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ABSTRACT

ENERGY-AWARE ALGORITHMS FOR GREENING
INTERNET-SCALE DISTRIBUTED SYSTEMS USING

RENEWABLES

SEPTEMBER 2019

VANI GUPTA

B.A., UNIVERSITY OF DELHI, DELHI

M.S., UNIVERSITY OF MISSOURI - KANSAS CITY

PH.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Prashant Shenoy and Professor Ramesh Sitaraman

Internet-scale Distributed Systems (IDSs) are large distributed systems that are com-

prised of hundreds of thousands of servers located in hundreds of data centers around the

world. A canonical example of an IDS is a content delivery network (CDN) that delivers

content to users from a large global deployment of servers around the world. IDSs consume

large amounts of energy and their energy requirements are projected to increase signifi-

cantly in the future. With carbon emissions from data centers increasing every year, use of

renewables to power data centers is critical for the sustainability of data centers and for the

environment.

In this thesis we design energy-aware algorithms that leverage renewable sources of

energy and study their potential to reduce brown energy consumption in IDSs. Firstly,

we study the use of renewable solar energy to power IDS data centers. A net-zero IDS

produces as much energy from renewables (green energy) as it needs to entirely off-set its
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energy consumption. We develop effective algorithms to help minimize the number of solar

panels provisioned for net-zero IDSs. We empirically evaluate our algorithms using load

traces from Akamai’s global CDN and solar data from PVWatts. Our results show that for

net-zero year, net-zero month, and net-zero week, our optimal algorithm can reduce the

number of panels by 36%, 68%, and 82% respectively, thereby making sustainability of

IDSs significantly more achievable.

IDSs consume a significant amount of energy for cooling their infrastructure. Therefore,

next, we study the potential benefits of using open air cooling (OAC) to reduce the energy

usage as well as the capital costs incurred by an IDS for cooling. We develop an algorithm

to incorporate OAC into the IDS architecture and empirically evaluate its efficacy using

extensive work load traces from Akamai’s global CDN and global weather data from NOAA.

Our results show that by using OAC, a global IDS can extract a 51% cooling energy reduction

during summers and a 92% reduction in the winter.

Finally, we study the greening potential of combining two contrasting sources of renew-

able energy, namely solar energy and open air cooling (OAC). OAC involves the use of

outside air to cool data centers if the weather outside is sufficiently cold and dry. There-

fore OAC is likely to be abundant in colder weather and at night-time. In contrast, solar

energy generation is correlated with sunny weather and day-time. Given their contrasting

natures, we study whether synthesizing these two renewable sources of energy can yield

complementary benefits. Given the intermittent nature of renewable energy, we use energy

storage and load shifting to facilitate the use of green energy and study trade-offs in brown

energy reduction based on key parameters like battery size, number of solar panels, and

radius of load movement. We do a detailed cost analysis, including amortized cost savings

as well as a break-even analysis for different energy prices. Our results show that we can

significantly reduce brown energy consumption by about 55% to 59% just by combining the

two technologies. We can increase our savings further to between 60% to 65% by adding
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load movement within a radius of 5000kms, and to between 73% to 89% by adding energy

storage.
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CHAPTER 1

INTRODUCTION

Modern Internet services are delivered by Internet-scale distributed systems (IDSs) that

consist of hundreds of thousands of servers deployed in a large number of data centers

around the world. IDSs include cloud and Internet services such as content delivery networks

(CDNs) that deliver web content, applications, and streaming media to clients on the web via

hundreds of thousands of servers located in thousands of data center locations throughout

the world [53]. An IDS consumes a significant amount of energy to power its servers and to

cool them. It is not uncommon for a large IDS to incur energy bills that run into millions

of dollars per month. The environmental impact of data center energy consumption is also

concerning. U.S. data centers are projected to consume approximately 73 billion kWh in

2020 [61]. Thus, it is imperative to re-design IDSs with energy as a key design consideration

to ensure the sustainable growth of these networks.

Given the tremendous energy requirements of IDSs, data centers that are powered using

renewables are gaining a lot of traction the industry and the research community. In just

six years, Apple’s use of renewable energy to power its corporate facilities, retail stores,

and data centers worldwide went from 16 percent in 2010 to 96 percent in 2016 [1]. Apple

is now committed to powering all their facilities world-wide with 100% renewable energy.

In 2017, Google achieved the milestone of purchasing 100% renewable energy to match

consumption for global operations, including their data centers and offices [4].

There has been a lot of work done in the research community on making data centers

greener by reducing energy consumption or using energy generated from renewable sources.

Prior work includes energy reduction using server shutdown or low-power states during off-
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peak times [44] [49] [17] [60]. There is also work on job scheduling based on predicted solar

[29] [28] and load balancing to encourage use of renewable energy [47] [46] [27]. Separately

there has been work on selecting sites for and provisioning green data centers using a follow-

the-renewables approach [13]. Greening IDSs is now a necessity for sustainable growth

of IDSs, for reducing environmental impact, and for lowering energy costs for companies.

Major IT companies, like Google and Apple, use a combination of methods to green

their operations. Google is trying to achieve 100% clean renewables by generating some

green energy on-site, but mainly by acquiring Renewable Energy Credits (RECs) through

their Power Purchase Agreements (PPAs) with renewable energy companies [4]. PPAs are

contracts that allow companies to buy power from energy companies at negotiated prices.

RECs are a means to keep track of who is using and consuming green energy. Companies

create a REC if they generate a MWh of green energy and consume a REC if they consume

a MWh of green energy. Google enters into PPAs with renewable energy companies and

buys renewable energy from them. Thereafter Google sells the energy back on the grid. This

indirect way of generating green energy gets Google RECs that they then use to offset their

grid energy use. Apple produces its own green energy where possible, and then it also relies

on PPAs and RECs to fully green its operations [1].

Renewables sources of energy like solar energy, wind energy, open air cooling have

great potential to meet our energy needs, but they are only available at certain times, to

different degrees, and in certain locations around the globe. IDSs such as CDNs have two

defining characteristics: a global deployment of servers in multiple data centers around

the world, and a replication of services across these data centers. The global deployment

is often driven by the need for an IDS to have servers “proximal” to the end-users. A

corollary of this deployment model is that it is not possible for IDSs to deploy only in places

where renewables are available for most of the year. They need to deployed near where

the users are. However, IDSs often replicate their services across their data centers, so that

the workload of serving users can be easily shifted from one data center to another, albeit
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with a potential for performance degradation. These two characteristics provide an IDS the

flexibility to move its workload across data centers to exploit climatic variations to optimize

the use of renewables, a flexibility that services employing a single or a few data centers do

not possess. It is in this sense that, even though IDSs consume massive amounts of energy,

they lend themselves well to greening. We take advantage of this factor extensively in our

thesis to help us achieve our goal of greening IDSs.

Solar energy is one of the cleanest and most abundant source of renewable energy

available [65]. Large IT companies such as Apple and Google are committing to solar to

meet some of their data center energy needs. Apple has recently announced that it plans

to build a 200MW photovoltaic solar capacity in a joint venture with Nevada Energy (NV

Energy) to power its data center in Reno, Nevada [10]. Google is set to power its recently

opened Dutch data center containing thousands of servers with solar energy [32]. We also

know that for data centers in general, cooling is a significant source of energy consumption.

In addition, the American Society of Heating, Refrigerating and Air-Conditioning Engineers

(ASHRAE) relaxed the limits on operating temperatures and humidity ranges for data

centers, and defined new classes of data centers that can tolerate higher temperatures and

humidity levels [35]. These facts coupled with the ability to address both server and cooling

energy make solar and OAC attractive technologies to focus on. Our motivation for using

solar and OAC stems from the fact that by addressing both the cost of powering and cooling

servers we can offer a more comprehensive energy reduction solution for IDSs. In addition,

motivated by the contrasting natures of the two technologies, we study if there are any

complementary benefits in combining them for greening IDSs.

1.1 Thesis Contributions

This thesis proposes novel techniques to incorporate the use of renewables in global IDSs

with an aim to reduce capital and operational costs, as well as to green IDSs. We design
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energy-aware algorithms that leverage renewable sources of energy and study their potential

to reduce brown energy consumption in IDSs. We outline three specific contributions below.

1.1.1 Optimal Solar Provisioning for Net-zero IDSs

A net-zero IDS produces enough green energy to off-set its brown energy consumption.

We study the potential of solar energy for powering global net-zero IDSs. We develop novel

greedy and optimal algorithms to enable load shifting for different net-zero time periods.

We study the impact of unrestricted load movement, restricting solar panel provisioning to

certain locations, and restricting load movement within different radii, on the reduction in

the number of solar panels. We extensively evaluate our work using Akamai CDN’s load

traces, and solar data from PVWatts. Overall, with unrestricted load movement, we can

reduce the number of solar panels by 36%, 68%, and 82% for net-zero year, net-zero month

and net-zero week respectively.

1.1.2 Open Air Cooling (OAC) for Greening IDSs

We study the potential of OAC to reduce energy consumption in IDSs. We develop

a simple greedy algorithm that allows us to move load to leverage OAC. We design the

algorithm to enable us to enforce performance constraints by restricting the radius of load

movement. We evaluate our work using extensive load traces from Akamai’s CDN and

NOAA weather data. We demonstrate the benefits of OAC by showing we can reduce

cooling energy by 51% in the hot months of summer, and by 92% in winter, when the

temperatures are lower.

1.1.3 Combining Solar Energy and OAC for Greening IDSs

Finally, we study the use of OAC and solar energy in conjunction with each other to

green IDSs. Solar energy is associated with day-time and sunny weather. OAC is associated

with night-time and colder weather. In this work, we design a simple greedy heuristic

algorithm and study the greening potential of combining solar energy and OAC with respect
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to energy savings, energy utilization, and cost savings. Both these sources of renewable

energy are intermittent, so we use energy storage and load shifting to facilitate the use of

green energy and study trade-offs in brown energy reduction based on key parameters like

battery size, number of solar panels, and radius of load movement. We do a detailed cost

analysis, including amortized cost savings as well as a break-even analysis for different

energy prices. Our results look encouraging and we find that we can significantly reduce

brown energy consumption by about 55% to 59% just by combining the two technologies.

We can increase our savings further to between 60% to 65% by adding load movement

within a radius of 5000kms, and to between 73% to 89% by adding energy storage.
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CHAPTER 2

BACKGROUND AND RELATED WORK

This chapter provides a background on Internet-scale Distributed Systems (IDSs). We

also discuss related work on the use of renewables in data centers.

2.1 Background

Internet-scale Distributed Systems: Internet-scale Distributed Systems (IDSs) are

large-scale global networks that are comprised of data centers in several locations across

the world. Content delivery networks (CDNs) are examples of IDSs and are used to deliver

content, streaming audio, video, applications etc. on the web. Figure 2.1 shows data center

locations part of the Akamai CDN. Commercial CDNs use two levels of load-balancing

in their systems: local and global. When a user requests content, the global load-balancer

assigns the request to a server cluster located ‘close-by’ to minimize loss and latency [53].

The local load-balancer then maps the request to a specific server in the cluster. In order

to assign users to nearby data centers and minimize loss and latency, CDNs replicate their

services so as to have redundancy in the choice of data centers. This replication is also very

useful if load from one data center is assigned to another data center for any other reason,

e.g. to leverage a local feature like high solar output.

Energy for Powering Servers: The primary source of energy consumption in IDSs are

the numerous servers deployed in all the various data centers (server energy). The energy

consumed by a server is largely dependent on the amount of load it is serving, so we can

model the energy consumed by a server as a function of its load. However, servers are not

energy proportional and still consume some energy, roughly 60%, when they are idle. The
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Figure 2.1: Plot showing the diversity in geographic locations that can make up a global IDS

standard linear model of server power consumption [12] that defines power consumed by a

server as Pidle +(Ppeak−Pidle)λ ,, where λ is the normalized load on the server, Pidle is the

power consumed by server that is idle, and Ppeak is the power consumed by the server that

has peak load. We assume that we can move load between servers to consolidate load, and

shut down idle servers, so as to use the minimum number of servers needed to serve the load

[43]. In order to determine the power used by a cluster of servers in a data center, we first

use the total load for the data center l and the capacity c of each server to find out how many

servers we need to consolidate our load as w+ f = l/c, where w is the number of whole

servers, and f is the fraction of a last server needed. We then calculate the consolidated

power as Ppeak ∗w+Pidle +(Ppeak−Pidle)∗ f . Power consumed (in Watts) by the cluster in

each 5-minute time interval is then multiplied by the number of seconds (5*60) to get the

energy consumed by the cluster in each time interval (in Joules). Our assumption is that

such consolidation of load is done at each of the data center locations for each time period.

Energy for Cooling Servers: In addition to the energy needed to run servers, we also

need energy to cool them (cooling energy). Heat dissipated by servers is a function of the

energy they consume. The more heat they dissipate, the more energy is needed to cool them

down. So cooling energy is proportional to server energy. The proportionality factor models
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how efficient the cooling system is and reflected by the power usage effectiveness (PUE)

of a facility. Power usage effectiveness (PUE) is defined as the ratio of the total energy

consumed by the facility, to the energy delivered to computing equipment. Though efficient

data centers with lower PUE exist, the average PUE of a data center is shown to be 1.8 [69].

Therefore cooling energy accounts for a large fraction of the total energy requirements of an

IDS.

Solar Arrays and Factors Affecting Solar Output: A solar panel is an electrical

device that converts sunlight into electricity using the photovoltaic effect. A solar array

consists of several solar panels that can be configured for efficiently generating solar energy.

There are several factors that affect solar output from solar arrays, but they can be essentially

divided into two categories: factors affecting how efficiently the panel is able to utilize the

solar radiation it receives (configurable) and factors affecting the amount of solar radiation

reaching the panel (non-configurable):

Configurable factors are those that can be changed to see a change in the output. These

are related to the type of panels installed, their tilt, objects that shade the panel etc. Some of

these are listed below:

• Module Type and Array Type: A solar module or solar panel can be standard, premium

or thin film. Standard includes typical poly- or mono-crystalline silicon modules, with

efficiencies in the range of 14-17%. Premium modules have a higher efficiency and

thin film modules have a lower efficiency than the standard module [20]. For our

experiments, we have chosen the ‘Standard’ module. Arrays also come in different

varieties and can be either mounted in a fixed manner, or rack mounted to track the

sun. Sun tracking arrays yield more solar output, but are harder to maintain because

of the tracking rack and are more expensive [3]. For simplification, we have used a

‘Fixed Open Rack’ configuration for our experiments.

• Tilt and Azimuth Angle: The tilt angle, β , is the angle at which the solar panel is

inclined to the horizontal and is shown in Figure 2.2. There are several sophisticated
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Figure 2.2: Solar panel facing south, with azimuth angle α and tilt angle β
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Figure 2.3: Plot shows that there is a large variation in annual solar output depending on
global location

ways to calculate optimal tilt, however, as a general rule a fixed tilt angle equal to the

site’s latitude is often recommended [6]. The azimuth angle, α , is defined as the angle

clockwise from true north of the direction that the PV array faces, and is shown in

Figure 2.2. Therefore, the azimuth angle for locations in the northern hemisphere is

180 degrees, and for locations in the southern hemisphere it is 0 degree.

Non-configurable factors that cannot be changed to increase output and are outside

the control of panel owners. These are mainly a function of the location, geography, like

weather, seasons etc. We discuss some of these factors below:
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Figure 2.4: Normalized monthly solar energy for Seattle showing a higher output in the
summer months for the Northern hemisphere
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Figure 2.5: Normalized monthly solar energy for Perth, Australia showing a higher output
in the summer months for the Southern hemisphere

• Temperature: Solar panels are tested at 25 °C , and come with a temperature coefficient

value that is expressed as a percentage per degree Celsius (e.g. -0.5% per °C ). At

higher temperatures, beyond 25 °C , solar panel efficiency declines by the amount of

its temperature coefficient percent for every 1 °C rise in temperature [2].

• Location: As shown in Figure 2.3, there is a large variation in annual solar output

based on location. The total solar irradiance is the maximum amount of irradiance

that can be received and is possible when the sun’s rays strike the earth at 90 degree

angle. As you move further away from the equator, the rays are less perpendicular
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Figure 2.6: Normalized solar output for a week showing large daily variations in the close-by
locations, and within the same location

and therefore cover a larger area. Therefore, the solar irradiance received per unit area

is not as concentrated. The latitude of a location determines whether it is close to

the equator or farther away, which in turn determines how direct the incoming solar

radiation is. This factor leads to a decrease in the amount of solar irradiance as we

move to higher and higher latitudes.

• Season: Solar output also varies by season. Summer months tend to have higher levels

of solar than winter months. This can be seen in Figure 2.4 which shows the monthly

solar output for Seattle, WA.

• Hemisphere: Winter months in the northern hemisphere are summer months in the

southern hemisphere and vice versa. This factor affects the amount of solar output

for panels placed in different hemispheres. Figures 2.4 and 2.5 show monthly solar

output for Seattle in the northern hemisphere and for Perth in the southern hemisphere.

As we see, the trend in the levels of solar output is reversed for these locations, given

winter in the northern hemisphere is summer for the southern hemisphere, and vice

versa.
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• Daily variations: Solar output goes to zero when the sun is not shining and so the

hour of the day affects solar output. As Figure 2.6 shows, for each location there are

hours when solar is zero and then it rises steadily, peaks and then falls again once the

sun sets.

• Other factors: All other factors like location, season, and time of day remaining

constant, solar output can still change based on several factors that may include

weather, cloud cover, pollution etc. As Figure 2.6 shows, within the same location,

season, hemisphere and time of day, we see large variations between solar output from

one day of the week to the next. Locations that are close-by e.g. Portland, OR and

Seattle, WA also show large variations in solar output, as we can see in the figure.

Given the above analysis, we conclude that solar output is highly variable across time

and space and is affected by several diverse factors, and their interplay. While this is a

challenge as it leads to intermittent solar power availability, it is also an opportunity

in the context of a global IDS that can leverage high levels of solar by moving load

to those locations. In our study, we leverage these complex variations to reduce the

number of panels provisioned.

Open Air Cooling (OAC): Data centers need to keep their IT equipment at prescribed

temperatures to keep them from failing. Chillers are typically used by data center to cool

servers by drawing hot air from the servers through a series of coils containing chilled water.

This leads to an increase in the temperature of the water, which is then taken to a cooling

tower to be cooled [19]. Chillers consume immense amounts of energy and must be kept on

constantly to maintain the right temperature levels. A promising approach for reducing the

cooling energy of a data center is to use the outside air, instead of chillers, to cool servers

within the data center - these techniques are broadly referred to as Open Air Cooling (OAC).

OAC works by drawing into the data center cool outside air, if required mixing it with

warmer indoor air to maintain appropriate temperature and humidity levels, and to supply
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that air to the cold aisles in the data center [54]. The intake air may also be filtered to limit

contamination. This approach has the potential to reduce or even fully eliminate the need

for chillers that consume much of the electrical energy used for cooling. Different forms of

OAC include evaporative cooling, which uses a combination of water and outside air, and

direct air cooling, which directly uses outside air, to cool servers. Our analysis is agnostic to

the exact form of OAC employed by the data center.

OAC has recently been successfully installed in a few facilities such as Facebook’s data

center in Forest City, North Carolina [68]. However, OAC is feasible only when the air is

“cold" and “dry" enough. As a result, OAC may not be possible everywhere. Further, even

where OAC is possible, it may not be possible during all times of the day, or all seasons of

the year.

Net-zero Systems: A net-zero energy data center is designed and managed in a manner

that uses on-site renewables to entirely offset the use of any non-renewable energy from the

grid [11]. Extending this basic definition for the purposes of this paper, we define a net-zero’

IDS for different time periods as below:

• Net-zero Year IDS: A net-zero year IDS is one that consumes as much energy in a

year as it produces in a year using renewables.

• Net-zero Month IDS: A net-zero month IDS is one that consumes as much energy in a

month as it produces in a month using renewables, for every month in a year.

• Net-zero Week IDS: A net-zero year IDS is one that consumes as much energy in a

week as it produces in a week using renewables, for every week in a year.

Based on the above definitions, net-zero week is the most stringent requirement. For and

IDS to be net-zero week, it must be net-zero during every week of the year, including the

worst week in terms of solar energy output as well. If an IDS is net-zero week, clearly, it

is also net-zero month and net-zero year. Similarly, if an IDS is net-zero month, it is also

net-zero year.
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2.2 Related Work

Due to the tremendous energy needs of data centers, use of renewables (e.g. wind

energy, solar energy etc.) has become critical to the sustainability of data centers and for

the environment. Therefore, solutions for greening data centers are fast gaining momentum

in research and in the industry. Prior work in the area of renewables can be categorized

by scale as follows: server level, data center level, and network level. Mostly, server level

studies focus on reducing energy consumption of individual servers by various methods of

power management. Data center level work mainly focuses on capacity planning of data

center, workload management for a data center, and reducing cooling costs for individual

data centers. Network level studies focus on geographical load balancing and siting and

provisioning data centers and renewables. We discuss these studies in the sections below.

2.2.1 Server Level Greening

Prior work includes studies to manage server power states in order to save energy. Solar-

Core [42] is a power management solution for solar powered multi-processors. SolarCore

use heuristics to allocate solar power between cores, so as to increase the utilization of solar

energy. Motivated by the need to use renewable energy in data centers that is characterized

by intermittency, Blink [60] enables systems to handle interruptions in power supply by

using transitions between high powered active states and low powered inactive states. There

has also been other studies aimed at reducing energy consumption in data centers, including

solutions focused on shutting down servers or clusters during off-peak periods and/or using

low-power consumption states instead of powering them off in order to prevent wear and

tear [44] [49] [17]. Studies have also been done on power management at the operating

system level. Studies have also been done at the OS level to efficiently manage power

consumption without degrading performance. On-demand governor [55] is a real-time

power manager for Linux that monitors the CPU several times and sets clock frequency

and supply voltage according to load and with the aim of keeping the CPU 80% utilized.
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ECOsystem [72] allocates energy between applications on battery powered devices based

on users’ application priorities and target battery lifetime. These studies provide excellent

solutions for server energy management and savings, however, they do not deal directly with

renewable energy utilization/provisioning at the intra-data center IDS level.

2.2.2 Data Center Level Greening

Solutions that leverage renewables have also considered intra-data center workload

scheduling. Parasol is a prototype powered by renewables [28] and was developed to

study the use of solar energy for a data center. GreenSlot [29] and GreenHadoop [30] are

two job-scheduling systems that schedule jobs in a way that maximizes the use of solar

energy, without violating job deadlines. If energy from the grid is to be used, the scheduler

tries to schedule the job when the price of energy is cheap. An adaptive scheduler for

mixed batch and web service jobs has also been developed [9] that utilizes solar and wind

energy prediction to decrease canceled jobs and increase green energy usage efficiency. An

agile computing cluster [39] has also been developed that defers batch jobs and gracefully

degrades interactive services and utilizes wind energy. iSwitch [41] matches variable load

to intermittent power supply by dividing servers into two groups (one containing servers

powered by the grid and the other powered by wind energy) and migrating jobs to maximize

wind energy use.

Under capacity planning, ReRack [15] is a simulator that calculates the energy cost of a

data center using renewable energy. For a given location and workload, ReRack finds the

best ratio of renewables. Work has also been done in optimization-based energy capacity

planning with the aim of meeting carbon footprint goals, by incorporating not only on-site

renewables, but also using off-site renewables, power purchase agreements (PPAs), and

renewable energy credits (RECs) [58].

It takes almost as much energy to cool a data center as it takes to power it. Therefore,

some studies have also looked into harnessing renewable open air cooling to reduce cooling
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costs in data centers. Prior work has looked into various cooling technologies, including open

air cooling, in the context of modular data centers [38]. Their focus is on evaluating different

cooling technologies in various climates for modular data centers, rather than on load shifting

to leverage climatic conditions to increase open air cooling. Separately, work has been

done in the area of unified management of data centers depending upon intermittency of

renewables, cooling efficiency, differences in workload levels and energy price fluctuations

[16]. This work however is distinct from ours as it focuses on workload management for

individual data centers and does not leverage inter-data center load movement for renewable

energy optimization.

2.2.3 Network Level Greening

All the above studies provide solutions for solving a range of problems associated with

greening data centers, however, they are all at the individual data center level, with no load

movement between data centers. Separately, work has been done in the area of inter-data

center load balancing. FreeLunch [8] proposes a network of inter-connected data centers in

which migration of virtual machines is done based on the availability of renewable energy,

including solar and wind. This study presents a more high-level motivation and outline and

does not present formal algorithms or an evaluation using real world traces and weather

data. A trace-driven evaluation has also been done to move load between data centers

using a ‘follow the renewables’ approach [47]. Additionally, [46] study investigates the

use of renewables (wind and solar) to almost entirely power data centers. However, both

their solutions using renewables like solar are for load-balancing and not optimal solar

provisioning over different time periods. Also, they model a smaller network of data centers,

much smaller in scale than the Akamai network whose trace we use to evaluate our work. In

addition, they do not consider open air cooling as part of their renewable mix. Differently,

there are studies that look into user request routing for greening data centers. In this study

[66], request-level energy profiling is used to route requests to data centers where renewables
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are available. Another study [73], proposes a middleware solution for dispatching requests

to data centers, based on weather conditions conducive to maximizing renewable energy

use and at the same time staying within an operational budget. Once again, our work is

distinct in that we move load in an off-line fashion to determine renewable use potential and

provisioning, rather than for online load balancing. Also, we use load, rather than requests,

as a means to determine energy requirements for a data center. FORTE [27] assigns users

and data objects to data centers based on the optimization of latency, price of electricity, and

carbon footprint. Their method is online request routing which is different than our offline

provisioning to optimize renewable potential. In addition, they do not explicitly consider

open air cooling as part of their renewable mix.

Previous work has also looked into providing a solution for selecting sites for and

provisioning green data centers using a follow-the-renewables approach [13]. However,

their work focuses on siting and provisioning data centers and associated green power plants

from scratch based on the availability of wind and solar and various other costs, where as

our data center locations are given. In addition, they base the placement of their data centers

partially on a combination of availability of solar and wind energy. In contrast, our decisions

are driven by the availability of solar and open air cooling. The problem framework and

solutions are different as they do not consider the impact of achieving net-zero status over

different time periods. In addition, they do not study the impact on panel provisioning of

moving load within radii of different distances around each data center.

In this thesis, we focus our attention on two renewable sources of energy: solar energy

and open air cooling (OAC). We first study the optimal provisioning of solar panels for

net-zero IDSs. In the next part of the thesis, we study the benefits of using renewable free

OAC to cool IDSs. We finally study the two technologies in conjunction with each other

to further optimize the use of green energy in IDSs. To the best of our knowledge, prior

scientific studies have not examined the potential benefits of exploiting OAC at a global

scale by a distributed network deployed across a large number of data centers, that is part
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of the focus of our work. In addition, to the best of our knowledge, prior work has not

addressed optimal solar panel provisioning for an existing net-zero IDS at a global scale.

We use four levers to allow us to green IDSs and to harness intermittent renewable

energy in geographically distributed locations of the IDS. These levers are renewable power,

renewable cooling, load shifting to use remote renewable power and cooling, and energy

storage. Renewable energy output varies both by space and time. To take advantage of

renewable output variations in space, we use load shifting constrained by different radii of

load movement. To utilize time based variations, we use net-metering and energy storage.

Net-metering allows us to put excess instantaneous renewable generation back onto the grid.

Both net-metering and storage enable us to smooth the supply of renewable energy in time

and prevent extra instantaneous renewable energy from being wasted. Each of these levers

has an associated cost and benefit. There is a capital expenditure for installing solar panels

and for setting up the infrastructure needed to enable OAC. Similarly there is a latency cost

of moving load and a capital expense for installing energy storage. On the flip side, there

are benefits of using these four levers. Renewable solar and cooling enable us to replace

brown energy with green energy. Load shifting allows us to better utilize remote renewable

power and cooling. Energy storage enables us to better utilize local renewable energy at a

later time. In addition, these levers can be substituted for each other in varying degrees for

reducing brown energy consumption. E.g. by installing a greater number of panels and a

higher capacity energy storage system, we might be able to avoid load shifting thereby not

incurring latency - although at a higher cost for the extra panels and energy storage. These

types of trade-offs and substitutability between the four levers considered are interesting

from a research standpoint and we try to quantify them for our data set.
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CHAPTER 3

EFFICIENT SOLAR PROVISIONING FOR NET-ZERO
INTERNET-SCALE DISTRIBUTED SYSTEMS

In this chapter, we focus our attention on the optimal provisioning of solar panels to

green IDSs. When a system produces enough green energy to off-set its energy use over

a time period, it is said to be ‘net-zero’ over that time period. E.g. if a system produces

enough green energy to off-set its energy use over a month, we say that it is a ‘net-zero

month’ system. The energy IDSs consume is dependent on factors like the load they serve,

the number of servers that are active at any given point in time, and the energy required to

cool servers. We refer to this energy as the energy demand. On the other hand, the solar

output of the panels is the energy supply. In order to be net-zero over a time period, our

problem is to match the energy demand with the energy supply in that time period. Often in

the industry net-zero energy buildings are defined to be net-zero on an annual basis [36].

In this part of the thesis, we study the solar potential of being net-zero over different time

periods including a week, a month and a year, while also ensuring that we provision the

minimum number of panels to meet the demand.

3.1 Contributions

• Determining Solar Potential for Global IDSs: To the best of our knowledge, this

is the first study to look into the net-zero solar potential for existing global IDSs

comprising of data centers located in hundreds of locations throughout the world.

In order to reduce the number of panels provisioned, we leverage global locations

that have high solar output for different time periods. By moving load to locations
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with high solar output, we can meet the system demand with fewer number of panels

as each panel yields higher output. To determine the number of panels needed for

achieving a net-zero system, we move load in an off-line fashion and ensure that the

date center energy demand is matched by solar energy supply for each time period.

• Algorithm Design: We design an optimal LP algorithm to minimize the number of

panels we need to server the load, by taking advantage of higher level of solar across

various regions on the globe. If we allow an unrestricted radius of load movement,

the time complexity of this LP becomes high. So for those cases, we reformulate

the LP with a reduced set of variables and constraints, ensuring it is equivalent to

the earlier formulation. To further reduce time complexity, we also propose greedy

heuristic algorithms and study their effectiveness in reducing the number of panels

when compared to the optimal LP. We design our algorithms such that they can be

generalized to different net-zero time periods, including net-zero week, month, and

year. We also design the LP to study the impact of restricting load movement within a

certain radius when determining the number of panels to be provisioned.

• Extensive Trace-based Evaluation: We evaluate our algorithms for net-zero week,

month and year on an extensive load trace from one of the world’s largest CDN. The

trace consists of five-minute information from 100,592 servers in over 724 global

data center locations for Akamai’s CDN. We see significant reduction in the number

of panels and also find that our heuristic algorithms perform well compared to the

optimal LP. Overall, if we allow unrestricted radius of load movement, we find that we

are able to reduce the number of solar panels by 36% for net-zero year. For net-zero

month by about 67% to 68%, and for net-zero week between 71% and 74% for the

heuristics. The LP yields a much higher reduction of 82% for the net-zero week case.

Our solution provisions panels by taking advantage of global locations with high

solar output. We study the impact of restricting the radius of load movement on the
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reduction in the number of panels. We see that we can gain significant reductions even

when we are constrained within small radii. E.g. for net-zero month, with a radius of

500kms, we see over a 27% reduction in the number of panels. For net-zero week, the

reduction is even more significant, with a radius of 200kms yielding a reduction of

31% in the number of panels.

3.2 Background

Solar Energy: Solar energy is energy harnessed from the sun and is the cleanest and

most abundant form of renewable energy available [65]. A solar panel is an electrical device

that converts sunlight into electricity using the photovoltaic effect. Solar arrays consist of

many solar panels and when sunlight hits these arrays, they produce electricity. As detailed

in Chapter 2, solar generation is intermittent and is impacted by several factors such as

seasons, weather, time of day, and location.

Methods of Utilizing Renewables: There are multiple ways in which a data center can

utilize green energy for its operations. One way is for data centers that install solar arrays

on-site and directly draw from them to power their operations. However, due to the fact that

solar energy is an intermittent source, these data centers cannot always rely on the availability

of solar. One way to get around the intermittency of solar is to use batteries that allow excess

instantaneous solar energy to be stored for use at a later time when solar energy might not

be available. Another way is to draw energy from the grid as and when there is demand, and

put back excess instaneous solar energy onto the grid when there is excess production. This

is called net metering [5]. So IDSs can provision solar panels in all or some of their data

center locations to match their brown energy consumption. Given that solar output is heavily

dependent on the location, where such panels are provisioned significantly impacts the

number of panels that will be needed to off set their energy consumption. Whichever method

of incorporating solar is used (direct on-site use, batteries or net metering), companies can

benefit from installing a minimum number of panels at locations where solar output is high.
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Determining how solar panel provisioning can be optimized for different net-zero time

periods for IDSs is the main topic of this paper. We use net-zero year to mean a system that

generates as much energy from solar as it draws from the grid over a year. We similarly

use net-zero month, and net-zero week to mean systems that are net-zero over a month, and

week respectively. Our algorithms study the impact of being net-zero for each of these time

periods.

3.3 Problem and Methodology

Data centers consume energy to maintain, run, and cool servers and other equipment.

For a net-zero data center, energy supply needs to be matched by the demand using energy

generated from renewables, like solar. There is a large variation in solar output across global

locations, with certain locations being excellent for solar generation. In this paper, we

address the problem of optimal provisioning of solar panels at data center locations with

high solar to match energy demand and reach net-zero status over various time periods.

While defining the problem, we make two simplifying assumptions. It is possible to

install as many solar panels as we need in any location. Secondly, it is possible to deploy as

many servers as we need at any location.

3.3.1 Problem Definition

At a high level, we define the solar provisioning problem we address in this paper as

below:

Solar Provisioning Problem: Our goal is to minimize the number of solar panels

provisioned to achieve net-zero status by moving load to locations with higher solar output.

More specifically, we study the following research questions:

• How can we be net-zero over different time periods: We study the impact on the

number of panels for achieving net-zero status over different time periods, including

net-zero week, net-zero month, and net-zero year.
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• How can we be net-zero without performance constraints: In order to provision

panels, we assign load in a way that takes advantage of high levels of solar in various

locations. To determine our full solar potential, we analyze how much reduction we

can see in the number of panels if we allow load to be assigned to any location on

the globe, without worrying about performance or latency. This scenario obviously

yields best case results for reduction in the number of panels, and becomes a point of

comparison for results under more constrained scenarios. We do this analysis for each

of the above time periods.

• How can we be net-zero without performance constraints, with panels assigned to

top k locations only: For an IDS data centers sizes vary by location and population.

Generally speaking, areas with larger population tend to have larger data centers so

servers can be proximal to users in order to reduce latency and loss. We use the

number of servers as an indicator for the size of the data center. In this scenario, we

sort our data centers by the number of servers they have and consider only the top

k locations as candidates for installing panels. We study how the number of panels

provisioned change as we vary k.

• How can we be net-zero with performance constraints: In order to keep latency down,

keeping load closer to its original location is important. This scenario allows us to put

constraints on the radius within with we must operate while moving load to a data

center with higher solar output. We study reduction in the number of panels as we

increase the radius by varying degrees. Some values of radii we consider are 100kms,

200kms, 500kms and so on.

3.3.2 Problem Framework

Problem Framework: We model the problem as follows:

Demand and Supply Matrices: We set up the problem as two matrices: one a demand

matrix (shown in Table 3.2) and the other a supply matrix (shown in Table 3.1). The values
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dcid/time 1 2... n
1 s11 s12... s1n
2 s21 s22... s2n
3 s31 s32... s3n
.. .. .. ..
.. .. .. ..
m sm1 sm2... smn

Table 3.1: Supply Matrix

in the demand matrix ‘li j’ represent the energy used by the data center at the corresponding

time. The values in the supply matrix ‘si j’ represent the solar energy available at that location

per panel. Both matrices have ‘m’ rows corresponding to data centers and ‘n’ columns

corresponding to time periods.

Radius of Load Movement: We define the radius of load movement (δ ) as the maximum

allowable distance we can move load to assign it to another data center.

Neighbors of a data center: We define Niδ to be the set of all data centers within a

radius of δkms from data center i. Clearly, for an unlimited radius of load assignment, Niδ

is the set of all data centers.

Baseline Panels: We define our baseline panels to be the number of panels we need

to serve the IDS load without any load movement. E.g. for net-zero week, for each week,

we divide the week’s load for the data center by the corresponding week’s sum of solar per

panel values. We then determine the number of baseline panels by taking the maximum of

all the weekly number of panels.

3.4 Algorithms for Solar Provisioning in IDSs

We begin with an LP formulation to solve the solar provisioning problem under per-

formance constraints. Without performance constraints, the number of variables in the

original LP formulation becomes very large, resulting in high run-time complexity. So we

device a simpler equivalent formulation to solve our solar provisioning problem under no

performance constraints. To further reduce runtime complexity for unlimited radius of load
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dcid/time 1 2... n
1 l11 l12... l1n
2 l21 l22... l2n
3 l31 l32... l3n
.. .. .. ..
.. .. .. ..
m lm1 lm2... lmn

total
load

l1 l2... ln

Table 3.2: Demand Matrix

movement, we also define two heuristic algorithms (MSP and MNP) that run faster while

yielding comparable results. The heuristic algorithms are also useful in providing alternative

locations for panel provisioning while yielding similar results. All these algorithms are

evaluated for their suitability for providing net-zero week, net-zero month and net-zero year

solutions.

3.4.1 Optimal LP Formulation

Using the above framework and variables defined in Section 3.3, we formulate an LP

problem in order to determine the minimum number of panels we can provision to meet

demand, given the solar energy available at various locations. In addition to the above

variables, for each data center i, we define variables li jt to be the load moved from data

center i to data center j, at time t, ∀ j ∈ Niδ . Given this setup, we define the LP as shown

below. We minimize the total number of solar panels provisioned in the objective function

as below:

Min:
m

∑
i=1

pi (3.1)

We then define constraints as below:

Incoming load should be less than or equal to the solar supply):
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s.t.: ∑
i∈N jδ

li jt ≤ s jt ∗ p j, ∀ j, t (3.2)

Total outgoing load including load moved from the data center to itself should be equal

to the starting load:

∑
j∈Niδ

li jt = lit , ∀i, t (3.3)

In addition to these constraints, we also have the non-negative constraint for each of the

variables defined:

li jt ≥ 0, ∀i ∈ N jδ ,∀ j, t (3.4)

lit ≥ 0, ∀i, t (3.5)

s jt ≥ 0, ∀ j, t (3.6)

p j ≥ 0, ∀ j (3.7)

δ ≥ 0 (3.8)

We refer to the above LP formulation as LPorig. For an unlimited radius of load move-

ment, where load can potentially be assigned from a data center to any other data center,

the number of li jt variables, and the number of their associated constraints, becomes very

large. For net-zero month, for m data centers, the number of li jt type variables is m∗m∗12.

For our roughly 1800 data centers and a net-zero month scenario, this number of these

variable is a huge number: 1800*1800*12 = 38,880,000. Therefore, to keep time and space

complexity manageable, we devised a simpler LP formulation for the unlimited radius case.

We refer to the simplified LP formulation as LPsim.
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For the simpler LP, we define pi as the number of panels at data center i. lit is the starting

load at data center i at time t. sit is the solar energy per panel at data center i at time t. init

is the load moved into data center i at time t. Similarly outit is the load moved out of data

center i at time t. Given this setup, we define the LP as shown below.

We minimize the total number of solar panels installed as below:

Min:
m

∑
i=1

pi (3.9)

Subject to four types of constraints:

Total incoming load minus the outgoing load should be zero:

s.t.:
m

∑
i=1

init−
m

∑
i=1

outit = 0, ∀i, t (3.10)

Incoming load should be less than or equal to the solar supply:

lit + init−outit ≤ sit ∗ pi, ∀i, t (3.11)

Total outgoing load should be less than or equal to the sum of the starting load and any

incoming load:

lit + init−outit ≥ 0, ∀i, t (3.12)

In addition to these constraints, we also have the non-negative constraint for each of the

variables defined:
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lit ≥ 0, ∀i, t (3.13)

sit ≥ 0, ∀i, t (3.14)

pi ≥ 0, ∀i (3.15)

init ≥ 0, ∀i, t (3.16)

outit ≥ 0, ∀i, t (3.17)

This LP is simpler as it does away with the li jt type variables that represent load moved

from data center i to data center j at time t. Instead it only models load moved in and out of

each data center at time t using variables init and outit . So for the net-zero month case for

m data centers for LPorig, where we had to contend with m∗m∗12 variables, we now only

have to work with m∗12 variables for the LPsim formulation.

Theorem 1. LPorig for unlimited δ case and LPsim are equivalent.

Proof. In order to prove the above theorem, we prove that the set of feasible solutions of

unlimited LPorig and LPsim are the same.

Part I: Proving that a solution of unlimited LPorig is also a solution of LPsim: Firstly, we

note that the unlimited LPorig is a more constrained version of LPsim. Therefore, intuitively,

any solution that satisfies the unlimited case of LPorig will also be a solution for LPsim. We

prove this formally below.

Suppose we have a solution for unlimited LPorig called Sorig:

Sorig = {li jt |∀i, j, t}∪{pi|∀i}

Using this solution, we construct another solution S as below:
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S = {in jt |∀ j, t}∪{out jt |∀ j, t}∪{p j|∀ j}

Where we define init and outit in terms of li jt variables as below:

in jt =
m

∑
i=1

li jt

out jt =
m

∑
k=1

l jkt

We now show that S is a feasible solution of LPsim by showing it satisfies all its constraints

(3.10 through 3.17):

• Constraint 3.10 of LPsim:
m

∑
j=1

in jt−
m

∑
j=1

out jt

=
m

∑
j=1

m

∑
i=1

li jt−
m

∑
j=1

m

∑
k=1

l jkt

Given every outgoing load has a corresponding incoming load, we can cancel all the

terms pairwise in the above difference. Therefore,

m

∑
j=1

in jt−
m

∑
j=1

out jt = 0

• Constraint 3.11 of LPsim:

l jt + in jt−out jt

= l jt−out jt + in jt

= l jt−
m

∑
k=1

l jkt +
m

∑
i=1

li jt From definition of out jt and in jt

= 0+
m

∑
i=1

li jt From Constraint 3.3 of LPorig

≤ s jt ∗ p j From Constraint 3.2 of LPorig

29



• Constraint 3.12 of LPsim:

l jt + in jt−out jt

= 0+ in jt Using Constraint 3.3 of LPorig

=
m

∑
i=1

li jt By definition

≥ 0 Using Constraint 3.4 of LPorig

• Non-negativity Constraints 3.13 through 3.17 of LPsim: All non-negativity constraints

also hold. Constraints 3.13 through 3.15 are also constraints in LPorig, so they get

ported directly. Constraint 3.16 and 3.17 are true by definition, as they are sums of

quantities greater than or equal to zero.

So given S satisfies all the constraints of LPsim, it is also a solution of LPsim. So every

solution Sorig of LPorig can be reduced to a feasible solution S of LPsim.

Part II: Proving that a solution of LPsim is also a solution of LPorig: Suppose we have a

solution Ssim for LPsim as defined below:

Ssim = {in jt |∀ j, t}∪{out jt |∀ j, t}∪{p j|∀ j}

Using this solution, we construct another solution S below by defining li jt values in

terms of init and outit values:

S = {li jt |∀i, j, t}∪{pi|∀i}

We first consider the net inflow and out flow for each location, given by the following

difference:

in jt−out jt∀ j, t

Respecting these net inflows and outflows, we define our li jt by matching inflows with

outflows, ensuring we only pick non-negative values for each li jt . Note this matching can
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always be done because constraint 3.10 is satisfied, meaning net inflow and net outflow

in the system are the same. We note that multiple such sets of li jt values can satisfy the

condition, but we only need to pick one of them to prove the result. We also note that for

each location i, liit is counted both as incoming load and outgoing load. With this, we can

see that the starting load in a location is the sum total of the outgoing load. Also the net

ending load at a location is the sum of the incoming load:

in jt =
m

∑
i=1

li jt (3.18)

out jt =
m

∑
k=1

l jkt (3.19)

l jt = out jt (3.20)

With this definition of li jt variables, we show that all the constraints of LPorig are satisfied:

• Constraint 3.2 of LPorig:

m

∑
i=1

li jt

= in jt +0 Using equation 3.18

= in jt + l jt−out jt Using equation 3.20 and expanding 0

≤ s jt ∗ p j Using constraint 3.11 of LPsim

• Constraint 3.3 of LPorig:
m

∑
k=1

l jkt = l jt ,∀ j, t

This constraint is satisfied because of how we defined our li jt variables (as shown in

equations 3.19 and 3.20).

• Non-negativity constraints 3.4 through 3.8 of LPorig: Constraint 3.4 is satisfied by the

way li jt were chosen. Constraints 3.5 through 3.7 can be directly ported from LPsim.

Constraint 3.8 is also satisfied as δ is unlimited in this case.
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So given S satisfies all the constraints of LPorig, it is also a solution of LPorig. So every

solution Ssim of LPsim can be reduced to a feasible solution S of LPorig.

Therefore, given the proofs of Part I and Part II above, we prove that the two LP

formulations LPorig and LPsim are equivalent.

3.4.2 Greedy Heuristic Algorithms

We describe below our heuristic algorithms that are inspired at a high level by greedy

approximation algorithms to the set-covering problem [18]. We loosely consider the load

to be served as the set to be covered. The different amounts of load we can serve using

energy generated from solar panels at various locations are like the subsets that can cover

the original set.

3.4.2.1 Max Solar Per Panel Heuristic (MSP)

We now define a greedy heuristic algorithm that runs faster than the LP, performs

comparably, and offers a set of alternative locations for panel provisioning. We use the same

problem framework with the demand and supply matrices that we defined in Section 3.3.

In order to minimize the number of panels, we note that we need to assign as much load

as we can to a location that has the highest solar output. This would help us to cover the

maximum load with the minimum number of panels for a given time slot. We greedily pick

the maximum solar per panel location across time and space (i.e. across all data centers),

and assign the entire load for the time period to that location. Using the solar per panel value

and the load, we determine the number of panels to place at that location. Once we install

panels at a location, these panels can then be used to serve demand for other time periods as

well, so we accordingly adjust the demand values to reflect the extra supply for all other

time periods as well. We continue to place panels in this way until we satisfy the entire

demand in all time periods. The correctness of this algorithm is clear due to fact that the
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DCID/Time 1 2 3
dc1 3 5 3
dc2 3 4 4
Total load 180 100 600

Table 3.3: Counter example for MSP showing the algorithm is not globally optimal

process continues until the entire load is covered. Pseudocode for this algorithm is detailed

in Algorithm 1.

This is a greedy algorithm that tries to do the best for each time slot. It does not

necessarily do the best globally for all time slots. This can be seen with the following toy

example. Suppose we have two data centers and two time slots, with load and solar per panel

values as shown in the Table 3.3. If we assign load according to our algorithm, we would

first assign 100 units to dc1 with solar per panel value 5, resulting in 20 panels in dc1. We

would then adjust loads, and assign the left over 540 units to dc2 in time slot 3, resulting in

135 panels in dc2. This would give us a total of 155 panels across all time periods. However,

instead of the above assignments, we could serve all the load with assigning 150 panels to

dc2 in time slot 3.

Algorithm 1 MSP Heuristic Pseudocode
function SPHEURISTIC( )

time← [t1, t2, ..., tn] . time periods
spp← [s11,s12, ...,smn] . solar output
load← [l1, l2, ..., ln] . load for time period
provpanels← [] . provisioned panels
for ty in time do

sxy← min si j s.t. si j ∈ spp . pick min solar
pxy← ly/sxy . assign panels
provpanels← provpanels∪ [pxy] . add to provisioned panels
for i in [1,2, ...,m] do

li← |li− ly| . adjust other loads

load← load− ly . delete assigned load
return provpanels
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dcid/time 1 2... n
1 p11 p12... p1n
2 p21 p22... p2n
3 p31 p32... p3n
.. .. .. ..
.. .. .. ..
m pm1 pm2... mn

Table 3.4: Number of Panels Matrix

3.4.2.2 Minimum Number of Panels Heuristic (MNP)

We now describe our second heuristic algorithm. The basic structure of this algorithm

is the same as the ‘MSP Heuristic’ algorithm, except we now use a different heuristic to

make a decision on where to put panels. We first determine the number of panels for each

location for each time period, by dividing the load for the time period for all locations, by

the solar per panel for the corresponding time and location. This gives us the ‘Number of

Panels Matrix’ shown in Table 3.4. We then pick the lowest number of panels value and

install those many panels at the corresponding location and time period. Like before, once

any panels are installed at a location, they are also available for other time slots. So we

accordingly adjust the demand to reflect the extra supply. We recompute the number of

panels matrix for the adjusted loads, and start over. We do this exercise until all the demand

is met. The correctness of this algorithm is clear due to fact that the process continues until

the entire load is covered. Pseudocode for this algorithm is detailed in Algorithm 2.

Like the MSP, the MNP is also greedy heuristic algorithm that tries to do the best for

each time slot. It does not necessarily do the best globally for all time slots. This can be

seen using the same counter example we used for the MSP Heuristic shown in Table 3.3.

The MNP Heuristic would yield 165 panels across all time periods. However, we could

serve all the load with assigning 150 panels to dc2 in time slot 3.
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Algorithm 2 MNP Heuristic Pseudocode
function NPHEURISTIC( )

time← [t1, t2, ..., tn] . time periods
spp← [s11,s12, ...,smn] . solar output
load← [l1, l2, ..., ln] . load for time period
origpanels← [] . original panels
provpanels← [] . provisioned panels
for si j in spp do

opi j← li/si j . determine original num panels
origpanels← origpanels∪ [opi j] . add to original panels

for ty in time do
opxy← min opi j s.t. opi j ∈ origpanels . pick min panels
pxy← ly/sxy . assign panels
provpanels← provpanels∪ [pxy] . add to provisioned panels
for i in [1,2, ...,m] do

li← |li− ly| . adjust other loads

load← load− ly . delete assigned load
time← time− ty . delete time column
for si j in spp do

opi j← li/si j . determine num panels
origpanels← origpanels∪ [opi j] . add to panels

return provpanels
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Parameter Value
Loss % 14

System Capacity 0.275 kW
Module Type Standard
Timeframe Hourly
Azimuth 180 deg for northern hemisphere and 0 for southern

Tilt Absolute value of latitude
Dataset ’TMY2’ for US Locations and ’Intl’ for others

Table 3.5: Parameters for PVWatts Data

3.5 Experimental Methodology

We conduct experiments using an extensive Akamai load trace spanning a month. The

trace consists of load information from 100,592 servers in over 724 global datacenter

locations The dataset includes load, requests served, and bytes served by each server every

five minutes over a month-long trace. Further, the trace has detailed information about every

data center, including the number of deployed servers, total server capacity, and the location

of the data center including its latitude, longitude, city, state, and country. After excluding

locations without solar data and data cleaning, we could still cover 93.4% of the load.

For solar energy data, we use the PVWatts [52] hourly data of AC energy generation

from solar radiation for a year. Assuming the power rating for solar panels is between 200

watts and 350 watts [25], we take an average value of 275 watts as the power rating per

panel. Therefore, we use the system capacity as the 0.275 kW for pvwatts in order to get the

output generated by a single panel. For simplification, for all other required parameters, we

use the values listed under ‘Default Values’ on page 3 in the PVWatts version 5 manual [20].

The required parameters used for downloading pvwatts data are detailed in Table 3.5.

The load data has 5-minute readings, whereas the solar data is hourly. So we make an

assumption that solar data does not change much during the hour and used an hour’s reading

for each of the five minutes that fall within that hour. Also, we have the solar data for the

year, but we have the load trace for one month only. We assume that the load pattern for

the CDN repeats monthly for the year. For each five minute reading, we convert the solar
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AC output (in watts) into energy (in joules) by multiplying by the number of seconds in

five minutes. Similarly, we convert the load into energy drawn (in joules) by multiplying

the power consumed (in watts) by servers for each five minute interval by the number of

seconds in five minutes.

The load represents energy demand and the solar radiation per panel represents energy

supply. In order to optimize the number of panels, our algorithms take into account the

amount of solar energy available in different locations at different time periods.

Through our experiments, we study three different scenarios under which we move

load to leverage solar: The first scenario enforces no performance constraints and allows

unrestricted movement of load to take advantage of high levels of solar in different global

locations. The second scenario allows unrestricted load movement, however, constraints

the locations for panel provisioning to only be the top k locations sorted by the number of

servers. The last scenario restricts load movement within a certain radius, and we consider a

number of such radii. In addition, for each scenario above, we repeat the study for net-zero

week, net-zero month, and net-zero year.

With the above setup, our experimental evaluation seeks to answer the following ques-

tions for each of the three scenarios above, for each net-zero time period:

• How much of a reduction can we see in the number of panels when compared to not

moving load anywhere to take advantage of solar?

• Which net-zero time period requires the most panels and why?

• Which net-zero time period benefits the most from load shifting?

• Which global locations are picked for solar provisioning?

• How do the algorithms compare in their ability to reduce the number of panels?

• For the second (top k) scenario, how to the results change with different radii?

• For the top k scenario, how does the number of locations selected vary with k?
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• For the last scenario with restricted load movement, how do the above results vary

with different radii?

• For the last scenario, how does the number of locations selected vary with different

radii of load movement?

3.6 Empirical Results

The following paragraphs describe our results for scenarios when we allow unrestricted

load movement to take advantage of solar (Without Performance Constraints) and when we

restrict the radius of load movement (With Performance Constraints).

3.6.1 Without Performance Constraints

The goal of this experiment was to study the maximum reduction in solar panels that we

can achieve by allowing unrestricted load movement between data centers. The paragraphs

below discuss our findings in detail.

3.6.1.1 Reduction in Number of Panels

As base comparison, for each data center and each net-zero time period, we first calculate

the number of panels we would need if we did not do any load movement (as described

in section 3.3.2). We then run LPsim and the two heuristic algorithms (MSP and NP) for

net-zero week, net-zero month, and net-zero year. We normalize the number of panels in for

each algorithm, for each net-zero time period using the corresponding original number of

basepanels. Our results are shown in Figure 3.1.

Our main observations are as below:

• Load movement helps dramatically: We see a significant decrease in the number of

panels across time periods for our optimal and heuristic algorithms. For net-zero

year, the total number of panels needed to serve the load decrease by 36% for all

algorithms. For net-zero month, the MNP heuristic algorithm shows a decrease of
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about 66.94%, while the MSP heuristic shows a decrease of 67.03%. The LP performs

slightly better and shows a decrease of almost 68%. For net-zero week, once again

the heuristic algorithms perform similarly and decrease panels by between about 71%

to about 74%. The LP performs significantly better and reduces the number of panels

by almost 82%.

• Number of panels vary inversely with the size of the net-zero time period: The number

of panels provisioned is highest for net-zero week, followed by net-zero month,

followed by net-zero year. This is intuitive given for net-zero year we are averaging

over a larger time period than for net-zero month or net-zero week. Similarly, for

net-zero month we are averaging over a larger time period than net-zero week. So

we are moving from a less restricted space to a more restricted space as we go from

year, to month to week. Therefore, the set of feasible solutions for the more restrictive

net-zero week, is also a solution for net-zero month and net-zero year. Similarly, the

set of feasible solutions for net-zero month is also a solution for net-zero year. Given

the above, the number of panels can only decrease or remain the same as we move

from net-zero week to net-zero month to net-zero year.

• Optimal LP shows excellent results for all net-zero time periods: The optimal LP

shows a significant reduction in the number of panels, and as expected, performs

better than the heuristic algorithms. We see a reduction of nearly 82% for net-zero

week, more than 83% for net-zero month, and more than 84% for net-zero year . With

the LP, the difference between the number of panels across time periods narrows

significantly compared to when no load is moved.

• Heuristic algorithms are well-behaved and perform comparably: The heuristic algo-

rithms behave well and also yield a significant reduction in the number of panels. The

MSP heuristic performs better than the MNP heuristic, yielding a larger reduction
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Figure 3.1: Plot shows that number of panels provisioned is inversely proportional to the
time period over which we aim to be net-zero

for net-zero week. For net-zero month and net-zero year, both algorithms performs

almost equally well.

3.6.1.2 Location Choices for Different Algorithms

In this section, we discuss why the heuristic and optimal algorithms pick certain locations

for net-zero year, net-zero month and net-zero week under unrestricted load movement. For

net-zero year, all algorithms favor the location that has the maximum total annual solar

output, and place all panels in that location. For the locations we considered, Arequipa, Peru

was the location that topped the list for annual solar output. Therefore, as Table 3.6 shows,

all the algorithms assigned the sum total of the load to Arequipa.

Location MSP MNP LP
AREQUIPA, Peru, South America 100 100 100

Table 3.6: % Panels by location for net-zero year without performance constraints

For net-zero month, the percentage break-up by locations is detailed in Table 3.7. We

see that the algorithms tend to favor locations that have consistently high monthly solar

output, with low variance. If we normalize monthly solar output values based on the max of

all the monthly solar output values across all considered locations, we find that Arequipa
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Figure 3.2: Plot shows that Arequipa, Peru has a high solar output consistently across all the
months of the year

performs quite well. As Figure 3.2 shows, the normalized monthly solar never falls below

the 80% level, except slightly for the second month. Given the above, we observe that LP

favors Arequipa and places over 96% panels there. The heuristic algorithms also place the

majority of their panels (over 80%) in Arequipa.

Location MSP MNP LP
AREQUIPA, Peru, South America 80.05 84.01 96.07

ALBUQUERQUE, NM, United States, North America 1.97 2.26 0
PAROW, South Africa 14.23 5.43 0
JERUSALEM, Israel 3.75 1.57 0

YELLOWKNIFE, Canada 0 2.92 0
MONTEREY, CA, United States 0 3.81 0

PERTH, Australia 0 0 3.93
Table 3.7: % Panels by location for net-zero month without performance constraints

For net-zero week, the percentage break-up of the number of panels by location is

detailed in Table 3.8. Locations that have a high weekly solar output tend to get picked.

Figure 3.3 shows the normalized weekly solar output for Arequipa. We observe that for

most weeks, Arequipa has a higher than 70% output. However, there are a few weeks where

Arequipa does not do so well (e.g. for week 10 the output falls below 60%). The LP assigns

more than half the panels to Arequipa. The heuristic algorithms, however, pick Winnipeg,

Canada for assigning over 40% of panels. Winnipeg is not one of the top locations for annual
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Location MSP MNP LP
REGINA, Canada 4.09 1.54 0

AREQUIPA, Peru, South America 27.06 5.04 50.34
SANTIAGO, Chile 8.16 7.66 0

PAROW, South Africa 7.58 9.80 0
WINNIPEG, Canada 47.05 43.22 0

CANBERRA, Australia 6.05 0 0.31
LAGRANDE, OR, United States 0 0.53 0

BEND, OR, United States 0 0.61 0
LISBON, Portugal 0 0.36 0

RENO, NV, United States 0 1.62 0
YELLOWKNIFE, NT, Canada 0 4.14 0

JERUSALEM, Israel 0 0.03 0
EL PASO, TX, United States 0 0.18 0

SUDBURY, ON, Canada 0 0.14 0
BUENOS AIRES, Argentina 0 0.39 0

SAN LUIS OBISPO, CA, United States 0 1.21 0
CANBERRA, Australia 0 7.04 0

LA PAZ, Bolivia 0 0.85 0
THEBARTON, Australia 0 0.39 0

TUCSON, AZ, United States 0 0.91 0
SAINT GEORGE, UT, United States 0 0.49 0

MONTEREY, CA, United States 0 12.51 0
ALBUQUERQUE, NM, United States 0 1.66 0

PERTH, Australia 0 0 5.17
HAYS, KS, United States 0 0 7.06

ALAMOGORDO, NM, United States 0 0 14.78
PRETORIA, South Aftrica 0 0 14.62

CEDAR CITY, UT, United States 0 0 7.73
Table 3.8: % Panels by location for net-zero week without performance constraints

solar output. However, it has extremely high solar output during one of its weeks. From this

analysis, we learn that the LP tends to pick more robust locations that have consistently high

solar output, where as the heuristic algorithms may pick locations that have a few weeks

where their solar output is the maximum of any location.

With unrestricted load movement, observe that for all the algorithms, load is moved to

locations that are high in solar output for the time period under consideration. However,

with these choices we find that load could end up in remote locations, resulting in high levels
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Figure 3.3: Plot shows that Arequipa, Peru has a high solar output for most weeks of the
year, except a few where the plot dips
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Figure 3.4: Number of panels provisioned are highest for net-zero week, followed by
net-zero month and then net-zero year

of latency. To remedy this problem, we try to restrict solar panels to locations that are not

remote and have a large amount of load to start with.

3.6.1.3 Restricting Panels to Top K Data Centers

Given servers need to be proximal to users, we use the number of servers in a data

center as the proxy for data centers that are large and are located in non-remote places

with large populations. Therefore, we allow unrestricted load movement, but restrict panel

provisioning to top k locations sorted by the number of servers.
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Discussion on number of panels: We analyze of the change in the number of panels if

we restrict our panel provisioning to only the top k data centers. We normalize the number

of panels using the maximum value in the set (i.e. number of panels for net-zero week for

top 5 data centers). Figure 3.4 shows the change in the number of panels across different

values of k. We list our observations below:

• Number of panels provisioned varies inversely with k: First of all, we see that the

number of panels provisioned increases when we restrict ourselves to fewer locations.

This is intuitive considering that we are operating with more constraints, and therefore

are not able to extract as much reduction from solar output as we could in an unre-

stricted setting. The larger the k, the more locations are in play for extracting solar

savings.

• Number of panels vary inversely with the size of the net-zero time window: Once

again, we see that the number of panels provisioned is the most for net-zero week,

followed by net-zero month, and finally net-zero year. This trend is preserved across

different values of k. This is intuitive given we are averaging over a larger time period

for net-zero year as compared to net-zero month. In the case of a net-zero year, we

must match demand with supply over the entire year. For net-zero month we must

match demand with supply for each month, however, low our supply maybe and

however high our demand may be for various months. Therefore, we must satisfy

our net-zero condition for the ’worst’ month in our list. Similarly, we must satisfy

the net-zero week condition for the worst week on our list. Therefore, the number of

panels increase as we move from net-zero year, to net-zero month, to net-zero week.

• Sensitivity to change in k is inversely proportional to size of net-zero window: The

smaller the time window, the greater the sensitivity to change in k. The net-zero week

bars show a steeper decline when we move from smaller value of k to larger values of

k, as compared to the net-zero month bars.
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• k=500 balances both objectives well: For k= 500, we see that the number of panels

are very close to the unrestricted panel provisioning case. Therefore, restricting to the

top 500 data centers is a good middle point for achieving moderate number of panels

installed at non-remote locations.

Discussion on location choices under top k restrictions: As expected, with top k

restrictions, we find that the locations selected for the majority of panels with smaller values

of k tend to be larger cities. E.g. for k=5 net-zero year selects Dallas, TX versus for

k=1200, the location picked is Arequipa, Peru. Similarly, for net-zero month, for k=5, the

location picked is Dallas, TX again and for k=1200, Arequipa and Perth are picked. For

net-zero week, for k=5, Atlanta is picked, and for k=1200, we see almost half of the panels

provisioned in Arequipa. Tables 3.9, 3.10 and 3.11 show the details of the locations selected.

K Location Percentage Panels
5 DALLAS, TX, United States, North America 100.0

50 LOSANGELES, CA, United States, North America 100.0
500 SCOTTSDALE, AZ, United States, North America 100.0

1000 HENDERSON, NV, United States, North America 100.0
1200 AREQUIPA, Peru, South America 100.0

Table 3.9: Locations under Top K Restrictions for Net-zero Year

K Location Percentage Panels
5 DALLAS, TX, United States, North America 100.0

50 MIAMI, FL, United States, North America 88.83
LOSANGELES, CA, United States, North America 11.17

500 SCOTTSDALE, AZ, United States, North America 61.08
AUCKLAND, New Zealand, Oceania 34.
SYDNEY, NSW, Australia, Oceania 4.37

1000 RANDBURG, South Africa, Africa 51.80
LASVEGAS, NV, United States, North America 31.88

PERTH, WA, Australia, Oceania 16.32
1200 AREQUIPA, Peru, South America 96.07

PERTH, Australia, Oceania 3.93
Table 3.10: Locations under Top K Restrictions for Net-zero Month
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K Location Percentage Panels
5 ATLANTA, GA, United States, North America 100.0

50 DALLAS, TX, United States, North America 50.4
LOSANGELES, CA, United States, North America 49.66

500 RIODEJANEIRO, RJ, Brazil, South America 31.36
SCOTTSDALE, AZ, United States, North America 21.01

SANTOS, SP, Brazil, South America 13.14
LOSANGELES, CA, United States, North America 11.88

AUCKLAND, New Zealand, Oceania 9.55
CAIRO, Egypt, Africa 8.62

SYDNEY, NSW, Australia, Oceania 3.06
DENVER, CO, United States, North America 1.38

1000 DUBAI, United Arab Emirates, Asia 39.40
PERTH, Australia, Oceania 19.46

RANDBURG, South Africa, Africa 16.49
AMMAN, Jordan, Asia 10.08

LASVEGAS, NV, United States, North America 7.07
BUENOSAIRES, Argentina, South America 3.27

ADELAIDE, SA, Australia, Oceania 2.15
BRISBANE, QLD, Australia, Oceania 1.58

SCOTTSDALE, AZ, United States, North America 0.50
1200 AREQUIPA, Peru, South America 50.20

ELPASO, TX, United States, North America 14.41
RANDBURG, South Africa, Africa 11.80

SAINTGEORGE, UT, United States, North America 11.75
PERTH, WA, Australia, Oceania 6.87

LASVEGAS, NV, United States, North America 2.70
CANBERRA, ACT, Australia, Oceania 2.28

Table 3.11: Locations under Top K Restrictions for Net-zero Week

3.6.2 With Performance Constraints

The goal of this experiment was to study the impact of load movement within a radius

on the reduction in the number of panels when compared to the two extremes of unrestricted

load movement and no load movement at all. For this experiment, we selected a set of

values of radii and generated LPs consistent with those radii and with different net-zero time

periods.
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3.6.2.1 Discussion on the Number of Panels

In Figure 3.5, we plot the normalized number of panels for each of the net-zero time

periods for different radii. We list our observations below:

• Load movement to larger radii helps dramatically: We see a huge reduction in the

number of panels as we move from a smaller radius to larger radius.

• Number of panels is inversely proportional to size of net-zero time window: Once

again, we see that net-zero week has the largest number of panels, followed by net-zero

month, and then net-zero year. As explained in section 3.6.1, this is due to averaging

over larger time periods for net-zero year and net-zero month when compared to the

net-zero week. It is also because for net-zero week, we aim to be net-zero week for

all the weeks of the year - including the ‘worst’ week that has the lowest solar output.

• Sensitivity to change in radius is most pronounced for shorter net-zero window: Figure

3.6 shows the percentage decrease in the number of panels for different radii and

net-zero timer periods when compared to no load movement. Overall, we observe

that when we enforce performance constraints, we see different degrees of reduction

for different net-zero periods. The curve is the steepest for netzero week, followed

by netzero month and then netzero year. This means that we get the greatest and

fastest benefit from using locations with high solar output in the case of netzero week.

The dotted horizontal lines represent the maximum reduction we can hope to achieve

if we allow unlimited radius load movement. For netzero week, we see that even

with a maximum radius of 200kms, we can extract a 31% reduction in the number

of panels. For netzero month, with a radius of 500kms, we see a reduction of over

27%. With a radius of 1500kms, we can cut down the number of panels by over half

with a reduction of 53%. For netzero year, the reductions are significant, but not as

pronounced. With a radius of 500kms, we can decrease the number of panels by

nearly 10%.
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Figure 3.5: Plot shows that net-zero week has the largest number of panels for any radius,
then net-zero month, and finally net-zero year

3.6.2.2 Location Choices for Different Algorithms

We study location choices and plot the number of locations across different radii for

different net-zero time periods. Our main observations are:

• Number of locations decrease with increase in radius: Figure 3.7 shows that with

an increase in the radius of load movement, the number of locations where solar

panels are allocated decreases for each net-zero time period. This is because as the

radius increases, load converges to locations that are globally high for solar output.

Figure 3.9 shows the locations that are chosen for various values of max radius for

net-zero month, on a world map. For net-zero year, for smaller radii, we see that

the locations are local picks with higher solar. As we proceed to higher and higher

radii, the locations picked are globally high for solar for that time period. We see the

locations shrink and converge to the hubs for solar generation.

• Number of locations is inversely proportional to the size of net-zero time period:

Figure 3.7 also shows that the number of locations are the maximum for net-zero week

followed by net-zero month, and then net-zero year. Net-zero month and net-zero

year are closer in the number of locations they pick. Figure 3.8 shows the distribution

of panels for a radius of 500kms for different net-zero time periods. We observe that
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Figure 3.6: Plot shows % decrease in number of solar panels as radius of load movement
is increased. Dotted lines labeled ‘Opt_week’, ‘Opt_month’, and ‘Opt_year’ show the
maximum decrease we can hope to have with an unlimited radius.

for all the net-zero time periods, panels are fairly evenly distributed with a few high

peaks, and the highest peak for each time period lies between 12% and 16%.

3.7 Implications for IDS Design

Overall, our study shows that load movement helps in reduction of solar panels dramati-

cally. The shorter the net-zero time window, the larger the number of panels the IDS needs

to achieve net-zero state for each such time period over the course of a year. In addition,

for shorter net-zero time periods, the number of locations where panels need to be installed

for the IDS increases. IDSs can also achieve significant reduction in the number of panels

by moving load within restricted radii to minimize latency. In addition, IDSs can achieve

a significant reduction in the number of panels even if they restrict panel provisioning to

the larger data center locations. However, in general, restricting panels within a radius or to

certain data centers leads to a lesser reduction in the number of panels and an increase in the

number of locations where panels are provisioned. Our solution can also be used to restrict

panel provisioning to other locations using other criteria, and to study the impact of such a

restriction on the reduction in the number of panels.
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Figure 3.7: Plot shows that the number of locations where panels are allocated decrease
as we increase the radius of load movement. This is because the load converges to global
locations with high solar output

3.8 Related Work

Recently, a lot of work has been done in the area of renewables for data centers. Work

has been done on job scheduling within a data center based on predicted solar and brown

energy prices [29] [28]. Previous work has also modeled the potential of using renewable

energy for data centers located in colder locations [62], while [40] propose a solution for

data center expansion using modular solar panels and distributed battery systems to have

near-zero environmental impact. While this work takes advantage of renewables to reduce

energy consumption, it does not deal with optimal provisioning of solar panels for an

existing global IDS. Moving load across data centers to increase the use of renewables has

also been studied before. Studies have also been done [47] [46] on how and to what extent

geo-graphical load balancing can encourage use of renew-able energy and reduce use of

brown energy. Their distributed algorithm offers significant savings in cost (defined by linear

combination of energy cost and delay cost). Prior work has also studied green solutions that

control user traffic and direct to different data center locations based on changes workload

and carbon footprint [27]. However, all these works [47] [46] [27] focus on load balancing

and request routing rather than provisioning of renewables. Previous work has also looked

into providing a solution for selecting sites for and provisioning green data centers using
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Figure 3.8: Distribution of panels for 500kms for different net-zero time periods showing
that the number of locations is largest for net-zero week, then for net-zero month, and finally
for net-zero year
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Figure 3.9: Locations where the LP with performance constraints send the load to for
net-zero month

a follow-the-renewables approach [13]. However, their work focuses on setting up a data

centers from scratch, where as our data center locations are given. In addition, they base the

placement of their datacenters partially on a combination of availability of solar and wind

energy. In contrast, our decisions are solely driven by the availability of solar. We also study

the impact on panel provisioning of moving load within radii of different distances around

each datacenter.

3.9 Conclusions

In this chapter we studied the optimal solar provisioning of solar panels for net-zero

IDSs. Using our heuristic and optimal algorithms, we are able to significantly reduce the
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number of solar panels needed for serving load in our datacenters. Specifically, we see a

decrease of close to 36% in the total number of panels for both heuristic and optimal LP

algorithms for netzeroyear. For net-zero month, we see a decrease of about 67% for the

heuristic algorithms and 68% for the LP. For netzeroweek, we see a decrease of about 71%

to about 74% for the heuristic algorithms and almost 82% for the LP. We also observed

that using our LP algorithm, we can achieve net-zero week in nearly the same number of

panels as we need to achieve net-zero month and net-zero year. If we allow unlimited load

movement, but restrict panel provisioning to topk locations, we can achieve significant

reduction in the number of panels. Allowing only top 500 locations to be in play, we can

achieve net-zero year with less than 9% increase in the number of panels, net-zero month

and net-zero week with less than 18% increase. We also show that if we restrict the radius

of load movement, we can a achieve significant reduction in the number of panels for all

net-zero time periods even with relatively small radii. For netzero week, we see that even

with a maximum radius of 200kms, we can extract a 31% reduction in the number of panels.

For netzero month, with a radius of 500kms, we see a reduction of over 27%,and for net-zero

year, a reduction of nearly 10%. In conclusion, we demonstrated that by leveraging locations

with high solar output, we can significantly reduce the number of panels needed to serve

load and achieve net-zero status over different time periods. This reduction in the number

of solar panels translates to savings in capital and operating expenses for data centers and

makes the transition to renewables that much easier for existing IDSs.
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CHAPTER 4

OPEN AIR COOLING FOR GREENING INTERNET-SCALE
DISTRIBUTED SYSTEMS

Open Air Cooling (OAC) is a technology that has gained traction within data centers.

OAC also sometimes referred to as free cooling, uses outside air to cool servers whenever

the climate permits, e.g. when the outside air is sufficiently cool or dry. OAC can decrease,

or even eliminate, the use of chillers used to chill the air for cooling the servers. Service

providers who employ large data centers such as Facebook and Google have begun to use

OAC, in part by building new data centers in carefully chosen (cold) locations where the

climate permits the outside air to be used to cool the data center for the majority of the year.

While existing techniques to reduce energy consumption in data centers yield significant

cost benefits, they only address the energy costs of powering the servers and do not directly

address the energy cost of cooling them. In this part of the thesis, we focus explicitly on

the complementary problem of reduction in cooling costs using renewable open air cooling

(OAC).

A recent study of data center energy consumption [56] showed that servers and cooling

consumed 56% and 30% of the total energy respectively, while power conditioning (8%),

networks (5%) and lighting (1%) accounted for the rest. Thus, most of the energy consumed

by a data center is spent in powering servers or cooling them; we refer to these components

as server energy and cooling energy, respectively. Since cooling energy is a significant

portion of the total energy consumption, we examine the potential for employing two new

cooling technologies to reduce either the energy usage or the energy cost incurred by an

IDS, or both.
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In this chapter, our focus is on understanding the efficacy of using OAC for IDSs. To our

knowledge, OAC has not been studied in an IDS context that is distinctive for the following

reasons. IDSs such as CDNs have two defining characteristics: a global deployment of

servers in multiple data centers around the world, and a replication of services across these

data centers. The global deployment is often driven by the need for an IDS to have servers

“proximal” to the end-users. For instance, Akamai’s CDN is deployed in hundreds of data

centers in over 100 countries around the world, with users accessing content from servers

in “proximal” data centers [53]. A corollary of this deployment model is that it is not

possible for IDSs to deploy only in places where weather is cold most of the year, or where

electricity is cheap. They need to deployed near where the users are. However, IDSs often

replicate their services across their data centers, so that the workload of serving users can

be easily shifted from one data center to another, albeit with a potential for performance

degradation. These two characteristics provide an IDS the flexibility to move its workload

across data centers to exploit climatic variations to optimize the use of OAC, a flexibility

that services employing a single or a few data centers do not possess. The energy cost also

varies across locations and across time. Our algorithms orchestrate the movement of load

(i.e, load balancing) to decrease an IDS’s cooling costs.

4.1 Contributions

• Determining OAC Potential for Global IDSs: To the best of our knowledge, this is the

first study that researches OAC potential for global IDSs.

• Simple Greedy Algorithm: We develop a simple greedy algorithm for exploiting OAC

globally. We design this algorithm in a way that allows us to enforce performance

constraints by restricting the radius of load movement.

• Extensive Trace-based Evaluation: We evaluate OAC using extensive load traces from

the world’s largest CDN. The traces were collected from Akamai’s CDN every five
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minutes for the period of a month from over 115,000 servers deployed in over 973

data center locations in 102 countries. Using these CDN traces, weather data from

over 650 locations around the world, and energy price information we evaluate the

ability of OAC to reduce operational and capital expenditures via reductions in energy

usage and costs.

• Benefits of OAC: We study the potential for deploying OAC at scale in a IDS. We

design greedy “weather-aware” load balancing algorithms that direct load to the

closest data center where the current weather permits “free” cooling using outside

air. Our result shows that even during summer, a global IDS can extract more than

51% reduction in the energy spent for cooling using OAC. During winter when OAC

is more plentiful, a 92% reduction in system-wide energy can be had. Further, these

savings can be achieved without degrading the performance experienced by users.

However, important exceptions remain. We find that a city such as Singapore has

small or no potential for OAC throughout the year using current technology, while

Tokyo is not conducive to OAC during the summer months. However, with newer

(class A4) data center technology, even such cities can use OAC, with energy savings

for Tokyo rising from 0% to 84% in August.

4.2 Background

In our work, we use (i) the instantaneous weather outside each of the IDS’s data center

locations, and (ii) the recommendations of the American Society of Heating, Refrigeration,

and Air-conditioning Engineers (ASHRAE) [35] to determine whether the outside air can be

used to cool the data center at any point in time. Table 4.1 specifies ASHRAE’s temperature

and humidity ranges for four different classes of data centers, where each class represents

the type of server and other IT equipment used in the data center. The lowest class A1

represents the most basic equipment that allows the smallest operating ranges of temperature

and humidity and as such represent the widest deployment of data centers today. The highest
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class of A4 represents the most advanced equipment that can function at a much large

operating ranges of temperature and humidity. Given the wide deployment of IDSs, we

conservatively assume that our data centers belong to class A1, but also consider what-if

scenarios if data centers of higher classes become commonly prevalent. Note that assuming

class A1 places a lower bound on the potential savings from OAC.

Class Dry-Bulb Humidity Max Dew
Temp (◦ C) Range Point (◦ C)

A1 15 to 32 20% to 80% 17
A2 10 to 35 20% to 80% 21
A3 5 to 40 8% to 85% 24
A4 5 to 45 8% to 90% 24

Table 4.1: ASHRAE’s allowable ranges for dry bulb temperature, relative humidity and
the maximum dew point of the air that make it suitable for cooling different classes of
data centers [35]. Higher data center classes correspond to newer technology allowing for
broader ranges of tolerance.

Although ASHRAE standards do not specify the cooling technology to be used by a

data center, the specified ranges enable us to determine the upper limits on outside air

temperature, humidity and dew point that permits OAC to safely cool a data center of a

particular class. To determine whether a data center can employ OAC at any point in time,

we use the weather data for that location to determine the dry-bulb temperature, relative

humidity, and dew point. Following the methodology presented in the GreenGrid consortium

whitepaper [35], if the outside air is below the ASHRAE range, it can be rectified by mixing

the outside air with the return air that is warmer. Thus, it suffices to compare the measured

dry-bulb temperature, relative humidity, and dew point of the outside air with the upper

limits of the allowable ranges in Table 4.1 to ascertain OAC feasibility.

Energy Efficiency Metrics: We consider two aspects of efficiency in the context of

cooling IDSs: energy usage and energy cost. Reducing the energy usage reduces carbon

emissions, and also reduces energy cost, but not necessarily vice versa. For instance, OAC

reduces both energy usage and energy cost. (i) capital expenditure (CAPEX) of cooling

56



equipment to be installed at a data center, and (ii) operational expenditure (OPEX) of running

the cooling system. OAC has the potential to reduce both CAPEX and OPEX of an IDS.

4.3 A Greedy Algorithm for Exploiting OAC

To integrate OAC into an IDS’s architecture, its global load balancer must be made

“weather-aware”. The load balancer of an IDS assigns each user request to a “nearby” data

center to optimize user-perceived performance. To evaluate the benefit of OAC, we propose

a simple greedy algorithm that modifies the load assignments made by the (non-weather-

aware) load balancer as reflected in our Akamai load traces by moving user load from data

centers that have no OAC to nearby data centers that do, subject to performance constraints.

Our greedy algorithm does the following for each of the IDS’s data centers at each time

step: if the weather conditions at a data center location permits OAC, then user load mapped

to that location is unchanged; however, if the weather conditions at a data center location

do not permit OAC, the load balancer attempts to greedily re-assign the load destined for

that location to other nearby data centers with spare server capacity where OAC may be

available. The premise is that weather patterns exhibit sufficient regional variations so that

OAC may be possible at a location even when it is not be feasible at another nearby location.

We exploit these geographic variations by searching for alternate “nearby” locations where

OAC is still feasible. The pseudocode for this greedy heuristic algorithm is detailed in

Algorithm 3.

The primary performance impact to the user from the remapping is that a user may get

mapped to a data center that is “farther” away, increasing response times. We can limit

how far a user can be remapped by stipulating that our algorithm can only remap load to

data centers within a radius r kms of the data center to where it was originally mapped.

Specifically, the greedy algorithm reassigns the load of each data center without OAC to

alternate data centers with OAC that have spare capacity to accommodate all or part of

the load and are within radius r. The alternate data centers are examined in the increasing

57



Algorithm 3 Pseudocode for Greedy Algorithm for OAC
function GREEDYOAC( )

time← [1,2, ...,n] . time periods
datacenters← [1,2, ...,m] . data centers
cap← [c1,c2, ...,cm] . capacity of data centers
load← [l11, l12, ..., lmn] . load for data centers for each time period
sorted peersi← [pi1, pi2, ..., pix] . set of peers for each dc i sorted in desc order
oacstatus← [si1,si2, ...,sin] . oac status for each dc i for each time slot
loadmoved← [δ111,δ112, ...,δmmn] . load moved from dc i to dc j in time t
for t in time do . for each time slot

for d in datacenters do . for each data center
if sdt = ‘n’ then . if oac is not available

while ldt > 0 do . while there is still load to move
for p in [pd1, pd2, ..., pdx] do . for each peer

if spt = ‘y’ and cp− lt p > 0 then . if oac is available at peer and
peer has excess capacity

δd pt = min(ldt ,cp− lt p) . determine load moved based on
capacity

lt p← lt p +δd pt . adjust loads
ldt = ldt−δd pt

return loadmoved

order of distance and any load left unassigned by this process is not remapped and must be

cooled in its original data center using traditional HVAC chillers. The radius r represents a

tradeoff between network performance and energy savings. The greater the r, the greater

the user-perceived response times, but greater are the chances that there will be sufficient

geographic weather variations such that OAC is possible at these alternate locations. In

general, significant savings are possible with no performance degradation at all (i.e., for

r = 0). Even for moderate values of r (e.g., r ≤ 1000km), we expect the vast majority of the

load to be served locally, while moving the residual load only by a small distance, limiting

the potential for performance degradation (cf. Figure 4.6).

4.4 Experimental Methodology

To derive the potential for using OAC in an IDS, we performed trace-driven simulations

using a combination of IDS workloads and weather data. We used extensive load data from
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Duration 1 month
Resolution 5 minute

Data centers 973 dc locations in 102 countries
No. of servers 115,246

Table 4.2: Load data from Akamai CDN

Duration 12 months
No. of weather stations 13,497

Mapped stations 651
Resolution 1 hour

Table 4.3: NOAA weather data.

across Akamai’s CDN for the period of one month. The trace includes load information

from 115,246 servers deployed in 973 data center locations in 102 countries around the

world (see Table 4.2). The dataset includes the load, requests served, and bytes served by

each server every five minutes over the month-long trace. Further, the trace has detailed

information about every data center including the number of deployed servers, total server

capacity, and the location of the data center including its latitude, longitude, city, state, and

country.

Our experimental evaluation also employs global weather traces provided by the National

Oceanic and Atmospheric Administration (NOAA) for the year 2012. The dataset contains

year-long weather data from 13,497 weather stations across the globe that record a large

number of metrics including the hourly dry-bulb temperature and dew point. Since the exact

location of each weather station and data center are known, we can compute the weather

station that is closest to each CDN data center and use its weather data to represent the

ambient weather conditions at that data center. Given the extensive network of NOAA

weather stations, we were able to find a nearby weather station within 10km for the majority

of data centers, including all of the “large” data centers near major population centers. We

found a weather station within 40km for most of the remaining locations. The matching

process yielded 651 weather stations that were mapped onto the 973 data centers (major

cities have multiple data centers mapped to the same “nearby” weather station). The weather

data was used to determine if the outside air at each data center was suitable for cooling at

that time.

To compute the cooling energy required by the CDN, we first compute the server energy

consumed (and dissipated) for each data center of the CDN for each 5-minute window
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Figure 4.1: Normalized cooling energy required by Akamai’s CDN in the US, UK, Japan
and Australia. Notice the diurnal variation as cooling energy is proportional to the load
induced by users accessing content from those locations.

using the load and server information in the traces and the server and cluster energy model

presented in Chapter 2. Cooling energy is proportional to the server energy, where the

proportionality factor is related to the PUE. Figure 4.1 shows the cooling energy required by

Akamai’s CDN as computed from the traces for four major countries.

We make two simplifying assumptions in our analysis. We had load data every five

minutes but weather data once an hour. We assumed that the weather parameters do not

significantly change during the hour. Further, we had weather data for a whole year but

comprehensive CDN load data only for a month. We assumed that the measured monthly

CDN load pattern repeats through the year.

Our evaluation uses geographic distance as a proxy for latency and response times.

This is because our load traces only include client locations and mask client IP addresses

for privacy, allowing us to compute geographic distance but not network distance. Prior

work has shown that network latency increases with increasing geographic distance, and so

distance is a coarse measure of latency (cf. Table 1 of [53], or, Figure 4 of [37] that posits a

marginal increase of 1 msec of network latency for every 50km of distance, or [57] that uses

distance as a proxy for latency in a similar context).
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4.5 Empirical Results

We evaluate the potential for OAC using our greedy algorithm outlined above on our

IDS load and weather traces for a full year. In our simulations, we assume that each data

center belongs to the most conservative ASHRAE A1 class.

4.5.1 Reduction in chiller capacity

We examine whether OAC can yield CAPEX savings for an IDS. Intuitively, if OAC

reduces the worst-case peak demand on HVAC chillers, either by absorbing a portion of the

peak demand locally using OAC or by redirecting a portion of the peak load to other nearby

data centers that can be open air cooled, then the IDS can deploy lower capacity (and less

expensive) chillers to cool the reduced peak load. However, it is not evident a priori whether

OAC can reduce the worst-case peak demand on chillers, e.g. the worst-case peak load

could occur on hot summer days where OAC is infeasible. Figure 4.2 depicts the average

capital cost (CAPEX) savings across all global IDS locations due to a reduction in chiller

capacity. The figure shows that for A1 class data centers, OAC yields only a 7.5% savings

when r = 0km, implying that peak load does coincide with hot or humid days when OAC

cannot be used. Further, allowing the load to be redirected to locations within a 1000km

radius yields 25% CAPEX savings. The CAPEX savings are significantly higher for the

newer A4 class data centers with a mean reduction of 68.6% in cooling capex with r = 0km

to as much as 89.5% capex reduction when r = 1000km.

4.5.2 Reduction in energy usage

Global Savings: The energy savings can be computed by comparing the energy used with

OAC to the energy used to cool the original load entirely with chillers without OAC. Figure

4.3(a) depicts the average percentage energy savings obtained across the entire CDN for

different months of the year and for different values of distance r. The savings from OAC is

generally higher during the cooler winter, early spring and late fall months of the northern
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Figure 4.2: Savings in capital costs of chillers with OAC.
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Figure 4.3: Energy savings for the entire global IDS and for major countries in each of the
two hemispheres.

hemisphere, with lower savings during the warmer summer months (May to September).

Note that our analysis includes savings from data centers in both the northern and southern

hemispheres. However Internet traffic from North America, Europe and Asia dominate the

global Internet traffic, hence the seasonal benefits from the northern hemisphere dominate

the global trends. Overall, our result shows that even during summer, a global IDS can

extract significant cooling energy reduction of more than 51% even during summer with

no performance impact (r = 0) and the savings due to OAC increase to over 92% during

winter months; the savings increase as the performance constraints are relaxed by permitting

r = 1000km yielding an additional 13% savings during the warmest month of July. For

r = 5000km which allows for trans-continental load redirection, the savings increase to

nearly 92% throughout the year, including summers.
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(a) Japan (b) Singapore

Figure 4.4: Regional and seasonal variations in OAC savings in Japan and Singapore.

Regional and Seasonal Variations in Savings: Figure 4.3(b) and (c) depict the energy

savings seen in two major countries, USA and Australia, in the northern and southern hemi-

spheres, respectively. Energy savings in USA broadly follow the global trends, indicating

that USA not only contributes a significant portion of the global traffic, but also has its

seasons aligned with the dominant northern hemisphere. Further, USA being a large country

in terms of geographic area, exhibits significant regional variations. Fig 4.3(b) shows high

energy savings of 96% in winter months, it indicates that most cities, regardless of location,

see uniformly high energy savings. In the summer, however, there are considerable differ-

ences: southern cities such as LA see low OAC savings (for r = 0), while northern cities

such as Seattle see higher than average OAC savings. Australia (in Fig 4.3(c)) sees similar

differences between summer and winter, with OAC savings of 64% in the summer month

of January for r = 0 and nearly 100% savings in the winter months of May to September.

Further, allowing the load re-direction to a data center within a 1000km radius increases the

summer savings to above 85.6%.

Since Asia has less temperate climate than North America or Australia, our results show

significant regional and seasonal differences in the savings obtained from OAC. Japan (cf.

Figure 4.4(a)) has the most significant seasonal variations in OAC benefits—with nearly

100% energy savings from employing OAC during the winter months to a zero savings in the
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summer month of August for the no load redirection scenario of r = 0. While Japan exhibits

the extreme seasonal variations in OAC benefits, Singapore (cf. Figure 4.4(b)) sees the worst

year-round benefits. While Singapore is itself a small country, it is a key regional “hub”

with significant traffic. Since Singapore is located near the equator, it has warm and humid

weather throughout the year with nearly no seasons. Consequently OAC is not possible in

Singapore during any month of the year, yielding zero savings. Even allowing Singapore

traffic to be sent to data centers within a 1000km radius yields no benefits.

4.5.3 Impact of Newer Data Center Technologies:

Thus far, we assumed that all IDS data centers belong to the most conservative A1 class

in terms of server and cooling equipment. However commodity servers built in recent years

are engineered to withstand higher temperatures without impacting reliability. Further, the

latest cooling equipment can deal with a larger range of humidity scenarios. Consequently,

we repeat the previous analysis by assuming all data centers are built for ASHRAE’s most

aggressive A4 class, which permits the inside temperatures in the data center to be maintained

as high as 45◦C with relative humidity of 90 (cf. Table 4.1). Our experiment sheds light on

the additional benefits from having A4 class data center, since OAC now becomes feasible

even in warmer or more humid climates. With A4 class, we observe 95% energy savings

from OAC year-round for r = 0km, with a slight decrease in the summer. With r = 1000km,

the savings rise to 98% even in the summer. In addition to A4 class of data centers, we also

perform the experiment with the intermediate A2 type data centers. As we can see in Figure

4.5, globally we see higher than 70% savings for 0kms year round. If we allow a radius of

1000kms, we see a savings close to 90% with a slight dip in the summer.

4.5.4 Network latency impact

Figure 4.6 shows the impact on performance (i.e., latency increase) due to OAC-driven

load movements is likely to be small even when we allow our algorithm to move load to

data centers that are up to 1000km away. This is because over 90% of the load is served
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(a) Global (b) USA (c) Australia
Figure 4.5: Energy savings for the entire global IDS and for major countries in each of the
two hemispheres for A2 data centers.
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Figure 4.6: Average distance the load is moved by our algorithm for the whole year and on
the worst day for r = 500 and 1000.

locally due to OAC on an average day; even on the worst day of the year, over 68% of the

load is not moved at all. On an average, 92.6% (resp. 97.5%) of the user load gets served by

a data center within 300km for r = 1000km (resp. r = 500km). Even on the worst day of the

year that requires the most load movement, 75.5% (resp., 88.7%) of the load is served by a

data center within 300km for r = 1000km (resp., r = 500km). These results indicate that

only a few users see a modest increase in latency due to OAC while most see no impact.

4.6 Implications for IDS Design

We showed that IDSs can significantly reduce brown energy consumption for A1 type

data centers by leveraging OAC availability at diverse geographical locations using our load
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shifting algorithm. We also showed that there is not a large increase in latency for IDS

users. Given operating ranges of temperature and humidity are even more relaxed for A2

through A4 type data centers, they will see higher savings in energy reduction and capital

expenditure. Therefore, IDSs should be designed to incorporate OAC and OAC-based load

shifting to the extent possible.

4.7 Related Work

Data centers and IDSs consume a significant amount of energy and techniques to reduce

the energy consumption have been studied extensively. Much of this effort has focused on

reducing the power consumption of server clusters through advanced cluster-wide power

management techniques [17, 43]. In the IDS context in particular, techniques such as server-

and cluster shutdown have been proposed to make server clusters more energy proportional

to IDS traffic [49]. Moving load across data centers of an IDS to exploit variation in energy

market prices [57] and for increasing the use of renewables [47] has been studied. However,

we explore load movement for evaluating the potential for OAC using extensive IDS load

and global weather traces. Separately, the use of renewable energy to power and cool data

center servers [45] and techniques to minimize server carbon footprint [27] have also been

studied. In the context of reducing the cooling energy, thermal engineering techniques

have been studied to optimize temperature and air flow through server racks or perform

temperature-aware scheduling of workloads on “cool” racks [21]. However, the use of new

cooling technologies in data centers has only recently begun to gain attention [11, 45]. In the

context of OAC, recent ground-breaking work has focused either on the systems aspect of

incorporating OAC into a modular data center [22] or on provisioning [48] and temperature

management [31] within a single data center. Work has also shown that significant savings

in energy can be achieved within a data center by the use of renewable cooling technologies

[70]. Companies such as Facebook have begun to employ open air cooling in their data

centers in recent years [68].
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4.8 Conclusions

In this chapter, we studied the potential benefits of using OAC to reduce the energy usage

as well as the operational and capital costs incurred by an IDS for cooling its servers. We

presented algorithms to incorporate OAC into the IDS architecture and empirically evaluated

its efficacy using extensive traces from Akamai’s global CDN and global weather data from

NOAA. We showed that, by using OAC, a global IDS can extract a 51% cooling energy

reduction during summers and a 92% reduction in the winter. Further given ASHRAE’s

new operating temperature limits and the ability of IDSs to lend themselves to load shifting

across data centers, we can significantly reduce, and in some locations, nearly eliminate

cooling costs. Overall, we show that OAC holds great promise for the future sustainable

IDS design.
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CHAPTER 5

COMBINING SOLAR ENERGY AND OPEN AIR COOLING FOR
GREENING INTERNET-SCALE DISTRIBUTED SYSTEMS

In the previous chapters, we considered renewable power and renewable cooling sepa-

rately to green IDSs. Motivated by the contrasting nature of solar energy and OAC, we now

study the benefits of combining these two renewable technologies to help us green IDSs. We

note that solar energy is more abundant in sunny locations and during day-time. In contrast,

OAC is available when the weather outside is cold and dry enough. Therefore, OAC is

available in colder locations and during night-time. We evaluate if the contrasting nature of

these two technologies yields complementary benefits. Given renewables are intermittent in

general, and the renewables we have chosen to study are complementary in time and space,

we use batteries and load shifting for smoothing the supply of green energy. We study the

greening potential of combining these two technologies against two yardsticks: reduction in

brown energy and cost effectiveness. To realistically evaluate the greening potential, we use

an extensive real-world load trace from Akamai, one of the leading CDN providers in the

world [53].

5.1 Contributions

To the best of our knowledge, our solution is novel as it synthesizes two renewable

technologies, solar energy and OAC, and evaluates their greening potential in the context of

an IDS, with large-scale real-world load traces. Specifically, our contributions include:

• Synthesizing solar energy and OAC as contrasting and complementary technologies:

Motivated by the contrasting and complementary nature of solar energy and OAC, we use a
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simple greedy algorithm that enables us to use solar energy and OAC efficiently. A net-zero

year (nzy) data center produces as much energy from renewables in a year as it needs to

entirely offset its brown energy consumption in that year. Just by introducing OAC alone

to the mix of half the number of panels it takes to be net-zero year, we show that we can

go from 34% reduction to about 54.9% brown energy reduction. With panels needed to be

net-zero year, we can go from 41.5% to about 59.4% savings. We see even higher savings by

employing both batteries and load movement. We incorporate several key parameters that

can be used to model trade-offs while evaluating energy efficiency. Some of these parameters

include radius of load movement, battery capacity, number of solar panels installed, battery

cost and lifetime, solar panel cost and lifetime, and energy prices.

• Evaluation using an extensive real-world trace: We evaluate the greening potential

of solar energy and OAC using extensive load traces from Akamai [53]. The dataset used

consists of information on from 724 global data center locations including 100,592 servers

deployed all over the world. We also use year-long weather data for OAC from over 650

locations. In addition, we use a year’s worth of PVWatts solar data. Using this data, we

simulate our solution for a whole year, parallelizing our runs by week to reduce the time

of running. We then evaluate our solution against several metrics measuring total brown

energy reduction, peak reduction, cost savings and a break-even analysis. We vary battery

capacity as a function of the average day’s load in a data center.

• Brown energy reduction evaluation: We evaluated how well the mix of solar energy and

OAC reduces brown energy consumption. Energy companies often charge their customers

for both the energy consumed and the peak energy drawn. As part of this analysis, we

studied two metrics: 1) total brown energy reduction and 2) peak energy reduction. For

brown energy reduction, we studied how our results vary with addition of OAC to solar

energy, with the addition of load movement, and also with the addition of batteries.

Allowing a radius of 5000kms with the combination of solar energy and OAC, we can

increase our savings to 60.3% or panels0.5 and to about 65% with net-zero year panels.
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Our results show that with a battery capacity of half the average day’s load at each data

center, we can significantly increase the reduction in brown energy to over 73% for panels0.5

and over 89% with net-zero year panels, without moving any load. For percentage peak

reduction, we see a reduction between 10% and up to 40% depending upon the number of

panels installed, the battery capacity and radius of load movement. Fixing the radius of

load movement to 1000kms, and varying battery capacity and panels as shown above, we

can achieve a reduction of about 11% in the worst case to about 26% with greater battery

capacity and larger number of panels.

• Results on increasing green energy utilization: We evaluated how much green energy

we can utilize under different conditions. Without any load movement and with 0.5 times

the panels we need to be net-zero year, if we employ a battery about 0.5 of the average day’s

load, we can increase green energy utilization from about 72% to over 95%.

• Amortized cost analysis: We evaluated the cost saving potential of our solution given

investment in different combinations of battery capacities and number of panels. We

calculated yearly cost savings based on yearly savings in brown energy consumption costs

and yearly amortized expenditure for batteries and panels. We find significant cost savings

for moderate and high energy prices, ranging from 9.9% all the way to 60.3% based on

different parameter values. Even for low price for energy, if we do not use batteries and

have 0.5nzy panels, we see cost savings from 22% to 41%. However, with 0.5avgdayload

batteries and 0.5nzy panels, savings drop to between 3% to about 8.4%, and for other

combinations of panels and batteries we incur a loss in the case of low price of energy. With

the prices of batteries and solar panels on the decline, we believe the results for lower energy

prices should also improve in the future.

• Break-even analysis: With a higher price of energy, for half the panels it takes to be

nzy, we see break-even periods as low as 6 years. For a moderate and low energy prices, we

can achieve break-even periods of 8.9 years and between 14.9 years respectively. Again,

70



with the cost of solar panels and batteries declining, these numbers should improve in the

future.

• Cost Analysis based on future projections: Given the price of solar panels and batteries

is falling, and the price of energy over the long run is increasing, we evaluated our solution

using projected prices of batteries, panels, and energy. We found dramatic increases in

brown energy reduction and break-even periods even for the projected lower end price of

energy. Even for the low price of energy, for which we incurred a loss in certain cases with

current prices, we see cost savings of 23.9% to 55.9%.

5.2 Background

Geographical Variations in Solar Energy and OAC Availability: We see variations

in solar output and OAC based on factors like temperature, season, time of day, northern

or southern hemisphere location, climate, weather conditions [33] [34]. Therefore, using

renewables efficiently involves handling the variations in and availability of renewable

output. In this paper, we use a combination of load movement and battery storage to mitigate

the problem of intermittent availability of solar energy and OAC. Given the geographical

diversity of data center locations and replicated content and services, we use load shifting

to take advantage of renewables. We vary radii of load movement to control latency. To

enable us to store excess solar energy, we assume that batteries are available at all data

center locations. We vary battery capacity installed at a data center location as a function of

the average day’s load for that data center. We also consider the case where net metering is

available at all data centers and calculate energy savings with net metering.

Metrics for evaluating proposed solution: To evaluate the combined greening poten-

tial of solar energy and OAC, we measure reductions in both energy consumption and cost.

We use reduction in total brown energy consumption, green energy utilization, and reduction

in peak energy drawn from the grid to determine how effective the combination of solar
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Variable and Value Notation
battery capacity = x*(avg day’s load) bcapx

num solar panels = x*(net-zero year number of panels) panelsx or xnzy
radius of load movement = xkms r=x

Table 5.1: Parameters values and related notation used to refer to them in the paper

energy and OAC is in greening IDSs. We use amortized cost savings and a break-even

analysis to evaluate how effective the algorithm is with respect to cost.

Parameter Values and Related Notation: In this paper, we study our algorithm by

varying parameters like battery capacity and number of solar panels. We vary battery

capacity installed at a data center as a function of the average day’s load for that data center.

We consider three different fractions: 0, 0.5*(average day’s load), and 1*(average day load).

We vary the number of solar panels as a function of the net-zero number of panels for a data

center. We consider two fractions: 0.5*(net-zero year number of panels), and 1*(net-zero

year number of panels). In addition to these, we also vary the radius of load movement and

use a notation r=x to mean that a maximum radius of load movement of x kms was used

in our simulation. It is cumbersome to refer these cases using their full descriptive text for

battery capacity and panels as listed above. Therefore, we use a shorter notation and list

the mapping of the full text to its notation in Table 5.1. For example, to refer to a case in

which we employ a battery capacity of 0.5*(average day’s load) and install 0.5*(net-zero

year number of panels), in our plots and empirical results we use a notation bcap0.5 and

panels0.5 (or 0.5nzy).

Problem Statement: As explained earlier, IDSs consume a significant amount of energy.

The bulk of the energy consumed by data centers consists of energy used to power servers

and to cool them [56]. One way IDSs can be made greener is by replacing brown energy

consumption by energy generated from renewable sources. Solar energy is correlated with

sunny weather and day-time. In contrast, OAC is more abundant in colder weather and

night-time. In this paper, we study the potential of using two contrasting and complementary

sources of renewable energy (namely solar energy and OAC) in their ability to reduce brown
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energy consumption in IDSs in a cost effective fashion. Given the intermittent nature of

renewable energy, in general, and the complementary nature of these two specific sources,

we use batteries and load movement as facilitators for smoothing supply of green energy.

Specifically, in this paper we try to study two aspects:

• The potential for replacing brown energy with a combination of solar energy and

OAC in IDSs.

• The cost effectiveness of combining these two contrasting sources of renewable energy

in our IDS setting.

5.3 Energy-Aware Load Scheduling Algorithm

We describe our greedy heuristic algorithm in the following paragraphs. We assume

that we have the ability to cool load using OAC as long as the weather conditions outside

permit us to do so. We also assume we have the on-site solar panels at each data center

location. Further, we assume that we have batteries available locally to store excess solar

energy. Finally, we assume we can leverage redundancy and data replication in IDSs by

moving load to locations where there is more renewable energy available.

Our algorithm works as follows. If OAC is available, we use that for cooling data centers.

If solar energy is being generated by locally installed solar panels, we use that to meet local

energy demand, including cooling energy if OAC is not available. For remaining server

and cooling load, we use locally installed batteries. If any load is left over, we try to shift

it to other locations with surplus green energy, constrained by a maximum radius of load

movement. We do load shifting in two iterations. In the first iteration, we move load to

locations that have both surplus solar energy and OAC. In the second iteration, we move

load to locations that have surplus solar energy and no OAC. This allows us to use solar

energy from data centers that did not get selected in the first iteration. For both iterations,

load shifting is constrained to remain within a maximum radius of load movement to control
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latency. Finally, for any remaining load, we draw energy from the grid. We store any

unused solar energy in batteries for future use. The pseudo-code for the algorithm is listed

in Algorithm 4.

Algorithm 4 Greedy Algorithm Pseudocode
1: function GREENHEURISTIC( )
2: dcs← [1,2, ...,m] . datacenters
3: sorted peers← [p1, p2, ...., pm] . sorted list of dc peer dcs in increasing order of dist
4: time← [1,2, ...,n] . time periods
5: r = max radius of load movement
6: b← [b1,b2, ...,bm] . battery charge
7: for i in time do
8: sload← [l11, l12, ..., lmn] . server load for time period
9: cload← [c11,c12, ...,cmn] . cooling load for time period

10: oac← [o11,o12, ...,omn] . oac available y/n?
11: solarenergy← [s11,s12, ...,smn] . local solar energy
12: surpluslist← [] . to store dcs with surplus solar energy
13: de f icitlist← [] . to store dcs using brown energy
14: for j in dcs do
15: if oi j = y then
16: ci j← 0 . if there is OAC, cooling load is zero

17: excessSolari j← si j +b j− (li j + ci j) . determine excess solar
18: if li j + ci j > si j then
19: b j← b j− (li j + ci j− si j) . use battery if solar energy falls short

20: if excessSolari j > 0 then
21: surpluslist← surpluslist ∪ [ j] . add dc to surplus list
22: else if excessSolari j < 0 then
23: de f icitlist← de f icitlist ∪ [ j] . add dc to deficit list
24: for j ∈ de f icitlist do . first iteration
25: for p ∈ sorted peers do
26: if p ∈ surpluslist ∧oip = y∧dist( j, p)≤ r then
27: move load to p and adjust variable values
28: for j in de f icitlist do . second iteration
29: for p ∈ sorted peers do
30: if p ∈ surpluslist ∧oip = n∧dist( j, p)≤ r then
31: move load to p and adjust variable values
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Parameter Value
Loss % 14

System Capacity 0.275 kW
Module Type Standard
Timeframe Hourly
Azimuth 180 deg for northern hemisphere and 0 for southern

Tilt Absolute value of latitude
Dataset ‘TMY2’ for US Locations and ‘Intl’ for others

Table 5.2: Parameters for PVWatts Data

5.4 Experimental Methodology

We performed our experiments on a month-long Akamai trace. This extensive trace has

a granularity of 5 minutes and consists of information on 100,592 servers in 724 global data

center locations from around the world. The data set consists of information for fields like

load, requests, bytes, number of servers, server capacity, latitude, longitude, city, state, and

country.

Our solar data set was acquired from the PVWatts [52] website. It consists of a year-long

dataset for solar energy generation at a granularity of one hour. We assume that the power

rating of a solar panel ranges from 200 watts to 350 watts [24] and take an average value

of 275 watts as the power rating per panel. We list values of parameters used for PVWatts

solar data in Table 5.2. For any other required parameters, we used the default values listed

in the PVWatts version 5 manual [20].

For determining OAC availability we used a year-long weather dataset for the year 2012

from the National Oceanic and Atmospheric Administration (NOAA). This global dataset

contains several metrics, including hourly dry-bulb temperature and dew point. Given that

the location of our data centers, we mapped which weather station was closest and used its

weather data as being representative of the weather at the data center location. Given the

NOAA has a vast network of weather stations, we could map most of our data centers to

weather stations within 10kms. For most of the remaining data centers, we could map a

weather station within 40kms.
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Weather data used for OAC and solar data had a granularity of one hour. However, the

load trace has a granularity of 5 minutes. We therefore assumed that the weather and solar

output do not change much during the hour, and use the hour’s value for each of the 5-minute

timeslots that fall within the hour. Additionally, our weather data and solar energy data

was year-long, however, the Akamai load trace was month-long. To simplify, we assumed

that the load trace pattern repeats throughout the year. However, our algorithm does not

fundamentally depend upon or exploit the fact that the load pattern repeats throughout the

year. Therefore, it would also be applicable to a yearly load trace in which the load pattern

is different for each month.

We analyzed our metrics by varying several parameters. For a given data center, we

varied battery capacity as a function of the average day’s load, and considered battery

capacities of zero, half of the average day’s load, and a full average day’s load. For each

data center, we determined the number of solar panels we need to be net-zero year i.e. the

number of panels needed to produce enough solar energy to cover the total energy needs of

the data center for a year. For our experiments, we varied the number of panels from half

of the net-zero year number of panels to a full net-zero year number of panels. Given the

size of our datasets, running our algorithm sequentially would have been computationally

expensive. Therefore, we parallelized our algorithm by week and in order to do a worst case

analysis, we assumed a starting battery charge of zero at the beginning of each week.

5.5 Empirical Results

We evaluated the greening potential of solar energy and OAC in the context of both

brown energy reduction and cost effectiveness. We analyzed several metrics, namely brown

energy reduction, green energy utilization, peak reduction, cost savings, and break-even

points. We describe our findings related to these metrics in the paragraphs below.
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5.5.1 Brown Energy Reduction

Brown energy reduction is calculated by taking the average of percentage reduction

in brown energy across all the data centers of the IDS for the year. Our results show the

following:
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Figure 5.1: Plot shows how solar energy and OAC combine to yield higher savings across
various months of the year for panels0.5 and r=0.

• Combining solar energy and OAC yields significant benefits: Figure 5.1 shows the

brown energy reduction we can achieve with the combination of solar energy and OAC by

different months of the year. Solar energy output is higher in the summer months when

there is plenty of sunshine. Therefore, we see the reduction in brown energy peak in the

summer months when we use solar energy alone. In contrast, OAC is more abundant when

the outside weather is cold and dry enough. Therefore savings from OAC are higher in the

winter months and dip in the summer months. Combining these two technologies, we can

achieve a much higher savings of between 49.7% to about 60% throughout all the months

of the year as shown by the green line. Figure 5.4 shows how our yearly average percent

savings increase when we combine solar energy with OAC. As seen by comparing the left

two bars of Figure 5.4 (a) and (b), just by introducing OAC alone to the mix of 0.5nzy

panels, we can go from 34% reduction to about 55% average brown energy reduction. With

nzy panels, we can go from 41.5% to about 59.4% savings.
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Figure 5.2: Figures show the break-up of brown energy reduction for only solar, only oac,
and solar plus oac with bcap0 and panels0.5nzy

• Northern and Southern Hemisphere Differences: Figures 5.2 and 5.3 show the break-up

of savings for different months for the globe, USA and Australia. Figure 5.2 shows results

for the case when battery capacity is zero, and Figure 5.3 shows plots for the net metering

(or infinite battery) scenario. Firstly we see that in the northern hemisphere (e.g. in USA),

the savings from solar energy are pronounced over summer, where as savings from OAC are

pronounced over winter. In the southern hemisphere (e.g. in Australia as seen in Figure 5.2

(c)), this trend reverses. The global results are dominated by USA traffic and show similar

trends. In all cases, combining solar energy and OAC (green line in the plots), we see that

we can increase and smooth out savings significantly over all months of the year.

• Net metering increases savings significantly: Corresponding plots of Figures 5.2 and

5.3 show that with net metering we can see a dramatic increase in brown energy reduction

for all months of the year. For example, as we can see from the green lines in Figures 5.2

(a) and 5.3 (a) the combined OAC and solar energy savings for the globe increase from an

average of about 54% (without net metering) to an average of about 77% for the year (with

net metering).

• Load movement leads to more savings: As seen in Figure 5.4 (a and b), savings

increase with increasing r. For r=5000kms, we can increase our average reduction from

54.9% to 60% for panels=0.5nzy and from 59.4% to 65% for nzy panels.
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Figure 5.3: Figures show the break-up of brown energy reduction for only solar, only oac,
and solar plus oac with net metering and panels0.5nzy

• Batteries help significantly: As seen by the leftmost bars in Figure 5.4 (c and d),

in the absence of batteries, doubling the number of solar panels increases savings from

34% to 41.5% for the solar energy only scenario and from 54.9% to only about 59.4% for

the combination for solar energy and OAC. Without batteries, instantaneous solar energy

produced is wasted. However, as shown by the bars to the right in Figure 5.4 (c), by

employing batteries with bcap0.5, we can significantly increase the reduction in brown

energy to over 48% for panels0.5 and over 74.9% for nzy panels with solar energy alone.

For the combination of solar and OAC in Figure 5.4 (d), we can increase savings to 73% for

0.5 net-zero year panels and over 89% with net-zero year number of panels.

• Diminishing returns with increase in battery capacity: Reduction in brown energy

increases with larger battery capacity, however, we see diminishing returns. Figure 5.4 (d)

shows the jump in savings from 0 battery capacity to 0.5 is dramatic – from 54% to 73% for

0.5nzy panels. However the jump from 0.5 to 1 is not that large – 73.2% to 73.7%. For a

larger number of solar panels (shown by the red bars in Figure 5.4 (d)), the same diminishing

returns with batteries are observed and we see a jump in reduction from 59% to 89% to 91%

as we increase the battery capacity from 0 to 0.5 to 1. This trend is also preserved for the

solar energy only scenario as we can see from Figure 5.4 (c).

• Application-specific parameter values: We can achieve similar gains in brown energy

reduction with different sets of parameter values. These parameter values could be chosen
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Figure 5.4: We see a significant increase in brown energy reduction as we move from solar
energy only (a & c) to solar energy + OAC (b & d). Increasing r (a & b) yields larger savings.
Increasing battery capacity (c & d) helps but shows diminishing returns.

based on the specific needs of applications, e.g. we may choose to not move load for

latency sensitive applications, whereas for latency tolerant applications, we may choose to

move load and save on battery costs. As an example, suppose we would like to achieve

approximately 70% reduction in brown energy consumption. We can achieve this in two

different ways using different combinations of load movement, battery capacity, and solar

panels. The two ways from the above plots are: From Figure 5.4 (b), bcap0 panels0.5 and

r=10,000 and from Figure 5.4 (d), panels0.5 bcap0.5 with r=0. The former scenario is better

suited for applications that can tolerate latency, where as the latter can be employed in case

of latency-sensitive applications though with an added expenditure for batteries.

• Location Based Results: Trade-offs for specific locations vary significantly depending

on the local availability of solar energy and OAC and their interplay. For a place like

Anchorage (see lowest blue line corresponding to panels0.5 bcap0 in Figure 5.5(a)), where
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Figure 5.5: Figure showing reduction in brown energy across different months for Anchorage
and Las Vegas

OAC is available for most of the year, the shape of the curve depends on the availability

of solar energy, which peak in the summer months. However, for a place like Las Vegas

(see lowest blue line corresponding to panels0.5 bcap0 in Figure 5.5(b)), where solar energy

is available for most of the year, we get a curve that dips in the summer months, when

OAC is not as abundant. These shapes change with the addition of load movement and

batteries to the mix, as both of those alter the basic assumptions about locational variations

of OAC and solar. Also, locations that are mostly high in solar energy output (e.g. Las

Vegas which is ranked as the third highest city in the United States based on percentage

annual sunshine [50]), have an advantage over locations that are excellent for OAC year

round (e.g. Anchorage where the highest average year round temperature is 19 °C and the

average dew point is -2 °C [67]). Solar output can be used for meeting both server energy

demand, as well as for cooling purposes. However, OAC can only be used for cooling.

From the plots, with sufficiently high number of solar panels and battery size, we can nearly

see a high reduction in brown energy consumption year round. For Anchorage, however,

in the summer months we see a dip in brown energy reduction due to lesser solar energy

availability. The curves also show diminishing returns when battery capacity is increased

successively from zero, to half of the average day’s load, to a full average day’s load.
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Figure 5.6: Plot showing significant gains in peak reduction. Increasing solar panels, battery
capacity and r result in higher reductions.

5.5.2 Peak Reduction

This metric measures the average percentage peak reduction for peak energy drawn from

the grid for the year. We first determine the maximum energy drawn for a data center for

the year for the original load trace. We then determine the maximum energy drawn for the

new load incorporating solar panels, OAC and load movement (for r > 0) under the greedy

heuristic algorithm. We then calculate the percentage reduction for each data center based

on the above values and finally average them. Our results are shown in Figure 5.6.

• Significant reduction in peak energy: As shown in Figure 5.6, we can see an overall

reduction between 10% and up to 40% depending upon the number of panels installed,

the battery capacity and radius of load movement. Fixing the radius of load movement

to 1000kms, and varying battery capacity and panels as shown above, we can achieve a

reduction of about 11% in the worst case to about 26% with greater battery capacity and

larger number of panels. With a larger radius of load movement, we can see significantly

higher percentages of reduction. As an example, with a r=10,000kms we can see a decrease

of over 35% with bcap1 and nzy panels.

5.5.3 Green Energy Utilization

Green energy utilization measures how much green energy, including energy from solar

panels and OAC, is being utilized as a percentage of total green energy available. To
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determine green energy utilization we first determine the total green energy being consumed

at all data centers for the year and then calculate utilization as a percentage of the total

green energy supply. The total green energy supply is the total solar energy produced by the

net-zero year number of panels installed at the data center and the amount of OAC available.

As a simplifying assumption, we assume that if the outside weather permits, we have as

much OAC available as the cooling energy demand at each data center. Figure 5.7 includes

results for this metric.

• Batteries help significantly: Batteries are important in increasing green energy utiliza-

tion. Fig 5.7 (a) shows that without any load movement and with 0.5 times the panels we

need to be net-zero year, if we employ a battery about 0.5 of the average day’s load, we can

increase green energy utilization from about 72% to over 95%. With net-zero year panels,

we can increase green energy utilization from 47.4% to about 72.95%.

• Load movement helps in the absence of batteries: We observe from fig 5.7 that load

movement helps over larger values of r without batteries. To control latency, our algorithm

gives preference to the utilization of local green energy first, and so with batteries load

movement does not help as much. Without batteries, we see a considerable gain in green

energy utilization over larger distances. in increasing green energy utilization. Without

load movement and without batteries, we see a utilization of about 71.6%. However, with

r=10,000kms and without batteries, we can achieve close to about 93% utilization.

• Diminishing returns with increase in battery capacity: As fig 5.7a above shows, this

metric also shows diminishing returns with increasing battery sizes. Both series level off

after their first significant jump when we go from zero battery capacity to a capacity of 0.5

times the average day’s load. With fewer panels (0.5 net-zero year), with increasing battery

capacity, we see the utilization go up from 72% to about 95% to 95.8%. For net-zero year

panels the numbers are 47.4% to 70.97% to 72.95%.

• Application specific configuration: With bcap0 panels0.5 and r=10,000 and panels0.5

bcap0.5 with r=0, we can achieve more than 95% green energy utilization as shown in
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Figure 5.7: Plots show that batteries help with increasing green energy utilization. Load
movement also helps in increasing green energy utilization over larger values of r

Resource Parameter Value
Battery Price/kWh | lifetime $190/kWh | 10 yrs

Solar Panels Price/Wac | lifetime $2.1/Wac | 25 yrs

Table 5.3: Price and lifetime for batteries and solar panels. Cost for commercial solar panels
and lithium-ion batteries was used.

Fig 5.7 a and Fig 5.7 c, . The former case may be more suitable for applications that are

latency sensitive, where as the latter may be acceptable for applications where latency is not

a serious issue.

5.5.4 Cost Analysis

In this section, we evaluate how well the combination of solar energy and OAC performs

with respect to cost savings. To this end, we consider the following aspects: 1) Yearly

amortized cost savings and 2) Break-even analysis. We describe these in detail in the

following paragraphs.

With the battery and solar cost and lifetime parameters [14] [63] [51] [23] listed in Table

5.3, we studied cost savings and break-even periods under three different prices of energy

from low, to moderate, to high. The following three scenarios were analyzed:

• Low Price - 7¢/kWh: This is closer to the industrial price of electricity in the US [7]

and is the lower end price for our analysis.
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Figure 5.8: Plots show significant amortized savings for moderate and high energy prices.
For the lower energy price, we see losses for higher battery capacity and larger number
of panels. However, even for the lower energy price, we see significant savings without
batteries, and we can see some savings with bcap0.5.

• Moderate Price - 12¢/kWh: This is based on a blended value of 12¢/kWh midway

between our low and high cost values of 7¢/kWh and 17¢/kWh.

• High Price -17¢/kWh: This in on the higher end of the non-household energy prices

found in countries in Europe [26].

5.5.4.1 Yearly Amortized Cost Savings

We calculate original yearly cost of brown energy drawn from the grid for the original

trace. We then calculate the new yearly cost of brown energy for the new reduced load after

incorporating solar panels, OAC and load movement (for r > 0) under the greedy heuristic

algorithm. To account for the yearly cost of panels and batteries, we calculate expense

for panels and batteries and amortize the price over their lifetime to determine the yearly

amortized cost for these investments. We then add the yearly amortized cost to the new

yearly cost. Finally, we find the percentage reduction in cost using the original yearly cost

and new yearly cost calculated above. The results for the metric are discussed below.

• Cost savings are directly proportional to the price of energy: From Figure 5.8 we see

higher savings in cost as we move from a low to a moderate to a high energy price. With a

higher per unit energy price, every unit of brown energy drawn from the grid that is replaced

with green energy reduces a larger amount from the operational cost.
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• Significant cost savings for moderate and high energy prices: As seen in Figure 5.8,

significant cost savings can be achieved for moderate and high energy prices (plots b and

c). Savings range from 9.9% to 60.3% based on different parameter values. With moderate

energy prices, for bcap0.5 and panels0.5, we can see a savings of about 32% without any

load movement. For the higher price and same battery size and panels, savings are much

higher at 44.4%.

• Savings in some cases with low energy prices: From Figure 5.8 (a), we see that

with lower energy prices, we can yield cost savings if we employ fewer number of panels

(0.5nzy) coupled with either no batteries or batteries with a smaller capacity of bcap0.5.

With panels0.5 and bcap0, we see savings ranging from 22% to 41% depending on r. With

panels0.5 and bcap0.5, we see a savings of 3% to about 8.4% depending on r. For other

combinations of panels and battery capacities, we incur a loss. However, with prices of solar

panel installation and batteries on the decline, we expect these cost savings in this case to

improve going forward.

• Middle ground provisioning: As seen from the green line in subplots of Figure 5.8,

bcap0.5 and panels0.5 yields no losses for the low energy price and yields significant savings

for the higher energy price. This coupled with the fact that bcap0.5 and panels0.5 yields

significant average percent brown energy reduction, (73% for 0.5 net-zero year panels and

over 89% with net-zero year number of panels), makes it a good middle ground for achieving

both objectives of reducing brown energy consumption and saving on cost.

• Sensitivity of metric in inversely proportional to energy price: Generally speaking,

this metric is more sensitive to change in parameters (i.e. battery capacity and number of

panels) with lower energy prices, as compared to higher energy prices. Observing Figure

5.8, we see that the lines successively span out less as we go from low to moderate to high

prices. For the lower energy price for r=0, the savings range from 22% to -48%. For the

moderate energy price, savings range from about 35.8% to about 10%. Finally, for the higher

energy price, savings range from 46% to about 29%. Therefore, decisions to switch between
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different battery capacities and number of panels have a greater effect on cost savings when

prices are low, as compared to when they are higher.

5.5.4.2 Break-even Analysis
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Figure 5.9: Plot shows a decrease in the number of years to break even as the price of energy
goes up (for r=0).

In this section, we look at the number of years it takes to break even on the expenditure

made towards batteries and solar panels. We determine brown energy cost for the year for

the original trace and for the new trace after our algorithm has been run. We calculate the

difference of these two to get cost savings for the year. We then find the capital expenditure

incurred on batteries and solar panels across the IDS, and divide it by the savings for the

year to get the number of years it would take to recover the cost.

Figure 5.10 gives an idea of the break-even period across different combinations of

battery capacity and panels. Figure 5.9 focuses on r=0 and the combination of panels and

battery capacity for which the number of break-even years are the lowest:

• Break-even period is inversely proportional to energy price: Figure 5.9 shows that for

half the nzy panels and a low energy price, we see a break-even period of about 14.9 years.

This falls to 8.7 years for the moderate price, and 6 years for the higher price of energy. The

same trend is observed for all combinations of panels and capacities as seen in Figure 5.10.

Therefore, the higher the price of energy, the lower the number of years to break even. This
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Figure 5.10: The break even period is inversely proportional to the price of energy. With a
moderate amount of battery capacity and panels, we can achieve close to the lowest break
even periods compared to others.

is because for every unit of brown energy reduced, we get larger savings when we multiply

it with the higher unit cost of energy versus a lower unit cost of energy.

• Finding a middle ground: The break-even period is very similar for 1) bcap0 and

panels0.5; and 2) bcap0.5 and panels0.5. For the higher energy price and with bcap0 and

panels0.5, it takes between about 4.6 to 6.1 years to break even depending upon the values

of r. With bcap0.5 and panels0.5, it takes about the same number of years (between 6.7 to

6.3) to break-even. This trend is also observed for lower and moderate energy prices as well.

Therefore, from a overall solution standpoint considering bcap0.5 is useful in brown energy

reduction and cost savings, bcap0.5 and panels0.5 emerges as the preferred option between

1 and 2.

5.5.5 Cost Analysis with Future Projections

Given the price of solar panels and batteries is on the decline, and the price of energy is

on the rise, we evaluated our algorithm for 2030 price projections of electricity, solar panels,

and batteries. For electricity prices, we used the projected average US electricity price in

2030 [59], we then calculated the current ratio of the average price across all sectors to the

current industrial price of electricity [7] to determine the industrial electricity price for 2030.

We then used the percentage increase in price to scale up our low, moderate and high prices

used in the paper. We used the SunShot study targets for installed solar panel cost in $/Watt
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Parameter Cost
(constant 2017 dollars)

Lower Electricity Cost Projection (¢/kWh) 7.98
Moderate Electricity Cost Projection (¢/kWh) 13.67

Higher Electricity Cost Projection (¢/kWh) 19.36
Solar Panel Cost ($/Wac) 1.30

Battery Cost ($/kWh) 70

Table 5.4: Projected Electricity, Solar Panel and Battery Costs

in the beyond 2020 [71] as well as their 2030 targets [64], in conjunction with the current

commercial solar panel per watt rates [51] to determine the installed cost of commercial

panels in 2030. We used the Bloomberg New Energy Finance (BNEF) projection for the

lithium-ion battery cost in 2030 [14]. Table 5.4 shows the projected values we used (in

constant 2017 dollars). As a simplifying assumption we assumed that the lifetime of batteries

and solar panels remains the same as the current values uses. If the lifetime were to increase

in the future, that would yield even higher cost savings.

With the projected values of parameters discussed above, we re-looked at how well the

algorithm performs with respect to: 1) yearly amortized cost savings for our algorithm and

2) break-even analysis. Our findings are discussed below:

5.5.5.1 Yearly Amortized Cost Savings with Future Cost Projections

As seen in Figure 5.11, cost savings showed a dramatic increase across the board for

all combinations of parameters. Figure 5.11 (a) shows that for the lower price of energy,

range from 23.9% to 55.9%. None of the combinations of parameters result in a loss, like

we saw with current prices. From Figure 5.11 (b) shows that with moderate energy prices,

we can see savings of 38.6% to 68.9%. With the future higher energy price, we see even

higher savings ranging from 44.7% to 77.06%.

5.5.5.2 Break-even Analysis with Future Cost Projections

We see a huge decrease in the number of years it takes to break even with the projected

prices. From Figures 5.9 and 5.12, we can see that for bcap0, panels0.5 and r=0, for the
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Figure 5.11: Future projection plots show dramatic increases in amortized savings for
moderate and high energy prices. For the lower energy price scenario for r=0, we see a
savings of 23.9% to 55.9% with no losses for any combination. This is an improvement
from the current price scenario.
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Figure 5.12: Plot shows a significant decrease in the number of years to break-even with
future cost projections (for r=0).

new low price, the number of years it takes to break even falls from 14.9 years to 8.08 years.

For the moderate price it falls from 8.7 to 4.71, and from 6.1 to 3.33 for the high price. We

see the similar trend for bcap0.5, panels0.5 and r=0 where the number of years are reduced

by approximately half between the current and projected costs. In addition, we see from

Figure 5.12, that the break even years with bcap0.5 are marginally less than without batteries.

Given the decrease in the prices of batteries and solar panels, and the higher energy cost,

for 0.5nzy panels in the future it would in fact take marginally less time break even if we

employ a battery capacity of bcap0.5, than if we do not have any batteries at all.
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5.5.6 Discussion

Our analysis shows that combining solar energy and OAC can significantly reduce brown

energy consumption in IDSs. Load movement and batteries can yield further savings. We

find that savings due to load movement are most pronounced over larger distances where the

night-day difference is apparent. Therefore applications that are not latency sensitive have

the most to gain from load movement. Batteries with a capacity of half of the average day’s

load can significantly increase savings. We also see that batteries not only increase savings,

but are also cost effective with moderate and high energy prices. Therefore in locations

where energy prices are moderate to high, deploying batteries with solar panels is beneficial.

With lower energy prices we can achieve cost savings in certain cases. With future projected

prices of solar panels, batteries and energy, we find dramatic increases in cost savings and

break even periods for all prices.

5.6 Related Work

Given energy efficiency is important for sustainability, significant work has been done

in the area of data centers energy management. Part of this work has focused on reducing

energy at the server level. Work includes shutting off servers during off-peak times and

switching between high and low power states to prevent wear and tear [60] [44] [49] [17].

Allocation of energy between user applications taking into account user priorities and the

lifetime of the battery has also been studied [72]. Prior work has also looked at OS level

power management by real-time monitoring of the CPU to keep it utilized to a certain

percentage [55].

Separately, another part of prior work has focused on energy-efficiency at the data center

level. Job scheduling to maximize solar energy usage without violating user deadlines

has been studied [29] [30]. Prior work has looked at using solar energy and wind energy

prediction to increase green energy usage and cut down canceled jobs [9]. There has been

work on job migration between two sets of servers (one powered by energy from the grid
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and another by wind energy) with the goal of maximizing wind energy usage [41]. Prior

work has also looked at energy capacity planning finding the best ratio of renewables given

a location and workload or given carbon footprint goals [15] [58]. Given cooling accounts

for a large portion of data center energy consumption, work has also been done on use

of cooling technologies in modular data centers [38] and on unified management of data

centers depending upon renewable availability, cooling efficiency, workload fluctuations,

and price of energy [16]. Although the above work provides excellent solutions for data

center energy management, it is not targeted towards a network-level setting, which is the

focus of this paper.

There has been significant prior on network-level energy management as well. Studies

have investigated the use of load balancing using the ‘follow the renewables’ approach to

almost entirely power their data centers using a renewable mix of wind and solar energy

[46] [47]. Prior work has also studied user request routing for greening data centers

[66]. Solutions have been proposed for dispatching requests to data centers in a way that

maximizes renewable energy and stays within a budget [73] . Work has been done to

assign users to data centers based on the three-way mix of latency, price of electricity, and

carbon footprint [27]. Prior work has also looked into site selection for green data centers

using a follow-the-renewables approach [13]. However, none of these studies explicitly

consider a combination of solar energy and open air cooling as part of their renewable

mix. Most of them do not evaluate their solution on as extensive real-world, global trace

as we have done in our paper. These studies also do not explicitly consider the impact

of varying storage capacities on their outcomes. Efficient provisioning of solar panels for

net-zero IDSs based on geographical solar energy availability has been previously studied

[34]. However, this work is for offline panel provisioning, In contrast, we do not focus on

solar panel provisioning, and instead we assume that solar panels are installed at every data

center location. Existing work has also looked at geographical load movement to study the

potential of open air cooling for serving the cooling energy needs of IDSs [33]. However,
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in this paper, we study the combined potential of solar energy and OAC for net-zero IDSs,

considering both server energy and cooling energy while determining data center energy

demand.

5.7 Conclusions

In this paper, we studied the greening potential of solar energy in conjunction with OAC

given their contrasting natures. To that end, we implemented a simple greedy heuristic

and evaluated it on an extensive Akamai load trace. We considered several metrics broadly

analyzing brown energy reduction and cost effectiveness of employing a combination of

solar energy and OAC in IDSs. We found that just by introducing OAC alone to the mix of

0.5nzy panels, brown energy reduction increases from 34% to about 54.9%. With nzy panels,

we can go from 41.5% to about 59.4% savings. We can increase our savings further to

between 60% to 65% by adding load movement within a radius of 5000kms. With batteries

and r=0, we are able to significantly reduce brown energy consumption by 73% (for 0.5nzy

panels) and over 89% (for nzy panels). We could also achieve peak energy reduction of

about 10% to 40%. Therefore the combination of solar energy and OAC enables significant

brown energy savings. Our cost analysis showed that for moderate to higher prices of energy

we can achieve significant cost savings from 9.9% to 60.3%. For low energy prices, we

found that we can still achieve between 22% to 41% savings with panels0.5 and bcap0. For

bcap0.5 panels0.5, we see small savings of between 3% to 8.4%. In other cases with a low

energy price, we incurred a loss. With a higher price of energy, we could observe break-even

periods as low as 6 to 8.7 years. With energy prices on the rise and solar and battery prices

declining, we re-looked at the potential under projected prices. We saw dramatic increases

in cost savings, with savings between 23.9% to 55.9% even for the lower projected energy

price. With r=0 and panels0.5, the number of break-even years reduced significantly by

roughly 45% for bcap0 and by roughly 50% for bcap0.5. Overall, we showed that the

combination of solar energy and OAC has significant greening potential for IDSs.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

This thesis has explored greening of IDSs using OAC and solar energy. We first studied

the optimal solar provisioning of solar panels for net-zero IDSs. We developed and studied

heuristic and optimal algorithms that can help minimize the number of panels provisioned

by taking advantage of solar output in global locations. Using our heuristic and optimal

algorithms, we are able to significantly reduce the number of solar panels needed for serving

load in our datacenters. Given the reduction we see in the number of panels, our findings

are significant for including solar into the design of IDSs.

We then focused on OAC to reduce the energy usage as well as the operational and

capital costs incurred by an IDS for cooling its servers. We developed algorithms to leverage

OAC and to incorporate it into the IDS architecture. We empirically evaluated its efficacy

using extensive traces from Akamai’s global CDN and global weather data from NOAA. We

showed that OAC can help significantly reduce cooling costs, even in the summer months.

In addition, given ASHRAE’s new and less constrained temperature requirements, in some

cases, we can virtually eliminate cooling costs for IDSs. These findings coupled with the

fact cooling energy requirements are almost as high as server energy requirements, have

significant implications for future IDS growth and sustainability.

Finally, we studied the greening potential of solar energy in conjunction with OAC

given their contrasting natures. To that end, we implemented a simple greedy heuristic

and evaluated it on an extensive Akamai load trace. We considered several metrics broadly

analyzing brown energy reduction and cost effectiveness of employing a combination of
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solar energy and OAC in IDSs. Overall, we showed that the combination of solar energy

and OAC has significant greening potential for IDSs.

6.2 Lessons Learned

Our results and analysis have the following implications:

• Provisioning panels at locations with high solar output coupled with load movement

helps in dramatically reducing the number of panels we need to be net-zero. The

number of panels varies inversely with the size of the net-zero time window. Out

of net-zero year, month and week, the smallest number of panels needed are for the

net-zero year scenario. Considering a year is often the industry standard time period

over which buildings must be net-zero [36], the implications for low number of solar

panels for net-zero year is encouraging. To the extent possible, IDSs should provision

more panels at locations with high solar output and employ load shifting to reduce the

number of solar panels needed to be net-zero.

• Our OAC study shows that IDSs with A1 data centers can benefit significantly by

moving load to leverage OAC. Although we move load to leverage OAC, we found

latency does not increase by a large amount for IDS users. With ASHRAE’s more

relaxed limits on temperature and humidity for A2 through A4 data centers, IDSs

can now take advantage of OAC even when operating in hot and humid climates.

Therefore, IDSs should be designed to incorporate OAC based load shifting and

significantly reduce the expense of cooling their data centers.

• Combining solar energy and OAC leads to a significant reduction in brown energy

consumption. Batteries and load shifting help significantly. As a middle ground value,

using a battery capacity of half an average day’s load, and half the number of panels

one needs to be net-zero year yields significant brown energy reduction of about 73%

and is cost effective even with low prices of electricity. There are multiple ways (or
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combinations of parameters) to achieve a similar gain in brown energy reduction. E.g.

bcap0, panels0.5, r=10,000 yields similar savings to panels0.5 bcap0.5 with r=0. The

former can be used for latency-tolerant applications, and the latter can be employed

for more latency-sensitive applications though with an added battery cost. Therefore,

with the suggested solution it is possible to customize parameters values based on

the needs of the application. With the price of renewables and batteries projected to

decrease, and the prices of electricity projected to increase in the future, the proposed

solution to combine solar energy and OAC will become even more attractive. Overall,

IDNs will benefit from using solar energy and OAC in conjunction with each other,

employing batteries and load shifting based on the needs of the applications.

As such, any internet-scale distributed system that is characterized by a global deploy-

ment of servers and replication of services can benefit from the solutions suggested in

this thesis. IDSs that offer latency-tolerant applications e.g. software downloads, security

patches, on-demand video will benefit from combining solar energy and OAC facilitated by

net-metering, storage and load shifting. However, though IDSs that have latency-sensitive

applications like interactive applications, HD video streaming, online gaming, interacting

with banks in real time, online trading might not be able to tolerate load shifting over large

r, they will still benefit from combining solar energy, OAC, along with net-metering and

storage.

6.3 Future Work

There are many avenues for future work some of which we discuss below.

6.3.1 Exploring wind energy

In this thesis, we focused on two sources of renewable energy, namely solar energy and

OAC. As part of future work, I would like to explore how our results change if one of both

of these renewable sources are replaced with wind energy. Wind energy generation is not
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dependent on sunlight and can therefore be available during night-time as well. However,

wind turbines require significant upfront capital investment and real estate for installation.

As a result, wind turbines are not suitable for urban locations where real estate is at a

premium. Therefore, it would be beneficial to quantify gains from using different sources of

renewable energy in the same setting so a comparison can be made regarding their viability.

6.3.2 Data center site selection based on renewable energy availability

In the current setting for this thesis, data center locations were fixed. I would like to

study if we can improve our results if we have the ability to pick data center locations based

on the availability of renewable energy derived from a combination of sources.
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