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ABSTRACT

SOFTWARE-DEFINED INFRASTRUCTURE FOR IOT-BASED
ENERGY SYSTEMS

SEPTEMBER 2019

STEPHEN LEE

B.Sc., ST. STEPHEN’S COLLEGE, DELHI

M.Sc., CHENNAI MATHEMATICAL INSTITUTE, CHENNAI

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Prashant Shenoy

Internet of Things (IoT) devices are becoming an essential part of our everyday lives.

These physical devices are connected to the internet and can measure or control the envi-

ronment around us. Further, IoT devices are increasingly being used to monitor buildings,

farms, health, and transportation. As these connected devices become more pervasive,

these devices will generate vast amounts of data that can be used to gain insights and build

intelligence into the system. At the same time, large-scale deployment of these devices will

raise new challenges in efficiently managing and controlling them.

In this thesis, I argue that the IoT devices need programmability and need to provide

software controls in order to manage them efficiently. Further, it will need data-driven

modeling techniques to process and analyze a vast amount of data from heterogeneous

devices to derive actionable insights. My thesis explores the problems posed by software-

defined IoT energy infrastructure. I present four techniques that use systems and machine

vi



learning principles to design, analyze and deploy the next generation of smart IoT energy

systems.

First, I discuss how current state-of-the-art LIDAR-based approaches in identifying

ideal locations on rooftops for deploying energy systems such as solar do not scale to

many regions of the world. To address the challenges, I propose DeepRoof, a data-driven

approach that uses deep learning to estimate the solar potential of roofs using satellite

imagery and identify ideal locations for installation. We evaluate our approach on different

types of roof and show that our technique is comparable to LIDAR-based methods.

Second, I study how excessive solar can cause problems in the grid and examine how

programmatic control of the solar output can prevent congestion in the electric grid. Fur-

ther, I present a decentralized approach that can control the solar arrays in a grid-friendly

manner. Also, my approach provides flexible control of solar output, and I show that such

mechanisms allow for higher solar penetration in the grid.

Third, I discuss the challenges in community-owned (and shared) distributed energy

resources that do not provide independent control to users. To do so, I propose vSolar, an

approach to virtualize the solar arrays and energy storage that allows independent control.

Further, I show how using vSolar users can exercise independent control, implement their

custom energy sharing policies, and reduce energy costs through energy trading.

Finally, I present the challenges, and the high throughput needs to enable a peer-to-

peer energy trading platform using permissioned blockchains. I propose FabricPlus, an

enhanced Hyperledger Fabric blockchain, that contains a series of optimizations to enable

high throughput transactions. FabricPlus increases the transaction throughput many folds,

without requiring any changes to its external interfaces. I also show considerable perfor-

mance improvement over the baseline Fabric.
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CHAPTER 1

INTRODUCTION

Advances in hardware and wireless technologies have made it feasible to deploy perva-

sive sensing and computing that integrate into every aspect of our physical world. This has

led to the emergence of Internet of Things (IoT), a network of physical devices, that are

cheap, easily deployable, and connected to the Internet. Consequently, large-scale deploy-

ments of distributed IoT is becoming commonplace that can sense, monitor, and actuate

in new and exciting ways. As such, this has enabled many use cases in multiple domains

such as transportation, healthcare, and smart cities. It is estimated that 50 billion IoT de-

vices will be connected to the Internet by 2020 [106]. This thesis discusses the challenges

and opportunities in designing software-defined infrastructure for managing and coordi-

nating these large-scale distributed devices in the context of IoT energy systems by using

principled approaches from both systems and machine learning.

1.1 Motivation
Internet of Things (IoT) devices comprises a vast number of diverse and heterogenous

embedded sensors and actuators that interact with the physical environment. These de-

vices consist of embedded software and electronics that are engineered to enable a host of

functions such as sensing, connectivity, and actuation, thereby enhancing the capabilities

of everyday devices. As they continuously monitor our environment, they produce vast

amounts of data [63, 64], which can be used to gather insights and model the behavior of

the system, necessary for any data-driven response system.
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Unfortunately, these distributed IoT devices tend to operate within silos, defined by

manufacturers and associated technology stacks. That is, IoT services tend to be closed

within the manufacturers’ ecosystem, where the interactions and data exchanges are lim-

ited to only specific devices and services. They often use non-standard technology and

software, which prevents integration with devices from other domains or manufacturers.

This limits the degree of control and interoperability across IoT devices, of various capa-

bilities, from other manufacturers and service providers. We already see these limitations

in today’s (so-called) IoT devices. For instance, many smart switches are not accessible or

incompatible with smart home assistants, making it challenging to coordinate and create

richer applications.

Connecting heterogeneous devices in flexible ways raise a myriad of challenges since

the interactions are pre-defined, and any communication outside of the application domain

is discouraged. Such pre-negotiated controls, both within and outside of the system, pre-

vent wide-scale interoperability, but more importantly, cause difficulty in management and

control when multiple devices are involved. This lack of flexibility is reminiscent of legacy

networks built on rigid and inflexible components, such as switches and routers, that did not

support programmability. But modern networking now employs a flexible software-defined

network (SDN) architecture that emphasizes programmability, and flexible abstractions for

easy management and control. Such flexible abstractions allow efficient management of

network devices and create a more dynamic and agile system.

Similar to how SDN provides programmability and flexible abstractions, we argue that

the next generation of IoT devices will need software-defined infrastructures to enable users

to exercise software control and create new use cases. However, unlike SDN, a software-

defined infrastructure raises new challenges in designing systems that can work seamlessly

with a myriad of IoT devices. First, it will need data-driven analytics that can process

and analyze data from heterogeneous IoT devices to gather actionable insights. Second,

it will need to provide flexible actuation and control across the IoT devices that support
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interaction among devices. Third, it will need efficient resource management techniques

that can manage large-scale IoT deployments. Finally, it should scale to the demands of

IoT devices and handle data transactions from a large number of sensors.

In this thesis, I explore the problems posed by designing software-defined infrastruc-

tures in the context of IoT-based energy systems. As the current power grid becomes in-

creasingly integrated with IoT-based energy systems (e.g., solar arrays, energy storage,

electric vehicles), I argue that there is an opportunity to develop software-defined infras-

tructures that can improve the responsiveness and effectiveness of such systems.

In particular, my thesis seeks to address the following problems:

• How to use large-scale data to design data-driven approaches for planning and de-

ployment of IoT energy systems?

• How can distributed IoT-based energy systems communicate and self-regulate its

output in the power grid?

• How to provide flexible software-defined abstractions in IoT-based energy systems

to support custom user policies?

• How to scale and improve the performance of existing software systems to enable

high throughput IoT-based data transactions?

The questions above describe some of the challenges we need to overcome to de-

sign software-defined infrastructures for energy systems. By addressing these questions,

I seek to draw upon design principles from both systems and machine learning to build

this software-defined infrastructure. In doing so, I develop novel techniques for managing

IoT-based energy systems.

1.2 Thesis Contributions
The thesis proposes novel techniques that provide new algorithms and mechanisms for

managing IoT-based energy systems and data-driven methods for analysis and control of
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such systems. Specifically, this thesis considers solar and battery-based energy systems and

enables flexible control and intelligence. To this end, this thesis makes the following key

contributions:

1. Planning and placement: A data-driven system that uses deep-learning based ap-

proach to identify ideal locations for installing solar arrays on rooftops by estimating

solar potential using satellite imagery.

2. Decentralized Control: A decentralized approach to dynamically rate control solar

arrays, thereby preventing congestion collapse and allowing high renewable penetra-

tion in the grid.

3. Resource Management: A virtualization abstraction mechanism that enable inde-

pendent control and management of energy systems across multiple users, in effect

providing a ‘virtual system’ to implement user-defined policies.

4. Decentralized Architecture: An architecture that allows a blockchain system to

achieve high throughput IoT energy transactions without necessitating any change

in its external interfaces.

Each component is described in more detail below.

1.2.1 Planning and Placement

It is estimated that the annual energy generation potential of small building rooftop PV

is 9.26 terawatt-hours (TWh) — one-fourth the total electricity sales in the US [44]. Since

rooftop solar has tremendous potential in generating output, solar potential estimation of

a roof and identifying ideal locations for installation can substantially benefit homeowners

deciding to adopt solar. Until recently, to estimate the solar potential of a roof requires

homeowners to consult contractors, who manually evaluate the site. Even state-of-the-art

methods for estimating the solar potential of a roof works only for places where LIDAR

data is available, thereby limiting their reach to just a few places in the world. I propose
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DeepRoof, a data-driven system that uses satellite images and other third-party sources

for assessing the solar potential of a roof. This allows for better scalability as these data

are readily available through public APIs. Further, DeepRoof can provide a pixel-level

estimate of solar potential that helps in identifying ideal spots on a roof for installing solar

panels.

1.2.2 Decentralized Control

Net metering allows consumers to feed the surplus electricity back to the grid, ef-

fectively selling electricity to the utility. However, net metering large amounts of solar

power to the electric grid is problematic as grid operators must continuously balance sup-

ply and demand. If the total net-metered output from intermittent solar arrays fluctuates too

rapidly, it can cause supply and demand mismatches. Limiting the solar capacity reduces

this stochasticity seen from these distributed sources, which makes supply and demand

more manageable. To regulate the solar output, in this thesis, I propose a decentralized rate

control technique that can self-regulate in a grid-friendly manner. Similar to rate control

of network flows in TCP, generation sources back off when there is congestion in the net-

work and increase the rate when network capacity is available. We show that this provides

flexible control of solar output and allows for higher penetration of solar in the grid. Fur-

ther, solar rate control also provides grid operators with an additional control knob when

continuously matching supply and demand.

1.2.3 Distributed Resource Management

Penetration of residential solar installations has grown rapidly in recent years. Un-

fortunately, due to space constraints, many residential locations are unsuitable for solar

deployments, and community-owned solar arrays with energy storage that are collectively

shared by a group of owners have emerged as a solution. However, such a group-owned

system does not allow individual control over how the electricity generated from these en-

ergy systems is used for optimizing a home’s electricity bill. To overcome this limitation, I
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propose vSolar, a technique that virtualizes a large-deployment of solar and battery arrays

and provides a flexible abstraction of a virtual solar and battery array to each owner. Im-

portantly, virtualization enables each owner to independently manage their solar generation

and stored energy as if it were a dedicated system. A second key benefit of virtualization of

a community-owned system is that it enables the sharing of electricity generated or stored

in batteries by each virtual system. Such energy sharing, which is not possible in dedicated

independently deployed systems, allows a resident to temporarily borrow electricity from

one or more neighbor’s shares to provide capital and operational savings.

1.2.4 Decentralized Architecture

With an increasing number of small-scale rooftop solar installations, the centralized

grid is slowly transitioning into a decentralized grid having distributed generation sources.

This has led to a new paradigm, where individuals have surplus solar energy and can sup-

ply this electricity to others. To realize such a trading system, where individuals can buy

or sell electricity, requires a ledger — an accounting system that can track energy transac-

tions between two parties. Recently, the use of blockchain technology has gained traction

to enable such peer-to-peer energy trading. Unfortunately, current blockchain technology

does not support high throughput transactions necessary to facilitate energy transactions at

scale. I propose FabricPlus, a permissioned blockchain system that can support such high

throughput transactions necessary for energy trading. To do so, I re-architect an existing

opensource blockchain system, namely Hyperledger Fabric. I propose a series of optimiza-

tions that increases the transaction throughput many folds, without requiring any changes

to its external interfaces.

1.3 Thesis Outline
The remainder of the thesis is structured as follows. Chapter 2 provides background

on IoT-based energy systems and discusses prior work. Chapter 3 presents DeepRoof, a
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data-driven approach to estimating the solar potential of roof.Chapter 4 describes an opti-

mization approach to regulating solar output. Chapter 5 discusses vSolar, an approach to

virtualize solar arrays and energy storage, and provide a platform for implementing user-

specific energy policies. In Chapter 6, proposes an architecture that achieves high through-

put energy transactions on a blockchain-based platform. Finally, Chapter 7 presents the

thesis summary and future work.
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CHAPTER 2

BACKGROUND AND RELATED WORK

This chapter provides background and related work on energy systems, specifically,

solar arrays and energy storage.

2.1 Solar Arrays
Advances in technology and declining cost continue to stimulate solar adoption among

homeowners. This has given rise to highly distributed solar sites that can supply clean en-

ergy but has also opened new research challenges in deploying, managing, and controlling

these systems. Below, we provide background on how solar arrays are sized and deployed

in residential homes, implications of rising solar adoption on the power grid, and emerging

challenges.

2.1.1 Sizing and Deployment

Solar potential analysis of a roof help understand the recommended areas for installing

solar panels as well as estimating the potential benefits in energy cost savings if any. Solar

potential of a location can be defined as the amount of available solar energy over a given

period. A standard measure for estimating and analyzing the availability of solar is peak

sun hours, which captures the amount of solar insolation a location receives on a typical

day (see Figure 2.1(a)). Specifically, a peak sun hour is an hour during which the solar

intensity is 1kW/m2. Thus, peak sun hours provide a rough estimate of the potential of an

area, as it accounts for the various factors that affect available sunlight.

The amount of available sunlight depends on various factors such as the sun’s position

in the sky, geography, and local climate conditions such as clouds. Figure 2.1 illustrates
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Figure 2.1. (a) Relationship between peak sun hours and cumulative solar irradiation. (b)
Roof with clear view of the sky (c) Roof with shade from nearby structures.

the amount of solar irradiation a surface receives varies over the day and usually peaks

at solar noon. Similarly, cloudy conditions can reduce the amount of irradiance a surface

gets. Geographical location also plays an important role, especially in places where days

are longer during the summer season. For instance, in higher latitudes, cities have more

daylight hours in summer than winter.

A common approach to estimating the solar potential of a location involves pyranome-

ters that measure the solar irradiance falling on a surface. These pyranometers are usually

placed on flat surfaces with a clear view of the sky and record the solar insolation a location

receives under “ideal” conditions. These solar insolation values are accessible online for

several locations around the world [45].

2.1.1.1 Challenges

Assessing the solar potential of a roof is challenging as several local factors are in-

volved. One such factor is a roof’s geometry. A roof’s geometry is defined by its (i)

orientation — the direction the roof is facing and (ii) pitch — the slope of the roof. Intu-

itively, the amount of energy generated is proportional to the sunlight incident on the roof’s

surface. In the northern hemisphere, a south-facing roof has more direct sunlight exposure

than roofs that face in other directions. Thus, the orientation angle of the roof (i.e., the
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Figure 2.2. Solar power output varies based on the time of day and weather conditions.

horizontal angle measured from the north) determines the actual solar generation output.

Similarly, the pitch of the roof also governs the amount of sunlight it receives. A surface

that is perpendicular to the incident sunlight will receive more sunlight as more surface

area is exposed, whereas a surface parallel to the incident sunlight will receive no sunlight.

Thus, solar installers position the PV panels to the latitude of a location to maximize the

area exposed to sunlight.

Another factor that affects the solar potential of a rooftop is their local terrain (see

Figure 2.1(b) and (c)). While roofs with a clear view of the sky receive maximum sun-

light, buildings with shade from nearby structures such as trees can significantly reduce the

amount of solar irradiance incident on its roof. Since available sunlight will be minimal,

such roofs may not merit an investment in a PV installation. Thus, these local factors need

to be considered to assess a roof’s solar potential.

2.1.2 Grid-tied Solar Arrays

Solar arrays installed on residential buildings can be connected to the grid through net

metering. Net metering is a billing mechanism that allows these grid-tied solar arrays

to feed the surplus power into the grid, effectively selling electricity back to the utility,

thereby reducing month energy bills. However, solar energy generation is intermittent and

highly weather dependent (see Figure 2.2). For example, on sunny days, the amount of

solar-generated by a panel is at its maximum, but on overcast days, the amount of solar
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generation may be relatively low. Thus, the amount of solar power “net-metered” to the

grid depends on (i) local demand from loads, and (ii) the solar radiation incident on the

panel, which is weather dependent.

2.1.2.1 Challenges

As solar penetration grows, the impact of intermittent solar complicates balancing the

supply and demand. If the net-metered output from solar arrays fluctuates rapidly due to

changing weather patterns and local demands, it can increase grid dynamics and cause

supply-demand mismatches. Since most conventional power sources have limited gener-

ation capacity and take time to ramp up its power to full capacity, managing such large

fluctuations in output may become increasingly challenging for grid operators.

To avoid using “excessive” amount of solar power from being injected into the grid,

many governments strictly regulate grid solar connections [12]. Many states in the US

set hard limits by passing laws to regulate the number of solar installations. Limiting

the solar capacity limits the stochasticity seen from these distributed sources, which in turn

makes matching supply and demand a more manageable problem despite intermittency. For

example, while the state of Virginia has a cap of 1%, a similar law exists in Massachusetts

that caps the solar at 2% of the total power generation. Importantly, these caps are generally

based on the rated maximum capacity of a solar installation, regardless of what it actually

generates. That is, the caps assume a solar array outputs maximum capacity all the time.

2.2 Energy Storage
A key challenge arising from the increased penetration of renewable sources is their

intermittent nature [60, 63, 128, 129]. Many factors affect solar output including the sun’s

position, shade from trees, and cloud cover in the sky. Such fluctuations in production,

as well as lack of solar output during the night, complicates the management of the grid

where supply and demand must be continuously matched. Energy storage in the form of
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batteries has been proposed as a potential solution for dealing with intermittency from a

renewable source [50, 78, 99]. Battery-based energy storage can smooth out fluctuations in

output from solar arrays by absorbing surplus energy from solar arrays and feed the excess

power back to the grid when there is a deficit.

Energy storage also provides other benefits other than smoothing out fluctuations. For

instance, energy storage can exploit electricity price differentials to reduce costs. Since

electricity prices may fluctuate over a given period, storing electricity when prices are low

and discharging during peak-periods has the potential to cut costs [69,99]. Similarly, other

benefits of energy storage include supporting demand-response [31, 80], providing back-

ups [105] and reducing peak usage [109]. Hence, energy storage is seen as a potential

solution for solving some of the problems in the existing grid.

Until recently, the high cost of batteries has been a barrier to large-scale energy storage

deployments. However, this is beginning to change with the development of new battery

technologies and falling prices. Today, battery-based systems such as Tesla Powerwall and

others are increasingly deployed in conjunction with solar array deployments.

2.2.1 Virtualization of Energy Systems

Modern distributed systems and computer networks have employed virtualization as a

fundamental building block to flexibly multiplex a set of physical resources across users,

where virtualized resources resemble the physical counterparts [125, 126]. A virtual rep-

resentation of energy systems can provide the illusion of a dedicated physical array and

battery that can be utilized and managed independently of other virtual arrays and batter-

ies. This allows each owner to make the “optimal” decision of how to utilize their virtual

array and batteries independently of what other owners decide at each instant.

A virtualization abstraction also gives each owner an illusion of ownership of the unit,

even though the physical resources are collectively owned by the group. In some sense,

a virtual solar and battery arrays can act like N independent smaller array and battery
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installations — while being cheaper to install due to economies of scale of installing a

single large solar and battery array over N smaller ones. In addition, many components

like inverters can be shared rather than duplicated.

Further, a virtual solar array and battery system can be utilized for many differing en-

ergy optimizations. In scenarios with time-of-use pricing with different pricing slabs, sur-

plus solar production during off-peak or mid-peak price periods can be stored in the battery

for later use, such as peak price periods to maximize cost savings. During peak periods,

the system prioritizes the use of solar production and stored energy in the virtual battery

overdrawing power from the grid. Finally, if there is surplus solar production after serving

local loads and charging the battery, this excess energy can be net metered to the grid to

earn revenues (which offset changes in the monthly electricity bill).

2.2.1.1 Challenges

Today physical IoT-based energy systems do not have such virtualization capabili-

ties that allow users to control their share of resources independently. As shown in Fig-

ure 2.3(a)), community-owned energy systems, shared across a large number of users, do
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not provide dedicated control to individual users. Energy output from solar and battery

arrays is used to meet the aggregate energy demand across all homes, which prohibits in-

dividual owners from deciding on how to use their share of energy. A solution is to use

dedicated systems that allow independent control. But, they are expensive and maybe in-

feasible in many residential locations where space is a constraint (see Figure 2.3(b)).

Virtualization mechanisms can also enable sharing of energy. The virtualization layer

can expose control primitives for individuals to determine whom to share energy. If an in-

dividual has excess energy from their share, they can sell it to others. Similarly, if they have

deficit energy, they can buy energy from others, thereby reducing the reliance on the grid.

To enable energy trading among individuals will require an accounting system that tracks

the various energy transaction between two parties. The amount of electricity borrowed or

lent must be tracked, recorded, and periodically settled using billing infrastructures. Since

such transactions may be frequent, such an accounting system will need to support high

throughput transactions — especially if there are many individuals trading energy. Further,

in a decentralized setting where transactions occur between untrusted parties, the system

should record these transactions in a transparent, secure, and auditable manner to maintain

trust.

14



CHAPTER 3

SOLAR POTENTIAL ESTIMATION OF ROOFS

Rooftop solar deployments are an excellent source for generating clean energy. As a

result, their popularity among homeowners has grown significantly over the years. Un-

fortunately, estimating the solar potential of a roof requires homeowners to consult solar

consultants, who manually evaluate the site. Recently there have been efforts to automati-

cally estimate the solar potential for any roof within a city. However, current methods work

only for places where LIDAR data is available, thereby limiting their reach to just a few

places in the world. In this chapter, we present DeepRoof, a data-driven approach that uses

widely available satellite images to assess the solar potential of a roof.

3.1 Motivation
Solar deployments vary in size, ranging from large solar farms that are deployed by util-

ities to small-scale installations by individuals [63,65]. More than half of the installed solar

capacity continue to come from small-scale solar deployments, i.e., arrays with 10kW of

capacity of less [79]. Most of these installations are residential in nature with deployments

on rooftops of homes.

However not all roofs are suitable for solar array deployments. A clear view of the sky

with no surrounding obstructions and proper orientation (e.g., south or southwest facing

roofs in the northern hemisphere) are key to maximizing solar energy generation of rooftop

deployments. In contrast, residential buildings surrounded by trees or other buildings that

cast shadows or roofs that do not face south are considered unsuitable for rooftop deploy-

ments. The task of determining whether a particular building is well suited for rooftop
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solar deployment has largely been a manual process—a professional solar energy installer

measures the roof area, their orientation, and uses a pyranometer and shade measurement

tools1 to assess the amount of sunlight received on the roof for different times of the day.

These measurements are then used to find the ideal locations for installing solar arrays on

the roof, if any, and to compute the solar generation potential of the roof. Such a process is

laborious and time-consuming and certainly does not scale to large number of buildings in

a city.

There have been a few recent efforts that have attempted to automate this laborious

process using data-driven algorithm [67, 142]. For instance, Mapdwell [67] and Google’s

Project Sunroof [114] have both used LIDAR data to assess the solar potential of building

rooftops in a city. LIDAR is a laser-based aerial mapping technology that uses airborne

LIDAR sensors to extract the 3D surface structure to create a Digital Elevation Model

(DEM), which can then be used to determine the geometry of the roof as well as shade

from nearby objects [142]. Unfortunately LIDAR data is expensive to collect and involve

flying airplanes or drones with aerial LIDAR mapping sensor, and thus, such data is not

widely available for many regions in the US and the world. Consequently, current state-

of-the-art techniques only offer solar potential data for select cities where LIDAR data is

available, leaving large parts of the world without any coverage.

At the same time, satellite images showing rooftops of buildings are widely available for

most countries through mapping services such as Google, Bing Maps or commercial ones

such as DigitalGlobe. Our key hypothesis is that advances in computer vision techniques

make it feasible to use 2D rooftop satellite imagery to automate the estimation of solar

generation potential for any building rooftop. In our case, key research questions include

whether it is feasible to (i) recognize a rooftop from its surroundings, and (ii) infer the 3D

shape of the roof, and specifically the plane of each roof surface and their orientation, and

1Solar Path Finder, SunEye 210 http://www.solmetric.com/
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Figure 3.1. An overview of our DeepRoof architecture.

(iii) estimate the solar generation potential of the roof based on its location, weather, and

potential trees or other visible occlusions. In addition to widely available satellite imagery,

historical solar irradiance data for various locations around the world is available from the

US National Renewable Energy Lab (NREL) and public tax records in many countries

provide information about the number of floors and height of a building. Consequently, we

hypothesize that it is feasible to develop an automated data-driven algorithm that utilizes 2D

satellite images of building roofs for solar potential estimation and that such an approach

has broader applicability than LIDAR-based methods, including vast swaths of rural areas

and smaller cities that are unlikely to be mapped by LIDAR in the near future.

3.2 DeepRoof Design
In this section, we describe our data-driven approach to assess the solar potential of

a roof. Our approach, DeepRoof, relies on the key observation that size and structure of

roofs are observable in a satellite image, essential for estimating the solar system a building

can support. Satellite images also indicate if there are nearby structures such as trees or

buildings that can obstruct a roof segment partially or completely. These structures can

be identified and used to estimate its overall impact on available solar irradiance incident

on the roof. DeepRoof, illustrated in Figure 4.2, uses this insight to compute the solar
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potential of planar roof segments in a building, and identify suitable locations for installing

solar panels. DeepRoof’s approach, shown in Figure 4.2, has three key steps:

• Terrain Segmentation uses deep vision techniques to create a terrain outline of the

input image by identifying all the planar roof segments and trees in the image.

• Topology Estimation creates a representation of the topology using the terrain out-

line from the previous step. We approximate the height of the building and nearby

structures using publicly available datasets that may cast shadows on the roof.

• Solar Potential Analysis estimates the per-pixel solar potential of the roof using the

output from the previous steps and historical solar irradiance data.

Moreover, our algorithm identifies roof locations where panels will receive maximum sun-

light, accounting for shade from nearby structures. Below, we describe each step in detail.

3.2.1 Terrain Segmentation

The first step in our pipeline is to determine all the planar roof segments, the orientation

of each planar roofs and nearby structures in a satellite image. Extracting the roof segments

is useful for determining the rooftop locations where solar panels can be installed. Further,

trees and nearby buildings provide locations where these objects may cast shadows on the

rooftop, thereby rendering them unsuitable for solar panels. Let I be the input satellite

image of size w ⇥ h, in this step, DeepRoof constructs the terrain matrix TA of size w ⇥ h,

where the pixels correspond either to the orientation of the planar roof segments or trees in

the image.

Identifying objects in an image at a pixel-level, referred to as semantic segmentation,

is a well-researched computer vision problem [19, 83, 90]. Since recent deep learning ap-

proaches have outperformed previous vision techniques on segmentation tasks [52, 101],

we leverage these methods in our work. In our approach, we use the Feature Pyramid Net-
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Figure 3.2. Overview of the FPN framework.

work (FPN) to identify planar roof segments and nearby structures. Below we describe the

key aspects of FPN, and refer the readers to the original paper [83] for more details.

Figure 3.2 illustrates the architecture of a feature pyramid network for the segmenta-

tion task. FPN takes as input an image and extracts features using a convolutional neural

network (CNN) architecture (e.g. ResNet [53]) augmented with a pyramid-like structure.

As shown in the figure, the bottom-up pathway is augmented with a top-down pathway

and lateral connections to build a multi-scale feature pyramid of the input image. Since

FPN uses a standard CNN architecture for feature extraction, the network can be initialized

with pre-trained weights on ImageNet [74] dataset, which allows our technique to work on

relatively small datasets.

In a CNN architecture (e.g., ResNet), the bottom layers learn the low-level features

such as edges, and as we move higher up, the top layers learn higher-level semantics of

a real-world object such as trees, cars etc. In DeepRoof, the CNN architecture learns the

planar roof segments, which are the building blocks to construct the geometry of a roof.

In FPN, the ResNet layers are grouped into different network stages {C1, C2, C3, C4, C5},

and the output map from the last layer of each stage is selected as a reference set to create

the feature pyramid.

As shown, the lateral connections in the top-down pathway combines the low-resolution

and the high-resolution from the convolutional network to create a multi-scale feature
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{M2, M3, M4, M5} by applying a 1x1 convolution filter. A 3x3 convolution filter is ap-

plied to the output to obtain the final feature maps {P2, P3, P4, P5}. Note that the image

resolution of each Pi is one-fourth the input image and has 128 channels each. Finally,

{P2, P3, P4, P5} feature maps are concatenated to create a layer with 512 channel. We then

use two successive 3x3 convolution filters and batch normalization to create a feature map

with channels equivalent to the number of output classes for prediction. The output is then

up sampled to its original image size using bilinear interpolation and a softmax activation

layer is applied to predict the final output.

We now discuss how our approach creates the roof orientation matrix TA. Our approach

views each planar roof segment as an object with azimuth as its label. For instance, a planar

roof segment facing north-west is labeled as NW . Similarly, horizontal roof surfaces are

labeled as flat and we also label tree crowns. The model is trained using this labeled set

of images. After our model is trained, the final output contains a per-pixel prediction such

that each pixel is labeled with the class of the object. We then use the final output to create

the roof orientation matrix TA, where each pixel label corresponds to roof orientation, trees

or background.

3.2.2 Topology Estimation

In this step, we determine the outline matrix TO that contains all the planar roof seg-

ments of the candidate building. We also describe how we estimate the height and the

pitch of the candidate roof. We assume that the outline of the candidate building is avail-

able. This is used to determine the roof segments of a candidate building from neighboring

rooftops. We note that outline of a building property for a location can be easily obtained

from public maps [10]. For example, in a given geographical area, OpenStreetMap pro-

vides the outline of all the buildings within a specified area, as well as their addresses [10].

Further, an outline of the candidate building can also be easily obtained as an input through
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an user interface. In our approach, we use the OpenStreetMap API to obtain the outline of

the candidate building in our input image.

In order to recognize the planar roof segments in the orientation matrix TA, we run the

marching squares algorithm [91] that identifies all the contours in an image. The march-

ing squares algorithm approximates the line along the edges where the orientation value

changes. The contours correspond to a planar roof segment as we expect the orientation to

be similar for a given roof segment. Next, for all the contours predicted by our algorithm,

we associate a contour with the candidate building if it intersects with the building’s out-

line. This creates an outline matrix TO, which contains all the planar roof segments of the

candidate building.

We then approximate the height and the pitch of the contours identified in the can-

didate building as well as height of nearby structures. Currently, we rely on third-party

sources to create the roof pitch matrix TP and the height matrix TH . We observe that num-

ber of floors available in real-estate dataset and Federal Emergency Management Agency

(FEMA) guidelines [59] provide reasonable estimate about the height and pitch of the roof,

respectively. As part of our future work, this step can be further improved by obtaining

these inputs through an interactive interface from users, which can be used to fine-tune the

solar potential estimation.

3.2.3 Solar Potential Analysis

We now discuss how we compute the solar potential of a roof and the available area for

installing solar panels using the terrain matrix.

3.2.3.1 Solar irradiation on a roof

We note that the solar potential of a roof is the combined potential of all its planar

roof segments. We determine the amount of solar irradiance for each planar roof surface

in a candidate building for different time of the day in a year, accounting for shade from

nearby objects. We now describe how the solar irradiance is computed for a tilted roof
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surface. The power output of a solar panel depends on the angle sunlight is incident on the

PV module, which is maximum when the PV surface is perpendicular to the sun. Thus,

the solar irradiance of a roof plane having an orientation  2 TA and roof pitch � 2

TP are dependent on two components — beam and diffused irradiance. While the beam

irradiance SB is the direct radiation received from the sun, the diffused radiation SD is

received from radiations scattered by particles in the atmosphere. Assuming an isotropic

model for diffused irradiance [84], the total solar irradiance of a tilted roof surface is given

by:

S(�, ) = SB · RB(�, )| {z }
beam irradiance

+SD · RD(�, )| {z }
diffused irradiance

RB(�, ) = cos↵ sin � cos( � ✓) + sin↵ cos �

RD(�) =
1 + cos(�)

2

where, ↵ is the solar elevation angle and varies with the time of the day and ✓ is the solar

azimuth angle and dependent on the latitude of the location. Past values of SB and SD

are publicly available from various sources [45], and can then be used to compute the total

irradiance S for different time of the day in a year.

We consider objects that are roughly within 100 meters from the building for analyzing

shadows. We compute the periods when shadows are cast from nearby objects, and subtract

the direct radiation SB from our calculation, i.e., direct sunlight. Note that the diffused

irradiance is still received through scattering, and hence it is not ignored. We then compute

the annual peak sun hours at a pixel-level, i.e. number of hours with 1kW/m2.

3.2.3.2 Solar installation size

Finally, we estimate the number of solar panels that can be installed on the roof. The

planar roof segments are already available in the terrain matrices. The general procedure is
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to pack as many solar panels on each of the planar roof segments in a candidate roof. Our

problem is similar to the 2D bin packing, where the objective is to maximize the number

of 2D shapes that can fit into a rectangular bin. Here, the planar roof segments represent an

irregular shaped bin and the 2D object is the solar panel. Since the computational complex-

ity of 2D bin packing is known to be NP-hard, we use a greedy algorithm to determine the

number of panels that can fit on the roof. The greedy algorithm outputs the overall number

of panel that fits the roof, and we determine the install capacity by multiplying the total

number of panels with the rated power output per panel.

3.3 DeepRoof Implementation
We have implemented DeepRoof as a system to automate the process of solar potential

estimation. DeepRoof can operate in two modes: batch and interactive. In the batch mode,

our system takes a list of addresses, or GPS coordinates, as input and computes the solar

generation potential for each building in the specified list. The batch mode is useful when

computing the solar generation potential of all homes in a neighborhood or an entire city.

Our system takes the batch of addresses and first computes the GPS coordinates of each

address. It then queries a mapping service, currently set to Google Maps in our implemen-

tation, to download the satellite rooftop imagery for each location in the list. The batch

of roof images is then provided as input to our DeepRoof model, which outputs the planar

roof segments. Our system then uses the approach outlined in Section 5.2 to output the

per-pixel solar potential as well as available roof area. These results can then be viewed

by clicking on each address in the list. Figure 3.3(a) shows the process for computing the

solar potential for a batch of buildings.

Our system can also operate in interactive mode via a web interface. In this case, the

user specifies an address or the GPS coordinates of a location. Our system then invokes

the backend of DeepRoof, which are the same for both the batch and interactive modes.

After computing the results, the per-pixel solar potential is overlayed on the satellite im-
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agery. The interactive interface displays the overall potential of the rooftop at a pixel-level.

Figure 3.3(b) shows the overall energy potential as well as the available installation area as

shown in interactive mode. The bright region indicates the location which receives maxi-

mum sunlight.

Overall, our system implementation consists of three components: (i) an interface that

allows a user to input an address of a building and visualize its overall solar potential (ii)

our deep learning model that identifies the planar roof segments and nearby structures in

a rooftop imagery and (iii) a set of APIs that implements our approach in Section 5.2 to

query Google Maps for rooftop imagery and compute the solar potential. DeepRoof’s user

interface is implemented using flask, a light-weight web framework in python. Our

DeepRoof’s CNN model is implemented using the keras library, which invokes Google’s

Tensorflow in the backend. Finally, our system has the ability to parallelize its TensorFlow

computations on a cluster of nodes when processing a batch of buildings—in order to scale

the computations to a larger number of homes in a region or city.

3.4 Evaluation Methodology
Below we describe our dataset, experimental setup and metrics used to evaluate our

approach.

3.4.1 Dataset

• Dataset 1: We collected satellite images from six different cities using Google Maps

API (Table 3.1). We labeled the images using a modified VIA annotator tool [41].

Each roof plane in the image was annotated (including adjacent buildings) and as-

signed an orientation angle from the north, or labeled as a flat roof. However, we

did not label some of the small roof segments, where solar panels cannot be in-

stalled. We also labeled nearby trees with visible tree crowns. Apart from the

satellite images, we also downloaded the outline and height of the building from
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OpenStreetMap API [10]. We augmented the height of the building with third-party

real-estate datasets in cases where the height was not available.

• Dataset 2: For our city-scale case study, we selected a total of 1982 buildings from

the city of Framingham, MA (see Table 3.2). The dataset contains real-estate infor-

mation such as number of floors, roof type (e.g., hip and gable). We downloaded

the satellite images and building outline from Google Maps and OpenStreetMaps.

Further, we also collected the solar installation area and available sun hours from

Google’s Project Sunroof to compare our approach with a LIDAR-based approach.

For estimating the peak sun hour, we used the solar irradiation data from National So-

lar Radiation Database (NSRDB) [45]. The dataset contains the diffused and direct

solar irradiation as well as the azimuth and elevation of the sun for a given location at
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Table 3.1. Dataset 1: Summary of the labeled roof dataset.

City #images #buildings #roof segments

Framingham, MA 279 1161 1722
Pinellas Park, FL 122 944 2121
Fresno, CA 43 69 171
Seattle, FL 8 46 158
Denver, CO 7 44 90
Indianapolis, IN 5 10 50
Total 464 2274 4312

Table 3.2. Dataset 2: Key characteristics of the unlabelled roof dataset used in our city-
scale case study.

roof types #buildings #floors land area(acres)

Gable, Flat
Hip, Complex hip 1982 1 - 6 0.031 - 2.92

a granularity of 1 hour. Our dataset is available for download at UMass Trace Repos-

itory (http://traces.cs.umass.edu/index.php/Smart/Smart).

3.4.2 Experimental Setup

We augmented our dataset by rotating the images at different angles. Further, we cat-

egorized the orientation directions (0°to 360°) to one of the 16 orientation (i.e., N, NNE,

NE, etc.), assigning each roof segment to its closest orientation. In addition to using FPN

in DeepRoof, we used other baseline segmentation models — namely UNet [120] and

MaskRCNN [52]. Further, the segmentation models were trained using two different CNN

architectures namely ResNet 50 and ResNet101, resulting in a total of six models. Since

FPN, UNet, and MaskRCNN can use ResNet architecture for feature extraction, pre-trained

weights from ImageNet were used as per the literature [52, 74].
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3.4.2.1 Training and model selection

We split our dataset into three disjoint sets: train (60%), validation (20%) and test

(20%). The datasets are split before augmenting the dataset to prevent the model from see-

ing the hold-out set. To prevent overfitting, we trained our models until their performance

doesn’t improve further on the validation dataset. Further, we used stochastic gradient de-

scent optimizer, with a learning rate of 0.001 and a momentum of 0.9. For training the

model, we ran our neural network model for 240k iterations and reduced the learning rate

by a factor of 10 at the 100k and 160k iteration. We report our result on the unseen test

dataset.

3.4.3 Metrics

We note that standard error metrics such as the mean absolute error are not an ideal

evaluation metric for capturing the performance of the model in predicting orientation. For

instance, if the predicted orientation is NNW (337.5°) and the ground truth orientation is

N (0°), the error in prediction is 22.5°. However, mean absolute error will report an error

of 337.5°. Thus, we introduce mean orientation error (MOE) as a metric to capture the

per-pixel error between the predicted and the actual azimuth angle.

mean orientation err =
1

M

X

i

P
j pij ⇤ degree separation(oi, oj)

ti

where, M is the number of classes (i.e., azimuths), oi is the azimuth angle, pij denotes the

number of pixels of azimuth j classified as azimuth i, and ti is the total number of pixels

in class i. Finally, the degree separation is a function that returns the azimuth angle

difference between the two azimuths. The value of MOE is between 0°(perfect prediction)

and 180°(opposite prediction).
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(a) DeepRoof (101) (b) UNet (101) (c) MaskRCNN (101)

Figure 3.4. Normalized confusion matrix of roof classifcation.

3.5 Experimental Results
In this section, we validate our results with the ground truth including a LIDAR-based

approach. We also validate our output with solar experts and show that our data-driven

approach can be used to analyze a city-scale dataset.

3.5.1 Roof Classification

We first evaluate the performance of DeepRoof in identifying roofs since these locations

are potential sites where solar panels can be installed. To do so, we classify a pixel as

a roof if the segmentation model predicts an orientation for the pixel or has labeled the

roof as flat. We present our results for all the segmentation models used in our terrain

segmentation step. Figure 3.4 shows the normalized confusion matrix of roof classification

across all models using ResNet101 architecture on Dataset 1. The values in the confusion

matrix are normalized by the number of pixels in each class. We observe that the ResNet50

architecture yields a lower true positive rate2 compared to ResNet101 (not shown in the

figure). This is because the deeper network enables it to learn the feature subspaces better.

In particular, we observe that the true positive rate of ResNet101 reaches 91.1%, 91.9% and

86.3% for DeepRoof, UNet and MaskRCNN respectively. Further, the results of DeepRoof

2True positive rate is the ratio of true positives identified from all the positive cases.
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(a) DeepRoof (101) (b) UNet (101) (c) MaskRCNN (101)

Figure 3.5. Normalized confusion matrix of slope type.

and UNet are comparable with the difference in the true positive rate within ±1% of each

other in classifying roofs and nearby structures.

Next, we evaluate the performance of DeepRoof in differentiating between a flat roof

and a pitched roof. We classify the slope of a pixel as tilted if the model predicts an

orientation for the pixel else we classify it as a flat roof segment. Figure 3.5 shows the

normalized confusion matrix of slope type prediction on Dataset 1. Both ResNet50 and

ResNet101 shows high accuracy in differentiating between the types of slope, i.e., flat

or tilted, with accuracy > 98% and > 93% for flat and pitched roofs respectively. As

again, ResNet101 architecture yields better result compared to ResNet50 owing to the deep

architecture. Although MaskRCNN performs relatively poor in classifying roofs, among

the pixels classified as roofs, it has a high true positive rate of > 97.4% in differentiating

between flat and pitched roof. We also note that DeepRoof has a higher true positive

rate compared to UNet and yields better results in identifying slope types. In particular,

DeepRoof has a true positive rate of 96% compared to UNet’s 94.8%.

3.5.2 Roof Orientation

Figure 3.6 shows several examples of the segmentation output of different roof types

for all models. Each color in the figure depicts a roof plane and the orientation of the
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Figure 3.6. Segmentation output on different roof types.

roof plane. The figures illustrate that the models can identify the planar roof segments

and also determine their orientation that are visually close to the ground truth. ResNet101

shows better visual improvements in segmentation output compared to ResNet50. Also, we

observe that MaskRCNN fails to identify some of the roof segments, which corroborates

the lower true positive rate discussed above. As seen in the figure, both DeepRoof and

UNet shows a close resemblance to the ground truth, even when the buildings have different

geometry.

Next, we evaluate the performance of predicting the orientation of the rooftop. Ta-

ble 3.3 summarizes the mean orientation error on Dataset 1. A lower mean orientation

error is better, where a zero value indicates that the predicted pixel orientation matches

the ground truth. Similarly, a mean orientation error of 180° indicates that the pixels were

predicted opposite to the ground truth orientation. Overall, we observe that all the models

yield an MOE of less than 12°. Since the orientation labels are 22.5° apart, it indicates that
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Table 3.3. Mean orientation error of the predicted roofs for different architectures on
Dataset 1.

Backbone DeepRoof UNet MaskRCNN
ResNet50 10.63 10.94 11.43
ResNet101 9.3 11.94 9.37

LOW MED HIGH

(a) (b)

Figure 3.7. (a) Sample image provided to experts for validation (b) Average rating distri-
bution of the response on a scale of 1 to 10 (10 being the highest).

the models are able to predict a rooftop’s orientation correctly in most cases. It is inter-

esting to note that the models are able to learn the spatial relationship between the planar

roof segments and predict their orientation. As shown, DeepRoof yields the lowest MOE

compared to other segmentation models with MOE of 10.6 and 9.3 using ResNet50 and

ResNet101 respectively.

3.5.3 Expert Validation

For this experiment, we asked two independent solar experts with experience in in-

stalling PV panels to rate our solar estimation output from DeepRoof. Our objective with

this study was to address the following questions (i) How well does DeepRoof estimate

the solar potential of each planar roof segments? (ii) Are there locations on the roof that

31



our approach fails to identify as possible locations where experts would consider installing

solar panels?

To answer the above questions, we selected only buildings with pitched roofs from

the test dataset and omitted flat roofs that are relatively easier to estimate solar potential.

We highlighted all the areas on the roof where solar panels can be installed. Further, we

discretized the sunlight received in each planar roof segment into high, medium and low,

and presented the image to the experts for analysis. We asked them to rate DeepRoof’s

result on a scale of 1 to 10 (10 being the highest rating). We also asked them to consider

nearby structures such as trees that may affect the solar potential while rating DeepRoof’s

output. In total, we randomly selected 30 images from the test Dataset 1 for our evaluation.

Figure 3.7 (a) shows a sample image from the study that was provided to the experts for

validation. The image on the top shows the ground truth, and the image on the bottom

shows the output estimated by our algorithm.

Figure 3.7 (b) shows the average rating distribution of the expert’s response to Deep-

Roof’s output. The graph shows that DeepRoof estimates the solar potential with high ac-

curacy, as seen from the high rating received for most homes. Overall, we observe that both

the experts gave a rating of 8 and above to 22 of the 30 homes. For these homes, Deep-

Roof not only predicted the orientation correctly but also considered shade from nearby

trees to estimate the solar potential. For homes that received a rating lower than 8, in most

cases, DeepRoof failed to identify the surrounding trees. We note that these images had

fall trees without leaves and, thus, was classified as background pixels. On an average, the

experts gave a rating of 8.8 for a typical home. We also received responses on whether

DeepRoof identified all the roof segments where solar panels can be installed. Both the

experts validated that DeepRoof didn’t miss out any candidate roof segment suitable for

solar installation.
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Figure 3.8. Difference in installation area estimated by Sunroof and DeepRoof for different
roof sizes.

3.5.4 Comparison with a LIDAR-based Approach

Google’s Sunroof project, a LIDAR based approach, estimates the solar potential of

a roof as follows. For a given address, the Sunroof provides the total solar installation

area and a pixel-level sunlight available on the roof. These estimates are calculated using

LIDAR and NREL’s solar irradiance data. To compute the available solar installation area,

Sunroof uses a greedy algorithm that maximizes the number of solar panels that can fit

on a planar roof segment [114]. Since the pixel-level solar potential is not accessible via

Sunroof, we cannot meaningfully compare the results, and hence we only compare the solar

installation area of the roof.

In our approach, we select a fixed solar panel size of 250W3, and align it based on

the orientation and pitch of the roof segments. Our greedy algorithm then uses the panel

dimensions as input to analyze the number of panels that can fit on each of the predicted

planar roof segments. We ran our algorithm on the test dataset in Dataset 1 and all the

buildings in Dataset 2. We had a total of 2073 buildings after combining the datasets.

3The standard dimensions of a 250W PV panel is 1m⇥1.65m. Google Sunroof project also uses a 250W
panel to analyze the potential [114].
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Figure 3.8 plots the distribution of percentage difference in solar installation area pre-

dicted by Sunroof and DeepRoof for different roof sizes. A negative percentage difference

indicates under-prediction and a positive difference indicates over-prediction. As seen in

the figure, the median percentage difference between Sunroof and DeepRoof for different

roof sizes varies from -7% to 11%. The median percentage difference is 0.5% for roof size

between 2000 to 3000 sq.ft. This indicates that on an average DeepRoof’s estimation tends

to be close to Sunroof’s estimated area. We also note that the variance decreases with an

increase in roof sizes. This is because planar roof segments in small rooftops are compar-

atively difficult to identify. However, we note that for the first and the third quartiles are

within 25% of Google Sunroof’s estimate. Thus, DeepRoof estimates the solar installation

area using rooftop images that are close to LIDAR based approaches.

3.5.5 City-scale Solar Estimation

We first provide a breakdown of the time it takes for DeepRoof to estimate the potential

of a rooftop image. The computation-heavy tasks in DeepRoof involve semantic segmen-

tation of the image, estimating the solar potential and the solar installation area. We note

that the DeepRoof model achieves an inference time of 169 ms on an NVIDIA M40 GPU

per rooftop imagery. Separately, depending on the number of planar segments identified

and nearby structures, calculating the solar potential and the installation area takes on an

average 3 to 5 seconds to complete on a single machine. Assuming 5 seconds of process-

ing time per image, a single machine running DeepRoof can process 10,000 buildings in

approximately 14 hours. Since processing rooftop images is an embarrassingly parallel, a

server cluster can be deployed to speed up the process further. Thus, DeepRoof can eas-

ily scale to millions of homes. We now analyze the output of DeepRoof on the citywide

buildings in Dataset 2 and present our results below.
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(a) (b)

Figure 3.9. (a) Per-pixel peak sun hours of a building. The bright colored region indicates
higher solar potential. (b) Average peak sun hours distribution in Dataset 2.

3.5.5.1 Peak sun hours

Figure 3.9(a) shows the rooftop image and the peak sun hours received by each pixel

in a sample building. As seen in the image, our technique can identify south-facing and

south-west facing roofs with higher solar potential (depicted by the brighter yellow color).

Similarly, north and northeast facing roofs have lower energy yield. Thus, DeepRoof’s

output can provide custom insights to homeowners on the optimal placement of panels.

Figure 3.9(b) shows the distribution of the average peak sun hours of all the building

in Dataset 2. We observe that the peak sun hours range from 607 to 1471.7 hours. The

variation in the average peak sun hours is due to the different orientation and pitch of the

roof segments along with the shadows caused by nearby structures. Further, the median

peak sun hours available is 1077.95 hours. We observe that all but 5 locations receive a

minimum of 800 hours of peak sunlight — indicating significant solar potential among

these buildings.

3.5.5.2 Energy generation potential

We compute the energy generation potential assuming the entire roof can generate elec-

tricity [115]. Figure 3.10 (a) shows the spatial representation of the overall solar potential

in MWh of the buildings and Figure 3.10 (b) shows the solar energy distribution of all the
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(a) (b)

Figure 3.10. (a) Spatial representation of the annual solar energy generation potential (b)
Energy potential distribution.

buildings. As seen in the figure, the median energy potential of a home is approximately

14.03 MWh. Assuming the national US average energy consumption of 10.9MWh for a

typical residential customer [8], our results indicate that most households can become com-

pletely energy self-sufficient using rooftop solar. We also find that on an average, except

for homes that have significant foliage or obstruction, the total annual solar production of

all the buildings to be 31248.3 MWh, which is at least 1.44 times the annual energy needs

of a typical home.

3.6 Related Work
There has been significant work on estimating the global irradiance at ground level [26,

28, 34, 48]. Previous studies have used satellite data on the earth-atmosphere system and

ground pyranometer to measure the variability in solar irradiance for a location [34]. These

provide reasonable estimates on how much sunlight is available for a location over a given

period [45]. Prior work has also studied the sunlight available on tilted surface [48]. We

use these estimation models in our work to study the solar potential of a roof.

Automatically estimating a roof’s solar potential requires identifying buildings and

trees. Various methods have been proposed to automatically identify buildings in satellite
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and aerial images [57,107,122,142]. Most techniques rely on LIDAR based approaches for

detecting and modeling buildings [142]. Some of these studies also detect roof planes of a

building to reconstruct a 3D model [68, 121, 134]. Separately, there have been studies that

combine street and aerial images to detect street trees and identify its species [140]. How-

ever, most of the existing approaches use LIDAR data for modeling roofs and extracting its

geometry. In contrast, our approach provides an alternative to LIDAR-based approaches

and uses satellite images for solar potential estimation.

Recently there has been significant interest in estimating the potential of roofs for in-

stalling solar panels [18,67,75,108,114]. While some studies have proposed manual meth-

ods [75], others have proposed automated methods for estimating potentials [38,114]. Man-

ual estimation requires expensive instruments [116] and professionals to reasonably assess

a roof’s suitability. On the other hand, automated approaches require LIDAR data, which

are not readily available for all cities or remote locations [94]. Unlike prior work, we use

satellite images that are readily available from mapping services. Recent advances in deep

vision techniques make detection of objects in aerial images feasible [93, 101]. Our work

leverages the state-of-the-art vision techniques to approximate both the orientation and the

roof’s geometry using only rooftop images and publicly available irradiance datasets. Thus,

our approach provides a scalable approach for estimating solar potential in locations where

LIDAR is not available.

3.7 DeepRoof Summary
Solar potential estimation of a roof can substantially benefit homeowners deciding to

adopt solar. In this chapter, we proposed DeepRoof, a data-driven approach to estimate

the solar potential of a roof using satellite images. We extensively evaluated our approach

using available ground truth roof dataset having diverse roof shapes and sizes. We also

validated our results with solar experts and compared DeepRoof’s output to a LIDAR-based

approach. Our results showed that DeepRoof can accurately extract the roof geometry such
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as the planar roof segments and their orientation, and achieved a true positive rate of 91.1%

in identifying roofs and a low mean orientation error of 9.3°. Further, we also analyzed

the solar potential of a city-scale dataset and showed that installing solar panels can lead to

energy self-sufficiency in these homes.
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CHAPTER 4

DISTRIBUTED RATE CONTROL FOR ENERGY SYSTEMS

In this chapter, we introduce the notion of solar rate control to regulate the surplus

power being fed into the electric grid. We propose a decentralized algorithm that enables

smart solar arrays to self-regulate its power output in a grid-friendly fashion to prevent

congestion in the grid. We show how solar rate control enables higher solar penetration

and can reduce the variability from solar in the grid.

4.1 Motivation
Conventional wisdom holds that there is a limit to the amount of the solar penetration

in the grid, i.e., the maximum fraction of demand satisfied by solar power that the grid can

handle. Since solar generation is intermittent, utilities must offset any large increases or

decreases in solar output by decreasing or increasing output from other sources to com-

pensate. However, with high penetration and variable weather conditions, fluctuations in

aggregate solar output may occur too quickly to be offset from mechanical generators to

offset, resulting in supply-demand mismatches. Consequently, current regulations strictly

limit the number and size of grid-connected solar deployments that use net metering.

The problem faced by the grid is reminiscent of problems faced by the early Internet.

Early transport protocols for network data transmissions did not include congestion control

and allowed users to inject data into the Internet at arbitrarily high rates. Since network ca-

pacity was fixed, too many users sending data at excessively high rates drove the network

to near congestion collapse. The imminent threat of congestion collapse led the design of

TCP, a transport protocol that uses congestion and rate control to gracefully adapt send-
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ing rates upon detecting congestion to maximize aggregate goodput, prevent congestion

collapse, and fairly share the Internet’s available bandwidth among active flows [66].

Today’s “dumb” electric grid and solar arrays are akin to the early Internet—it permits

grid-tied solar systems to generate and transmit large amounts of power into the grid with-

out regard for its current state and available excess transmission capacity. For example, on

a sunny day, the cumulative output of solar deployments throughout the grid could cause

a supply-side surplus that exceeds demand and causes grid ”congestion”. In contrast, on a

cloudy day, the grid may be able to accept additional power from many solar systems that

are currently forced off-grid due to strict caps.

Instead of introducing strict caps to avoid imbalance, we propose an alternate approach

wherein smart solar arrays are capable of self-regulating their output in a grid-friendly

fashion. Our smart solar arrays can control their generation rate by backing off when

supply exceeds demand (more precisely, the aggregate solar output is greater than some

threshold), and increasing the rate when needed. The idea is similar to rate control of

network flows in TCP, where sources back off when there is congestion in the network

and increase the rate when network capacity is available. We argue that solar rate control

has the potential to permit a much larger solar capacity to be installed, thereby increasing

solar penetration. Solar rate control also provides grid operators with an additional control

”knob” when continuously matching supply and demand.

4.1.1 Why is Solar Rate Control Feasible?

Interestingly, practically every solar panel today, as well as solar arrays, have the ability

to control their solar output. At an array scale, this can be trivially done in discrete steps by

dynamically connecting and disconnecting individual panels. Figure 4.1(a) shows an array
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Figure 4.1. Rate control approaches in solar panels.

where panels are connected in parallel and a program switch can be used to dynamically

disconnect k out of n panels, thereby providing discrete control1.

Even at the granularity of a single panel, it is possible to control the output of the panel.

The output of photovoltaic solar is given by its I-V curve depicted in Figure 4.1(b). Given a

certain amount of solar irradiance, the I-V curve shows all possible operating points of the

panel for that solar irradiation. Specifically, any voltage on the curve can be chosen and the

panel will then produce the corresponding current. Since power is defined as the product

of current and voltage i.e. P = I · V , the panel actually can provide a different power

output based on the choice of voltage. In general, panels operate at a voltage V at the knee

of the curve, which yields the maximum output. The point where the panel generates the

maximum power is called the maximum power point (MPP).

However, there is no particular reason to operate a solar panel at its maximum power

point. It is possible to pick other values of V [55, 127], using a buck-boost converter,

which are akin to “backing off” and producing an output less than the output at MPP. Thus,

any solar panel’s output can be altered by changing its operating voltage. Our smart solar

panels are built on this idea. We assume the presence of software controls that enable the

1Typical rooftop solar installation is 5kW (20 panels) [77]. Thus, we can control the power output in 5%
(250W) increments.
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output to be lowered below the MPPT, and thus control the power output of the panel. This

mechanism enables continuous rate control to limit the power injected to the grid.

Modern inverters are beginning to offer more configurability and in the long run, we

expect them to expose rate control mechanisms [77, 127]. Both the discrete control above,

or the continuous control can be used to regulate the rate. Given smart solar panels con-

nected to the grid, our goal is to control the solar output in order to provide higher control

over distributed solar-powered systems.

4.2 Solar Rate Control
The problem of controlling solar power is similar to the rate control problem in com-

munication networks [71, 92]. This body of work proposes an optimization framework

for determining the rates allocated to different network flows given network capacity con-

straints. These ideas from network rate control were first applied to the power grid scenario

by Ardakanian et. al. albeit in a different context—controlling the rate of electric vehicle

charging [17]. In our case, we use these principles from networking [71, 92] to address the

problem of solar rate control. Next, we present the problem of solar rate control. We then

outline our design objectives and assumptions.

4.2.1 Centralized Problem

We first formulate our solar rate control problem as a centralized optimization problem.

The centralized problem requires knowledge of the load at the feeders/transformers level

and the current generation rate of individual solar installations in order to compute the solar

allocation rate while adhering to certain grid constraints. The allocation rate should not

only maximize the individual user’s output but also maximize the overall grid utilization.

Intuitively, we want to limit the aggregated distributed solar generation to a certain

capacity. This leads to the problem of apportioning the capacity among different solar

arrays to determine the generation rate for each array. Note that the grid demand and solar
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generation output is time varying, and may change over the day. Thus, at each time t, the

optimization problem needs to recompute the capacity and the allocation rate for each solar

array . For simplicity, we describe the optimization formulation for a single time step.

We consider a distributed grid transmission network with a set of transmission feeders

F , transformers K and smart solar arrays S. Electric power is transmitted from the power

station to substations at high voltages. At the distribution substation i.e. low voltage (LV)

feeder, voltage is stepped down and distributed to transformers, wherein it is further stepped

down before it is transmitted to residential users. Thus, the smart solar arrays are connected

to the LV feeder via a transformer. Formally, we say that the smart solar array s is connected

to a LV feeder f , if s 2 S(k) and f = F (k), where k is the transformer located in between

s and f . We model the key characteristics of our problem as follows:

• Transformer constraint: Power flow at the transformer level can be bi-directional and

the maximum power flow at the transformer is dependent on the transformers rating

C. The transformer rating is between �C to C kVA, where the negative sign indicates

reverse power flow from the transformers to the feeders. Usually, the transformers

are right-sized to ensure that the load at the transformers does not exceed its rating.

However, high solar penetration in residential homes may cause reverse power flow

and the following constraint must be satisfied to maintain grid stability.

X
xs  loadk + Ck 8s 2 S(k) and k 2 K (4.1)

where xs is the solar generation rate of the smart solar array s 2 S(k) and loadk is

the aggregate load from the residential homes in transformer k.

• Feeder constraint: Most residential LV feeders are not equipped with infrastructure

to allow reverse power flow i.e. electricity does not flow from an LV feeder to a

medium voltage transmission line and thus obeys the following constraint
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X
xs  loadf , 8s 2 S(f) and f 2 F (4.2)

where loadf is the load at the feeder f , and S(f) are the smart solar arrays in feeder

f .

• Grid capacity constraint: The grid utility may cap solar output to reduce variability

in grid or due to legislative reasons [12]. The aggregate solar generation output may

be capped at a fraction of the aggregate grid demand

X
xs  capacity, 8s 2 S (4.3)

where capacity is defined as a fraction of the total power demand at the grid level.

• Solar PV constraint: The maximum power generated by a solar panel lies in the

interval [0, xmppt
s ], where xmppt

s is the MPPT rate of the solar PV and is defined as

0  xs  xmppt
s 8s 2 S (4.4)

Note that (4.1), (4.2) and (4.3) can be combined and represented as a single inequality

Rx � c (4.5)

where R 2 Rm⇥n matrix, with m combined constraints from (4.1), (4.2) and (4.3) and

n smart solar arrays; x 2 Rn⇥1 vector is the set of smart solar arrays; c 2 Rm⇥1 vector

captures the capacity constraints; and finally, � represents the generalized inequality of

vectors. R can be represented as:

Ris =

8
>><

>>:

1 if s 2 S is present in the ith constraint

0 otherwise
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Remember our goal is to take some aggregate capacity and apportion it among individ-

ual solar installations. Thus, our objective is to maximize the total utility of the individual

smart solar arrays Us(xs); subject to constraints (4.4) and (4.5). To summarize, our opti-

mization problem can be defined as:

max
xs

X

s2S

Us(xs)

subject to: Rx � c and,

0  xs  xmppt
s 8s 2 S

We refer to the above problem as the primal problem. We assume that the utility func-

tion is strictly concave, increasing and twice differentiable. Since each constraint is convex,

a unique maximizer exists and solving the optimization problem generates a solar alloca-

tion that is optimal.

The centralized optimization problem discussed earlier is mathematically tractable.

However, solving the optimization necessitates a prohibitively high communication over-

head, as it requires two-way communication infrastructure between the smart solar arrays

and the control center. Moreover, an increase in solar array deployments will increase the

coordination overhead between the control center and smart solar arrays to compute the

solar allocation rate. Hence, we formulate a distributed approach to mitigate some of the

issues in the centralized approach.

4.2.2 Design Objectives

4.2.2.1 Maximize utility of end-users and the grid

Solar panels are net-metered and the amount of electricity supplied to the grid earns

residential customers billing credits. To model the benefit of net metering, we attribute a

utility function Us(xs) to the user for generating solar output at rate xs. From the user’s
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perspective, each user would like to maximize its own utility. However, from the grid

perspective, the utility function should also maximize the overall utilization of the network.

We explore two utility functions, non-weighted and weighted, described in Kelly et.

al. [72], which maximizes both the grid and the user’s utility function. The non-weighted

utility function, Us(xs) = log(xs), provides equal utility regardless of the size of the solar

panel. Since, log(xs) is a strictly increasing function, an increase in solar output xs denotes

an increase in the utility. On the other hand, the weighted utility, Us(xs) = ws log(xs),

provides additional benefit to users for installing larger solar panel, where weight ws rep-

resents the weight corresponding the size of the solar panel. Both the utility functions are

increasing, strictly concave and continuously differentiable.

4.2.2.2 Fairness in solar rate allocation

We are interested in an allocation that is fair to the user. Here, we use a utility function

that provides proportional fairness and weighted proportional fairness. Any feasible allo-

cation vector x is proportionally fair, if for any other feasible rate vector y, the aggregate

of proportional change is non-positive i.e.

X

s2S

ys � xs

xs
 0 (4.6)

Similarly, any feasible allocation vector x is weighted proportionally fair, if for any

other feasible vector y the following holds.

X

s2S

ws
ys � xs

xs
 0 (4.7)

As shown in [71], the logarithmic utility function discussed above achieves proportional

fairness and the allocation vector obeys the fairness property (4.6). In addition, it is shown

that proportional fairness is pareto optimal, since increasing a user’s allocation will de-

crease allocation of another user.

46



4.3 Distributed Rate Control
The centralized problem discussed in the previous section has three key drawbacks in

practice. First, it requires full knowledge of the maximum generation output (MPP) of

all grid-connected smart solar arrays. Second, the control center requires knowledge of

the grid’s network topology in order to compute the solar rate. Third, a two-way com-

munication needs to be established between the control center and smart solar arrays for

controlling the solar rate. Hence, we reformulate the centralized optimization problem to

an equivalent distributed optimization problem, which can then be solved locally by smart

solar arrays and eliminate some of the disadvantages of the centralized approach. In con-

trast to the centralized approach, the distributed algorithm does not require knowledge of

the grid’s network topology and eliminates the need to share local information.

4.3.1 Dual Decomposition

We use the dual decomposition approach to divide the centralized optimization prob-

lem into smaller subproblems. Note that the optimization problem has a coupling con-

straint (4.5), which prevents solving each subproblem independently. Clearly, without the

coupling constraint, each user can maximize its utility independent of each other, thus max-

imizing the aggregate objective function. Below, we present the Lagrangian dual problem,

which relaxes the coupling constraint using control prices (Lagrangian multipliers) and

thus allows solving the problem as independent subproblem.

We define the Lagrangian of our optimization problem and consider control prices � to

relax the coupling constraint

L(x,�) =
X

s2S

Us(xs)�
X

l2L

�l(yl � cl)

=
X

s2S

(Us(xs)� xsqs) +
X

l2L

�lcl

47



where l denotes the row number and L is the total number of constraints in matrix R; and

yl =
X

s2S

Rlsxs 8l 2 L

qs =
X

l2L

Rls�l 8s 2 S

Thus, the Lagrangian dual problem can be formulated as:

D(�) :min
��0

X

s2S

Vs(xs,�s) +
X

l2L

�lcl (4.8)

subject to: �l � 0 8l 2 L (4.9)

where,

Vs(xs,�s) = max
0xsms

(Us(xs)� xsqs) 8s 2 S (4.10)

As discussed earlier, the utility function (Us) is strictly concave. Since the sum of concave

function Us is concave and the linear constraints are concave, strong duality holds i.e. the

primal and the dual solutions are equal. Hence, solving the dual problem solves our original

primal problem.

We solve the dual problem using the gradient projection method. Note that for a fixed

�, the dual problem is completely separable in xs and each subproblem in xs can be max-

imized independently by each smart solar array using (4.10). In particular, for a given

price �, a unique maximizer exists that maximizes (4.10). Since the utility function Us is

continuously differentiable, using the Karush-Kuhn-Tucker (KKT) theorem2, the unique

2KKT conditions are first order necessary conditions for a nonlinear program to yield a solution that is
optimal
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maximum x⇤
s is given by

x⇤
s = min{max{1/U 0

s(xs), 0}, xmppt
s } (4.11)

where U 0
s is the derivative of the utility function Us.

The control prices (�) manage the subproblems and are computed by the master algo-

rithm that solves the dual problem. The master algorithm computes the prices by determin-

ing � that minimizes the objective function in (4.8). This is done by updating � using the

gradient rD(�) given by

gl =
@

@�l
D(�) = cl � yl (4.12)

The gradient projection algorithm solves the dual problem iteratively. At each iteration,

each subproblem is solved parallely, and the master algorithm updates the control prices in

opposite direction of the gradient such that

�l(t + 1) = max
n
�l(t)� �(cl � yl), 0

o
, 8l 2 L (4.13)

where, � > 0 is an appropriate step size.

4.3.2 Choosing a Step Size

Our algorithm is similar to the distributed algorithm described in [17] and guarantees

to converge as rD is Lipschitz continuous3 and bounded, provided the step size is appro-

priately selected. In other words, the convergence of the distributed algorithm is sensitive

to the step size used for updating the control prices. While a big step size may cause the

3Lipschitz continuous guarantees existence and uniqueness of a solution
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algorithm to oscillate around the optimal solution, a small step size may increase the num-

ber of iterations required to converge to the solution. Here, we discuss two approaches we

used to select a step size to solve the dual problem.

4.3.2.1 Fixed gradient

At each iteration, the master algorithm updates the control prices using the gradient

controlled by a fixed step size parameter using (4.13). As shown in [17], the solution

generated by the distributed algorithm converges to the primal-dual optimal when the step

size satisfies the following condition

0 < � < 2/↵̄L̄S̄ (4.14)

where ↵̄ = maxs{�1/U 00
s (xs)}; L̄ = maxs{

P
l2L Rls} and S̄ = maxl{

P
s2S Rls}.

4.3.2.2 Adaptive gradient (AdaGrad)

In contrast to the fixed gradient, the adaptive gradient modifies the step size as a function

of time and updates the control prices 8l 2 L as follows

�l(t + 1) = max
n
�l(t)�

�p
Gl(t) + ✏

· gl(t), 0
o

(4.15)

where Gl(t) =
Pt

i=1 g2
l (i) is the sum of the squares of the gradients w.r.t. �l up to iteration

t; and ✏ = 1e�8 is a smoothing term to avoid division by zero error. Note that the accu-

mulated sum Gl(t) grows with the number of iterations, which in turn causes the step size

to shrink. The benefit of Adagrad is it is not very sensitive to the initial step size, and any

appropriate step size converges in reasonable amount of time. The convergence guarantees

of Adagrad is well studied and the algorithm converges to the optimal solution [40]. Em-

pirically, Adagrad converges faster than the fixed gradient approach and we evaluate both

of them in our distributed algorithm.
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Figure 4.2. Sense - Broadcast - Respond protocol communication among the
feeder/transformer level sensors, the control center and the smart solar arrays.

4.3.3 System Design

We now describe our assumptions and the Sense-Broadacast-Respond protocol — a

round-based protocol. We assume that power flows unidirectionally from the power station

to the feeders. However, below the feeder power flow is bi-directional in transformers.

Further, we assume the solar arrays have the capability to receive control signals and adjust

its rate accordingly.

In our proposed protocol, each round maps to the iterations the distributed algorithm

takes to converge to the optimal solution. In each round, prices are computed using (4.13)

and sent to individual smart solar arrays to modulate their power outputs. To better illustrate

our Sense-Broadacast-Respond protocol, we describe the steps on how the control center

communicates with the smart solar arrays to rate control its power output (see Figure 4.2).
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4.3.3.1 Sense

Sensors at the feeder and transformer capture the load at each time interval. The feeder

then communicates the captured information to the grid’s control center using Algorithm 1.

Note that the aggregate load sensed at the feeder is the combination of the uncontrolled load

from buildings and the regulated power from solar panels and is equivalent to the gradient

(cl � yl) presented in (4.12).

Algorithm 1 Feeder/Transformer’s algorithm
1: while True do
2: sense loadf

3: send loadf information to the control center
4: wait for the next clock tick
5: end

4.3.3.2 Broadcast

The utility’s control center receives the load from the feeder or transformer and com-

putes the control prices using Algorithm 2. The control prices is adjusted using (4.13)

or (4.15). Next, the computed control prices are broadcasted to all smart solar arrays.

Algorithm 2 Utility’s control algorithm
Input: �

1: while True do
2: receive load from feeders/transformers 8f, k
3: compute gradient gl based on the load
4: �l := max{(�l � � ⇤ gl), 0} . update control prices
5: broadcast prices to solar s 2 S(l), in constraint l
6: wait for the next clock tick
7: end

4.3.3.3 Respond

The smart solar array consists of an identifier pair that associates the array with its

parent feeder/transformer. When a smart solar array receives the broadcasted control prices,
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it computes the rate using (4.11). The identifier aids in associating the prices relevant to the

smart solar array. After the rate is computed, the smart solar array sets its generation rate.

Algorithm 3 Smart solar array’s algorithm
1: while True do
2: receive control price vector �
3: qs :=

P
l2L Rls�l . aggregate price in l

4: xs := argmax0xsms
(Us(xs)� xsqs)

5: set solar generation rate for xs

6: wait for the next clock tick
7: end

4.4 Evaluation
We describe the dataset and experimental setup for evaluating our distributed algorithm

with different utility functions.

4.4.1 Dataset

For evaluation, we use the smart meter data gathered from a small city in the New

England region of the United States. The dataset consists of energy consumption data

from 11,186 residential homes. Apart from electricity consumption, we also have the elec-

tric grid distribution network information — consisting of the feeders-to-transformers-to-

meters connections. Table 4.4.1 shows a brief description of the dataset characteristics and

was obtained from the authors of [61].

The dataset also contains solar power generated from a single residential home. To

generate solar power dataset for multiple homes, we first normalize the solar power output

using its maximum output for the year. Second, we assume the solar installation sizes to be

in the range of 4 to 10 kW. Next, we scale the normalized solar output with the uniformly

generated points for all homes from this range.
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Table 4.1. Key characteristics of the energy demand dataset.

Characteristics Value
Number of electric meters 11,186
Electric meter granularity 5 minutes

Number of feeders 29
Number of transformers 1108

Transformers rating(kVA) 5 to 750
Duration 12 months

4.4.2 Experimental Setup

We run our evaluation for three days (sunny, overcast and output on a variable day) in

the month of April that consists of different solar profiles unless otherwise stated. (see Fig-

ure 2.2) These solar profile patterns are representative of the different fluctuations observed

over a year. Along with the solar profiles, we use the load profile from the corresponding

dates as an input to our distributed algorithm.

Our distributed approach takes step size � as an input to the parameter. For the fixed

gradient approach, we use � = 2/↵̄L̄S̄ � ✏, as this is the maximum step size to guarantee

convergence (4.14). As discussed earlier, the adaptive gradient (Adagrad) is insensitive to

the initial step size. We use � = 0.5 as the step size for the Adagrad approach. For our

experiments, we limit the solar capacity to 15% of the aggregate demand observed at grid

level. The time step size is 5 minutes (granularity of the dataset). In addition, instead of

reinitializing the control prices at every time step, we use the control prices of the previous

time step as an input for the next time step. Further, we use the cvxpy library — a python

based convex optimization library — to solve the centralized formulation. Internally, the

cvxpy solver uses cvxopt solver to find the optimal solution. Separately, for the distributed

scenario we use python to simulate the environment.

54



4.4.3 Metrics

4.4.3.1 Fairness metric

To assess the fairness of our algorithms, we use the Gini coefficient to measure the

inequality in allocation distribution. The Gini coefficient is a widely used metric in eco-

nomics to show the distribution (inequality) of income among the residents of a country.

The value for the coefficient is between 0 (perfect equality) and 1 (perfect inequality).

Mathematically, it is given by (G),

G =

nX

i=1

nX

j=1

|xi � xj|

2
nX

i=1

nX

j=1

xj

=

nX

i=1

nX

j=1

|xi � xj|

2 · n
nX

i=1

xi

(4.16)

where, in our case, xi is the rate allocated to user i and n is the total number of grid-tied

solar installations.

4.4.3.2 Variability metric

Due to solar intermittency, volatility of the load profile observed at the grid level in-

creases with the introduction of solar energy. This increased volatility makes grid operation

of matching the demand with supply more challenging, thereby reducing power quality (i.e.

more voltage fluctuations). This volatility can be reduced by controlling the solar output.

We use variability metric (V) to determine the impact of controlling the rate of solar output

and is measured by taking the standard deviation of the successive difference of the power

values

V = �(�P ) (4.17)

where, P is a vector representing the power generated during the day; �P represents the

difference between successive values in P ; and � represents the standard deviation func-

tion. A higher value indicates more variability.
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(a) Sunny day (Apr 16) (b) Overcast day (Apr 21) (c) Variable day (Apr 22)

Figure 4.3. Impact of rate control on the aggregate grid demand for different days. With
5% solar penetration and no regulation the solar output exceeds the solar capacity. Our
distributed rate control algorithm caps the power output to the desired level.

Figure 4.4. Impact of rate control in two feeders with 5% solar penetration. Feeder 1 has
fewer homes comparatively.

4.4.4 Experimental Results

4.4.5 Impact on Grid Demand

We assume 5% solar penetration at each feeder i.e. 5% of residential homes have solar

panel installations. We compare our approach against no rate control scenario i.e. each

solar panel generates power at its maximum value (MPP).

Figure 4.3 shows the impact of our distributed rate control on the aggregate grid de-

mand. The aggregate grid demand profiles usually have two peaks — one in the morning

and the other in the evening (Figure 4.3 (a)). The aggregate grid demand with increased

solar penetration with no rate control resembles a sitting duck — also known as the duck
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curve — and causes ramp up and ramp down problems [1]. Our algorithm ensures that

the net demand with solar power never crosses the solar cap set by the grid. The solar

cap alleviates the ramp down and ramp up problems in power generation due to high solar

penetration, thereby reducing the need for expensive peaking power plants. This is clearly

seen in Figure 4.3(a), where the ramping up/down need is cut in half.

Usually, solar generation on an overcast day is low. Hence, the overall solar energy

generated never exceeds the capacity mandated at the grid level (Figure 4.3(b)). In con-

trast, Figure 4.3(c) depicts a demand profile with variable solar generation, with generation

greater or less than the capacity during the different times of the day. Our distributed al-

gorithm adjusts the rate such that it doesn’t exceed the solar capacity or the solar array’s

maximum generation rate .

We observe a similar behavior at the feeder level (see Figure 4.4). Apart from the results

shown here, we also ran our simulation for solar penetrations higher than 5%. Even when

the maximum solar generation capacity exceeds the local demand, our algorithm limits the

rate such that local feeder constraints are met.

4.4.6 Impact on Grid Variability

Next, we show the impact on variability with and without rate control mechanisms. We

compute the variability in the demand curve using (4.17). We observe that the net demand

seen by the grid with rate control is less variable compared to no rate control mechanisms.

Table 4.4.6 shows the variability metric for three representative solar profiles Figure 4.3.

Note that introduction of solar energy (regulated or unregulated) increases the variability

— as shown by the increased values of the variability metric. However, the variability is

much lower with rate control than without it. Moreover, with rate control the load profile

at the grid level is either less or equally variable compared to no solar scenario.

Result: Our distributed approach limits the aggregate solar generation output to available

solar capacity. Moreover, it decreases the variability in the aggregate grid demand
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Table 4.2. Variability metric for different days in 2015.

Load Profile Apr 16 Apr 21 Apr 22
Grid 0.079 0.076 0.069

Grid + No rate control 0.09 0.079 0.226
Grid + Rate control 0.084 0.079 0.145

4.4.6.1 Impact of Utility function on Solar Rate

We analyze the behavior of weighted and non-weighted utility functions of our rate con-

trol algorithm on different panel sizes. Clearly, at the grid level, the output of both the utility

functions remain similar as it maximizes both the grid’s and user’s utility simultaneously.

However, the rate allocation generated by the utility functions for individual solar panels

would differ based on the size of the solar panel. This is trivially true for the weighted

scenario as the allocation is proportional to the size of the panel. In the non-weighted sce-

nario, a smaller sized panel might have reached its maximum generation capacity, thereby

allowing larger panels to generate more power. We plot the rate allocation observed on a

sunny day for different sized panels (see Figure 4.5). As expected, in the weighted sce-

nario, we observe each panel backs off its generation rate proportional to the panel size.

Whereas, in the non-weighted scenario, each panel generate power at a similar rate (unless

its maximum rate is reached for smaller panels).

Result: Small sized panels benefit more with non-weighted utility, while weighted utility is

favorable to bigger panels

4.4.7 Impact of Solar Power Control Policies

Several states in the US have enforced hard limits on the amount of solar energy net

metered into the grid. However, these hard caps are quite conservative and do not exploit

the available solar potential. Moreover, these policies limit the adoption of solar by resi-

dential homeowners. Here, we analyze the change in the number of homes adopting solar

installations and the amount of solar energy generated with different rate control policies.
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(a) Small-sized panel (b) Large-sized panel

Figure 4.5. Rate allocation for different sized panel. In weighted allocation, each panel
backs off its rate proportional to their panel size. However, a non-weighted allocation
treats each panel equally and a small-sized panel may generate power equal to a larger
sized panel.

Unlike other experiments, we also assume all panels to be of equal size (5 kW) and evaluate

for the entire year 2015. We define the rate control policy as the average hourly curtailment

of solar energy per day. For this experiment, we choose rate control policies between 0 to

3 hours.

Figure 4.6 (a) shows the number of homes that can install solar panel systems with

different rate curtailment policies. With no daily curtailment, a maximum of 185 homes

may be permitted to install solar panels of size 5 kW. However, if we allow just 30 minutes

of average daily curtailment, the number can be increased to 309 homes. As we increase

the rate curtailment to an hour, we can double the number of homes adopting solar panel

systems. Furthermore, with 2 and 3 hours of average daily curtailment we can have 2.6⇥

and 3.4⇥ increase in the number of homes having solar panel systems respectively.

Figure 4.6(b) quantifies the amount of energy delivered to and curtailed by the grid

with different rate curtailment policies. As discussed earlier, a maximum of 185 homes can

install solar panel system when the total installation size is limited to the minimum load

observed for the entire year. The total solar energy supplied to the grid from these dis-

tributed sources is around 1137 MWh. However, increasing the average daily curtailment
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(a) Number of homes (b) Solar energy

Figure 4.6. Impact of average daily rate control period.

period to 30 minutes, the solar energy delivered to the grid increases by 64%, with solar

energy curtailment of just over 1.8%. Furthermore, increasing the curtailment period to an

hour, the installed panels can contribute almost doubles the amount of energy to the grid

with solar energy curtailment of 4.6%. Similarly, with 2 and 3 hours of average curtailment

period, installed solar panels contributes around 2.3⇥ to 2.7⇥ to the grid, with energy cur-

tailment of around 12.5% to 26.2% respectively. Clearly, increasing the rate control period

increases the solar energy utilization in the grid provided a small fraction of curtailment is

allowed. Intuitively, a solar panel only reaches its peak generation capacity around noon on

a clear sunny day. For most periods, the power output is a fraction of the total installation

size. Thus, increasing the aggregate installation size increases the amount of solar energy

utilized by the grid.

Result: Increasing the rate control period, increases the overall solar utilization in the grid.

In particular, an average curtailment of 2 hours enables 2.6⇥ more solar penetration, while

causing smart arrays to reduce their output by as little as 12.4%.
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(a) Sunny day (Apr 16) (b) Variable day (Apr 22)

Figure 4.7. Fairness comparison between no rate control mechanism, weighted and non-
weighted utility functions.

4.4.7.1 Fairness in Solar Rate Allocation

Our allocation scheme ensures that generation rates of all net-metered solar arrays are

assigned in a fair manner — even when solar generation and grid’s capacity vary. We use

Gini coefficient, a metric for statistical dispersion, to measure the fairness of our proposed

approach.

We compare the two utility functions — weighted and non-weighted — with a solar

panel generating power at its maximum capacity (MPP) i.e no rate control. We evaluate

for three days with 5% solar penetration at each feeder level (see Figure 4.7). With no rate

control, all panels will generate power at its maximum rate, wherein the rate is proportional

to its installation size. Thus, the Gini coefficient is a constant value, that indicates the

inequality in the distribution of the panel sizes. Similarly, in the weighted scenario, the rate

allocated would be proportional to the size of the panel. Thus, the Gini coefficient does not

change with time and is similar to the MPP scenario.

In contrast, the Gini coefficient will not be constant in the non-weighted scenario as

depicted in Figure 4.7. As shown in Figure 4.7 (a), until 10 am, the Gini coefficient is

equivalent to the weighted scenario. This is because even when all the panel generates

power at its maximum rate it is not able to meet the total available solar capacity. However,

as the day progresses, the total generation exceeds the maximum solar capacity and all
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(a) Sunny day (Apr 16) (b) Variable day (Apr 22)

Figure 4.8. Convergence plots of fixed and adaptive gradient using our distributed algo-
rithm.

the panels are allocated equal rate, which causes the Gini coefficient to reach zero. On an

overcast day (not shown in figure), the maximum available capacity is never reached as all

the panels operate at MPP. Hence, Gini coefficient is constant. Separately, on a variable

day(see Figure 4.7 (b)), the Gini coefficient varies as it depends on the amount of available

capacity met by the generated solar discussed earlier.

Result: Both weighted and non-weighted utilities can be used to achieve fairness in rate

allocation.

4.4.7.2 Convergence of our Distributed Approach

As discussed earlier, the convergence of the distributed algorithm is dependent on the

step size. Theoretically, a large step size will oscillate and not converge to the optimal

solution, while a small step size will take a long time to reach the optimal solution. Here,

we empirically, compare the performance of two step-size selection methods — i) Fixed

gradient, and ii) Adaptive gradient (AdaGrad). We select step sizes and evaluate for all

three days as described in the experimental setup section. Moreover, we assume that the

distributed approach has converged if the objective function’s output is within two consec-

utive iteration is less than 1e�5.
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Figure 4.9. Aggregated solar power comparison between the centralized and distributed
algorithms.

Figure 4.8 shows the convergence results of the distributed algorithm using different

step size methods. Note that the distributed algorithm is run for each time instance of a

day. The shaded area highlights the range of iteration counts executed by the algorithm to

converge over the day. In the fixed gradient method, the mean and the standard deviation

of the number of iterations increases linearly with the number of homes with solar panels.

In contrast, the adaptive gradient takes smaller number of iterations — almost 3⇥ to

30⇥ fewer — to converge compared to the fixed gradient approach. Moreover, the adaptive

gradient is more reliable, as the standard deviation of the iterations over the day is small.

Further, compared to fixed gradient, the number of iterations doesn’t grow linearly in the

number of homes with solar panels. However, we notice that on an overcast day, the number

of iterations required for both the fixed and the adaptive gradient is almost identical. Due

to overcast conditions, the maximum solar generation rate is small, which results in faster

convergence.

We also compare the performance of our distributed approach with the centralized ap-

proach. Note that the centralized approach has full knowledge about the routing topology

and the maximum power point (MPP) of each solar installation. As seen in Figure 4.9,

the performance of both the centralized and the distributed approach is similar. On an

average, we observe that the distributed solution converges to 98.3% of the centralized so-

lution. Moreover, the maximum absolute difference between the distributed and centralized
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Figure 4.10. Time taken to compute solar rate using control prices in a Raspberry Pi 3.

is 0.029 MW, while the average difference is 0.005 MW.

Result: In comparison to fixed gradient, Adagrad requires 3⇥ to 30⇥ fewer iterations to

converge. Moreover, our approach performs similar to the centralized approach i.e. within

98.3% on average.

4.4.7.3 Distributed Solar Rate Computation

We assume that a smart solar-powered arrays will have a Raspberry Pi class processor

to receive control prices and control its solar rate at every iteration. Thus, we analyze the

average time Raspberry Pi takes to complete a single iteration of the distributed algorithm

on un-optimized python code. Note that the solar rate computed depends on the size of the

control prices which varies based on the size of the distribution network (number of feeders

and transformers). However, the number of feeders and transformers change infrequently

for a given grid network (once in every few months or years). Thus, the time taken to com-

pute the rate should theoretically remain the same. Figure 4.10 shows the empirical average

time taken to execute the algorithm on Raspberry Pi 3. We observe that the execution time

per iteration varies between 2.5 to 3 ms. If we assume the average communication time

between the control center and the smart solar arrays to be 10 ms, with 20 iterations (Ada-

Grad) per convergence (for 5% solar penetration), the distributed algorithm should take less

than 0.3 seconds to converge.
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Result: With 5% penetration, our distributed approach takes less than 0.3 sec to find the

optimal rate allocation.

4.5 Related Work
A detailed assessment of distributed solar impact on the grid highlights the need for

generation flexibility in managing solar variability [24]. Solar over-generation causes large

ramp up of power generation, which has been shown to pose operational challenges and put

a tremendous amount of stress on the grid [1]. Prior work on controlling distributed solar

generation include demand side management using storage or load matching [123] and

solar regulation through curtailment or cutoff. Separately, other research work has focused

on distributed generation control [81] and shown distributed and centralized voltage control

have similar potential in increasing capacities of distributed generation [135].

Numerous studies on solar regulation through curtailment exist [21, 81, 89, 119, 133,

135]. Tonkoski et. al. presents an active power curtailment technique to increase the over-

all distributed solar capacity at the low-voltage feeder [133]. Rongali et. al. describes a

voltage-based curtailment where the solar rate is reduced if the sensed voltage is higher

than normal [119]. Lo et. al. presents a discrete curtailment approach by completely dis-

connecting the solar units through control signals from the utility’s command center [89].

In contrast, we present a distributed algorithm that apportions the available solar capacity

to individual smart solar arrays through a proportional fairness scheme.

In demand side management, user’s demand and solar generation profile is either sched-

uled intelligently or shifted using energy storage —- to avoid the risk of excess solar supply.

Zhao et. al. presents control algorithms for electric vehicle charging to mitigate the im-

pact of renewable energy integration to the grid [147]. Palensky et. al. discusses different

approaches to control demand side load [110]. Energy storage absorbs excess energy gen-

erated from solar and acts as a buffer for large variations in the output [23, 35]. However,

energy storage costs are high and when energy storages are full, excess solar may still
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need to be curtailed. Our distributed approach is complementary to the energy storage and

provides more control over distributed solar generation.

Distributed approach for rate control has been widely studied in the networking litera-

ture [71,92]. However, these approaches are now being studied in the context of rate control

of electric vehicles [17, 30, 118]. Carvalho et. al. discusses different fairness protocols to

mitigate congestion in the grid caused by electric vehicles [30]. Our distributed formu-

lation is similar to the approach proposed in [17]. However, unlike [17], which explores

rate control for electric vehicles — we explore rate control in the context of distributed so-

lar and explicitly model electricity distribution network constraints. Moreover, we explore

different approaches for faster convergence of our distributed algorithm.

4.6 Distributed Rate Control Summary
In this thesis, we addressed the problem of growth in solar deployments that could

cause supply-demand imbalance due to intermittency in power generation. We designed a

decentralized rate control algorithm to allocate a generation rate of individual smart solar

arrays and apportion the aggregate grid solar capacity. Our proposed decentralized algo-

rithm made decisions local to a solar deployment to compute its solar rate without any need

for explicit communication with the utility. We evaluated our rate control algorithm on a

city-scale electric distribution network and showed that a dynamic rate control achieves

significantly higher solar penetration with negligible energy curtailment compared to the

current hard caps placed on solar deployments. We also presented convergence results that

exhibit the tractability of our algorithm. Further, we assessed the feasibility of our ap-

proach on a Raspberry Pi-class processor and showed that it executes in 0.3 seconds for a

solar penetration level of 5%.
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CHAPTER 5

VIRTUALIZING DISTRIBUTED ENERGY SYSTEMS

Community solar and storage systems generate energy for all owners as a single aggre-

gated system and do not permit individual control to the users. To overcome this limitation,

we argue that community solar and storage should be virtualized, wherein a virtual in-

stance of the physical system is created, to maximize its efficiency. In this chapter, we

present vSolar — a mechanism to virtualize community solar and energy storage to enable

flexible energy sharing algorithms.

5.1 Motivation
While large-scale solar array deployments continue to grow rapidly, the majority of

solar installations in North America and Europe continue to be small-scale rooftop systems,

primarily in residential homes. However, not every type of residential building is suitable

for rooftop installations. In such scenarios, community solar arrays (CSA) have emerged

as a solution to these challenges. CSA is an array that is collectively owned by a group of

individuals and is deployed in a shared location. Each owner leases or purchases a share of

the array and is allocated a certain fraction of the solar array in proportion to their share.

As the power output of solar arrays is intermittent, community storage systems are often

used in conjunction with CSA to smooth out fluctuations. A community storage system

consists of an array of energy storage batteries that are collectively owned by a group, with

a fraction of the storage capacity allocated to each owner. While both community solar and

storage are nascent technologies, the combination of the two opens up new opportunities

for increasing solar penetration and performing various energy optimization.
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Community solar and storage systems generate energy for all owners as a single aggre-

gated system and do not permit individual control to the users. To overcome this limitation,

we argue that community solar and storage should be virtualized to maximize its effective-

ness. There are various benefits to virtualizing community solar and storage. First, vir-

tualization enables each owner to independently manage their solar generation and stored

energy as if it were a dedicated system. Similar to how virtual machines provide an indi-

vidual server abstraction and are multiplexed onto a physical machine, a virtual solar and

battery arrays provide an abstraction of individually-owned solar and battery arrays that

are multiplexed onto the community-owned physical solar and battery array. A second key

benefit of virtualization of a community-owned system is that it enables sharing of electric-

ity generated or stored in batteries by each virtual system. Such energy sharing, which is

not possible in dedicated independently deployed systems, allows a resident to temporarily

borrow electricity from one or more neighbor’s shares to provide capital and operational

savings. Prior works have discussed the benefits of a shared pool of energy storage [85,100]

and energy sharing [29, 56, 145]. Here, we present mechanisms to virtualize community

solar and storage and also to enable flexible energy sharing algorithms in such systems.

5.1.1 Assumptions

Our work assumes a community solar and storage array that is collectively owned by

a group of residents. Each resident is assumed to own a certain fraction of the community

solar and storage array. Consequently, the corresponding share of solar output and the

stored energy is assigned to each owner. We assume that each community owner can use

their portion of the solar array and battery in any manner to perform energy optimization or

reduce energy bills. We also assume that each owner can share electricity from their virtual

solar or battery array with their neighbors. For example, rather than net-metering surplus

electricity to the grid, it is also possible to sell (or lend) this surplus to a neighbor who has

high current demand (and is drawing electricity from the grid). Such sharing in the form
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of lending and borrowing provides both capital and operational cost benefits — it allows a

community owner to provision a smaller virtual solar and battery system than the dedicated

setup and borrows from others during peak periods. It also provides additional operational

benefits by increasing cost savings from a solar and battery system.

Our work also assumes an energy sharing pricing model. Currently, utilities purchase

any surplus solar energy at retail prices from users (via net metering). However, when the

wholesale price (the cost to sell power to the utility) is same as the retail price (the cost

to purchase power from the utility), selling energy to the grid or the neighbor does not

provide any additional cost benefits to a user. Cost benefits from sharing energy arise when

the wholesale price is less than the retail price. Instead of selling electricity at wholesale

price to the utility, a user can earn a profit by selling energy to its neighbors at a rate higher

than the wholesale price. Similarly, in this scenario, borrowing energy at a rate lower than

the retail price yields cost benefits to both the borrower and the lender. Increased solar

penetration has impacted the grid (i.e., wholesale prices turned negative [2]), and with

more solar adoption, utility companies will have to rethink how they purchase electricity

from distributed sources. We assume that, in the future, utilities will purchase power at a

lower rate than retail price, which will enable borrowing and lending of energy.

5.2 vSolar Design
In this section, we first present the key primitives to virtualize a solar and battery array

system and then show how these primitives can be used to implement algorithms to control

the energy generated and stored in each virtual array.

5.2.1 vSolar Virtualization Mechanisms

Consider a community solar array consisting of P panels with a capacity Csolar. The

system also consists of a community battery array of B battery cells with a total capacity of

Cbatt. We assume the community-owned system is collectively-owned by N residents, and
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Figure 5.1. vSolar architecture diagram.

allocate each user a virtual share of the solar and battery array. Suppose that the ith owner

is allocated a fraction Si of the solar array and a fraction Bi of the battery array, where
PN

i=1 Si = 1 and
PN

i=1 Bi = 1, 0 < Si < 1 and 0 < Bi < 1. This implies that Si · Csolar

capacity of the aggregate solar array and Bi · Cbatt capacity of the aggregate battery array

is allocated to owner i.

From a virtualization standpoint, the system presents the illusion of N smaller solar and

battery arrays of the corresponding size, each of which appears as a dedicated system to its

owner (see Figure 5.1). That is, owner i sees a virtual solar array of size Si ·Csolar, a virtual

battery of capacity Bi · Cbatt and a virtual controller (e.g., a virtual inverter) to determine

how the solar and battery array output is used at each instant. Virtualization allows each

owner to make independent decisions on how to use the system, regardless of how others

use their system. The N virtualized systems are “multiplexed” onto the underlying physical

solar and battery array, and the overall behavior of the system at any instant represents the

aggregate decisions made by each individual virtualized system.
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To implement this abstraction, vSolar exposes a set of virtualization primitives that can

be controlled by software algorithms in each virtual controller. Let us assume that the array

uses a virtual or physical sensor to monitor the solar output, the energy stored in the battery,

and the electricity demand of each owner. Let solari(t), batteryi(t), and demandi(t)

represent the electricity output of virtual array i, energy stored in virtual battery i and

electricity demand of home i at time instant t. To enable an owner to control their virtual

system based on these monitored values independently, the physical controller exposes

these following software-defined primitives to each virtual controller:

• chargei(t), which specifies the rate at which the virtual battery should be charged

using the output of the virtual solar array at time t

• dischargei(t), which specifies the rate at which the virtual battery should be dis-

charged to meet a portion of demandi(t)

• send to gridi(t) which specifies the rate at which surplus solar electricity should be

transmitted (net metered) to the electric grid at time t

• draw from gridi(t) which specifies the rate at which electricity should be drawn

from the electric grid to meet a portion of demandi(t)

Together these primitives enable each virtual controller to implement flexible software

algorithms to control how the solar output and energy storage in the virtual solar and battery

array should be used. Each virtual controller can implement its own decisions regardless

of how other owners behave.

5.2.2 vSolar Virtualization Algorithm

We now present the vSolar virtualization algorithm that uses the above primitives to

implement software control of the virtual solar and battery system within the virtual con-

troller. For home i, let us assume the solar output of virtual array is solari(t) and demand
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is demandi(t); the vSolar algorithm can determine if the current solar output is adequate

to satisfy the demand. If so, the net surplus is computed as:

surplusi(t) = max (solari(t)� demandi(t), 0) (5.1)

If not, the net deficit is computed as:

deficiti(t) = max (demandi(t)� solari(t), 0) (5.2)

In the event of a surplus, after first using the solar output to satisfy the entire demand,

the controller needs to determine how to utilize the remaining surplus. In this case, if the

virtual battery is not fully charged, the surplus is first used to charge the battery at the max

charging rate as follows:

chargei(t) = min(max charge rate, surplusi(t)) (5.3)

If the battery is full, chargei(t) is set to zero. If there is additional solar output left after

charging the battery at max rate, the rest is net metered to the grid as follows:

send to gridi(t) = solari(t)� demandi(t)� chargei(t) (5.4)

Conversely, in the event of a deficit, the controller must determine how to satisfy the

portion of the demand not met by the virtual solar array. In this case, the decision will

depend on the current electricity prices. If off-peak pricing is in effect at time t, then it is

better to conserve battery energy for peak periods and satisfy the current deficit from the

electric grid:

draw from gridi(t) = deficiti(t) (5.5)
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If peak prices are in effect and the battery is not empty, the controller first draws power

from the battery i.e.

dischargei(t) = min(deficiti(t), max discharge rate)

so long as batteryi(t) > low threshold. If the stored energy in the battery is below the

low threshold, then dischargei(t) is set to zero. Any unsatisfied demand beyond the

maximum discharge rate from the virtual battery is met from the grid.

draw from gridi(t) = max(demandi(t)� solari(t)

� dischargei(t), 0)
(5.6)

Thus, the vSolar algorithm within each virtual controller can make independent deci-

sions based on the solar output, battery level, and demand of each home. Further, using the

virtualization primitives, vSolar enables software-driven algorithmic control of the virtual

system.

5.2.2.1 Mapping virtual controller decisions to a physical system

The physical solar and battery controller aggregates all of the decisions made by indi-

vidual virtual controllers to implement physical control as follows. If the total charge rate

of all virtual batteries is greater than the total discharge rate, then the physical battery is

charged at a rate

charge(t) =
NX

i=1

chargei(t)�
NX

i=1

dischargei(t) (5.7)

In contrast, if the total discharge rate across all virtual batteries is greater than the total

charge rate, then the physical battery is discharged at the rate of

discharge(t) =
NX

i=1

dischargei(t)�
NX

i=1

chargei(t) (5.8)

73



Similarly, if the total power transmitted to the grid by all virtual solar arrays is greater

than the total power drawn from the grid, the physical solar array will perform overall

net-metering at the following rate:

send to grid(t) =
NX

i=1

(send to gridi(t)

� draw from gridi(t))

(5.9)

If the opposite is true, no power is net-metered, since all of the solar output is used to satisfy

the local demands of all homes and to store energy in the battery.

5.3 Energy Sharing in vSolar
We now discuss how vSolar’s virtualization mechanisms can be employed to permit

flexible energy sharing. The energy sharing algorithm aims to maximize the energy cost

savings across homes while incentivizing borrowers and lenders.

5.3.1 vSolar Energy Sharing Algorithm

vSolar’s virtualization algorithm allows each owner to operate their virtual solar and

battery array independently of others. In this case, each virtual system is isolated from

others, and there is no direct interaction between them. However since all virtual arrays

are multiplexed onto a common physical solar array, there are opportunities for the virtual

systems to collaborate with one another. One form of collaboration is energy sharing

where virtual systems with a surplus solar generation or surplus stored energy shares it with

virtual systems that have a deficit. Such sharing further reduces reliance on the grid, since

some or all of the demand of a home is met from other neighboring virtual systems with

surplus capacity. In practice, opportunities for energy sharing arise since different homes

have different demand profiles. Some homes with daytime occupants will see higher peak

usage during day hours, while homes with working occupants will see low usage during
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Figure 5.2. A flow chart of vSolar’s energy sharing algorithm.

day hours with peak solar generation. The latter homes can lend surplus electricity that

would otherwise be net-metered to the grid to the former homes. Similarly, during evening

peak periods, demand from homes may peak at different times (e.g., homes with evening

peak versus those with late-night usage). In such cases, virtual batteries with surplus stored

energy can lend it to others if it is not being used locally for any reason.

Energy sharing makes economic sense only under certain types of electricity pricing

schemes. In scenarios where the cost at which grid purchases electricity is the same as the

retail cost of buying electricity from the grid, energy sharing provides no monetary benefit.

A virtual system can then sell any surplus to the grid via net metering and neighbors with

deficit can buy it back from the grid at the same price, requiring no direct cooperation
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between virtualized systems. However, in scenarios where the grid purchases net-metered

electricity at wholesale generation prices and sell it to homes at retail prices, direct lending

without grid involvement provides monetary benefits. In this case, rather than purchasing

electricity from the grid at a retail price, a virtual system can procure this electricity from a

neighboring virtual system with surplus electricity and do so at a price that is higher than

the wholesale price but lower than the retail prices. This incentivizes systems with a surplus

since they can sell the surplus at a rate higher than the grid’s wholesale prices, while homes

with a deficit can purchase this surplus at a price that is lower than the grid’s retail rate.

From a virtualization standpoint, energy sharing relaxes the assumption of strict iso-

lation between virtualized systems. It allows a virtual solar array or a virtual battery to

increase its capacity by borrowing from surplus homes temporarily. This is analogous to

virtual machines that temporarily use unused physical CPU capacity that is allocated to

other virtual machines but not currently used.

To implement such energy sharing, vSolar virtual inverters need two additional virtual-

ization primitives.

• borrowi(t) which specifies the amount of power that home i needs to borrow from

any other virtual solar or battery system at time t

• lendi(source, t) which specifies the amount of surplus power that home i will lend

from the specified source at time t. The source can be solar, in which case surplus

power is lent from the virtual solar array, or battery, in which case power is drawn

for energy stored in the virtual battery.

These primitives enable a virtual controller to implement any energy sharing algorithm

that is best suited to its needs. For our current work, we design a vSolar energy sharing

algorithm that is directly based on the vSolar virtualization algorithm presented in the pre-

vious section. Our energy sharing algorithm is an enhancement to the basic virtualization

algorithm as follows. First, the algorithm determines if the current home should become a
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borrower, a lender, or neither, at time t. A home is a candidate for lending electricity if its

virtual solar array has surplus power that it would have net-metered to the grid. In this case,

all of this surplus power becomes available for lending to other homes rather than being

net-metered. A home is also a candidate for lending electricity if its virtual battery has a

high charge level (above a high watermark threshold) and is willing to share some of the

stored energy with others. Specifically, if solari(t) � demandi(t) � chargei(t) > 0 then

the home has surplus power it would have previously net-metered and the virtual controller

indicates it is willing to lend this power:

lendi(solar, t) = solari(t)� demandi(t)� chargei(t) (5.10)

Further, if the battery has a high charge level indicated by batteryi(t) > high threshold

and the battery power is not being consumed at the maximum discharge rate, the surplus

can be drawn as follows:

lendi(battery, t) = min(max discharge rate

� dischargei(t), 0)
(5.11)

Conversely, a home becomes a candidate for borrowing electricity if it has a deficit

that would normally require drawing power from the grid. In this case, the home can first

request surplus power from other virtual systems, and only request grid power if its deficit

cannot be fully met by other lenders. That is, if demandi(t)�solari(t)�dischargei(t) > 0

the home has a unmet deficit and it can make a borrow request as follows:

borrowi(t) = demandi(t)� solari(t)� dischargei(t) (5.12)

In all other cases, lendi and borrowi are set to zero. Note that it is possible for a home to

neither be a lender not a borrower at time t, a scenario that occurs if it has zero deficit (i.e.,
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has no need to borrow) but can not lend either since all solar electricity is being directed

to the virtual battery, which itself has a low charge level (and thus has no solar or battery

capacity to lend).

5.3.1.1 Mapping virtual sharing requests onto the physical system

Both lendi and borrowi indicate the maximum amount of power that each virtual con-

troller i wishes to lend or borrow based on its current generation and demand. The actual

amount of power that is lent or borrowed must then be computed by the physical controller

by matching borrowers and lenders. To do so, the physical controller first computes the

total borrowing needs as;

borrow(t) =
NX

i=1

borrowi(t) (5.13)

The solar capacity available for lending is the:

lend(solar, t) =
NX

i=1

lendi(solar, t) (5.14)

If the solar lending capacity lend(solar, t) exceeds the borrowing demand borrow(t), then

all of the borrowing needs can be met from the surplus solar capacity that is available. Each

lender can lend an equal amount to meet the total borrowing need or lend in proportion to

its solar share Si. If the total borrowing demand exceeds the total solar capacity, any unmet

borrowing need can be lent from stored battery energy that can be lent. The maximum

battery power that can be lent is:

lend(battery, t) =
NX

i=1

lendi(battery, t) (5.15)

Finally, if the borrowing need is still not satisfied by the lending solar and battery capacity

(that is, borrow(t) > lend(solar, t) + lend(battery, t)), the rest must be drawn from the

grid.

draw from gridi(t) = borrowi(t)� borrowed poweri(t) (5.16)
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Conversely, if all of the borrowing needs are met by surplus solar energy, any remaining

solar can be net metered to the grid as follows

send to gridi(t) = lendi(solar, t)� lent solari(t) (5.17)

where send to gridi(t) is zero if there are no surplus solar energy, and

borrowed poweri(t) and lent solari(t) are amount of power borrowed or lent by

home respectively,

5.3.2 Machine Learning based Peak Demand Prediction

The above algorithm assumes a simple threshold-based approach to determine when

stored energy can be shared with others. A fixed threshold-based approach to determine

the amount of energy to lend does not consider future electricity demands of the owner.

In practice, the threshold should not be a fixed value. In scenarios where the owners are

away from home, the threshold should be set lower to lend surplus energy and gain max-

imum benefit from sharing. Similarly, if there is a higher demand the following day, the

threshold should be set higher to minimize its reliance on the grid. To handle such dynamic

mechanisms, we design a machine learning-based approach to predict demands during peak

periods and estimate the surplus energy that can be lent from the battery.

For simplicity, we assume that each owner uses the same algorithm to determine how

much surplus energy can be lent from the battery. To determine the surplus energy to lend,

we first build a demand model of the home to learn the energy usage behavior during peak

pricing periods. The model is then used to predict the electricity demand of the home for

the following day. We explore two techniques: Autoregressive Integrated Moving Average

(ARIMA) and Support Vector Machines (SVM) with different kernel functions. ARIMA

is a popular model used for time series prediction. It uses the AutoRegressive (AR), In-

tegrated (I) and Moving Average (MA) components to predict future points. The autore-

gressive part is a linear combination of their own lagged values; the moving average part
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Figure 5.3. (a) Comparison between the actual energy versus predicted output of a home.
(b) MAPE values for predicting the electricity usage during peak periods.

captures the regression error as a linear combination of the past error term. And finally, the

integrated part indicates whether the data is differenced to make data stationary. Together,

it forms a linear equation that uses past values and errors to determine future points.

In contrast, SVM is a supervised regression technique that can use exogenous informa-

tion such as weather, along with past energy usage to predict energy usage for the following

day. We use multiple features as inputs to the SVM model: day of the week, day of the year,

outside temperature, humidity, heating and cooling degree days, past power consumption,

weekday or weekend information, and holidays. Since the day of the week is cyclical, i.e.,

repeats every seven days, we encode it by transforming the day into an angle (in steps of

2⇡/7) and use the sine and cosine values as input feature vectors. We use a similar approach

to encode the day of the year. Further, we use one-hot encoding, a standard machine learn-

ing technique for encoding categorical labels, to encode weekday or weekend data, before

using it as input features. For other data points, we use raw values as inputs.

We use the mean absolute percentage error (MAPE) as the metric to measure the pre-

diction accuracy of the model. We create a prediction model for each home. To train the

SVM model, we use one year of the dataset in 2014 and use the 2015 dataset for testing

the model. To train the ARIMA model, we perform a grid search on the parameters and

select the parameters with the lowest prediction error (MAPE). Figure 5.3(a) shows energy
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demand prediction during peak periods of a home for several models. The model predicts

the energy usage for the following day using past power consumption and future weather

information. As seen in the figure, the SVM model is closer to the actual prediction than

ARIMA model and is able to predict the dips and spikes in energy consumption. In gen-

eral, we observe that the ARIMA model captures the general trend of the actual demand but

may under or over-predict. Figure 5.3 shows the MAPE value of different models across all

homes. We observe that the SVM-RBF model has a median MAPE value of 31%, and is the

lowest among all the models used. Since SVR-RBF performs better than other techniques,

we use it for evaluating our algorithm.

Determining the surplus energy to lend also requires predicting the solar output for the

following day. We use the technique discussed in [62] to predict the solar output for the next

day. The method takes into account irradiance and other weather parameters as features to

accurately predict future solar production. Combining the future solar output, electricity

demand generated from the model, and using the current battery capacity, a candidate home

can estimate the amount of energy to lend from the virtual battery. Specifically, the surplus

energy is defined as

surplus energyi(t) = max(future solari(t) + chargei(t)

� future demandi(t), 0)
(5.18)

where future solari(t) and future demandi(t) are the future predictions for the next 24

hours. Amount of energy to lend, when surplus energyi(t) > 0, is defined as

lendi(battery, t) = min(surplus energyi(t),

max discharge ratei � dischargei(t))
(5.19)

5.4 Discussion
There are several design considerations for realizing vSolar virtualization in practice.

First, our approach assumes homes have smart electric meters to monitor local demand
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Table 5.1. Summary of the virtualization API primitives vSolar exposes to a virtual con-
troller.

Name Description
charge(t) charge rate of the virtual battery
discharge(t) discharge rate of the virtual battery
send to grid(t) amount of energy virtual inverter sends

to the grid
draw from grid(t) amount of energy virtual inverter

draws from the grid
borrow(t) amount of energy to borrow from others
lend(source, t) amount of energy to lend to others from

solar or battery

(demandi) at an appropriate time granularity (e.g., every few minutes). Second, our ap-

proach assumes that in addition to paying monthly electricity bills for consuming electric-

ity from the grid, homes will make or receive micro-payments for borrowing or lending

electricity to or from other community homeowners. The information on the amount of

electricity borrowed or lent must be tracked by the physical controller (i.e., inverter) and

periodically “settled” via actual payments. Third, modern inverters for non-virtualized

community solar and battery arrays (e.g., Schneider inverters [4]) provide configuration

controls on how much to net-meter and how much or when to charge the battery. Such

an inverter can be easily enhanced to support vSolar’s virtualization. vSolar can be imple-

mented as a software layer on top of these configuration controls. Specifically, the soft-

ware layer would expose a virtual controller with vSolar’s virtualization primitives to each

homeowner. This enables independent control of each virtualized system. The virtualized

software layer then takes the decisions from the virtual controllers, aggregates them, and

directly exercises the aggregate decision on the physical configurations exposed by the in-

verters. Thus, it appears as though each user owns a dedicated system making independent

judgments. Although, in practice, the decisions are “multiplexed” onto the physical solar

and battery. As explained in the previous section, the virtualization layer exposes the API

described in Table5.4 to each virtual controller to support virtualization.
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5.4.1 Billing and Reconciliation

We also assume that we can net meter and share energy with others. In practice, bor-

rowing and lending of energy require a bill reconciliation infrastructure to account for the

micro-payments between homes. Smart meters available today are capable of reporting

the local energy consumption of a home. A billing infrastructure can be implemented us-

ing smart meters and vSolar primitives, wherein energy consumption information of each

home can be logged along with energy borrowed or lent between homes. Separately, we

require a billing agreement among homes to determine the costs of energy borrowed or

lent.

5.4.2 Other Benefits

There are two key benefits of our approach over multiple dedicated individual-owned or

a non-virtualized community-owned system. A dedicated solar and battery system may be

infeasible in most cases. Even if the installation was feasible, sharing is not possible as each

installation will be on separate circuits. On the other hand, a non-virtualized community-

owned installation allows sharing but does not provide individual control of the system. So

the total bill across all homes is reduced, but it does not minimize the bill of each house.

In contrast, vSolar allows each home to minimize their local bills rather than the overall

bill across all households. Another key benefit of vSolar is users can design their own

optimization policies. vSolar enables virtualization primitives that are powerful enough

to implement other algorithms. For example, in our energy sharing algorithm, users first

use surplus energy locally (i.e., satisfy local demand and charge batteries) and then share

remaining energy or net meter. However, a range of algorithms is possible. A user can

first share surplus energy, and then use the remaining power to store in batteries or net

meter. Separately, instead of minimizing energy bills, other policy objectives can also be

implemented. A user may have shiftable loads that they can directly control, and thus might
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define a policy for their virtual battery in conjunction with their controllable background

loads.

5.5 Evaluation
We focus on evaluating the potential benefit of vSolar using trace-driven simulations.

To do so, we use real electricity load dataset from 50 homes over two years between 2014

to 2015. Electricity dataset was gathered from the New England region of the United

States and consists of energy consumption information at a resolution of 30 minutes [63].

We construct different demand profile mixes of 20 homes each from these 50 homes to

generate a diversity of homes in a building. To construct the demand profile mixes, we

separate the homes into day and night demand profiles. We define day profile homes as

homes that have most of their energy demand during the peak pricing hours, i.e., peak to

off-peak energy usage is higher than one. In contrast, night profile homes use energy mostly

during the off-peak pricing period. Next, we randomly select houses belonging to either

of the demand profiles proportionately and ran our experiment multiple times to report the

overall savings.

We use Wisconsin electric’s time-of-use (TOU) prices as a representative pricing

model [7]. However, we also use other pricing models, which we present in our results.

Wisconsin’s peak pricing periods are between 7 a.m. to 7 p.m., while the off-peak periods

are from 7 p.m. to 7 a.m. Typically, wholesale prices are 30% to 50% of the retail price [6].

We assume the wholesale electricity rates to be 40% of the retail price and the apartments

share energy to others at prices between wholesale and retail price. Note that the residents

share only their portion of the community solar or battery energy. The share of solar and

battery for each home is determined based on their energy consumption in the previous

year, i.e., we assign a solar and battery proportionate to their overall yearly load.

We also use weather data for predicting future electricity usage of a home and its solar

generation output. The weather data is available at a one-hour granularity, collected from
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the Weather Underground website [5]. We resample the weather dataset to 30-minute res-

olution before running the prediction algorithms. The decision on when and the amount of

energy to share is determined using the prediction output, as described in section 5.3.

5.6 Experimental Results
5.6.1 vSolar Benefits

We first analyze the cost benefits of using vSolar and compare it to the energy sharing

scenario. Figure 5.4(a) shows the median energy cost savings of a home for both vSolar

and the energy sharing scenario. With 40 kW of solar array, vSolar achieves 43% of energy

cost savings and yields 8.8% higher savings when coupled with an 80 kWh battery. The

energy cost savings further increases when energy is shared. Compared to vSolar, energy

sharing provides an additional 8% increase in cost savings. This is because, rather than

net metering to the grid at wholesale prices, users can sell surplus electricity at a higher

rate to its neighbors, benefiting both the borrower and the lender. We also compared the

overall cost savings of vSolar to non-virtualized community solar and battery system, not

shown in the figure. We observed that vSolar with sharing achieves similar savings that

are close to non-virtualized community solar and battery. This is because, even though

vSolar does local optimization (compared to community solar and battery that does global

optimization), the difference in energy usage between homes allows enough opportunity to

share energy, and thus achieves similar savings.

We now examine the capital expenditure (CapEx) savings achieved through energy

sharing. Clearly, dedicated solar arrays and batteries for each home cost more, assuming

it is feasible to install one in a community area, simply because we cannot get economies

of scale. On the other hand, virtualized community-owned solar and battery arrays do not

require additional inverters, separate wirings, and thus cost less. Figure 5.4(b) shows the

reduction in solar array size (CapEx) of a home with a dedicated system can achieve when

the system is virtualized, and energy is shared with others. We observe that as energy cost
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Figure 5.4. (a) Median energy cost savings from vSolar using 40 kW and 80 kWh battery.
(b) Reduction in solar capacity through sharing energy to achieve similar cost benefits
compared to a dedicated solar and battery system.

savings increase, the percentage reduction in solar array size decreases. With larger solar

installations, most homes will have surplus energy to lend, which will reduce the need to

borrow energy from others. We note that a dedicated system can reduce its solar array size

by 14.6%, through virtualization and energy sharing, to achieve 60% energy cost savings,

which is 8.6 kW reduction in absolute values. We observe that a higher reduction in solar

arrays can be achieved when batteries are installed. Using a battery capacity of 80 kWh,

which is roughly 4 kWh per home, we note a dedicated system can achieve 23.5% reduc-

tion in solar array size, which is 13.8 kW reduction in absolute values.

Result: vSolar achieves 43% energy cost savings while providing each user independent

control over the virtual system. Moreover, vSolar can reduce the size by 14.6% of a dedi-

cated system through virtualization and energy sharing.

5.6.2 Impact of Solar Arrays

We analyze the impact of different solar array sizes on energy cost savings using vSolar.

Intuitively, larger solar arrays generate more solar energy, which in turn reduces the reliance

on the grid and minimizes energy costs. However, it is not evident a priori how much

cost benefits sharing energy provides. Figure 5.5(a) shows the median energy cost savings

86



0.0 20.0 40.0 60.0 80.0
Total Solar Array Size (kW)

0

20

40

60

80

100

E
ne

rg
y

C
os

t
Sa

vi
ng

s(
%

)

vSolar

vSolar(Sharing)

0 20 40 60 80
Total Battery Size (kWh)

40

45

50

55

60

E
ne

rg
y

C
os

t
Sa

vi
ng

s(
%

)

vSolar

vSolar(Sharing)

(a) Savings with Solar (b) Savings with Battery

Figure 5.5. Median energy cost savings with varying sizes.

across homes using vSolar’s virtualization of a 40kW solar array. As expected, the graph

shows that the median energy cost savings of a home increase with an increase in solar array

size. Moreover, the energy cost savings is higher with energy sharing than the no sharing

scenario. Since some occupants during the day may not use their share of solar energy,

instead of net metering, the surplus solar energy can be lent to other homes to achieve

higher cost savings. Thus, the variations in demand profile among homes allow sharing of

energy. In particular, we observe that the median energy cost savings for a home is 43%

with a 40 kW solar array size and increases to 51% when energy is shared. Moreover, an

80 kW solar panel can yield energy cost savings of up to 85% using vSolar.

Result: Sharing energy increases the energy cost savings from 43% to 51% for a 40 kW

solar installation.

5.6.3 Impact of Energy Storage

We now study the benefits of employing energy storage. The cost savings from batteries

arise due to two primary reasons. First, batteries reduce the amount of energy net metered

by storing surplus energy. The energy stored can then be used during peak pricing hours

to increase cost savings. Second, sharing any surplus stored energy with others, especially

during peak pricing periods, also increases cost savings. Figure 5.5(b) shows the median

energy cost savings for different battery sizes and a solar array size of 40 kW. The graph
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shows that as battery capacity increases the energy cost savings increase. With a small

battery size of 40 kWh, which is roughly equivalent to 2 kWh of battery per home, vSolar

can increases energy cost savings from 43% to 50%. The energy savings further increase by

an additional 5.6% when energy stored in the battery is shared with others. This is because

the discharge rate of any battery is limited. Even if the battery has sufficient energy to meet

local demands, it may not be possible for a battery to fulfill all of the local energy needs as

its maximum discharge rate may limit how much local demand it can satisfy. Since homes

may not need to draw energy from batteries at all times, owners can allow energy discharge

from their share to fulfill part or all of the local demand, thereby reducing energy costs.

Unsurprisingly, we observe diminishing returns with an increase in battery capacity. Since

the solar output is finite, there are fewer price differentials to exploit.

We observe that sharing energy also provides battery CapEx savings, i.e., a dedicated

system will require a smaller battery size to achieve similar savings compared to the shar-

ing scenario. As seen in Figure 5.5(b), a battery capacity of 80 kWh is required to achieve

51.8% of cost savings. On the other hand, when energy stored in the battery is shared,

vSolar achieves 54.2% energy cost savings with a battery capacity of 20 kWh — a 75%

reduction in battery capacity yielding significant CapEx savings. Since vSolar allows mul-

tiplexing on the same physical unit, it achieves higher cost savings from a solar and battery

system compared to a dedicated system for each home.

Result: Virtualization can increase energy cost savings by 8% with a 40 kWh battery size.

Cost savings increase an additional 5.6% with energy sharing. Moreover, sharing provides

CapEx benefits and can reduce the battery capacity of a dedicated system by 75%.

5.6.4 Effect of Energy Pricing Models

As mentioned earlier, energy cost savings are sensitive to the pricing model. Pricing

models such as TOU pricing allow smart algorithms to exploit the price differential between

peak and off-peak periods to achieve higher savings. So far, we used Wisconsin’s time-of-
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Figure 5.6. (a) As off-peak prices approach peak prices, smaller price differential reduces
energy cost savings. (b) As wholesale electricity approaches retail rate, the incentive to
share energy reduces.

use pricing model, wherein the off-peak to peak ratio is roughly 1:2. We now analyze

how a change in different off-peak to peak ratio impact energy cost savings. Figure 5.6(a)

shows the impact on energy cost savings for varying off-peak to peak ratio from a 40 kW

solar array size. Clearly, when peak and off-peak prices are similar, there will be no price

differential to exploit, and the energy savings will be small. With higher off-peak to peak

ratio, we will see more cost savings. As expected, the graph shows that as the difference

between peak and off-peak price increases, so does the cost savings. While an off-peak

to peak ratio of 1:2 gives 43% in energy cost savings. Further, as off-peak to peak ratio

decreases, the energy cost savings increase to 50.8%. Similarly, in the sharing scenario,

the energy cost savings increase from 51% to 58.7%. Separately, using 80 kWh battery,

the energy cost savings increase from 56.1% to 62.6% with energy sharing. Since batteries

play the role of shifting the solar energy to generate cost savings, it has more potential to

exploit the price differential in the TOU pricing model.

Next, we examine the impact of the wholesale price (i.e., the price at which electricity

is sold to the grid) on energy cost savings. Intuitively, if the wholesale price is the same

as the retail price, it is more beneficial to net meter the surplus energy to the grid than

share. This is because storing energy for later use may result in loss of power due to battery
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Figure 5.7. (a) Energy breakdown of a home’s demand profile with and without energy
sharing. (b) Example cost distribution of homes for day and night demand profiles.
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Figure 5.8. Impact of demand profile mixes on cost savings using a 40kW solar and 80kWh
battery arrays.

inefficiency, thereby impacting cost savings. However, we observe that sharing is beneficial

even when there is battery inefficiency as long as there is some price differential to exploit

between wholesale and retail price. Figure 5.6(b) illustrates the energy cost saving with

different wholesale to retail price ratio from a solar array size of 40 kW. As wholesale price

increase and approaches the retail price, the energy cost savings increase. This is because

of the increase in profit by selling electricity to the grid at a higher rate. However, in the

sharing scenario, this increase in profit is marginal as the surplus energy is already is sold

at a higher rate than wholesale price to others. As expected, the energy cost savings from

vSolar equals the sharing scenario as the wholesale price approaches retail price.
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Result: As off-peak to peak ratio decreases, energy cost savings in the sharing scenario

increases from 51% to 58%.

5.6.5 Effect on Demand Profiles

We now examine the effect of energy sharing algorithm on different demand profiles.

Figure 5.7(a) illustrates the energy distribution of a home for a day and compares energy

sharing to a non-virtualized setup. The figure shows that without virtualization, any surplus

energy is net-metered to the grid. However, with energy sharing, surplus energy is first lent,

and the remaining energy is net metered. Further, when energy demand rises late afternoon,

and local solar output is insufficient, energy is borrowed from others. Figure 5.7(b) depicts

the normalized cost distribution of two homes with day and night demand profiles, with

median energy cost savings in their respective cohort. We normalize the cost with its final

cost. Note that the energy costs from the grid are higher for night profiles than day profiles.

Since solar energy is only available during the day, most of the solar output is either net-

metered or lent, resulting in a higher profit than day profile homes, and higher grid costs. In

contrast, day profile homes tend to net meter less energy to the grid, with lower net meter

cost, but also have to borrow more power during the daytime, resulting in higher borrow

costs. It is important to note that while we have implemented a simple energy sharing

policy, vSolar’s abstractions are flexible, and allows custom different optimization policies

for each user.

Finally, we examine the different mix of demand profiles in a building and their impact

on the overall cost savings. The overall cost savings are computed by summing the final

energy cost of all homes and the original cost. As discussed in Section 5.5, the day profile

homes have high energy demands during peak hour periods, while night profile homes have

high energy demands during off-peak periods. Figure 5.8 illustrates the impact on cost

savings as demand profile mix varies for a 40 kW solar array size. We compare the overall

cost savings with solar only versus having both solar and battery. The graph shows that the
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overall cost savings are higher for profile mixes where the number of day profile homes is

more than the night profile homes. Since peak pricing period occurs during the daytime,

most day homes can exploit the price differential and benefit from it. In contrast, homes

with night demand profile, do not have high energy usage during the day to exploit the price

difference. In particular, overall cost savings vary from 43.6% to 39% as the number of day

demand profile decreases compared to night demand profiles. As expected, an addition of

an 80 kWh battery increases the overall cost savings as it shifts the surplus solar energy to

other periods, and provides an additional potential to exploit price differential.

Result: A demand profile mix, where the day profile homes are more than night profile

homes, sees higher overall energy cost savings.

5.7 Related Work
Our work is related to these areas: energy systems, economics, and energy sharing in

smart grids.

5.7.1 Energy Systems

Recent work has looked at providing abstractions to physical resources for controlling

and improving energy efficiency in buildings [13,33,64,70,73,76,112,141]. BOSS [33] and

Microsoft HomeOS [37] provides service abstractions of shared physical resources. These

abstractions connect different physical systems and allow the development of applications

that enable energy optimization such as HVAC or electrical lighting control. Also, there

are studies on developing systems to control HVAC systems in buildings [13, 70, 143].

However, prior works do not propose abstractions for solar or battery arrays for designing

energy-efficient systems.

5.7.2 Energy Economics

Numerous studies have focused on the use of renewable energy and its impact on

the grid [29, 98, 103, 111, 138]. Since electricity from renewable sources such as solar
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is highly intermittent and unreliable, intelligent use of batteries can minimize reliance on

grid electricity without impacting daily usage patterns [49, 50, 98]. Also, energy cost sav-

ings achieved with batteries may be sensitive to certain pricing schemes [29], batteries are

profitable when combined with demand response programs [43]. A significant amount of

work has also focused on designing algorithms to reduce energy consumption in build-

ings [39, 98]. There are also studies on designing grid network using solar and storage to

manage its local power needs [54]. Our work is built on previous work, where we leverage

the variation in demand profiles of homes to optimize the use of solar and batteries.

5.7.3 Energy Sharing

There has been work in pricing and incentivizing energy trading in a microgrid sce-

nario [47, 56, 86, 87, 132, 139, 148]. For example, [148] proposes a novel pricing model to

incentivize energy sharing. Further, energy trading between microgrids is shown in [47],

while energy sharing model with price-based demand response is proposed in [87]. Other

incentives include energy sharing to mitigate privacy leakage [56]. In contrast, our work is

complementary and focuses on the systems issues of virtualizing solar and battery sharing.

Some of the pricing incentives discussed in prior work can be used in conjunction with our

approach. Recent work has also studied bill reconciliation in energy trading [9, 11, 100].

PowerLedger, an energy startup company, uses a distributed ledger to enable a bill recon-

ciliation platform for energy trading [11]. Again, their work is complementary to ours as

they provide a platform for tracking energy usage, and does not provide mechanisms for

controlling solar or battery arrays. Previous approaches have also studied energy sharing in

microgrids [51, 145, 149]. Zhu et al. designed an energy matching algorithm to minimize

energy loss via energy sharing [149]. However, our work is complementary as we look

into the systems aspects and focuses on providing control to a shared community solar and

storage system.
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5.8 vSolar Summary
We proposed vSolar — a mechanism to virtualize community-owned solar and battery,

wherein each virtual solar and battery can be assigned to an owner and controlled indepen-

dently, regardless of others. Further, vSolar provides virtualization abstractions that allow

each owner to implement their custom energy optimization policy. To show vSolar’s poten-

tial, we implemented an energy sharing algorithm that enables energy sharing to minimize

their local electricity bill. We compared vSolar to a non-virtualized community-owned

system and showed similar cost savings while providing local control of the virtualized

system. Further, we showed that energy sharing using vSolar achieves energy cost savings

over non-virtualized community-owned and dedicated solar and battery systems.
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CHAPTER 6

ARCHITECTURE FOR HIGH-THROUGHPUT ENERGY
TRANSACTIONS

The previous chapter presented techniques to virtualize a shared energy infrastructure,

such as solar arrays and energy storage, to effectively multiplex these resources across mul-

tiple users. Such a virtualized system can enable energy trading — allow homeowners to

sell or buy energy from their neighbors. However, to realize such an energy trading plat-

form also requires a ledger, i.e., an accounting system, that can track energy transactions

between two parties.

In this chapter, we present a technique that achieves high throughout IoT energy trans-

actions on a blockchain system. Blockchain technology provides a distributed ledger that

can enable peer-to-peer energy trading, especially when an infrastructure is shared and en-

ergy transactions need to be recorded in a transparent, secure, and verifiable manner. We

rearchitect a blockchain system called FabricPlus and show how our approach can scale to

the demands of tracking energy transactions.

6.1 Motivation and Overview
In recent years, residential owners are increasingly installing solar arrays with stor-

age. These energy systems are connected to the grid, which enables energy consumers

to sell their surplus electricity to others. Since the power grid mostly relies on central-

ized power plants and operators, so far, electricity is centrally managed and traded in the

electricity market. Thus, electricity consumers who also produce energy, also known as

prosumers, can only trade energy with a central entity, which mediates all the transac-

tions [88]. However, the rise of distributed generation sources is driving power companies
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to rethink energy transactions from a decentralized approach to better manage distributed

energy sources and enable more participation from small-scale prosumers. The electric

power sector is now experimenting with decentralized systems such as blockchains to fa-

cilitate energy transactions and create a self-sufficient, resilient microgrid to make energy

markets more efficient [95, 96].

Distributed ledger technology such as blockchains is primarily designed to enable peer-

to-peer transactions that bypass a central entity. It provides a distributed ledger, shared by

everyone in the network, where transactions between buyers and sellers can be recorded in

a verifiable and tamper-proof manner, necessary for any energy trading platform. In other

words, it makes it easier for energy buyers to directly connect to sellers, eliminating the

need for a trusted centralized third-party to verify transactions, which speeds up the veri-

fication process. As such, it is widely believed that blockchains will significantly impact

the energy sector, reduce costs, improve efficiency, and simplify management of several

aspects of electric power systems including trading energy [42, 88].

An essential step before implementing an energy trading platform on blockchains is

to understand how energy transactions are done. Since electricity has to be available on-

demand, today, energy transactions between two entities do not change the physical flow

of electricity. Energy transactions are recorded outside of the electricity flow and used for

accounting when and how much energy was delivered and consumed. The frequency of

energy trading depends on the cost of electricity on wholesale spot markets, which changes

on an hourly or half-hour basis. Thus, hundreds of thousands of buildings will transact

every hour or so, and as such, will require a scalable processing system.

While blockchain remains one of the popular decentralized solutions in the energy sec-

tor [82,97], one of the key challenges in blockchains is scalability. Since there is no central

entity, participating nodes must process and verify all transactions to guarantee consis-

tency. In a permissionless blockchain, which does not restrict network membership, all

participating nodes, and thus, they have limited throughput. From a technical standpoint,
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the trustless nature of permissionless blockchains requires either proof of work or stake, or

expensive global-scale Byzantine-fault-tolerant consensus mechanisms [136], which makes

them slow (around 20 transactions per second) [102, 144]. Much recent work has focused

on making them more efficient [130, 136]. On the other hand, consortium blockchains or

permissioned blockchains, where identities of all participating nodes are known, are known

to support faster transactions in comparison to public blockchains, since they delegate con-

sensus and transaction validation to a selected group of nodes, reducing the burden on

consensus algorithms. [14,137]. While even in this setting consensus remains a bottleneck,

it is being addressed in recent work [130, 146], motivating us to look beyond consensus to

identify further performance improvements in a blockchain.

Our work is based on Hyperledger Fabric v1.2 since it is reported to be the fastest

available open-source permissioned blockchain [36]. While there has been some work on

optimizing Hyperledger Fabric, e.g., using aggressive caching [131], we are not aware of

any prior work on re-architecting the system as a whole. Importantly, our optimizations

do not violate any APIs or modularity boundaries of Fabric, and therefore they can be

incorporated into the planned release of Fabric version 2.0 [58]. In doing so, we make the

following contributions:

• We separate the metadata from data in Fabric’s consensus layer, where transaction

order is decided. Although it receives whole transactions as input, the consensus

layer only requires transaction IDs to decide the transaction order. We redesign Fab-

ric’s transaction ordering service to work with only the transaction IDs, resulting in

greatly increased throughput.

• We exploit parallelism to improve orderer client’s throughput and aggressively cache

unmarshaled blocks.

• Fabric’s key-value store in the ordering service that maintains the world state is re-

placed with a light-weight in-memory data structure whose lack of durability guaran-
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Figure 6.1. Blockchain structure: The blocks are linked together using the cryptographic
hash of the previous block.

tees can be compensated by the blockchain. We redesign Fabric’s data management

layer around a light-weight hash table that provides faster access to the data.

• Our architectural optimizations based on common system design techniques improve

the end-to-end transaction throughput by a factor of almost 7, from 3,000 to 20,000

transactions per second, while decreasing block latency.

6.2 Blockchain Basics
A blockchain is a distributed ledger, typically deployed in a peer-to-peer network,

where the network participants can transact over the internet without a central entity pro-

cessing and verifying each transaction. Since each participant has access to the ledger, and

no single party controls the data, every member can verify the transactions. The transac-

tions itself is recorded in the distributed ledger in an immutable fashion, by grouping one

or more transactions as blocks and protecting them from tampering through cryptographic

hashes and a consensus mechanism.

The structure of the blockchain is as follows. New transactions are bundled into a

block, and the consensus mechanism is used to decide which blocks are appended to the

distributed ledger. Furthermore, the blocks are linked together using the cryptographic

hash of the previous block (see Figure 6.1). Thus, the ledger consists of a sequence of
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interdependent blocks, such that, altering a transaction in a block would require altering

the cryptographic hash of every block that is linked.

6.3 Hyperledger Fabric
Hyperledger Fabric is a component of the open-source Hyperledger project hosted by

the Linux Foundation and is one of the most actively developed permissioned blockchain

systems [27]. In this section, we provide only a short synopsis of Hyperledger Fabric,

its architecture, and how transactions are committed to the blockchain. A more detailed

version of the transaction flow can be found in [14].

To avoid pitfalls with smart-contract determinism and to allow plug-and-play replace-

ment of system components, Fabric is structured differently than other common blockchain

systems. Transactions follow an execute-order-commit flow pattern instead of the common

order-execute-commit pattern. Client transactions are first executed in a sandbox to deter-

mine their read-write sets, i.e., the set of keys read by and written to by the transaction.

Transactions are then ordered by an ordering service, and finally validated and committed

to the blockchain. This workflow is implemented by nodes that are assigned specific roles,

as discussed next.

6.3.1 Node Types

Clients originate transactions, reads and writes to the blockchain, that are sent to Fabric

nodes1. Nodes are either peers or orderers; some peers are also endorsers. All peers

commit blocks to a local copy of the blockchain and apply the corresponding changes

to a state database that maintains a snapshot of the current world state. Endorser peers

are permitted to certify that a transaction is valid according to business rules captured in

1Because of its permissioned nature, all nodes must be known and registered with a membership service
provider (MSP), otherwise, they will be ignored by other nodes.
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Figure 6.2. The transaction flow of Hyperledger Fabric.

chaincode, Fabric’s version of smart contracts. Orderers are responsible solely for deciding

transaction order, not correctness or validity.

6.3.2 Transaction Flow Protocol

Figure 6.2 shows the transaction flow of Hyperledger Fabric and works as follows.

1. Client applications sign the transaction proposal with its identity and send it to en-

dorsing peers. Since Fabric is a permissioned blockchain, the identity of the client is

important to access the chaincode and the ledger.

2. Each endorser verifies the transaction and executes them in a sandbox. The trans-

action inputs are used to compute the corresponding read-write set along with the

version number of the state that was accessed. Note that the ledger is not updated.

Each endorser also uses business rules to validate the correctness of the transaction.

The endorsing peers construct a transaction response containing the simulation re-

sults and sign it with its identity.
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Table 6.1. Transaction throughput per second required for peer-to-peer energy transac-
tions, assuming 48 trades per day for each participant [3]. Note that these transactions do
not include trading instructions and other intermediary settlements, likely to increase the
overall transactions per day per participant.

Type Participants Throughput (txs/sec) Can Fabric Support?

Small city 10K to 100K < 56 yes

City 10K to 1M < 555 yes

Regional 1M to 5M < 2.7K yes

ISO-scale > 5M > 2.7K no

3. The client waits for a sufficient number of endorsements and constructs a transaction

proposal based on the endorsement policy and signs the proposal.

4. The client broadcasts the transaction proposals to the orderer, which implement the

ordering service. The orderers are responsible for ordering the transactions and con-

structing the signed chain blocks. To do so, the orderers first come to a consensus

about the order of incoming transactions and then segment the message queue into

blocks.

5. Blocks are delivered to peers, who then validate and commit them. The peers verify

the identity of the orderers delivering the block, validate the endorsement policy of

the transaction, and checks the read set versions to ensure that executing the transac-

tions does not result in an invalid world state.

6. Finally, the blocks are appended to the peer’s ledger. Furthermore, only the write

sets of the valid transactions are committed to the peer, and the clients are notified

through an event.

6.3.3 Problem Statement

The primary goal is to improve the throughput of permissioned blockchain to support

the demands of a peer-to-peer energy platform and whether existing blockchain platform
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supports such throughput. Table 6.1 shows the number of participants and the correspond-

ing throughput required at various-scale. We observe that Hyperledger Fabric cannot sup-

port transactions required to support a large city’s throughput requirements. Thus, we look

into improving Fabric’s performance, and our objectives are defined as follows:

• Performance Benchmarking - To study the performance of Hyperledger Fabric, and

specifically, identify the bottlenecks in the ordering service. Our main goal is to

derive insights into improving the overall throughput of the system.

• Architecture Optimizations - We aim to improve the overall throughput by identify-

ing all the bottlenecks in the system, and use common system design techniques to

improve the end-to-end throughput.

6.4 FabricPlus Design
This section presents our changes to the architecture and implementation of Fabric ver-

sion 1.2. This version was released in July 2018, followed by the release of version 1.3 in

September 2018 and 1.4 in January 2019. However, the changes introduced in the recent

releases do not interfere with our proposed techniques, so we foresee no difficulties in in-

tegrating our mechanisms with newer versions. Importantly, our improvements leave the

interfaces and responsibilities of the individual modules intact, meaning that our changes

are compatible with existing peer or ordering service implementations. Furthermore, our

improvements are mutually orthogonal and hence can be implemented individually. Before

we describe our proposal for performance optimizations, we first take a closer look at the

ordering service architecture.

6.4.1 Ordering Service Architecture

To set the stage for a discussion of improvements in Section 6.4, we now take a closer

look at the ordering service architecture. Since Fabric is designed to be modular, it sup-

ports plug-and-play capability and allows any pluggable consensus protocol for ordering
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the transactions. The two goals of the ordering service are (a) to achieve consensus on

the transaction order and (b) to deliver blocks containing the ordered transactions to the

committer peers. The current implementation of Fabric uses an Apache Kafka cluster and

Zookeeper, which provides a replicated ordering service that is crash fault-tolerant [16].

After receiving responses from endorsing peers, a client creates a transaction proposal

containing a header and a payload. The header includes the Transaction ID, and Channel

ID2. The payload includes the read-write sets and the corresponding version numbers, and

endorsing peers’ signatures. The transaction proposal is signed using the client’s creden-

tials and sent to the ordering service.

When an orderer receives a transaction proposal, it checks if the client is authorized

to submit the transaction. If so, the orderer publishes the transaction proposal to a Kafka

cluster, where each Fabric channel is mapped to a Kafka topic to create a corresponding im-

mutable serial order of transactions. Each orderer then assembles the transactions received

from Kafka into blocks, based either on the maximum number of transactions allowed per

block or a block timeout period. Blocks are signed using the orderer’s credentials and

delivered to peers using gRPC for final validation and committment [32].

6.4.2 Preliminaries

Using a Byzantine-Fault-Tolerant (BFT) consensus algorithm is a critical performance

bottleneck in HyperLedger [136]. This is because BFT consensus algorithms do not scale

well with the number of participants. In our work, we chose to look beyond this obvious

bottleneck for three reasons:

• Arguably, the use of BFT protocols in permissioned blockchains is not as important

as in permissionless systems because all participants are known and incentivized to

keep the system running in an honest manner.

2Fabric is virtualized into multiple channels, identified by the channel ID.
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• BFT consensus is being extensively studied [22] and we expect a higher-throughput

approach may emerge, as researchers address this challenge.

• In practice, Fabric v1.2 does not use a BFT consensus protocol, but relies, instead,

on Kafka for transaction ordering, as discussed earlier.

For these reasons, the goal of our work is not to improve orderer performance using better

BFT consensus algorithms, but to mitigate new issues that arise when the consensus is no

longer the bottleneck. We now present the improvements to the ordering service.

6.4.3 Orderer Improvement I: Separate transaction header from payload

In Fabric v1.2, orderers using Apache Kafka send the entire transaction to Kafka for

ordering. Transactions can be several kilobytes in length, resulting in high communication

overhead, which impacts overall performance. However, obtaining consensus on the trans-

action order only requires transaction IDs, so we can obtain a significant improvement in

orderer throughput by sending only transaction IDs to the Kafka cluster.

Specifically, on receiving a transaction from a client, our orderer extracts the transaction

ID from the header and publishes this ID to the Kafka cluster. The corresponding payload is

stored separately in a local data structure by the orderer, and the transaction is reassembled

when the ID is received back from Kafka. Subsequently, as in Fabric, the orderer segments

sets of transactions into blocks and delivers them to peers. Notably, our approach works

with any consensus implementation and does not require any modification to the existing

ordering interface, allowing us to leverage existing Fabric clients and peer code.

6.4.4 Orderer Improvement II: Message pipelining

In Fabric v1.2, the ordering service handles incoming transactions from any given client

one by one. When a transaction arrives, its corresponding channel is identified, its valid-

ity checked against a set of rules and finally it is forwarded to the consensus system, e.g.

Kafka; only then can the next transaction be processed. Instead, we implement a pipelined
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Figure 6.3. New orderer architecture. Incoming transactions are processed concurrently.
Their TransactionID is sent to the Kafka cluster for ordering. When receiving ordered
TransactionIDs back, the orderer reassembles them with their payload and collects them
into blocks.

mechanism that can process multiple incoming transactions concurrently, even if they orig-

inated from the same client using the same gRPC connection. To do so, we maintain a

pool of threads that process incoming requests in parallel, with one thread per incoming

request. A thread calls the Kafka API to publish the transaction ID and sends a response to

the client when successful. The remainder of the processing done by an orderer is identical

to Fabric v1.2.

Fig. 6.3 summarizes the new orderer design, including the separation of transaction IDs

from payloads and the scale out due to parallel message processing.

6.4.5 Orderer Improvement III: Cache unmarshaled blocks

Fabric uses gRPC for communication between nodes in the network. To prepare data for

transmission, Protocol Buffers are used for serialization. To be able to deal with application

and software upgrades over time, Fabric’s block structure is highly layered, where each

layer is marshaled and unmarshaled separately. This leads to a vast amount of memory

allocated to convert byte arrays into data structures. Moreover, Fabric v1.2 does not store

previously unmarshaled data in a cache, so this work has to be redone whenever the data is

needed.

To mitigate this problem, we propose a temporary cache of unmarshaled data. Blocks

are stored in the cache while in the validation pipeline and retrieved by block number
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whenever needed. Once any part of the block becomes unmarshaled, it is stored with the

block for reuse. We implement this as a cyclic buffer that is as large as the validation

pipeline. Whenever a block is committed, a new block can be admitted to the pipeline

and automatically overwrites the existing cache location of the committed block. As the

cache is not needed after commitment and it is guaranteed that a new block only arrives

after an old block leaves the pipeline, this is a safe operation. Note that unmarshaling only

adds data to the cache, it never mutates it. Therefore, lock-free access can be given to all

go-routines in the validation pipeline. In a worst-case scenario, multiple go-routines try to

access the same (but not yet unmarshaled) data and all proceed to execute the unmarshaling

in parallel. Then the last write to the cache wins, which is not a problem because the result

would be the same in either case.

Call graph analysis shows that, even with these optimizations, memory (de)allocation

due to unmarshaling is still responsible for the biggest share of the overall execution time.

This is followed by gRPC call management and cryptographic computations. The last two

problems, however, are beyond the scope of this work.

6.5 Experimental Methodology
This section presents an experimental performance evaluation of our architectural im-

provements. We used fifteen local servers connected by a 1 Gbit/s switch. Each server is

equipped with two Intel® Xeon® CPU E5-2620 v2 processors at 2.10 GHz, for a total of 24

hardware threads and 64 GB of RAM. We use Fabric v1.2 as the base case and add our im-

provements step by step for comparison. By default, Fabric is configured to use LevelDB

as its state database and the orderer stores completed blocks on LevelDB. Instead, we use

the in-memory database to store the blocks. Furthermore, we run the entire system without

using docker containers to avoid additional overhead.

While we ensured that our implementation did not change the validation behavior of

Fabric, all tests were run with non-conflicting and valid transactions. This is because valid
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transactions must go through every validation check and their write sets will be applied

to the state database during commitment. In contrast, invalid transactions can be dropped.

Thus, our results evaluate the worst case performance.

For our experiments which focus specifically on the orderer, we isolate the respective

system part. In the orderer experiments, we send pre-loaded endorsed transactions from a

client to the orderer and have a mock committer simply discard created blocks.

Then, for the end-to-end setup, we implement the full system: Endorsers endorse trans-

action proposals from a client based on the replicated world state from validated blocks of

the committer; the orderer creates blocks from endorsed transactions and sends them to the

committer. We do not, however, implement the optimizations in the committer peers, which

is beyond the scope of this thesis, and a detailed description of the committer optimizations

can be found in [46].

For a fair comparison, we used the same transaction chaincode for all experiments:

Each transaction simulates a money transfer from one account to another, reading and

making changes to two keys in the state database. These transactions carry a payload of

2.9 KB, which is typical [130]. Furthermore, we use the default endorsement policy of

accepting a single endorser signature.

6.6 Results
In this section we first evaluate the performance of Hyperledger Fabric and the Kafka

cluster. Next, we use the insights from the evaluation to optimize Hyperledger Fabric and

show improvement in the overall throughput.

6.6.1 Impact of Memory-based Store

Note that the orderer maintains the world ledger in LevelDB, and this must be updated

sequentially each time. Thus, it is critical that updates to the data store happen at the

highest possible rate. In the common scenarios, such as for tracking of wallets, the world
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Figure 6.4. Effect of type of world state on throughput.

state is likely to be relatively small. Even if billions of keys need to be stored, this can

be kept in the memory to reduce hard disk access, which is relatively slow in comparison.

Clearly, volatile memory are susceptible to node failures but since peers already store a

copy of the blockchain, it is redundant for orderers to have one. Besides, the blocks can be

reconstructed using Kafka cluster, as they persist these transactions. In this experiment, we

use the memory key-value store provided by Fabric to evaluate the throughput.

Figure 6.4 shows the overall throughput with different key-value store type. As shown

in the figure, the throughput decreases with increase in transaction size. This is because

it takes a little longer for the orderer to send/receive transactions to/from the Kafka clus-

ter. We also observe that the memory-based key-value store has a much higher throughput

than LevelDB. This is because LevelDB requires disk access, which slows down the over-

all throughput. In particular, we observe that for a transaction size of 970 bytes (i.e., no

payload), we can increase the throughput from 2743 to 11624 transactions per second.

To ensure that our Kafka cluster was not the bottleneck, we also benchmarked our

Kafka cluster. Figure 6.5 shows the overall throughput as we vary the payload size. As

depicted in the figure, the throughput decreases with increase in payload size. But, more
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Figure 6.5. Effect of payload size on the overall throughput in Kafka.

importantly, we observe that Kafka can support throughput of 100K TPS for a payload size

of 512 bytes, which is much higher than Fabric’s 2,743 TPS.

• Observation 1: Smaller transaction sizes can support higher throughput. Limiting

the size of the transaction for ordering can improve the overall throughput of the

system. The throughput increases from 4362 TPS to 7328 TPS when payload size is

reduced from 3KB to 1KB.

• Observation 2: A memory-based key-value store has higher performance compared

to LevelDB. We can switch to memory-based key value for the ordering service, as

the primary goal for orderers is to order the transactions.

• Observation 3: Since there is a large gap between Fabric and Kafka’s performance,

there may still be room for improving the overall throughput of the orderer.

6.6.2 Impact of Metadata Separation

In this experiment, we set up multiple clients that send transactions to the orderer and

monitor the time it takes to send 100,000 transactions. We evaluate the rate at which an

orderer can order transactions in Fabric v1.2. Since we know that memory-based key-value
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Figure 6.6. Effect of separating the metadata and using Transaction ID for ordering.

store performs better, in the rest of the experiment, we use the memory-based optimization

setup in our evaluation.

Based on our previous observation, we know that keeping the transaction size small

(both in Kafka and Fabric) and improve the overall throughput. Thus, we only use the

Transaction ID for ordering and publish it to Kafka. Figure 6.6 shows the transaction

throughput for different payload sizes in comparison to memory-based Fabric v1.2. In

Fabric v1.2, transaction throughput decreases as payload size increases due to the overhead

of sending large messages to Kafka. By sending only the transaction ID to Kafka (Opt I),

we can almost triple the average throughput (2.8⇥) for a payload size of 4096 KB.

6.6.3 End-to-end Throughput

We now discuss the end-to-end throughput achieved by combining all of our optimiza-

tions, i.e., Opt-I combined with Opt-II and -III, compared to our measurements of unmod-

ified Fabric v1.2. We set up a single orderer that uses a cluster of three ZooKeeper servers

and three Kafka servers, with the default topic replication factor of three, and connect it to a

peer. Blocks from this peer are sent to a single data storage server that stores world state in

LevelDB and blocks in the file system. For scale-out, five endorsers replicate the peer state

and provide sufficient throughput to deal with client endorsement load. Finally, a client is
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Figure 6.7. End-to-end throughput improvement with orderer optimizations.

installed on its own server; this client requests endorsements from the five endorser servers

and sends endorsed transactions to the ordering service. This uses a total of fifteen servers

connected to the same 1 Gbit/s switch in our local data center.

We send a total of 100,000 endorsed transactions from the client to the orderer, which

batches them to blocks of size 100 and delivers them to the peer. To estimate throughput,

we measure the time between committed blocks on the peer and take the mean over a single

run. These runs are repeated 100 times. Figure 6.6 shows the overall improvement when

we combine all the optimization. We observe that our optimizations can We observe that

for a payload size of 2KB, we can achieve a throughput of 24289 transactions per sec, an

increase of 3.5⇥ compared to the memory-based Fabric. In comparison to our baseline

LevelDB Fabric v1.2 benchmark, for a payload size of 2KB, the improvement is roughly

26⇥.

6.7 Related Work
Hyperledger Fabric is an open-source blockchain system that is still undergoing rapid

development and significant changes in its architecture. Hence, there is relatively little work
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on the performance analysis of the system or suggestions for architectural improvements.

Here, we survey recent work on techniques to improve the performance of Fabric.

The work closest to ours is by Thakkar et al [131] who study the impact of various

configuration parameters on the performance of Fabric. They studied the performance on

Hyperledger Fabric v1.0. They find that the major bottlenecks are repeated validation of

X.509 certificates during policy verification, sequential policy validation of transactions in

a block, and state validation during the commit phase. They introduce aggressive caching of

verified endorsement certificates, parallel verification of endorsement policies, and batched

state validation and commitment. These improvements increased the overall throughput by

a factor of 16, and the optimizations were incorporated in Fabric v1.1. This paper studies

the performance of Fabric v1.2 and improves over the currently available version.

In recent work, Sharma et al [124] study the use of database techniques, i.e., transaction

reordering and early abort, to improve the performance of Fabric. Some of their ideas

related to early identification of conflicting transactions are orthogonal to ours and can

be incorporated into our solution. Androulaki et al [15] study the use of channels for

scaling Fabric. However, this work does not present a performance evaluation to establish

the benefits from their approach quantitatively. Raman et al [117] study the use of lossy

compression to reduce the communication cost of sharing state between Fabric endorsers

and validators when a blockchain is used for storing intermediate results arising from the

analysis of large datasets. However, their approach is only applicable to scenarios which

are insensitive to lossy compression, which is not the general case for blockchain-based

applications.

Some studies have examined the performance of Fabric without suggesting internal ar-

chitectural changes to the underlying system. For example, Dinh et al use BlockBench [36],

a tool to study the performance of private blockchains, to study the performance of Fabric,

comparing it with that of Ethereum and Parity. They found that the version of Fabric they

studied did not scale beyond 16 nodes due to congestion in the message channel. Nasir
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et al [104] compare the performance of Fabric v0.6 and v1.0, finding, unsurprisingly, that

the 1.0 version outperforms the 0.6 version. Baliga et al [20] showed that application-

level parameters such as the read-write set size of the transaction and chaincode and event

payload sizes significantly impact transaction latency. Similarly, Pongnumkul et al [113]

compare the performance of Fabric and Ethereum for a cryptocurrency workload, finding

that Fabric outperforms Ethereum in all metrics. Bergman [25] compares the performance

of Fabric to Apache Cassandra in similar environments and finds that, for a small number

of peer nodes, Fabric has a lower latency for linearizable transactions in read-heavy work-

loads than Cassandra. On the other hand, with a larger number of nodes, or write-heavy

workloads, Cassandra has better performance. However, their approaches do not propose

any optimizations to improve the overall throughput of Fabric’s orderer component.

6.8 FabricPlus Summary
We show that existing blockchains are insufficient to support peer-to-peer energy trans-

actions of a large city. The main contribution of this work is to show how we can re-

engineer a permissioned blockchain framework such as Hyperledger Fabric to support

> 20, 000 transactions per sec, a throughput sufficient to support a large city-scale peer-to-

peer energy platform. We accomplished this goal by implementing a series of independent

optimizations focusing on I/O, caching, parallelism, and efficient data access. In our de-

sign, orderers only receive transaction IDs instead of full transactions, and we aggressive

use caching and memory-based storage for fast data access on the critical path. Our results

show that we can achieve a throughput of 24,289 transactions per sec, an increase of 26⇥

compared to the baseline LevelDB Fabric.

113



CHAPTER 7

SUMMARY AND FUTURE WORK

7.1 Thesis Summary
This thesis has explored the opportunities and challenges in designing IoT-based smart

energy systems and provides insights into building the next-generation smart grid. In this

dissertation, I have demonstrated how systems and machine learning principles can be used

to build smart IoT energy systems. We developed several new techniques and proposed

new mechanisms for a wide range of areas in IoT-based energy systems. In doing so, I

have made the following contributions:

1. Planning and placement: First, I discussed how the current state-of-the-art LIDAR

approaches in estimating the solar potential of a roof do not scale. To address the

challenges, I proposed DeepRoof, a data-driven system that uses deep-learning to

identify ideal locations for installing solar arrays on rooftops by estimating solar

potential using satellite imagery. I evaluate our approach on different types of roof

and show that our technique is comparable to LIDAR-based approaches.

2. Decentralized control: Second, I defined the problem of solar rate control to prevent

congestion in the grid. Further, I proposed a decentralized rate control technique

that can self-regulate in a grid-friendly manner. Additionally, the proposed approach

provides flexible control of solar output, and I showed that such mechanisms allow

for higher solar penetration in the grid.

3. Resource management: Third, I discussed the challenges in community-owned dis-

tributed energy resources that do not provide independent control to users. I proposed
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vSolar, an approach to virtualize the solar arrays and energy storage that enables in-

dependent control. Further, vSolar can be used to implement custom energy sharing

policies and reduce the energy costs of individual homeowners through energy trad-

ing.

4. Decentralized architecture: Finally, I presented the challenges in energy trading us-

ing permissioned blockchains. I proposed FabricPlus, a series of optimizations in

an open-source Hyperledger Fabric, that allows a blockchain system to achieve high

throughput IoT energy transactions, without necessitating any change to its exter-

nal interfaces. I also show considerable performance improvement over the baseline

Fabric.

7.2 Future Work
This dissertation covers a broad range of areas in the area of IoT energy systems and

gives rise to several promising directions to enable the next generation of smart grid. Next,

I will outline some directions for future work that has emerged from this thesis.

1. Rooftop modeling and analytics: The deep learning-based approach in DeepRoof can

be extended to either improve the system and derive additional insights for city-scale

planning and development. While DeepRoof uses only satellite imagery of a rooftop,

images taken from other angles, such as street view, can be combined with satellite

images to construct a more accurate 3D model of the roof. Additionally, the material

of roofs and any cracks or damage to a roof are readily available. These sources of

information can be combined in predicting the type and damages to the rooftop and

help city planners assess the post-seismic damage to a city’s buildings in a scalable

manner.

2. Virtualization and virtual power plant: The virtual abstractions described in Chapter

5 are designed to control a vast deployment of batteries and solar and enable indepen-
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dent control across users. Alternatively, the same abstractions can be used to enable a

software layer to control a host of virtual energy systems. The software layer can be

a set of mechanisms that manage the energy output of solar arrays and batteries from

distributed energy systems. This can help utility companies to manage renewable

solar energy and feed this energy to the grid as needed.

3. Energy trading platform: While this thesis has focussed on re-architecting the

blockchains to support high throughput energy transactions, implementing a peer-

to-peer energy trading platform may involve challenges other than scalability. For

starters, we need to determine the kind of information being recorded on the shared

ledger, that does not leak private information. We also need an efficient mechanism

to match the buyers and the suppliers and to establish a marketplace. Both the buyers

and the sellers need to respond to the market dynamics, which reflect the grid net-

works needs at each moment to load balance. It would be interesting to explore the

different scenarios and conditions and how various entities establish communication

to enable trading.
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