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Approved as to style and content by:

Kristen M. DeAngelis, Chair

Erin Conlon, Member

Jim Holden, Member

Seeta Sistla, Member

Paige Warren, Program Director
Graduate Program in Organismic and Evolu-
tionary Biology



ACKNOWLEDGMENTS

First and foremost, I would like to thank my trusty bikes, Donkey and Gretchen,

for providing steady transport to and from the lab.

I would like to thank my labmates — and in particular Luiz Horta and Gina

Chaput — for providing great company, encouragement, and intellectual input.

Thank you to the many people - scientists and not - who developed the intellectual

basis for my work.

Thank you to my parents for the emotional and snack-related support that greatly

smoothed the science-making process.

Thank you to the numerous undergrads who inadvertently served as guinea pigs

for my mentoring experiments.

Thank you to the US taxpayers, for funding my research through the US Depart-

ment of Energy, and the American Association of University Women, who funded

my dissertation writing year. Funding also came from a UMass Graduate School

Dissertation Research grant, and a UMass OEB Research grant.

Thank you to my committee members for putting up with and eagerly helping

me with my questions.

Finally, I would like to extend my thanks to Kristen DeAngelis for allowing me

to run wild most of the time, but not being afraid to reign me in when needed.

v



ABSTRACT

DRIVERS AND CONSEQUENCES OF CARBON USE
EFFICIENCY - AND ITS MEASUREMENT IN SOIL

SEPTEMBER 2019

Alice Grace Meadows Põld

B.Sc., MCGILL UNIVERSITY

MS, UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Kristen M. DeAngelis

Soils serve as massive carbon sinks, but their ability to continue this ecological

service is contingent on how the resident soil microbial community will respond to the

ongoing climate crisis. One key dimension of the microbial response to warming is its

carbon use e�ciency (CUE), or the fraction of carbon taken up by an organism which

is allocated to growth rather than respiration. However, the scientific community is

still in the early stages of understanding the drivers, consequences - and even accurate

measurements of - CUE. In this dissertation, I first quantified the variability of CUE

and its responsiveness to temperature and substrate for soil bacteria grown in the

lab. I subsequently implemented this knowledge into a plant litter decomposition
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model to determine how including organism-level variation in CUE alters projected

soil carbon stocks in a warmer world. Finally, I completed a series of numerical

simulations to evaluate how robust a commonly-used method of measuring CUE in

the field is to changes in the microbial community present.

I found that CUE was highly variable and depended on both substrate and tem-

perature in a bacteria-specific manner. No robust genetic or genomic markers of CUE

or its temperature dependence emerged, indicative of the wide diversity of bacteria

characterized in this study. Nonetheless, e�ciency tended to decrease with warming

moreso in taxa which were already characterized by high e�ciency, causing a degree

of homogenization in CUE at higher temperatures. Introducing variation in CUE

temperature sensitivity to the litter decomposition model DEMENT caused addi-

tional litter carbon loss under warming, which indicates the possible importance of

accounting for CUE as a niche dimension for species sorting to act upon in decompo-

sition models. Finally, I found the 18O-H
2

O method of measuring CUE in mixed soil

communities is particularly susceptible to misleading results when the assumption

of extracellular water being the sole source of oxygen to DNA is violated. Overall,

my results indicate that understanding microbial physiology is essential to both the

accurate measurement and projection of CUE under the global climate crisis, but

that explaining the genomic underpinning of this physiological variation remains a

challenge.
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INTRODUCTION

Research impetus

Human activities have changed the composition of the atmosphere to an unprece-

dented degree over the past 150 years, driving the Earth’s climate into unknown

territory (120). Earth System Models (Box 1) predict anything from a 2�C to a

7�C increase in temperature for eastern North America (120), and anything between

a 253 Pg increase to a 72 Pg decrease in soil organic carbon storage by 2100 (278).

Low confidence in climate projections can be attributed to a combination of uncer-

tainties in the structure, parameterization, and assumed stable state starting values

of carbon cycle modules within these models (40; 92; 277). In particular, while the

deterministic portion of physical processes can be modeled with su�cient compu-

tational power, biology is a tangled mess of many known and unknown interacting

components following a series of poorly-understood rules, for which the relative im-

portance of each is only beginning to be uncovered. Because of this complexity, Earth

System Models have historically simplified biologically-mediated processes such as

photosynthesis and soil respiration to first-order reactions (213; 293).

However, these biological processes are not just driven by fixed pools of enzymes

responding in a predictable manner to increased temperature, but rather commu-

nities of ecologically divergent organisms that interact both with their abiotic en-

vironment and each-other (6; 33; 115; 247; 249). Plant biologists have successfully
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incorporated the leaf-level physiological mechanisms by which climate change a↵ects

photosynthesis and leaf respiration into Earth System Models (248), but the integra-

tion of analogous soil parameters has lagged behind (293). This can be attributed to

the fact that although soil carbon stocks are approximately 4x larger than terrestrial

vegetation pools, their diminution is driven by the activity of generally inconspic-

uous and poorly understood microbial communities whose processes cannot simply

be “scaled up” (293). As such, parsing clear mechanistic drivers of microbial tem-

perature response has proven challenging. Nonetheless, recent work has shown that

changing the structure of soil carbon models to explicitly include these biotic drivers

of soil carbon flux o↵ers promise for further improving projections of soil carbon

stocks (12; 24; 167; 252; 294).

Soil microbial communities respond to climate change by shifting their taxonomic

and/or functional composition (61; 224; 227; 222), and/or by changing their phys-

iology (41; 91; 106; 108; 285). Changes in functional and taxonomic composition

represent one way in which physiological responses play out, and can be readily

detected by sequencing the total soil community (61; 227), making the abundant

publicly-available meta-omic datasets a potential goldmine for clues to a better un-

derstanding of microbially-mediated processes. However, large redundancies in the

functions completed by soil organisms, and commonalities in many of the pathways

used by cells to process carbon (247), mean linking this data to ecosystem processes

such as soil respiration response to warming remains challenging. Furthermore, the

great diversity of genes and organisms present in soil also means that, even if we could

generate perfect correlations between nucleic acid and carbon cycling data, incorpo-
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rating the entire genetic repertoire of the microbial community into carbon models

is not a realistic goal. Instead, genetic signatures of changes soil carbon processing

must be identified. Identification of the parameters of microbial physiology with the

greatest influence on soil carbon stocks, and determination of readily-measured cor-

relates of these traits, therefore o↵ers promise for improving global biogeochemical

models (279).

One parameter that projected soil carbon stocks have been demonstrated to be

sensitive to is carbon use e�ciency (CUE - Box 1) (12; 294), which describes the

fraction of carbon which is assimilated by a microbe. Although models including

microbial physiology have the potential to predict soil carbon stocks better than those

which “black-box” microbes (294), the current implementation of CUE as a rigid,

biologically-insensitive parameter can lead to poor soil carbon estimates (24; 105).

As such, there has been a recent rush to measure CUE and attempts to parse out

its drivers in soil (70; 71; 91; 95; 106; 257; 262; 263; 304). Nonetheless, a number of

technical and intellectual barriers have limited how useful these measurements can

be to understanding the fate of soil carbon in a warmer world (12; 96; 95).

In this dissertation, I evaluate the environmental, genomic, and phylogenetic

drivers of carbon use e�ciency (CUE), and assess how incorporating these drivers of

CUE a↵ect both its measurement and the sensitivity of soil carbon stock projections

to climate change. To this end, I addressed four questions:

1. Do bacteria di↵er in their environmental sensitivity of CUE?

2. Is there a set of genes or genomic traits which consistently correlates with

temperature sensitivity of CUE?
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3. How does incorporating variability in microbial physiology into models of the

carbon cycle a↵ect projections of soil carbon stocks under climate change?

4. How does ignoring the underlying biology of organisms distort measurements

of CUE made on soil samples?

Box 1: Acronyms and vocabulary

CUE - Carbon Use E�ciency (CUE) - the fraction of carbon taken up by an organism
that ends up in biomass rather than being respired
ESM - Earth System Models - climate models that incorporate interactions between
physical, chemical, and biological processes
Growth yield - the fraction of a substrate taken up that is incorporated into biomass;
di↵ers from CUE for carbonaceous compounds in that it also accounts for losses due
to incomplete oxidation (for example acetate in addition to CO

2

)
Km - half-saturation constant - parameter in the Michaelis-Menten equation; the con-
centration of substrate at which enzyme activity is half its maximum value (V

max

).
Phylogenetically-conserved traits - organism characteristics that are more likely
to exist or be in a state more similar in organisms that share an ancestral lineage than
for organisms selected at random from the phylogenetic tree.
Redox potential - a measure of the tendency of one compound to take electrons from
another
Spin-up - the stage of a model in which it is run until a steady state value is achieved,
at which point disturbances such as warming treatment are added and the response is
examined. “Results” from the spin-up stage are discarded, but the parameter values
are carried forward for the evaluation stage
V

max

- rate of a reaction under substrate-saturated conditions

Drivers of CUE

Chemoorganoheterotrophs face tradeo↵s in resource allocation to biomass and

energy production with every molecule of organic carbon they consume (218). Ac-

quiring carbon from the environment may require the production of extracellular

enzymes and membrane transporters, the former of which requires energy (ATP) to

build and the latter for which ATP may be needed to run. Growth also requires the

investment of energy and reducing power. For instance, the generation and poly-
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merization of biosynthetic precursors into cell components also requires energy in

the form of ATP (269), such that degradation of carbon storage compounds like

polyhydroxyalkanoates releases energy for the cell. Furthermore, microbes must ex-

pend reducing power stored in NADH in order to convert many food sources into

biomass (237). The reducing power and energy required to sustain the uptake and

metabolism of substrates comes from the oxidation of other substrate, such that

carbon taken up by a cell can only be incorporated into biomass once all its other

basic bioenergetic maintenance needs have been met (i.e. cell growth and therefore

positive CUE can only occur with that carbon available beyond what must be used

to keep the cell alive) (218). As such, the CUE of an organism is expected to be sub-

ject to a range of intrinsic and extrinsic determinants of microbial maintenance costs

and cell construction needs. Despite numerous studies into what these determinants

are, inconsistent methodologies have historically prevented determination of which

intrinsic and extrinsic factors best predict CUE (96; 181; 255).

Extrinsic drivers

Extrinsic determinants of CUE - or those which act in a manner generally inde-

pendent of organism identity - include factors such as carbon quality, nitrogen avail-

ability, oxygen, temperature, competition, and pH. The e↵ect of these parameters

on CUE can be studied at the community level and can be attributed to influences

on maintenance costs, imbalance between the supply and demand for resources, and

di↵erences in the theoretical energy yield of di↵erent substrates (181).
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Substrate quality

A key determinant of CUE is how amenable a given substrate is to being in-

corporated into biomass. Polymeric substrates such as lignin and cellulose must be

depolymerized before they can be taken up by the cell, which means that a cell must

reallocate resources from growth to enzyme production (8). After this depolymeriza-

tion step, the resultant monomers and dimers must be taken up by the cell. While

some molecules such as glycerol and ethanol are able to freely di↵use across the

membrane, others must enter the cell through transport proteins, either passively

or through proton exchange (4). Therefore, some carbon sources require a greater

resource investment than others to acquire. After entering the cell, compounds enter

metabolism at di↵erent stages and are, therefore, di↵erentially allocated to biomass

(anabolism/assimilation) or energy production (catabolism). As such, community-

level CUE in soil showed a positive correlation with the cellulase:phenol oxidase en-

zyme potential as a proxy for carbon quality (272). Highly oxidized compounds such

as oxalic acid require expending considerable reducing power (NADH) if they are

to be incorporated into biomass (240), and also only yield small amounts of energy

compared to glucose. As such, the CUE of soil microbial communities on oxalic acid

or phenolic compounds is substantially lower than that on glucose (91; 270). Other

features, including whether they inhibit other metabolic pathways (135), where com-

pounds enter central metabolism, which components of the cell they are converted

into (104), and how rapidly those components are recycled are also likely to be im-

portant for CUE (100). Finally, it is feasible that the e↵ect of carbon quality on
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CUE will depend on the historic nourishment regime of the bacteria; bacteria pre-

viously exposed to carbon-limited conditions are able to metabolize a much broader

range of substrates than those subject to carbon replete ones (119). Cometabolism

can, in the case of using a non-assimilable energy source and a low-energy carbon

source, increase the degree to which carbon is conserved (100). Nonetheless, CUE is

generally expected to increase with the degree of reduction of a compound.

Temperature

Increased temperature is often observed to reduce CUE (91; 181). The mecha-

nism for this has not been confirmed yet, but one hypothesis is that microbial main-

tenance costs increase with temperature due to increased protein turnover (181),

need for saturation of lipids in the cell membrane (108), or a heat stress response

(181). Another possible cause is the dependence of the number of energy conserving

sites in the electron transport chain on temperature (110). Alternatively, CUE may

increase in soil if elevated temperatures favour the desorption of chemically-labile,

high C:N compounds from mineral surfaces (55). Other researchers have reported

that temperature does not a↵ect intrinsic CUE (71), and that the apparent decrease

in CUE with warming may indeed be due to methodological artifacts or increased

microbial turnover (106). In particular, Djikstra et al. (2011) found that while the

primarily-anabolic pentose phosphate pathway was halved by elevated temperature,

CUE showed a small increase at higher temperatures. More recent community-level

work shows that microbes are able to adapt to local temperature. In this process,
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growth increases moreso than respiration, such that CUE should also increase with

temperature (28). This may be underlain by decreases in substrate a�nity even with

small increases in temperature, e↵ectively starving microbes (201). Therefore, the

e↵ect of CUE to elevated temperatures appears contingent on microbial physiology,

substrate choice, and method used to measure the response.

Nitrogen availability (substrate C:N ratio)

An apparently undisputed driver of CUE for both isolates and soil communities

is the C:N ratio of the substrate. Biomolecules have fixed ranges of carbon and ni-

trogen, and cells require a certain fraction of these biomolecules to exist. Only rarely

are elements in the substrate a microbe consumes present in exactly the same ratio

it needs to maintain and build new biomass, so nitrogen or carbon will be prefer-

entially mineralized to regain the desired elemental ratio (193). As such, substrates

with high C:N ratios or nitrogen limiting conditions are expected to be associated

with low CUE (129; 181).

Oxygen availability

As the strongest biological oxidizer and the best terminal electron acceptor, the

presence of oxygen can play a central role in CUE. Due to its high redox potential,

oxygen is able to capture electrons that have traveled further along the electron trans-

port chain and, therefore, generated a greater electrochemical gradient than other

terminal electron acceptors (84). Under conditions of low oxygen, organisms must
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either ferment molecules (use internal electron acceptors), or use terminal electron

acceptors such as nitrate with lower redox potential. Therefore, the amount of energy

they can get from a given substrate is reduced when organisms cannot use oxygen.

In addition to its e↵ect on direct oxygen-dependent steps of metabolism, anaero-

bic conditions have been shown to decrease the fraction of carbon going through

the anabolic pentose phosphate pathway, and to increase the fraction going through

glycolysis (70; 71). It is important to note that, although low oxygen conditions

are expected to reduce biomass yield, reduced CUE will not necessarily be detected

because CO
2

is the only waste product typically measured. Furthermore, while en-

ergy yield from a substrate may be greater under aerobic conditions, the cost of

biosynthesis and for cell maintenance (ex. due to oxidative damages) are lower un-

der anaerobic conditions (114). Therefore, a general e↵ect of oxygen availability on

CUE is challenging to predict a priori.

Competition and connectivity

An additional environmental determinant of CUE is that of competition. Bacteria

di↵er in their competitive strategies (see “oligotophs and copiotrophs”, below), or

how they behave in the presence of abundant substrate. Like a pig at a slop bucket,

a bacterium may either opt to eat as much as possible, in which case it will do

so messily and produce a lot of waste, or do so more slowly and possibly put on

less weight, but with less waste. This decision to eat cleanly (be e�cient) can be

influenced by the environment an organism finds itself in, such that Lactococcus lactis

growing with a limited amount of glucose in an environment free from competition
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evolved slower but more e�cient growth compared to its ancestor which grew in a

free-for-all environment (19). Another way to look at this is that where resources

are privatizable, there will be incentives to use that resource most e�ciently. Low

soil moisture essentially provides this privatization of resources for bacteria, since

they cannot traverse the air-filled pores present in all but the most saturated soils

(286). Therefore, moderate reductions in soil moisture are expected to increase CUE

by promoting the privatization of resources (233). Indeed, CUE was observed to be

greatest at very low moisture in a xeric ecosystem (111). However, traits associated

with movement through the soil matrix may only be costly for CUE under high

moisture, when motility is both most beneficial and expressed (62).

An additional feature of competition relevant to CUE is that of cheating strategy.

As noted above, the production of enzymes requires considerable resource investment,

so releasing them into the environment where they and their substrates may be pi-

rated by other cells is a risky business. As such, some bacteria may “cheat” and

not produce extracellular enzymes, instead depending on the monomers produced

by other organisms’ enzymes. Such cheating is temporarily favoured when privati-

zation of resources is not possible, but eventually leads to enzyme producers ceasing

to produce enzyme when they are less likely to reap the benefits of their investment

(ex. in a well-mixed environment) (7; 10). In soil, lower soil moisture limits enzyme

di↵usion and is therefore expected to favour extracellular enzyme production. How-

ever, as a counterargument, interactions between organisms may lead to increased

CUE if cross-feeding occurs. As one example, amino acids can be grouped based on

precursor demands, where some amino acids are more e�ciently produced from glu-
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coneogenic substrates and others are more e�ciently produced from glycolytic ones

(290). Therefore it is conceivable that one organism fermenting glucose and produc-

ing amino acids could transfer gluconeogenic substrates such as lactate to another

organism, which in turn uses it to produce and then share the remaining amino acids

with the original donor.

pH

As both an important driver of bacterial community structure (88), and a po-

tential stressor, pH is expected to influence CUE. In a meta-analysis of global soils,

Sinsabaugh et al. (2016) found a weak but significant CUE minimum at a pH of

5.4, which they attributed to di↵erences in the bacterial to fungal ratio. pH is also

expected to a↵ect the availability of nutrients and toxic metals such as aluminum,

which may also indirectly a↵ect CUE through the reallocation of resources to stress

response rather than growth. Direct e↵ects of pH on CUE may be conferred by

virtue of the need to express novel antiporters or change metabolism to include more

organic acids at high pH (25; 207). However, not only do bacteria isolated from the

same soil show a range of pH optima, but pH optima are phylogenetically conserved

(124). This indicates that the degree of stress response (and, therefore, reduction in

CUE) that bacteria show to pH is likely to di↵er between organisms and be phylo-

genetically conserved.
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“Intrinsic” determinants and markers of CUE

So-called “intrinsic” determinants of CUE are those features which are encoded

in the genetic or epigenetic imprint of a cell. Although the manifestation of many of

these intrinsic determinants is expected to be a↵ected by the extrinsic factors noted

above (290), the identification of genetic determinants of CUE would o↵er promise

for interpreting carbon cycling data in light of environmental meta-omic data. Many

of these factors have been examined in the context of growth yield in model organ-

isms such as Escherichia coli, which is similar but not identical to CUE (Box 1).

Trophic strategy: “oligotrophs” vs. “copiotrophs”

There is a long-held assumption that some microbes are inherently more e�cient

than others. Central to this is the observation that, while some organisms maintain

slow but steady growth independent of resource availability (“oligotrophs”), others

undergo boom-bust growth cycles (297; 138). These “copiotrophs” rapidly reproduce

in times of plenty, but die back when resources are more limited. Many other or-

ganisms lie somewhere between these two extremes of trophic strategy (185). Fierer

(2007) suggested that soil oligotrophs may also be e�cient growers, thereby linking

trophic strategy with CUE. Soil oligotrophs are thought to be characterized by a com-

bination of genomic and physiological traits, including the capacity for high-a�nity

uptake and co-metabolism of multiple substrates at low concentrations, low riboso-

mal RNA operon copy number, and high growth yield. More recently, Roller and

Schmidt (237) proposed that oligotrophs are likely to show inherently high growth
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e�ciencies because of their dominance under conditions generally associated with ef-

ficient growth. Indeed, in another paper, Roller et al. (238) demonstrated that CUE

on succinate is negatively correlated with both maximum growth rate and ribosomal

RNA operon copy number for eight terrestrial and aquatic bacteria.

Assuming the proposed connection between CUE and trophic strategy holds,

genes indicative of trophic strategy could be used to infer e�ciency. For instance,

Lauro et al. (154) found that aquatic oligotroph genomes were enriched in genes for

lipid metabolism, while genes for motility, transcriptional machinery, and chitinase

activity were enriched in the genomes of copiotrophs. In a similar vein, a much greater

fraction of protein coding genes are transcriptionally controlled in marine copiotrophs

compared to oligotrophs (57). Studies with the opportunistic aquatic oligotroph E.

coli have also shown that there is less catabolite repression under carbon limitation,

so the bacterium can utilize a broader range of carbon sources (119). This is similar to

what is expected for obligate oligotrophs, and shows that one way in which microbes

may adapt to low resource conditions is through the production of diverse, high-

a�nity and non-specific transporters (138). However, since terrestrial bacteria are

fundamentally di↵erent from aquatic bacteria (298), the genes and genomic features

determining CUE may also be distinct between terrestrial and aquatic organisms.

That said, if organisms characterized by ”oligotrophic” traits are not more e�cient

than ”copiotrophic” ones, then any proposed relationships between genome content

and e�ciency are no longer expected to hold.

I propose six gene classes and genome features, which may serve as indicators of

trophic strategy and, therefore, be correlated with CUE
max

. First, copiotrophs may
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activate motility genes to actively seek out food in moist soil (117; 165; 244), whereas

oligotrophs are not expected to do so. Second, given the prevalence of reductive cell

division in copiotrophs under low carbon conditions, and rapid cell membrane growth

under high carbon conditions (165), copiotrophs are expected to have higher tran-

scriptional activity and abundance of genes for the generation and processing of

cell wall components. Third, oligotrophs are also expected to have larger plasmids

than copiotrophs; these plasmids may interact with chromosomally encoded genes, as

hypothesised for the oligotroph Ancylobacter vacuolatus, which showed fast growth

rates that were sensitive to carbon concentration following plasmid removal (306).

Fourth, given the generally low abundance of individual substrates in the environ-

ment most of the time, oligotrophs are expected to have a more diverse suite of

genes for the transport and metabolism of compounds. Fifth, because of the general

lack of response to changing nutrient conditions (139), oligotrophs are expected to

have more constitutively-expressed proteins than copiotrophs, which actively sense

and respond to the environment in order to best allocate resources. That is, simple,

unregulated metabolisms of oligotrophs have low maintenance costs compared to

the strategy of actively sensing and responding to the environment that copiotrophs

use (112). Finally, organisms capable of growth under low carbon conditions are ex-

pected to use ions such as sodium in place of the more membrane-permeable H+; this

should be seen as an increase in the ratio of sodium:H+ symporters with maximum

CUE (114). Roller et al. (2016) also highlight chemotaxis, thiamine biosynthesis,

and phosphoenolpyruvate:carbohydrate phosphotransferase systems as being more

abundant in fast-growing, ine�cient copiotrophic organisms.
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While many of these adaptations to oligotrophy may enable cells to avoid physi-

ologically expensive stress responses (38), the “average” cost of maintaining diverse

transporters may exceed the pulsed costs of stress response. Therefore, it is feasible

that oligotrophs are, on average, less e�cient than copiotrophs under the luxurious

lab conditions generally considered amenable for growth, but more e�cient under

rapidly changing or low quality environments.

High and low yield central metabolism

Central to the “oligotroph-copiotroph” dichotomy is the assumption that organ-

isms face a fundamental growth rate-e�ciency tradeo↵, in which high growth rates

are associated with wasteful metabolism and low biomass yields (170). Numerous

mechanisms for this tradeo↵ have been proposed, including that reactions do not

proceed if the energy of the reactants is equal to the energy of the products (215);

the high energetic costs of protein production (192); imbalance between anabolism

and catabolism (282); and protection from oxidative stress (171). On the other

hand, e�ciency may be higher at high growth rates if maintenance energy is a fixed

quantity, because any additional carbon taken up beyond that required for mainte-

nance will be directed to growth. As a result of these apparently conflicting results,

Lipson (2015) predicted that yield should show a hump-shaped relationship with

growth rate that is underlain by three growth strategies (170). Under conditions

of nutrient limitation, starvation, and other physiological stress, microbes take on a

stress-tolerance strategy in which they have very low growth rates and low yields,
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instead allocating resources to storage of materials to help them survive the stress. In

very resource-rich conditions or under “hot but not too hot” temperatures, microbes

are expected to take on a race-to-the-bottom growth strategy, and grow fast but

ine�ciently. However, under conditions of energy limitation, at the low end of the

organism’s temperature range, and in spatially structured environments, microbes

are expected to show intermediate growth rates with high yield; that is, yield is

maximized at intermediate growth rates.

These switches between high and low yield growth have been studied using

metabolic models of central metabolism. For instance, while many organisms have

both the Embden-Meyerho↵-Parnas (EMP) and the Entner-Doudoro↵ (ED) gly-

colytic pathways, many have just one or the other. The EMP pathway yields a

much more controlled release of energy, such that two ATP result from glycolysis,

but this steady release of energy requires a substantially greater enzyme investment

in order to keep the same flux as the lower-yielding, but faster, ED pathway (90).

Anaerobes, which have weak oxidative phosphorylation compared to aerobes, are en-

riched in the nitrogen-expensive but higher-energy-yielding EMP pathway, whereas

aerobes are relatively enriched in the ED. It has been proposed that since central

metabolism may account for up to half of an organism’s proteome, it is feasible that

organisms may not have su�cient room in their cells to support the large quantities

of proteins required to maintain fast but e�cient flux via the EMP pathway (282).

However, whether similarly strong tradeo↵s between growth rate and e�ciency occur

in “oligotrophic” bacteria characterized by low maximum growth rates is unclear. I

posit that organisms whose genomes encode more complex (more nodes, higher net-
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work connectivity) central metabolism will have lower CUE
max

due to the costs of

regulating and running these alternative pathways (245), but less environmentally-

responsive CUE because of the wider range of ways in which metabolism can be

optimized.

Phylogenetic determinants of carbon use e�ciency

Some authors have argued for the existence of di↵erences in CUE at high taxo-

nomic levels. For instance, communities dominated by fungi have been suggested to

be more e�cient than those dominated by bacteria (257; 275), presumably because

the CN ratio of their biomass is higher. However, fungus-dominated communities

may instead just be able to access di↵erent carbon pools to bacteria (3; 261) and/or

be present in soils characterized by edaphic parameters more amenable to higher

CUE (257; 275; 261). Alternatively, CUE may respond to di↵erent abiotic factors in

bacteria than in fungi (129). If groups of organisms do di↵er in maximum attain-

able CUE, this may be due to genetically encoded physiological constraints, such as

the need for carbon allocation to abundant peptidoglycan in Gram positive organ-

isms, transporters spanning both membranes in Gram negative bacteria, or abundant

intracellular membranes in Verrucomicrobia (158). However, despite these consider-

able di↵erences in cell chemistry and biosynthetic precursor requirements, metabolic

modeling predicts that CUE on glucose is insensitive to Gram positive: Gram neg-

ative: fungal ratio (71). This contrasts with the expectations of Gommers (1988)

that fungi should have higher CUE than bacteria on glucose, but lower on acetate
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because of di↵erences in metabolic precursor demands on biosynthesis. As such, the

influence of phylogeny on CUE may be in its coherent response to environmental

variables, such as temperature, drought or nitrogen availability (15; 71; 195).

Another key correlate of CUE may be ribosomal RNA operon copy number (rrN).

rrN sets the upper limit to growth rate in bacteria (136), such that up to 75% of

transcriptional e↵ort may be allocated to generating ribosomes under rapid growth

(52). rrN is strongly phylogenetically conserved, such that it can be predicted in

unsequenced genomes based on the values of close relatives (130). “Oligotrophic”

phyla such as Acidobacteria are capable of slow growth in nutrient-poor environ-

ments and typically have low rrN, while fast-growing copiotrophic groups such as

Betaproteobacteria and Bacteroidetes have high rrN (86). Whether rrN itself is a

determinant of CUE, or merely a stand-in for other conserved drivers of CUE is

unclear, however.

Interplay between biotic and abiotic drivers of CUE

The numerous aforementioned biotic and abiotic factors may influence CUE both

alone and in interaction with other factors. For instance, taxa grown on the same

mixed substrate media may di↵er in their CUE as a virtue of preferring uptake

of organic acids over sugars (67). Interspecific competition may also interact with

nitrogen availability to impact CUE (186). Specifically, fungal monocultures grown

under nitrogen-replete conditions showed lower CUE at higher temperatures, but

those grown under nitrogen limited conditions did not. When two fungi were co-
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cultured, CUE was always lower than expected based on values when species were

grown alone, and the negative e↵ect of temperature on CUE was apparent for isolates

grown under both high and low N conditions. Due to di↵erences in the stringent

response machinery and degree of stress required to induce its activation (39), it is

also expected that the CUE of oligotrophs and copiotrophs should respond di↵erently

to stressors. As a further example, due to di↵erences in metabolic precursors required

for biomass synthesis in, say, bacteria and fungi, growth may be more e�cient for

bacteria than fungi on some substrates, and more e�cient for fungi than bacteria on

others (100; 269). Quorum sensing provides a final example of how biotic and abiotic

factors can interact to a↵ect CUE; late in exponential phase, quorum sensing has

been observed to lead to reduced expression of many genes involved in the uptake

and metabolism of glucose (101).

I explore a number of these hypotheses in Chapter 1 of this dissertation.

Modeling the carbon cycle

In light of the aforementioned factors, it seems apparent that CUE is not a fixed

factor and so should not be modeled as such. Indeed, how or why CUE is high or low

under a given scenario (8; 105), or in one kind of community or another (258; 296),

is essential for predicting the stability of soil carbon. For instance, if CUE is low

because maintenance costs are high, then microbial biomass may decline and SOC

increase (105). On the other hand, if CUE is low because enzyme production is

high, then SOC pools will shrink (105). However, when additional feedbacks such

as species sorting are incorporated, high enzyme production may induce increased
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carbon storage (8). Together, these prior modeling results indicate that accounting

for both the metabolic costs of living in and processing substrates in the environment,

and in variability in these costs, are likely to be important for the fate of soil organic

matter in a warmer world.

I explore this hypothesis in Chapter 2 of this dissertation.

Measuring CUE in opaque environments

In my third chapter, I complete a sensitivity analysis to see how robust soil CUE

measurements are. Whereas CUE can be readily measured in liquid culture, where

the microbial biomass can be separated from the growth medium, it is much more

challenging to measure in soil. This is not only because a fraction of the biomass

may be active at any given time (30; 210), but also because this small community is

stuck within a matrix of minerals with large background carbon. Therefore, methods

must be able to distinguish between new growth and old biomass, when microbial

biomass typically accounts for 1% of the carbon in soil.

Since CUE is in units of carbon, perhaps the most intuitive way to measure it

is using isotopically labeled carbon compounds. In this method, 13- or 14C labeled

glucose (or less frequently cellulose (205), phenol (91; 270), or amino acids (91; 127))

are added to the soil. After a period, a sample of CO
2

is taken and evaluated for

the amount of isotopically labeled carbon. The amount of label within microbial

cells is also determined. This is completed using chloroform fumigation extraction,

in which cells are lysed by chloroform vapour and the di↵erence in labeled organic
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carbon in lysed and unlysed samples is used as a metric of the amount of substrate

carbon assimilated into biomass. In a variant of this method, position-specific iso-

topes of glucose and pyruvate are used in parallel incubations (71). CUE can then

be determined by combining labeled respiration and microbial biomass carbon mea-

surements with a series of assumptions about which carbons are broken o↵ and enter

which assimilatory or dissimilatory pathways.

However, one main drawback of the isotopically-labeled substrate method is that

it is compound-specific. That is, you measure the CUE of the subset of the commu-

nity able to use that substrate. Furthermore, it is impossible to separate substrate

uptake from assimilation into biomass pools, as chloroform fumigation extraction

e↵ectively measures cytoplasmic content. Therefore, labeled carbon compounds are

liable to overestimate true CUE (95; 105). As a result, methods depending on 18O-

H
2

O (95; 262; 263; 304) or 13C (179) incorporation into DNA are increasingly being

used for CUE measurements.

In the 18O-H
2

O method of CUE determination, labeled water added to the soil is

taken up by microbes and incorporated into DNA. The labeled oxygen in the DNA

is then quantified using isotope ratio mass spectrometry (IRMS), and this oxygen

is assumed to be directly proportionate to the amount of new DNA synthesized.

The relationship between the total microbial biomass carbon at the initiation of the

experiment, and total DNA extracted at the end, is then used to convert the new

DNA produced to new microbial biomass carbon produced. CO
2

produced during

the incubation is also measured, so CUE can be calculated. All microbes need water

to live, so it is assumed that this method provides an unbiased estimate of growth.
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Furthermore, since the label is specifically measured in a biomass component, and

DNA replication does not occur without growth, it should provide a true measure

of assimilation rather than uptake. However, the additional assumptions introduced

by this method - in particular with the conversion between new DNA and microbial

biomass carbon - leave it susceptible to errors. I uncover and evaluate the e↵ect of

some of these in a sensitivity analysis of the method in chapter 3.
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CHAPTER 1

CARBON USE EFFICIENCY AND ITS TEMPERATURE
SENSITIVITY CO-VARY IN SOIL BACTERIA

1.1 Abstract

The strategy that microbial decomposers take with respect to using substrate for

growth versus maintenance is one essential biological determinant of the propensity

of carbon to remain in soil. In order to quantify the environmental sensitivity of

this key physiological tradeo↵, we characterized the carbon use e�ciency (CUE) of

23 soil bacterial isolates across seven phyla under three temperatures and up to four

substrates. We identified genes associated with the temperature sensitivity of CUE

in glucose media, and subsequently validated those candidate markers we had not

a priori hypothesized to exist using 1) a subset of isolates grown on other media

types, and 2) mixed bacterial communities grown on cellobiose in an artificial soil

matrix. Temperature altered CUE in both an isolate- and substrate-specific manner.

Our exploratory approach did not yield any genomic indicators of CUE which were

consistent across datasets, and we found a positive correlation between ribosomal

RNA operon copy number and CUE, opposite what was expected. We also found

that ine�cient taxa increased their CUE with temperature, while those with high

CUE showed a decrease in CUE with temperature. Together, our results indicate
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that CUE is a flexible parameter within bacterial taxa, and that its temperature sen-

sitivity is better explained by observed physiology than genomic composition across

diverse taxa. We conclude that CUE response to temperature and substrate is more

variable than has been previously considered.

1.2 Introduction

Optimum allocation of resources to growth versus maintenance is central to the

success of microorganisms. This “carbon use e�ciency” (CUE) is the outcome of a

complex interplay between biotic and abiotic factors which shape whether organisms

are able to thrive or just survive in their environment. In turn, how CUE responds

to a changing world is expected to have far-reaching implications for the ability of

global soils to maintain vital ecosystem services such as carbon retention.

Of particular pertinence is projecting how elevated temperatures are a↵ecting

microbial physiology under climate change. In ecosystem and Earth System models,

CUE is typically parameterized to be either una↵ected by warming or show a homoge-

neous community-level decrease (8; 288; 295). In practice, however, community-level

CUE increases (205; 304), decreases (91; 304), or remains una↵ected by temper-

ature (72; 91; 106; 304), with no clear explanation as to why these temperature

responses di↵er (300) or why di↵erent responses of CUE to longer-term warming

may emerge (91; 284). Organism-level CUE decreases when respiration increases

more than growth with temperature; this pattern can be caused by increased protein

turnover (181), changes in membrane fluidity (108), or the loss of energy-conserving
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sites in the electron transport chain (110). On the other hand, CUE is expected

to increase with temperature if maintenance costs are independent of growth rate,

and growth rate increases with temperature (219). E↵ects of longer-term changes in

temperature may additionally play out indirectly through chronic warming induced

changes in the environment.

Chronic warming can impact the quantity and quality of substrates available

through their di↵erential production and consumption (91; 225). For example, warm-

ing increased microbial activity in the rhizosphere (301) by increasing the quantity

of carbon released by roots into the soil (301), but also made those exudates richer

in phenolic compounds (229). In other instances, however, warming may reduce the

amount of biomass that plants allocate belowground (305), or plant inputs may just

not keep pace with increased microbial demand at higher temperatures (188). In this

case, labile compounds can be preferentially lost from soil, such that the remaining

available substrates show signatures of a later state of decay (225). All said, these

indirect e↵ects of temperature on CUE via changes in substrate quality may be as

— if not more — important than its direct e↵ects (91; 204). This is in part because

intrinsic di↵erences in the oxidation states of substrates set an upper limit on how

e�ciently they are anabolized (100); energy must be invested to bring the oxidation

state of carbon in organic acids to that of the cell, but not for more highly reduced

lipids. Substrates also di↵er in their extracellular processing and uptake costs, which

impacts the maximum potential yield of a substrate pool (7; 8; 91). Furthermore, al-

ternative metabolic pathways for processing the same substrate mean that microbes

may di↵er in how much of the energy they can capture (90). Finally, bacteria may
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switch between metabolic pathways depending on temperature (175) or substrate

availability (60; 121), opening the possibility of gene-by-substrate interactions in

how CUE responds to temperature.

In addition to di↵erences in e�ciency due to substrate quality, bacteria may di↵er

in their maximum possible e�ciency. As such, community-level di↵erences in CUE

temperature response may be driven by shifts in who is active in addition to the direct

physiological e↵ects of warming on a fixed community. It has long been assumed that

a tradeo↵ exists between how fast an organism can grow and growth e�ciency for a

given amount of substrate — the so-called growth rate-yield tradeo↵ (170). Bacteria

with more ribosomal RNA operons are able to sustain a higher maximum growth

rate (267), but also appear to grow less e�ciently than those with fewer copies

(238). This is proposed to be a consequence of the high energetic costs of building

and running translational machinery (66), suggesting that oligotrophic bacteria are

more e�cient than copiotrophs. Bacteria capable of producing large amounts of

extracellular enzymes or membrane-bound transporters may also be less e�cient than

those with more limited production capacity because substantial energy investment

is required to polymerize amino acids under aerobic conditions (165; 260). The

ability to produce copious and diverse extracellular enzymes may also be indicative

of reduced temperature sensitivity of these taxa, however, as bacteria with diverse

metabolic potentials may be better able to tune which pathways or enzymes they

use in order to maintain e�ciency even as the environment around them changes

(189; 285). As such, genomic traits such as ribosomal RNA operon copy number

or extracellular enzyme gene density may serve as ”genomic markers” of bacterial
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CUE and its temperature sensitivity. However, empirical support is equivocal for

both the growth rate-yield (151; 170; 198; 267; 238) and enzyme cost (180; 260)

hypotheses, and a number of questions regarding the genomic basis of e�ciency

remain. Specifically, are there genomic markers of CUE which are consistent across

phylogenetically diverse soil bacteria? And can the genomic repertoire of soil bacteria

be used to infer temperature responsiveness of CUE?

We sought to first quantify how soil bacterial CUE varies in its response to shifts

in temperature and substrate, and second to determine whether these shifts can be

predicted based on genome composition. Because it is a complex metabolic trait,

we posited that CUE and its temperature sensitivity would be highly variable across

taxa, but be more similar in closely-related bacteria (184). Furthermore, we posited

that CUE would be negatively correlated with ribosomal RNA operon copy number

(rrN) (238) and extracellular enzyme costs (8), and would decrease more in response

to temperature in organisms with simpler metabolisms. To test these hypotheses, we

measured the CUE of 23 soil bacteria representing seven phyla and a 50-fold di↵erence

in maximum growth rate on four media types. We then explored correlations between

CUE and gene abundances using a comparative genomics approach both to test a

priori hypotheses, and to discover potential markers of CUE using an explore and

validate method.
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1.3 Results

1.3.1 Variability in CUE

The bacterial isolates used in this study were primarily derived from temperate

forest soil (Table 1.1), and were chosen to be representative of the diversity found

in the soils they were derived from (61). Carbon use e�ciency was determined using

optical density measurements of exponentially-growing cultures to quantify growth,

and infrared gas analysis measurements of carbon dioxide production rates. Assay

conditions included growth at 15, 20, and 25oC, and on glucose, pyruvate, succinate,

and potato dextrose broth (PDB) media.

Carbon use e�ciency varied from 26 to 81% across conditions (Fig. 1.1). This

variation in CUE was underlain by substantial variation in both respiration and

growth rates among taxa, which did not always correlate with one-another (Fig.

B.1). Using a Hartigan’s dip test (177), we did not find evidence that CUE took

on a multimodal distribution under any of the assay conditions, except for PDB at

15oC (Fig. B.2). CUE showed a weak positive correlation with growth rate during

CUE measurements on glucose (repeated measures correlation r = 0.26, P <0.001,

270 df), PDB (r = 0.22, P = 0.02, 120 df), pyruvate (r = 0.24, P <0.01, 114 df),

and succinate (r = 0.25, P <0.05, 92 df) media. CUE was more strongly negatively

correlated with mass-specific respiration rate, with correlation coe�cients between

-0.41 (PDB; P < 0.001, df = 119) and -0.58 (glucose; P < 0.001; df = 206) across the

substrates tested. Thus variation in CUE between taxa was more strongly correlated

with variation in respiration between taxa than variation in growth rate was.
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Table 1.1: Isolates used in CUE measurements. Taxonomy is based on 16S sequence assignment
using IDTAXA (197). The explore/validate column denotes whether the organism was selected to
identify candidate genomic markers in an exploratory approach, or only appeared as part of the
dataset used to determine if those markers were predictive. “NA” indicates isolate did not grow on
glucose media so was not used for identifying genomic markers. “+” indicates isolate from Harvard
Forest; “=” indicates genome was sequenced using PacBio for this project. Genome completeness
and contamination were predicted using CheckM (212)

Isolate IDTAXA (GTDB) Taxonomy IMG taxon
ID

completeness
(contamina-
tion)

Explore or
Validate

Reference

AN5 + Bacteria; Proteobacteria; Alphaproteobacteria;
Rhizobiales; Rhizobiaceae; Agrobacterium

2617270923 99.98 (1.177) explore this study

AN6A + Bacteria; Proteobacteria; Alphaproteobacteria;
Rhizobiales; Rhizobiaceae; Agrobacterium

2619618868 99.96(0.141) explore this study

GAS188 + Bacteria; Proteobacteria; Alphaproteobacteria;
Rhizobiales; Beijerinckiaceae; EF018539

2693429787 97.806 (2.194) explore (226)

GAS232 + Bacteria; Acidobacteriota;
Acidobacteriae;Acidobacteriales; Acidobacteriaceae;
Terriglobus

2690315654 100 (3.586) explore this study

EB95 + Bacteria; Acidobacteria; Acidobacteriia;
Acidobacteriales; Acidobacteriaceae; unclassified
Acidobacteriaceae

2747843220 99.238 (1.724) explore this study

MT12 + Bacteria; Proteobacteria; Alphaproteobacteria;
Rhizobiales; Xanthobacteraceae; Bradyrhizobium

2690316366 99.871 (2.506) explore this study

MT45 + Bacteria; Actinobacteriota; Actinobacteria;
Corynebacteriales; Jatrophihabitantaceae; MT45

2690315646 95.755 (1.402) explore this study

GAS332 + Bacteria; Proteobacteria; Gammaproteobacteria;
Betaproteobacteriales; Burkholderiaceae;
Paraburkholderia

2695420918 99.95 (1.02) explore this study

GAS474 + Bacteria; Verrucomicrobiota; Verrucomicrobiae;
Methylacidiphilales; GAS474; GAS474

2690315640 99.324 (4.392) explore (223)

GAS479 + Bacteria; Firmicutes; Bacilli A; Paenibacillales;
Paenibacillaceae; Paenibacillus O

2693429825 99.511 (0.349) explore this study

GAS525 + Bacteria; Proteobacteria; Alphaproteobacteria;
Rhizobiales; Xanthobacteraceae; Bradyrhizobium

2740892596 99.984 (1.599) NA this study

GP183 + Bacteria; Firmicutes; Bacilli A; Paenibacillales;
Paenibacillaceae; Paenibacillus E

2690316367 97.849 (1.613) explore this study

GAS106B
+

Bacteria; Proteobacteria; Gammaproteobacteria;
Betaproteobacteriales; Burkholderiaceae;
Paraburkholderia

2690315676 99.95 (0.827) validate this study

24-YEA-27
+

Bacteria; Proteobacteria; Alphaproteobacteria;
Rhodobacterales; Rhodobacteraceae; 24-YEA-8

2767802438 94.838 (1.313) validate this study

BS19 =+ Bacteria; Proteobacteria; Gammaproteobacteria;
Enterobacterales; Enterobacteriaceae; Ewingella

2806310493 99.983 (0.536) validate this study

BS40 =+ Bacteria; Actinobacteria;
Actinobacteriota;Actinobacteria Actinomycetales;
Micrococcaceae; MA-N2

2806310496 99.039 (1.462) validate this study

BS60 =+ Bacteria; Proteobacteria; Alphaproteobacteria;
Rhizobiales; Rhizobiaceae; P6BS-III

2806310495 100 (0.435) validate this study

BS71 =+ Bacteria; Actinobacteriota; Actinobacteria;
Actinomycetales; Microbacteriaceae; unclassified
Microbacteriaceae

2806310494 98.99 (0.631) validate this study

A. alpinus Bacteria; Actinobacteria; Actinobacteria;
Micrococcales; Micrococcaceae; Arthrobacter

2634166197 99.541 (1.95) validate (303)

C. pinensis Bacteria; Bacteroidetes; Sphingobacteriia;
Sphingobacteriales; Chitinophagaceae; Chitinophaga

644736340 99.507 (0.739) validate (63)

GAS86 + Bacteria; Proteobacteria; Gammaproteobacteria;
Betaproteobacteriales; Burkholderiaceae;
Paraburkholderia

2695421038 99.95 (2.108) validate this study

GP187 + Bacteria; Planctomycetes; Planctomycetia;
Planctomycetales; Isosphaeraceae; Singulisphaera

2695420965 99,612 (5.814) validate this study

N. jensenii Bacteria; Actinobacteria; Actinobacteria;
Propionibacteriales; Nocardioidaceae; Nocardioides

2731957589 98.698 (1.215) validate (54)
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1.3.2 E↵ect of substrate quality on CUE and its temperature sensitivity

CUE did not increase significantly with the energy content of the substrate (heat

of combustion standardized to carbon content; Fig. B.3), likely because isolates

di↵ered in their ability to grow on the di↵erent substrates (Fig. B.1). The e↵ect of

temperature and media on CUE were isolate-specific (temperature*isolate interaction

F(22,476) = 2.324, P < 0.001; media*isolate interaction F(32,476) = 2.100, P <

0.001 for three-way ANOVA; Fig. 1.2). This e↵ect was underlain by variation in

both growth and respiration rate of the isolates (Fig. B.1) with temperature.

Across all isolates and media, the Q
10

of CUE varied from 0.49 to 2.63 (Fig. 1.3),

equivalent to a halving to more than doubling in its value with a 10oC increase in

temperature. In 71% of the cases however, CUE was una↵ected by temperature over

the range studied, indicating that respiration and growth often responded similarly

to temperature. Substrates did not di↵er in their mean temperature sensitivity (Fig.

B.4) or in the frequency with which the 95% bootstrap confidence intervals on Q
10

did not overlap one for a given isolate by temperature combination (Fig. 1.3).

1.3.3 Phylogenetic conservatism of CUE and its temperature sensitivity

A phylogenetic tree was built for the isolates based on a set of conserved single-

copy genes (152) using raxML (264). This tree was used as the backbone for identi-

fying whether the CUE values observed were distributed at random in the bacterial

taxa studied (Pagel’s lambda = 0), whether the values are consistent with evolution

following Brownian motion (Blomberg’s K = 1, Pagel’s lambda = 1), or whether they

are comparably under- (Blomberg’s K > 1) or over-dispersed (K < 1) on the phy-

logenetic tree. CUE did not have a consistent phylogenetic signal — it varied with
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temperature and substrate. Pagel’s lambda di↵ered from zero only at 25oC, and not

at 15 or 20oC on glucose (Table 1.2). On pyruvate, however, CUE correlated with

phylogeny and approached the expectation under Brownian motion based on Pagel’s

lambda for all temperatures. Blomberg’s K was typically small and less frequently

di↵erent from zero than would be expected by chance, indicating that variation in

CUE cannot be decisively said to vary more within than between clades. Reflecting

this generally weak phylogenetic signal, knowing CUE of all remaining taxa did not

help predict CUE in adjacent tips on the phylogeny except for taxa grown on glucose

or pyruvate at 15oC, or for the Q
10

between 20-25oC for taxa grown on glucose (Fig.

1.4, Fig. B.5, Fig. B.6). The estimation error for CUE on glucose was not correlated

with distance to nearest sampled taxon, although it was positively correlated for

pyruvate at 15oC (⇢ = 0.85 P < 0.01). Estimation error for Q
10

CUE on glucose

was weakly positively correlated with phylogenetic distance (⇢ = 0.37, P < 0.1), but

more strongly negatively correlated for pyruvate between 15-20oC (⇢ = -0.67, P <

0.05).

1.3.4 Drivers of CUE

We annotated the genomes of the bacteria using IMG (47), and then tested our

a priori hypotheses that CUE would be negatively correlated with rrN, growth rate,

and transporter and extracellular enzyme investment, but positively correlated with

metabolic complexity. Maximum observed growth rate (0.01-0.56 hour-1), rrN (1-8

copies), and CUE on glucose were frequently positively correlated with one-another

(Table 1.3, Fig. 1.5, Fig. B.7). CUE was not correlated with extracellular enzyme

activity measured using artificial substrates, or with extracellular gene or trans-
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Figure 1.3: Q
10

of CUE across three temperature ranges assayed in this study. Val-
ues are presented as the logarithm in order to center them on zero, and are coloured
according to substrate. The intensity of the colour is halved when the 95% boot-
strapped confidence intervals on the estimate of the raw data overlap one (i.e. CUE
is insensitive to temperature), depicted here as a horizontal line.
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35



Table 1.2: Phylogenetic signal of CUE and its temperature sensitivity over a range of
temperatures and media types. ”Temperature” denotes CUE at that temperature,
while ”range” denotes how CUE changes over the temperature range denoted. K
denotes Blomberg’s K, while � denotes Pagel’s lambda. Values for which the p-value
for a test comparing values to zero is greater than 0.05 are in grey, while asterisks
on black values denote P < 0.05 (*), P < 0.01 (**) or P < 0.001 (***). The
95% confidence intervals of K are 0.36-2.46, 0.32-2.45, 0.26-2.49, and 0.19-2.49, for
a Brownian process simulated on the glucose, PDB, pyruvate, and succinate trees.
The corresponding values for lambda are: 0.89-1, 0.89-1, 0.9-1, and 0.8-1.

Media temperature (oC) K (p) � (p) range (oC) K (p) � (p)

15 0.11 0.4 15-20 0.25 0.33
20 0.11 0.8 20-25 0.70* 0.98 ***glucose
25 0.21 0.86 ** 15-25 0.20 0.52
15 0.1 0.48 . 15-20 0.05 0.19
20 0.83 0.88 ** 20-25 0.01 0.00PDB
25 0.11 0.65* 15-25 0.02 0.00
15 0.66 ** 0.99 ** 15-20 0.15 0.99 **
20 0.31 . 0.98 ** 20-25 0.22 0.81pyruvate
25 0.38 . 0.99 *** 15-25 0.19 0.99 **
15 0.17 0.62 . 15-20 0.04 0.99 **
20 0.28 . 1.00 ** 20-25 0.11 0.97*succinate
25 0.1 0.89* 15-25 0.03 0.00

porter gene density estimated using a variety of genome annotation tools (P > 0.2).

Likewise, we did not find a correlation between in-silico estimated CUE for extra-

cellular enzyme production — which we determined using amino acid biosynthesis

and polymerization costs — and the CUE observed on glucose, except at 15oC (Ta-

ble 1.3). Codon bias is a measure of the degree to which a genome is optimized for

rapid and e�cient translation (283); based on the growth rate-yield hypothesis codon

bias is expected to correlate negatively with CUE. However, the observed relation-
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Table 1.3: Regression coe�cients for a phylogenetic generalized least squares model
fit to CUE on glucose at a given temperature versus rrN or the maximum growth
rate observed across all assay conditions. Slopes are shown when the p-value is
less than 0.1 (.), 0.05 (*), or 0.01 (**); - indicates the slope was not significant.
Metabolic pathway count corresponds to the number of MAPLE pathways with 80%
completeness. CUE for EEA production corresponds to the theoretical fraction of
carbon from glucose expected to be retained in the extracellular enzymes produced
by the organism, rather than being burned to produce the ATP needed to make the
corresponding amino acids de novo and then polymerize them into the proteins.

temperature CUE vs. GRmax CUE vs. rrN rrN vs. GRmax CUE vs. log2 rrN
Metabolic pathway

count
CUE for EEA
production

15oC 0.41*** 0.028* 7.23** 0.071** 0.0022*** 2.782*
20oC - - 6.18* 0.039** - -
25oC 0.26* 0.021* 6.18* 0.052** 0.001. -

ship between codon bias and CUE paralleled the non-negative correlation observed

between CUE and maximum growth rate (Fig. B.8). We found evidence for a pos-

itive correlation between CUE on glucose at 15oC (Table 1.3) and the number of

metabolic pathways annotated using MAPLE (17) (0.002 CUE metabolic pathway-1;

P < 0.001), and a weaker non-significant positive correlation at 25oC (0.001 CUE

metabolic pathway-1, P < 0.1). Similarly, the overall functional gene composition

that an organism had was correlated with CUE on glucose at both 15 and 25oC, as

evidenced by a significant correlation between the NMDS coordinates of a taxon’s

genome size-standardized KO composition and its CUE (R2 = 0.43, 0.29, P < 0.05;

envfit in vegan).

We also completed an ”exploratory” analysis for markers of CUE, where we looked

at all KO categories and maps to see whether they were correlated with CUE for a

subset of isolates grown on glucose, and then validated them based on their consistent
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appearance in additional isolates and under alternative cultivation conditions. None

of these candidate markers were confirmed by all three of the additional datasets

intended to validate them (Figs. B.10, B.9; Table A.2).

1.3.5 Drivers of Q10

The Q
10

of CUE tended to be lower for more e�cient taxa (Fig. 1.6). This

led to a homogenization of CUE at higher temperatures, with the standard error of

CUE between isolates decreasing between 15-20 and 15-25oC for all substrates. The

temperature sensitivity of CUE on glucose was negatively correlated with the number

of metabolic pathways a bacteria had at 15-20oC (0.007 decrease in Q
10

for every

additional pathway, P < 0.01), and at 15-25oC (0.002 decrease, P < 0.05), but not 20-

25oC. This corresponds to an expected decrease in CUE of 14% between 15-20oC for

the isolate with the most metabolic pathways (Ewingella BS19; 200), to an increase of

6% for the bacteria with the fewest (Verrucomicrobium GAS474; 49). Extracellular

enzyme-related functions increased the temperature sensitivity of CUE only for the

15-20oC temperature range on glucose (Q
10

increases 0.01 extracellular enzyme Mbp

-1 P < 0.01). Q
10

of CUE was not consistently correlated with genomic density

of transporters (15-20oC: -0.016 transporters Mbp -1; 20-25oC: +0.008 transporters

Mbp -1), and did not correlate with maximum growth rate or log
2

rrN (Table A.1).

As for CUE at a fixed temperature, no candidate markers of the temperature

sensitivity of CUE identified in the ”exploratory” glucose dataset were validated by

both the microcosms and ”other substrates” datasets (Figure B.11,A.3).
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Figure 1.6: Change in CUE with temperature compared to the CUE at the starting temperature
(i.e. Q

10

between 15-20oC or 15-25oC against CUE at 15oC, or Q
10

between 20-25oC compared
to CUE at 20oC). The colour of the points is based on phylum (or class for Proteobacteria), with
each point representing the mean CUE and Q

10

for each isolate under the relevant treatment and
temperature. Solid grey lines are the non-phylogenetic linear model, and dashed black lines the
phylogenetic generalized least squares fit. Numbers on each plot denote the slope of the phylogenetic
regression, if its p-value was below 0.1 (*** P < 0.001, ** P < 0.01, * P < 0.05 . P < 0.1). Thin
grey horizontal line denotes no temperature sensitivity (i.e. Q

10

equals 1), so points above the line
indicate an increase in CUE with temperature, and points below the line a decrease.
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1.4 Discussion

We hypothesized that CUE would be highly variable across soil bacteria and

temperatures, and this was indeed the case. The range of CUE observed for our soil

bacteria was similar to that of fungi isolated from the same site (194), as well as bac-

teria from a wide range of ecosystems and domestication histories (238). Nonetheless,

the upper limit of e�ciency reported for our bacteria was 10% lower than that of the

fungi, and almost 30% higher than the aforementioned bacteria grown under similar

conditions. Furthermore, the range of Q
10

values for the bacteria in the present study

included a pair of stronger, more positive temperature responses (Q
10

>1) than re-

ported for fungi, consistent with a previous study which showed bacterial growth to

be less negatively a↵ected by higher temperatures than fungal growth (217).

The diverse temperature response of CUE we identified in this study contrasts

with the homogeneous response typically assumed in models (10; 295). Although we

are not the first to observe an increase in CUE with temperature for soil taxa (304),

the magnitude and range of temperature responses observed across taxa is up to five

times larger than has been reported for soil communities (70; 106; 168; 304). We

suggest that the mute temperature responses observed for mixed communities are

the result of a statistical averaging e↵ect wherein mixtures of substrates (304) and

microbal taxa (72; 91) with divergent CUE cancel each-other out. This is consistent

with the observation that CUE on phenol (which can be used by a more restricted

group of taxa) (99) showed a much stronger response to temperature than CUE on

the more ubiquitously-used glucose (91). Consequently, taxon-level di↵erences in

CUE temperature sensitivity may only matter at the ecosystem-level for soil organic
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matter cycling if they are linked to the presence of other ”e↵ect” traits involved in

the uptake and processing of organic matter.

As a complex physiological trait which integrates the entire metabolic network

of a cell, we hypothesized that CUE and its temperature sensitivity would be more

similar in closely related organisms than expected by chance. This pattern was

observed, but the degree of phylogenetic conservation was insu�cient for building

a predictive model of CUE in unsampled tips of the phylogeny. Poor ability to

predict CUE based on phylogeny contrasts with other complex physiological traits

such as oxygenic photosynthesis (184) and with apparent growth-limiting traits such

as rrN (131; 238), which are assumed to be phylogenetically conserved because of

low horizontal gene transfer frequency. While some of the uncertainty in predicted

CUE values can be attributed to under-sampling of the phylogenetic tree, this is

unlikely to be the sole factor because estimation error was never strongly positively

correlated — and sometimes negatively correlated — with distance to the nearest

sampled taxon on the tree. Thus, the pattern of CUE on the tree is inadequately

modeled by Brownian motion, and so it must vary as a function of additional traits.

High and low e�ciency organisms had di↵erent overall metabolic potentials, but

few of the specific traits we proposed a priori to be correlated with CUE were

actually correlated in the manner hypothesized. Of particular note is rrN, which

has received considerable attention for its apparent role in setting the upper limit

on growth rate (66; 267; 283), and in turn the ecological strategy and bacterial CUE

under high nutrient conditions (238). Although we observed the expected positive

correlation between rrN and maximum growth rate or codon bias, our results diverge
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from previous studies (198; 238) in that CUE was positively correlated with rrN

and maximum growth rate under many temperature-substrate combinations. The

negative correlation between growth rate and CUE under high resource conditions

was initially proposed based on the better studied and of-observed growth rate-

yield trade-o↵ (170; 238). This growth rate-yield trade-o↵ is thought to be the

consequence of balancing the speed and accuracy of translation (66; 149; 238), and

has been proposed to be a central component of the copiotroph-oligotroph niche axis

(86). Nonetheless, we are not the first to question (280) the ubiquity of the growth

rate-yield trade-o↵.

Additional work has shown that bacteria can attain rapid growth under both

high- and low-e�ciency metabolisms. For example, selection for rapid growth in E.

coli can result in either a high uptake, low-yield phenotype, or a moderate uptake,

high-yield phenotype (151). A third dimension describing the relationship between

uptake rate and yield in E. coli has been proposed (49), which would account for the

observation that overflow metabolism is not ubiquitous, and not all organisms shift

away from the pentose phosphate pathway and towards glycolysis when grown on

glucose. Since we found a similar pattern of CUE increasing with growth rate and rrN

even for non-fermentable substrates, this indicates that overflow metabolism is not a

uniform driver of CUE and yield at high growth rates in our environmental isolates.

Inconsistent relationships between maximum growth rate and yield have also been

reported for aquatic Proteobacteria (198) and Bacillus species (280). Mechanistically

it would make sense that CUE increases with growth rate if maintenance respira-

tion (time-dependent) outstripped growth respiration (time-independent) (219), but

43



neither the literature (133) nor the value derived from the current dataset indicate

this to be the case. Furthermore, maintenance respiration would have to be lower in

fast-growing taxa than slow-growing taxa to explain the higher CUE in fast-growing

taxa, which contradicts the pattern previously observed (281). Therefore, the mech-

anisms underlying the positive correlation between growth rate and e�ciency in the

present isolates remains unclear.

Our exploratory analysis searching for genomic markers of e�ciency also failed

to provide a substantive explanation for the observed di↵erences in CUE between

taxa. None of the markers proposed based on their correlation with CUE on glucose

were consistently validated by both the ”other substrates” and microcosms datasets,

and those which were validated by one or the other were often found in few genomes

and/or formed isolated steps in metabolism. This lack of validation by additional

datasets may in part be because the substrates di↵er in where they enter central

metabolism. Glucose may enter any of a number of pathways with di↵erent nitrogen

requirements, energy yields (90), and anabolic potentials — including through the

TCA cycle where pyruvate and succinate are generated — whereas pyruvate and

succinate are much more limited in the diversity of pathways they can directly en-

ter. On the other hand, the presence of interspecific interactions may explain why

glucose-fed isolates and cellobiose-fed microcosms di↵ered in the genes correlated

with CUE, despite the substrates being able to enter the same metabolic pathways

(59). For instance, genes which are advantageous for growth in isolation may not

be advantageous in a mixed community (93; 297), or where substrates are not in

a freely-available pool (215; 19). Furthermore, while we are certain that CUE was
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measured during exponential phase for isolates, it is unlikely to be the case for the

soil communities which were left without substrate addition for a month prior to

CUE measurements. Finally, it is possible that the metagenomes inferred for the

microcosm communities based on their 16S rRNA gene content do not adequately

represent the true metagenomic content, as even very similar 16S genes can be asso-

ciated with di↵erent functional compositions (141). Nonetheless, our results indicate

that the taxa which are most e�cient on one substrate are unlikely to be the most

e�cient on another, such that CUE is more like a dynamic response variable than a

fixed ecological trait. Given that CUE varied substantially as a function of substrate

— and substrate chemistry can di↵er substantially across soils (102) — it is possi-

ble that the temperature sensitivity of CUE, rather than its absolute value, is more

useful for comparing the physiology of di↵erent microbial community compositions.

The temperature sensitivity of CUE was not consistently correlated with common

soil-associated traits such as extracellular enzyme gene allocation, but could be pre-

dicted based on the value of CUE itself. Specifically, the temperature sensitivity of

CUE was negatively correlated with basal CUE under many assay conditions. This

could not be attributed to di↵erences in the growth rates of organisms at the lower

temperature, indicating that increasing temperatures do not preferentially favor slow

growing taxa. Decreased CUE temperature sensitivity with greater basal CUE does,

however, indicate that the CUE of communities should homogenize at higher tem-

peratures as ine�cient communities increase in e�ciency and e�cient ones less-so.

This is indeed the case for the mock bacterial communities incubated in artificial

soil with cellobiose, as the standard error of CUE decreased from 4.4 at 15oC to 3.8
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at 20oC and 3.6 at 25oC. Nonetheless, given the possibility of di↵erent substrates

becoming available at higher temperatures, and the substrate-specific divergences in

CUE across taxa, the correlation between CUE and its temperature sensitivity is

unlikely to hold for intact microbial communities. Accordingly Zheng et al. (2019)

found only a very weak negative correlation between CUE and its Q
10

across a range

of di↵erent soils. Thus future work integrating the diversity of temperature responses

to predict the outcome of community interactions is necessary to advance the field.

1.5 Conclusion

The objective of this study was to identify markers of CUE in soil bacteria, in

order to be able to generate predictions about the taxa most sensitive to temperature.

We found that fast-growing taxa are likely to grow more e�ciently, and that highly

e�cient taxa tend to decrease in e�ciency with temperature more so than those

with initially low CUE. Therefore, our results are consistent with the hypothesis

that maintenance respiration is a more pivotal factor in regulating soil bacterial CUE

than previously recognized. Our results also challenge the idea that high ribosomal

operon copy number correlates with reduced growth e�ciency. Previously and de-

novo hypothesized markers of e�ciency were not consistent across assay conditions,

reinforcing that CUE is an integrator of organism physiology in response to the

environment more-so than a fixed parameter of their ecological strategy. Our results

also suggest that communities capable of e↵ectively retaining soil C in the present

may not necessarily be the best equipped to continue to do so in the future, because

the taxa able to grow most e�ciently at low temperature tended to release more
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substrate as CO
2

as the incubation temperature increased. Our study therefore opens

the door for additional work with isolates under the more realistic soil conditions we

ultimately wish to understand.

1.6 Materials and Methods

1.6.1 Isolate selection

We used 20 bacteria from our lab culture collection, and an additional three

isolates from public culture collections for our study (Table 1). Those bacteria

from our lab collection were derived from the organic and A-horizon of the Canton

series underlying a temperate deciduous forest stand at the Harvard Forest Long-

term Ecological Research (LTER) site, in Petersham Massachusetts. These bacteria

were isolated using a range of cultivation conditions (222), and freezer stocks were

prepared using the second or third streak of the original soil-derived colony. The

isolates used were selected to cover the global diversity of soil bacteria (64).

1.6.2 CUE measurement

To measure bacterial CUE, isolates were grown on up to four media types at a

pH of 6; this is the lowest pH all isolates were able to grow but still two pH units

higher than the soil most of them were originally isolated from. The media types

were: potato dextrose broth (PDB), and glucose, pyruvate, and succinate media. We

ensured the cells were acclimated by transferring exponentially-growing cultures at

the temperature and media used for assay conditions at least three times prior to
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taking CUE measurements. Additional information on media and assay set-up can

be found in the supplement.

The optical density and respiration rate of cultures were monitored throughout

the exponential growth phase using a Spectronic-20 spectrophotometer at 600 nm

and a Quantek instruments model 906 CO
2

analyzer, respectively. Prior to each

read, tubes were vortexed vigorously to ensure solution and headspace CO
2

were in

equilibrium. At least three distinct experiments starting with a new freezer stock

restreak were completed for each isolate and condition assayed. A conversion factor of

130 µg carbon OD-1ml-1 was used to calculate microbial biomass carbon throughout

the growth curve (BioNumber 109836), as technical challenges collecting biomass

from cultures meant that MBC was underestimated in the taxa characterized by

small cells.

1.6.3 Data analysis

Calculation of CUE was restricted to exponential phase, which was identified by

taking the natural logarithm of biomass vs. time and finding the range of timepoints

which maximized the slope. Three to ten timepoints were used per curve for this

purpose, depending on the growth rate of the isolate and duration of exponential

phase. When the slope of the growth rate or mass-specific respiration rate did not

di↵er from zero (F test P > 0.05), the data were discarded and the experiment was

repeated. CUE was calculated as:

CUE =
µ

µ ⇤R
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Where µ is the intrinsic rate of increase, calculated as the slope of ln(biomass)

against time, and R is the mass-specific respiration rate during the same time period

(194). This is similar to the method used by Keiblinger et al. (2010); the use here

of multiple CO
2

measurements and of the entire exponential phase is expected to

improve estimate reliability. We used repeated measures correlation (20) to look at

the e↵ect of substrate quality.

1.6.3.1 Calculating temperature sensitivity

Although our experimental design was such that the same starting culture would

be incubated in four di↵erent media under three di↵erent temperatures, successful

concurrent cultivation under all twelve conditions was rarely achieved. Therefore,

in the absence of such a blocked design, bootstrapping was used to determine un-

certainty in the temperature sensitivity of CUE. In other words, the temperature

sensitivity of CUE was calculated for all combinations of 15 and 25�C for a given

media and isolate combination, and the standard error was calculated from this.

1.6.3.2 Genome annotation

Genome annotation was completed using the Joint Genome Institute’s IMG

pipeline (47). Potential extracellular enzymes were separately identified based on

the presence of signal peptides using SignalP 4.1 (214) with the default D-cuto↵ of

0.57. This subset of ORFs was then examined for enzymes involved in litter and

necromass decomposition. Carbohydrate-active and lignin-degrading enzymes were

identified using dbCAN (116) v6, and additional putative extracellular enzymes for

other substrates were extracted by name from the IMG annotations using “*rotease”
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or “*roteinase” or “*eptidase” or “*osphatase” or “*hospholipase” annotation as key-

word strings. These extracellular enzyme classes were chosen to retain consistency

with functions typically assayed in soils.

Transporters were annotated using TCDB (241) and TransportDB 2.0 (81) and

summed for each isolate. Identification was completed with gBlast2 (234) against the

TCDB reference database downloaded on July 20th 2018, and using the TransAAP

online tool against TransportDB in August of 2018. The number of metabolic path-

ways an organism has based on annotations with MAPLE (17) was used as a proxy

for metabolic complexity (198). The envfit function in vegan (203) was used to

evaluate whether CUE was correlated with di↵erences in overall KO composition of

bacterial genomes, where the initial ordination of functional gene composition was

completed using NMDS of Bray-Curtis distances.

1.6.3.3 Protein production costs

We calculated the total extracellular enzyme cost as a function of amino acid

biosynthesis and translation, using the amino acid biosynthesis costs presented in

Kaleta et al. (2013) for E. coli with glucose as the substrate and assuming 4.2 ATP

consumed per peptide bond formed (126). Assuming 26 ATP are produced per six

glucose carbons, we calculated the theoretical carbon assimilation e�ciency for each

protein as the ratio of carbon in the protein to the carbon in the protein plus CO
2

respired making the ATP required to make the protein. The “per protein CUE” for

each protein was then weighted by its expected relative expression to get a whole

exoenzyme production cost. Relative expression was predicted based on codon usage

bias as outlined in Appendix C.
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1.6.4 Mixed bacterial communities

Cells were extracted using soil from the same Harvard Forest LTER site as

the bacterial isolates using 224mM sodium pyrophosphate (266), and subsequently

passed through a 0.8µm mixed cellulose ester syringe filter to remove eukaryotic

cells. The filtered cell suspension was then used to inoculate an artificial soil ma-

trix consisting of 70% acid-washed sand, 20% mu✏ed and acid-washed silt, and 10%

calcium chloride-treated bentonite clay, initially amended with mixed deciduous leaf

litter DOC, 2X roller media (266), VL55 minerals and yeast extract. The commu-

nities were kept at 60% water holding capacity at 15 or 25oC for four months, with

weekly additions of 0.5 mg g soil-1 cellobiose and 0.05 mg g soil-1 ammonium nitrate

solutions as sources of carbon and nitrogen, respectively, for the first three months.

We measured CUE using the 18O-water method (262) at the same temperature the

long-term incubations were completed at. The bacterial communities were sequenced

at the Environmental Sample Preparation and Sequencing Facility at Argonne Na-

tional lab following the Earth Microbiome Project protocol (276). Metagenomes of

these communities were inferred using PICRUSt v 1.1.1 (153) with closed-reference

OTUs picked in Qiime v1.9.0 (43) at 99% identity using uclust (79) against Green-

genes v. 13.5 (65). We used relative abundance of the predicted KEGG ortholog

gene categories as predictors of CUE. Nearest Sequenced Taxon Index (NSTI) for

genomes used in functional assignment averaged 0.02 (range 0.003 to 0.072).

1.6.5 Identification of genomic markers

We focused on identifying markers of CUE on glucose, as this is the substrate

for which we were able to get the most bacteria to successfully grow on. Genomic
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markers of e�ciency (and temperature sensitivity of e�ciency) of glucose utilization

were identified and validated in one of two ways. When we had an a priori hypothesis

about the marker based on the literature, we used the full set of bacteria grown on

glucose for our analysis. This was the case for rrN, codon bias (a proxy for growth rate

(283)), extracellular enzyme costs, and number of metabolic pathways (198). For the

others, we used a two-part process: a preliminary exploratory analysis for bacteria

grown on glucose to identify candidate markers, and then a distinct validation step

in which a ”validating” dataset of bacteria grown on other substrates and a dataset

of bacterial communities grown in artificial soil on cellobiose were interrogated for

the same patterns. This exploratory analysis focused on the 5270 KEGG orthologues

found in our bacterial genomes.

The identification and validation of markers in bacterial isolates was completed

using phylogenetic generalized least squares in caper v1.0.1 (206). Caper uses a max-

imum likelihood method to infer the branch length transformations of the phyloge-

netic tree which minimizes phylogenetic correlation of the model residuals, thereby

flexibly accounting for di↵erent degrees of phylogenetic signal in the residuals of com-

parable models. Genes were said to be candidate markers of e�ciency at an alpha

of 0.05 for the slope estimate. We used an identical approach to identify markers of

e�ciency in our first and second validating datasets. In the first, we required that the

correlation between the candidate marker and CUE was the same for all 23 bacterial

isolates on glucose as it was for the first subset of 12. The second validating dataset

consisted of genes similarly correlated with CUE in at least two of the three other

substrates. This criteria was selected to balance assuring robustness of markers over
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multiple substrates with the fact that di↵erent substrates are likely to enter di↵erent

metabolic pathways.

Our second validation method involved the cellobiose-grown mixed soil com-

munties, for which we calculated Spearman correlation coe�cients between predicted

KO density and CUE. Those genes for which the approximate t-statistic had a p-

value less than 0.05 for the Spearman rank correlation were kept. We considered

markers of CUE from the isolates to be validated when they had the same significant

direction of correlation in the isolate exploratory glucose, exploratory validating iso-

late glucose, and microcosm or other substrate datasets. When the validating dataset

confirmed the correlation between a genomic marker and CUE that was proposed

by the exploratory dataset, we examined residual plots for bias and normality for

models. Model residuals were also examined to confirm removal of any phylogenetic

signal using the phylosig() function in phytools v.0.6-60 (236). Proposed markers

which did not meet these criteria were excluded from further analysis, which in prac-

tice meant that ”rare” functions found in just a handful of genomes were routinely

removed.

1.6.6 Inferring CUE based on phylogeny

The overall phylogenetic signal for CUE was calculated using the phytools pack-

age (236) for both Blomberg’s K (35) and Pagel’s lambda (208). We then used the

rescale function in geiger (109) to scale the terminal branch lengths of the phylogeny

according to this lambda so the trait matched Brownian motion. Ancestral recon-

struction of CUE and its temperature sensitivity was completed on the rescaled tree

using the phyEstimate() function in picante (132), where one known tip was removed
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at a time and the CUE of the remaining tips was used to infer that of the removed

tip.
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CHAPTER 2

METABOLIC TRADEOFFS AND HETEROGENEITY IN
MICROBIAL RESPONSES TO TEMPERATURE

DETERMINE THE FATE OF LITTER CARBON IN A
WARMER WORLD

2.1 Abstract

Climate change has the potential to destabilize the Earth’s massive terrestrial

carbon (C) stocks, but the degree to which models project this destabilization will

occur depends on the kinds and complexities of microbial processes they simulate.

Of particular note is carbon use e�ciency (CUE), which determines the fraction of

C processed by microbes that is anabolized into microbial biomass rather than being

lost to the atmosphere as carbon dioxide. The temperature sensitivity of CUE is often

modeled as a homogeneous property of the community, which contrasts with empir-

ical data and has unknown impacts on projected changes to the soil carbon cycle

under global warming. We used the DEMENT model—which simulates taxon-level

litter decomposition dynamics—to explore the e↵ects of introducing organism-level

heterogeneity into the CUE response to temperature for decomposition of leaf litter

under 5oC of warming. We found that allowing CUE temperature response to di↵er

between taxa facilitated increased loss of litter C, unless fungal taxa were specifi-

cally restricted to decreasing CUE with temperature. Increased loss of litter C was
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observed when the growth of a larger microbial biomass pool was fueled by higher

community-level average CUE at higher temperature in the heterogeneous microbial

community, with e↵ectively lower costs for extracellular enzyme production. To-

gether these results implicate a role for diversity of taxon-level CUE responses in

driving the fate of litter C in a warmer world.

2.2 Introduction

Soil heterotrophs are central to the cycling and recycling of the 60 Gigatons of

organic carbon (C) that plants deposit onto and into the ground each year. How well

these litter inputs are converted into relatively stable soil organic matter depends

on temperature, moisture, chemical composition, and soil mineralogy, which interact

to influence microbial physiology (127; 181; 204). Predictions regarding how soil

C stocks will continue to respond to climate change are, in turn, highly sensitive

to how carbon use e�ciency (CUE)—or the fraction of C taken up by a cell and

incorporated into biomass rather than being respired—-changes with temperature

(8; 12; 167; 258; 273; 294). As such, quantifying microbial decomposer CUE and its

responsiveness to environmental change has been subject to intensive study (29; 68;

91; 95; 159; 179; 180; 205; 262; 263; 304).

Soil microbial communities show considerable di↵erences in how their metabolisms

respond to elevated temperatures, with their CUE increasing (205; 304), decreasing

(68; 91; 205; 168; 304) or remaining una↵ected by warming (72; 205; 284; 304). How-

ever, models of the soil C cycle generally assume either no change (12; 167; 295)

or a fixed decrease in CUE with temperature (8; 12; 167; 294). When CUE is al-
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lowed to directly increase with temperature, this temperature response is fixed across

taxa (91; 300). In other instances, CUE may be modeled as fixed within taxa, such

that changes in community-level CUE with warming are the result of shifts in the

dominant group or groups of organisms present as a function of their dietary pref-

erences and/or C:N ratio (258; 294). Therefore, models have thus far insu�ciently

accounted for how the temperature sensitivity of central metabolism may di↵er be-

tween microbes, such that intrinsic di↵erences in e�ciency between taxa above and

beyond temperature-driven di↵erences in substrate supply may also drive microbial

community trajectories.

Variation in the temperature sensitivity of growth e�ciency could be driven by

di↵erences in the rate-limiting step of central metabolic pathways (71), or in how well

the proteins responsible for the extracellular processing and uptake of environmental

nutrients are able to maintain activity as temperature increases (11; 13). For in-

stance, there is some evidence that bacteria benefit more than fungi from an increase

in temperature, as their growth rate was observed to decrease less rapidly with tem-

perature above its optimum than the fungal community’s did (217). Although the

respiration rate for the two groups could not be isolated in that study, it is possible

that they may also di↵er in the temperature response of CUE as a consequence of

changing nutrient demands (129; 257). Therefore, the temperature range over which

an an organism can maintain e�cient growth is one important dimension of its niche

(44), and, when combined with other “response traits” determining how they react to

the environment (155), can impact their success in the environment. These response

traits may in turn be linked to “e↵ect traits” determining how an organism alters its
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environment, such as extracellular enzyme production (15; 184; 279). For instance,

taxa capable of growth at higher temperatures may need to produce a broader suite

of enzymes and attack a wider range of substrates to support this rapid growth than

slower-growing taxa.

Extracellular enzyme production is proposed to impose substantial metabolic

costs on the cell, however. This is because carbon which could otherwise be allocated

to growing the cell or generating the energy required to maintain it must instead be

spent producing amino acids and expending ATP to link them together (125; 126). As

such, extracellular enzyme production is inferred to reduce the carbon use e�ciency

of soil microbial communities (8; 180).

We explored whether interactions between the temperature sensitivity of intra-

cellular (i.e. CUE) and extracellular (i.e. litter decomposing enzyme) metabolic

processes of cells can explain why CUE is observed to increase with temperature

in some soils, and decrease in others. We used the litter decomposition model DE-

MENT (6) to evaluate four hypotheses: 1) allowing temperature response of CUE to

vary between taxa increases uncertainty in projected litter decomposition dynamics

because more diverse phenotypic combinations exist for competitive selection (i.e.

species sorting) to act upon; 2) this variation favors a community with higher CUE,

in turn leading to higher microbial biomass and greater litter C loss with warming;

3) forcing the temperature response of CUE to positively co-vary with the number

of enzymes an organism produces causes greater litter C loss than when the two

factors vary independently, because increasing CUE with temperature o↵sets the in-

creased costs against CUE associated with copious enzyme production; and 4) the
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magnitude of litter carbon loss with warming is greater when the carbon-rich fun-

gal functional group increases with warming than if only the nitrogen-rich bacterial

functional group does.

2.3 Methods

2.3.1 DEMENT background and model design

DEMENT (6) is a litter decomposition model designed to simulate the loss of

leaf C through time. The principal advancement of DEMENT over its predecessors

is that it is both microbially- and spatially-explicit. The model is able to simulate

inter- and intraspecific microbial interactions, with a primary focus on the tradeo↵

between the ability to take up and digest substrates, and the metabolic costs of

creating and maintaining the machinery required to do so. Because these tradeo↵s

are both explicit and variable across taxa, DEMENT is an ideal model for evaluating

how the physiology and ecology of microbes a↵ects C stocks in a changing world.

Furthermore, DEMENT allows for consideration of how diversity in responses across

taxa (rather than using some cross-taxon mean) can facilitate soil C responses to

climate change. Full details about the setup and execution of DEMENT are available

elsewhere (6; 8; 9); here we describe the model controls on CUE which are relevant

to our study.

Intrinsic CUE—the maximum CUE an organism could attain under ideal tem-

perature and stoichiometry—is calculated for each taxon as a function of the baseline

CUE at 15 oC, and the number of enzymes and transporters the taxon can produce.

In turn, how much CUE is decreased due to enzyme and transporter production
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Table 2.1: CUE-related model parameters mentioned in this paper.

Parameter Value Units Description Reference

C
r

0.38 dimensionless CUE at 15oC for a taxon with no transporters or enzymes this paper
C

e

-0.0025 enzyme-1 change in CUE per extracellular enzyme gene Allison, 2014
C

u

-0.0071 transporter-1 change in CUE per transporter gene Allison, 2014

C
t

-0.022 to
0.022

oC-1 change in CUE per degree change in temperature from 15oC this paper

depends on the cost per enzyme (C
e

) and cost per transporter (C
u

) (Table 2.1). The

C used in enzyme synthesis is considered a loss from the cell, and is therefore not

reported as microbial biomass C. The intrinsic CUE of each taxon is adjusted for

temperature, decreasing by 0.016oC-1 by default (i.e. C
t

= -0.016oC-1), consistent

with a global meta-analysis (230).

2.3.2 Modifications to DEMENT

Baseline CUE (C
r

) was adjusted downwards from its original published value of

0.58 to 0.38 at 15oC; this not only improved model stability (Table A.4), but is also

consistent with a comparative modeling study completed by Li et al. (2014), several

18O-H
2

O based CUE measurements (95; 262; 263), and for the structural components

of litter modeled by MIMICS (296). We also altered the temperature sensitivity of

CUE (C
t

) from its default (fixed at a given cross-taxon average), to vary around the

mean in di↵erent ways (Fig. 2.1). In the first set of scenarios, C
t

varied independent

of the taxonomic identity or number of enzymes a taxon produced. In the second

scenario, C
t

was limited to either increasing or decreasing as a function of the number

of enzymes a given taxon had. In the third, bacteria and fungi were constrained to

both have a positive C
t

, both a negative C
t

, or one a positive and the other a negative
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C
t

. In all instances, C
t

was selected at random from a uniform distribution bounded

by +/- 0.022oC-1 at the upper and/or lower limits. These values are within the range

of temperature sensitivities observed for both bacterial cultures in the lab and for field

communities (Fig. B.12), as well as values inferred based on modeling CUE against

mean annual temperature on a global basis (256; 300). It was necessary to force the

temperature sensitivity of CUE to take on a zero-centered uniform distribution so

that simulation outputs in which extracellular enzyme counts were linked to the C
t

could be compared to those scenarios where they were not linked, without changing

the distribution of extracellular enzyme counts present in the community.

2.3.3 Running DEMENT

DEMENT v0.7.2 was downloaded from GitHub, and modified as described above.

DEMENT was subsequently run on the Massachusetts Green High Performance

Computing Cluster for 6,000 model days using 59 di↵erent independent starting

seeds and a 100x100 grid size. “Control” runs were completed at 15oC (equivalent

to April to November mean soil temperature for a northern mid-latitude temperate

deciduous forest (37)), while “heated” runs were completed at 20oC (8). The first

1000 days of each resultant output file was excluded from the analysis because of

rapid shifts in the microbial community during this time. In addition, outputs were

filtered to exclude any seeds where the substrate pool was two or more times greater

at the end of the model run than the median during the preceding 5000 days, indi-

cating unrealistic, unconstrained litter accumulation. R version 3.4.0 was used for

all runs and analyses (231).
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Figure 2.1: Schematic of experimental design used in this study, where CUE temper-
ature response (C

t

) varies as a function of the number of enzymes and/or taxonomic
a�liation of organisms. Graphs show the e↵ects of having homogeneous (A) or het-
erogeneous (B) C

t

across taxa; the e↵ect of forcing a positive (C) or negative (D)
correlation between the number of enzymes and C

t

; e↵ect of fungi and bacteria both
having increases (G) or decreases (H) in CUE with temperature, or with one group
showing an increase while the other decreases its CUE with temperature (E,F). Hor-
izontal dashed lines indicate a C

t

of zero, and clusters of points above and below this
line denote when CUE tends to increase or decrease with increasing temperature.
The letters F and B in the x-axis of individual graphs denote sensitivities for fungi
and bacteria, respectively.
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2.3.4 Analysis of outputs

The model outputs of interest were litter organic matter (LOM), microbial biomass

carbon (MBC), respiration rate, richness and diversity of the surviving community,

median number of enzymes per taxon for taxa alive during the 5000-day simulation,

fungal:bacterial biomass ratio for surviving taxa, and biomass-weighted CUE at 15

and 20oC. Richness was calculated as the number of taxa surviving to the end of

the 5000 day run, while diversity was calculated as the median daily Shannon’s H

for the duration of the simulation using the vegan package (203). In order to de-

termine whether warming and model parameterization a↵ected model outputs, we

used mixed e↵ect models with starting seed as a random e↵ect and warming or sim-

ulation scenario as fixed e↵ects using lmer in lme4 v 1.1-17 (26). Data were visually

assessed for normality and homoskedasticity using qqplots and residual plots follow-

ing log-transformation. Significantly di↵erent pairwise di↵erences were subsequently

identified using emmeans v.1.3.0 (163), with a stringent Bonferoni-corrected p-value

cuto↵ of P < 0.0001. Warming e↵ect sizes are plotted as the natural log ratio of

model outputs in heated:control scenarios.

2.4 Results and discussion

LOM and MBC content were both generally higher than observed in environ-

mental samples, leading to MBC:LOM ratios at the high end of ranges observed in

the field (2-11% vs. 1-5% (243; 299)). LOM and MBC values were within the range

previously observed for simulations using DEMENT with daily litter inputs (10), but

63



greater than those with just a single litter pulse (6; 9; 83), indicating that these high

biomass and litter C values can be attributed to these substrate inputs.

2.4.1 Intertaxon variability

To evaluate the e↵ect of intertaxon CUE variablity on LOM stocks, we ran the

model at 20oC (“heated”) under two scenarios, and then compared the results to

runs at 15oC (“control”). In the first “heterogeneous” scenario, C
t

was assigned

from a random uniform distribution bounded by -0.022 and 0.022oC-1 (Fig. 1A).

In the second scenario, all taxa had an identical temperature sensitivity that was

equivalent to the cross-taxon mean (0oC-1) of the starting community in the first

scenario (Fig. 1B).

Introducing intertaxon di↵erences in CUE temperature response caused the char-

acteristics of the initial microbial community (starting seed) to have a greater impact

on litter decomposition than when all taxa had an identical temperature response

(Table 2.2). This contrasts with the dampening e↵ect proposed to explain instabil-

ity in small-scale microbially-explicit models compared to their macroscale counter-

parts (293), whereby the additive e↵ect of increased physiological diversity was to

increase, rather than decrease, uncertainty in the present simulations. The median-

standardized interquartile ranges of both MBC (0.25 vs. 0.15) and LOM (0.28 vs.

0.14) increased with the introduction of a variable C
t

. Through species sorting, this

heterogeneously-responding microbial community became more uneven with warm-

ing, with similar richness but lower diversity than the control community (Table 2.2).

The heterogeneous communities maintained a higher median microbial biomass—

driving two and a half times more LOM loss—than the homogeneous communities
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(Fig. 2.2). Intriguingly, neither litter (r=0.16, p=0.23) nor microbial biomass pool

sizes (r=-0.44, P < 0.001) positively correlated with extracellular enzyme invest-

ment; thus, a (non-significant) 28% increase in the median enzyme count is unlikely

to have driven the increased decomposition under the heterogeneous scenario. In-

stead, increased decomposition and increased biomass are likely the consequence of

elevated CUE under warming conditions.

The homogeneous community scenario tested here is akin to the “no adaptation

of CUE” scenario reported in a number of other studies (12; 167; 258), because the

cross-taxon mean used is zero temperature response. Our results of reduced LOM loss

in the absence of acclimation are consistent with two previous studies, but contrast

with others. In an ecosystem-level model parameterized for an arctic tundra system,

Sistla et al. (2014) found that greater soil organic matter (SOM) loss occurred

with warming when the microbial community was able to acclimate its CN ratio

(and in turn e�ciency), than when the CUE was e↵ectively fixed. Likewise, Allison

(2014) found greater potential for increased LOM accumulation under warming when

there was greater absolute variation in CUE across taxa (i.e. C
r

from 0.18 to 0.58

rather than 0.38 to 0.58) (8). On the other hand, a comparison of models where

the microbial community is modeled homogeneously showed that soil organic matter

loss increases when organisms do not adapt (167). Similarly, Wieder et al. found

that greater SOM loss occurred if the CUE was directly insensitive to temperature

than when C
t

was negative (295). These microbially-explicit decomposition models

vary in if and how they link CUE to microbial traits, and so our findings support
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the concept that nuances in how di↵erent components of CUE respond to warming

is an important control on the fate of litter C (105).

2.4.2 Confirming the role of C
t

as an additional niche dimension

We allowed for CUE to increase with temperature for a subset of taxa in a way

that most previous modeling e↵orts have not, and so it is possible that our results

deviate from those of prior studies not because of variation in C
t

, but rather because

our simulations explore novel (positive C
t

) parameter space. To facilitate comparison

with previous decomposition modeling studies, we ran DEMENT simulations to test

the e↵ect of C
t

being homogeneous vs. heterogeneous when CUE was either always

positive (homogeneous C
t

= 0.011 oC-1 (Fig. 2.1A
i

), heterogeneous C
t

= 0 to 0.022

oC-1 (Fig. 2.1G)) or always negative (homogeneous C
t

= -0.011 oC-1 (Fig. 2.1A
ii

),

heterogeneous C
t

= -0.022 to 0 oC-1 (Fig. 2.1H). In contrast to when C
t

was allowed

to vary over the whole spectrum of values, introducing heterogeneity in CUE did not

increase inter-run uncertainty in LOM or MBC pools (Table A.5). We also found

that less LOM accumulated when CUE showed a variable decrease with warming

than a fixed one (Fig. B.13), which could be attributed to a reduction in MBC.

By contrast, the homogeneous zero-centered and homogeneous positive C
t

scenarios,

and the heterogeneous zero-centered and heterogeneous positive C
t

, behaved more

similarly to one-another in that warming decreased LOM while increasing MBC and

CUE to a greater degree in the heterogeneous than homogeneous scenarios (Table

A.5). This finding reinforces the idea that if warming favors decomposer taxa capable

of maintaining e�cient growth, then soil C loss will be accelerated. Nonetheless, the

strongly selected-for positive CUE response is rarely observed in complex soil com-
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munities. This indicates that additional tradeo↵s with CUE temperature response

are likely at play when CUE is either una↵ected or decreases with temperature, but

that these tradeo↵s are missing in the formulation of DEMENT used in this sce-

nario. One such tradeo↵ possible to explore within the framework of DEMENT is

the allocation of resources to extracellular enzyme activity.

2.4.3 Linkages between CUE temperature response and extracellular en-

zyme allocation

Microbes depend upon extracellular enzymes to break down substrates in the

environment into digestible pieces, and enzyme activities are, like CUE, responsive

to temperature (11; 94; 285). Soil extracellular enzymes often are active in-situ at

temperatures much below their activity optima (13; 94; 225). Therefore, warming

enables them to process substrates at a higher rate, increasing the supply of growth

substrates to microbes. However, the a�nity of enzymes for their substrates also

decreases as temperature increases (11; 94); unless enzyme V
max

increases faster

with temperature than K
m

, additional resources must be diverted from growth to

enzyme production to maintain microbial growth substrate supply rate. Therefore,

taxa may di↵erentially-allocate resources to enzymes and so demonstrate a relation-

ship between the temperature sensitivity of CUE and the number of enzymes they

produce.

We evaluated whether litter decomposition changed its trajectory when the or-

ganisms with the greatest genomic potential to break the litter down (i.e. enzyme

counts) also showed the most- or least-positive growth e�ciency response to warm-

ing. In the “increase” scenario, we simulated a positive relationship between tem-
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perature sensitivity of CUE and extracellular enzymes, where C
t

increased linearly

from -0.022oC-1 for organisms with no extracellular enzyme production potential to

0.022oC-1 for those organisms capable of producing the model maximum of 40 en-

zymes (Fig. 1C). In the “decrease” scenario, we simulated a negative relationship

between temperature sensitivity of CUE and extracellular enzymes, where the op-

posite relationship was imposed with C
t

decreasing with enzyme counts (Fig. 1D).

These scenarios were then compared to the “heterogeneous” scenario (aka “no rela-

tion”, as described above), where C
t

varied across the same range, but independently

of the number of enzymes an organism could produce. Therefore, the starting dis-

tribution of C
t

and enzymes per taxon was identical across scenarios, and only their

relationship with one-another changed.

More taxa survived to the end of the simulation when warming was applied

under the “increase” scenario than either the “decrease” or “no relation” scenario

(median of 13 versus 7 and 8, respectively, median absolute deviation = 2.97 in all

cases). Under the ”increase” scenario, taxa had 70% more enzymes each than the

“no relation” scenario, and more than three times as much as the “decrease” scenario

(Table 2.2). This relationship caused the CUE of surviving taxa to be 20-37% lower

at 15oC for the “increase” scenario compared to the others, but this deficit was

diminished at 20oC. As a result, the “increase” scenario led to higher respiration and

a greater LOM loss under warming than under the ”decrease” scenario, despite an

overall smaller microbial biomass pool (Fig. 2.3).

How the relationship between C
t

and extracellular enzymes drives favorable trait

combinations can also be observed in Fig. 2.4. Surviving taxa retained a median
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enzyme count of at least 30 and a realized CUE temperature response of no less

than 0.0158oC-1 under the “increasing” scenario (⇢=0.64, P < 0.001), but there was

no relationship between realized CUE temperature response and enzyme production

under either the “decrease” or “no relation” scenarios. The selection for community

capable of maintaining high CUE at high temperatures was much weaker when it

was associated with reduced enzyme production. When there was no relationship

between C
t

and extracellular enzyme production costs, however, communities were

able to attain a high realized CUE temperature response over a much wider range

of median enzyme costs.

These findings indicate that response traits—which determine how an organ-

ism reacts to changes in temperature (e.g. CUE temperature response)—and e↵ect

traits—which determine how an organism alters its environment (e.g. litter decom-

position potential)—interact to determine the fate of organic C. However, contrary to

our hypothesis, adjusting DEMENT to allow for this tradeo↵ did not substantially

alter how community-level CUE responds to temperature. The observation that

LOM is reduced further when enzyme production is e↵ectively cheaper contrasts

with earlier work with DEMENT (8) showing smaller litter C pools under both

ambient and elevated temperature when enzymes and transporters were cheaper to

produce. However, our results are consistent in that microbial biomass was lower

when enzyme costs are high, and that the microbial community was able to main-

tain a higher CUE under warming no matter the enzyme costs. The mechanisms

underlying these phenomenological similarities di↵er, however, due to di↵erences in

how C
t

was parameterized in the two sets of model simulations. Specifically, although
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microbes were able to attain high CUE at elevated temperatures in our simulations

by balancing the benefits of elevated CUE at higher temperatures with the costs of

enzyme production against CUE, CUE always decreased with temperature in earlier

work with DEMENT (8). Furthermore, enzyme production costs varied both with

and independently of enzyme counts in previous DEMENT simulations (8).

Increased CUE is likely needed to o↵set the costs of extracellular enzyme produc-

tion if taxa are to remain competitive at elevated temperatures within the framework

of DEMENT, but empirical support for correlations between temperature sensitivity

of CUE and enzyme investment are needed to best put these inferences to use. By

examining correlations between the number of enzymes an organism can produce

and its CUE temperature response at the end of the DEMENT model run, we see

that there is likely to be either no or a positive correlation between the two variables,

rather than a negative one (Fig. 2.5). Limited data from bacterial isolates grown

in the lab also support this, whereby CUE temperature response is either positively

correlated or uncorrelated with the number of enzymes produced (Chapter 1). Fur-

thermore, although the mechanisms underlying the isolate response remain unclear,

it is consistent with the scenario of C
t

and enzyme counts being positively correlated.

Specifically, we found isolates with lower CUE at 15oC (more extracellular enzymes

in DEMENT) were more likely to have a positive CUE temperature response than

those with a higher CUE (fewer enzymes in DEMENT). Together, these insights

support a synergism between CUE temperature response and enzyme production,

rather than a tradeo↵. Because our DEMENT simulations indicate that selection for

organisms characterized by high, positive CUE temperature responses with warm-
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ing can alter both the directionality and extent of projected C loss, we propose it

is important for other models to explore how possible increases—rather than just

decreases—in C
t

a↵ect terrestrial C projections.

2.4.4 Ecological relevance of microbial metabolic diversity—bacteria vs.

fungi

Across scenarios, fungi generally dominated the microbial biomass C pool (Ta-

ble 2.2), as is typical for litter decomposition ((46), and references therein). This

pattern occurred despite generally lower biomass-weighted CUE for surviving fungal

taxa, and preferential loss of fungal taxa across most scenarios. The lower CUE for

surviving fungi was not driven by higher enzyme costs than for bacteria, as median

biomass-weighed enzyme costs were not statistically di↵erent (P > 0.4) and di↵ered

by less than one enzyme for the two groups. To test whether modeled di↵erences in

fungal vs. bacterial cell sizes and stoichiometry were driving this pattern, we tested

how forcing di↵erences in C
t

in the two groups would impact the decomposition rate.

DEMENT was run with CUE simulated to respond: 1) negatively to temperature

for all fungi and positively for all bacteria (F-B+; Fig. 1E); 2) negatively for all

bacteria and positively for all fungi (F+B-; Fig. 1F); 3) positively for all bacteria

and fungi (F+B+; Fig. 1G); or 4) negatively for all bacteria and fungi (F-B-; Fig.

1H). Minimum and maximum C
t

were set to -0.022 oC and 0.022 oC, respectively.

Litter C accumulated at higher rates with warming when fungal C
t

was negative,

regardless of the bacterial C
t

(Fig. 2.6, blue, orange). This is consistent with the

observation that the CUE of surviving fungi was lower at the simulation temperature

in seven out of the eleven scenarios. Because fungi have higher CNP ratios than
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bacteria (and thus higher C demands per unit biomass), we predicted that if fungi

have a negative CUE temperature response, they would be weaker competitors at

higher temperature than bacterial taxa, reducing their C demand and mitigating

the warming e↵ect on SOC stocks. While this contrasts with the premise that fungi

should have a higher CUE (259) due to their higher CN ratio (302), it is consistent

with a growing body of literature indicating that substrate quality—rather than the

F:B ratio correlated with it—is the underlying driver of di↵erences in CUE between

soils (91; 179; 261; 275). Despite the low nutrient content of the daily inputs to the

model (92:0.26:0.02 C:N:P), microbes did not show evidence for nutrient limitation

as biomass CN and CP ratios were lower than are typical for soil communities (299)

(4.1 and 36.7 vs. 7.6 and 42.4, respectively). Thus C was limiting, which could have

further disfavored the highly C-demanding fungi when their C
t

was negative. The

lower CUE (and increased sensitivity to warming) for fungi compared to bacteria

under a given scenario was also not driven by increased metabolic costs for enzyme

production in fungi, as median biomass-weighted enzyme counts were statistically

indistinguishable from those in bacteria.

The litter C pool decreased when fungal CUE increased with temperature (Fig.

2.6), correlating with a smaller microbial biomass pool when bacterial CUE also

decreased with temperature. By contrast, the LOM and MBC responses to warming

were similar when only the C
t

of bacteria was changed, indicating that it is the fungal

warming response which really drives changes in litter decomposition in DEMENT.

This result is interesting because no a priori di↵erences in decomposition or uptake

potential were imposed on the two groups, and fungal and bacterial richness was
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initially equivalent. Warming decreased the enzyme costs when fungal C
t

was positive

but bacterial C
t

was negative, and decreased them under the opposing scenario, as

evidenced by an increase in C
r

in the former and decrease in the latter. Nonetheless,

as long as both bacterial and fungal CUE did not both decrease their CUE with

temperature, community level CUE remained higher at 20oC than it was at 15oC.

Empirical evidence for high-level di↵erences in the temperature sensitivity of CUE

in bacteria and fungi is currently mixed, but indicate CUE temperature response for

fungi is unlikely to be more positive than that for bacteria. (304) did not find

a correlation between the lipid-based fungal:bacterial ratio and Q
10

of CUE over a

range of soils. However, we (chapter 1) and our colleagues (194) have found that fungi

tend to show a stronger negative CUE response with warming than do bacteria when

examining them in isolation in the lab. This is consistent with the observation that

fungal CUE decreases more strongly with warming than bacterial CUE does when C
t

is restricted to negative values (Fig. 2.6). It is also consistent with the premise that

bacterial growth benefits more from elevated temperature than does fungal growth

in some soils (216). Greater empirical insight into the taxonomic drivers of the

temperature sensitivity of CUE will assist with constraining the parameterization

and projections of microbially-explicit decomposition models such as DEMENT.

2.4.5 Comparison to empirical warming studies

Litter decomposition is typically observed to accelerate under warming (174).

However, both the chemical composition of the litter and the identity of the living

plant community at the site of decomposition are important for the magnitude of

this response (56; 289). Consistent with these empirical studies—but inconsistent
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with a previous publication using DEMENT (8)—we found that litter decomposition

was accelerated by warming in seven of ten scenarios. The range of losses and

gains of litter C we observed with warming (-62% (scenario C) to +42% (scenario

A
i

)) approximates the -65% to +36% change observed in field experiments (174),

with the upper limit only being exceeded when C
t

is constrained to negative values.

Likewise, values for simulated litter respiration response (-5 to +6%) fell within

those observed for soil respiration in the field (-48 to +178%), and responses for

microbial biomass C were also within the observed range (-25 to +58% vs -47 to

+86%) (174). Our modeled responses to warming thus suggest that one possible

explanation for di↵erences in terrestrial C pool responses to warming may be diverse

temperature sensitivities of underlying decomposer communities. Nonetheless, a

number of additional factors must be taken into consideration when interpreting

our results in the context of global climate change, including soil mineral-mediated

modulation of substrate supply (58; 246), plant-microbe feedbacks (187; 258; 271),

and temporal variation in temperature.

While we explored how di↵erent relationships between temperature sensitivity of

CUE and enzyme count or taxonomic a�liation a↵ects the C cycle, empirical support

for these scenarios is lacking. By including additional dimensions to the warming

response we showed that species e↵ectively sort to make communities with di↵ering

impacts on litter decomposition. Following up on the direction and magnitude of

these underlying metabolic scenarios in the soil and litter can help us better constrain

our model results on reality. New and emerging work indicates that the temperature

sensitivity of CUE is weakly negatively correlated with the temperature sensitivity
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of extracellular enzyme activity, and with bacterial—but not fungal—biomass on

the community level (304). However, di↵erent kinds of bacteria and fungi are able

to show positive, negative, or no temperature sensitivity of CUE (Chapter 1), and

so high-level assumptions about how these groups respond are unlikely to resolve

uncertainties about the magnitude of soil C loss under warming.

2.5 Conclusions

Our results indicate that accounting for heterogeneous temperature response in-

creases uncertainty regarding future litter C stocks, but only when C
t

does not di↵er

from zero on average. However, by combining simulations, empirical studies, and

literature searches, we can conclude that microbes with high enzyme costs are likely

to have larger increases in intrinsic CUE with temperature; that taxa can sort on

a CUE temperature response axis; and that fungi are more likely to increase CUE

with warming than bacteria. The simulations meeting each or all of these criteria

lead to loss of litter C under warming, indicating that litter is likely to become a

net atmospheric C source in a warmer world. We encourage models functioning

on larger scales to explore the e↵ect of including heterogeneity in the temperature

response of CUE in order to determine the robustness of our conclusions to other

model structures. However, ultimately increased integration of the growing body of

literature on the temperature sensitivity of CUE must be explored for root causes of

heterogeneity in temperature sensitivity of CUE in taxa under in situ conditions.
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CHAPTER 3

HEAVY AND WET: EVALUATING THE VALIDITY
AND IMPLICATIONS OF ASSUMPTIONS MADE

WHEN MEASURING GROWTH EFFICIENCY USING
18O WATER

3.1 Abstract

How microbes allocate carbon to growth vs. respiration plays a central role in

determining the ability of soil to retain carbon. This carbon use e�ciency (CUE) is

increasingly measured using the 18O-H
2

O method, in which heavy oxygen incorpo-

rated into DNA is used to estimate growth. Here we evaluated the validity of some

of the assumptions of this method using a literature search, and then tested how

violating them a↵ected estimates of the growth component of CUE in soil. We found

that the 18O method is consistently sensitive to assumptions made about oxygen

sources to DNA, but that the e↵ect of other assumptions depends on the microbial

community present. We provide an example for how the tools developed here may

be used with observed CUE values, and demonstrate that the original conclusions

drawn from the data remain robust in the face of methodological bias. Our results

lay the foundation for a better understanding of the consequences to the 18O method

underlying assumptions. Future studies can use the approach developed here to

identify how di↵erent incubation conditions and/or treatments might bias its CUE
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estimates and how trustworthy their results are. Further wet-lab work dissecting the

assumptions of the 18O method in soil will help justify the scenarios under which it

is reasonable to trust its results.

3.2 Introduction

Carbon use e�ciency (CUE) - or the fraction of carbon taken up by a cell and

retained in biomass - is a central determinant of soil organic matter longevity. Across

a wide range of complexities, models of the carbon cycle have shown that the degree

to which soil organic matter is lost in a warmer world is contingent on CUE (12;

91; 167; 258). For many years, the study of CUE was limited to looking at one

substrate type at a time, as a single heavy-labeled carbon source was added to the

soil. Under this method, heavy carbon is partitioned by the cell into respiration

and biomass, and CUE can be calculated as the fraction of heavy carbon collected

from biomass compared to the sum collected from biomass and CO
2

respiration.

However, this method is believed to overestimate “true” e�ciency by measuring

the uptake of simple labile compounds, and not their integration into biomass (95;

105). 13C methods may also overestimate CUE if the target compound preferentially

enters anabolic pathways while non-labeled substrates are used to generate ATP (100;

160). Finally, 13C methods measure substrate use e�ciency on a specific compound,

and do not capture the repertoire of substrates microbes are faced with in natural

environments such as soil.

Due to these known biases there has been a recent push towards using substrate-

agnostic growth-based measures of biomass increment, such as 18O-H
2

O incorpo-
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ration into DNA. This method provides more realistic and reproducible measures

of CUE than the other dominant methods (95). To complete this assay, 18O-H
2

O

is added at 5-50% of the total soil moisture and the soil is incubated in a sealed

container for 12-72 hours (95; 263). At the end of the incubation, a gas sample is

taken to measure the dissimilatory carbon losses, and the incubated soil is extracted

for DNA. The amount of 18O incorporated into the DNA is then determined using

Isotope-Ratio Mass Spectrometry (IRMS), and converted into new DNA produced

assuming 31% of DNA is oxygen. This DNA “growth” is then converted into mi-

crobial biomass carbon produced using either a sample-specific (95; 221; 284) or

a cross-sample average ratio between total DNA yield and chloroform fumigation-

extractable microbial biomass carbon (262). CUE can then be calculated as for the

13C and 14C labeled methods.

For the 18O-H
2

O method to provide an accurate estimate of CUE, a number of

assumptions must be made. These include extracellular water being the sole source

of oxygen in DNA; unbiased DNA and microbial biomass carbon extraction, and the

actively growing community being representative of the total community (Fig. 3.1).

Here we explore the validity of these assumptions, the e↵ects of violating them, and

the subsequent consequences for the conclusions made. We focus primarily on how

the sensitivity of conclusions changes as a function of the fungal:bacterial DNA ratio

of soil, both because proxies for this value are often determined during routine soil

analyses, and because relevant physiological di↵erences between these two groups are

relatively well studied.
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Figure 3.1: The 18O-H
2

O method of evaluating microbial growth in units of carbon
(numbers), and the assumptions made (letters). 1. Soil collected from the envi-
ronment is subject to chloroform fumigation extraction to determine total microbial
biomass carbon. All taxa are assumed to have their biomass extracted with equal
and complete e�ciency (a). 2. A subfraction of the soil is incubated with 18O-H

2

O,
which is assumed to be incorporated into new DNA (3) to comprise a fraction of
the oxygens equal to its abundance as a fraction of total soil water (b). 4. The
DNA is extracted and quantified, so that a relationship between the DNA and mi-
crobial biomass carbon content of the community can be established. It is assumed
that this community-level MBC:DNA ratio is representative of the community which
grew during the incubation with 18O-H

2

O, such that the new DNA growth can be
converted to new microbial biomass carbon (c). Image made in BioRender.
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3.3 Methods

We generated models to simulate the e↵ects of ine�cient DNA and MBC ex-

traction, the active community not representing the total community, alternative

oxygen sources to DNA, and di↵erential growth rates between bacteria and fungi

on measured MBC accumulation. All analyses were completed in R v3.4.0 (232),

and results were plotted using ggplot2 (291). Other packages used for the analysis

included: plyr (292), Shiny (45), and ggpubr (128).

3.3.1 Model development

First, we explored the existing literature for reported values regarding each pa-

rameter corresponding to the underlying assumptions that could impact CUE esti-

mates (Table 1). Second, we generated a Shiny app (45) to interactively explore the

e↵ect of violating the assumptions of microbial growth measurements over a range

of fungal:bacterial ratios. It is available at: https://gracepold.shinyapps.io/

18OSimulations/ until 25 hours/month server time have been used, and also as

supplementary file S1. These simulations were run either assuming identical growth

rates for bacteria and fungi (which were generated as a function of the fungal:bacterial

DNA ratio), or that bacteria and fungi formed groups with distinct growth rates.

Within each of these scenarios, we evaluated subsets where just DNA was extracted

ine�ciently, where MBC was extracted ine�ciently, or where both were incompletely

extracted. This app was additionally used for error checking the code used in sub-

sequent steps, as predicted responses and test cases could be readily screened than

when embedded in sensitivity analyses.

86



Next, we completed a sensitivity analysis by running simulations where a single

parameter was changed to the minimum or maximum value observed in the literature

(supplementary file S1 and 3.1), while keeping all the remaining parameters at a

best-estimate value. Since “true” MBC di↵ered between simulations, we divided the

resultant “apparent” or “observed” microbial biomass carbon by the true microbial

biomass carbon in order to standardize results. Sensitivity values were subsequently

recorded as per Allison et al. (12; 105):

Sensitivity =
|log10(highoutput)� log10(lowoutput)|

|log10(highparameter)� log10(lowparameter)| (3.1)

where high output is the ratio of the true CUE to the observed CUE under the

high parameter value, and low output is the ratio of the observed CUE under the

low parameter value. Simulation parameters and the underlying assumptions can be

found in Table 3.1, and references are available as a part of our Shiny app.

3.3.2 Empirical validation

We used a soil microbial diversity manipulation experiment to explore how re-

moving fungi from inocula impacts estimates of CUE under a range of methodological

errors. Briefly, microbial communities were extracted from temperate deciduous for-

est soil and either the complete (“fungi + bacteria”) or less than 0.8uM fraction

(“filtered”; “bacteria only”) was used to inoculate an artificial soil matrix. This ma-

trix consisted of 70% acid-washed sand, 20% mu✏ed and acid-washed silt, and 10%

calcium chloride-treated bentonite clay, initially amended with mixed deciduous leaf

litter DOC, 2X roller media (266), VL55 minerals and yeast extract. The commu-
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nities were grown for four months, with weekly additions of 0.5mg g soil-1 cellobiose

and 0.05mg g soil-1 ammonium nitrate solutions as sources of carbon and nitrogen,

respectively, for the first three months.

CUE was then measured by adding 18O-H
2

O to 20% of the final water present to

subsamples of the soil. Samples were prepared identically, only using 16O-H
2

O, as

controls for background heavy oxygen incorporation. The samples were then placed

in sealed tubes for 24 hours and the CO
2

produced during this time measured us-

ing an IRGA. The soil samples were stored at -80C until DNA extraction using the

Qiiagen Powersoil HTP kit. The resultant DNA was quantified using PicoGreen

(Invitrogen), and its 18O enrichment was measured using IRMS at the UC Davis

Stable Isotope Facility. CUE was calculated as per (262). The abundance of total

bacteria and total fungi was assessed by real-time quantitative PCR (qPCR) using

16S rrNA primers (199) and ITS primers (87), respectively. The abundance in each

soil sample was based on increasing fluorescence intensity of the SYBR Green dye

during amplification. Preceding qPCR assay an inhibition test was performed by

running serial dilutions of DNA extractions and no amplification inhibition was de-

tected. The qPCR assay was carried out in a 15 µl reaction volume containing 2 ng of

DNA, 7.5 µl of SYBR green (QuantiFast SYBR Green PCR Master Mix) and 1 uM

of each primer. Two independent qPCR assay were performed for each gene. The

qPCR e�ciencies for both genes ranged between 85 and 105%. 16S qPCR conditions

were: 15 minutes at 95oC; 40x 15s @ 94oC, 30s @ 55oC, 30s @72oC; and a melting

curve. ITS qPCR conditions were: 15 minutes at 95oC; 40x 15s @ 94oC, 30s @ 46oC,

30s @ 72oC; and a melting curve. These values were corrected to a genome counts
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basis using median values from (172) for ITS copies and from (61) for bacterial 16S

ribosomal RNA operon copy number.
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3.3.3 Shiny app and theoretical sensitivity simulations

Each simulation was set up under a series of biologically-plausible scenarios. Fun-

gal:bacterial ratio and total community size are presented in terms of DNA, as this

is the unit of growth measurement for the 18O method. Definitions for parameters

are found in Table 3.1, and for variables defined in the equations below in Table 3.2.

Values without subscripts denote true MBC, DNA, and MBC:DNA ratios, while val-

ues with subscripts denote observed values were DNA (d), MBC (c), or both (dc) to

be extracted ine�ciently:

A community of size totalDNA was generated as a function of the fungal fraction

of the total DNA pool (FBratio), where 30 was used as an arbitrary multiplier to

determine the amount of DNA, and 3 as an additive factor to ensure that bacteria-

only (FBratio of zero) still had DNA.

totalDNA = 30 ⇤ FBratio+ 3 (3.2)

The corresponding amount of microbial biomass carbon (MBC ) is calculated as

the sum of the biomass carbon of bacteria and fungi, which are the products of their

DNA and MBC:DNA ratios.

MBC = FBratio ⇤ totalDNA ⇤MBCDNAratF+

(1� FBratio) ⇤ totalDNA ⇤MBCDNAratB (3.3)

Since the MBC:DNA ratio of bacteria (MBCDNAratB) is generally larger in fast-

growing and well-fed cells (50; 51), we also added the option to allow this ratio to vary
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Table 3.2: Variables defined in the microbial biomass carbon calculations

Parameter Description units

totalDNA The true total mass of the DNA pool in the soil ug g-1 soil
FBratio Fungal fraction of total DNA pool dimensionless
MBC The true total mass of the microbial biomass carbon pool in the soil ug g-1 soil

MBCc
The apparent total mass of the microbial biomass carbon pool in the soil,
given ine�cient microbial biomass carbon extraction

ug g-1 soil

totalDNAd The apparent total size of the true DNA pool in the soil, given a DNA extraction ine�ciency ug g-1 soil

MBCDNA
True microbial biomass carbon to DNA mass ratio of starting community;
Used to convert the DNA growth increment into microbial biomass carbon growth.

dimensionless

MBCDNAc
Apparent microbial biomass carbon to DNA mass ratio of starting community,
given that microbial biomass carbon is not completely extracted; Used to convert
the DNA growth increment into microbial biomass carbon growth.

dimensionless

MBCDNAd
Apparent microbial biomass carbon to DNA mass ratio of starting community, given
that DNA is not completely extracted; Used to convert the DNA growth increment
into microbial biomass carbon growth.

dimensionless

MBCDNAdc
Apparent microbial biomass carbon to DNA mass ratio of starting community, given
that both DNA and microbial biomass carbon are not completely extracted; Used
to convert the DNA growth increment into microbial biomass carbon growth.

dimensionless

GRmean
Growth rate for simulations when bacteria and fungi are assumed to grow at the same
community-level mean

day-1

TrueMBCsame
The true new microbial biomass carbon produced during the CUE incubation, assuming
bacteria and fungi grow at the same rate (GRmean)

ug C day-1

MBCsamed
The apparent new microbial biomass carbon produced during the CUE incubation, given
that not all the DNA is extracted from the growing community and assuming that bacteria
and fungi grow at the same rate (GRmean)

ug C day-1

MBCsamec
The apparent new microbial biomass carbon produced during the CUE incubation, given
that not all the microbial biomass carbon is extracted from the growing community and
assuming that bacteria and fungi grow at the same rate (GRmean)

ug C day-1

MBCsamedc
The apparent new microbial biomass carbon produced during the CUE incubation, given
that not all the DNA and microbial biomass carbon are extracted from the growing community
and assuming that bacteria and fungi grow at the same rate (GRmean)

ug C day-1

DNAbias
The fraction of new oxygen in DNA which comes from extracellular water (i.e. the 18O-water
added) rather than other sources

dimensionless

TrueMBCdi↵
The true new microbial biomass carbon produced during the CUE incubation assuming
bacteria and fungi grow at di↵erent rates

ug C day-1

MBCdi↵d
The apparent new microbial biomass carbon produced during the CUE incubation assuming
bacteria and fungi grow at di↵erent rates, given that not all the DNA is extracted from the
growing community

ug C day-1

MBCdi↵c
The true new microbial biomass carbon produced during the CUE incubation assuming bacteria
and fungi grow at di↵erent rates, given that not all the microbial biomass carbon is extracted
from the growing community

ug C day-1

MBCdi↵dc
The true new microbial biomass carbon produced during the CUE incubation assuming bacteria
and fungi grow at di↵erent rates, given that not all the DNA and microbial biomass carbon are
extracted from the microbial community

ug C day-1
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as a function of bacterial growth rate. This was done by scaling the ratio between the

minimum and maximum MBCDNAratB values observed in the literature over the

range of bacterial growth rate (GRbact) values observed (Table 3.1), and assuming

a linear relationship:

MBCDNAratB = GRbact ⇤ 15.5/0.199 + 4.422111 (3.4)

which is the solution of

MBCDNAratB = GRbact ⇤ MBCDNAratBmax�MBCDNAratBmin

GRbactmax�GRbactmin

+

MBCDNAratBmin� MBCDNAratBmax�MBCDNAratBmin

GRbactmax�GRbactmin

(3.5)

The MBC:DNA ratio of the starting community is therefore:

MBCDNA =
MBC

totalDNA

(3.6)

However, DNA is not completely extracted from soil microbes, with some evidence

for a higher extraction e�ciency for bacteria (DNAexte↵B) than fungi (DNAexte↵F )

(85). Spores may be extracted with even lower e�ciency (73), but do not contribute

to growth so do not play into our calculations. The observed total DNA observed

assuming ine�cient DNA extraction (totalDNA
d

) is then:

totalDNA

d

= FBratio ⇤ totalDNA ⇤DNAexteffF+

(1� FBratio) ⇤ totalDNA ⇤DNAexteffB (3.7)
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The corresponding MBC:DNA ratio assuming ine�cient DNA extraction (MBCDNA
d

)

is:

MBCDNA

d

=
MBC

totalDNA

d

(3.8)

MBC is also ine�ciently extracted, with chloroform fumigation extraction capturing

the true fungal (MBCexte↵F ) and bacterial (MBCexte↵B) biomass carbon present

with di↵erent e�ciencies (122). MBC
c

represents the total amount of microbial

biomass observed after accounting for this chloroform fumigation extraction ine�-

ciency:

MBC

c

= FBratio ⇤ totalDNA ⇤MBCDNAratF ⇤MBCexteffF+

(1� FBratio) ⇤ totalDNA ⇤MBCDNAratB ⇤MBCexteffB (3.9)

And the corresponding MBC:DNA ratio is:

MBCDNA

c

=
MBC

c

totalDNA

(3.10)

If ine�ciencies in both MBC and DNA extraction must be accounted for, then the

apparent MBC:DNA ratio (MBCDNA
dc

) is:

MBCDNA

dc

=
MBC

c

totalDNA

d

(3.11)

Steps 4-6 therefore show the MBC:DNA ratios a researcher converting the new DNA

produced to MBC would use if they were unaware of extraction biases and did
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not account for di↵erences in bacterial and fungal growth rates (below). We assume

growth during the incubation is representative of overall community growth. In other

words, the community is assumed to be in a steady state and the rate of turnover of

a given taxon matches its growth. In turn, the turnover of DNA in the environment

is proportionate to its abundance (162). If bacteria and fungi grow at the same rate,

then the community-level growth rate (GRmean) can be set to vary as a function of

the community composition:

GRmean = FBratio ⇤GRfun+GRbact ⇤ (1� FBratio) (3.12)

The corresponding true increase in MBC for bacteria and fungi when they are

assumed to grow at the same rate (TrueMBCsame) is:

TrueMBCsame = GRmean ⇤ totalDNA ⇤ FBratio ⇤MBCDNAratF+

GRmean ⇤ totalDNA ⇤ (1� FBratio) ⇤MBCDNAratB (3.13)

However, we may not “see” all this growth because extracellular water is not the

sole source of oxygen in DNA. Rather, anywhere from 4-70% of oxygen in DNA may

come from metabolic water (145; 144; 166). We refer to this bias towards using

extracellular rather than intracellular water as DNAbias, which is the fraction of

DNA oxygen derived from extracellular water.

Subsequently, if just DNA is extracted ine�ciently then the corresponding ap-

parent new MBC produced (MBCsame
d

) is:
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MBCsame

d

= DNAbias⇤(GRmean⇤totalDNA⇤FBratio⇤DNAexteffF⇤MBCDNA

d

+GRmean ⇤ totalDNA ⇤ (1� FBratio) ⇤DNAexteffB ⇤MBCDNA

d

) (3.14)

If just MBC is extracted ine�ciently, then the corresponding apparent new MBC

produced (MBCsame
c

) is:

MBCsame

c

= DNAbias ⇤ (GRmean ⇤ totalDNA ⇤ FBratio ⇤MBCDNA

c

+

GRmean ⇤ totalDNA ⇤ (1� FBratio) ⇤MBCDNA

c

) (3.15)

If both MBC and DNA are extracted ine�ciently, then the apparent new MBC

produced (MBCsame
dc

) is:

MBCsame

dc

= DNAbias⇤(GRmean⇤totalDNA⇤FBratio⇤DNAexteffF⇤MBCDNA

dc

+

GRmean ⇤ totalDNA ⇤ (1� FBratio) ⇤DNAexteffB ⇤MBCDNA

dc

) (3.16)

When bacterial growth rate (GRbact) and fungal growth rate (GRfun) di↵er, the

true MBC produced (TrueMBCdi↵ ) is:

TrueMBCdiff = GRfun ⇤ totalDNA ⇤ FBratio ⇤MBCDNAratF+

GRbact ⇤ totalDNA ⇤ (1� FBratio) ⇤MBCDNAratB (3.17)

And the values for the true MBC produced under the various extraction bias scenarios

are:
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MBCdiff

d

= DNAbias⇤(GRfun⇤totalDNA⇤FBratio⇤DNAexteffF⇤MBCDNA

d

+

GRbact ⇤ totalDNA ⇤ (1� FBratio) ⇤DNAexteffB ⇤MBCDNA

d

) (3.18)

MBCdiff

c

= DNAbias ⇤ (GRfun ⇤ totalDNA ⇤ FBratio ⇤MBCDNA

c

+GRbact ⇤ totalDNA ⇤ (1� FBratio) ⇤MBCDNA

c

) (3.19)

MBCdiff

dc

= DNAbias⇤(GRfun⇤totalDNA⇤FBratio⇤DNAexteffF⇤MBCDNA

dc

+GRbact ⇤ totalDNA ⇤ (1� FBratio) ⇤DNAexteffB ⇤MBCDNA

dc

) (3.20)

One of the assumptions of the 18O-CUE method is that the turnover of labeled

biomass is negligible over the course of the incubation. Assuming a steady microbial

community biomass, the corresponding bulk turnover rates of 0.3 to 7% per day above

indicate that this expectation is reasonable. However, the true DNA growth rate is

likely to be higher, and the impact on estimates of microbial carbon growth to be

mixed. Dormancy estimations vary widely, from 6 to 96% of the community observed

as dormant (210; 287). Considering a scenario in which 96% of the community is

dormant leads to a 24-fold underestimation of growth rate (0.96/(1-0.96)) due to di-

lution with the bulk pool, but only minimal underestimation if 6% are. Furthermore,

factors such as predation could decrease apparent growth rate through the ine�cient
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re-allocation of labeled nucleic acids from primary to secondary consumers, particu-

larly if predators selectively consume community members (107) within a narrow size

range (32). Finally, as a result of the “live fast, die young” adage often attributed

to copiotrophs, CUE is likely to be particularly underestimated when growth is con-

centrated in a small but rapidly growing fraction of the population compared to a

larger but slower growing fraction. Our simulations accounted for an active commu-

nity fraction varying from 1 to 99%. Therefore, the true growth rate is calculated as

GRfun and GRbact multiplied by the activeFraction to account for dormancy:

GRfun = GRfun ⇤ activeFractionF (3.21)

GRbact = GRbact ⇤ activeFractionB (3.22)

3.3.4 Sensitivity of CUE to fungal removal

We assessed the sensitivity of observed CUE to various methodological assump-

tions using a few modifications to account for observed fungal:bacterial ratio. Unlike

the simulations above, we wished to retain the inter-sample di↵erences in MBC:DNA

ratio and growth. Therefore we applied modifying factors to the original data using

expected ratios between bacterial and fungal parameters, rather than imposing fixed

values for these organism classes as above.

First, we converted the observed fungal:bacterial DNA ratio based on qPCR to a

F:B DNA ratio. To do this, we assumed 82 ITS copies per genome (ITSpergenome)

(Table 3.1) and a median genome size of 5x108 bp for fungi (48; 172), and 2.25 16S

copies per genome (16Spergenome) and a genome size of 5x106bp for bacteria (48; 61).
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To get the true fungal:bacterial DNA ratio FBratio, we had to back-calculate from

the observed ITS copies copiesITS and 16S ribosomal RNA copies copies16S from

qPCR. We then accounted for ine�ciencies in DNA extraction as follows:

copiesITS =
1

DNAexteffF

⇤ copiesITS
ITSpergenome

(3.23)

copies16S =
1

DNAexteffB

⇤ copies16S
rrNpergenome

(3.24)

And then convert the 16S and ITS copies to fungal (FDNA) and bacterial (BDNA)

DNA mass per gram of soil as follows:

FDNA =
copiesITS ⇤ 5 ⇤ 108 ⇤ 650 ⇤ 106

6.02214 ⇤ 1023 (3.25)

BDNA =
copies16S ⇤ 5x106 ⇤ 650 ⇤ 106

6.02214 ⇤ 1023 (3.26)

Where 650*106 is the molecular weight of the average DNA basepair in µg and

6.02214*1023 is Avogadro’s constant. So the corresponding extraction-e�ciency and

marker gene per genome base pair corrected fungus DNA: bacteria DNA ratio (FBra-

tio) is:

FBratio =
FDNA

FDNA+BDNA

(3.27)

The corresponding corrected total DNA (totalDNAActual) in the initial pool

(active and inactive) used for MBC:DNA ratio calculation is:

totalDNAActual = totalDNA ⇤ FBratio ⇤ 1

DNAexteffF

+

totalDNA ⇤ (1� FBratio) ⇤ 1

DNAexteffB

(3.28)
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We can then calculate relative fungal and bacterial contributions to the MBC

pool for fungi (fcont) and bacteria (bcont), the actual amount of MBC (MBCactual)

and the MBC:DNA ratios for each group as follows:

fcont=

MBCDNAratF⇤MBCexteffF⇤FBratio

MBCDNAratF⇤MBCexteffF⇤FBratio+MBCDNAratB⇤MBCexrteffB⇤(1�FBratio)
(3.29)

bcont = 1� fcont (3.30)

MBCactual =
fcont ⇤MBCobs

MBCexteffF

+
bcont ⇤MBCobs

MBCexteffB

(3.31)

MBCDNAactual =
MBCactual

totalDNAActual

(3.32)

FMBCDNAratio =
fcont⇤MBCobs

MBCexteffF

totalDNA⇤FBratio

DNAexteffF

(3.33)

BMBCDNAratio =
bcont⇤MBCobs

MBCexteffB

totalDNA⇤(1�FBratio)

DNAexteffB

(3.34)

Now we calculate the FBratio active, which is the fraction of new growth at-

tributed to fungi during the incubation. It is a function of the relative growth rates

of bacteria and fungi, as well as their FBratio in the starting bulk community and

the fraction of the cells which are active, rather than dormant.
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FBratio active=

FBratio⇤activeFractionF⇤GRfun

FBratio⇤activeFractionF⇤GRfun+(1�FBratio)⇤activeFractionB⇤GRbact

(3.35)

We can then account for DNA extraction (in)e�ciency and the use of intracellular

water/other sources of DNA oxygen for the growing community:

fungGrowthact =
NewDNAobs ⇤ FBratio active

DNAbias ⇤DNAexteffF

(3.36)

bactGrowthact =
NewDNAobs ⇤ (1� FBratio active)

DNAbias ⇤DNAexteffB

(3.37)

Finally, we convert these DNA growth to the MBC growth which occurred after

applying our methodological bias corrections:

MBCgrowthactual = fungalGrowthact ⇤ FMBCDNAratio+

bactGrowthact ⇤BMBCDNAratio (3.38)

And calculate CUE using the observed respiration rate (per day):

CUE actual =
MBCgrowthActual

MBCgrowthActual + respiration

(3.39)

3.4 Results and Discussion

3.4.1 Growth bias depends on extraction bias and FB ratio

Our Shiny app simulations showed that observed microbial growth deviated most

from true microbial growth at intermediate fungal:bacterial ratios, and when fungi
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and bacteria grew at di↵erent rates (Fig. 3.2). If only bacteria or fungi are present the

active community is better represented by the total community and the MBC:DNA

ratio of the active community is as well represented as possible in the MBC:DNA

ratio of the starting community. We also found that if groups of microbes with dis-

tinct MBC:DNA ratios grow at the same growth rate, then the ability of the 18O

method to reliably estimate the increase in MBC is insensitive to any di↵erences

in the DNA extraction e�ciency. This is demonstrated as the observed and actual

MBC growth falling on the 1:1 line over all FB ratios, and can be explained by

the DNA being underestimated by equivalent amounts in both the total community

used for MBC:DNA conversion and the active community extracted. However, mis-

estimating the MBC extraction e�ciency leads to incorrect microbial growth values

whether or not bacteria and fungi grow at the same rate (Fig. 3.2, center column).

While a mathematically simple scenario to explain, this is particularly alarming be-

cause CFE extraction e�ciency depends on a wide range of experimentally-relevant

features. This includes the ratio of intracellular (cytoplasm) to extracellular (mem-

brane, extracellular polysaccharides, proteins) carbon, which is known to di↵er with

community structure and growth rate (69; 122) and edaphic parameters such as soil

pH, water and clay contents (5; 251).

3.4.2 CUE estimates are sensitive in the presence of metabolic water

Using a sensitivity analysis and varying one factor at a time, we found that

the deviation of observed microbial growth from true growth was most sensitive to

metabolic water content across all extraction scenarios (Fig. 3.3); the sensitivity

value was 1 throughout. The first uses of the 18O method for CUE assumed that
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Figure 3.2: Screenshot of Shiny app used to visualize the e↵ect of methodological
error on microbial biomass carbon estimates. Each point denotes a community sim-
ulated for a di↵erent fungal:bacterial DNA ratio, with darker points representing
a more bacterial community (in this instance, FB = 0) and lighter blue a more
fungally-dominated community (here, FB ratio of 1). The black diagonal denotes
the 1:1 line, such that values above the line indicate overestimation of biomass, and
those below indicate underestimation. Top row: bacteria and fungi grow at the same
rate. Bottom row: bacteria and fungi grow at distinct rates. Left column: DNA
extracted ine�ciently. Center column: MBC extracted ine�ciently. Right column:
MBC and DNA both extracted ine�ciently.
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all DNA oxygen came from extracellular water (262), but it is known that E. coli

only derives around 30% of its DNA oxygen from intracellular water when grown on

rich media in the lab (118; 144). Under the less-than ideal conditions in the soil,

the value is likely to be higher - from 70-98% of oxygen from extracellular water -

as the contribution of intracellular water to DNA oxygen is lower in slower growing

E. coli (144) and B. subtilis (166). The degree of 18O enrichment in the phosphate

backbone also decreases with temperature (31); since growth rate often increases with

temperature, this is another mechanism by which growth may be underestimated in

the fastest growing communities. On the other hand, the recycling of nucleotides

and “cryptic growth” may be more important in slow-growing and nutrient-starved

organisms, preferentially hiding growth in these communities. Moreover, we observed

the suppression of respiration after addition of 18O H
2

O compared to 16O water in

three temperate deciduous forest soils (Fig. B.14), which could indicate that 18O-H
2

O

undersestimates growth by suppressing metabolism. We still lack precise estimates

of how important non-extracellular water sources are for DNA oxygen under in-situ

conditions for bacteria or any conditions for fungi, making them important areas for

future research.

3.4.3 Sensitivity of growth to methodological bias depends on hetero-

geneity in growth rates

With the exception of intracellular water contribution, MBC sensitivity to changes

in the other parameters depended on both assumed extraction biases and whether

bacteria and fungi grew at same or di↵erent rates (Fig. 3.3). In general, estimates

were more sensitive to changes in the parameters when bacteria and fungi grew at
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Figure 3.3: Sensitivity of di↵erence between true and observed microbial growth
values to violating various assumptions. Left: bacteria and fungi grow at di↵erent
rates. Right both grow at the population level mean.
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Figure 3.4: Sensitivity of MBC growth estimate error to variation in biological param-
eters and methodological errors. The plotted scenario assumes that DNA and MBC
are both under-extracted, and that fungi and bacteria grow at di↵erent rates. Results
for the remaining scenarios in Fig. 3.3 can be found in figures B.16,B.15,B.17,??,
and B.18. Parameters are defined in Table 3.1
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di↵erent rates rather than some community-level mean, in large part because the

MBC:DNA ratio observed for the whole community was no longer representative of

the growing population. Fungal MBC:DNA extraction e�ciency had a similar e↵ect

on how far expected growth deviated from observed growth independent of whether

bacteria and fungi grew at the same rate. Errors were also sensitive to bacterial MBC

extraction e�ciency, but less so. This is because despite slow DNA-based growth in

the baseline condition, fungi have a very large MBC:DNA ratio and so contribute

disproportionately to the MBC estimate. In a similar thread, errors were less sensi-

tive to fungal DNA extraction e�ciency because their growth rate is minimal under

baseline conditions. To address this slow growth, researchers sometimes add di↵erent

amounts of 18O-water to soils or incubate for di↵erent periods based on the growth

rates of soils (95).

3.4.4 Sensitivity of errors in MBC estimations depend on fungal to bac-

terial ratio

Fungal to bacterial DNA ratio a↵ected which parameters MBC estimates were

most sensitive to, with these sensitivities also di↵ering in their sensitivity to F:B ratio.

For instance, MBC error had a sensitivity of approximately 0.5 over all intermediate

values of fungal and bacterial growth rate, but decreased precipitously towards zero at

FB ratios approaching 0 or 1. By contrast, sensitivity to bacterial DNA extraction

e�ciency was greatest around a FB ratio of 0.7, and to fungal DNA extraction

e�ciency at an FB ratio of 0.1-0.2. Sensitivity of MBC extraction e�ciency for

bacteria was almost zero, except at F:B ratios below 0.1, but almost 1 for fungal

MBC extraction e�ciency under these same scenarios. Assuming the DNA content
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and rrN/ITS copy numbers in table 2, the F:B DNA ratio in both soil metagenomic

sequences (225) and qpcr (89; 61) datasets are often less than 10%. As such, many soil

samples are within the range of F:B DNA ratios where deviations in CUE estimates

are highly sensitive to even small changes in fungal dominance, such that related

samples within a study may di↵er in the kinds of methodological assumptions they

are most sensitive to.

3.4.5 E↵ect of fungal removal on CUE

Fungal:bacterial ratio is one of the oldest and coarsest ways of di↵erentiating mi-

crobial communities, with the ratio typically decreasing with depth and increasing

with carbon content (23; 89). We found that our conclusions achieved with our simu-

lations regarding the e↵ects of fungal removal on CUE were confirmed by empirically

excluding fungi from an artificial soil inocula. This is despite the observation that

microcosms with bacteria only or both bacteria and fungi di↵ered in the parameters

they were most sensitive to (Fig. 3.6). For instance, bacteria-only microcosms were

2.9x more sensitive to bacterial biomass carbon extraction e�ciency, but less than

1% as sensitive to dormancy than were the microcosms with both bacteria and fungi.

This led to CUE estimates responding di↵erently to the same assumption in the two

community types (Fig. 3.5). The observed, “uncorrected” CUE was on average only

25% as high in communities with fungi excluded than those with fungi for the raw

data (Fig. 3.5, solid grey line). No scenarios led CUE in bacteria-only microcosms

to approach that of the mixed fungal and bacterial microcosms (ratio = 1; dashed

line). This is likely because bacteria dominated in both bacteria-only and mixed

microcosms, and was estimated to account for greater than 99% of the DNA. This
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Figure 3.5: Ratio of CUE in artificial soil microcosms inoculated with the “bacterial”
(0.8um) fraction of soil microbial communities to the value in “complete” soil com-
munities (“bacteria and fungi”). The x-axis denotes which one of the parameters was
tested, and dot colour denotes whether the simulated CUE correction was applied
at the highest value observed in a literature search, or the lowest. Each value is the
median ratio for 6-8 raw replicates of each community type. The grey line denotes
the median uncorrected CUE.
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imbalance in fungal abundance is much greater than the MBC:DNA ratio for fungi

would need to be in order to overcome their much slower growth rates compared to

bacteria in our simulations.

Increasing the mean bacterial rrN per genome or decreasing the mean fungal ITS

copies per genome increased the ratio of bacteria to bacteria + fungi CUE by decreas-

ing the bacterial contribution to the total DNA pool. However, because fungal DNA

was either absent or nearly absent from bacteria-only microcosms, this impacted the

mixed community microcosms much more strongly. Since bacteria grow much faster

than fungi by default in the model, reducing bacterial contribution to growth in

the mixed microcosms enabled the high MBC:DNA ratio fungi to contribute more,

and, in turn, increasing estimated MBC increment and CUE. All together, these

results indicate that the observation of reduced CUE in communities where fungi

were filtered out is not due to a single methodological bias.

Early studies of bacterial vs. fungal CUE proposed that bacteria should be less

e�cient than fungi because of their lower biomass CN ratio (257). Our results do

not dispute that bacteria are less e�cient than fungi, as the pattern held even with

extreme corrections to CUE. Furthermore, recent work explicitly accounting for dif-

ferences in bacterial and fungal growth rates and biomasses have found lower CUE in

fungal-dominated communities (253). However, our results do illustrate the benefits

of sample-specific conversion factors. Microcosms di↵ered in the assumptions their

CUE estimates were most sensitive to (Fig. 3.6), and biological di↵erences between

samples can alter the degree of methodological correction required. In other words,

there are a number of possible methodological biases introduced by the act of using
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Figure 3.6: Sensitivity analysis of CUE under various methodological biases for mi-
crocosms inoculated with a filtered (“bacteria only”) or unfiltered (“bacteria and
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served and simulated CUE values under the high and low parameter values presented
in Table 3.1

111



a single set of conversion factors for communities with and without fungi. First is

that the bacterial communities are dissimilar in composition between the two treat-

ments, with more Gram-positive Actinobacteria in bacteria-only microcosms than

bacteria+fungi microcosms. The MBC:DNA ratio of the bacteria-only microcosms

was very low, sometimes below 1, indicating that the bacterial biomass carbon was

not e�ciently extracted. By contrast, observed MBC:DNA ratios of natural soil

communities generally fall between 3 and 60 (16; 263), with values as low as 3.6 for

bacteria and as high as 3300 for filamentous fungi in the lab (File S1). In addition,

the true MBC:DNA ratio of bacteria is lower for small, slow-growing and starving or

oligotrophic cells (51; 50; 165). Small cells have a large amount of membrane (which

CFE does not e↵ectively capture (69; 122)) relative to cytoplasm (which it does),

therefore exacerbating the genuinely lower MBC:DNA ratio. Although we lack em-

pirical evidence for smaller bacterial cells in the absence of fungi, this could explain

the apparently low MBC:DNA ratio and necessitate using di↵erent extraction e�-

ciencies and MBC:DNA conversions in the two communities. However, we also note

that the 18O method of microbial growth determination already requires a number

of assumptions to be made, so making additional assumptions should be done with

care.

3.4.6 Shortcomings

Many of the values used to parameterize these simulations are based on isolates

grown in the lab under ideal conditions. However, microbes are known to grow very

di↵erently in the lab compared to in soil. For instance, well-fed bacterial cultures

will have lower dormancy and less starvation-induced reductive cell division than
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those found in soil (165). Cultivation bias towards fast-growing organisms only

exacerbates this, as the (CFE-measureable) cytoplasm:(CFE-ignored) cell membrane

ratio will be greater in the copiotrophic organisms we tend to study in the lab (228).

The DNA:MBC ratio has been observed to be higher in small, slow-growing cells in

communities extracted from soil (50), but to remain constant over a wide range of

growth rates in E. coli (77; 147). Given how poorly-defined this relationship is, we did

not include it as a component in our simulations, although the sensitivity of biomass

increment estimates to this parameter indicate that - should such a pattern exist -

it should have been accounted for. Furthermore, we note that the contribution of

intracellular water to DNA oxygen was 70% for fast compared to 4% in slow-growing

bacterial culture on rich media. Therefore, it is likely important to account for

intersample di↵erences in the contribution of 18O-H
2

O to DNA water as a function

of growth rate. However, in the absence of knowledge about where bacterial and

fungal growth in soil fit on this intracellular water spectrum, we did not include this

parameter in our simulations. Finally, determining the true contribution of di↵erent

groups of microbes to the soil DNA pool remains challenging; accurate predictions

based on metagenomes are limited by both database biases and the abundance of

non-coding DNA in eukaryote genomes, while imperfect primers and di↵erences in

ribosomal RNA operon copy number limit the utility of QPCR. As such, correction

factors for microbial biomass carbon estimates will always be limited by the accuracy

of fungal to bacterial ratios in the present simulation framework.
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3.5 Conclusion

CUE is an essential descriptor of soil carbon cycling, with interesting ramifica-

tions for both the ecology and biogeochemistry of soil. There is great interest in

measuring this parameter, but also a growing awareness of the various shortcomings

in its quantification. Here we focused on one method - 18O water incorporation into

DNA, arguably the most reproducible (95) - to examine how assumptions about

what it actually measures a↵ects the conclusions drawn from its estimation. We

evaluated how ine�cient biomolecule extraction, deviations in microbial growth rate

from the population mean, and heterogeneity in microbial community composition

a↵ected how far o↵ observed microbial growth values are from their true values.

We found that measurements are particularly sensitive to the use of oxygen sources

other than extracellular water, a value which has been shown to change with exper-

imental variables such as temperature and growth rate under controlled conditions

in the lab. Despite this and other possible biases a↵ecting the CUE we observed in

our lab study, our conclusions regarding reduced CUE following fungal removal held.

Nonetheless, our results do not account for the possibility that the biology underlying

the observed di↵erences in CUE may necessitate sample-specific correction factors,

for instance assuming lower MBC extraction e�ciencies in clay-rich or nutrient-poor

soils compared to more organic soils. However, a more complete understanding of the

constraints on and biological factors driving the importance of the biases proposed

here is needed if these sample-specific correction factors are to improve - rather than

worsen - the degree of measurement bias in CUE. For the time being, we therefore

strongly encourage other studies to use the model script that we developed here as

114



a springboard for evaluating how robust their own conclusions are to the various

18O-H
2

O CUE method assumptions.
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CHAPTER 4

CONCLUSIONS AND CONTEXTUALIZATION

4.1 Abstract

The measurement of microbial carbon use e�ciency under ecologically relevant

conditions and understanding its implications for the global carbon cycle remains

challenging. In this dissertation, I critically assessed some of the current assump-

tions about CUE and its role in the ecology and carbon cycling of soil. However,

considerable work remains. In this final concluding chapter, I further contextualize

my research within the knowns, unknowns, and experimental failures in the hope

that others may learn from my errors.

4.2 (Ir)relevance of liquid and litter studies for understand-

ing soil organic matter turnover in a warmer world

At the beginning of this dissertation, I stated that carbon use e�ciency (CUE)

was a central driver of soil carbon storage (127). However, it is important to note

that millennial-scale stability of soil carbon is primarily a function of soil mineralogy

(75; 76). Young soils - such as those the majority of isolates used in this project were

derived from - are thought to depend more on inputs as regulators of soil carbon

stocks, and be much more susceptible to leaking carbon at elevated temperatures
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than older soils (75). Biomass components and byproducts di↵er in their propensity

for stabilization in soil (220; 254), so the identity of compounds produced during

initial transformations and the e�ciency of subsequent processing are also important

for the formation of soil organic matter (SOM) on intermediate time scales (204).

Liquid culture studies lack both the physical structure to induce these phenotypes,

and the ability to measure the biological stability of these byproducts, however. As

such, a robust understanding of the linkage between CUE and soil carbon stability

necessitates organomineral interactions to be considered in parallel.

4.2.1 Experiments in artificial soil

In order to make progress towards improving our understanding of this area, we

attempted to measure the CUE of bacterial isolates in a controlled artificial soil

matrix consisting of sand, silt and clay. To do this, we took liquid cultures and

inoculated them into artificial soil, and when they had started to respire, transferred

these soil-adapted bacteria into fresh artificial soil. We then captured exponential

phase by destructively harvesting tubes of soil at times which correlated with an

exponential increase in respiration rate (Appendix D). Our initial study appeared

promising, as we were able to detect respiration for five of the ten bacterial isolates

when transferred straight from R2A plates to glucose media in the artificial soil

(Figure 4.1). However, the variation across replicates was high; more than a quarter

of the time points were characterized by a coe�cient of variation exceeding 100%.
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Figure 4.1: Respiration rates for bacterial isolates inoculated into artificial soil. Iso-
lates growing on R2A6 were inoculated into Roller Glucose media which was diluted
to an OD of 0.01 (except AN6A, which was accidentally not diluted), and then
1.2mls of this was used inoculate 5g of artificial soil. CO

2

measurements were taken
on the stoppered tubes, and the CO

2

produced between measurements was divided
by the time passed between consecutive timepoints in order to determine the res-
piration rate. CO

2

production rates above that of the uninoculated control tubes
were not detected for Acidobacterium EB88, Actinobacteria GP55, or the Alphapro-
teobacteria GAS138, GAS188, and GAS525.

Unfortunately, bacterial growth was too weak and erratic to measure CUE fol-

lowing a second transfer on glucose media to ensure soil acclimation. For instance,

despite robust growth at 15oC in liquid glucose media, GAS332 was never observed
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to survive transfer to the artificial soil matrix at this same temperature (Appendix

D). Likewise, three weeks after inoculation into artificial soil with potato dextrose

broth, four of five isolates tested at 20oC did not have respiration rates above the

negative control, despite showing respiration in a liquid culture set up in parallel.

Only the Bradyrhizobium AN6A - an extremely fast grower - was able to grow in the

artificial soil in a reproducible manner (Fig. D1, Fig. D2).

One such reason for failed or sporadic growth may be that media supplied to the

microbes became strongly sorbed to the surface of the soil, leaving them e↵ectively

starved. However, this is unlikely because we were able to recover almost all the

carbon added with a dilute potassium sulfate solution during a preliminary trial.

Alternatively, the surface charges of the clay may have been damaging to the cells.

However, the class of clay we used (bentonite) is thought to be minimally toxic to

Bacillus subtilis compared to other minerals (176). We found only weak evidence for

toxicity, which manifested itself as a large but non-significant decrease in respiration

in the presence of clay but not the other soil components (Fig. 4.2). That we managed

to get growth at all in the presence of the artificial soil could indicate that moisture

limitation could play a role in restricting the growth of taxa in the soil, or that they

need the additional organic nutrients provided in this experiment to tolerate the soil

environment. The e↵ect of soil component addition on respiration and growth is also

likely to have a pH component, as the pH optimum of this organism is 5.5 (range

=3-9), and the soil (7.6), silt (9.0), and clay (8.0) have high pH. The soil also has a

strong bu↵ering capacity, and needs 1M MES bu↵er to keep its pH; it is likely this

originates from the clay fraction, as it was the only soil component able to resist pH
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change in the presence of 100muM g-1 clay hydrochloric acid. As a result, the four

isolates we extracted and characterized from the microcosms had both higher pH

optima (6.5-7) and maximum (11) than the GAS332 we could not grow in the soil.

Therefore, the combination of low temperature and high pH may have additively

stressed GAS332, preventing it from growing su�ciently in the artificial soil at 15oC.

A follow-up experiment using these bacteria pre-selected on the artificial soil

provided evidence that isolates can grow on the artificial soil. In this experiment,

bacteria were taken straight from a plate with complex media and mixed into arti-

ficial soil pre-ammended with leaf litter DOC, yeast extract, vitamins and minerals,

cellobiose, and ammonium nitrate. The tubes were then provided a weekly addition

of ammonium-nitrate and cellobiose as sources of carbon and nitrogen. Of the four

isolates tried (BS19, BS40, BS60, and BS71), two were still showing strong CO
2

pro-

duction after 70 days. Nonetheless, while this study demonstrated that bacteria can

grow in isolation in the artificial soil matrix when provided a mixture of substrates,

we are yet to test whether these isolates can do so when fed the defined media we

used in our liquid CUE measurements. The DOC and yeast extract initially pro-

vided may have all been consumed in the two cases where the bacteria ceased to

grow, indicating that pH is not the only challenge with the translating the liquid

culture studies into soil.

Despite their challenges, soil-based CUE measurements with isolates remain nec-

essary for advancing our understanding of CUE, and in particular how the presence

of a soil matrix might a↵ect how microbial CUE responds to temperature. To attain

this goal, it is likely we would need to compromise and move from attempting to
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Figure 4.2: Cumulative respiration of Burkholderia GAS332 in liquid culture with
the addition of 0.5g soil component per 5mls glucose Roller medium. Tubes were
inoculated in a pair-wise manner (one colony split between each treatment for each
replicate) and incubated at 15�C. This isolate can grow well at 15�C in liquid cul-
ture, but not the artificial soil, indicating that the soil environment contributes some
additional stress which we wished to parse out. A paired t-test was used to assess
whether soil component addition (or ashed Harvard Forest (HF) mineral soil with
the organic matter removed) suppressed cumulative respiration. Di↵erences in res-
piration may be driven in part by changes in pH, with clay raising the pH of the
media to 7.5 and silt to 6.5; sand and HF soil did not cause pH to deviate far from
the media-only value of 5.5, which is the pH optimum of the isolate.
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measure CUE on defined media during exponential phase to doing so on a mature

population grown in the presence of additional organic nutrients the artificial soil.

In light of the methodological deficiencies of the 18O method highlighted in this dis-

sertation, it may be the case that the 18O method is better suited for these kinds of

isolate-based studies than the natural soil communities it is commonly used for at

present. Nonetheless, this approach still would have only allowed an assessment of

CUE e↵ects on short-term SOM formation in the presence of “bare” minerals, and

not the longer-term stabilization processes responsible for earth-climate feedbacks.

4.2.2 Limitations of modeling

The modeling approach used here is likewise limited in its applicability to soils

in that it simulates microbes decomposing leaf litter, and therefore neglects to con-

sider organomineral interactions (75; 137) and plant-microbe feedbacks known to

be important for longer-term soil carbon trajectories (258; 265). This includes not

only processes such as sorption which regulate the quantity and quality of substrates

available to the decomposer community (288), but also spatiotemporal heterogeneity

in enzyme turnover and oxygen availability (97; 273). We attempted to model the

recycling of organic matter in a mineral soil, following the sorption-desorption ki-

netics equations implemented in MEND (288) and feeding the mineral soil solely on

leached monomers from the litter or organic horizon model. However, we found that

the microbes in the litter model were too e�cient at taking up the monomers they

produced, and the mineral soil communities ended up being starved out. Increas-

ing the fraction leached to 100% of the monomers left over after uptake by enzyme

producers did not remedy this, and decreasing the uptake e�ciency of the organic
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model taxa just caused them to starve out. A possible remedy would be to couple

these modifications with a decrease in enzyme and uptake transporter production

costs in the organic model, but tweaking the parameters like that became beyond

the scope of this project. Furthermore, given that other models much better suited

for modeling mineral soils already exist (273; 288; 295), it may be more fruitful to

feed leached outputs from litter DEMENT into one of these other models rather than

trying to generate a vertically-explicit DEMENT.

Another challenge with modeling is that the strong costs of extracellular enzyme

production assumed to contribute to low CUE in DEMENT did not play out in our

own data. We discussed at length why it is unsurprising that we missed this tradeo↵

in our empirical data in chapter 1. However, we have both theoretical calculations

for the metabolic costs for producing these enzymes and additional empirical evi-

dence demonstrating that extracellular enzyme production does not always suppress

CUE. For instance, CUE decreased with substrate quality (t-test for glucose vs. cel-

lobiose p<0.01) only in GAS479 (Fig. 4.3). This is important because GAS479 is

the only isolate whose genome encodes a cellobiose phosphorylase and a 6-phospho-

beta-glucosidase, but lacks a betaglucosidase, indicating it must obligately take up

cellobiose in a manner which reduces the ATP investment required for its use. One

explanation for the lack of enzyme costs might be that the catalytic e�ciency in liquid

is very high and the turnover (degradation) of the enzyme is slow, such that extra-

cellular enzyme production is too small of a fraction of metabolism to detect a cost

under assay conditions. However, this pattern would not have been observed unless

GAS479 also did not make use of its cellobiose uptake machinery. It is challenging
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to determine whether extracellular enzyme production is indeed a substantial cost

to growth e�ciency, however, due to the presence of numerous confounding factors

(180).

If indeed exoenzyme production is cheap, then this indicates that there could

be substantially greater loss of litter carbon pools under warming than the current

implementation of DEMENT would believe. As my own study demonstrated, how

extracellular enzyme costs tradeo↵ with CUE temperature response is essential to

predicting the degree to which litter carbon will be lost. Yet we lack empiricial

evidence for how enzyme production may be linked with other relevant, non-CUE

traits either. For instance, increased growth rate requires an increased rate of sub-

strate supply. Organisms with high ribosomal RNA operon copies are able to sustain

higher growth rates in rich media than those with fewer (66), which indicates that

high growth rate and low e�ciency may be associated with increased genomic al-

location to the acquisition of resources. However, this does not appear to be the

case: in fact, both the number and genomic density (genes per MBp) of proteins

with signal peptides (required to be targeted to the membrane or outside the cell)

actually shows a weak negative correlation with the rrN (and log rrN) for the pub-

lic bacterial genomes sequenced by IMG (pearson correlation = -0.24 for log rrN,

or -0.22 for rrN; p¡0.01). The number of predicted transmembrane domains does,

however, show a positive correlation with rrN, indicating that uptake rather than

hydrolysis may limit growth. Together these results indicate that it is uptake costs

rather than extracellular enzyme activity we should be focusing on the costs of in

future iterations of DEMENT.
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Figure 4.3: E↵ect of increasing substrate complexity on CUE. Bacteria were grown
for CUE as in chapter 1, with 2-3 replicates per condition (missing data indicates
bacteria did not grow on that media). GAS479 is a Firmicutes selected because it has
the genomic potential to take up cellobiose as a dimer and phosphorylate it inside
the cell, whereas GAS332 (Betaproteobacteria) and GAS232 (Acidobacteria) were
selected to represent isolates with di↵erent growth rates who were predicted based
on their genomes to be able to grow on all three substrates.
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4.3 Predicting e�ciency from genomes

Although using comparative genomics is technically much simpler to complete

then transcriptomics, the candidate markers of CUE it identifies may have little to

do with di↵erences in the CUE of taxa. Examining genomes enables identification

of functional potential, but cannot tell us anything about the degree to which those

genes are expressed during our CUE measurements. Indeed, many of the markers of

CUE identified may have just been present in genomes of more or less e�cient taxa

by chance. In other words, I identified correlates of CUE without knowledge of them

as being drivers of CUE. In the context of identifying markers of high CUE in mixed

communities, the lack of causation is relatively unimportant. But for the grander

question of understanding why some organisms are more e�cient than others, the

approach falls short.

I naiively originally intended to calculate the organism-specific energy yield for

the three defined media types using the tools available in KBASE. This is based in

the proposition that while copiotrophs may optimize ATP hydrolysis to fuel costly

protein biosynthesis, oligotrophs optimize biomass (therefore the optimization func-

tions are expected to di↵er between trophic strategies). Given the overall aim of

my project to identify markers and methods which can be extended to additional

organisms, I elected to use the readily-scalable KBASE platform for this purpose.

KBASE depends on the SEED subsystem annotations, which are manually-curated

families of proteins with known functions that are connected by (metabolic) reac-

tions. These annotations are based on a core set of well-defined model organisms,

and should be extendable to other organisms. However, metabolic models often
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fail to grow in the absence of gapfilling, even under conditions the corresponding

organism is known to survive under (80). This was true for all twelve of my iso-

late genomes I tried to build metabolic models for, which prevented calculations of

metabolic complexity and energetic yield to be made. One approach has been to

neglect the strong incongruence between physiology and genome-scale models (242).

Alternatively, Edirisinghe and colleagues (2016) developed a core metabolic modeling

tool which defines growth costs on the ability to produce a core set of metabolites,

overcoming the gapfilling problem. As a result of this simplification, the authors

were able to get “growth” of 70% of organisms without gapfilling, compared to the

much lower values typically observed using the “full” model. In contrast to “full”

metabolic models where biomass production (yield) is optimized during flux balance

analysis, these core metabolic models are run with ATP hydrolysis as the the objec-

tive function (growth rate). This indicates that a copiotrophic ecological strategy is

imposed on the bacteria during modeling, which contraindicates use of the method

in my exploratory analysis. Furthermore, the underlying calculations of yield are

based on E. coli metabolic precursor calculations; since I also wanted to determine

organism-specific amino acid costs, this means that using KBASE in this manner

to predict organism-specific amino acid biosynthesis costs wouldn’t have gotten me

any further than the Kaleta et al. (2013) approach I ended up using. Nonetheless,

metabolic modeling methods are improving all the time, such that correlations be-

tween metabolic complexity, organism-specific protein production costs, and CUE

will be more readily tested in the near future.
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4.4 Biases in CUE measurements

4.4.1 EPS and extracellular products

For my dissertation, I used optical density as a metric of biomass, and later

converted these measurements into biomass using a conversion factor. This was

a practical necessity given the large volumes of culture needed to attain su�cient

biomass for sampling, but may lead to a few possible biases in biomass estimates.

One concern is failure to account for extracellular product formation, which may

vary throughout the growth curve and di↵er between media. We measured CUE

during exponential phase, as this is supposed to be the only reproducible phase of

growth for a given set of conditions (245). Furthermore, extracellular products are

produced primarily during decelleration and stationary phases (200; 250), so should

not interfere with assays. While for the isolates assayed, we were able to confirm that

extracellular enzyme production was not substantial over the course of CUE, EPS

production did visibly occur for one isolate during exponential phase (EB95). This

was apparent as a white cloud which appeared upon centrifugation in small volumes

and made the media so viscous that the tiny bacterial cells were unable to form a

pellet.

Although polysaccharides tend to have absorption peaks in the UV-range, biologically-

feasible levels of EPS-like compounds absorb su�ciently at the “cell-detecting” wave-

length of 600nm to interfere with biomass measurements (Fig. 4.4). By increasing

the cell volume by up to 7 times (21), EPS may induce Rayleigh scattering and make

optical density measurements unreliable. Unfortunately, there are no good quanti-

tive ways to separate cells from EPS to directly quantify this e↵ect. For instance,
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microscopy can provide a reasonable estimate of the volume taken up by EPS, but

its water content and carbon content di↵ers from cells. Ultracentrifugation (27) is

not practical due to tube size constraints which mean it would take 60 runs and 750

tubes per isolate. EDTA - which strips the EPS of the cations stabilizing it on the

cell surface - may only capture a third of the EPS at best and still requires pelleting

with the cells (42). And the most vigorous methods such as sulfuric acid digestion

or ethanol co-precipitation also lyse cells (235). Therefore, using the argument that

exponential phase should be reproducible (so cells captured at any point along expo-

nential phase should have the same composition and behaviour as cells at any other

point), we decided that the best approach was to try and co-precipitate the EPS

and the cells and quantify them together. However, the OD:MBC conversion factors

derived for our own cultures were not realistic, as the mass per OD was exceptionally

low for oligotrophs and higher than expected for faster-growing cells, leading to no

relationship between biomass and respiration in approximately 75% of our CUE cal-

culations. We think this has to do with inadequate pelleting because the organisms

we know have small cells (EB95, GAS188, GAS474, GP187) had very low MBC:OD

conversions, independent of EPS production; this occurred despite pelleting cells at

the top speed the bottles and centrifuge rotor were able to attain, and increasing the

duration of the spin to four times longer than for the larger cells. Therefore, we used

the published E. coli values in our calculations, even though these are not optimized

for our OD setup.

129



Figure 4.4: Absorption spectra for 0.5g/L of polysaccharides in water, which is
equivalent to the upper limit of EPS produced by Acidobacteria in (134). At 600nm,
xanthan gum gave an OD of 0.079 and pectin an OD of 0.033 under the conditions
used for CUE measurements (i.e. using balch tubes and the tube spectrophotometer)
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4.4.2 Taxon selection and cultivation bias

A central issue with extrapolating from the present isolate physiology to whole

soil communities is the limited number of organisms studied, and the bias in selecting

organisms for study. Specifically, there is an inherent cultivation bias, such that the

more rapidly growing members of soil communities are overrepresented in our culture

collection. Furthermore, isolates in our culture collection must be capable of growth

in monoculture, which is not always true for those with symbiotic relationships.

Additionally, the isolates used in this study must be able to grow to appreciable

ODs in liquid media - which not all our isolates are - and to appreciable OD’s

without the addition of high levels of organic nitrogen. The OD requirement limited

the number of Actinobacteria we were able to include in our analysis, as we found

that - even with the addition of detergents, polysaccharides (113), or changing of ion

concentration (74) - they retained aggregated growth in liquid culture. Therefore,

our results are biased against organisms which have close interactions with other

organisms in soil and those who are incapable of dispersed planktonic growth.

4.4.3 Assay conditions

Assay conditions were selected based on a compromise between maximizing the

range of organisms which could grow with the need to not deviate too far from the

soil conditions we ultimately intend to infer physiology in. For instance, although

the mean annual temperature is approximately 8oC in the “ancestral environment”

of the bacterial isolates we used, and reaches 25oC more than occasionally only

in experimentally warmed plots, we assayed CUE at 15-25oC because growth was

either too slow or absent at 8oC. Furthermore, the optimum growth temperature of
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all isolates is between 20-30oC, with final biomass generally being higher at the lower

temperature and growth rate greater at the higher temperature. We also used a pH

of 6 rather than the soil pH of 3.7-4.5 because many of our isolates are unable to

grow at such a low pH. Likewise, we decided not to shake our cultures during growth

and instead to vortex vigorously between measurements, as GP187 was unable to

grow with shaking and MT45 tended to form aggregates more. Finally, we measured

CUE during exponential phase, which bacteria will only very rarely experience in soil

(150). Despite the rarity of these “optimum” conditions in the field, the “hotspots”

where they are attained have a disproportionate impact on soil-level processes and

so it is possible that soil-level gas exchange can be adequately predicted just by

looking at these small areas (211). Therefore, while the spatiotemporal frequency of

our liquid culture assay conditions may be low in soils, they may disproportionately

drive average values.

4.5 Conclusion

CUE is high but variable in soil bacteria, which confirms patterns seen when

comparing mixed communities across ecosystems (181), but contrasts with the ho-

mogeneous value typically used in modeling studies (288; 295). Although hetero-

geneity in CUE has been observed to exist in communities, it is more commonly

associated with substrate quality (258; 261; 275; 295) and/or high-level di↵erences

between bacteria and fungi (258; 261), rather than the consequence of species sort-

ing selecting for bacteria with favourable trait combinations. By contrast, we found

that this species-level heterogeneity is important for predicting the fate of litter car-
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bon stocks in a warmer world, such that physiologically-diverse communities lead to

more substantial carbon losses than homogeneous ones. Future work must explore

the possibility that e↵ect traits other than extracellular enzyme production may be

linked with CUE temperature response if the results from this modeling is to go from

the theoretical to the practical domain. Furthermore, we still lack a set of simplified

marker traits for bacteria which may be highly sensitive to warming, which will limit

the degree to which our results can be scaled. Nonetheless, we hope that together

our lab- and modeling work has contributed additional constraints on how bacteria

and communities are responding to the global climate crisis.
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Table A.1: Regression coe�cients for a phylogenetic generalized least squares model
fit to CUE at a given substrate and temperature range versus ribosomal RNA operon
copy number or the maximum growth rate observed across all assay conditions.
Slopes are shown when the p-value is less than 0.1 (.), 0.05 (*), or 0.01 (**). Metabolic
pathway count corresponds to the number of MAPLE (KEGG metabolic) pathways
with > 80% completeness. CUE for EEA production corresponds to the theoretical
fraction of carbon from glucose expected to be retained in the extracellular enzymes
produced by the organism, rather than being burned to produce the ATP needed
to make the corresponding amino acids de novo and then polymerize them into the
proteins.

CUE vs. GRmax CUE vs. rrN CUE vs. log
2

rrN
Metabolic

pathway count
CUE for

EEA production

15-20oC glucose - - - -0.069 . -
20-25oC glucose - - - - -
15-25oC glucose - - - - -2.71*
15-20oC pyruvate - - - - NA
20-25oC pyruvate - - - -0.021 . NA
15-25oC pyruvate - -0.068 . - -0.010* NA
15-20oC succinate - - - - NA
20-25oC succinate - - - -0.051 ** NA
15-25oC succinate - - - -0.022* NA
15-20oC PDB - -0.071 . - - NA
20-25oC PDB - - - - NA
15-25oC PDB - - - - NA
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Table A.4: E↵ect of changing the reference CUE and enzyme costs against CUE on
the stability and concievability of DEMENT outputs under three warming scenarios.
CUE ref is the CUE at 15oC, prior to calculating enzyme costs. CUE temp describes
whether CUE is const[ant] or var[iable] between taxa. CUE enz is the maximum
cost against CUE for enzyme production (with transporter costs parameterized the
same). Stable is the fraction of runs where the microbial community constrained
litter accumulation until the end. The median MBC, SOC:MBC ratio, and SOC
in days 6000-10000 are shown, along with the biomass-weighted CUE of the active
community at the end of this time. CN, CP, and NP refer to median elemental ratios
of microbial biomass. Italicized values are those not deemed to be within the range
of biologically plausible values.

CUE ref CUE temp Temperature CUE enz stable MedianMBC Median SOC:MBC Median SOC CUEfinal CN CP NP

const H -0.1 0.71 57 3.4 198 0.44 4.5 49 9.3
NA C -0.1 0.97 67 2.3 142 0.41 4.6 43 9.30.58
var H -0.1 0.86 107 1.4 144 0.53 4.7 43 9
const H -0.1 0.98 36 9.2 331 0.32 4.5 43 9.4
NA C -0.1 0.93 37 7.6 241 0.31 4.3 39 9.10.48
var H -0.1 0.9 70 2.1 137 0.42 4.6 42 9.3
const H -0.2 0.64 20 54 1041 0.23 4.5 41 9.2
NA C -0.2 0.81 18 131 687 0.15 3.6 35 9.50.48
var H -0.2 0.97 34 19 325 0.26 3.9 37 9.3
const H -0.1 0.95 20 32 637 0.23 4.4 39 9
NA C -0.1 0.95 20 33 492 0.22 3.8 37 9.30.38
var H -0.1 0.98 38 7.2 219 0.32 4.1 38 9.2
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Table A.5: Median (or median-standardized interquartile range (IQRm)) output val-
ues for DEMENT model runs where C

t

was either always positive, or always negative,
marked according to warming e↵ect (+/-) and model structure e↵ects (letters) deter-
mined using Bonferoni-corrected post-hoc tests following linear mixed e↵ect models.
Symbols: ”+” warming increased value; ”-” warming decreased value). Letters:
di↵erences between warmed scenarios.

Fig. 1 scenario A
i

G A
ii

H
C

t

(oC-1) -0.011 -0.022 to 0 +0.011 0 to 0.011

LOM IQRm 0.29 0.23 0.21 0.30
SOM IQRm 0.26 0.15 0.21 0.19

Surviving taxa 11a+ 9b 10a 8b
Enzyme count 16.5b 19a 15b- 18a
Shannon’s H 1.92a 1.61a 1.86ac 1.64bc-

MBC (mg cm-3) 26.5b+ 32.3a+ 13.6d- 17.2c-
LOM (mg cm-3) 411.5c- 334.6d- 841.8a+ 706.5b+
CUE at 15oC 0.23bc 0.23c 0.24a+ 0.23b
CUE at 20oC 0.29b+ 0.32a+ 0.19d- 0.22c-

FB biomass ratio 0.85a 0.81ac 0.73bc 0.68b
Respiration (mg cm-3 day-1) 0.94c 0.96ac 0.90b 0.94abc

FB richness ratio 0.51a 0.46ac 0.40bc 0.43ac
CUE bacteria 0.27b 0.36a+ 0.27b 0.25c-
CUE fungus 0.22c 0.29a+ 0.23b+ 0.18d-
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Figure B.1: Responses of mass-specific respiration and growth rate to changes in
substrate and temperature. Lines are coloured by isolate, such that a point represents
the mean respiration rate and growth rate for a given temperature and substrate for
an isolate. Lines are drawn to ease visualizing points corresponding to a given isolate,
and do not imply statistical support for the relationship depicted.
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Figure B.2: Frequency histograms of CUE of isolates grown on the four media at
three temperatures. Each count is the average of all replicates for a given isolate
under that assay condition.
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isolate. The x-axis is the heat of combustion of the substrate in kilojoules per mole
divided by the number of carbon atoms in a mole of the substrate. Only cultures
grown at 20oC are plotted
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Figure B.4: Phylogenetically-weighted mean temperature sensitivity of CUE for the
four substrates and three temperature ranges used in this study, reported with 95%
confidence intervals. Reported means and confidence intervals are the posterior es-
timates resulting from running an animal model in MCMCglmm.
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Figure B.5: Plot of observed mean CUE for each isolate and incubation condition
vs. the predicted mean CUE based on phylogenetic reconstruction using ancestral
reconstruction techniques. Each point represents an isolate, the x-axis the observed
mean CUE, and the y-axis the mean CUE predicted for the isolate based on ancestral
reconstruction. The 1:1 line, indicating perfect agreement between predicted and
observed CUE, is drawn in solid grey, and the correlation for significant relationships
between observed and predicted mean CUE for each isolate is drawn as a dashed line
alongside the Pearson and Spearman correlation coe�cients (** P < 0.01,* P <

0.05)
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Figure B.6: Plot of observed mean CUE Q
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for each isolate and incubation condi-
tion vs. the predicted mean CUE Q
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based on phylogenetic reconstruction using
ancestral reconstruction techniques. Each point represents an isolate, the x-axis the
observed mean Q
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, and the y-axis the mean Q
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predicted for the isolate based on
ancestral reconstruction. The 1:1 line, indicating perfect agreement between pre-
dicted and observed Q
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, is drawn in solid grey, and the correlation for significant
relationships between observed and predicted mean Q
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for each isolate is drawn as
a dashed line alongside the Pearson and Spearman correlation coe�cients (** P <

0.01,* P < 0.05)

146



20oC 25oC

G
LUCO

SE
PDB

PYRUVATE
SUCCINATE

0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8

0.4

0.6

0.8

0.4

0.6

0.8

0.4

0.6

0.8

0.4

0.6

0.8

maximimum growth rate

CU
E

Phylum
Acidobacteria
Actinobacteria
Alphaproteobacteria
Bacteroidetes
Betaproteobacteria
Firmicutes
Gammaproteobacteria
Planctomycetes
Verrucomicrobia

0.37** 0.18. 0.23*

0.47*

1.08* 0.95**

15oC
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Figure B.9: Venn diagrams of numbers of individual KO markers for which their
genomic density is positively or negatively correlated with CUE. In all instances,
”glucose explore” is considered to consist of the proposed markers of e�ciency, while
the remaining three datasets are considered as ”validating” datasets. Sample sizes
(number of isolates or microcosms) for each analysis are as follows: other substrates
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Figure B.10: Venn diagrams of numbers of KO pathway markers for which their
genomic density is positively or negatively correlated with CUE. In all instances,
”glucose explore” is considered to consist of the proposed markers of e�ciency, while
the remaining three datasets are considered as ”validating” datasets. Sample sizes
(number of isolates or microcosms) for each analysis are as follows: other substrates
(10-13); glucose explore (13); glucose all (22); microcosms (10).
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Figure B.11: Venn diagrams of numbers of KO pathway markers for which their
genomic density is positively or negatively correlated with the temperature sensitivity
(Q10) of CUE. In all instances, ”glucose explore” is considered to consist of the
proposed markers of e�ciency, while the remaining three datasets are considered
as ”validating” datasets. Sample sizes (number of isolates or microcosms) for each
analysis are as follows: other substrates (10-13); glucose explore (13); glucose all
(22); microcosms (10).
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Figure B.15: Sensitivity of MBC growth estimate error to variation in biological
parameters and methodological errors. The plotted scenario assumes MBC is under-
extracted, and that fungi and bacteria grow at di↵erent rates.
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Figure B.16: Sensitivity of MBC growth estimate error to variation in biological
parameters and methodological errors. The plotted scenario assumes that DNA is
under-extracted, and that fungi and bacteria grow at the same rate.
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Figure B.17: Sensitivity of MBC growth estimate error to variation in biological
parameters and methodological errors. The plotted scenario assumes that DNA and
MBC are both under-extracted, and that fungi and bacteria grow at the same rate.
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Figure B.18: Sensitivity of MBC growth estimate error to variation in biological
parameters and methodological errors. The plotted scenario assumes that MBC is
under-extracted, and that fungi and bacteria grow at di↵erent rates.
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Figure B.19: Sensitivity of MBC growth estimate error to variation in biological
parameters and methodological errors. The plotted scenario assumes that DNA is
under-extracted, and that fungi and bacteria grow at di↵erent rates.
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APPENDIX C

SUPPLEMENTARY METHODS FOR CHAPTER 2

C.1 Media preparation

PDB media contained 10g/L alpha glucose, 4g/L potato infusion extract (Sigma

52424), and 8.53g/L of the bu↵er MES monohydrate. To prevent oxidation, the

media was sterile filtered through a 0.22um PES filter rather than being autoclaved.

Glucose, pyruvate, and succinate media consisted of a salts base (0.2g KH
2

PO
4

,

0.25g NH
4

Cl, 0.5g KCl, 0.15g CaCl
2

*2H
2

O, 0.2905g MgCl
2

, 0.284g Na
2

SO
4

, 1mls

SL10) bu↵ered with 10mM MES. After autoclaving, sterile-filtered glucose, sodium

pyruvate, or sodium succinate were added at 1g carbon L-1, and media was supple-

mented with 0.05% yeast extract and 2mls VL55 vitamins. This small amount of

yeast extract was added since preliminary studies showed some isolates failed to grow

beyond the first transfer unless it was supplied, but that isolates were unable to grow

to detectable levels on this media base unless additional carbon was supplied. As

such, we assume growth is representative of growth on glucose, pyruvate, or succinate

alone. The heats of combustion for these substrates was extracted from the NIST

Chemistry WebBook (169).

Freezer stocks of bacterial isolates in 20% glycerol were streaked onto pH 6 R2A

media and incubated in the dark at 20�C until colonies appeared (2-21 days), and
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then transferred to assay conditions. In order to minimize batch e↵ects, we used dis-

tinct freezer stocks of each isolate where possible. Approximately 1ul of colony was

transferred to triplicate tubes of 200µl pH 6 10mM MES bu↵er, and 10µl of this was

used to inoculate 190µl of potato dextrose broth, glucose, pyruvate, or succinate me-

dia in a 96-well plate. Plates were incubated at 15, 20, or 25�C and actively-growing

cultures were transferred at least two more times under these conditions in order to:

1. allow acclimation to assay conditions; 2. ensure dilution of carbon transferred

with original media; and 3. minimize bias in OD measurements due to aggregation

of cells (143). 50-100µl of the final transfer was subsequently pipetted into 7mls of

the same media; when this culture reached exponential phase (based on final OD),

0.5-1ml was injected into a sealed stoppered 27ml Balch tube containing 5mls of the

same media. At all steps, media was brought to the incubation temperature prior to

inoculation.

The optical density and respiration rate of cultures were monitored throughout

exponential phase using a Spectronic-20 spectrophotometer at 600nm and a Quan-

tek instruments model 906 CO
2

analyzer, respectively. Prior to each read, tubes

were vortexed vigorously to ensure solution and headspace CO
2

were in equilibrium.

At least three distinct experiments starting with a new freezer stock restreak were

completed for each isolate and condition assayed. A conversion factor of 130 µg

carbon OD-1ml-1 was used to calculate microbial biomass carbon throughout the

growth curve (BioNumber 109836). This constant conversion factor was used due to

consistent challenges we faced in quantitatively pelleting the large volumes of small,

exponentially-growing cells for our own isolates.
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C.2 Measuring extracellular enzyme activity

To determine microbial extracellular enzyme potential, isolates were brought to

exponential phase in glucose media at 20oC and then frozen at -20oC for up to two

months prior to assays. We assayed for phosphatase (AP), N-acetylglucosaminidase

(NAG), beta-glucosidase (BG), alpha-glucosidase (AG), cellobiohydrolase (CBH),

and beta-xylosidase (BX) using 225µl of 1000uM MUB-linked substrate and 225µl

of culture. We modified the typical protocol used by our lab (225) to account for

the anticipated lower activity of isolates compared to soil. Plates were incubated

at 20oC for 2.5 hours and the di↵erence between the initial and final fluorescence

read at an excitation/emission wavelength pair of 360/445nm was used to determine

enzyme activity OD-1 hr-1 when compared to a standard curve prepared from 4-

methylumbeliferone. Activity reported is the mean of the sums of enzyme activity

across three technical replicates of 3-8 biological replicates of each isolate.

C.3 Phylogeny construction

A phylogeny was generated for all isolates using a conserved suite of single copy

genes (152). Protein sequences for each isolate were downloaded from IMG, and the

sequences of relevant genes were extracted using psi-BLAST (14) against the relevant

reference sequences from the conserved domains database (CDD) (182). Genes were

aligned across species using T-COFFEE (202), and concatenated using FASconCAT-

G (148). ProtTest (2) was used to determine the optimum evolutionary model for

each protein (LG; (156), and then RaxML was used to build the tree via the Trex-

online website using default settings (substitution model = PROTCAT, substitution
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matrix = DAYHOFF, hill-climbing algorithm, and bootstrap with 100 starting trees)

(36; 264). The tree was subsequently uploaded into ITOL (164) for visual inspection

and annotation.

C.4 Data analysis

In order to determine the shape of the temperature response of CUE in a given

isolate, we fit curves linear (CUE=slope*Temperature+intercept) and parabolic

(CUE=slope
i

*temperature2+ slope
ii

*temperature+intercept) with respect to tem-

perature. Equations were selected when P < 0.05 for the model fit, and an ANOVA

comparing the two models was significant at P < 0.05, indicating one was signifi-

cantly better than the other.

C.4.0.1 Genome sequencing, assembly, and annotation

gDNA was extracted from bacteria newly presented here using the Qiagen ge-

nomic DNA reagents kit and tips, and submitted to the UMass Med Deep Sequenc-

ing Core (BS isolates and 24-YEA-27) or Joint Genome Institute (all others) for

sequencing using PacBio. Genomes sequenced at UMass were assembled using sprai

version 0.9.9.23 (http://zombie.cb.k.u-tokyo.ac.jp/sprai/index.html) and Canu ver-

sion 1.5 (142) using default settings. Assembly quality was verified based on sca↵old

count and on genome completeness and contamination using CheckM (212) within

the DOE’s KBASE platform (18). The eukaryotic KEGG ortholog pathways catego-

rized under the level B category ”Cellular community - eukaryotes”, and under the
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level A categories ”Organismal Systems” and ”Human Diseases” were excluded from

consideration as markers.

Initially we tried to build more specific metabolic models for our isolates using

the RAST subsystems in KBASE (18), but abandoned them after models failed to

grow with minor gapfilling under conditions the corresponding bacteria are observed

to grow robustly under. Instead, we took a more conservative approach and used

the number of MAPLE pathways (17) with greater than 80% completeness, as per

Muscarella and Lennon (2018).

TrSSP (191) was also used for annotating transporters in our bacterial genomes.

However, we excluded its results from our analysis for 1. failing to predict any amino

acid uptake transporters for most Gram positive isolates, and 2. predicting twice as

many transporters per genome as the previously-reported “highs” of 18% (173).

C.5 Protein production costs

While in phosphate limited media, transcriptional costs limit fitness, in N-limited

media translational costs do (125). We anticipate that our defined media is N-limited

(soil bacterial NP ratio = 7:1 (53); media NP = 3.18:1), and so calculated the total

extracellular enzyme cost as a function of amino acid biosynthesis and translation.

Amino acid production requires diversion of substrate otherwise used for energy

production into anabolic processes, and therefore generates competition between

energy and carbon demands. Over evolutionary time, bacteria may get around this

by using amino acids which are “cheaper” to produce, either because they are made

from metabolites much of the ATP potential has already been extracted from, or
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because only minimal ATP investment is needed to convert them from these central

metabolic byproducts. We used the amino acid biosynthesis costs presented in Kaleta

et al. (2013) for E. coli, assuming glucose as the substrate and 4.2 ATP consumed per

peptide bond formed (126). Assuming 26 ATP are produced per six glucose carbons,

we calculate the theoretical carbon assimilation e�ciency for each protein as the ratio

of carbon in the protein to the carbon in the protein plus CO
2

respired making the

ATP required to make the protein. The “per protein CUE” for each protein was then

weighted by its expected relative expression to get a whole exoenzyme production

cost.

We lack expression data for our organisms during CUE measurements, so we used

gene codon usage bias (GCB; (190) to infer relative expression. GCB assumes that

more highly-expressed genes show a more restricted codon usage pattern than those

which are less-expressed, as more highly-expressed genes are under stronger selection

to match the available tRNA pool of the cell. Instead of calculating the codon

usage bias for all genes compared to all others, it takes a user assigned set of genes,

calculates the codon usage bias for all other genes against those, and then iteratively

selects the set of genes which gives the maximum codon usage bias, indicating it is

the most expressed. The GCB then gives a proxy for relative expression level based

on the degree to which codon bias deviates from that used in the genes proposed to

be the most highly expressed. We used all ribosomal proteins as our initial reference

set for calculations, and excluded genes with fewer than 80 codons from calculations

because codon bias is unreliable (82). The GCB can give negative numbers because it

is a log ratio of codon biases for the gene of interest vs. the highly expressed reference
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set. Therefore we added one to all values before multiplying the per enzyme costs

and re-calculating the average. Fasta manipulations were completed using bioStrings

(209), and codon bias calculations using coRdon (82) in R v3.4.0 (232).

C.6 Microcosm CUE measurements

CUE in the microcosms was measured by adding 18O-H
2

O to 20% of the final

water present to subsamples of the soil. Samples were prepared identically, only

using 16O-H
2

O, as controls for background heavy oxygen incorporation. The samples

were then placed in sealed tubes for 24 hours and the CO
2

produced during this

time measured using an IRGA. The soil samples were stored at -80C until DNA

extraction using the Qiiagen Powersoil HTP kit. The resultant DNA was quantified

using PicoGreen (Invitrogen), and its 18O enrichment was measured using IRMS at

the UC Davis Stable Isotope Facility. CUE was calculated by converting new DNA

to new microbial biomass carbon produced as per (262).
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APPENDIX D

SUPPLEMENTARY METHODS AND RESULTS FOR
CHAPTER 4

D.1 Measuring isolate CUE in artificial soil

Isolates were streaked from freezer stocks onto R2A-6 media plates. Cultures were

grown in triplicate to exponential phase in Roller glucose media and then pelleted

in the centrifuge (5000xg, 5 minutes). The cultures were then re-suspended in fresh

media to an OD of 0.02, and 1mls of this was used to inoculate 5g of artificial soil

(50% water holding capacity). Data from preliminary respiration curves where CO
2

was measured for an extended period were used to estimate when exponential phase

was, where the phase of maximum respiration rate was assumed to correspond to

the exponential phase. When growth was apparent based on CO
2

production, 1g of

wet weight soil was removed and resuspended in 5mls of fresh glucose media. 1ml

of this was then used to inoculate 6-10 replicate fresh artificial soil tubes. At each

timepoint, a respiration measurement was taken on one tube of each replicate, and

the soil contents of that tube were then frozen at -80oC until DNA extraction.

We looked for the three timepoints where the logarithm of hourly CO
2

production

rates against time had the greatest slope, and used these samples for estimating

microbial biomass carbon and CUE.

167



DNA was extracted using the Qiagen PowerSoil DNA extraction kit. Qiagen

technical support stated that the columns in this kit tend to bind DNA ine�ciently

at both low and high concentrations of DNA. Since we found low concentrations of

DNA, we also tried coarser methods of DNA extraction, including bead-beating with

a phosphate bu↵er. However, the DNA resulting from this extraction was so dirty

that the estimated DNA content was 500 times higher than expected based on the

number of cells put in. Therefore, we stuck with the original PowerSoil protocol.

Since we know both the genome size and rrN of the isolates inoculated into the

artificial soil, we could use either qPCR to estimate ribosomal DNA copies or DNA

yield as an estimate of the number cells in the soil. qPCR is more sensitive than total

DNA quantification using a Qubit, but also requires additional conversion factors to

yield estimates of cells. In both methods, an average microbial biomass carbon per

cell estimate can be used to convert the DNA-based cell copy number data into

microbial biomass carbon. Although in theory both methods should yield similar

estimates of CUE, in practice biomass estimates using qPCR were much higher than

those used Qubit (Fig. D2).

D.2 CUE results: AN6A

Example results for the intrinsic rate of increase (”r”) and mass-specific respira-

tion rates used to calculate CUE for AN6A can be found in figures D.1 and D.2.
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Figure D.1: Growth (a) and respiration rate (b) of AN6A grown on glucose Roller
media in artificial soil at 20oC. Microbial biomass carbon was estimated by converting
the DNA yielded from DNA extraction into genome copies, and then into microbial
biomass carbon. In this instance, CUE is 0.55 using the slope determined by pooling
all three experimental replicates for each timepoint (here), or 0.58, 0.31, and 0.39
when slopes are calculated separately for each replicate.
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Figure D.2: Growth (a,c) and respiration rate (b,d) of AN6A grown on glucose Roller
media in artificial soil at 15oC, using either qPCR-derived estimates of biomass (a,b),
or genomic DNA quantification (c,d). CUE is estimated as 0.21 using the Qubit and
0.64 using qPCR. Values calculated identically for experiments set up at 25oC yielded
estimates of 0.34 and 0.82, respectively.
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D.3 CUE results: GAS332

Example results for the intrinsic rate of increase (”r”) and mass-specific respira-

tion rates used to calculate CUE for GAS332 can be found in figure D.3.
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Figure D.3: Growth (a) and respiration rate (b) of GAS332 grown on glucose Roller
media in artificial soil at 25oC. Microbial biomass carbon was estimated by converting
the DNA yield into genome copies, and then into microbial biomass carbon. In this
instance, CUE is 0.57 when calculated as for the liquid CUE in chapter 1. The
corresponding tubes for 15oC did not grow, so no data are provided.
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[196] Mouginot, Céline, Kawamura, Rika, Matulich, Kristin L, Berlemont, Renaud,
Allison, Steven D, Amend, Anthony S, and Martiny, Adam C. Elemental
stoichiometry of fungi and bacteria strains from grassland leaf litter. Soil
Biology and Biochemistry 76 (2014), 278–285.

[197] Murali, Adithya, Bhargava, Aniruddha, and Wright, Erik S. Idtaxa: a novel
approach for accurate taxonomic classification of microbiome sequences. Mi-
crobiome 6, 1 (2018), 140.

[198] Muscarella, Mario E, and Lennon, Jay T. Trait-based approach to bacterial
growth e�ciency. bioRxiv (2018), 427161.

[199] Muyzer, G. de Waal, E C. Uitterlinden A G. Profiling of complex microbial
populations by denaturing gradient gel electrophoresis analysis of polymerase
chain reaction-amplified genes coding for 16s rrna. Applied and Environmental
Microbiology 59, 3 (1993), 695–700.
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and Melo, Wanderley J. Soil microbial biomass and organic matter fractions
during transition from conventional to organic farming systems. Geoderma 170
(2012), 227–231.

198



[244] Satinsky, Brandon M, Crump, Byron C, Smith, Christa B, Sharma, Shalabh,
Zielinski, Brian L, Doherty, Mary, Meng, Jun, Sun, Shulei, Medeiros, Patri-
cia M, Paul, John H, et al. Microspatial gene expression patterns in the amazon
river plume. Proceedings of the National Academy of Sciences 111, 30 (2014),
11085–11090.

[245] Schaechter, Moselio, Maaløe, Ole, and Kjeldgaard, Niels O. Dependency on
medium and temperature of cell size and chemical composition during balanced
growth of salmonella typhimurium. Microbiology 19, 3 (1958), 592–606.

[246] Schimel, Joshua, and Schae↵er, Sean Michael. Microbial control over carbon
cycling in soil. Front Microbiol 3 (2012), 348.

[247] Schimel, Joshua P, and Schae↵er, Sean M. Microbial control over carbon cycling
in soil. The causes and consequences of microbial community structure (2015),
155.

[248] Schmidt, Gavin A., Kelley, Max, Nazarenko, Larissa, Ruedy, Reto, Rus-
sell, Gary L., Aleinov, Igor, Bauer, Mike, Bauer, Susanne E., Bhat, Ma-
haraj K., Bleck, Rainer, Canuto, Vittorio, Chen, Yong-Hua, Cheng, Ye,
Clune, Thomas L., Del Genio, Anthony, de Fainchtein, Rosalinda, Faluvegi,
Greg, Hansen, James E., Healy, Richard J., Kiang, Nancy Y., Koch, Dorothy,
Lacis, Andy A., LeGrande, Allegra N., Lerner, Jean, Lo, Ken K., Matthews,
Elaine E., Menon, Surabi, Miller, Ron L., Oinas, Valdar, Oloso, Amidu O.,
Perlwitz, Jan P., Puma, Michael J., Putman, William M., Rind, David, Ro-
manou, Anastasia, Sato, Makiko, Shindell, Drew T., Sun, Shan, Syed, Rah-
man A., Tausnev, Nick, Tsigaridis, Kostas, Unger, Nadine, Voulgarakis, Apos-
tolos, Yao, Mao-Sung, and Zhang, Jinlun. Configuration and assessment of the
GISS ModelE2 contributions to the CMIP5 archive. Journal of Advances in
Modeling Earth Systems 6, 1 (Mar. 2014), 141–184.

[249] Schmidt, Michael W. I., Torn, Margaret S., Abiven, Samuel, Dittmar,
Thorsten, Guggenberger, Georg, Janssens, Ivan A., Kleber, Markus, Kögel-
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