 

Genes and Genomes (KEGG) as metabolic framework (Okuda et al., 2008). The metabolic 

framework provides ecological information of microbial metabolism associated to enzymes and 

biochemical compounds. Further, this link the enzymes and compounds to ecosystem-level 

processes. For example, the nitrite reductase (KEGG EC:1.7.2.1) enzyme catalyzed the chemical 

compounds nitric oxide (KEGG ID: CPD:C00533) to nitrite (KEGG ID: C00088), which play an 

important role in the nitrogen cycle (KEGG pathway: Nitrogen metabolism). Based on the FTICR-

MS dataset, the biochemical compounds detected with assigned molecular formula were 

searched for hits against the KEGG compounds. In turn, the metatranscriptomes dataset 

informed about the enzymes for which the enzyme commission (EC) identifier was used as 
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reference against the KEGG metabolic pathways. The manually curated SEED functional 

annotation was used as reference for enzymes. Since more than one enzyme can act on more 

than one compound and vice versa, our approach parsed chemical reactions to account for such 

interactions. Therefore, the visualized integrative network contains enzyme-nodes shared with 

multiple carbon compounds. When both FTICR-MS and metatranscriptomes datasets are taken 

together, this enabled our integrative approach to inform of chemical reactions. 

2.3.6 Data Availability 

Metatranscriptomics sequences are publicly available at https://img.jgi.doe.gov/m, IMG 

accession numbers included in Supplementary Table 2.2. 

2.4 Results 

2.4.1 Soil Metatranscriptomes 

 
Sequencing of metatranscriptomes extracted from soils collected at the Barre Woods site 

produced a total of 184,499,712 protein coding reads obtained from across 28 soil samples with 

7 biological replicates for each soil layer in each condition. Sequences were assigned to 1,483 

taxonomic groups and 6,241 functional features. Abundance of some microbes was significantly 

different with the warming effect (Figure 2.1). Most taxonomic groups with significant 

treatment effect occurred at the class rank. However, the treatment resulted in significant 

changes across taxonomic ranks (Table 2.1). Most transcripts associated to prokaryotes (i.e., 

archaea and bacteria) increased in abundance with the experimental treatment. In contrast, the 

eukaryotes and viruses decreased in abundance with the temperature effect. As in the previous 

chapter, the abundance of fungi to bacteria decreased in response to long-term warming. 

Transcripts associated to viruses significantly decrease with the experimental treatment in both 
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soil layers (Figure 2.1). Most viral transcripts were linked to single stranded RNA (ssRNA) and 

positive-stranded sequences. From the diversity metrics tested, the Pielou’s evenness metric 

depicted a significant warming increase in the organic horizon. Fungi dominated the organic 

layer relative to the mineral. Both soil horizons reflected a significant decrease in the 

Leotiomycetes and Agaricomycetes fungal groups and Sordariomycetes only in the mineral 

horizon (Figure 2.1). The temperature effect altered abundance of bacterial members within 

four major phyla, including Actinobacteria, Chloroflexi, Acidobacteria, and Proteobacteria (Table 

2.1). Most bacterial groups with significant treatment effect increased in abundance in both soil 

horizons. However, members within Betaproteobacteria and Gammaproteobacteria groups 

showed a significant decrease with warming at the organic horizon. More specifically, the 

Betaproteobacteria group was associated to the Burkholderiaceae family and Gamma-

proteobacteria linked to Moraxellaceae and Rhodanobacteraceae families. The increase in 

bacteria encompass the Actinobacteria and Chloroflexi phyla, which both major groups reflected 

a similar treatment effect in both soil horizons (Figure 2.1). A significant difference in abundance 

was recorded for Mycobacterium in the both soil horizons and Thermoleophilia in the mineral 

within the Actinobacteria phyla. In turn, the Ktedonobacteria group accounted for the observed 

changes in the Chloroflexi phyla. 

 

Changes in functional processes were linked to several biogeochemical processes (Figure 

2.2). This included changes in carbohydrates, aromatics, sulfur (S), nitrogen (N), phosphorus (P), 

and potassium (K) metabolism. For instance, the transcriptional abundance of carbon 

metabolism, respiration, and cellular processes increased in abundance with the temperature 

effect in the organic horizon (Figure 2.3). In contrast, S and P metabolism in conjunction with 
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viral related pathways decreased in abundance. Metabolic pathways annotated in the mineral 

horizon showed an overall increase with the treatment effect (Figure 2.4).  

Metabolic pathways were linked to three major taxonomic groups in both soil horizons, 

including Acidobacteria, Actinobacteria, and Alpha-proteobacteria. Trehalose metabolism was 

mostly associated to Bradyrhizobiales and Beijerinckiaceae groups in both soil horizons. 

Nitrogen metabolism was linked to decrease in ammonia assimilation and increase in 

denitrification processes. At the gene resolution the respiratory nitrate reductase alpha and 

beta chains were linked to the Bradyrhizobiaceae group. The Thaumarchaeota archeal phyla was 

also associated to the nitrogen cycle. This group was linked to the copper-containing nitrite 

reductase gene. Further, members within Thaumarchaeota contain ammonia-oxidizers. Changes 

in aromatic degradation included toluene, quinate, and n-Phenylalkanoic acids (Figure 2.2). The 

taxonomic affiliation among these aromatic pathways were mostly associated to Actinobacteria 

and Alpha-proteobacteria phyla in both soil layers. Burkholderiaceae was associated to an 

increase in benzoate degradation activity with the warming treatment.  

Changes in abundance of the carbohydrates-active enymes (CAZy) were detected in the 

metatranscriptome comparison (Figure 2.5). Abundance of most significant CAZy families 

decrease in abundance with the temperature effect. Transcripts involved to the Polysaccharide 

Lyase (PL) family 14 (subgroups 3,4, and 5), Glycoside Hydrolases (GH) family 5 and Auxiliary 

Activities (AA) family 1 showed a significant decreased in abundance at the organic horizon 

(Figure 2.5A). In contrast, the AA11 represent the only family above fold change threshold to 

increase with the experimental treatment in the organic horizon. At the mineral horizon, the 
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CAZy enzymes depicted an overall decrease in PL (i.e., families 4 and 14), AA (i.e., families 1 and 

5), GH (i.e., families 5, 128, 72, and 28), and Carbohydrate Esterases (CE) family 8 (Figure 2.5B). 

In contrast, the carbohydrate binding module (CBM) group 6 increased in abundance at the 

mineral horizon. 

Figure 2.1: Changes in microbial biodiversity in response to the experimental treatment. The 
bubble plot depicts on the x-axis the H:C mean ratio, on the y-axis the taxonomic groups, 

bubbles (or circles) the abundance, and colored bubbles the statistical significance. The H:C 
ratio reflects the fold change between the heated plots relative to the controls (H:C ratio > 0 

means increase in abundance with warming and H:C ratio <0 means otherwise). Bubbles 
captures both, the treatment significance (FDR≤0.1; red means increase, blue decrease, or 

gray no change in abundance with the warming effect) and microbial abundance in log2 count 
per millions (logCPM). 
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Figure 2.2: Shifts in microbial metabolism related to biogeochemical processes. Bubble plot 
for selected SEED metabolic pathways in both mineral and organic horizons. Pathways were 

selected based on SEED Subsystems associated to metabolism with significant (FDR≤0.1) 
warming effect. Plot shows the logarithmic fold change on the x-axis (similar to Figure 1) and 

pathways sorted by Subsystems (Potassium (K), Phosphorus (P), Nitrogen (N), Sulfur (S), 
Aromatics, and Carbohydrates) on the y-axis. Significance is capture on red and blue colored 

bubbles, while size the abundance. 
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Figure 2.3: Sankey visualization of organic metatranscriptomes using the SEED functional 
annotation. From left to right, the SEED subsystems, SEED pathways, and treatment effect. 
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Figure 2.4: Sankey visualization of mineral metatranscriptomes using the SEED functional 
annotation. From left to right, the SEED subsystems, SEED pathways, and treatment effect. 
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Figure 2.5: Warming effect on carbohydrates active enzyme families at the A) organic and 
B) mineral soil horizons. 

2.4.2 Soil Chemistry 

The overall number of detected carbon molecules was 16,814 (100%), including 9,723 

(57.8%) with assigned molecular formula. Mass peaks outside the 200-900 m/z range were 

removed, resulting in 6,708 (39.9%) retained. The overall abundance of detected carbon 

compounds changed with the experimental treatment across soil horizons. In the organic 

horizon, the number of unique carbon molecules in the heated and control plot was 373 and 

1,010, respectively (Figure 6A,C). In the mineral horizon, the number of unique carbon 

molecules in the heated and control was 1,016 and 368, respectively (Figure 6B,D). Abundance 

of detected soil carbon decreased 13% in the organic horizon with the warming treatment, 

while carbon molecules increased 17% in the mineral horizon with warming effect. From the 

unique carbon compounds (Figure 6C,D), the compounds were further expanded into their 

carbon categories breakdown. Carbon compounds assigned to lipids depicted a significant 

(p≤0.1) increase with the treatment effect in both soil layers. Amino sugars compounds 

decrease only in the organic horizon. In terms of element composition, the C compounds 

depicted significant changes across most categories among the unique carbon moieties. For 
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instance, the CHO and CHON categories reflected the most striking response to the treatment 

effect. The CHO index was calculated to inform about the oxidation state as reported on Mann 

et al. (Mann et al., 2015). This index reflected an increase in the number of reduced compounds 

with warming in both soil layers. 

Figure 2.6: Changes in soil chemistry at the warming site. Van Krevelen diagrams for unique 
carbon compounds detected at the A) organic and B) mineral soil horizons. Compounds were 
colored by the treatment effect, red means only detected at the heated plots and blue means 

only detected at the control plots. Boxes within the Van Krevelen plots depict the carbon 
categories. Venn diagrams further summarize the relationship among compounds for the C) 

organic and D) mineral horizon. 

2.4.3 Integration 

Soil chemistry and microbial profiles were integrated using the Kyoto Encyclopedia of Genes 

and Genomes (KEGG) as metabolic framework (Okuda et al., 2008). The metabolic framework 

provides ecological information of microbial metabolism associated to enzymes and biochemical 

compounds. Linking the enzymes and compounds to ecosystem-level processes. For example, 
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the nitrite reductase (KEGG EC:1.7.2.1) enzyme catalyzed the chemical compounds nitric oxide 

(KEGG ID: CPD:C00533) to nitrite (KEGG ID: C00088), which play an important role in the 

nitrogen cycle (KEGG pathway: Nitrogen metabolism). Based on the FTICR-MS dataset, the 

biochemical compounds detected with assigned molecular formula were searched for hits 

against the KEGG compounds. In turn, the metatranscriptomes dataset informed about the 

enzymes for which the enzyme commission (EC) identifier was used as reference against the 

KEGG metabolic pathways. The manually curated SEED functional annotation was used as 

reference for enzymes. Since more than one enzyme can act on more than one compound and 

vice versa, our approach parsed chemical reactions to account for such interactions. Therefore, 

the visualized integrative network contains enzyme-nodes shared with multiple carbon 

compounds. When both FTICR-MS and metatranscriptomes datasets are taken together, this 

enable our integrative approach to inform chemical reactions using state-of-the-art high 

throughput technologies. 
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Figure 2.7: Integrative network with mass spectrometry and metatranscriptomic data. Nodes 
depict carbon compounds and enzymes captured with both FTICR-MS and metatranscriptomic 

in the organic horizon. Labels follow the KEGG nomenclature. Edges connect a compound to 
enzyme(s) and color capture the treatment effect based on enzyme activity. Enzyme-

compound communities with at least 4% of nodes were highlighted as non-gray. 
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Table 2.1: Taxonomic changes in both soil horizons. Abundance of taxonomic groups in bold 
significantly (FDR≤0.1) change with the warming treatment and color indicate the treatment 

effect (red means group increase abundance at the heated plots and blue means group 
decrease in abundance at the heated plots). 

Table 2.2: IMG accession numbers for soil metatranscriptomes. 
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2.5 Discussion 

At the Barre Woods site, the long-term warming effect has resulted positive feedbacks to 

woody tissue of plants and release of carbon into the atmosphere (Melillo et al., 2011). This 

carbon release has been associated to labile soil organic matter. In this study we demonstrated 

that long-term warming resulted in significant changes in soil biodiversity and soil organic 

matter decay in organic horizon. Furthermore, the FTICR-MS and metatranscriptomes were 

successfully integrated using KEGG as a metabolic framework. This allowed us to link microbial 

metabolism and soil chemistry in addition to interrogate each data set individually. Based on the 

soil chemistry profiles, the carbon compounds were depleted by 13%, whereas the carbon 

compounds increased by 17% in the mineral horizon. This carbon turnover suggests a 

translocation based on microbial transformations in the upper (organic) horizon to the lower 

(mineral) horizon. Although abiotic factors can be associated to the carbon shift, the detection 

of enzymes acting on those carbon compounds provide an extra layer of confidence about the 

biotic transformations.  

The soil chemistry analysis detected carbon moieties commonly found in the forest soil. For 

instance, the amino sugar compounds can be found in the cell wall of plant, bacteria and fungi, 

which upon senescence serve as a nitrogen source to microbes (Hu et al., 2018). At the Harvard 

Forest site, we measured a decrease in amino sugar, which the KEGG framework linked 

phytochemical compounds. The lipid compounds were linked to oxidoreductase reactions with 

NAD+ and NADP+ as acceptor. These cofactors play an essential role in redox metabolism and 

electron transport, therefore, cellular respiration (Rich, 2003). Consonant with previous 

observations, the long-term warming effect has resulted in the increase of cellular respiration at 

the field site (Melillo et al., 2017).  
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The integrative approach provided a new framework to synthesize soil chemistry and 

metatranscriptomes. This captured complete chemical reactions, i.e. compounds and enzymes, 

from a complex mixture of organic material and metabolites. From the integrative network, the 

compound-enzyme communities depicted functions necessary for cellular viability and stability 

processes, including amino acid synthesis and carbon metabolism (i.e., transport and 

degradation). This involved enzymes like chitobiose and chitinase employed by microbes to 

decompose soil organic carbon. As long-term warming favored more recalcitrant compounds, 

the observed increase in abundance for these enzymes were expected at the field site (Pold et 

al. 2017). 

Comparative analysis of metatranscriptomes detected significant shifts in abundance of 

fungi, prokaryotes, and viruses. The decrease in fungi involved groups with a wide range of 

ecological functions, including ectomycorrhizal parasites, symbionts, and saprobes (Hibbett, 

2006; Wang et al., 2006). At the Harvard Forest, the fungal decrease has been reported to 

reduce carbohydrate degradative enzymes with the temperature effect in the organic horizon 

(Pold et al., 2016). In terms of viruses, the decrease in abundance was linked to positive-sense 

single stranded RNA (ssRNA) viruses. Members of ssRNA viruses has been described as 

symbionts of arthropods and vertebrates (Jose et al., 2009). Recently, our collaborators 

provided in depth insights of the viral diversity in the forest soil, which can harbor giant viruses 

(Schulz et al., 2018). In previous studies viruses has been described to influence the carbon 

metabolism by association to bacteria and auxiliary CAZy groups (Jin et al., 2019). 

The Acidobacteria, Actinobacteria, and Proteobacteria were the three major bacterial phyla 

playing a key role in metabolic pathways with significant treatment effect. Changes associated 

to Bradyrhizobiales and Beijerinckiaceae were linked to ammonia assimilation and 
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denitrification processes. Previous studies described both bacterial groups as nitrogen fixers and 

methanotrophs (Jayasinghearachchi and Seneviratne, 2004; Lau et al., 2007). Abundance of 

pathogenic bacteria increase with the experimental treatment. This included Mycobacterium 

and Thermoleophilia groups. Mycobacterium members are well known pathogenic bacteria in 

human with the ability to degrade recalcitrant carbon in the gut (Gielnik et al., 2019). However, 

there are known members with similar characteristics isolated from soils (Wolinsky and 

Rynearson, 2015). In turn, the Thermoleophilia group has been reported to correlate with 

availability of dissolved organic matter and phosphorus limitation (Cui et al., 2018; Wu et al., 

2018). Although not pathogenic, the Ktedonobacteria is another soil-dwelling group that 

significantly increase in abundance and whose functional features (i.e. spore formation) allowed 

them to thrive under unfavorable conditions (Chang et al., 2011). In fact, the differentially 

abundant pathways associated to spore formation were linked to this group within Chloroflexi. 

Further, this group is capable to fix carbon monoxide (King and King, 2014). In fact, the 

taxonomic affiliation of the most abundant gene with significant treatment, RubisCO, was 

associated to this bacterial group.  

The integrative approach presented here provides a new framework to link cellular and 

chemical information from soil. Furthermore, this framework can be easily extended into other 

systems. As new high throughput technologies continue to evolve, more efforts are required to 

synthesize the large amount of information. Although challenging, there are plenty of space to 

further integrate multi-omics data. The integration of large-scale genomics data sets will provide 

stronger insights in natural communities and advance research in microbial ecology. 



40 

CHAPTER 3 

TIME SERIES OF SOIL METATRANSCRIPTOMES: INSIGHTS OF MICROBIAL COMMUNITIES 
EXPOSED TO LONG-TERM WARMING AT THE PROSPECT HILL SITE 

3.1 Abstract 

Ecosystem dynamics are influenced by abiotic and biotic factors. The main abiotic factors 

involve temperature and moisture. Both abiotic factors can control forest growth above ground 

and reshape the microbial community structure below ground. These complex dynamics 

conspire to shift nutrients (e.g., soil organic carbon) and enable new communities to establish. 

Here, we analyzed a time series of metatranscriptomics to determine changes in soil microbial 

communities in a natural environment and after long-term warming exposure. This leverage on 

the Prospect Hill warming site located in a mid-latitude deciduous forest. The samples were 

collected from six time points and one treatment with replication. The treatment effect 

consisted of an increase of 5℃ in the heated plots relative to the ambient temperature 

measured in the controls. Results depicted a similar community structure across the seasonal 

time points. However, the warming effect resulted in a strong differentiation of soil 

metatranscriptomes. Significant community changes occurred within the Proteobacteria phyla. 

Warming increased the abundance of Alpha-proteobacteria and decrease of Beta-

proteobacteria groups. This time series provided new insights in microbial structure after long-

term warming exposure and seasonal variation. 

3.2 Introduction 

Soil microbes are an essential component in mediating biogeochemical processes. These 

microorganisms respond to soil carbon availability, carbon chemistry, and nutrient content 

(Classen et al., 2015; Melillo et al., 2017). A single gram of soil is estimated to harbor up to 1×109 

microbial species. This large biodiversity has been link to major roles in ecosystem functioning 
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(Maron et al., 2018). This microbial role involves nutrient acquisition (Heijden et al., 2008), 

carbon cycling (Bardgett et al., 2008), phosphorus cycling (Correa et al., 2016), and nitrogen 

cycling (Hayatsu et al., 2008). Moreover, the abiotic factors exert control over microbial 

dynamics to move nutrients and eventually ecosystem-level processes. 

There is seasonal variation influences several abiotic factors in terrestrial ecosystems. 

This include moisture, temperature, pH, and vegetation at Harvard Forest. However, 

temperature and moisture are by far the main abiotic mechanisms, which in turn control pH and 

vegetation. Several studies indicate that both abiotic factors regulate carbon mineralization 

(Benbi et al., 2014; Curtin et al., 2012; Taggart et al., 2012). Besides the regulation of soil organic 

matter, moisture itself can constraint the mobility of bacteria and in excess can destroy soil 

aggregates (Viswanath and Pillai, 1972; Yang et al., 2017). The soil aggregates serve as pocket of 

nutrients and niche for microbial communities (Upton et al., 2019). Therefore, the temporal 

variation shapes the biodiversity of both above and below ground. 

Insights of natural communities in soil continue providing a new dimension of the high 

biodiversity below ground (Jing et al., 2015; Peters et al., 2019; Schulz et al., 2018). More 

recently, a new framework to categorize the large amount of genomic information was 

proposed (Fierer et al., 2007). The ecological concept presented by Fierer et al. provided a new 

classification framework to soil-dwelling bacteria, which can be categorized as copiotrophs or 

oligotrophs. This framework was adapted from the r- and K- selection categories established for 

macroecology (Pianka, 1970). The oligotrophs and copiotrophs differentiate by their 

physiological traits. Oligotrophic microorganisms are capable to survive under poor nutritional 

environments, whereas the copiotrophic cannot proliferate due to high nutritional 

requirements.  
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Microbial metabolism and biodiversity are affected by temperature (Okie et al., 2015). 

In the tundra, the decomposition rate of soil organic carbon is limited by low temperatures 

(Koyama et al., 2014). In contrast, soil organic carbon and other nutrients are limited to soil 

microorganisms in the tropics (Kaspari et al., 2008). Here, we used a metatranscriptomics 

approach to capture changes in the microbial community structure across a time series that 

captured the seasonal variation at the Prospect Hill warming site. The Prospect Hill warming site 

was established in 1991 and form part of the Long-Term Ecological Network sites (Melillo, 2002). 

This outdoor experiment consists of increasing the soil temperature 5℃ above the ambient 

temperature. As result, we can further explore the microbial community structure in response 

to both a seasonal variation and long-term warming exposure. While the vast majority of soil 

microbes remains uncharacterized, new molecular techniques enabled the study of natural 

communities (Zhou et al., 2015). To this end, we profiled the 16S and 18S regions obtained from 

the soil metatranscriptomes. Our results suggest that long-term warming produce a stronger 

response to the community structure relative to the time series. Also, we provided suggestions 

to better capture the microbial activity and biodiversity using metatranscriptomics. 

3.3 Methods 

3.3.1 Soil Samples 

Harvard Forest is home of the Long-Term Ecological Research (LTER) site used 

throughout these experiments. Soil samples were collected for 6 time points at the Prospect Hill 

warming site (Table 3.1). The time points capture the temporal changes at the Harvard Forest, 

which is a deciduous forest located in Petersham, Massachusetts. Also, the samples were 

collected from the disturbed control plots and heated plots. Here we referred to the disturbed 

control plots as controls. It is important to make this distinction as samples were collected from 
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plots with installed coils like in the heated plots, but these coils were never turned on. At the 

time of soil collection, the heated plots experienced the increase in soil temperature, 5℃ above 

the ambient temperature, for the past 23 years. The soil cores were divided by horizon, with the 

organic horizon and mineral separated by visual inspection. This method has shown to work well 

as both soil layers depict very distinct colors. On site, the samples were sieved to remove rocks 

and placed in a cooling bath. This bath consisted of a mix of ethanol and dry ice. Then, the 

samples were transported to UMass and storage at -80 ℃ until nucleic extractions.  

Table 3.1: Dates of sample collection at the Prospect Hill warming site. The columns show the 
time point order, date, and week of the year. 

3.3.2 RNA Extractions and Sequencing 

Total RNA was extracted from 144 samples using the RNeasy PowerSoil RNA extraction 

kit (QIAGEN). Also, an artificial phage was added to the complementary DNA (cDNA) libraries to 

measure the RNA extraction efficiency post-sequencing. The phage was added to account for 

0.05% of the RNA yield per sample. Then, the cDNA libraries were assessed for quality using a 

bioanalyzer and qPCR machine. This process selected for samples that meet or exceed a 

minimum concentration of 1.8 pM per libraries. The Illumina NextSeq platform and 500/550 Mid 

Output kit with 300 cycles was used to sequence the libraries. This resulted in 57 organic 

samples sequenced (Table 3.2).  
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Table 3.2: Breakdown of sequenced soil samples per horizon and treatment at the Prospect 
Hill time series. The columns show the time point, total number of sequenced samples by time 

point, and number of sequenced samples by treatment. 

3.3.3 Bioinformatics and Statistics 

Raw pair-ended sequences were checked for quality using the FastQC tool (Andrews, 

2010). Then, the artificial phage reads were removed by searching the sequenced samples 

against the phage-target sequence with the BBduk tool within the BBTools suite (Bushnell, 

2016). The phage was added only to determine RNA yield efficiency. GNU parallel library was 

employed to optimize the analysis process in multiple samples (Tange, 2011). BBduk suite was 

employed again to remove adapters and trim low-quality ends (10bp). Then, the FLASH tool was 

used to concatenate both pair-ended sequences. SortmeRNA tool served to identify both 

ribosomal RNA (rRNA) and non-rRNA sequences (Kopylova et al., 2012). Finally, the RiboTagger 

tool was used to align the cleaned sequences against the V4 variable region (Xie et al., 2016). 

The RiboTagger algorithm provides a higher level of sensitivity over RDP or SILVA algorithms. 

Furthermore, this tool can target taxonomic groups across three domains (i.e., bacteria, 

archaea, and eukaryotes). Taxonomic resolution is comparable to assignment of operational 

taxonomic units (OTUs). RiboTagger integrates well with MEGAN to easily generate the 

community matrices by taxonomic rank and export the taxonomic frequencies (Huson et al., 
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2016). The R statistical language was employed to determine significant taxonomic groups and 

visualize the results for the time series (R Core Team and R Development Core Team, 2008). 

3.4 Results 

Soil temperature changed across the time series (Figure 3.1). The lowest temperature 

was recorded at T1 (wk-18) and T6 (wk-44), which represent each end of the time points. In 

turn, the warmest soil temperature was detected at T3 (wk-27) and T4 (wk-35) for which 

samples were collected during the summer season. Furthermore, the soil water content 

decrease at T3 and T4 in respect to the other time points. In contrast, the soil water content 

increased at the shoulder time points, i.e. T1 and T6, as rain events occur more often during the 

months of soil collection (Table 3.1). Therefore, the time series captured the seasonal variation 

at the Harvard Forest. 

Sequencing resulted in 57 samples with 24,271,193 sequences across the time series 

(Table 3.3). The ribosomal RNA (rRNA) sequences were assigned to 846 unique taxonomic 

groups (Magoč and Salzberg, 2011). We were able to detect taxonomic groups associated to 

bacteria and eukaryotes (Figure 3.2). Although ordination techniques reflected soil samples not 

clustering by the temporal effect, the soil metatranscriptomes depicted a strong warming effect 

across the time series (Figure 3.3). When samples were split by time point, the pattern was clear 

and more obvious (Figure 3.3B). 

Warming altered the diversity of taxonomic classes within time points (Figure 3.4). The 

diversity metrics reflected an overall increase in abundance with the temperature treatment. 

However, the warming effect resulted in a significant (p value<0.05) warming effect only in T1 

and T6. We further tested the temperature effect within taxonomic groups. At the class rank, we 

detected several groups commonly found in soil (Figure 3.5). Changes in abundance were 
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detected among this taxonomic groups. For instance, the abundance of Actinobacteria increased 

with warming at T1, whereas the Betaproteobacteria and Acidobacteriia groups decreased in 

abundance. At T2, the abundance of Planctomycetes and Spartobacteria groups increased, while 

the Agaricomycetes decreased in abundance. In T3, the Spartobacteria class was the only 

taxonomic group with significant treatment effect, which slightly increased in abundance with 

warming. At T4, the Bacilli and Alpha-proteobacteria groups increased in abundance, as opposed 

to the Betaproteobacteria. In T5, the Bacilli class was the only significant group whose 

abundance increase with respect to warming. At T6, the Plantomycetia increased in abundance 

with the treatment effect, while the Agaricomycetes and Sphingobacteria classes decreased in 

abundance with warming. 

Taxonomic abundance of metatranscriptomes were linked to soil-dwelling bacteria and 

fungi. Highly abundant groups included Bradyrhizobium (alpha-proteobacteria), Xanthobacter 

(Alphaproteobacteria), Sorangium (Deltaproteobacteria), Burkholderia (Betaproteobacteria), 

and Russula (Ascomycetes) (Figure 3.5). Furthermore, the abundance of these groups tended to 

increase with the temperature effect within time points and in some instances following a 

pattern across the time points (Figure 3.6). For individual time points, the warming effect 

resulted in significant differences for Bradyrhizobium, Burkholderia, and Xanthobacter (Table 

3.4). However, other general trends arise across the time series. For instance, the abundance of 

the Bradyrhizobium genus was constantly higher in the heated plots relative to the control plots. 

In the heated plots, this Alphaproteobacteria group showed a consistent increase from wk-18 to 

wk-35, then the abundance decreased in wk-39 close to the abundance in wk-18 and gradually 

started to increase as depicted in wk-44 (Figure 3.6). Relative abundance of the fungal genus 

Russula depicted a bell-like shape in the control plots, with peaks in wk-27 and wk-35. Similar to 

previous studies, the fungi markers decrease in abundance with the temperature effect. 
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Detection of Russula in the heated plots fluctuated across the temporal factor. Sorangium was 

another taxonomic group for which taxonomic distribution resembles a bell curve with higher 

abundance at wk-27 and wk-35. In contrast, the abundance of Sorangium gradually decrease in 

the heated plots from wk-18 until wk-39 and abundance increase once again in wk-44.  
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Table 3.3: Sequence breakdown and metadata associated to the time series. The columns 
depict the sample identifier (Sample ID), unprocessed sequences (Raw Reads), artificial phage 
added to libraries (Phage Reads), concatenated and cleaned pair-ended reads (Merged Reads), 
GC percentage (GC%), ribosomal RNA sequences as detected with sortmeRNA (rRNA Reads), 
Time Point, Treatment , soil weight in grams used for extraction (Soil), and RNA concentration 
per sample (RNA). 
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Figure 3.1: Soil temperature measured in the control and heated plots at the Prospect Hill 
site. The plot depicts the average temperature (℃) on the y-axis and sample collection time 
point with week number within parenthesis on the x-axis. 
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Figure 3.2: Abundance of taxonomic groups at the domain rank for each treatment across the 
time series. The stacked bar plot shows the relative abundance of transcripts in the y-axis and 
the treatment effect on x-axis for each time point (T1, week 18; T2, 23 wk; T3, wk 27; T4, wk 
35; T5, wk39; and T6, wk 44). 
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Figure 3.3: Microbial structure differ by the treatment effect across the time series. 
PCoA ordination plots were presented with A) all time points combined and B) splitted 
by time point. The Bray Curtis distance was used to determine similarities among soil 
metatranscriptomes. 
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Figure 3.4: Diversity metrics for taxonomic groups at the class resolution. The metrics 
includes A) Shannon’s, B) Simpson’s, C) Richness, and D) Pielou’s evenness indices for each 
time point.
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Figure 3.5: Microbial community shifted in abundance with the warming effect. Abundance 
of taxonomic groups at the class resolution. Groups with abundance below 1% were binned 
as others. 

Figure 3.6: Rank abundance curve of taxonomic group annotated at the Prospect Hill site. 
Taxonomic groups at the genus resolution and labels added to taxa with relative abundance 
>7%. Treatment effect captured with the highlighted colors, red means annotated at the
heated plots and blue means annotated in the control plots.
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Figure 3.7: Spatiotemporal and treatment effect within the most abundant microbial 
groups. Taxonomic groups showed at the genus rank. The seasonal effect is captured with 
the highlighted colors and treatment effect showed within facet for each of the top 5 
genera. 
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Table 3.4: Warming effect for core taxonomic groups exposed to the long-term warming 
treatment across the time series. The columns show the time points, core taxonomic group at 

the genus rank, and p value based on a Wilcoxon test. 
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Figure 3.8: Co-occurrence network of taxonomic groups at the genus rank. Taxa shown for 
groups with a minimum threshold of 1% reads assigned, prevalence range of 10-100% of 
samples for which class rank must be considered present, and minimum probability of 70% 
with which two classes co-occur in samples. Edges depict co-occurrence in green and anti-
occurrence and node size relative to abundance. 

3.5 Discussion 

Soil metatranscriptomes reflected a strong shift in microbial community composition 

with the warming treatment (Figure 3.3). The community structure, however, depicted no 

significant differences across the time series. This result was opposed to our expectations. The 

expectations derived from changes in nutrient availability (e.g., carbon), soil moisture and pH 

with the seasonal variation. Although the community structure was similar across the time 

series, it is possible that changes occurred at the functional level. In fact, the two previous 

chapters highlight that most changes occurred at the functional level. Another possibility 

involved the sequencing efforts, which sequencing depth resulted in a wide range for the 

metatranscriptomes. Also, the unequal number of replicates limited our statistical resolution to 

identify significant differences in low abundant taxa within the time series. As result, we focused 

our findings around the core taxonomic groups.  
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Changes associated to the warming effect were linked to soil-dwelling organisms playing 

an important role as symbionts, saprotrophs, or antibiotic producers. These organisms included 

both bacteria and fungi. Most bacterial changes were linked to Proteobacteria, Acidobacteria, 

and Actinobacteria. In turn, the fungal shift was linked to Basidiomycetes. At a lower resolution, 

the core taxonomic groups included Bradyrhizobium, Sorangium, Burkholderia, Xanthobacterer, 

and Russula (Figure 3.5). Members associated to Bradyrhizobium has been described as 

nitrogen-fixing symbionts, which enhanced plant growth with production of several molecules 

(Hayat et al., 2010). These molecules include auxins, cytokinins, abscisic acids, lumichrome, 

rhiboflavin, lipochitooligosaccharides and vitamins. The abundance of Bradyrhizobium increased 

with respect to the warming treatment at the Prospect Hill site.  

Burkholderia is another symbiont and figured among most abundant taxa. Previous 

studies described this group as nitrogen fixers (Estrada-De Los Santos et al., 2001; Vandamme et 

al., 2002). At Prospect Hill site, the overall abundance of Burkholderia decrease with respect to 

the temperature effect. The seasonal effect did not reflect a clear pattern, however, an increase 

in abundance within the heated plots was recorded in the last two time points. A physiological 

characteristic of Burkholderia members is the flagella (Hofer, 2018). As described above, the 

precipitation and soil moisture in the last two time points is higher. Then, it is possible that 

bacterial members associated to Burkholderia increase as result of elevated soil moisture which 

favor the motility of the soil bacterium. 

Russula was the only fungal group detected among the most abundant taxa. This group 

has been described as mycorrhizal fungi with high preference to birch forest (Geml et al., 2010; 

Girlanda et al., 2006). Based on the warming effect, the fungi group depicted a decrease in 

abundance. A similar trend has been recorded in other studies at the Harvard Forest (DeAngelis 

et al., 2015; Melillo et al., 2017). Changes in the time series were only detected in the controls. 
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As expected, the abundance of Russula peaked during the warmest time points and gradually 

decrease in the subsequent time points. 

Warming resulted in the overrepresentation of saprophytic bacteria. As detected in the 

soil metatranscriptomes, the bacterial group Sorangium increase in abundance with warming. 

This deltaproteobacteria member is characterized to produce spores under unfavorable 

conditions (Mohr et al., 2018). In other studies, members isolated from soil has been described 

as saprotrophs and producer of antifungal metabolites (Pradella et al., 2002; Schneiker et al., 

2007). Similarly, the Xanthobacter group reflected significant shifts with the warming treatment. 

Besides saprophytic bacteria, the Xanthobacter group is known to harbor nitrogen fixing 

members (Line, 1997). Abundance of both bacteria group showed a variable pattern across the 

time series (Figure 3.7).  

A co-occurrence network analysis reflected a much more complex dynamic among 

taxonomic groups at the Prospect Hill site (Figure 3.8). Interestingly, the most abundant soil 

microbes depicted a positive correlation among them, whereas the low abundant taxa reflected 

a negative correlation. The co-occurrence network seems capture some common and expected 

biological relations. For instance, soil microbes previously described as bacterial symbionts 

correlated positively among them. However, the Russula group reflected an anti-occurrence 

with bacterial groups with antimicrobial properties. The negative correlation among low 

abundance soil-dwelling groups may arise as result of nutrient limitation. In fact, the long-term 

warming treatment has resulted in limitation of soil organic carbon (Melillo et al., 2011).  

Taxonomic analysis based on rRNA represent a major challenge. We successfully 

annotated the soil metatranscriptomes with the tradeoff that only one percent of the overall 

sequences were annotated. The RiboTagger algorithm proved to be robust to annotate soil-

dwelling microorganisms based on the V4 region. This included both eukaryotes (18S) and 
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bacteria (16S). Although the rRNA annotation was challenging, the results matched with 

previous metatranscriptomics analyses based on messenger RNA (mRNA). However, we would 

recommend that for metatranscriptomic analysis, especially for soil, to target the mRNA 

fraction. If possible, we highly recommend removing the rRNA. In previous experiments, this 

approach better captured microbial biodiversity of taxonomic groups across domain (i.e., 

viruses, archaea, and viruses). Furthermore, the mRNA profiles can provide insights of the 

functional activity of microbial communities. Also, the number of bioinformatic tools to mine 

the mRNA data is greater and continuously optimized, but otherwise with the rRNA data. When 

taken the above all together, metatranscriptomics must target the mRNA for a more robust 

approach in capturing activity in natural communities.  
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