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ABSTRACT 

SILVER MIRROR SUBSTRATE AND ROLLING METHOD FOR IMPROVED 
SURFACE-ENHANCED RAMAN SPESCTROSCOPIC ANALYSIS IN FOOD 

 
SEPTEMBER 2019 

YANQI QU, B.A., PENNSYLVANIA STATE UNIVERSITY 

M.A., PENNSYLVANIA STATE UNIVERSITY 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Lili He 

Surface enhanced Raman spectroscopy, short for SERS, is an emerging technology with 

great potential in food analysis due to rapid detection, high sensitivity, portable 

instrumentation, and simple sample preparation. However, it is always a bottleneck to 

obtain reproducible SERS measurements in real analytical cases due to the complicity of 

food systems and inhomogeneous aggregation of colloidal nanoparticles. To improve its 

performance for practical applications in food analysis, efforts have been made in 

improving the reproducibility, enhancing the selectivity and reducing the matrix 

interference to the analyte. Herein, a self-assembly silver nanoparticles mirror substrate 

was fabricated to improve the and the quantitative ability and effectiveness of sample 

preparation for different applications in food analysis, including pesticides detection in 

beverages, chemical profiling of red wines, and headspace analysis of garlic. The AgNPs 

mirror was fabricated using the interface between polar and non-polar solvents and showed 

a uniform arrangement of nanoparticles under the microscope. It demonstrated a great 

reliability for the detection of a pesticide fonofos in beverages (i.e., apple juice and green 

tea). AgNPs mirror can also be in situ fabricated in red wines to generate a comprehensive 

spectrum constituted by signals of five wine phytochemicals, which provided a great 
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potential of SERS in the differentiation, authentication, and quality/safety control of red 

wines. AgNPs mirror also showed a great potential in the headspace characterization of 

aromatic compounds from Allium species plants. Additionally, a facile rolling method was 

developed to enrich analyte (i.e., chlordane pesticide) and to amplify its weak SERS 

activity and a mathematic model was generated and successfully quantified the chlordane 

in a complicated crude oil sample with a very good recovery. Overall, AgNPs mirror and 

the rolling method overcame the reproducibility and sensitivity problems for SERS in 

several challenging food matrices. With these improvements, SERS can be much more 

reliable for analytical applications and its range of targets can be widely expanded. 
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CHAPTER 

1. INTRODUCTION 

Background  

In last decades, surface-enhanced Raman spectroscopy (SERS) has been 

extensively explored and becoming a promising technology to detect various chemical and 

biological analytes in environmental, agricultural,  food, and medical applications1–7. SERS 

combined Raman spectroscopy and nanotechnology. Raman spectroscopy measures the 

vibration of chemical structure and functional groups and generates a label-free signature 

fingerprint of the molecule being scattered. Raman scattering is relatively weak, however, 

after placing the analyte in the close proximity of certain noble metallic nanostructure, the 

Raman scattering of the analyte can be dramatically enhanced 106 to 108 times. SERS-

based methods showed great advantages over the standard methods for food analysis (e.g., 

UV- vis spectrophotometry, fluorescence, HPLC, GC-MS, etc.)8. In terms of simple sample 

preparation, rapid detection, facile instrumental operation, and cost effective. Furthermore, 

the commercial availability of handled or portable Raman instrument allows SERS to be 

an in situ analytical solution for the on-site quality and safety analysis during or after the 

food processing.  

The enhancement of Raman scattering is mostly dependent on the SERS substrates. 

The most traditional SERS active substrates are colloidal nanoparticles, which can be easily 

fabricated and are already commercially available. It features a very simple sample 

preparation by mixing the colloidal nanoparticles suspension with analyte in solution. The 

aggregation of nanoparticles (i.e., coffee ring effect) driven by the surface tension during 

the mixture evaporation will generate “hot spots” to enhance the signal of target analytes.  
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However, the aggregation of colloidal nanoparticles during the evaporation cannot 

be precisely controlled, which could lead to weak  reproducibility of the SERS 

performance9,10. The large variation has been considered as the major drawback of the 

colloidal nanoparticle substrates, along with the lack of quantitative ability due to the same 

reason. However, the aggregation is sometimes needed to form hotspots and generate 

Raman intensity enhancement, so it is very critical to control the aggregation of 

nanoparticles10,11. Furthermore, colloidal nanoparticles are lack of selectivity if no surface 

modification is done and are sensitive to matrix background. Another challenge for real-

world application is the lack of sensitivity for certain analytes with a weak Raman-active 

structure or weak interaction with the SERS substrates. Detection of these analytes in a 

complex food matrix is extremely difficult.  

Therefore, many efforts have been done to improve the reproducibility of SERS, 

the sensitivity for certain analyte of interest, as well as develop optimum sample 

preparation to reduce matrix interference. Some examples of reported approaches include 

self-assembly fabrication, lithography fabrication, microfluidic integration, and 

functionalization of SERS-active substrates. However, efforts for food application are still 

not well explored.  

Objective 

Long term goal of this project is to improve the efficiency of SERS for food 

analysis. To reach the overall goal, the specific objectives of this project are to fabricate a 

SERS substrate that can contribute consistent and quantitatively improved results for 

different targets in varied food systems and to develop a simple sample preparation method 

to amplify the weak surface enhanced Raman scattering of target analytes.  
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Objective 1: Development of a facile solvent based method to fabricate AgNPs 

mirror for improving quantification analysis.  

Objective 2: Determination of the reproducibility and quantitative ability of the 

mirror substrate and its performance in detection of pesticides in water and beverage. 

Objective 3: Application of the mirror substrates in red wines profiling. 

Objective 4: Application of the mirror substrate in the headspace analysis of food 

matrices.  

Objective 5: Investigation of a facile rolling method to amplify the analyte of 

weak SERS activity (i.e., chlordane) in food.  

The completion of these studies will establish a facile and innovative approach to 

fabricate a uniform reproducible, and quantitatively improved SERS substrate that can be 

adapted in detection the trace of contaminants and bioactive compounds in complex food 

matrices. The development of this substrate can expand the potential applications of SERS 

for food analysis, including the measurement of targets in complicated aqueous phases and 

gas phases, the chemical profiling of wine samples and its potential correlation to wine 

quality. Furthermore, the development of the rolling approach can achieve the intensity 

amplification of previously reported analytes with weak SERS signals and improve the 

resolution and the limit of detection of the analyte in food
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2. LITERATURE REVIEW 

Current methods for food analysis  

Food analysis is an important category in analytical chemistry, it can provide 

chemical information in food matrix including the composition, additives, processing, 

and contamination, to monitor the overall quality, to ensure the safety characteristics, to 

implement the law enforcement, to investigate the compliance, to establish standards, and 

to analyze nutritional value 12. In terms of the food safety and quality, many foods are 

threatened with chemical and microbial hazards such as pesticides, food pathogens, 

antibiotics, banned colorants, and abused preservatives. Therefore, developing accurate 

analytical methods for monitoring and detecting these targets is in a great need 13. 

Currently, standard methods such as chromatographic techniques, UV-visible and 

spectroscopy methods, and immunoassays were widely explored and applied in chemical 

characterization of food matrices.  

Chromatographic methods 

Modern analytical instrumental techniques (e.g., gas chromatography (GC), high 

performance liquid chromatography (HPLC), mass spectrometry (MS), and etc.)14, are 

the gold standard analytical tools and have been extended to the food analysis. Combined 

with instrumental analytical techniques (e.g., UV-visible spectrophotometry, nuclear 

magnetic resonance, or mass spectrometry)15, they are able to identify specific chemical 

compounds based on their molecular characters 7 and produce highly sensitive results. 

GC/HPLC analysis has a relatively low detection of limit and is applicable for most 

bioactive components. Chromatographic techniques show several advantages compared 
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to liquid chromatography, including fast detection, wide variety of stationary phases, 

improved resolution, great sensitivity and easy sample recovery. However, disadvantages 

such as requirement of professional operation, time consuming, and lack of portability 

were also pointed 13,16.  

UV-visible and fluorescence spectroscopy  

Both UV-visible and fluorescence spectroscopies are most common analytical 

techniques in food qualitative and quantitative analysis. The absorbance spectroscopy 

quantifies the concentration of analyte in a sample solution based on the amount of 

absorption in a reference beam passing through the sample solution17. UV-visible 

spectroscopy provides a quick and simple analysis of the target and the Beer’s law can be 

quickly applied for quantitative objectives; however, the accuracy and sensitivity are 

highly dependent on the transparency of the sample and can be easily affected by the 

impurities and the contaminants in the sample.  

On the other hand, fluorescence spectroscopy is about 10-1000 times more 

sensitive than the absorption spectroscopy. Initially, the analyte absorbs the radiation 

from the UV/visible range and is activated to a high energy level. Then, it relaxes and 

emits the electromagnetic radiation from the excited energy level to a its ground state, 

where the radiant power is measured as the fluorescence signal. The radiation wavelength 

for each scenario is specific and dependent on the chemical structure of the analyte, so do 

the excitation and emission wavelengths. The concentration of the analyte is proportional 

directly to the fluorescence signal17. To be noted, the sensitivity of the fluorescence 

spectroscopy is highly dependent on the power of the incident beam according to the 

equation, especially for circumstances of low detecting concentration17. Fluorescence 
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spectroscopy is widely used in the food analysis due to it high sensitivity, specificity, 

wide concentration range and accurate results, however, not every analyte has a 

fluorescence and the price of instruments is relatively high. The fluorescence reading can 

also be interfered by the impurities of the sample, presence of the bubbles, and pH of the 

analyzing environment.  

Immunoassays 

The immunoassay is based on the high affinity binding of the antibodies to 

antigens. The most common immunoassay is called enzyme-linked immunosorbent 

assay, short for ELISA. It involves the binding of the target (antigens or antibodies) to a 

platform and the removal of unbound molecules through washing steps. Normally, it 

combines with the colorimetric assay and uses the measurement of color intensity to 

determine the concentration of analytes. In food analysis, some targets are small 

molecules, which cannot trigger the formation of antibodies in animals. To ensure the 

high affinity and specificity of the immunoassays, those small molecular analytes are 

absorbed by a larger carrier protein and are detected indirectly through the immune 

binding18. Immunoassays provide sensitive results and rapid detection with relative cheap 

reagents, inexpensive instruments. However, the measurement of enzyme activity 

sometimes is more complicated than the targets, it might be affected by the chemistry of 

detecting environment, such as pH. Additionally, the detection of small molecules is still 

not sensitive due to the lack of selection of the carrier molecules19.  

Summary 

Even though above-mentioned analytical methods were well established and 

considered as standard techniques for food analysis, they were time consuming, 
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laborious, highly dependent on trained personnel, lack of sustainability for large-scale 

sample screening, and suffered from interreference from impurity, and complicated 

sample preparation7,13. Therefore, it is crucially for analytical chemists and food scientists 

to pursue inexpensive, portable, rapid, and reliable techniques with high sensitivity, facile 

analysis, and high throughput using small volume of samples to trace concerns in food 

commodities and to satisfy the demand of modern food industry9,13.  

Raman spectroscopy and Surface Enhanced Raman spectroscopy 

Raman spectroscopy 

Raman spectroscopy was introduced in early 20th century as one of vibrational 

spectroscopic techniques20,21. Once a visible or near infrared laser beam irradiated a 

sample, a small part of photons was scattered, meanwhile, an inelastic collision occurred 

between incident photons and molecules in the irradiated subject. Therefore, the 

vibrational energy of the molecule was changed as well as the wavelength of the scattered 

light shifted to a different level from the incident light, and the difference of the 

frequency (i.e., wavelength) of scattered light and incident light is named as the Raman 

shift22,23.  The intensity of Raman scattering at each frequency and the Raman shift 

constitute the Raman spectra. More importantly, the Raman shifts (i.e., spectra bands) are 

dependent on the chemical bonds or the functional groups of the molecules involved in 

the scattering. Therefore, the Raman spectra can provide a fingerprint of a specific 

substance that can be beneficial for chemical characteristic analysis and qualitative 

analysis22.  

Raman spectroscopy has been performed in food analysis because Raman 

intensity was found linearly proportional to the concentration of the analyte22. 
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Additionally, Raman spectroscopy has  significant advantages including high specificity 

to molecules, short analyzing time, good compatibility with water-based sample, and no 

requirement of sample preparation22,24,25. However, Raman signals are always relatively 

low and dependent on the high-quality instrumentation because the scattering only 

happened to a tiny portion of photons from the incident laser23.   

Surface-enhanced Raman Scattering 

To enhance the signal of Raman scattering, as shown in Figure 1, when probed 

molecules are attached with noble metallic nanostructures (e.g., Au, Ag, Cu, Pt, TiO2 or 

Pt), the Raman scattering signals are significantly enhanced by millions of times because 

of either the electromagnetic  enhancement or the chemical enhancement3.  

Electromagnetic Enhancement 

The electromagnetic enhancement mechanism is because of the electromagnetic 

fields provided by the localized surface plasmon resonance (LSPR) of noble metallic 

nanostructures surface13,26. The incident light hits the surface and excites the localized 

surface plasmons, therefore, the field enhancement magnifies the intensity of incident 

light and increase the signal of Raman scattering. Additionally, the surface further 

magnifies the Raman intensity, to result in the dramatically enhanced Raman scattering27.  

To be noted, the region owning a cluster of strong field enhancements contributed 

by the LSPR is named as “hot spot”, where can provide considerable enhancement of the 

SERS intensity13,28. Therefore, analytes located closely to the “hot spots” can obtain 

much higher signals during the measurement13. According to the literature, the 

electromagnetic field is able to generate up to 106 times Raman signal enhancement29.  
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Chemical Enhancement 

 Another mechanism is based on the charge transfer, which is named as chemical 

enhancement.  Once the analyte chemically binds to the surface, a resonant charge 

transfer occurs between molecules strongly absorbed to the surface and the metals, 

resulting in an increase of the Raman signal30. According to the literature, the charge 

transfer mechanism can only enhance the signal about 100 times29.  

Influent factors for Surface-enhanced Raman scattering 

According to several literatures, factors can affect the enhancement of Raman 

scattering are showed below: 

Size and shape: Nanoparticles can provide good enhancement of the of the Raman 

signal however, the frequency and magnitude of maximum field enhancement are highly 

dependent on the kind, size, and shape of metallic nanoparticles, such as fractal clusters 

could provide stronger enhancements8,10,31.  

Surface: Roughness or the arrangement of nanoparticles on the surface generated 

varied degrees of the enhancement. Larger enhancements can be observed at regions 

having high field gradients (e.g., two interacted nanoparticles, aggregated nanoparticles) 

and orienting the spacing between particles can optimize the enhancement factors31. As a 

result, even though the average degree of enhancement for SERS is around 106, 

extremely high levels of enhancement (i.e., 1010) can be achieved at highly efficient sub-

wavelength regions at the surface10. 

Absorption of analytes: According to the “hot spot” explanation, the strong 

absorption of target analytes to the metallic nanostructured surface, even the “hot spot” 

area can also ensure the sufficient enhancement of the Raman scattering23,31.  
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Figure 1 Illustration of surface-enhanced Raman scattering mechanism, (A) Raman 
scattering, (B) SERS. 
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Advantages and drawbacks of SERS 

In recent 10 years, surface enhanced Raman spectroscopy (SERS) technology 

emerged into many applications in food analysis. In this section, advantages of SERS as a 

new analytical technique and challenges that preventing SERS to be further applicable 

will be thoroughly reviewed. 

Advantages of SERS 

A powerful fingerprinting and selective tool: Raman scattering is resultant from 

the vibration of chemical bonds or functional groups; thus, it provides specific fingerprint 

for each molecule that is being analyzed and works as a good labeling technique7,13,32.  

Rapid measurements and simple operations: Raman spectroscopy collect data in a 

very short a period of time making the SERS to be applicable in real time detection and 

there is no requirement of professional trained panel to operate the instrument22.  

Direct and non-destructive identification: SERS can directly acquire signals of 

analyte on a solid food sample or in the aqueous based water system without the need for 

sample preparation, destruction or tedious extraction steps23. 

Highly sensitive analysis: SERS is known for its function of single molecule 

detection, and the limit of detection for specific analytes can reach extremely low levels 

(i.e., ppb or even ppt) that are favored by the industry and below the requirement of 

standard regulation33.  

Good compatibility with other techniques: SERS as an analytical tool has been 

shown to be capable of combining with other techniques such as headspace analysis, 

immunomagnetic separation, solid phase microextraction (SPME), and microfluidic 

devices, and filtration methods13,34–37.  
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Good portability and in situ identification: Portable Raman spectroscopy is 

commercially available and can be use directly with colloidal nanoparticles for field tests.  

Challenges for application of SERS in food analysis 

SERS cannot isolate target compounds from a complex sample. This is a 

significant drawback for SERS to be applied in the food analysis. Food normally is a 

complicated matrix and the targets such as residual pesticides, antibiotics, or other 

contaminates are present in relatively concentration levels. Even though sometime 

extremely low limit of detection was achieved in standard solution, in the real food 

matrices, other components/ingredients could mask the target signal and make it 

challenging for SERS measurement8,9,13.  

Background interference is a big challenge for analysis of targets by SERS. 

Polymerized pigments and proteins in food samples can contribute a huge fluorescence to 

mask the target signals in the Raman spectra22,38. Additionally, the environmental 

chemistry affects the SERS measurement, such as the change of pH can quench the 

surface charges of nanoparticles to cause the aggregation and the loss of enhancement 

functionality. Other species in the sample can also affect the interaction between the 

analyte and the nanostructured surface to result in the change of the orientation of the 

surface, so do the spetcra13,31.  

The aggregation of nanoparticles makes the reproducibility of SERS 

measurements very challenging7,10. The easiest formation of “hot spot” is dependent on 

the surface tension driven natural aggregation of colloidal nanoparticles. Moreover, 

natural aggregations of nanoparticles result in a disparity in size of metal nanoparticles 

and inhomogeneous arrangement of analytes on the surface, thus, variations of SERS 
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signals are observed during the measurement13,39. More importantly, the inconsistency of 

the aggregation of nanoparticles cannot be easily controlled according to current research 

and makes it significantly challenging to obtain reliable and repeatable performance of 

SERS10.  

SERS is lack of quantitative ability due to the variation caused by the inconsistent 

aggregation of nanoparticles and the variations in the substrate preparation31.  

SERS measurements normally require the mixing of colloidal nanoparticles with 

sample analytes in an aqueous system or on a solid surface, the sampling requirement 

might limit the extensive applications of SERS10. Additionally, current SERS analysis 

mostly focused on the surface analysis, the internal analysis has not been well studied8.  

Limited range of analytes is another concern for SERS. According to the 

literature, SERS is very sensitive to symmetric-structure molecules or those molecules 

can strongly bind to nanoparticles such as chemical structures with thiol group7,32,40. 

However, there are still many concerned targets in food research having weak 

sensitivities with SERS, and few studies have been done to improve the amplification of 

SERS signals of those molecules.  

Conclusion 

Due to the fast and ultrasensitive detection, simple protocols, large-scale 

screening and in situ sample preparation, surface enhanced Raman spectroscopy (SERS) 

technology emerged into food analysis techniques and started to be applicable in many 

areas in the recent one decade.  

However, major drawbacks such as the high variations (i.e., low uniformity), lack 

of quantitative ability and the limited range of analyte are significantly preventing the 
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SERS to be extended to a real-time analytical technique. Therefore, efforts have been 

made by analytical chemists and food scientists to modify and evolve the SERS to be a 

more modern and applicable food analytical tool.  

SERS substrates 

To overcome the drawbacks, one research suggested that avoid directly 

measurement of the interested target with SERS, therefore, substrates are important. 

Since the electromagnetic filed enhancement for SERS is provided by the surface, to 

obtain improved signal, SERS substrates with functionalized characteristics are in a great 

demand9,26,27. the growing research and fabrication of appropriated SERS-active 

substrates is driving the development of SERS applications9. The enhancement of Raman 

signal in SERS is not only dependent on the interaction between samples and substrates, 

but also the functionalization of SERS substrate to improve the measurement and 

performance. To overcome the drawbacks of SERS, substrates are expected to play an 

important role9. Uniform, sensitive, and functional substrates with different shape, 

composition, and size have been developed to improve the limit of detection, selectivity, 

and quantitative ability of SERS.  

Three key points were proposed by literatures for a successful fabrication of an 

appropriate SERS-active substrate8,41,42: 

The choice of SERS-active materials, such as noble metals (e.g., silver and gold) 

and semiconductors (e.g., titanium dioxide), is very important for fabrication because of 

their different enhancement ability. 

The affinity of analyte to the SERS-active materials: SERS cannot directly isolate 

the target signal through a complex food system, so the surface selection ability of a 
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substrate is very critical during the fabrication to ensure the successfully capture or 

selection of the target analyte, from the current knowledge, interactions between analyte 

and the substrate include electrostatic, hydrophobic, and covalent binding. Additionally, 

absorption of the analyte to the “hot spot” area on the substrate is another key for the 

acquirement of sufficient signal enhancements.  

Resonance Raman effect: Once the incident laser frequency is close in energy to 

an electronic transition of a compounds, the coincidence or the resonance frequency can 

trigger an even higher intensity enhancement of the Raman scattering.  

Rough metal electrodes were used as the first SERS substrates, but the whole 

electrode process is not controllable, therefore, it is not considered as a suitable substrate 

for current fundamental and practical analysis8. Current SERS active substrates can be 

divided into two types based on their physical forms, colloidal substrates and solid 

surface-based substrates. In the solid surface-based substrates, based on the fabrication 

methods or specific functionalities, the substrates can be either divided into nanoparticles 

immobilized on solid substrates, nanostructures fabricated directly on solid substrates, 

substrate fabricated by using nanolithography methods, molecular imprinting and 

microfluidic devices; or substrates modified with antibodies and aptamers, respectively7–

10,40. 

Colloid-based substrates 

Colloid-based substrates are the most direct substrate to obtain enhanced Raman 

signal, mostly in solution-based aqueous system. Silver and gold nanoparticles colloids in 

diameters ranging from 10 to 200 nm, are considered as the most traditional substrates for 
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SERS measurement, they are cost-effective, facile to fabricate in a large scale of 

production and even commercially available9.  

The synthesis of colloidal nanoparticles are proposed by several groups with 

chemical, physical, and biological methods43–45. The physical methods include the spark 

discharging and pyrolysis, and the biological methods includes synthesizing nanoparticles 

via bacterial proteins or plant extracts. Synthesis of nanoparticles chemically happens in 

water or organic solvents, using the metal precursors (e.g., silver nitrite and gold chloride 

hydrate), reducing agents, and capping/stabilizing agents. The metal precursors are 

reduced in two steps, the nucleation of nanoparticle seeds, followed with the growth of 

nanoparticles44,46.  

Mixing colloidal nanoparticles suspension with a certain concentration of analyte 

in a food sample/extract is considered as the simplest sample preparation to acquire the 

SERS signal. Generally speaking, the performance of the colloidal metallic nanoparticles 

in SERS is dependent on the shape, size and composition of nanoparticles, chemical 

structure of the target analyte, sample preparation, and the monitoring procedures9.  

Colloidal substrates have been used as the standard sample preparation with 

targets for analysis, due to its ease of operation and good performance of Raman signal 

enhancement. However, it suffered from several major disadvantages listed below: 

Inconsistent SERS performance. Lack of reproducibility is considered as the main 

drawback of colloidal nanoparticles for SERS analysis due to the lack of uniform and 

integrated nanostructures during the synthesis and aggregation after sample preparation. 

Since colloidal substrates are normally mixed with aqueous sample in suspensions, and 

the mixture is dried on a surface to form a “coffee ring” (as shown in Figure 2) like 
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structure for SERS measurement. Therefore, surface tension causes over aggregation of 

nanoparticles during the drying and accumulated nanoparticles introduce huge variations 

of signals from one spot and another spot during the Raman detection. Due to the same 

reason, analytes are also inhomogeneous distributed on the surface to cause the signal 

inconsistency. On the other hand, the aggregation of nanoparticles is somehow also 

required to generate the hotspot for SERS enhancement47,48.  

Semi-quantitative ability: Because of the inconsistency of the signal from the 

colloidal substrates, even though the Raman scattering is reported to be proportional to 

the concentration of the analyte, the coefficient of determination is still not satisfied for 

the linear regression analysis. As a result, the quantitative ability of colloidal substrates 

still needs to be improved. 

Requirement of the aqueous system for measurement: Nanoparticles suspension 

must be mixed with the analyte solution for sample preparation and data collection. This 

dependency of aqueous environment could limit the application of colloidal substrates in 

headspace or non-SERS active surfaces10. 

Interreference from the background: Colloidal noble nanoparticles are stabilized 

by the electrostatic repulsion, components other than the analyte in the sample could 

break the repulsive state and consequence in the over aggregation and loss of SERS 

function8. Additionally, the charges present in the food sample can also interfere the 

absorption of analytes to the nanoparticle surfaces.  

To improve the performance of the colloidal substrates, advanced colloid-based 

SERS substrates have been developed, such as AgNPs coated poly (styrene-co-acrylic 

acid) composite nanospheres, Ag-coated AuNPs, AgNPs-decorated Ag/C nanospheres, 
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Ag-coated (ferriferous oxide-core silicon shell composite microspheres, Au-core silica-

shell NPs (Au@SiO2 NPs), and AgNPs coated amino modified polystyrene 

microspheres7,49–52. Even though the sensitivity of these substrates is reported to be 

improved, the aggregation of the colloidal nanoparticles is still hard to control, therefore, 

more uniform, reproducible, and quantitatively improved substrates, are still in a huge 

demand for practical analytical applications using SERS.   

 

Figure 2 Optical microscope image of a dried Ag colloids: (a) edge part of the drop 
and (b) detail of the ring53. 

Solid surface-based substrates 

Due to the increasing demand for the low level of the limit of detection, SERS 

applications in food analysis need highly reproducible, sensitive, selective, specific, 

strongly enhanced, quantitatively improved, and long-term stable SERS substrates to 

overcome the bottleneck of colloidal nanoparticles. There are already commercial 

substrates available for simple SERS analysis. However, better performance substrates 

are normally fabricated by research laboratories. In terms of the solid surface-based 

substrates, most fabrication protocols focus on the deposition, arrangement, or 
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modification of nanoparticles to specifically isolate and rapid detect the target on a 

complex surface. In this section, solid surface-based SERS substrates with different 

functions, choices of surfaces, and fabrication methods are reviewed. 

Commercial SERS substrates 

Commercially available substrates such as KlariteTM, Ocean Optics SERS 

substrate, P-SERS, Horiba Scientific SERS substrates, and Q-SERS substrates have been 

applied in food research to provide consistent measurements with very simple sample 

preparation (drop analyte suspension to the analyzing area)7. It has been reported that 

commercial SERS substrates have been used in the detection of melamine in standard 

solution and milk, malachite green in fish fillets, and many pesticides on fruit surfaces. 

Meanwhile, most commercial SERS substrates are relatively expensive, which prevents 

their expansion of the universal use in practical cases.  

“Hard” and “flexible” SERS substrates  

Based on the choice of surface during the fabrication, SERS substrates can be 

divided into hard and flexible substrates. In the hard substrates, SERS active materials are 

deposited onto a solid surface such as glass slides and metal films by using self-assembly 

methods, sputtering methods, layer by layer deposition methods, and Langmuir-Blodgett 

techniques. In the flexible SERS substrates, SERS active materials are deposited onto 

surfaces such as tape, filter membrane, paper, and nanofibers, to allow a better 

application and detection on irregular surfaces8. Both hard and flexible SERS substrates 

include many different fabrication methods and the mechanism and application of them 

will be detailed elaborated in the later chapters.  
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Immobilization of nanoparticles on solid surfaces 

Immobilization of nanoparticles on a solid support is a way to improve the 

reproducibility of SERS substrates. These research started from the first report of 

immobilizing chemically synthesized nanoparticles on an oxide-covered silicon surface53. 

Driven force for the fabrication method of immobilization of nanoparticles on solid 

surfaces is mostly based on the self-assembly and it can be majorly divided into four 

detailed fabricating categories: chemical attachment, electrostatic interaction, capillary 

force, and direct transfer10.  

Chemical attachment of nanoparticles to the surface 

This fabrication is based on the decoration of surfaces with bifunctional ligands. 

One side of the ligand is for fixation to the surface and another side is for absorbing the 

nanoparticles, as shown in Figure 3. Nathan’s group firstly reported the self-assembly 

fabrication by immersing a thiol or amine modified glass surface into a colloidal 

nanoparticles suspension for certain periods of time54. Four factors have been pointed out 

despite the choice of glass surface and the nanoparticles, including the concentration of 

nanoparticles, the choice of functionalized ligand chemicals, the incubation time for 

fabrication, and the target for analysis. Similar methods were reported such as Au 

nanoparticles and Au nanorods assembled on quartz slides modified by amine moieties, 

Ag nanoparticles on silver plate modified by 1, 10-phenanthroline, and immobilization of 

Ag nanoparticles onto Ag nanowire by using the ligand chemical called 4-

aminobenzenthiol55–58. Advantages in this fabrication method were suggested to be 

improved enhance factors, higher reproducibility, and low costs. 
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Figure 3 Assembly of Au and Ag NPs monolayers. X=CN, NH2, 2-pyridyl, 
P(C6H5)2, or SH; R=CH3 or CH2CH3, adapted from reference10. 

Based on the similar mechanism, the monolayer structure could be further 

modified to a multiple-layer-nanoparticles structure by immersing the monolayer 

substrate (as shown in Figure 3) to a suspension of nanoparticles decorated with 

bifunctional ligands. According this procedure, layers of nanoparticles can be deposited 

to the base layer until the optimum performance of SERS is achieved. However, to be 

noted, the multiple layer deposition may result in the aggregation of nanoparticles and the 

cluster of nanoparticles can cause the loss of SERS function. This risk pointed out 

another very important factor in the SERS substrates fabrication, the morphology of the 

substrate59,60. Interestingly, it is also found that the variation is decreasing with the 

increasing layers of nanoparticle61.  

More complicated fabrication such as immobilizing CATB (i.e., 

cetyltrimethylammonium bromide) caped nanoparticles to a silicon wafer modified 

with (3-aminopropyl) trimethoxysilane, 11-mercaptoundecanoic acid (i.e., MUA, a long 

chain thiol), N- hydroxyl succinimide (i.e., NHS), and N-(3-dimethylamino- propyl)-N’’-

ethyl carbodiimide hydrochloride (i.e., EDC), can improve the variation to a much lower 

level as only 5%62.  

Even though such fabrications can achieve superior reproducibility, they are too 

complex to be apply in food analysis which always require simple procedures.  
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Electrostatic interaction between nanoparticles and the surface 

Some polymers (such as PVP or PDDA) are used as an absorbing agent to self-

assembly the nanoparticles onto a metal film surface through the electrostatic 

interactions. As shown in the Figure 5, poly(vinylpyridine) (i.e., PVP) was firstly used to 

adhere the silver mirror to a glass slide, to cover it to be a silver film, subsequently was 

decorated on the surface of the silver mirror to absorb the Ag nanoparticles 

electrostatically63. 

Nanoparticles on the substrate after fabrication showed a very uniform 

arrangement. Since the whole procedure of synthesis does not involve the aggregation of 

nanoparticles (major reason for the variation of SERS), an excellent reproducibility was 

also reported for the SERS spot-to-spot measurement.  

Capillary force as mechanism to form the substrate 

Unlike the chemically attachment and electrostatic interaction mechanisms, 

fabrication of a uniform SERS substrate driven by the capillary force during the 

evaporation of a nanoparticle droplet is being proposed as another effective method.  

According to the literature, an evaporation driven method was proposed by 

Halas’s group. The droplet of gold nanoparticles functionalized with double layer of 

cetyltrimethyl ammonium bromid (i.e., CATB) was evaporated on a substrate to form a 

hexagonally packed nanoshell array, which can generate very consistent SERS signals. 

The CATB in this research not only works as a spacer for each nanoshell to generate 

extraordinary electromagnetic filed to enhance the SERS signal, but also works as a 

repulsive agent to prevent the aggregation of nanoshell during the evaporation64.  
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Figure 4 Scanning electronic microscope image of Nanoparticle-Mirror Sandwich 
Substrates and its fabrication procedure (adapted from reference)63.  

Direct transfer of nanoparticle film to a solid substrate 

Another method to immobilize nanoparticles is to transfer a self-assembly 

monolayer of nanoparticles to a solid substrate, the mechanism is mostly dependent on 

the Langmuir-Blodgett technique. Nanoparticles monolayers were synthesized at the 
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interface between water and organic solvents, then a glass slide or a silicon wafer was 

placed inside the water/solvent/monolayer mixture and gently pulled out vertically. 

During the process, the monolayer of nanoparticles will hydrophobically bind to the 

slide/wafer to form a monolayer substrate 65–67. At the same manner, a monolayer was 

assembled by silver nanowires using the Langmuir−Blodgett technique68. On the other 

hand, monolayers of gold nanoparticles with different shapes can be assembled by 

immobilization of nanoparticles sputtered to a 4-mercaptobenzoic acid covered glass 

slides69 

After the fabrication, extraordinary SERS reproducibility (i.e., less than 10% 

relative standard deviation from spot to spot variation) is achieved from all substrates 

compared to the 50% standard deviation from the aggregated colloidal nanoparticles.   

Photosynthesis of nanoparticles on a solid substrate 

Nanoparticles can also be grown on a solid surface such as a filter paper or 

polymer film42,70. The photosynthesis can reduce the Ag/Au ions to nanoparticles at 

certain amount of reacting time and render nanoparticles to grow on a polymer 

film/wafer. The platform is covered by polymers such as PVP or the semiconductor such 

as titanium dioxide with nanoparticle seeds to allow a uniform growth of nanoparticles. 

Additionally, good enhancement factors and reproducibility are reported for both 

substrates. 

Metallic nanostructures fabricated using nanolithography methods 

Despite of self-assembly “bottom up” methods, top down methods such as 

fabricating nanostructures of a solid support are considered as another way to fabricate 

uniform SERS substrates. The most commonly used method is using the electronic beam 
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lithography (EBL). As shown in Figure 6, initially, a silicon wafer is etched by EBL in 

certain depth, then two deposition of the nanoparticles are reported. As the first method, 

after the removal of resistant area, the nanoparticles are coated onto the etched area 

through the vapor deposition to form a continuous film substrate; as the second method, 

the nanoparticles are deposited subsequent with a removal of the resistant to results in a 

discrete arrangement of nanoparticles on the substrate71.  

Both methods showed good SERS performance such as reproducibility and signal 

enhancement, and the most important advantage of this method is its capability of 

accurate controlling of the geometric parameters of the nanostructure which can result in 

the high uniformity.  

Even though above-mentioned methods can fabricate reproducible substrates, the 

SERS performance has not been challenged with the practical concerns in food samples.  
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Figure 5 Two methods of substrate fabrication using the electronic beam 
lithography (adapted from reference)71. 

SERS substrates with microfluidic system 

Over the past decade, SERS has been integrated with microfluidic devices to 

improve the reproducibility of SERS measurement, to provide a platform for more 

controllable nanostructure substrate fabrication, and to accomplish a real-time and on-site 

detection of analytes in aqueous food samples13. 

There are two types of microfluidic devices being compatible with SERS 

detection, the continuous flow platforms and the droplet-based platforms. The integration 

of SERS substrates with the microfluidic platforms can be divided into three ways, 

“external injection”, injection of colloidal nanoparticles to microfluidic channels, “ built 

in”, building solid nanostructures in the microfluidic channels, and “in site fabrication”, 

in site fabrication of nanostructured substrates in the microfluidic channels13.  
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The “external injection” method includes the injecting and mixing colloidal 

nanoparticles suspension and sample solution in the microfluidic channel and obtaining 

the SERS signals. Since the colloidal nanoparticles and the sample solution are injected 

respectively, the degree of mixing could affect the final SERS measurement. However, 

even though the “external injection” method is very promising for SERS, due to the 

nature of colloidal nanoparticles, the random aggregation of nanoparticles is still a huge 

drawback72. The external method has been applied in the detection of antibiotics in urine. 

To improve the reproducibility, the “built in” method is developed by injecting 

the sample solution to the microfluidic channel with built in solid nanostructure 

substrates. Due to more uniform, denser arrangement of nanostructured hotspots, the 

SERS performance is greatly enhanced. The “built in” method has been applied in the 

detection of ochratoxin A, melamine in milk, and the dopamine in urine73,74.     

Recently, in site microfluidic fabrication method is becoming much more popular 

to integrate with SERS due to its better control and more flexibility of precise liquid 

handling. The mechanism of in situ fabrication of nanostructure substrates is mostly 

dependent on the galvanic replacement reaction and the reduction of noble metal ions.  

For the galvanic replacement reaction, one study deposited Cu-core/C-sheath 

nanowalls in the microfluidic channel with a subsequent Ag nanoparticle galvanic 

replacement to in situ form the Ag nanoparticles nanowalls. Due to the dense distribution 

of Ag nanoparticles, SERS performance was much improved75. Another fabrication is 

based on using silver nitrate to galvanically replace the pre-formed copper block to Ag 

nanoparticles. The copper blocks are patterned by using lithography, which can precisely 
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control the size and shape of replaced Ag nanoparticles and provide much more stable 

SERS performance76.  

For the reduction fabrication, silver nitrate solution was injected to the 

microfluidic chamber and the femtosecond laser pulse was applied to reduce silver ions 

to silver nanoparticles. With this method, the size and shape of nanoparticles can be very 

well controlled, and the deposition of nanoparticles can be flexibly controlled at any 

locations in the microfluidic channels77.  

Microfluidic methods combined with SERS provided accurately controlled 

sample preparation including the mixing, concentrating, and trapping, to generate a 

reproducibly, rapid, label-free, and efficient identification of targets in food matrices13.   

Other silver nanoparticle substrates to improve SERS reproducibility  

Other than above-mentioned substrates, other efforts have been done to improve 

the SERS reproducibility and performance, including sputtering AgNPs to polystyrene 

spherical beads78, planting AgNPs on polydopamine pillars79, arraying silver nanorod on 

silver film80, using Ag to shell core Au nanoparticles to provide reliable quantitative 

abilities in SERS81 or using Pt, SiO2, Si and Al2O3 to coat core Au nanoparticles to 

enhance Raman signals82. Furthermore, several works suggested that the solvent can also 

mediate the formation of monolayer of nanoparticles. Previous works found that using an 

amphiphilic thiol linkage could assemble monolayers of gold nanoparticles at the 

interface between hexane and water due to the difference of polarity83, and AuNPs 

capped with 2,2’-dithiobis[1-(2-bromo-2-methyl-propionyloxy)ethane] (DTBE) formed a 

monolayer at the interface between water and oil84. Moreover, several researches also 

noticed a monolayer of AuNPs could be spontaneously assembled without any linkages at 
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the interface between two immiscible solvents, such as water/oil interface85, or 

toluene/water interface86 due to the adsorption of surface charges on AuNPs or the 

change of contact angle between interface and AuNPs. These works provided a potential 

of facile fabricated monolayers of nanoparticles, however, only limited choices of 

organic solvents were demonstrated, and since the mirror was fabricated at the solvents 

interface, the AuNPs monolayer was hard to collect and transfer. Additionally, the 

practical applications of these nanoparticles monolayers in SERS have not been studied 

yet. 

Good stability was reported for above substrates while they were also suffering 

from disadvantages such as complicated fabricating procedures, expensive ingredients, 

difficult operations, and limited practical applications.  

Functionalized SERS substrates 

According to the previous chapters, food samples are complex, which makes the 

direct analysis of targets very challenging for both traditional colloidal substrates and 

sometimes, even the reproducible self-assembly substrates. Therefore, to improve the 

selectivity of SERS, functionalized SERS substrates showed a huge potential to repel the 

interference from the background and to enhance the detection sensitivity of the target9,87. 

Substrates with antibodies 

Immunoassay reviewed previously was a unique analytical assay to detect targets 

selectively based on the antibody-antigen interaction. The use of antibody this is 

technique can specifically isolate the target antigen from the complex components in a 

food sample and the interaction between antibody and antigen is very strong and 

selective88. Therefore, the combination of immunoassay with SERS is becoming popular 
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to achieve very sensitive and selective detection, narrow Raman bands, multiplexed 

analysis, reduction in analyzing time, and improved limit of detection (LOD) nowadays. 

Furthermore, due to the ability of immunoassay for detecting molecules with larger 

molecular weight, SERS-immunoassay based substrates can extend their targets to 

biomolecules like toxins, proteins, peptides. There are three types of capturing agents in 

SERS-immunoassay are reported, antibodies, antigens, and the tag molecules (antibody 

modified nanoparticles with a reporter and antibody modified nanoparticles without 

reporters) to for the sandwich structure9. 

Two methods were reported to use the immunomagnetic separation kit to capture 

the foreign protein (i.e., ovalbumin) in milk, and the captured antigen protein was eluted 

to either mix with Ag nanoparticles or to drop on to a uniform substrate (i.e., Ag 

dendrite) to acquire the SERS measurement. Both methods were able to obtain good 

LODs as low as 1 µg/ml ovalbumin in milk. On the other hand, the background 

interference was also observed in the SERS spectra, which could cause the aggregation of 

nanoparticles and result in the reduction of SERS signals36. Therefore, more complicated 

fabrication was made to achieve more stable and reproducible results with SERS tag 

molecules.  

The SERS tag molecule fabrication are illustrated in Figure 7 and divided into 

three steps:  

Antibodies are deposited on the solid platforms or the magnetic beads to form the 

capture agents.  

 The capture agents are added to food samples to selectively interact with the 

target antigens. 



 

31 

The nanoparticles decorated with tag/reporter molecules are capped to the 

antigens absorbed on the capture agents to form a sandwich structure for SERS 

measurements.  

The following washing process will remove the non-specific molecules and to 

result in an accurate detection without any background interferences. The tag molecules 

are normally generating very strong and distinctive Raman signals and the successful 

detection of reporter signal will suggest the detection of presence of antigens. With 

similar assay, trace levels of cholera toxin and staphylococcal enterotoxin B were 

successfully detected78,89.  

 

Figure 6 Illustration of three SERS substrates fabricated with tag/reporter 
molecules (adapted from reference)9. 
 

Substrates with aptamers  

Besides antibodies and antigens, aptamers are recently reported as another capture 

agent to improve the selectivity of SERS. Aptamers are single-strand nucleic ligands 

engineered through “systematic evolution of ligands by exponential enrichment” (i.e., 

SELEX). These aptamers can be bent into a 3D structure to create a specific binding to 
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the target molecule in complicated food samples to achieve a quick and selective 

detection of targets.  

To make the aptamer SERS sensitive, the aptamer can either be modified with a 

thiol group to directly bind to the nanoparticles or be labeled with another SERS sensitive 

group to produce a distinctive signal. SERS-aptamer approach has shown the advantages 

such as capability of capturing multiple analytes, high level of sensitivities, reliable 

correlation between Raman intensity with concentrations of targets. The aptamer-SERS 

approach has been applied in the detection of multiple pesticides in apple juice, toxins in 

orange juices and milk, pathogens in orange juice, and heavy metals in food samples90–94.  

 

 
Figure 7 Illustration of SERS substrates with molecular imprinting method 
(adapted from reference)9. 
 
 

One drawback of above-mentioned immunoassay and aptamer methods is 

reported that the recognition sites of either an antibody or an aptamer, which are both 

small molecules, are relatively small and may not be sufficient to bind enough target 

analyte to generate accurate results. Therefore, a molecular imprinting method was 

proposed to create a specific binding hole in a polymer molecule that can capture 

sufficient amounts of analytes. As shown in Figure 8, the detection of captured target is 

following a similar manner to the immunomagnetic separation method, the captured 
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analytes are eluted from the molecular imprinting polymer and deposited on to a SERS 

substrate for the analysis.  

The molecular imprinting method works as a “lock and key” technique as an 

artificial antibody can increase the capture efficiency of the target compared to the 

traditional immunoassay, thus an enhancement of the sensitivity and selectivity for SERS 

performance9. The molecular imprinting method has been applied in the detection of 

banned artificial colorants in chili powder, histamine in canned tuna, and the assessment 

of nicotine95–97.  

Application of SERS  

Food samples are complex matrices, it is very important to select suitable and 

functionalized substrates to identify specific targets based on the physical and chemical 

natures. Additionally, reproducibility, sensitivity, portability, and selectivity are also 

considered for the practical analysis.  

SERS has been proved to be a powerful analytical tool which has broad 

applications in the assessment of chemical contaminants, pathogenic bacteria, bioactive 

components, residual pesticides, and banned adulterants. In this section, applications of 

SERS are detailed reviewed based on the substrates, chemical natures, and the detection 

limit, according to several published reviews of the SERS and newly reported 

studies5,7,100–107,9,10,13,52,78,97–99. 

Table 1 shows the current applications of SERS in food analysis, including the 

analytes, substrates, analytical matrices, and limit of detection. Overall, SERS has been a 

promising technique for food safety and quality assessment, however, facile fabrication 
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of substrates, amplification of weak SERS signals, and more practical applications of 

SERS are still in a huge demand for food industry.  

Table 1 Analyte, substrate, limit of detection and food matrices for SERS 
application in food analysis 
 

Analyte Substrate Food  
matrices LOD 

Food additives 
Benzoic acid AuNPs colloids Water  

solution - 
Phthalic acid AuNPs colloids Water  

solution - 
Sodium benzoate AgNPs colloids Water  

solution - 
Butylated 

hydroxyanisole AuNPs colloids Water  
solution 10 ppm 

Monosodium 
glutamate AgNPs colloids Water  

solution 10-5 M 
Iodine Rh6G-adsorbed  

AuNPs colloids Salt solution 30 ppt 

Roxarsone Silver/Polydimethylsiloxane 
Nanocomposites 

Water 
solution - 

Acetarsone Silver/Polydimethylsiloxane 
Nanocomposites 

Water 
solution - 

4-arsanilic acid Silver/Polydimethylsiloxane 
Nanocomposites 

Water 
solution - 

HMB AgNPs colloids 
Potassium 
chloride 
solution 

- 

L-carnitine AgNPs colloids 
Potassium 
chloride 
solution 

- 

Creatine AgNPs colloids 
Potassium 
chloride 
solution 

- 
Vitamin E  

(α-tocopherol) Molecular imprinting-SERS Vegetable oils - 
OVA 

(egg white protein) 
Immunomagnetic separation (IMS) 

SERS Milk 1 µg/ml 
Melamine Molecular imprinting 

SERS Milk 0.012 mM 
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Melamine Aptamer-SERS Milk 1.0 pg/ml 
Melamine External injection microfluidic  

AgNPs colloids  - 63 ppb 
Melamine Built in microfluidic  

AgNPs @ basil-seeds  - 0.68 ppm 
Histamine  Molecular imprinting 

SERS Canned tuna 3 ppm 
Malachite green External injection microfluidic 

AgNPs colloid -  1-2 ppb 
Food colorants 

Sudan-1 AuNPs colloids Red chili 
powder 10-3-10-4 M 

Sudan-1 
Molecular imprinting (MIP) 

thin layer chromatography (TLC) 
AuNPs colloids 

Paprika  
powder 1 ppm 

Azorubine AuNPs-FON monolayer Sweet drinks 0.5 ppm 
Allura Red AC,  

Beet Juice Extract, 
Tartrazine 

AuNPs colloids Water  
solution - 

Sunset Yellow FCF AuNPs colloids Orange Cheddar - 
Brilliant Blue FCF AuNPs colloids Candy 

Cereal 1 ppm 
Tartrazine AgNPs colloids Water  

solution 10-10 M 
Ponceau 4R AuNPs colloids Water  

solution 5 ppm 
Sudan II ZnO/Ag nanoarrays Ethyl acetate 

solution 10-12 M 
Sudan IV ZnO/Ag nanoarrays Ethyl acetate 

solution 10-12 M 
Methylene blue SERS activated 

Ag Electrode  
Water 

solution  -  
Pesticides 

Thiabendazole 
Molecular imprinting 

microextraction 
SERS 

Orange juice 4 ppm 

Chlorpyrifos Molecular imprinting 
SERS Apple juice 0.01 ppm 

Isocarbophos, 
Omethoate,  

Phorate,  
Profenofos 

Aptamer-SERS Apple juice 1,5,0.1,5 
ppm 



 

36 

Thiram,  
Methyl parathion, 
Malachite green 

AgNPs on the 3D nanotentacle array 
Cucumber, 

Grapes,  
Apple peels 

1.6-10 
ng/cm2 

Thiabendazole 
Au-glycidyl  

methacrylate–ethylene  
dimethacrylate 

Apples Potatoes 0.5 mg/kg 
Thiabendazole AuNPs colloids Spinach leaves 5 ppm 

Carnpfuran In situ fabrication microfluidic 
 AgNPs decorated Cu electrode - 5 ppb 

Malathion Built-in microfluidic  
3D Au nanoarrays - 1 ppb 

Malathion AgNPs colloids loaded filter 
membrane -  62 ppb 

Thiram In situ fabrication microfluidic AgNPs 
decorated optical fiber tip - 10-8 M 

Thiram Ag coated AuNPs - 1-7 ng/cm2 
Dimethoate Metal-doped  

sol-gel coated capillaries -  10 ppb 
4-Methyl parathion Metal-doped  

sol-gel coated capillaries - 10 ppb 
Toxins 

Ricin B Aptamer-silver dendrite Orange juice 50 ppt 
Ricin Aptamer- Silver dendrite Milk - 

Ochratoxin A Aptamer-modified  
Au triangular arrays  - 0.05-4 µM 

Mercury (II) ions 
External injection microfluidic 

Aptamer modified Au/Ag core-shell 
NPs 

 - <10 ppm 

Mercury (II) ions External injection microfluidic  
Rhodamine B modified AuNPs  - 0.1-2 ppb 

Aflatoxin B1,  
Aflatoxin B2,  
Aflatoxin G1,  
Aflatoxin G2 

Ag nanorod array  - 
5´10-5 M,  
1´10-4 M,  
5´10-6 M,  
5´10-6 M, 

Saxitoxin AgNPs colloids  - 2´10-9 M 
Pathogens 

Bacillus anthracis 
spores Aptamer-SERS Orange juice 104 CFU/ml 

S. typhimurium Aptamer-SERS Pork 4 CFU/ml 
E. coli, Salmonella, 

or Listeria AgNPs-Aptamer Ground beef 103 CFU/g 
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S. aureus, E. coli  Polyethylenimine (PEI)-modified  
AuNPs-coated magnetic substrate Milk 103 CFU/ml 

Vibrio 
parahaemolyticus Aptamer-SERS Salmon 14 CFU/ml 

8 food-borne 
pathogens 

External injection microfluidic 
AgNPs colloids -  - 

E. coli External injection microfluidic 
AgNPs colloids - 4.5´103 

CFU/ml 
E. coli External injection microfluidic 

AgNPs colloids - - 
Antibiotics/Hormones  

Salbutamol Immunochromatographic test (ICT) 
SERS Swine meat 3.0 pg/ml 

Brombuterol Immunochromatographic assay 
SERS Swine meat 0.5 pg/ml 

Tetracycline Aptamer 
SERS Milk 0.1 ng/ml 

Furadantin AuNPs colloids - 5 ppm 
Enrofloxacin KlariteTM Au substrate - - 

Chloramphenicol KlariteTM Au substrate - 50 ppb 
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3. DEVELOPMENT OF A FACILE SOLVENT BASED METHOD TO 

FABRICATE AGNPS MIRROR FOR IMPROVED SERS 

QUANTIFICATION  

Introduction 

Due to its high sensitivity and specificity, surface enhanced Raman scattering 

(SERS) has been developed and applied as a powerful analytical technique in many areas, 

such as the detection of food and environmental contaminants, and biological and 

biomedical sensing.10,40,108 Colloids-based substrates have been commonly used in SERS 

because of the ease and low cost of fabrication and application. Nevertheless, low signal 

reproducibility is often observed from the traditional colloid substrate due to the 

difficulty in controlling its aggregation process.  Many efforts have been made to 

improve the reproducibility of colloids-based substrates.45 The shell-isolated approach 

has successfully improved the signal reproduciblity because the shell can keep the 

particles from agglomerating.81,82 Other strategies included assembling NPs into 

monolayer on a glass slide,69 assembling hydrophobic thiol capped AgNP or AuNP into 

monolayer after transferring from water to organic solvents,83,109 or in the interface of two 

immiscible solvents with the aid of certain ligand compounds.68 However, the major 

disadvantage of these substrates is the involvement of complicated fabrication 

procedures.  

In this work, we demonstrated a facile fabrication of an AgNP mirror substrate, 

which exhibited high signal reproducibility and sensitivity for SERS applications. The 

fabrication simply involved commercially available AgNPs and a mediating solvent 

without the use of any electrical instrument. Different combinations of solvents and 
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AgNPs were tested for their performance to form the AgNP mirror. The fabricated AgNP 

mirror was characterized under optical and electron microscopes. Subsequently, a 

pesticide, fonofos, was tested to determine the limit of detection, quantification capability 

and signal variation of the mirror substrate as compared to the traditional AgNP 

aggregates. Finally, the AgNP mirror was applied to quantify trace amount of fonofos in 

two commercial beverages.  

Materials and methods 

Chemicals and materials 

Silver nanoparticles, 20, 40, 60, 80 nm, 0.02 mg/ml, coated with citrate, PEG, and 

PVP, were purchased from nanoComposix (San Diego, CA).  Fonofos was purchased 

from Sigma-Aldrich (St. Louis, MO). Hexane, acetonitrile, acetone, ethanol, methanol, 

dimethyl sulfoxide, cyclohexane, and isooctane were purchased from Fisher Scientific 

(Fair Lawn, NJ). All chemicals were reagent-grade and used as received. Apple juice and 

brewed green tea were purchased from grocery stores. 

Fabrication of AgNP mirror substrate 

A relatively polar (i.e., acetone, acetonitrile, methanol, ethanol, and dimethyl 

sulfoxide, polarity: 5.1-7.2) organic solvent and a relatively non-polar (i.e., hexane, 

isooctane, and cyclohexane; polarity: 0.0-0.2) organic solvent were vortexed with a ratio 

of 1:1. After mixing, non-polar and polar layers were separated (e.g., in hexane and 

acetonitrile mixture, the volume ratio approximately equals to 43:57). The polar layer 

was collected and stored as the mediating solvent. Commercial AgNPs were firstly 

concentrated by centrifugation to 0.2 mg/ml.111 Then, 50 μl AgNPs was slowly dripping 
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into 100 μl mediating solvents drop by drop. After about 1 minute, a mirror-like sediment 

at the bottom was collected then carefully dropped and air dried on a gold coated slide.  

Sample preparation for pesticides detection using AgNP mirror substrate and AgNP 

aggregates  

Fonofos of different concentrations (0.01-5 ppm) were prepared in acetonitrile 

and water mixture (50:50). For mirror substrates, 10 µl of each standard fonofos solution 

was incubated with 50 µl AgNPs (0.2 mg/ml) for 5 minutes and then gently dripping into 

100 µl mediating solvent drop by drop. After incubating for 1 minute, the mirror-like 

sediment at the bottom was collected then carefully dropped and air dried on a gold 

coated slide. In addition, fonofos (0.5 ppm) was spiked into commercial apple juice and 

brewed green tea and detected using the mirror substrates. For detection using AgNP 

aggregates, 10 µl of each standard fonofos solution was incubated with 50 µl AgNPs (0.2 

mg/ml) for 5 minutes. Then 10 µl was dripping on a gold slide and air-dried for Raman 

measurement.  

Instrumentation 

The surface morphology of AgNP aggregated substrate and AgNP mirror 

substrate were characterized by using a FEI Magellan 400 scanning electron microscope 

(SEM, Hillsboro, OR) with the voltage of 5.0 kV. The SERS measurements were 

performed using a Thermo Scientific DXR Raman Spectro-microscope with a 780 nm 

Laser source under the following conditions: 10´ objective, 3.1 µm spot diameter, 5 mW 

laser power, 2s exposure time and 50 µm slit width for fonofos detection. Both AgNP 

aggregates and AgNP mirror were measured via a selecting mode and a mapping mode. 
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For the selecting mode, 10-20 spots were randomly selected for each sample on the 

AgNP aggregates (ring area) and the AgNP mirror substrates, respectively. Under the 

mapping mode, a 150 µm ´ 150 µm area containing 81 scanning spots was randomly 

selected on the AgNP aggregates (ring area) and the AgNP mirror substrate.  

Results and discussion 

 

Figure 8 Schematic illustration of steps taken to fabricate the substrates of silver 
nanoparticles mirror mediated by hexane and acetonitrile mixture. 
 

The fabrication of AgNP mirror substrates is illustrated in Figure 8. The key 

component in this fabrication is the mediating solvent. The mediating solvent was taken 

from the polar layer after mixing two immiscible organic solvents. In this polar layer,  

there were still some parts of non-polar solvents since the immiscible system shares some 

degree of mutual solubility.110 We firstly tested the hexane/acetonitrile mediating solvent 

which contained approximately 7 parts of hexane and 50 parts of acetonitrile.  When 

dropwise adding 0.2 mg/ml citrate coated AgNP solution to the mediating solvent, a 

blurred interface was observed instantly. At the interface, several small AgNP mirror 

fractions formed almost immediately. The interface eventually disappeared and AgNP 
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mirror fractions settled down to the bottom along the wall of the tube, then they were 

easily taken out by a pipette and deposited on a surface. The whole procedure took 

approximate 2 min without the use of any electrical instrument.  

 

 
Figure 9 AgNPs mirror formation with different solvent deposition, mediating 
solvent to AgNPs suspension (on the left) and AgNPs suspension to mediating 
solvent (on the right). 
 

The reason of forming AgNP mirror can be explained as follows. Due to the 

higher density than organic solvents, AgNP solution tended to fall through the mediating 
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solvent phase to the bottom during the addition. Even though the polar fraction of the 

mediating solvent (i.e. acetonitrile) is miscible with AgNP solution which means they 

would form a homogenous system quickly, the small fraction of non-polar solvent (i.e., 

hexane) slightly reduced the environmental polarity of the system and slowed it down 

from approaching the homogenous equilibrium. Therefore, a blurred and temporary 

interface was observed when the AgNP layer and the mediating solvent layer 

encountered. The mediating solvent was continuously upward diffusing to the aqueous 

phase slowly against the gravity that pulling the AgNP downward. This retained the 

AgNP and the counteracting forces pressed them into a thin layer at the interface. At the 

same time, acetonitrile may reduce the surface charges density of citrate coated AgNP 

and increase their surface tension, which could lead the AgNP form self-assembled 

monolayer.85,86 This thin layer looked as a mirror as we can clearly see things reflected 

from the AgNP layer, that is why we named it AgNP mirror. Duan et al. reported self-

assembled AuNP monolayer maintained at the water/toluene interface.84 However, our 

system still favored to be homogenous, thus the interface eventually disappeared when 

polar solvents were completely miscible with water. Subsequently, the AgNP mirror lost 

the supporting platform and settled to the bottom due to the gravity. The sedimentation 

step gives more advantages for application, as we can easily take out the AgNP mirror 

using a pipette and deposited them onto another solid support (e.g. a slide).  

Additionally, as shown in Figure 8, two different orders of the solvent deposition 

were investigated to determine the best AgNPs mirror fabrication protocol. According to 

the observation, the AgNPs mirror formed by depositing AgNPs to the mediating solvent 

(on the right) showed much more shinny than the left. This phenomenon was presumably 
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because of the disparity of the density between mediating solvent (i.e., approximate 0.8 

g/ml) and the AgNPs suspension (i.e., approximate 1 g/ml). Due to the higher density, 

with the help of gravity, AgNPs suspension passed through the mediating solvent, which 

promoted a better interaction (i.e., surface charge quenching) between solvent and the 

surface charges on AgNPs and resulted in a better formation of the mirror. However, 

depositing in a reverse way, the mediating solvent tended to float on the top of the 

AgNPs suspension, which could cause insufficient surface charge removal in AgNPs and 

leaded to a bad formation of AgNPs mirror.  

 
Figure 10 (A) Ability of mirror formation mediated by varied combinations of 
organic solvents with displayed polarity. (B) Macroscopic images of silver 
nanoparticles mirror formed by varied combinations of organic solvents: 1. 
Hexane/acetonitrile, citrate coating 2. Hexane/ethanol, citrate coating 3. 
Hexane/methanol, citrate coating 4. Hexane/acetonitrile, citrate coating 5. 
Cyclohexane/acetonitrile, citrate coating 6. Isooctane/acetonitrile, citrate coating 7. 
Hexane, citrate coating 8. Ethanol, citrate coating 9. Acetonitrile, citrate coating 10. 
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Hexane/Dimethyl sulfoxide (DMSO), citrate coating 11. Hexane/acetonitrile, PEG 
coating, 12. Hexane/acetonitrile, PVP coating.  
 

Besides acetonitrile and hexane, other different combinations of polar and non-

polar organic solvents and their AgNP mirror forming ability were investigated. Figure 

10(A) showed only the mediating solvents constituted by a low polarity (i.e., 0-0.2) and a 

high polarity (i.e., 5.1-5.8) organic solvent can successfully fabricate AgNP mirror 

(Figure 10(B) 1-6). However, only hexane, acetonitrile or ethanol was not able to form 

mirror as shown in Figure 10(B) 7-9. Additionally, Figure 3(B) 10 showed hexane 

combined with DMSO failed to assemble AgNP into monolayers because the DMSO has 

a higher density (i.e., 1.092 g/ml) than water, thus could not spontaneously move 

downward to press the AgNP into a mirror. This phenomenon highlights the importance 

of density for the mirror formation. In addition, we tested other two commercial AgNP 

coated with PEG and PVP. They failed for forming AgNP mirror due to the steric 

repulsion and the low surface tension (Figure 10(B) 11 and 12). Summarizing the above 

findings, three factors are important to determine the successful fabrication of the AgNP 

mirror substrate. The first one is the lighter density of the solvents as compared to the 

water, so that the solvents can move upward into the AgNP solution to create a 

counteracting force against the gravity for AgNP. The second factor is the different 

polarity of these two solvents with the large component to be polar and the minor 

component to be non-polar in the system. The small non-polar component was used for 

slowing down the mixing equilibrium which produces a temporary interface for retaining 

AgNP and facilitated the physical pressure. As the polar component was dominant in the 

system, the equilibrium can be reached eventually, so that the formed monolayer can be 

settled down in the bottom for the ease of collection. The third factor is the surface 



 

46 

chemistry of AgNP. AgNP stabilized with electric repulsion (e.g., citrate coating) can be 

reduced easily to increase its surface tension, while AgNP with steric repulsion (e.g., 

PVP or PEG coating) has no surface charge and low surface tension cannot form a 

mirror.  

In addition, different sizes (20, 40, 60, 80 nm) of citrate coated AgNP were tested 

and all of them showed the ability of mirror formation (Figure 5). After the comparison, 

all four AgNPs mirrors with different sizes of nanoparticles showed very good 

sensitivity, along with very consistent data presentation. In Figure 12 (B), intensity at 

1571 cm-1 was shown for four AgNPs mirrors. Size of 40 nm and 60 nm AgNPs showed 

the best SERS performance in terms of the Raman scattering intensity. This finding is 

following a similar manner to what was reported in the previous work, 40 or 60 nm, 

citrate coated AgNP showed the best performance in SERS detections.111 Therefore, 

citrate coated 40 nm AgNP were used to fabricate the mirror substrates for the subsequent 

analysis. 

 

 
Figure 11 (A) Macroscopic; (B) Optical microscopic; (C) Scanning electron 
microscopic image; (D) 5 ppm fonofos SERS mapping of AgNP mirror substrates; 
(E) Macroscopic; (F) Optical microscopic; (G) Scanning electron microscopic; (H) 5 
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ppm fonofos SERS mapping of A AgNP aggregate substrates (Peak intensity at 1571 
cm-1 was selected for mapping measurement and relative standard deviation 
calculation). 
 
 

 
Figure 12 (A) SERS spectra of 5 ppm of fonofos in standard solution obtained with 
AgNPs mirror formed with different size of nanoparticles (20 nm, 40 nm, 60 nm, 
and 80 nm). (B) The peak intensity at 1571 cm-1 Raman shift for four sizes of 
nanoparticles. 
 

The morphologic characterization of the AgNP mirror was showed in Figure 4, 

the traditional substrate (i.e., AgNP aggregates) was displayed as a comparison. After 

depositing on the gold slide, the thin monolayer of AgNP was observed as a mirror while 

the traditional substrate was observed as a drop of clear AgNP solution. After dried, the 

AgNP mirror and the traditional substrate showed different visual appearances under the 

optical microscope. Under the optical microscope, the AgNP mirror has no noticeable 

edge line as compared to the coffee ring formed by the AgNP aggregates. More clear and 

detailed morphological differences between the AgNP mirror and the traditional substrate 

were found in the scanning electron microscopic analysis. In Figure 11(C), AgNP 
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presented the oriented arrangement in a monolayer, however, in Figure 11(G), AgNP 

aggregated strongly and stacked into multilayers. Additional benefit for the applying the 

mirror substrates in real analysis is the versatile sample preparation approach, that is, 

analyte can be directly involved in the solution for the mirror formation or dropped on the 

air-dried AgNP mirrors. The first approach that involves analyte directly in the mirror 

formation allows relative more sample volume than the second approach which only puts 

a few droplets on the dried mirror. In addition, the first approach is most suitable for 

detecting the target analyte which have strong interaction with the NPs, especially in a 

mixture. This is because of the dynamic competition between the target analyte with 

other matrix molecules for the interaction with the NPs during mirror formation. The 

target analyte with a stronger interaction can be selectively enriched by the mirror. For 

the second approach, all the molecules are physical put on the mirror surface, therefore, 

there is no dynamic competition. As a comparison, traditional AgNP colloids are only 

limited to the solvent interaction method as most of the air-dried colloids were 

aggregated into the coffee rings.  

The morphology of AgNP mirror was further investigated by using the SERS 

mapping technique. The AgNP mirror and the traditional AgNP substrate were incubated 

with 5 ppm fonofos and 81 spots were selected for mapping measurements. In Figure 

11(D) and Figure 11(H), mapping results of AgNP mirror and AgNP aggregates were 

showed respectively, and the relative standard deviation (RSD) were calculated to 

evaluate their uniformity. Low RSD was showed from the mirror substrate (i.e., RSD = 

6.27%), because of the uniformity of the AgNP mirror. However, a much higher RSD 

was observed in the traditional substrate (i.e., RSD = 61.12%). Thus, the results further 
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suggested that the AgNP mirror substrate can provide much more reliable and 

reproducible performance in SERS detection than the traditional substrate. To confirm 

the reproducibility, 25 spectra randomly collected spots on the AgNPs mirror with 5 ppm 

fonofos were showed in Figure 13 (A). Most spectra presented in a very consistent 

manner and in Figure 13 (C), another SERS mapping of the intensity at 1024 cm-1 Raman 

shift was conducted to further validate the reproducibility (i.e., low relative standard 

deviation). In Figure 13 (B), standard deviations for data collected from AgNPs mirror, 

coffee ring area in the AgNPs aggregate, and the overall area of the AgNPs were 

presented and it also suggested the AgNPs mirror showed the best consistency.  

In addition, as shown in Figure 11(H), strong Raman intensities were only 

obtained from the coffee ring area, which pointed out another disadvantage of the AgNP 

aggregates substrate, high dependency on using microscope to choose the spots on a 

coffee ring. In contrast, high consistency of AgNP mirror make it possible to be used by a 

portable or handled Raman spectrometers, which usually do not have a microscope to 

facilitate the measurement on specific locations.  
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Figure 13 (A) 25 spots randomly collected on AgNPs mirror for Raman intensity of 
5 ppm fonofos in standard solution (B) Relative standard deviation for data 
randomly collected from AgNPs mirror, AgNPs aggregates (on the coffee ring area), 
and AgNPs aggregates. (C) SERS mapping of 5 ppm fonofos (intensity at Raman 
peak 1072 cm-1). 

Conclusion 

In summary, we have successfully fabricated an AgNP mirror sensing substrate 

using a facile mediation of two organic solvents. The comparison of AgNP mirror to 

AgNP aggregates was summarized in Table 2. The AgNP mirror substrate provided an 

improved SERS performance in sensitivity and reproducibility, compared to AgNP 

aggregates due to the uniformity of the structure.  

It offers two breakthroughs for current SERS substrate fabrications,  
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• Great control of deposition of nanoparticles on the solid platform and 

reproducible measurements. 

• Facile and simple fabrication for self-assembly nanoparticles monolayer substrate. 

This nanoscale mirror sensing substrate is also more convenient, versatile and 

practical to be used under a variety of experimental conditions. Future study will include 

the quantification evaluation and potential explorations of the application of this substrate 

for SERS analysis in more real-world samples using a portable or handheld Raman 

spectrometer. 

Table 2 Comparison of AgNP mirror and traditional AgNP aggregates substrate in 
sensitivity, quantification, variation, ease of performance and versatility. 
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4. DETERMINATION OF THE REPRODUCIBILITY AND 

QUANTITATIVE ABILITY OF THE MIRROR SUBSTRATE AND ITS 

PERFORMANCE IN DETECTION OF PESTICIDES IN WATER AND 

BEVERAGES  

Introduction 

Even though SERS has been widely used in food analysis, due to the 

uncontrollable aggregation of nanoparticles, large variations were preventing the 

expanding of SERS in more practical applications9. Additionally, due to the same reason, 

SERS cannot be applied as a reliable quantitative tool in food analysis. Therefore, 

reproducible SERS substrates is in a huge demand by the industry.  

Currently, many efforts have been dedicated to developing the uniform substrates 

by self-assembly the nanoparticles to a monolayer film to contribute very consistent 

SERS signals. Many uniform SERS substrates have been reviewed in the previous 

sections, one huge drawback is that most substrates were only tested with SERS sensitive 

probes in standard solutions, the practical applications of these uniform substrates in 

complicated food matrices were rarely investigated.  

In Chapter 3, a uniform AgNPs mirror substrate was developed with a facile 

solvent driven fabrication. Results also suggested an extraordinary improvement of the 

SERS data reproducibility. As hypothesized, a better reproducibility can result in an 

improved quantitative ability of the substrate, therefore, in this project, the quantitative 

ability of the AgNPs mirror substrate will be explored. Furthermore, the reliability of 

AgNPs mirror in pesticides detection in the practical aqueous food samples such as green 

tea and apple juice will also be investigated. Due to the disparity of the morphology of 
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AgNPs mirror and colloidal nanoparticles, different sample deposition/sample 

preparation approaches will also be illustrated.  

Material and methods 

Materials and chemicals 

All materials and chemicals are same as the Chapter 3. Apple juice and green tea 

are bought from the grocery store. 

Sample preparation for pesticides detection in commercial samples using AgNP mirror 

substrate and AgNP aggregates  

For the calibration curve, fonofos of different concentrations (0.01-5 ppm) were 

prepared in acetonitrile and water mixture (50:50). For mirror substrates, 10 µl of each 

standard fonofos solution was incubated with 50 µl AgNPs (0.2 mg/ml) for 5 minutes and 

then gently dripping into 100 µl mediating solvent drop by drop. After incubating for 1 

minute, the mirror-like sediment at the bottom was collected then carefully dropped and 

air dried on a gold coated slide. For the commercial sample testing, 0.5 ppm fonofos was 

spiked in both commercial apple juice and green tea samples. 10 µl of each spiked apple 

juice or green tea was incubated with 50 µl AgNPs (0.2 mg/ml) for 5 minutes and then 

gently dripped into 100 µl mediating solvent drop by drop. After incubating for 1 minute, 

the mirror-like sediment at the bottom was collected then carefully dropped and air dried 

on a gold coated slide for SERS measurement. For SERS detection using AgNP 

aggregates, 10 µl of each standard fonofos solution was incubated with 50 µl AgNPs (0.2 

mg/ml) for 5 minutes. Then 10 µl was dripping on a gold slide and air-dried for Raman 

measurement.  
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Quantitative and statistical analysis 

In this study, all samples were measured within a range of 900-1600 cm-1. The Raman 

spectra were analyzed using Thermo Scientific TQ Analyst 8.0 software. All Raman 

intensities were averaged from at least three replicates and standard deviations were 

recorded. The peak at 1571 cm-1 was chosen for further characteristic analysis due to its 

least interference with the AgNP background. The averaged Raman intensities (i.e., the 

height of the peak at 1571 cm-1) was plotted as a function of additive fonofos concentrations 

and then fitted into the linear regression analysis. The coefficient of determination (i.e., R2) 

and the trend line equation were analyzed and obtained by Prism 7.0 software. The 

estimated limit of detection (LOD) was determined based on the following equation,112  

𝐿𝑂𝐷 =
3.3 × 𝜎
𝑏  

where s refers to the standard deviation of blank and b refers to the slope of trend line 

equations. s was calculated based on Raman intensity of 10-20 spots randomly collected 

from AgNP aggregates and AgNP mirror.  

The reproducibility of signals from both AgNP aggregates and AgNP mirror substrates 

were calculated as the relative standard deviation (RSD, i.e., the coefficient of variance).  

𝑅𝑆𝐷% = (
𝑠𝑑

𝑚𝑒𝑎𝑛) × 100 

where sd and mean refer to the standard deviation and the average of Raman intensity, 

respectively, obtained from the AgNP mirror and the AgNP aggregates.  

The percentage recovery value (RV) was calculated according to the following equation, 

𝑅𝑉% = (
[𝑓𝑜𝑛𝑜𝑓𝑜𝑠]<=><?>=@AB
[𝑓𝑜𝑛𝑜𝑓𝑜𝑠]CDEF=>GHAB

) × 100 
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where [Fonofos]calculated refers to the concentration of fonofos based on the linear regression 

equation, [fonofos]normalized refers to the actual concentration of used fonofos in sample.   

Results and discussion 

To investigate the SERS performance on the AgNP mirror as compared to the 

aggregated AgNP, a pesticide, fonofos was introduced to test the sensitivity and 

quantitative ability. SERS spectra of fonofos with varied concentrations (0 – 5 ppm) 

produced from AgNP mirror were shown In Figure 14(A). The intensity of peak at 1571 

cm-1 was plotted as a function of fonofos concentration for AgNP mirror and AgNP 

aggregation respectively in Figure 14(B) and 14(C). In terms of peak intensity, the 

traditional substrate provided a higher Raman intensity than that in the mirror substrate 

corresponding to the same fonofos concentration. However, due to the large variation for 

each of the concentration, weak quantitative ability (i.e., R2=0.9801) was obtained and 

the calculated LOD was 0.0123 ppm (the standard deviation of blank traditional substrate 

was 26.63, RSD was 57.41%).  On the other hand, the SERS measurements came out 

very consistently with relatively small error bars. After the linear regression analysis, 

coefficient of determination (R2) was indicated as 0.9981, which revealed the much more 

reliable quantitative ability of AgNP mirror substrate to the traditional substrates. 

Additionally, according to the linear regression equation, the estimated LOD of AgNP 

mirror was calculated as low as 0.0081 ppm (the standard deviation of blank mirror 

substrate was 1.32, RSD was 6.27%), which represents another enhancement of the 

sensitivity compared to the traditional substrate. Moreover, compared to the previously 

reported LOD of fonofos (e.g., 0.1 ppm in SERS),113 our mirror substrate also provided a 

huge improvement in terms of the detecting sensitivity.  
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Figure 14 (A) SERS spectra obtained from different concentrations of pure fonofos; 
Plot of Raman intensity (area under curve) at 1571 cm-1 detected via (B) AgNP 
mirror substrate and (C) AgNP aggregates as a function of concentration of fonofos. 
Linear regressions are applied, R-squares and estimated limit of detection are 
displayed.  
 

 
Figure 15 (A) SERS spectra of AgNPs aggregate blank (B) 10 spots randomly 
collected on the AgNPs aggregate (coffee ring area). 
 
Table 3 Precision of SERS measurements for traditional AgNP aggregates substrate 
and AgNP mirror substrate (n=20). 
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Fonofos Concentration 

(ppm) 

RSD% 

（AgNP aggregates） 

RSD% 

（AgNP MIRROR） 

5.00 22.35 6.56 

1.00 25.63 1.93 

0.50 23.98 8.73 

0.10 26.20 8.97 

0.05 41.06 8.97 

0.01 34.38 8.60 

0.00 57.41 6.27 

 

Table 3 showed the relative standard deviation (RSD%) of SERS intensity at 1571 

cm-1 for 0.01-5 ppm fonofos and blanks from AgNP mirror and AgNP aggregates. It is 

clear that AgNP aggregates showed larger variations even just at the coffee ring area (i.e., 

RSD ranged from 22.35% to 57.41%). On the other hand, due to the uniform surface, the 

measurements showed very consistent tendency with low relative standard deviation (i.e., 

1.93%-8.97%) which revealed the high reproducibility of AgNP mirror.  

According to the literature review, the variation from the AgNPs aggregate is 

mostly caused by the nature of inconsistent aggregation of colloidal nanoparticles. As 

shown in Figure 15, 10 spots were randomly collected from the AgNPs aggregates 

(without any pesticides) on the coffee ring area, and high relative standard deviation also 

confirmed that large variations from the background.  

 



 

59 

 
Figure 16 Typical Raman spectra of (A) commercial apple juice and (C) green tea 
incubated with 0.5 ppm fonofos, Raman spectra of (B) blank apple juice and (D) 
blank green tea were displayed as control. 

 
After the analytical performance tests of the AgNP mirror, the potential of AgNP 

mirror for fonofos detection in real food products were investigated. Two commercial 

food products (apple juice and green tea) were spiked with 0.5 ppm fonofos and then 

tested with AgNP mirrors. Regardless of the peaks contributed by the background, 

positive and high-resolution results were found in both products, which suggest the 

excellent capability of AgNP mirror in real-product pesticides screening (Figure 16). In 

Table 2, percentage recovery value (RV%) was calculated to be 98.42%-113.63% in 
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apple juice and 102.18%-107.94% in green tea, demonstrating the high accuracy for the 

quantification. It suggested the AgNP mirror can be used as a reliable SERS substrate for 

real applications.  

In the literature review section, one drawback of the colloidal AgNPs suspension 

is that can be only mixed and applied in aqueous sample. Due the disparity of 

morphology of AgNPs mirrors (solid uniform monolayer film) and colloidal 

nanoparticles (liquid suspension), the AgNPs mirror shows a much broader application 

for sample deposition. The AgNPs mirror not only can be in-situ fabricated with aqueous 

samples, but also can be pre-formed and used as a sensing substrate for food samples 

with different physical forms, such as dipping in aqueous sample, capturing aromatic 

compounds in the headspace, and holding solid samples for Raman scattering 

enhancement, as shown in Figure 17. 
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Figure 17 Sample preparations with AgNPs mirror, (A) dipping, (B) in-situ 
fabrication, (C) deposition on the pre-formed AgNPs mirror. 
 
Table 4 Sensitivity, quantification ability, and sample preparation methods for 
AgNPs mirror and AgNPs aggregates substrates.  

AgNP mirror AgNP aggregates 

Sensitivity 

(estimated LOD) 
0.0081 ppm 0.0123 ppm 

Quantification 

(R2) 
0.9981 0.9801 

Sample Preparation • Dipping in aqueous sample 

• Deposition of sample to the 

pre-formed AgNPs mirror 

(work for solid, aqueous, and 

gas samples) 

• In-situ formation with 

samples 

• Only working in aqueous 

sample 
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Conclusion 

As shown in Table 4, benefited from the uniform arrangement of nanoparticles, 

the AgNPs mirror substrate achieved a lower calculated limit of detection for fonofos 

(i.e., 0.0081 ppm) compared to the AgNPs aggregates. More importantly, a much more 

improved coefficient of determination was obtained using the AgNPs mirror substrate. 

Featuring the solid monolayer nature, the AgNPs mirror substrates have broader 

applications in sample deposition and analysis, compared to the AgNPs aggregates, 

which can be only used with aqueous samples. Other than the breakthroughs mentioned 

in Chapter 3, the results of Chapter 4 suggested that the AgNPs mirror can further 

overcome three drawbacks of current SERS substrates: 

• Much more improvement of quantitative reliability  

• Expanded applications and sample preparations from only aqueous food to solid and 

gas food systems.  

• In-situ fabrication features more 

In this project, the AgNPs mirror are proved to be functional in simple aqueous 

samples, however, its potential in multicomponent food samples have not been fully 

investigated. In the future chapters, more complicated food samples such as red wines 

and headspace will be challenged with AgNP mirror substrates.  
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5. APPLICATION OF THE MIRROR SUBSTRATE IN RED WINES 

ANALYSIS 

Introduction 

Chemical profiles are considered as important criteria to evaluate overall quality 

of red wines, for examples, anthocyanins are responsible for the red color of wines 114, 

and the perception of astringency in wines is largely credited to the condensed tannins 115. 

For the authentication purpose, the characterization of red wine profile is very essential. 

Standard characterizations and authentications are mostly based on sensory (i.e., tasting), 

magazine/website rating systems (e.g., Wine Enthusiast, a widely respected website on 

wines), or chemical analysis such as the infrared spectroscopy, mass spectrometry, the 

spectrophotometry, and the chromatography 116–120. However, these standard methods 

might be expensive, complicated, time-consuming, or not portable to operate. Therefore, 

a quick but detailed profiling tool is in a great need for authentication, quality control and 

production monitoring of red wines. In recent studies, Raman scattering showed a 

potential in wine analysis due to its quick detection and in situ operation. It is reported 

that Raman spectroscopy, not only can real time monitor sugar, ethanol, and glycerol 

during the fermentation121, but also can analyze phenolic acids in white wines or showed 

some associations of spectra to flavonoids 38,122,123. However, since red wines are more 

complex and richer in fluorescent molecules, such as polymerized pigments, Raman 

spectroscopy or SERS have yet been applied in analysis of red wines to show more 

detailed chemical profiles38.  

Therefore, in this study, we explored the potential of surface-enhanced Raman 

spectroscopy (SERS) in red wines chemical profiling with different sample preparations 
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and compared with Raman spectroscopy result. SERS uses noble metallic nanostructures 

to enhance the Raman scattering of analytes. Compared to normal Raman, SERS has 

advantages of higher sensitivity, reduced fluorescence, and enhanced selectivity by 

combining the Raman techniques with metallic noble nanoparticles. Tradition SERS 

substrate, i.e., silver nanoparticle aggregates and a highly uniform SERS substrate, 

AgNPs mirror that we previously developed were used and compared for SERS chemical 

profiling of red wines124. Three approaches of sample preparation for red wine analysis 

using SERS were developed in this study to characterize the chemical profiles of red 

wine and to differentiate three red wines, including Chateau de Chantegrive Graves, 

2012, Corley Family Cabernet Sauvignon State Lane Yountville, 2011, Gallo Family 

Vineyards Hearty Burgundy. The first two approaches were based on directly incubating 

wine samples with AgNPs aggregates and AgNPs mirrors, respectively. The third 

approach was based on liquid-liquid extraction and in situ forming the mirror substrate in 

a separated organic phase for SERS analysis. Three sample preparation methods were 

evaluated, and SERS data was analyzed for its correlation with overall quality of three 

tested wines.  

Materials and Methods 

In this work, hydrochloric acid, silver nitrate and sodium citrate were purchased 

from Thermo Fisher Scientific, Waltham, MA. Adenine, Resveratrol, Malvidin chloride, 

Catechin, Grape seeds oligomeric proanthocyanidins, and Gallic acid were purchased 

from Sigma-Aldrich, St. Louis, MO. Two high rating red wines, Chateau de Chantegrive 

Graves, 2012 (i.e., WE rating 93) 125, Corley Family Cabernet Sauvignon State Lane 

Yountville, 2011 (i.e., WE rating 92) 126, and a low rating Gallo Family Vineyards Hearty 



 

65 

Burgundy (i.e., WE rating 87) 120, were purchased from Total Wine and more store in 

Manchester, CT. To be noted, the WE ratings are given based on the quality, award 

achievements, affordability, and reviewer recommendations. Additionally, after opening, 

since wine chemicals could be potentially oxidized to result in a dramatical change of the 

profile, all red wine samples were analyzed freshly within one hour after opening, to 

ensure the integrity of their original chemical profiles.  

AgNPs synthesis 

AgNPs were synthesized according to Gao’s protocol 4 100 ml 1×10-3 M silver 

nitrate solution was heated on the plate under a vigorous stirring at 350°C until boiling. 

Subsequently, 1 ml 0.1 M sodium citrate solution was added immediately, and the 

solution was kept boiling for 25 minutes until a greenish brown color was observed to 

indicate the formation of silver nanoparticles. After cooling down to the room 

temperature, approximately 70 nm silver nanoparticles were obtained, and nanoparticles 

were diluted to 100 ml to reach the final concentration of 1×10-3 M.  

Analysis of red wine samples with Raman spectroscopy 

3 ml of red wine sample (i.e., Gallo Hearty Burgundy) was placed at the 

analyzing chamber directly for Raman measurement. 

Directly analysis of red wines with AgNPs aggregate substrates 

5 µl 1×10-2 M AgNPs solution were mixed with 5 µl of sample red wine (i.e., 

Gallo Hearty Burgundy) and incubated for 5 minutes, and air dried for Raman 

measurements.   
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Directly analysis of red wines with AgNPs mirror substrates 

AgNPs mirror substrate was fabricated and deposited on the gold slide. Then, 10 

µl of sample red wine (i.e., Gallo Hearty Burgundy) was instilled to the substrate and 

incubated for 5 minutes for Raman measurements.  

Fabrication of AgNPs mirror substrates 

According to our previous work 124, mediating solvent (i.e., a mixture of polar and 

non-polar solvents) is able to assemble AgNPs to a monolayer at the interface between 

aqueous and solvent phases. 70 µl of the mediating solvent was added to 50 µl 1×10-2 M 

AgNPs solution and pipetted vigorously to enforce the mixing of two immiscible phases. 

After 20 seconds commingling, an AgNPs mirror-like layer was assembled at the 

interface once the system reached the stillness. Mediating solvents and extra water were 

carefully removed and the AgNPs mirror layer was transferred by a pipette to a gold 

coated glass slides for further analysis.  

Wine chemicals extraction and the profiling of red wine samples using AgNPs mirror 
substrates  

In this section, ethyl acetate and hexane were mixed at a ratio of 4:1 to form the 

mediating solvent to expel water-soluble components.  500 µl of mediating solvent and 

500 µl red wine were vortexed vigorously for 30 seconds in a centrifuge vial and 

incubated on a rotating mixer for 5 minutes. After the system reached equilibrium (i.e., 

two phases are clearly separated), 70 µl red wine extracts (from the mediating solvent 

phase, shown in Figure 3 (B)) were added to 50 µl 1×10-2 M AgNPs solution and 

pipetted vigorously for 20 seconds until observing the formation of AgNPs mirror at the 

interface of two phases. Extra red wine and mediating solvents were carefully removed 
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and the AgNPs mirror layer was transferred by a pipette to a gold slides for Raman 

measurement. Additionally, five wine chemicals (i.e., 2000 ppm grape seeds oligomeric 

proanthocyanidins, 500 ppm catechin, 500 ppm gallic acid, 100 ppm malvidin chloride, 

and 100 ppm resveratrol) were prepared in 15% ethanolic solutions (i.e., to simulate the 

practice of red wine environment) as standard stocks. Later, these chemicals went 

through the same extraction method and SERS spectra were acquired to compare with the 

wine extract spectra.  

Instrumentation 

The Surface-enhanced Raman scattering measurement is performed using a 

ChemLogix EZRaman-I Series High Performance Portable Raman Analyzer with a 785 

nm laser source, under following conditions: 170 mW laser power, 5 times integration, 

and 2 seconds exposure time. Raman intensity was determined based on the height of 

distinct peaks. 

Quantitative and statistical analysis 

In this study, all samples were measured within a range of 400-1800 cm-1. Raman 

spectra were analyzed using Thermo Scientific TQ analyst 8.0 software and the statistical 

differences of spectra were characterized via principle component analysis. In the 

principle component analysis, PC scores represent the most distinct regions of the spectra 

and they are ranked from 1-3 based on the significance of the distinct region in the 

overall spectrum. PC1, PC2, and PC3 for the PCA of wine spectra were determined and 

their sum was compared to 80% to suggest a significance of difference among the spectra 

127.  
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Results and discussion 

Analysis of red wine with Raman spectroscopy and the AgNPs aggregates 

Raman measurement of red wine (i.e., Gallo Hearty Burgundy) and SERS 

measurements of red wine with AgNPs were shown in Figure 18 (a) and Figure 18 (b), 

respectively. In Figure 18 (a), one distinct peak at 733 cm-1 Raman shift was observed in 

the spectra, however, the overall resolution of the spectrum is relatively low. According 

to the literature, this noisiness could be due to the complex constitution of red wine and 

fluorescent inference given by polymerized pigments 123. On the other hand, if red wine 

was mixed with AgNPs and dried for analysis (Figure 18 (b)), same phenomenon was 

overserved at the edge area as shown in in Figure 18 (c). This could be resultant from the 

aggregation of large wine molecules (i.e., polymerized pigments) at the edge area during 

the drying process. However, the overall resolution of the spectra was found to be 

extraordinarily improved if the SERS measurement focused at the middle area as shown 

in Figure 18 (d).  According to the picture of the dried mixture, most AgNPs were found 

aggregated at the middle area, which presumably suggested that the exclusion of 

polymerized pigments (mostly retained at the edge) can reduce the fluorescent 

interference and hence to improve the overall resolution of the Raman spectra. However, 

targeting on the distinct peak at 733 cm-1, the variation of Raman intensity was relatively 

large (i.e., relative standard deviation is 28.9%, as shown in Figure 18 (e)). Therefore, 

according to previous study 124, a newly developed uniform SERS substrate, AgNPs 

mirror was demonstrated to provide more consistent results and more uniform Raman 

intensities.  
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Figure 18 Schematic illustration of (A) direct analysis of red wines with Raman 
spectroscopy, and (B) direct analysis of red wine with AgNPs aggregates, and SERS 
intensity distribution for the peak at 733 cm-1 (relative standard deviation is 
displayed). 
 
 

Direct wine chemical analyzing method with AgNPs mirror 

As shown in Figure 19 (a) and previous study 124, AgNPs mirror was fabricated 

with a mediating solvent (i.e., a mixture of acetonitrile and hexane). A drop of model red 

wine sample (i.e., Gallo Family Vineyards Hearty Burgundy) was carefully dripped on 

the surface of the premade AgNPs mirror. After the deposition, the AgNPs mirror floated 

over the wine drop (Figure 19 (c)) and was able to capture chemicals from the red wine 

during the incubation. Since the AgNPs mirror is a layer of internally attached 

nanoparticles, mirror remained intact and stayed at the mid after drying (Figure 19 (d)). 

According to Figure 19, pigments mostly aggregated at the edge of spots after dried, the 

phenomenon of mirror staying at mid confirmed that AgNPs mirror can also exclude the 

pigments and reduce the fluorescence interference as AgNPs aggregates.  
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Additionally, credit to the uniform arrangement of nanoparticles, data analysis 

showed that the consistency of Raman intensity at the distinct peak, 733 cm-1 (i.e., 

relative standard deviation was only 8.21%, Figure 19 (e)), was much improved 

compared to the AgNPs aggregates and another distinct peak was observed at 1324 cm-1 

in Figure 19 (f).  

To further investigate the chemical components that are responsible for signature 

peaks, a dominate and quality-related phytochemical in red wines, condensed tannins 

(i.e., grape seeds oligomeric proanthocyanidins) were tested via SERS following the 

same steps of analyzing red wine samples. To mimic the polar environment, condensed 

tannins were dissolved into 15% ethanolic water solution. SERS spectra of 5000 ppm 

condensed tannins were shown in Figure 19 (f) and similar signature peaks were 

observed as the red wine samples at 733 cm-1 and 1324 cm-1 Raman shift. However, 

based on the literature review 128, a DNA fraction molecule, adenine also shared the 

similar SERS spectra as both red wine and condensed tannins. To confirm the similarity, 

adenine was analyzed in the ethanolic solution and SERS spectra were acquired 

following the same steps for condensed tannin and shown in Figure 19 (f).  

After comparison, similar SERS spectra and signature peaks were observed at 1 

ppm adenine, 5000 ppm condensed tannins, and sample red wine in Figure 19 (f). This 

observation suggested that the distinct peaks observed from red wine and condensed 

tannins were presumably related to adenines. According to the previous study, DNA 

fractions in grapes, including seeds, skins, and pulps, were  present in the must (i.e., 

freshly pressed juice containing the skins, seeds, pulps, and stems) and final products 129. 

Even though intact DNA could be mostly destroyed during the processing, the residual 
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fractions, such as adenine, cannot be completely eliminated from red wines. Adenine was 

known as an extremely sensitive SERS active component 128, according to the our results 

(shown in supporting information), relatively high signal intensity could be observed at 

even low concentration at 1 µg/L. This finding suggested that even though the AgNPs 

mirror can provide consistent results, the dominancy of adenine in the SERS spectra 

masked other important chemicals such as phenolic acids, anthocyanins, and 

polyphenols. Thus, a more complex sample preparation method needs to be further 

developed to comprehensively profile chemicals in red wines. To be noted, since the 

residual adenine and condensed tannins in wine are mostly released from grapes during 

winemaking, a potential correlation between adenine and condensed tannins were also 

found in the study, and the determination of adenine in red wine could be used as an 

indicator for the concentration of condensed tannins. This prediction of the condensed 

tannin content in several red wine models was also validated with a standard UV-

spectrophotometric condensed tannins determination method, Bate Smith 117. Validation 

and modifications are needed in the future for this discovery; therefore, results were 

shown in supporting information.  
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Figure 19 (A) Schematic illustration of the fabrication of AgNPs mirror and the 
sample preparation for the direct analysis of red wines with AgNPs mirror. 
Photographs of (B) AgNPs mirror, (C) AgNPs mirror floated on the red wine, and 
(D) dried AgNPs mirror with red wine. (E) SERS intensity distribution for the peak 
at 733 cm-1 from the direct analysis of red wine with AgNPs mirror (relative 
standard deviation is displayed), (F) SERS spectra of adenine (a DNA based 
molecule), condensed tannin from grape seed extract, and red wine. 
 

Extraction based wine chemical profiling method 

As previously mentioned, the mirror was fabricated by a mediating solvent which 

has different combinations of polar and non-polar organic solvents 124. These solvents are 

also effective extracting agents, therefore, we hypothesized that the mediating solvent can 

also extract the bioactive components from red wines and concentrate them onto the 

AgNPs mirror substrate for SERS analysis during the fabrication of mirror at interface.  

Since adenine is very water soluble 130, the mediating solvent in this study should 

not only extract sufficient amount of wine chemicals but also suppress adenine in the 

water phase to eliminate the dominancy of adenine in the wine extract spectra. Therefore, 

a neutral-polar solvent, ethyl acetate, modified with a minimal amount of hexane was 

chosen to constitute the mediating solvent.  
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Sample preparation was illustrated in Figure 3 (a). The mediating solvents were 

mixed vigorously with three sample wines and due to the polarity difference, two phases 

separated once system reached the equilibrium. As shown in Figure 3 (b), slightly 

redness in the mediating solvent layer indicated the successful extraction. The mediating 

solvent with red wine extract was subsequently added to the AgNPs solution and 

vigorously mixed. The mirror formed at the interface was moved out for measurement. 

As shown in Figure 3 (b), compared to a silver color on the mirror blank, a burgundy 

appearance on the mirror with wine extract indicated that bioactive components were 

presumably concentrated to the mirror substrate during the fabrication. In Figure 3 (c), 

spectra of red wine extracts from three varieties were presented and showed partial 

similarity to previous reported dry white wine spectra 38. Furthermore, spectral 

differences were observed within three tested red wines. After comparing to the spectra 

obtained by directly dropping red wine to the mirror (Figure 19 (f)), more peak 

information, higher resolution, and less intensity of peak at 733 cm-1 were acquired in 

Figure 3 (c), suggesting that extraction method did provide more chemical details of the 

red wines other than only adenine from the direct analysis.  

Wine chemicals characterization in the wine extract spectra 

To confirm the spectral distinctions within three tested red wines, principle 

component analysis was applied and showed in Figure 20 (a). Based on the PCA results, 

PC1 score referred to a 60.23%, PC2 score and PC3 score referred to 20.01% and 9.15%, 

respectively, in the full spectrum contribution. The sum of three PC scores is larger than 

80%, which suggested a presence of significant differences among three red wine spectra 

127. After reviewing of all red wine spectra, dominating peaks were observed at 1603 cm-
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1, 1555 cm-1, 1318 cm-1, 1248 cm-1, 950 cm-1, and 650 cm-1 in all three red wines, and 

additional peaks at 1479 cm-1, 1350 cm-1 and 1025 cm-1 were only found in Chataeu de 

Chantegrive Graves, as shown in Figure 20 (b-d). As reported by spectroscopic and 

theoretical investigation of phenolic acids in white wines 38,131, peaks at 1603 cm-1 were 

presumably contributed by wine polyphenols. Therefore, to potentially identify the 

assignment of dominating peaks, five representative wine standard chemicals, phenolic 

compounds (e.g., catechin, oligomeric proanthocyanidins (condensed tannin), gallic acid, 

resveratrol, and malvidin chloride) were investigated in this study. According to the 

reported concentrations of standards in red wines (i.e., condensed tannin, 2000-2500 mg/l 

132, catechin, 172-637	𝞵M, gallic acid, 130-416 𝞵M, anthocyanins, 101-325 𝞵M, and 

resveratrol, 2-46 𝞵M 133), representative chemicals were dissolved in 15% ethanolic 

solution at according concentrations shown in the method section and were analyzed 

using the same extracting method as wine samples. SERS spectra of each standard was 

shown in the supporting information and signature peaks were listed in Table 5.  

As expected, dominating peaks in Figure 20 (b-d) were found to share the same 

Raman bands with five standards, such as peaks at 1555 cm-1 and 1248 cm-1 were also 

observed in oligomeric proanthocyanidins (condensed tannins) and malvidin chloride , 

the peak at 1603 cm-1 was observed in gallic acid, resveratrol, and malvidin chloride, the 

peak at 1318 cm-1 was observed in catechin, gallic acid, and malvidin chloride, the peak 

at 950 cm-1 was observed in gallic acid and resveratrol, and the peak at 650 cm-1 was 

observed  in oligomeric proanthocyanidins, gallic acid, and catechin. Other than 

dominating peaks were observed all wine samples, additional peaks at 1350 cm-1 and 

1025 cm-1 in spectra of Chateau were also observed in malvidin chloride and in gallic 
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acid, respectively, and the peak at 1479 cm-1 was observed in oligomeric 

proanthocyanidins, gallic acid, and catechin. To be noted, other than the five wine 

chemicals analyzed in this study, many other chemicals that share similar chemical 

structures or side groups could contribute to the same bands in SERS spectra, such as the 

peak at 1603 cm-1 was reported in other white wine phenolic acids other than the gallic 

acid 38. Even though further validation might be needed to study the actual composition, 

the results suggested that the extraction method combined with SERS showed a huge 

potential to be a comprehensive screening tool to quickly and simply profile the chemical 

components of red wines. 

In Figure 20, differences were observed (e.g., the peak intensity, the appearance 

of signature peaks, and the pattern of the spectra) within all tested red wines. To further 

investigate potential differences of three red wines, intensities of peaks at 1603 cm-1, 

1555 cm-1, 1479 cm-1, 1350 cm-1, 1318 cm-1, 1248 cm-1, 1025 cm-1, 950 cm-1, 650 cm-1, 

were compared in Figure 21. At 1603 cm-1, Corley is significantly higher than other two 

red wines, which could indicate a higher presence of gallic acid, resveratrol, or malvidin 

chloride. At 1555 cm-1, the highest peak intensity was observed in Chateau, which 

presumably suggested a higher amount of condensed tannins or malvidin chloride. At 

1479 cm-1, a peak was only observed in Chateau, which could illustrate a higher amount 

of condensed tannin, gallic acid, or catechin. Similar phenomenon was found at 1350 cm-

1 and 1025 cm-1, only peaks observed in Chateau might suggest a higher concentration of 

malvidin chloride and gallic acid, respectively. At 1318 cm-1, Corley showed the highest 

peak intensity which could reveal a higher concentration of catechin, gallic acid, or 

malvidin chloride. At 1248 cm-1, highest peak intensity occurred with Chateau to 
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presumably indicate a higher amount of condensed tannins, malvidin chloride. At 950 

cm-1, both Corley and Chateau showed significant higher peak intensity than Gallo to 

suggest potentially higher presences of gallic acid, resveratrol. However, at 650 cm-1, 

Gallo showed a possibly highest amount of condensed tannin, gallic acid, or catechin. To 

be noted, since there are no following standard validations due to the lack of 

instrumentations, detailed differences showed in Figure 21 are mostly speculated and 

could be also caused by other similar-structure wine chemicals that are not tested. 

Nevertheless, the noticeable spectral differences reported here suggested a huge potential 

of SERS in the red wine profiling. According to most results, both Corley and Chateau 

seem to show relatively more complicated phytochemicals profiles (i.e., higher peak 

intensity and more peaks) than the Hearty.  

 

Figure 20 (A) Schematic illustration of the red wine extraction with mediating 
solvents and the fabrication of the AgNPs mirror with wine extracts. (B) Mediating 
solvent (top left), mediating solvent layer after red wine extraction (top right), and 
(bottom left) blank AgNPs mirror substrate after fabrication and (bottom right) 
AgNPs mirror substrate fabricated with wine extracts. (C) SERS spectra of Gallo 
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Family Vineyards Hearty Burgundy, Chateau de Chantegrive Graves, 2014, and 
Corley Family Cabernet Sauvignon State Lane Yountville, 2014. 
 
Table 5 Assignment of signature peaks of standard red wine chemicals. 
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Figure 21 . (a) PCA differentiation of three wine extracts. (b) SERS spectra of Gallo 
Hearty Burgundy, Chateau de Chantegrive, Corley Family Cabernet Sauvignon 
State Lane Yountville with peak assignments of tested wine chemicals. 
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Figure 22 Raman intensities of important peaks in three red wine extract spectra 
(significant differences within three red wines were observed in each Raman shift). 
 

Additionally, in this case, it is hard to specifically quantify individual chemicals 

in each red wine sample because many chemicals shared the same peak assignment. For 

example, oligomeric proanthocyanidins (condensed tannins) always shared same bands 

with malvidin chloride (anthocyanins) or gallic acid in the spectra and both of them 

showed potentially higher amount in Chateau.  

It was noteworthy that the results from the Bate Smith method in supporting 

information indicated Gallo Hearty Burgundy also had the lowest content of condensed 

tannins, which agreed to the findings from the extraction method. Since wine chemicals 

analyzed in this study are closely related to the overall red wine quality 115, the profiled 

information can be applied to evaluate the overall quality of red wines. Based on the 

obtained spectral information in Figure 21 and Figure 22, both Corley Family Cabernet 

Sauvignon (i.e., WE score is 92) and Chateau de Chantegrive Graves (i.e., WE score is 

93) showed significant higher amount or more information of red wine chemicals which 

could reveal their higher overall qualities than the Gallo Family Hearty Burgundy (i.e., 

WE score is 87). The results also made an agreement with the WE quality scores of three 
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tested red wines. Since every red wine showed different SERS spectra, all peak 

assignments can be assembled to a bar code specifically referring to each red wine to 

illustrate the potential chemical profile of red wines. Overall, the extraction-based 

method successfully suppressed the interreference of adenine and profiled the wine 

chemicals in one comprehensive SERS spectra. Additionally, according to the literature, 

the quality of red wines is closely related to the grape varieties used in the wine making. 

Some premium-quality red wines are only made from one type of grape to provide a pure 

taste, such as the Corley is made only from Cabernet Sauvignon. And some red wines, 

such as Chateau and Gallo Burgundy are blended with a variety of species either to 

enrich the flavor, or to reduce the cost of ingredients 132. This might explain why more 

complexity was observed from the SERS spectra of Corley than Chateau and Gallo 

Burgundy, since many dominate compounds from Cabernet Sauvignon are presumably 

diluted during the blending, to result in a disappearance of their signature peaks in the 

SERS spectra.  

However, due to the high cost and the lack of availability of a single wine grape 

variety, adulteration of foreign species during the winemaking is not a rare case. Since 

different grape species have distinct chemical profiles, according to the results, SERS 

showed a great potential to be a fast authentication tool to determine the possible 

adulteration.  

Freshness evaluation using extraction-based profiling method 

Other than profiling the important phytochemicals, a freshness study was also 

demonstrated to compare the SERS spectra of a red wine that is freshly opened and a red 

wine that is opened for four weeks. Results were shown in Figure 23. In the spectra of 
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fresh wine, a peak at 500 cm-1-520 cm-1 was observed. According to literatures134,135, this 

peak was presumably contributed by sulfur dioxide, a preservative that was commonly 

used in red wine at a relatively high concentration (i.e., 20-200 ppm)136. After opening for 

four weeks, the red wine was considered as spoiled because it produced a strong pungent 

aroma similar to the nail polish remover (i.e., ethyl acetate, an indicator of the bacterial 

spoilage of red wine)137. In the SERS spectra of spoiled wine, at the similar Raman shift 

range, an increase of the peak at 500 cm-1 was observed. Further principle component 

analysis also confirmed the difference between two spectra. According to literatures, red 

wines were oxidized and spoiled quickly after opening, since the contact of oxygen will 

trigger the growth of acetic acid bacteria and lactic acid bacteria to produce spoilage 

compounds138. In the Raman characteristic group frequencies table135, the increase of the 

peak was suspicious to be caused by the production of aromatic disulfides (region from 

400 cm-1-540 cm-1) or the polysulfides (region from 450 cm-1-510 cm-1), which were both 

considered as wine spoilage compounds from the literature.136 This interesting discovery 

added an extra potential of the extraction-based method in red wine chemical profiling. 

However, further analysis still needs to be done to confirm the presence of the sulfur 

dioxide and the spoilage in red wine after long term storage, such as the increase of 

volatile acidity a due to the acid production of spoilage bacteria.137 
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Figure 23 (A) SERS spectra of freshly opened Corley red wine and the red wine 
after opening for four weeks. (B) PCA differentiation of two SERS spectra. 

Conclusion 

Herein, several sample preparation methods to profile chemical information of red 

wines using SERS were demonstrated. Both direct analyses using Raman spectroscopy 

and using the AgNPs aggregates failed to show clear or consistent spectra due to 

interference of the pigments and the overgeneration of nanoparticles. The use of AgNPs 

mirror not only reduced the fluorescent interference but also provided a better data 

consistency. However, due to the presence of adenine, most chemical information of red 

wines was masked. Therefore, the extraction-based method was developed to use a 

specially designed mediating solvent to suppress the dominancy of adenine in the SERS 

spectra, meanwhile, to extract important phytochemicals in the red wines and to 
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concentrate to the mirror. Comprehensive chemical profiles were obtained and the 

spectral differences were clearly observed among three tested red wines. Furthermore, the 

chemical profiles assembled a bar code that has the potential to for determining the 

authenticity and monitoring the change of the chemical profiles over time. This study 

suggests SERS to be a new comprehensive analyzing tool to study the wine components 

other than UV-spectrophotometry, chromatographic, and sensory methods. Without 

analyzing each chemical individually, integrating SERS spectra of red wines with data 

science could be very feasible. In the future study, more wine samples will be tested to 

establish the data base, and to explore the potential of the data analysis using machine 

learning algorithms in wine differentiation and quality assessment.  

Supporting information 

Detection of condensed tannins in red wine samples by the Bate-Smith assay 

Grape seeds oligomeric proanthocyanidins (condensed tannins) concentrations in 

red wine were also determined using the Bate-Smith assay as a validating methodology. 

Red wine samples were diluted with ultrapure water117. Two separate 15 ml test tubes 

were prepared for every type of red wine, and 4 ml of diluted red wine, 2 ml of ultrapure 

water, and 6 ml of hydrochloric acid were added in each test tubes. One test tube was 

water bathed at 100°C for 30 minutes and the other tube (blank) was stored in dark for 

the same time. After the heating, 1 ml of ethanol was added to each tube and tubes were 

stored in dark until fully cooling down. The absorbance of each sample was acquired in a 

spectrophotometer at 550 nm using ultrapure water as the blank. The absorbance 

difference was then multiplied 19.33 to calculate the final concentration of 
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proanthocyanidins in red wine samples, and the concentration was expressed in g CE•L-1 

(Catechin Equivalence). 

Analysis of grape seed oligomeric proanthocyanidins, adenine, and their correlation  

Grape seeds oligomeric proanthocyanidins (i.e., condensed tannin) with different 

concentrations (500-2250 mg/l) and DNA fraction (i.e., Adenine) with different 

concentrations (2.5-45 µg) were initially dissolved into 15% ethanolic water solution. 

Then, 10 µl of condensed tannin solution/adenine was instilled onto the surface of AgNPs 

mirror substrate. After 5-minute incubation, the sample was air-dried for Raman 

measurements. 

All Raman intensities were averaged from at least eight replicates and standard 

deviation was recorded. For condensed tannin, adenine, the peak at 733 cm-1 was chosen 

and the average Raman intensity was plotted as a function of concentrations of condensed 

tannin and adenine, respectively. Linear correlations were performed for both condensed 

tannin and adenine and calibration curves were generated. The correlation was also 

performed between the concentration of condensed tannin and adenine at the same 

Raman intensity of 733 cm-1 to determine the linear relationship of two wine components. 

In the direct red wine analysis, the amount of condensed tannins was determined based 

on the preceding standard curves and the Raman intensity of 733 cm-1. Calculated 

concentration of condensed tannins was validated with the Bate Smith assay and the 

recovery value (i.e., RV%) was calculated based on the following equation: 

 

RV% = (
Conc.		of	condensed	tannin	XYZX	

Conc.		of	condensed	tannin	[\]^_X`a]b
) × 100 
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The concentration of adenine in red wines was hypothesized to indicate the 

amount of condensed tannins in red wines. To demonstrate the relationship, Raman 

intensity of adenine and condensed tannins were plotted as a function of their 

concentrations, respectively (SI 2). After the comparison of two plots, a proportional 

correlation was observed between adenine and condensed tannins in Figure 2 (C) along 

with the coefficient of determination (0.9968). Additionally, a mathematic model was 

presented in Figure 2 (C) to predict the concentration of condensed tannins in red wines 

based on the concentration of adenine detected using SERS.   

Three red wine samples within different quality levels, Corley Family Cabernet 

Sauvignon State Lane Yountville, 2014 (Corley, high rating), Chateau de Chantegrive 

Graves, 2014 (Chateau, high rating), and Gallo Family Vineyards Hearty Burgundy 

(Gallo, acceptable rating) were analyzed using the AgNPs mirror substrate and the 

spectra were shown in Figure 21 (A). Noticeable differences within three wine samples 

were observed and further confirmed in the principle components analysis (i.e., PCA) in 

Figure 21 (B). Distinctions were presumably due to different quality levels and the varied 

enological nature of three red wines, including origins, viticulture, species, fermentation 

process, and ages. Nevertheless, even though spectral disparity was observed, signature 

peaks of adenine still dominated in all red wine spectra. The concentrations of adenine 

were calculated in each red wine according to the peak intensity at 733 cm-1 and the 

calibration curve (showed in SI). In Figure 21 (C), the concentrations of condensed 

tannins were estimated via the equation, 

 
𝐶<DCBACdAB	@=CCGC = 𝐶=BACGCA × 37.2 + 450.53 
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Within three red wines, Corley family Cabernet Sauvignon showed the highest 

concentration of condensed tannins, followed with the Chateau de Chantegrive and the 

Gallo Hearty Burgundy. To validate the estimation, a standard UV-spectrophotometer 

based Bate Smith assay was applied to determine concentrations of condensed tannins in 

three red wines. After the calculation, a similar tendency of the condensed tannins 

concentrations in red wines was observed between SERS and Bate Smith Assay in Figure 

SI2, which indicated that the SERS method is reliable in quantification of condensed 

tannins. 

Therefore, foregoing results suggested that the adenine, a DNA based molecule 

released along with condensed tannins during the enological process from grapes, can be 

used as a SERS indicator to estimate the concentration of condensed tannins in red wines. 

Furthermore, since the amount of condensed tannins is responsible to the reception of 

astringency 132, which is reported to be positively related to the wine quality, the 

determination of adenine using SERS can provide a quick predication of the overall 

quality of red wines.  

To be noted, even though Bate Smith method was considered as a validation in 

this study, the SERS also showed many advantages in the experimental practice such as 

faster operation (i.e., the whole analysis only took less than 10 minutes including the 

sample preparation) and simpler preparation, compared to the Bate Smith.     
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Figure 24 Plots of Raman intensity as a function of concentrations of oligomeric 
proanthocyanidins and adenine, respectively. Concentration correlations between 
condensed tannin from grape seed extract and adenine. 
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Figure 25 (A) spectra for three wines (B) PCA differentiation of three wines (C) 
estimation of concentration of condensed tannin in wines and the validation through 
Bate Smith UV spectroscopic method. 
 



 

89 

 
Figure 26 SERS spectra of analyzed wine chemicals. 
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6. APPLICATION OF THE MIRROR SUBSTRATE IN THE HEADSPACE 

ANALYSIS OF FOOD MATRICES 

Introduction 

Garlic is one of the most representative Allium species plants, that is used in food, 

spices, nutrient supplements, and medicines 139,140. Garlic yields many heath beneficial 

compounds, such as an extremely unstable thiosulfinate, allicin, and its decomposed 

organosulfur compounds, such as diallyl sulfide, diallyl disulfide, and diallyl trisulfide 

141. Due to the reported antimicrobial, anticarcinogenic, and anti-cardiovascular disease 

properties of these organosulfur garlic derivatives, they have been developed into garlic 

powders, garlic oils, and other extraction-based dietary supplements 140–145. Since these 

organosulfur compounds are not readily stable, characterization of these chemicals in the 

garlic extract products played a very important role for the quality assurance 139. The 

characterization can be conducted through the liquid chromatography (i.e., LC) for 

products such as garlic oil extract, however, since these organosulfur compounds are 

mostly aromatic and volatile, characterizing and quantifying them in the headspace of 

garlic extract using the gas chromatography – mass spectrometry (i.e., GC-MS) is more 

practical. Chromatographic methods are golden standards and providing accurate 

analysis, however, it suffers from some drawbacks including complicated instrument 

operations and/or sample pretreatment, the requirement of trained personnel, and the lack 

of portability. Therefore, alternative fast, simple, sensitive, and portable techniques are 

gaining more attentions.  

Surface enhanced Raman scattering, short for SERS, combined the 

nanotechnology and Raman scattering, is an emerging analytical tool for chemical 
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characterization due to its fast analyzing speed, sensitive detection, simple sample 

preparation and instrument operation, and great portability. SERS has shown some 

promising potentials in the detection of volatile compounds. Recently, a gold 

nanoparticle coated SERS fiber was developed for the solid-phase microextraction and 

the detection of pesticides in apple juice headspace 35. Red wine samples were either 

dropped on a gold nanoparticle coated thin film or filtrated from headspace onto a 

graphene oxide and gold nanorods hybrid filter paper to analyze the presence of sulfur 

dioxide, respectively 146,147. Raman spectroscopy was used to directly measure flavor and 

aroma from essential oils in quartz cuvettes 148. Besides the above research,  the 

headspace gas phase of garlic, leeks and Chinese chives, were drawn using a syringe and 

injected to silver nanoparticle colloids to characterize the volatile compounds using 

Surface-enhanced Raman spectroscopy 34. Nevertheless, other than the SERS fiber, few 

studies analyzed the chemical profiles actually from the headspace, but still by a liquid 

incubation of sample with SERS substrates. Therefore, the performance of SERS in the 

actual headspace analysis still need to be further explored.  

In this study, the objective is to develop a SERS method coupled with a mirror-in-

cap substrate to analyze the  the volatile compounds directly in the headspace of garlic 

extract based on solid phase extraction. Furthermore, the concentration of corresponding 

compounds in the headspace was determined based on a pre-made calibration curve, and 

the quantitative performance of this SERS method was compared with the results 

acquired from an injection GC method.      

Material and methods 
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Materials 

Fresh garlic was purchased from the local grocery store. Diallyl sulfide (DAS), 

diallyl disulfide (DADS), diallyl trisulfide (DATS), 1-propanethiol, 2,5-

dimethylthiophene, diallyl sulfide, dimethyl disulfide, dipropyl trisulfide, and s-allyl 2-

propene-1-sulfinothioate were purchased from the Sigma Aldrich in St. Louis, MO. 

Silver nitrate, sodium citrate, and ethanol were purchased from Thermo Fisher Scientific 

in Waltham, MA. 

Synthesis of silver nanoparticles and the fabrication of AgNPs mirror on the cap 

AgNPs were synthesized according to Gao’s protocol  100 ml 1×10-3 M silver 

nitrate solution was heated on the plate under a vigorous stirring at 350°C until boiling 4. 

Subsequently, 1 ml 0.1 M sodium citrate solution was added immediately, and the 

solution was kept boiling for 25 minutes until a greenish brown color was observed to 

indicate the formation of silver nanoparticles. After cooling down to the room 

temperature, approximately 70 nm silver nanoparticles were obtained, and nanoparticles 

were diluted to 100 ml to reach the final concentration of 1×10-3 M.  

Acetonitrile and hexane were vortexed with a ratio of 1:1. After mixing, non-polar 

and polar layers were separated. The polar layer was collected and stored as the 

mediating solvent. Commercial AgNPs were firstly concentrated by centrifugation to 0.2 

mg/ml. Then, 50 µl AgNPs was slowly dripping into 100 µl mediating solvents drop by 

drop. After about 1 minute, a mirror-like sediment at the bottom was collected then 

carefully dropped and air dried on an aluminum covered glass slide.  
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Aluminum film with dried mirrors was cut into proper sizes that can fit in the caps 

of 2 ml glass vials, and then were attached to the inner side of the cap using double side 

tapes, to assemble as a mirror in cap SERS active substrate.  

Sample preparation of freshly minced garlic, garlic extract, and chemical standards 

10 g fresh garlic was minced to store in a 20 ml glass vial and stored in a 20 ml 

glass vial. For the garlic extract, since the garlic derivatives are unstable, and allicin will 

quickly decompose to organosulfur compounds after crushing, to prevent a further 

change of the chemical profile and to achieve a good extraction, 10 g fresh garlic was 

minced in 10 ml ethanol in a blender, and then the mixture was stored in a 20 ml glass 

vial. Three organosulfur compounds are analyzed at a pure condition for the best 

resolution of Raman spectra for peak assignments. To keep the same analytical condition 

as the garlic extract for the quantitative purpose, diallyl disulfide was prepared in 

ethanolic solutions with the concentration from 5 to 500 ppm. For all reference standards 

in the supporting information, all pure standards were mixed with AgNPs at the volume 

ratio of 1:1, and 10 µl of mixture was dried on a gold covered glass slide to form the 

“coffee ring” for SERS measurements.  

Headspace analysis of garlic headspace using SERS 

25 µl of  pure organosulfur standards, diallyl sulfide (DAS), diallyl disulfide 

(DADS), diallyl trisulfide (DATS), and other standard references were transferred to the 

2 ml glass vials individually, and the mirror-assembled cap was then placed on the glass 

vial for a varied of time (under the room temperature) until the distinct SERS spectra was 

observed. To speed up the release of volatile compounds and to mimic the similar heating 
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condition of GC, 800 µl diallyl disulfide ethanolic solutions were incubated with the 

mirror in cap substrate in 2 ml glass vials for 5 minutes (with boiling water bath) for its 

quantitative analysis.  

For freshly minced garlic and garlic extracts, 1 g minced garlic or 1 ml ethanol 

extract was incubated with the mirror in cap substrate in the glass vial to allow the 

volatile compounds in the headspace to interact with the substrate for 2 hours (under the 

room temperature) or for 5 minutes (with boiling water bath), respectively, until the 

SERS measurement. 

The SERS measurements of the captured volatile compounds on mirror in cap 

substrate were performed using a Thermo Scientific DXR Raman Spectro-microscope 

with a 780 nm Laser source under the following conditions: 10´ objective, 3.1 µm spot 

diameter, 5 mW laser power, 2s exposure time and 50 µm slit width for headspace 

analysis. 

Headspace analysis of garlic headspace using GC 

Headspace analysis of garlic headspace using GC was based on a previous 

established protocol 149. The headspace profile was determined by gas chromatography 

(GC2010, Shimadzu, Columbia, MD) equipped with an auto sampler (AOC-20i, 

Shimadzu, Columbia, MD). Since the GC is coupled with an injection-based sampler, 

only ethanolic garlic extract or DADS solutions were analyzed. 1 ml of sample were 

stored in GC vials and 1 µl of sample solution was injected by an auto sampler and 

vaporized at 250°C in the injector, and then separated within an SH-Rxi-5 ms capillary 

column (15m × 0.25mm inner diameter × 0.25 µm). The GC column was programmed 

with the following settings: temperature starts at 80°C, and then is heated with a rate of 
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5°C/min to reach 100°C and held for 2 minutes. The overall analyzing time for each 

sample is 7 minutes. Helium was used as the carrier gas and the flow rate is set at 0.91 

ml/min. Headspace profile of garlic was determined based on the matching with retention 

times of sulfides standards. Concentrations of dominate sulfides were determined based 

on the peak area and the calibration curve prepared with the sulfide standards.  

Statistical analysis 

In this study, all samples were measured within a Raman shift range of 400-2000 

cm-1. Raman spectra were analyzed using Thermo Scientific TQ analyst 8.0 software and 

the statistical differences of spectra were characterized via principle component analysis. 

In the principle component analysis, PC scores represent the most distinct regions and the 

sample variances of the spectra and they are ranked from 1-3 based on the significance of 

the variance in the overall spectrum. PC1, PC2, and PC3 for the PCA of spectra of 

organosulfur compounds and the garlic headspace were determined. Ideally, if the total 

amount of these variances is greater than 80%, it will suggest a significance of difference 

among the spectra 127. The Raman readings at the signature peak 1632 cm-1 or the GC 

peak area of diallyl disulfide at 4.85 min of the headspace of DADS solutions were 

plotted as a function of DADS concentration, linear regression analysis and the nonlinear 

fitting analysis were both conducted using the GraphPad Prism to determine the best 

fitting model for quantification.   

Results and discussion 

Headspace characterization of minced garlic  

The assembly of mirror-in-cap substrate is shown in Figure 27 (A). AgNPs mirror 

on the aluminum foil was cut into the size fitting in the cap for 2 ml glass vial and fixed 
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on the cap with a double side tape. The headspace profile characterization of garlic using 

the mirror-in-cap substrate is illustrated in Figure 27 (B) and the spectra of garlic 

headspace is shown in Figure 27 (C). High intensity distinct peaks are observed in the 

Raman shift of 1632, 1400, 1291, 1191, 731, and 577 cm-1. As a representative Allium 

species plant, garlic is rich in organosulfur compounds 150. Therefore, to determine the 

corresponding volatile compound in the garlic headspace, a set of organosulfur 

compounds reported from the Allium species plants were tested using the colloidal silver 

nanoparticles substrate and spectra were shown in the supporting information. After the 

bands assignment, it was found that diallyl sulfide (i.e., DAS) showed the most similar 

peak assignments to the distinct bands acquired from the garlic headspace. Even though 

extra peak and shifted peak were still observed at the Raman shifts of 1606 and 710 cm-1 

for DAS, this result suggested that the dominate compounds might be corresponding to 

DAS or other sulfides. To be noted, the headspace SERS spectra showed a much higher 

resolution than the spectra of chemical standards obtained from coffee rings. This finding 

agreed with a previous work that headspace showed improved resolution because of the 

less interreference from the environment 35. 
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Figure 27 (A) Assembly of the “mirror-in-cap” SERS substrate. (B) Illustration of 
the headspace analysis of minced garlic. (C) SERS spectra of the headspace of 
minced garlic. 
 

With more detailed literature reviews, allicin was found to be the dominant flavor 

compound in the garlic. Due to its unstable chemical structure, allicin can be easily 

oxidized into a group of organosulfur compounds that are responsible for the garlic flavor 

and named as the garlic oil. In the garlic oil, the major compounds are diallyl sulfide 

(DAS), diallyl disulfide (DADS), and diallyl trisulfides (DATS) 150–153.  

To further investigate the corresponding organosulfur compound, pure DAS, 

DADS, and DATS were tested with the mirror-in-cap substrate under room temperature 

until distinct Raman spectra were obtained. Their SERS spectra and chemical structures 

are shown in Figure 28 (A).  Due to their similar chemical structures, DAS,  DADS, and 

DATS all showed distinct peaks as the garlic headspace spectra at 1632, 1400, 1291, 

1191, and 577 cm-1, however, additional peaks were observed from 1606 cm-1 for DAS 

and from 1550 cm-1for DATS. Among three compounds, only DADS exact peak 
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assignments as the garlic headspace spectra. To investigate the matching of spectra, the 

garlic ethanolic extract was also analyzed under the same condition as standards, and its 

spectra (in Figure 4 (A)) was compared with spectra of three standards using principle 

component analysis in Figure 28 (B). According to the PC scores listed in the Figure, the 

total sample variance is greater than 80%, which suggested the presence of significant 

differences among spectra. From the cluster analysis, the garlic headspace spectra are 

completely separated from spectra of DAS and DATS, whereas the DADS spectra are 

found located at the same cluster. This result demonstrated that the even though the garlic 

headspace is constituted by many volatile compounds, the diallyl disulfide (DADS) is 

presumably the dominate and corresponding compound to represent the garlic headspace 

through the SERS measurement. This speculation actually agreed with a published result 

and some references also pointed out that the DADS is one of the most abundant 

compounds in the garlic oil that is occupying 22-40% 34,151. Interestingly, the pure 

standard of DATS took significantly longer time (i.e., 2 hours) to appear distinct spectra 

than other two compounds (less than 1 hour) under room temperature. After the 

investigation, the delay of appearance of Raman peaks in DATS could be caused by its 

high boiling point. According to the Food and Agriculture Organization of the United 

Nations, under 760 mmHg, the boiling point of DAS is 141°C, DADS is 185°C, while 

DATS is 229°C. Therefore, under the room temperature, both DAS and DADS can be 

quickly detected by mirror-in-cap substrate under room temperature but DATS cannot.  
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Figure 28 (A) Three major sulfides in garlic oil and their corresponding SERS 
spectra. (B) Principle component analysis of the SERS spectra of three sulfides and 
garlic headspace. 
 

Even though distinct SERS spectra can be obtained from DADS and garlic 

samples, the incubation time is still too long for a fast detection method, especially for 

lower concentrations. In standard GC method, a heating process is always required for 

the headspace analysis. Therefore, to mimic the GC analyzing condition and to speed up 

the release of DADS to the headspace, a boiling water bath incubator was used to provide 

a temperature-stable heating environment for the DADS samples. 500 ppm DADS in 

ethanol in the glass vial capped with the mirror was heated in the boiling water bath and 

its SERS measurement was compared to the DADS sample incubated under the room 

temperature. As shown in Figure 29 (A), in only 5 minutes, the distinct DADS Raman 

spectra were observed at a similar intensity level as the sample incubated under the room 

temperature for 2 hours (Figure 29 (B)). Additionally, as shown in Figure 29 (B), only 

AgNPs mirror spectra can be observed after 5 minutes incubation under the room 

temperature. This finding suggested that the heating process is very important to help the 

release of DADS to headspace and can effectively shorten the sample incubation time.  
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Figure 29 (A) SERS spectra of the headspace of 500 ppm DADS in ethanol 
incubated with boiling water bath for 5 minutes. (B) SERS spectra of the headspace 
of 500 pm DADS in ethanol incubated under room temperature for 5 minutes and 2 
hours. 

Quantification of the concentration of DADS in the headspace of garlic ethanolic extract  

After showing SERS’s capability in the garlic headspace characterization, the 

ability of SERS in the quantification of the DADS in the garlic headspace was further 

investigated. Since it is hard to build the equivalency of the interpretation of 

concentration between a pile of solid garlic matrix and the DADS in ethanol, and the GC 

instrument is injection-based, the garlic extract prepared by immersing freshly minced 

garlic in ethanol (10 g garlic in 10 ml ethanol) was used as the target. The headspace 

profile of the ethanolic garlic extract (ethanol only) was compared with the DADS 

standards in ethanol.  

All samples are incubated in the boiling water bath for 5 minutes and the spectra 

of the headspace of garlic ethanolic extract is shown in Figure 30 (A). In the spectra, all 

distinct bands, as expected, matched the spectra of headspace of the minced garlic shown 

in Figure 27 (B) and there are no signature peaks of DAS and DATS observed in the 

spectra. To be noted, to prevent the interreference, 1% DATS in ethanol (much higher 

than its inherent concentration in garlic, i.e., 0.08%) in ethanol was also tested in water 
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bath for 5 min, however, due to its high boiling point of DATS, no signature peaks were 

observed (data not shown). For the quantification of DADS, its distinct peak at the 

Raman shift of 1632 cm-1 was chosen as the reference band and the intensity was plotted 

as a function of the concentration of DADS from 1-500 ppm in ethanol to build the 

calibration curve in Figure 4 (B). A positive correlation was observed between the 

intensity and the concentration of DADS, however, the trendline seemed to be not linear. 

According to the literature review, the release of DADS from the food system to the 

headspace followed a second order saturation decay because its release rate decreased 

gradually when the headspace is being saturated 154. This presumably explained why 

Raman intensity readings were not proportional to the concentration, as the headspace 

might also be getting saturated by DADS during heating and resulted in a deceleration of 

releasing. Therefore, a second order prediction model was built in Figure 30 (B) with a 

goodness of fit of 99.72%. The equation represented the calibration curve was shown 

below, 

Raman	Intensity = 	−0.01 × concentrationo + 11.5 × concentration + 86.9 

In the spectra of the headspace of the garlic extract, the intensity of the peak at 

1632 cm-2 was measured as 1465. After plotting back to the prediction model, the 

concentration of DADS in the garlic extract headspace was determined as 135 ppm. 
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Figure 30 (A) SERS spectra of the headspace of garlic ethanolic extract. (B) Raman 
intensity at 1632 cm-1 plotted as a function of the DADS concentration. The 
coefficient of determination and the equation are displayed. 

 

To validate the result obtained from the mirror-in-cap substrate, standard gas 

chromatography was performed for same samples following a well-established protocol 

149. Figure 31 (A) shows the chromatogram of garlic extract, DADS, and ADS. 

According to the retention time of DADS (4.85 minutes) and ADS (2.1 minutes), both of 

them were found to be present in the headspace of the garlic extract, and the DADS is 

dominating in the chromatogram with a concentration of 112 ppm determined by the 

calibration curve.  

After comparing the results obtained from GC and SERS, it was found that the 

concentration of DADS obtained from GC method (i.e., 112 ppm) is relatively lower than 

the SERS (i.e., 135 ppm). In SERS, the peak of 1632 cm-1 represents the vibration of the 
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C=C stretching, which is a functional group not only in the structure of DADS but also in 

DAS, DATS, and some other garlic constituents. Therefore, the intensity of the 1632 cm-1 

is considered as the sum of all those compounds, hence, the determined concentration of 

DADS was slightly higher. However, according to the literature and the GC results, since 

the DADS is the dominant compound in garlic, the interreference from other compounds 

can be considered as minimal, and it justified the capability of SERS in the garlic 

headspace analysis.  

 

Figure 31 (A) Chromatogram of the garlic extract in ethanol, 0.05% DADS in 
ethanol, and Allyl Disulfide in ethanol. (B) The calibration curve of the DADS, the 
area of band plotted as a function of concentration of DADS. 

Conclusion  

Table 6 Analytical behaviors comparison between GC and SERS 
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Table 6 showed the analytical behaviors between GC and SERS methods for the 

characterization of the garlic headspace. Compared to the GC results, the mirror-in-cap 

SERS method showed a much shorter overall analyzing time and a simpler sample 

preparation, since GC might require a sample cleaning step to protect the column from 

cogging which will increase the sample preparation time, but SERS does not require any 

sample cleaning. Although the SERS method also requires a heating step, since samples 

can be incubated together in a big batch, the sample preparation time will maintain the 

same as 5 minutes. However, even though the SERS method is promising in the profiling 

of DADS in the headspace of garlic, the lowest detectable concentration, the coefficient 

of determination, and the accuracy still need to be improved. Additionally, many volatile 

compounds are very unstable which will cause a consistent changing of headspace profile 

155. This is a huge limitation for the current chromatographic headspace detection 

methods, since samples might take days to be delivered and to be analyzed, when the 

profile has already changed dramatically, and the target might be lost. On the other hand, 

the availability of portable Raman device enables the potential on-site measurement of 

SERS, this technique will have more potentials to be used for the real-time 

characterization of volatile targets and the monitoring of headspace changing during the 

manufacture and processing. Future study will focus on the further improvement of the 

sensitivity and quantitative ability and the extension to study other essential volatile 

compounds in food products.  
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7. DEVELOPMENT OF A FACILE ROLLING METHOD TO AMPLIFY 

THE ANALYTE OF WEAK SERS ACTIVITY IN FOOD 

Introduction 

Surface enhanced Raman scattering (SERS) combined the nanotechnology and 

Raman scattering. The SERS techniques have shown great advantages in terms of the 

sensitivity and speed and has been developed as a rapid analytical tool for various 

pesticides 40,124,156,157. However, strong Raman scattering cannot be always obtained, 

since not all chemical structures are Raman sensitive to produce strong scattering and 

some molecules do not have strong affinity to the nanoparticles to generate sufficient 

signal enhancement 7,158.  

To date, methods to amplify the weak SERS intensity of interested analytes are 

based on three mechanisms: (1) generating more hot spots such as the fabrication of ultra-

sensitive SERS substrates and inducing aggregation of nanoparticles using ionized 

agents. However, they suffered from complicated fabrication or uncontrollable 

aggregation. (2) Enhancing the binding such as using the ligand to improve the affinity of 

the targeted molecules to nanoparticles, but this will introduce foreign chemicals into the 

sample and many efforts need to be made to choose the ligand molecule and to optimize 

the binding enhancement. (3) Increasing the concentration of analytes such as enriching 

the targets to  enhance interaction of the analytes with nanoparticles by using vacuum 

concentrator, but it is highly dependent on expensive instruments and the final volume of 

the sample is hard to control 15,159–165. More importantly, for label-based methods and 

deliciated substrates, the determination of their amplification performance are mostly 
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based on the signal enhancement of SERS sensitive probes other than the weak-SERS-

signal analytes, which are real concerns in industrial applications 166.  

Therefore, in this study, the objective is to develop a simple sample preparation 

method to enrich the analyte without the use of any instrumentations, and to amplify the 

weak SERS activities of the target. A organochloride pesticide, chlordane, was chosen as 

the probe due to its weak affinity to nanoparticles and its Raman inactive inherent 

chemical structure 160,167.  

Materials and Methods 

Materials 

Chlordane, methanol, and hexane were purchased from Thermo Fisher Scientific 

in Waltham, MA. Chloroauric acid tetrahydrate (i.e., HAuCl4) and sodium citrate are 

purchased from Sigma Aldrich in St. Louis, MO. A real livestock oil sample was 

provided by Diversified laboratories, Chantilly, VA, 20151 and used to challenge the 

method for real application 

Synthesis of gold nanoparticles (AuNPs) 

2 ml 1% HAuCl4 was mixed with 200 mL ultrapure water and stirred at 350 rpm 

under 310 °C. When solution began to boil, 1.4 ml 1% sodium citrate solution was added 

to the solution. The mixture was kept heating and stirring for another 30 minutes, until 

the color changed from transparency to black, then to brick red, which indicated the 

formation of AuNPs. The AuNPs solution was then diluted to 200 ml to reach the final 

concentration of 0.1 mg/ml. The size of AuNPs was determined as 55 nm using the 

Malvern Mastersizer. 
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Sample preparation of chlordane with AuNPs solution using the traditional mixing 
method 

Chlordane was prepared in 50% methanolic solution at the concentration of 0.5 

ppm to 10 ppm. 2.5 or 10  µl of chlordane solution was mixed and incubated with 2.5 µl 

1 mg/ml AuNPs solution on a parafilm for 30 seconds, then transferred and air dried on a 

gold covered glass side for the SERS analysis.  

Sample preparation of chlordane with AuNPs using the rolling method 

Parafilm was washed with 50% methanolic water solution and dried to work as a 

platform for rolling method. 2.5 µl of chlordane solution was mixed with 2.5 µl 1 mg/ml 

AuNPs solution on the parafilm and then sucked up and pressed down using a pipette 

within a pipette tip for 10-20 seconds, until half of the volume of mixture was evaporated 

(i.e., the final volume of mixture remained at 2.5 µl). Subsequently, another 2.5 µl of 

chlordane solution was added to the mixture and pipetted until half of the volume was 

evaporated. Repeat the action for 1-4 times, then the mixture was transferred and dried on 

a gold covered glass slides for the SERS measurement.  

Extract of chlordane form crude oil 

Chlordane was initially dissolved into the hexane and added to the crude oil to 

make the final concentration to 1 ppm. 50 µl methanol was then added to 50 µl oil sample 

in a microcentrifuge tube and the mixture was vortexed vigorously. The mixture was 

further centrifuged at 10,000 rpm under refrigerator temperature (i.e. 4 °C). Once the 

separation of two phases was clearly observed, the methanol phase was transferred out 

and incubated with AuNPs or rolling method for SERS analysis. 
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Instrumentation and Data analysis 

In this study, the SERS measurements were performed using a Thermo Scientific 

DXR Raman Spectro-microscope with a 780 nm Laser source under the following 

conditions: 20´ objective, 3.1 µm spot diameter, 5 mW laser power, 2s exposure time 

and 50 µm slit width for chlordane detection. All Raman spectra were analyzed using 

Thermo Scientific TQ Analyst 8.0 software. All Raman intensities were averaged from at 

least ten replicates and standard deviations were recorded. The distinct peak at 552 cm-1 

was chosen for further characteristic analysis of chlordane. Raman intensity, rolling 

times, and chlordane concentration were plotted as a surface using the Microsoft Excel. 

Since chlordane is enriched after the rolling, the overall concentration (i.e., calculated by 

multiplying the rolling times to the chlordane concentration) was introduced to simplify 

the correlation. The linear regression analysis was applied to the plot of Raman intensity 

to the overall concentration and a mathematic model was determined by using the Prism 

(Graphpad) along with the determination of coefficient (i.e., r2) and the trendline. 

Results and discussion 

Evaluation of the amplification capability of the rolling method to enhance chlordane 
SERS signals 

Organochlorine pesticide, chlordane was prepared in a methanolic solution, and 

then mixed with synthesized AuNPs solution. After the incubation and air-dried on a gold 

covered glass slide, as shown in Figure 1 (A), chlordane showed its distinct SERS spectra 

at the 552 cm-1, attributed to the stretching vibration of v(C-Cl), whereas no obvious 

SERS peaks were observed at the background spectra of AuNPs 135,168. However, 

according to Figure 32 (B), the SERS spectra (i.e., Raman intensity at 552 cm-1) of 
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chlordane decayed extremely fast with the decrease of concentration of chlordane and 

became very noisy after the concentration reduced to 2.5 ppm. Once the concentration 

was below 1 ppm, the signature peak of chlordane can be barely observed. Since the 

organochlorine pesticides have a weak affinity to nanoparticles, this fast disappearance 

was presumably caused by weak signal Raman signal enhancement of the vibration 

stretching of v(C-Cl) at low concentrations 164.  

Based on the Figure 32, to enhance the interaction between chlordane and AuNPs, 

sufficiently high concentration of chlordane is required (i.e. 1 ppm). However, according 

to the EPA report, the required detection limit of chlordane concentration is much lower 

169, therefore,  an evaporation triggered enriching method to enforce sufficient 

interactions between analytes and nanoparticles is developed. This approach named as 

rolling method and the objective of it is to amplify the weak SERS signals of chlordane. 

 

Figure 32 (A) SERS spectra of 10 ppm chlordane and AuNPs. (B) SERS spectra of 
chlordane at the concentration from 0.5 ppm to 10 ppm. 
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Figure 33 Schematic illustration of the rolling method. 
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During the solvent evaporation, rolling method is hypothetically to enrich the 

analyte and to induce the interaction between AuNPs and the chlordane, hence, to 

amplify the SERS signal. In this study, AuNPs are stabilized by citrate and dispersed in 

the water solution and then mixed with chlordane in 50% methanolic solution on a 

parafilm. The parafilm here worked as a hydrophobic platform to prevent the spreading 

of the sample and to speed up the evaporation. The parafilm was initially washed with 

methanol to remove the residues that could induce the aggregation of the nanoparticles 

(to be noted, aggregation of nanoparticles could result in the failure of rolling since 

aggregated nanoparticles might lose their function to interact with the targets). After 

washing, a drop of sample (i.e., 2.5 µl chlordane solution) was dripping to a drop of 

AuNPs dispersion (i.e., 2.5 µl) and the mixture was sucked up and pressed down within a 

tip using pipetted for 10-20 seconds on the parafilm. Constant pipetting allowed the 

AuNPs to sufficiently interact with chlordane during the mixing in the pipette tip. At the 

same time, due to the relatively low sample volume (i.e., 5 µl in total) and the presence of 

methanol, the mixture was evaporating fast during the pipetting, and the action will stop 

once the mixture reduced to half of volume (i.e., 2.5 µl). During this process, the solvent 

volume shrunk half but the concentration of chlordane was doubled compared to the 

initial sample, and this conclude the process as the first time rolling, as shown in Figure 

33. Since the interaction between AuNPs and chlordane was weak, increased 

concentration of chlordane from one rolling might still not enough to generate a strong 

SERS signal. Therefore, in the next step, another one drop of sample (i.e., 2.5 µl) was 

added to the remaining mixture and the pipetting step was repeated. After the mixing, the 

water and solvents were evaporated to half volume once more, but the total volume still 
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remained the same level as the finish of the first rolling. However, the concentration of 

chlordane was further increased, and more analytes were presumably pushed to interact 

with AuNPs. This repeated action was considered as the second time rolling. The rolling 

process can be repeated many until the satisfying SERS spectra was observed. 

To be noted, the mechanism of rolling method for the enrichment of chlordane is 

very similar to the vacuum concentrator. However, the rolling method only used the 

pipette to accelerate the evaporation, and only required smaller volumes of samples. 

Therefore, this approach offers a more cost effective and faster solution for the 

concentrating (i.e., 5 µl in total).  

With more repeating times of rolling, more chlordane was forced to interact with 

the AuNPs until hotspots on nanoparticles were saturated. Hypothetically, the SERS 

intensity of signature peaks of chlordane should also increase along with the increasing 

times of rolling. Therefore, three concentrations of chlordane in standard solution, 0.5 

ppm, 1 ppm, and 2.5 ppm were prepared with one to four rolling times to test the 

hypothesis.  

As shown in Figure 34, with the increase of rolling times, the intensity of 

chlordane distinct peak at 552 cm-1 indeed increased, despite in low or high 

concentrations, which suggested that rolling method is able to amplify the Raman signals 

of chlordane, even at low concentration level. In this research, only up to four times of 

rolling were conducted, but the increasing trend of the Raman signal suggested that this 

approach could even amplify the signal of analytes to much higher level hypothetically 

with further rolling, until reach the satisfaction. However, to be noted, too many times of 

rolling could result in the over aggregation of nanoparticles which could cause the 
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quenching of Raman signal. Furthermore, sample deposition could be another critical 

step in the preparation of rolling method. As stated previously, the deposition of sample 

has to be done one drop by another, not only to achieve an effective evaporation, but also 

to enhance the weak interactions between the chlordane with AuNPs.  

 

Figure 34 SERS spectra of (A) 2.5 ppm, (B) 1 ppm, (C) 0.5 ppm chlordane with 1-4 
times rolling. 
 

The sample went through the rolling method is hypothetically to achieve similar 

concentration level and SERS signal as a more concentrated sample; for an example, a 1-

ppm chlordane sample with four times of rolling presumably owns similar Raman signals 

with a 4-ppm chlordane sample mixed with AuNPs solution directly. 

To test the hypothesis, the performance of the enrichment of the rolling method 

was compared with the traditional sample preparation method (i.e., the comparation 

between a sample prepared using rolling method and a sample with higher inherent 

chlordane concentrations or a sample with higher volume sizes). 

As shown in Figure 4, samples were prepared in the following manner, and to 

simplify the language, they will be named as Method (A): sample with higher inherent 

chlordane concentration: 2.5 µl concentrated chlordane 50% methanolic solution (i.e., 4 

ppm) was mixed with 2.5 µl AuNPs dispersion, Method (B): sample prepared with 
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rolling method, 2.5 µl 1 ppm chlordane in 50% methanolic solution was prepared with 4 

times of rolling with 2.5 µl AuNPs dispersion, and Method (C): sample with larger 

volume size, three times more volume size of 1 ppm chlordane in 50% methanolic 

solution (i.e., 10 µl) was mixed with 2.5 µl AuNPs dispersion.   

After the Raman measurement, spectra of three samples are shown in Figure 34 

(D). Chlordane signature SERS spectra were all observed in three spectra. However, at 

the distinct area, both Method (A) and Method (B) showed very similar intensity level 

while significantly lower signals were observed from Method (C). Low Raman intensity 

from Method (C) is presumably due to the large sample volume size. According to the 

sample picture in Figure 4 (C), a much larger size “coffee ring” (i.e., Aggregated AuNPs 

and Chlordane) was formed but sample sizes in Figure 35 (A) and (B) were similar. 

Therefore, AuNPs were highly diluted with a larger ring size and the interaction between 

chlordane and AuNPs were also further weakened. This discovery suggested that due to 

the large volume size and the dilution of AuNPs, Method (C) (i.e., increasing sample 

volume size) cannot achieve the similar SERS performance as the rolling method.  

Compared the Raman intensity of Method (A) and Method (B) at the chlordane 

distinct area (i.e., 552 cm-1) in Figure 35 (E), no significant differences were observed, 

which means the intensity of 1 ppm of chlordane with 4 times rolling is equivalent to that 

of 4 ppm chlordane. According to the previous statement, one time of rolling can double 

the concentration of chlordane once extra solvents are evaporated and the volume of 

sample mixture remains the same as that before the rolling. Therefore, with four times of 

rolling of 1 ppm chlordane sample, the final concentration of the mixture was presumably 

enriched to 4 ppm, and as shown in Figure 35 (E), the hypothesis was supported. 
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These results suggested that the rolling method has a very promising enrichment 

efficiency, and also can amplify the sample signal equivalently.    

 

Figure 35 (A)-(C) Different sample preparation of chlordane solution and AuNPs 
solution, (D) SERS spectra of samples with different preparation, (E) Raman 
intensity of the distinct peak of chlordane at 552 cm-1 from three sample 
preparations. 

Modeling the correlation between Raman intensity, concentration and rolling times and 
its application for chlordane detection in oil 

In the previous section, all chlordane samples were analyzed with known 

concentrations, however, in the practical cases, the concentration of chlordane was 

always unknown and need to be determined. Due to the uncertainty of the chlordane 

concentration in real samples, it was hard to determine the times of rolling to achieve a 

satisfied Raman signal. Since Raman signals were amplified with increasing of rolling 

times and 1 ppm chlordane sample with 4 times of rolling showed an equivalency of the 

Raman signal with a 4 ppm chlordane sample, a positive correlation could be determined 
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between Raman intensity and rolling times and the concentration of chlordane in 

samples.  Therefore, to simplify the rolling method, a mathematic model was attempted 

to build for the deamination of the number of rolling times or the concentration of 

analytes with an acquired Raman intensity. 

With data acquired from different concentrations, rolling times, and Raman 

intensities in Figure 36, a tridimensional surface map was plotted in Figure 5 (A), where 

x axis referred to the concentration of chlordane, y axis referred to the number of rolling 

times, and z axis referred to the Raman intensity. In the surface plot, Raman intensity 

showed an increasing trend as a function of either the time of rolling or the concentration 

of chlordane, however, the presence of three variables (i.e., Raman intensity, rolling 

times, and concentrations) in the model made the correlation hard to be determined, 

therefore, the plot need to be simplified.  

As we know, Raman intensity is positively correlated to the chlordane 

concentration (in Figure 32 (B)), and Raman intensity of 4 ppm chlordane is equivalent to 

1 ppm chlordane with 4 times of rolling (in Figure 35 (E)), therefore, combining sample 

concentration and the rolling time as one variable (i.e., overall concentration) can 

presumably simplify the correlation model. In Figure 36 (B), Raman intensities were 

plotted as a function of the overall concentrations collected from all data points, and a 

trendline was added with the correlation analysis. The goodness of the fit (i.e., r2) was 

determined as 0.8289, and the Raman intensity can be calculated from the following 

model, 

Raman	Intensity = 23.96 × overall	concentration + 33.67	 

where overall concentration can be calculated by, 
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Overall	concentration = Time	of	rolling	 × sample	concentration 

Therefore, in the real analysis, with the acquired Raman signal and the number of 

rolling times, the residual concentration of chlordane in samples can be calculated form 

the prediction model.  

 

Figure 36 (A) Actual 3D plot of Raman intensity with concentration of chlordane 
and rolling times. (B) Predicted mathematic model (Plot of Raman intensity with 
concentration multiplied by rolling times). 
 

To investigate the reliability of the prediction model, a crude oil sample spiked 

with 1 ppm chlordane was tested. The spectra of crude oil (control) and 1 ppm chlordane 

in crude oil with or without rolling were shown in Figure 37. Signature peak of chlordane 

can be barely observed without rolling in Figure 37 (A) and this could be due to the 

presence of several interferent peaks from the crude oil in Figure 37 (C). However, the 

interreference of crude oil did not prevent the detection of distinct peaks of chlordane 

after 4 times of rolling in Figure 37 (B). The Raman intensity of the signature peak of 

chlordane at 522 cm-1 was measured as 125.2. As shown in Table 7, by plotting the 

measured Raman signal into the prediction model with 4 times of rolling, the predicted 

concentration of chlordane was calculated as 0.953 ppm, compared to the actual spiked 
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chlordane concentration (i.e., 1 ppm),  the recovery value of the predicting model reached 

95.5% approximately. In another way, by plotting 1 ppm with 4 times of rolling into the 

prediction model, the predicted Raman intensity was calculated as 129.5, after comparing 

to the actual Raman intensity reading (i.e., 125.2), the recovery value of the prediction 

model reached 96.5%. Both prediction models gave fairly satisfactory recovery values, 

suggesting ed that the rolling method combined with the mathematic model could be used 

for determining the residual concentration of chlordane, even in complex system with 

considerable interferences, such as the crude oil. However, as shown in Figure 37, the 

noise interreference from the matrix could also be accumulated with increasing times of 

rolling, therefore, a proper extraction step might be needed to provide a cleaner 

background. 

 

Figure 37 (A) SERS spectra of 1 ppm chlordane in crude oil (B) SERS spectra of 1 
ppm chlordane in the crude oil with 4 times of rolling. (C) SERS spectra of the 
crude oil. 
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Table 7 Accuracy of the rolling method and mathematic model in the detection of 
chlordane in crude oil. 

 

Conclusion 

As a conclusion, the rolling method provides a very simple sample preparation 

approach to enrich the analyte in a limited volume of sample, and to amplify the analytes’ 

weak SERS signals. For analytes having weak interactions with nanoparticles, the rolling 

method can presumably improve the detection to a much better level without using any 

costly instrumentations such as centrifugal vacuum concentrator or pretreatments such as 

chemically linking. Combined the rolling method with an established prediction model, 

concentrations of chlordane in complex samples can be easily determined based on the 

actual Raman intensity readings and the times of rolling with a promising recovery value. 

Except for the pesticides tested in this study, the rolling method is expected to be applied 

in the detection of other analytes showing weak Raman intensities. To be noted, the 

rolling method is only potentially targeting to amplify the signal of targets with weak 

affinity to nanoparticles. If the binding of the target is strong to nanoparticles, the rolling 

step could induce the aggregation and cause the quenching of signals. In the future, the 

capability of rolling method for other targets and its reliability in other food matrix (such 

as fruit juices) should be further investigated.  
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8. SUMMARY 

In this dissertation, we demonstrated a facile fabricated self-assembly AgNPs 

mirror substrate and a simple rolling sample preparation method to improve the 

sensitivity, selectivity, and quantitative ability of surface-enhanced Raman spectroscopic 

analysis in food. 

Firstly, the successful fabrication of AgNPs mirror substrate using the interface 

between polar and non-polar solvents provided a very simple approach to manufacture a 

uniform SERS substrate compared to the currently available reproducible substrates 

which are suffering from the complicated fabrication.Additionally, the AgNPs mirror 

showed great reliability in the quantitative analysis of fonofos pesticide in water and 

commercially available juices and teas. The mirror substrates offered a great control of 

the arrangement of nanoparticles and solved the reproducibility problem (caused by the 

randomly aggregation of NPs) that is bothering the SERS to become a reliable 

quantitative tool in food analysis. The large analytical area of the AgNPs mirror also 

offered a great compatibility with all kinds of Raman instruments and avoid the 

dependency of microscope to provide sensitive SERS measurements. The diverse 

functionality of the mirror substrate in the sample preparation (i.e., in sample immersing, 

in situ fabrication, sample deposition on the pre-formed mirror) provided more 

possibilities for SERS to be applied in food analysis. 

The red wine chemical profiling using mirror substrate further broaden the 

analytical application of SERS in complicated food samples. Using the wine extract (in 

mediating solvent) to form the mirror substrate not only solve the problems of 

background interference caused by polymerized pigments, but also eliminate the 
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dominancy of peaks of DNA fractions in the Raman spectra, and generated a 

comprehensive spectrum (barcode) including tannins, anthocyanins, phenolic acids, and 

bioactive compounds. Later results found that each red wine has a unique chemical 

profile, which suggested that SERS bar code can be used for differentiation, 

authentication, control the and monitor safety and quality of red wines. 

The detection of volatile compounds from garlic using the “mirror-in-cap” 

substrate extended the application of mirror and SERS in the headspace analysis. AgNPs 

mirror successfully identified the diallyl disulfide as the dominant compound in the garlic 

headspace and differentiated it from other organosulfur compounds. Compared to the 

gold standard GC method, AgNPs mirror showed a relatively equivalent analytical 

performance plus a simpler sample preparation and faster analyzing time and 

demonstrated a great potential to be a promising electronic nose device 

Lastly, the rolling method as a simple sample preparation approach focused on the 

amplification of weak surface-enhanced Raman scattering of certain targets having a 

weak interaction with nanoparticles. The rolling method offered a great ability to enrich 

analytes and enhance signals without complicated pretreatments and instrumentations. 

Combined with a mathematic model, it even offers a potential to predict the unknown 

concentration of a target with a certain number of rolling times and the Raman intensity 

readings. 

Future study will focus on the exploration of the analytical performance of the 

nanoparticle mirror and the rolling method in more challenging food systems including 

the collection of more chemical profiles of red wines and its combination with data 

science, expanding the headspace analysis to other aromatic bioactive compounds/plants, 
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and testing the reliability of rolling method in the detection of other targets with weak 

SERS activities. 
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