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ABSTRACT 

ECOLOGY AND CONSERVATION OF IMMATURE SEA TURTLES ACROSS 

MULTIPLE SCALES 

 

 

SEPTEMBER 2019 

 

LUCAS P. GRIFFIN, B.S., COLLEGE OF CHARLESTON 

 

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

 

Directed by: Professor Andy J. Danylchuk 

 

 

Considering many sea turtle populations are a fraction of their historic size and 

anthropogenic threats within the marine environment are increasing, additional data are 

imperative to help mitigate anthropogenic disturbances and to build resilience into sea turtle 

populations. In this dissertation, I present three data chapters focused on immature sea turtle 

ecology and conservation. These chapters evaluate sea turtle ecology and conservation at varying 

scales, ranging from mitigating human-wildlife interactions at the individual level, to coastal 

movements and space use at the ecosystem level, and to large scale climate change impacts at the 

population level. Ultimately, these chapters provide a better understanding of immature turtle 

behavioral and spatial ecology within nearshore waters that are required for the continued 

conservation of turtles and their habitats. 

In Chapter 2, following Chapter 1: General Introduction, I quantified the behavioral 

response of immature green turtles (Chelonia mydas) to disturbance by snorkelers in a popular 

ecotourism venture on Culebra Island, Puerto Rico, United States. Using a standardized 

disturbance stimulus, I evaluated whether turtles have individual-level responses to snorkeler 

disturbance. I found ninety percent of turtles disturbed by snorkelers initiated their fights at 
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distances of 3 m or less. Thus, I recommended snorkelers remain greater than 3 m distance from 

immature turtles. In addition, I found a significant intra-individual repeatability in behavioral 

responses to disturbance, suggesting, ecotourism activities may be disproportionally affecting 

individual turtles depending on their personality type. Finally, I suggest ecotourism activities be 

temporally and spatially stratified and better regulated to reduce missed foraging opportunities 

by immature turtles in important foraging areas.  

In Chapter 3, I used acoustic telemetry to describe movement patterns and connectivity of 

immature green turtles on Culebra and Culebrita Islands, Puerto Rico and, secondly, to determine 

the spatial-temporal drivers of presence and absence of turtles. Network analysis revealed high 

fidelity within bays with little to no connectivity across the islands. Based on these findings, I 

provided evidence that habitat quality and availability in combination with predation risk (innate 

or learned) is likely driving different rates of somatic growth across the island. Using a presence-

absence Bayesian model, results indicated turtles occupied areas of lagoon and seagrass habitats 

at night, and were rarely using areas of macroalgae habitat. The parameter estimates from the 

model enabled me to predict diel movement patterns and space use across the focal bay. While 

habitats within Culebra are still largely intact, coastal embayments are becoming increasingly 

threatened. Given that my research showed that turtles in Culebra exhibit high fidelity within the 

bays, it is imperative to protect these distinct habitats that serve as both shelter and foraging 

areas. 

In Chapter 4, I examined the oceanic, atmospheric, and biological factors that may affect 

the increasing trend of cold-stunned immature Kemp’s ridleys (Lepidochelys kempii) in Cape 

Cod Bay, Massachusetts, United States. Using cold-stunned data collected since the early 1980’s 

and analytical methods, such as machine learning algorithms and Bayesian modeling, I 
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demonstrated higher cold-stunning years occurred when the Gulf of Maine has warmer seas 

surface temperature (SST) in late October through early-November. Hatchling numbers, a proxy 

for population abundance, was not identified as an important factor in predicting the number of 

annual cold-stunning strandings. Further, I predicted the potential annual cold-stunning counts 

out to 2031 based on the increasing Gulf of Maine SSTs and evaluated the population level 

effects of future cold-stunning events in the face of climate change. While cold-stunning at the 

population level may be minimal, I recommend the continued efforts to rehabilitate cold-stunned 

turtles to maintain population resilience for this critically endangered species.  

For the fifth, and final chapter, I synthesized these findings in the context of contributions 

to the greater field of sea turtle conservation and management, propose future research 

directions, and re-visit caveats of these studies. Within this chapter, each data chapter is revisited 

to provide direct conservation applications to help mitigate anthropogenic disturbances. In 

Chapter 2, I suggest alternate ecotourism regulations and advocate for the spatial-temporal 

stratification of green turtle snorkel tours. In Chapter 3, I highlight the differential space use of 

green turtles within coastal habitats and advocate for the importance and protection of these 

habitats to ensure recruitment into adult populations. And finally, in Chapter 4, I advise for the 

recovery and rehabilitation of cold-stunned Kemp’s ridley turtles to provide population resilience 

for this critically endangered species in a changing world. 
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CHAPTER 1 

GENERAL INTRODUCTION 

 

Six of the seven species of sea turtles are classified as either critically endangered, 

endangered, or vulnerable by the International Union for the Conservation of Nature (IUCN 

2016). While conservation efforts, such as harvest and bycatch regulations, have led to 

increasing sea turtle populations trends around the world (Hays et al., 2016, Mazaris et al., 

2017), sea turtle populations are still only a small fraction of their historic size. For example, in 

the North Atlantic, green turtle (Chelonia mydas) populations were reduced as early as the 1800s 

when adult turtles and their eggs were exploited to feed the large slave populations throughout 

the Caribbean (Jackson 2001). Using harvest reports dating back to the 1600s, Jackson (1997) 

conservatively estimated there were 33 to 39 million 50 kg adult green turtles between Grand 

Cayman, Bermuda, Bahamas, Florida Keys, Costa Rica, and Isla Aves during the pre-colonial 

period. Further, using these historic population estimates, Jackson et al. (2001) reported that by 

the late 1990s the Caribbean green turtle populations were only 3-7% of their pre-colonial 

abundance.  

The critically endangered Kemp’s ridley (Lepidochelys kempii), another example of an 

exploited sea turtle species, has made a recovery from the brink of extinction. Using archived 

footage from the primary Kemp’s ridley nesting location located on Rancho Nuevo Beach, 

Tamaulipas, Mexico, Bevan et al. (2016) estimated the population from 1947 and 1985 had 

declined between 99.2 and 99.7%. This dramatic decline was due to both local harvest of eggs 

(Hildebrand 1963, Adams 1966, Chavez et al. 1968, Marquez 1994) and a simultaneous 

expansion of the Gulf of Mexico shrimping industry that caused considerable sea turtle bycatch 
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(Nance 1992). As these threats were curtailed, nesting populations began to increase at an 

exponential rate beginning in the mid 1980s. (NMFS et al. 2011). The Bi-National Recovery 

Plan predicted a growth of 19% per year from 2010-2020, with hopes that the predicted 

population increases would eventually lead to delisting the species by 2024 (NMFS et al. 2011). 

However, unexpectedly, in 2010, the growth of nesting Kemp’s ridleys stopped and remained 

relatively static for unclear reasons (Caillouet et al. 2010, Caillouet et al. 2011, Caillouet et al. 

2014, Crowder et al. 2011, Bevan et al. 2016, Gallaway et al. 2016, Kocmoud et al. 2019).  

Considering sea turtle populations are only a fraction of their historic size, research is 

needed to fill fundamental knowledge gaps in turtle life history, especially in the face of 

persistent and emerging anthropogenic threats. One substantial gap in knowledge is centered 

around immature sea turtle ecology (Crouse et al. 1987, Hamann et al. 2010, Bjorndal et al. 

2011, Rees et al. 2016, Wildermann et al. 2018). While immature turtles represent the most 

abundant life stage in turtle populations (Heppel et al. 1996, Casale and Heppell 2016), little is 

known of their in-water ecology since it is logistically difficult to investigate compared to 

nesting females on land (Wildermann et al. 2018). Wildermann et al. (2018) identified two major 

immature turtle research gaps, 1) the need for studies on population ecology and habitat use / 

behavior and, 2) the need for applied conservation research, with a focus on threats and 

management.  

For my dissertation, I conducted research that evaluated sea turtle ecology and 

conservation at multiple scales, ranging from mitigating human-wildlife interactions at the 

individual level, to coastal movements and space use at the ecosystem level, and to large scale 

climate change impacts at the population level. This research used a number of novel techniques 

to reveal how immature sea turtles respond to disturbance, their environment, and a changing 
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climate. Collectively, my research provides a better understanding of immature turtle behavioral 

and spatial ecology within nearshore waters that are required for the continued conservation of 

turtles and their habitats. 

1.1 Dissertation Format and Co-authorship  

The five chapters in this dissertation contain three body chapters (2, 3, and 4) written in 

manuscript format. These three chapters are at various stages in the publication process in peer-

reviewed journals, with chapters 2 and 4 already published, and chapter 3 in review. Although 

there are several co-authors for each of the four chapters, this dissertation represents my 

research. Below I list here the contributions of all authors by chapter title.  

 

• Chapter 2. Individual-level behavioral responses of immature green turtles to snorkeler 

disturbance.  

 

Griffin, L. P., Brownscombe, J. W., Gagné, T. O., Wilson, A. D. M., Cooke, S. J. & Danylchuk, 

A. J. 2017. Individual-level behavioral responses of immature green turtles to snorkeler 

disturbance. Oecologia, 183, 909–917.  

 

I designed this study, conducted the data collection, data analyses, and manuscript preparation. 

Brownscombe, Gagné, contributed to data collection and manuscript preparation 

Wilson contributed to study design and manuscript preparation. Cooke contributed to manuscript 

preparation. Danylchuk secured funding for the research, and contributed to study design and 

manuscript preparation. 
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• Chapter 3. Movements, connectivity, and space use of immature green turtles within 

coastal habitats, Culebra, Puerto Rico: implications for conservation.  

 

Griffin, L. P., Finn, J.T., Diez, C. & Danylchuk, A.J. In Press. Movements, connectivity, and 

space use of immature green turtles within coastal habitats, Culebra, Puerto Rico: implications 

for conservation. Endangered Species Research. 

 

I designed this study, conducted the data collection, data analyses, and manuscript preparation. 

Finn contributed to data analyses and manuscript preparation. Diez and Danylchuk contributed to 

study design, data collection, and manuscript preparation. Danylchuk secured funding for the 

research. 

 

• Chapter 4. Warming seas increase cold-stunning events for Kemp’s ridley sea turtles in 

the northwest Atlantic. 

 

 Griffin, L. P., Griffin, C. R., Finn, J. T., Prescott, J. T., Faherty, M., Still, B. M. & Danylchuk, 

A. J. 2019. Warming seas increase cold-stunning events for Kemp’s ridley sea turtles in the 

northwest Atlantic. PLoS ONE 14(1): e0211503. https://doi.org/10.1371/journal. 

pone.0211503 

 

I designed this study, conducted data analyses, and manuscript preparation. Griffin, C, and Still 

contributed to study design and manuscript preparation. Finn contributed to data analyses and 

manuscript preparation. Prescott and Faherty contributed to data collection, study design, and 
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manuscript preparation. Danylchuk provided oversight and contributed to manuscript 

preparation. 
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CHAPTER 2 

INDIVIDUAL-LEVEL BEHAVIORAL RESPONSES OF IMMATURE GREENTURTLES TO 

SNORKELER DISTURBANCE 

2.1 Abstract 

Despite many positive benefits of ecotourism, increased human encounters with wildlife may 

have detrimental effects on wild animals. As charismatic megafauna, nesting and foraging sea 

turtles are increasingly the focus of ecotourism activities. The purpose of our study was to 

quantify the behavioral responses of immature green turtles (Chelonia mydas) to disturbance by 

snorkelers, and to investigate whether turtles have individual-level responses to snorkeler 

disturbance. Using a standardized disturbance stimulus in the field, we recorded turtle behaviors 

pre- and post-disturbance by snorkelers. Ninety percent of turtles disturbed by snorkeler 

(n = 192) initiated their flights at distances of ≤3 m. Using principal component analysis, we 

identified two distinct turtle personality types, ‘bold’ and ‘timid’, based upon 145 encounters of 

19 individually identified turtles and five disturbance response variables. There was significant 

intra-individual repeatability in behavioral responses to disturbance, but bolder turtles had more 

behavioral plasticity and less consistent responses than more timid individuals. Bolder 

individuals with reduced evasion responses might be at a higher risk of shark predation, while 

more timid turtles might have greater energetic consequences due to non-lethal predator effects 

and repeated snorkeler disturbance. Over the longer term, a turtle population with a mix of bold 

and timid individuals may promote more resilient populations. We recommend that snorkelers 

maintain >3 m distance from immature green turtles when snorkeling, and that ecotourism 

activities be temporally and spatially stratified. Further, turtle watching guidelines need to be 
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communicated to both tour operators and independent snorkelers to reduce the disturbance of 

turtles. 

2.2 Introduction 

Developing nations, regions, and communities typically cultivate ecotourism in hopes of 

creating environmentally sustainable economic prosperity while supporting wildlife conservation 

(Scheyvens 1999, Ashley and Roe 1998, Brooks et al. 2006, Gallagher and Hammerschlag 2011, 

Fennell 2014). Ecotourism can also generate funding and support for conservation activities and 

create socio-economic incentives to preserve and rehabilitate functioning ecosystems 

(Higginbottom et al. 2001, Cisneros-Montemayor et al. 2013). Despite these potential benefits, 

ecotourism may also increase human encounters with wildlife, causing detrimental effects such 

as avoidance, habituation, attraction, and cryptic responses (e.g., increased stress) (Higginbottom 

et al. 2001, Müllner et al. 2004, Piñeiro et al. 2012). Increased human encounters with wildlife 

may affect short- and long-term animal behaviors (Gabrielsen and Smith 1995, Green and 

Higginbottom 2001, Williams et al. 2006) and physiological responses (Knight and Cole 1995) 

as well as might result in habitat abandonment (Lusseau and Bejder 2007) and reduced 

reproductive success (Bejder 2005, Constantine and Bejder 2008).  

Understanding how individual animals respond to disturbance provides resource 

managers with tools for developing conservation strategies (Conrad et al. 2011) as well as insight 

into ecological and evolutionary processes (Réale et al. 2010, Wolf and Weissing 2012). Yet, 

there can be much variation in behavioral plasticity between individual animals across taxa 

including mammals (Wilson et al. 1994, David et al. 2004, Svartberg et al. 2005, Martin and 

Réale 2008), insects (Bonte et al. 2007, Schuett et al. 2011), birds (Carere el al. 2005, Quinn and 

Cresswell 2005, Dingemanse et al. 2012), fishes (Dingemanse et al. 2007, Biro et al. 2010, Cote 
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et al. 2010, Wilson et al. 2010) and reptiles (López et al. 2005, Highcock and Carter 2014, Kuo 

et al. 2015). Individual animals are often described as ‘bold’ when they demonstrate either high 

levels of exploratory behaviors (e.g., low anti-predator vigilance and short flight initiation 

distances) or short startle response durations following a disturbance (e.g., time duration of 

hiding). For example, Briffa et al. (2008) classified individual hermit crabs (Pagurus 

bernhardus) as ‘bold’ or ‘timid’ based upon the duration of their startle response (i.e., hiding 

within shell) when disturbed. When such behaviors are consistent across a range of situations, or 

through time, they are often referred to as representing animal ‘personality’ (Gosling 2001, Réale 

et al. 2007) or behavioral syndromes (Sih et al. 2004). Examining intraspecific behavior 

differences within a population is important for recognizing the possible presence of particularly 

sensitive individuals and developing comprehensive management plans. Nevertheless, few 

studies have incorporated how individual-level responses can be incorporated into management 

plans to mediate human effects.  

The long-lived, globally threatened green turtle (Chelonia mydas) frequently inhabits 

coastal marine areas (Bolten 2003, Seminoff et al. 2015). Following their omnivorous oceanic 

phase, juvenile green turtles typically recruit to neritic (less than 200 m water depth) foraging 

grounds and shift to primarily herbivorous benthic feeding (Bolten 2003, Heppell et al. 2003, 

Jones and Seminoff 2013). Turtles use these areas as developmental habitats for decades until 

reaching sexual maturity (Bjorndal et al. 2000), then migrate hundreds to thousands of 

kilometers to natal areas to forage, mate and nest (Bowen and Karl 2007, Arthur et al. 2008). Sea 

turtles are relatively docile and easily located while nesting on beaches (Campbell 1999) and 

while foraging within neritic areas (Landry and Taggart 2010). As charismatic megafauna, 

ecotourism activities to observe sea turtle nesting and foraging are increasing, and it is argued 
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that these encounters benefit conservation by raising awareness and appreciation for sea turtles 

(Tisdell and Wilson 2002, Ballantyne et al. 2011). Yet, others suggest that such tourist activities 

may disturb turtles, potentially reducing their survivorship and fitness (Landry and Taggart 2010, 

Hayes et al. 2016).  

There are several reports of tourist activities adversely affecting green turtle behavior. 

Jacobson and Figueroa-Lopez (1994) reported that tourist activities (i.e., flashlights, flash 

cameras, physical blocking, touching) disturbed nesting green turtles on Costa Rican beaches, 

decreasing nesting success. Balazs et al. (1987) suggested that some green turtles in Hawaii 

shifted their feeding to evening periods in areas with high human activity during the day. In 

Hawaii, Meadows (2004) observed green turtles that were chased and touched by snorkelers 

exhibited changes in foraging activities and increased energy expenditures. Similarly, the 

presence of snorkel (Slater 2014, Kostas 2015) and SCUBA (Hayes et al. 2016) activity altered 

sea turtle behaviors when approached. Taquet et al. (2006) and Landry and Taggart (2010) 

cautioned against high ecotourism activities in neritic zones where sea turtles congregate. With 

increasing ecotourism worldwide (TIES 2006), there is a need to better understand the effects of 

ecotourism activities on sea turtles.  

The primary goal of this study was to quantify the response of free-ranging wild 

immature green turtles to disturbance by snorkelers in the field using a standardized disturbance 

stimulus meant to mimic a tourist diving down to approach a turtle. The second aim of this study 

was to determine whether turtles exhibit consistent individual-level responses using their 

behavioral responses as a measure of boldness and by defining personality as repeatable 

individual differences in a single context that are consistent over time. These data may offer a 

measure of the sensitivity of immature green turtles to disturbance by tourists, and provide the 
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foundation for management guidelines while simultaneously providing insight into ecological 

processes. 

2.3 Methods 

2.3.1 Study site 

We conducted the study in Tamarindo Bay (18°19’04” N 65°19’02” W), located within 

the Luis Peña Channel Natural Reserve on the western side of Culebra Island, Puerto Rico. 

Tamarindo Bay is a shallow bay (1-10 m in depth) with expansive turtle grass (Thalassia 

testudinum) beds and is subject to high levels of ecotourism. Upwards of 30 000 tourists visit the 

bay each year, and four tour operators offer guided kayak and snorkel tours to view green turtles 

as they forage (Diego Morell Parea, Culebra Adventures, pers. comm. 2015). “High” and “low” 

tourist seasons are difficult to determine on Culebra Island, especially in regards to snorkel 

activity. While Culebra Island attracts non-Puerto Rico mainland residents during the winters, 

the summers are primarily Puerto Rico mainland residents on vacation. Based on input from 

local snorkel guides (Diego Morell Parea, Culebra Adventures, pers. comm. 2015) it is also 

difficult to parse out tourist seasons because local Puerto Rico tourists independently swim with 

turtles but engage less with local tour operators as non-residents would. 

Typically, all green turtles observed are immature (estimated straight-line carapace length 

ranged between 40 and 60 cm); adults are rarely reported (Carlos Diez, Department of Natural 

and Environmental Resources, Commonwealth of Puerto Rico, pers. comm. 2014). Collectively, 

tour companies guide an average of 65 kayak / snorkel clients per day (Diego Morell Parea, 

Culebra Adventures, pers. comm. 2015), and we observed up to 30 tourists viewing a single 

turtle during a snorkel tour. In addition to tour groups, tourists often snorkel independently to 
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search for foraging green turtles. A main road leading from town easily accesses this beach and 

provides numerous public-parking options for high tourist days. There are no tourist 

accommodations at the beach, and beach access is never restricted. 

2.3.2 Encounter and disturbance 

To locate turtles, four snorkelers swam four 300 m-long transects parallel to the beach at 

approximately 7 m/min. Snorkelers were spaced evenly at 10, 40, 70, and 100 m from shore and 

snorkelers were rotated randomly throughout the study to avoid individual biases. Transects were 

swum twice a day between 0700 - 1000 hrs and 1600 - 1800 hrs, four days a week, from 25-

June-2014 – 27-July-2014. Transects were performed twice a day to investigate if disturbance 

responses differed across diel phases. To limit tourist encounters, which could interfere with data 

collection, transect times were chosen in the morning and late afternoon. Upon encountering a 

green turtle, the observer maintained a 7-10 m distance from the turtle to record a) time, b) if 

turtle was alone or with one or more additional turtles within a 5 m radius (Y/N), c) type of 

movement (sedentary/mobile), and d) foraging rate (number of bites min-1 during a 1-min 

observation period). All observers had undergone in-water distance estimation practices for 

accuracy, precision, and standardization purposes. 

After the initial pre-disturbance observation, we applied a standardized stimulus meant to 

mimic a tourist diving down to approach a turtle. This disturbance involved the observer diving 

to the seafloor approximately 4 m from the turtle and approaching the turtle from the right 

posterior. A GoPro HERO 3+ Black Edition camera (GoPro, Inc. San Mateo, CA, USA) was 

used to document the disturbance event and obtain an image of the right lateral facial scale 

pattern on the head for later individual identification (Schofield et al. 2008). Observers, without a 

recognition program, processed images of right lateral facial scale patterns to identify individual 
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turtles. Turtles were monitored for two minutes or until the observer had moved with the turtle a 

linear distance of 50 m (visually estimated), as the turtle moved away the observer recorded post-

disturbance behaviors. We selected our disturbance behavior metrics based upon reported natural 

responses of sea turtles and other animals to predators and predator stimuli. Heithaus (2013) 

reported anti-predator behaviors by sea turtles when they encountered sharks. We are aware of 

no studies of flight-initiation-distance (FID) in sea turtles; however, Wang et al. (2010) and 

Bostwick et al. (2014) documented a flight response when a shark stimulus was introduced to 

captive-bred sea turtles. Yet, fleeing from a predator (FID) is a cost-benefit action. If an animal 

flees too soon, foraging and mating opportunities may be lost along with unnecessary energy 

expenditure. If an animal flees too late or not all, mortality may occur (Ydenberg and Dill 1986, 

Lima and Dill 1990). Consequently, we chose metrics that we associated with an animal’s 

tendency to flee from a predator. Although sea turtles are not often categorized as social animals, 

grouping behavior or “foraging herds” has been documented for green turtles (Bresette et al. 

2010, Heithaus 2013), which may potentially reduce predation risk as reported for other taxa 

(Pulliam and Caraco 1984). 

FID (m) in 0.5 m increments was visually estimated and recorded as the distance when 

the turtle began to move away from the observer’s approach. An abrupt-burst-response (Y/N) 

was noted if a turtle exhibited a sudden and severe startled response. The distance fled (m) was 

visually estimated as the linear distance the turtle swam away up to a maximum of 50 m. Latency 

to forage (sec) was measured as the time between the disturbance event and when the turtle 

resumed foraging up to a maximum of 120 sec. Flight to nearest neighbor (Y/N) was noted if the 

turtle ceased fleeing within a visually estimated 5 m radius of another individual or group of 
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turtles following the disturbance. Breached the surface to breathe (Y/N) was noted if the turtle 

went to the surface to breath following the disturbance. 

2.3.3 Statistical analyses 

All statistical analyses were conducted using R 3.1.3 (R Development Core Team 2015). 

Quantiles (0.90) and confidence intervals (0.95) were calculated for FID. The confidence 

intervals were calculated using the adjusted bootstrap method (N = 1000) with replacement. To 

show how traits vary with one another and to avoid autocorrelation issues associated with 

modeling individual response variables alone we performed principal component analysis. We 

used the prcomp function to reduce five behavior response variables for each individually-

identified turtle (FID, distance fled, latency to forage, abrupt burst response, flight to a nearest 

neighbor) into one principal component (PC1). Breached the surface to breath response variable 

was excluded because we could not determine when a turtle had last surfaced to breath prior to 

disturbance. The PC1 was based on the correlation matrix of the five disturbance responses. The 

p-values were calculated from randomization tests, and variables with weights > 0.5 were 

considered major contributors to explaining overall variability in the model. The total collection 

of PC1 scores was repeatedly regressed to examine linear relationships with four pre-disturbance 

variables, including: session (AM/PM), if the turtle was in a group prior to disturbance, 

movement type, and foraging rate.  

Using the PC1 scores of each encounter and individual identities as the random effect, we 

assessed temporal stability of post disturbance behavior tendencies of 19 identified individual 

turtles from 145 encounters. Due to the approximate Gaussian distribution of the PC1 scores, we 

fitted a linear mixed-effects model (LMM) to the distribution with individual turtle as the 

random effect to estimate repeatability (rptR package in R, Nakagawa and Schielzeth 2010). 
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Repeatability (r) was defined by the proportion of total variation in a behavior trait within and 

between individuals, and calculated as r = σα 2/(σα 2 +σε 2) where σα 2
 was the between-group 

variance and σε2
 was the within-group variance (Bell et al. 2009, Nakagawa and Schielzeth 

2010). If an individual’s behavior is consistent across all repeated measurements, then r = 1. 

Conversely, if the behavior of an individual is random across all measurements, then r = 0 (Sokal 

and Rohlf 1981, Lessells and Boag 1987). Variance components in the LMM were estimated 

using restricted maximum likelihood (REML), and 95% confidence intervals and statistical 

significance (p-values) were estimated using a parametric bootstrap method (N = 1000) with 

replacement.  

PC1 scores were averaged for individual turtles and also grouped into two personality 

types - timid (negative mean PC1 scores) or bold (positive mean PC1 scores). To examine if 

timid and bold turtles exhibited similar degrees of variation, we calculated from the PC1 scores, 

the mean standard deviation for each individual and conducted a one-way ANOVA with 

residuals weighted by number of encounters to compare the effect of personality type on the 

amount of variation in an individual turtle.  

2.4 Results 

2.4.1 Turtle encounters 

We had 306 encounters with green turtles during our study, with 226 encounters 

occurring during morning surveys and 80 during late afternoon surveys. Prior to the disturbance, 

78% of the turtle encounters were described as sedentary (n = 306) and 47% of turtle encounters 

were described as group formation (n = 306). Mean foraging rate prior to disturbance was 25.1 

bites/min (± 9.86 bites/min SD, n = 254). Following the disturbance, 12% of turtles responded 
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with abrupt burst swimming (n = 192, representing total number of disturbance events when this 

behavior was recorded), 66% of turtles breached the surface to breathe (n = 256), and 13% of 

turtles fled to nearest neighbor post-disturbance (n = 237). FID averaged 1.7 m (± 1.02 m SD, n 

= 192), and turtles fled an average of 24.2 m (± 18.84 m SD, n = 253), while latency to forage 

averaged 61.9 sec (± 43.74 s SD, n = 242). Using the FID observations (n = 192), we 

bootstrapped with replacement and estimated 1.6 – 1.8 m as the 95% confidence interval of the 

mean minimum approaching distance of the population. Ninety percent of turtles disturbed by a 

snorkeler initiated their flights at distances of < 3 m (Fig. 1). 

2.4.2 Individual-level behavioral response to disturbance 

Using 145 turtle encounters with complete records, we were able to use video footage to 

identify 19 individual turtles from their unique facial scale patterns. A turtle encounter was 

considered a complete record when the individual turtle was identifiable (i.e., able to obtain an 

image of the right lateral facial scale pattern on the head) and when the observer was able to 

record all five disturbance response variables (FID, distance fled, latency to forage, abrupt burst 

response, and flight to nearest neighbor) during the encounter. Encounters of individual turtles 

ranged from 3 to 14 encounters per turtle (𝑋= 7.6, ± 2.93 SD). The principal component analysis 

reduced the five disturbance response variables into one significant component and explained 

41.4 % of the variance (p = 0.00). Structure correlations were all positively correlated and were 

highest for distance fled (factor loading = 0.86) and latency to forage (factor loading = 0.86), 

followed by FID (factor loading = 0.54), abrupt burst response (factor loading = 0.48), and flight 

to nearest neighbor (factor loading = 0.27). PC1 (Fig. 2) indicated a gradient of personality types 

(i.e., timid and bold) between individuals in response to disturbance. Negative PC1 scores were 

attributed to levels of “lower boldness” and positive PC1 scores were attributed to levels of 



16 

“higher boldness”. Overall, 53% (n = 10) of the identified turtles were considered bold (i.e., 

levels of higher boldness), showing short flight initiation distance, lower frequency to exhibit an 

abrupt burst response, short distances fled, short latency to forage, and lower frequency to take 

flight to nearest neighbor. Conversely, 47% (n = 9) of the identified turtles were considered timid 

(i.e., levels of lower boldness), showing the opposite behavior responses. There were no 

significant effects on PC1 scores by variables measured prior to disturbance (time of day, if the 

turtle was in a group, movement type, and foraging rate) (Table 1). 

2.4.3 Repeatability measures 

Using the 145 PC1 scores and individual turtle as the random effect, we calculated an 

overall significant repeatability value (r = 0.132, 95% CI: 0.001-0.253, p = 0.007), indicating 

repeatable tendencies exist at the individual level when responding to a snorkeler disturbance 

(Fig. 3). However, the repeatability value itself (r = 0.132) was low, indicating that while 

individuals display repeatable tendencies (p = 0.007), behavioral plasticity (variation) exists to 

some degree within individuals when responding to a snorkeler disturbance. 

The two personality types, timid and bold, had a significant effect on the amount of 

variation in PC1 scores for an individual turtle (F (1, 17), = 7.01, p = 0.02). Individual turtles that 

were timid had a lower mean standard deviation score (𝑋= 1.14, ± 0.19 SD) than bold individual 

turtles (𝑋= 1.45, ± 0.41 SD) (Fig. 4). 

2.5 Discussion 

Viable sea turtle ecotourism operations depend on the opportunity for tourists to easily 

observe sea turtles; however, frequent disturbance of turtles by snorkelers has the potential to 

shift diurnal patterns in foraging behaviors as well as habitat use (Taquet et al. 2006, Landry and 
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Taggart 2010). Our study suggests that immature green turtles in the Luis Peña Channel Natural 

Reserve displayed consistent individual-level behavioral responses to tourist disturbances. 

Specifically, we were able to classify individual immature green turtles on a continuum from 

timid to bold based on their responses to snorkeler disturbance. The significant relationships 

between mean standard deviation scores and behavioral type assigned to individual turtles 

suggests that timid turtles had more consistent disturbance responses compared to bold turtles 

that displayed higher variability in disturbance responses across encounters. Further, the non-

significant relationships between the PC1 scores and the variables measured prior to disturbance 

also suggest that extrinsic factors (i.e., time of day, if the turtle was in a group, movement type, 

and foraging rate) had no influence on disturbance response types.  

2.5.1 Evidence of personality in immature green turtles 

Defining personality as repeatable individual differences in a single context that are 

consistent over time (Réale et al. 2007) and using turtles’ behavioral responses to disturbance as 

a measure of boldness, this study was able to demonstrate turtles exhibit consistent individual-

level responses or personality. While repeatability in turtle behaviors was overall statistically 

significant within the context of disturbance response, the repeatability value was low which 

implies plasticity existed to some degree in how individual immature green turtles react to 

snorkelers. As Nakagawa and Schielzeth (2010) suggest, a repeatability value (r) may be low for 

two reasons (1) high within-individual variation or (2) low between-individual variation. For 

example, between-individual differences may be low if turtles do not act drastically different 

from one another in general, which might be true if a spectrum or continuum of responses exists 

as we suggest. Deriving a low repeatability value, as this study has, is likely due to a 

combination of the two. In addition, since individual turtles did not always respond in the same 
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way to disturbance, this might reflect small individual differences in cue presentation (e.g., 

approach angle relative to the sun, swimming behavior of snorkeler), weather-related factors 

(e.g., more or less light/turbidity at time of disturbance), or perhaps the turtles’ state prior to 

disturbance (i.e., length of time foraging or time since last breath, level of satiation). A potential 

confound of this study was the inability to assess energetic states through time which could 

influence turtles’ perceived value of resources (i.e., boldness), a turtle’s energetic state likely 

varies at a scale of weeks to months (Heithaus et al. 2007) which was similar to the time frame as 

our study. 

2.5.2 Ecological implications 

Our results suggest that individual-level behavior responses of immature green turtles 

may be attributed to differences in personality types. This is especially pertinent considering 

individual personality may drive an individual’s sensitivity to non-consumptive disturbances. 

Ultimately, variation in the behaviors of turtles and other animals could influence both 

individual- and population-level processes as reported by Bejder et al. (2006) for dolphins. For 

example, bold turtles may adapt better over short- and long- term periods than timid turtles to 

non-life threatening tourist-based disturbances. In contrast, a timid turtle might have a greater 

long-term energetic consequence from repeated snorkeler disturbances as a result of reduced 

foraging opportunities and increased stress. At the population-level, snorkeler disturbance could 

shift the distribution of more sensitive turtles.  

Sharks, a predator of sea turtles (Heithaus et al. 2007), could also potentially influence 

personality-dependent selection on immature green turtles through direct predation or non-lethal 

effects (“trait-mediated” or “risk effects”) (Preisser et al. 2005, Heithaus et al. 2008, Creel and 

Christianson 2008, Creel 2011). While shark predation may target risk prone bold-individuals 
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who exhibit reduced antipredator behaviors (Geffroy et al. 2015), non-lethal effects motivated by 

shark presence may also affect turtle populations. Predator presence may require high energetic 

investment by turtles and missed foraging opportunities, especially for turtles in the best 

conditional state or with timid personalities that forego optimal but risky habitats (Werner and 

Peacor 2003, Preisser et al. 2005, Heithaus et al. 2007). In addition, persistent tourism 

disturbance may favor the selection of bold turtles, which could reduce antipredator behaviors 

and increase vulnerability to predators (Geffroy et al. 2015). Over the longer term, a turtle 

population with a mix of bold and timid individuals may promote more resilient populations as 

anthropogenic and predation pressures vary over time (Schindeler et al. 2010). 

2.5.3 Conclusion 

Considering that 90% of turtles in our study initiated flight response at < 3 m, we 

recommend that snorkelers maintain > 3 m distance from immature green turtles when 

snorkeling. However, turtles at other sites may be less habituated to snorkelers than turtles at our 

study site, potentially requiring greater minimum approach distances. We also concur with the 

turtle watching guidelines proposed by Landry and Taggart (2010) that ecotourism activities be 

temporally and spatially stratified to reduce the effects of snorkelers on turtles. We encourage 

future studies to examine responses across seasons, which may account for any seasonal changes 

in turtle behavior or aggregation strategies and snorkel tourism disturbances. In addition, we 

were unable to account for any pre-existing conditioning some turtles may have to snorkeler 

disturbance in our study area. Thus, we further encourage additional research on the effects of 

snorkelers on green turtles across a wider diversity of sites with varying levels of snorkeler 

activity, including reference sites where green turtles are not affected by snorkelers. Ideally, 

future studies should also determine if green turtles become habituated to snorkelers and if adult 
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green turtles react differently to snorkelers than immature green turtles. In addition, measuring 

repeatability across multiple contexts, not just behavioral responses to disturbance, would 

strengthen the claim green turtles exhibit personality and provide further insight into the 

relationship between tourism, turtle personality, and predatory shark interactions. We suggest co-

management between local government authorities, tour operators, and other stakeholder groups 

in the area to develop, communicate, and implement turtle watching guidelines. Effective 

management plans will help to ensure that economically viable sea turtle ecotourism operations 

persist. 
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Table 1  (a) One-way analysis of variance examining the effects of session (AM/PM), if the 

turtle was in a group (Y/N), and movement type (sedentary/mobile) on the PC1 scores, 

representing turtle behavioral responses to snorkeler disturbance, and (b) linear regression of the 

PC1 scores with foraging rate (bites/min) as a predictor. 

 

a 

Model df SS MS F p 

Session (AM/PM) 1 1.05 1.051 0.506 0.478 

Residuals 143 296.98 2.077   
Total 144 298.03 3.128     

Group (Y/N) 1 7.17 7.17 3.525 0.0625 

Residuals 143 290.86 2.034   
Total 144 298.03       

Movement Type 

(Sed./Mob.) 1 0.56 0.5564 0.267 0.606 

Residuals 143 297.47 2.0802   
Total 144 298.03    

 

b 

Response variable Parameter Estimate SE t-value p-value 

PC1 Scores Intercept 0.45 0.37 1.17 0.25 

 Forage rate -0.02 0.01 -1.23 0.22 

 



22 

 
 

Fig. 1: Minimum green turtle flight initiation distance (FID) (n = 192 observations) expressed as 

cumulative proportion of observations, showing that 90% of flight initiations occurred at < 3 m. 
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Fig. 2: Individual kernel densities (normalized) of PC1 scores of turtle disturbance responses 

(flight initiation distance, distance fled, latency to forage, exhibit abrupt burst response, and take 

flight to a nearest neighbor) of 19 turtles with timid turtles (n = 9) associated with negative 

means and bold turtles (n = 10) associated with positive means. 
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Fig. 3: Individual kernel densities (non-normalized) of PC1 scores of turtle disturbance responses 

(flight initiation distance, distance fled, latency to forage, exhibit abrupt burst response, and take 

flight to a nearest neighbor) of 19 turtles. Each kernel represents an individual turtle and the 

shape of kernels represents a measure of behavioral plasticity with wide, flat kernels associated 

with highly variable behavioral responses and narrower, peaked kernels associated with less 

variable responses of individual turtles to disturbance by snorkelers. Timid turtles (n = 9) had 

lower variable responses compared to bold turtles (n = 10). 
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Fig. 4: Box plots of mean standard deviations of PC1 scores of disturbance responses of 19 

turtles classified as timid (n = 9) or bold (n = 10), showing more consistent behavioral responses 

by timid turtles compared to bold turtles. 
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CHAPTER 3 

MOVEMENTS, CONNECTIVITY, AND SPACE USE OF IMMATURE GREEN TURTLES 

WITHIN COASTAL HABITATS, CULEBRA, PUERTO RICO: IMPLICATIONS FOR 

CONSERVATION 

3.1 Abstract 

Juvenile green turtles occupy coastal marine habitats important for their ontogeny, however the 

details of their movement, connectivity, and space use in these developmental habitats are still 

poorly understood. Given that these areas are often threatened by human disturbance, additional 

information on green turtle spatial ecology is needed to meet conservation endpoints for this 

endangered species. For this study, we used fixed passive acoustic telemetry to 1) describe 

movement patterns and connectivity of immature green turtles within, outside, and across two 

bays, Manglar and Tortuga Bays, on Culebra and Culebrita Islands, Puerto Rico and 2) 

determine spatial-temporal drivers of presence and absence of turtles within Manglar Bay. Using 

network analysis to quantify their movement patterns, turtles in our study showed differential 

space use with little to no connectivity across the two bays. In addition, turtles exhibited high site 

fidelity with larger turtles leaving on brief trips. We applied a presence-absence Bayesian 

binomial model, on a subset of nine turtles at an hourly temporal scale, and showed that turtles 

within Manglar Bay occupied areas of lagoon and seagrass habitats at night, and were rarely 

using areas of macroalgae habitat. The parameter estimates from the model enabled us to predict 

the space use of turtles across Manglar Bay and the hourly probability distributions highlighted 

predictive diel movement patterns across the bay. Considering the importance of juvenile and 

subadult life-stages for population viability, we recommend continued protection of these critical 

juvenile turtle developmental habitats to ensure recruitment into the adult life stage.  
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3.2 Introduction 

 

The globally threatened green turtle (Chelonia mydas) relies on shallow neritic foraging 

grounds for up to multiple decades until reaching or nearing sexual maturity (Bjorndal et al. 

2000, Bolten 2003, Parker et al. 2011). Here, within these developmental areas, turtles will 

switch from their omnivorous oceanic foraging strategy to foraging largely on herbivorous 

seagrass and algae (Bjorndal et al. 1997, Heppell et al. 2002, Bolten 2003, Jones and Seminoff 

2013). They are believed to occupy relatively small and specific home ranges but range size can 

vary due to habitat complexity (Mendonca 1983, Ogden et al. 1983, Brill et al. 1995, Whiting 

and Miller 1998, Seminoff et al. 2003, Makowski et al. 2006, Taquet et al. 2006, Hazel et al. 

2009, Blumenthal et al. 2010, Lamont et al. 2015). For example, the home range of immature 

green turtles (50.9 – 82.5 cm straight carapace length, SCL) were > 16 km2 in the Gulf of 

California where food resources are widely dispersed (Seminoff et al. 2002). Conversely, Brill et 

al. (1995) noted an average home range of < 3 km2 for immature green turtles (< 65 cm carapace 

length) in Kaneohe Bay, Hawaii where both food resources and shelter were tightly clustered 

together. Makowski et al. (2006) reported 3 km2 average home ranges for immature green turtles 

(27.9 – 48.1 cm SCL) in Florida with high use areas ranging between 0.18 and 1.17 km2. Further, 

the size of an immature turtle may affect their home range size with larger immature turtles using 

deeper open waters and smaller immature turtles using shallow protected bays (Seminoff et al. 

2003, Koch et al. 2007, Bresette et al. 2010). Overall, these studies suggest that immature green 

turtles inhabit well-defined habitats with high variability between home range sizes due to 

ecological differences in food and shelter resource availabilities, and to differences in body size 

(Makowski et al. 2006, Lamont et al. 2015). 

Considering their complex life history, anthropogenic stressors may impact sea turtle 



28 

populations disproportionately across life-stages (Hamann et al. 2010, Wallace et al. 2010). Sea 

turtles exhibit high levels of hatchling mortality and late age at sexual maturity (ASM), thus high 

survival rates are critical for larger juveniles and adults if populations are to persist (Congdon et 

al. 1997). While natural sea turtle mortality decreases with body size, there is an elevated 

consequence for a population when larger individuals are removed just prior to reaching maturity 

(Heppell et al. 2003). Within a stable stage distribution population (i.e., proportion of individuals 

remain constant across both age class and time), large immature sea turtles will account for the 

majority of the population, making their survivorship critical for population growth or decline 

(Heppell 1998, Heppell et al. 2000). Consequently, protecting developmental habitats and 

helping ensure recruitment of immature turtles to sexual maturity is essential for maintaining 

population viability.  

In Puerto Rico, the Culebra Archipelago provides important developmental feeding 

habitats for immature green turtles (Collazo et al. 1992). Recognizing the area’s importance, the 

National Marine Fisheries Service designated Culebra as Resource Category I critical habitat for 

the green turtle in 1998 (63 FR 46693, September 2, 1998), and federal management and 

conservation measures are required within all coastal habitats within 3 nm (5.6 km) from 

Culebra. Green turtles have been most intensively studied in two bays around Culebra, on the 

eastern most side of Culebra in Manglar Bay and the on the small island of Culebrita (east of 

Culebra) in Tortuga Bay (Collazo et al. 1992, Velez-Zuazo et al. 2010, Patrício et al. 2011, 

Patrício et al. 2014, Patrício et al. 2016, Patrício et al. 2017). Although these two bays are in 

close proximity, there are relatively few records of green turtles moving between the bays based 

on a mark-recapture study with sampling occurring approximately twice during a given year 

(Patrício et al. 2011). Immature green turtles spend decades in these near-shore developmental 
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habitats. Because these habitats are increasingly affected by anthropogenic disturbances, more 

information is needed on turtle movements, connectivity, and space use within them. 

Considering that the habitat composition and structure in these two bays are different, 

understanding turtle movement and connectivity in relation to the bays may provide additional 

insights on immature green turtle ecology. The purpose of this study was to 1) evaluate 

movement patterns and connectivity of immature green turtles within, outside, and across two 

bays: Manglar Bay on Culebra Island, and Tortuga Bay, on Culebrita Island, Puerto Rico, 2) 

assess spatial-temporal drivers of presence and absences of turtles within Manglar Bay.  

3.3 Methods 

3.3.1 Turtle tagging study sites 

The two study sites where turtles were tagged, Manglar Bay, Culebra Island (18° 19’ 01’’ N 

and 65° 17’ 24’’ W), and Tortuga Bay, Culebrita Island, are 30 km east from the main island of 

Puerto Rico. Both sites are shallow, ranging from 1-15 m deep but the two bays differ in 

structure and habitat types (Fig. 5). Manglar Bay has deep lagoons (5 – 15 m) surrounded by 

mangroves on the perimeter, shallow seagrass and macroalgal flats (0.5 – 2 m) intermixed, and a 

linear reef outside the bay. Tortuga Bay has more uniform depth across a deep basin with a 

shallow sandy perimeter. The bay consists primarily of colonized hard bottom, sand with 

scattered seagrass and coral (Diez et al. 2010). A 2 km wide and 20 m deep channel, Culebrita 

Strait, separates these two areas.  

3.3.2 Turtle capture and tagging 

Turtles were captured following procedures used by Diez et al. (2010) in collaboration 

with the sea turtle surveys conducted annually by the Departamento de Recursos Naturales y 
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Ambientales de Puerto Rico and U.S. Fish and Wildlife Service. Turtles were captured using a 

200 m x 5 m seine net (#18 nylon twine, 25 cm stretch mesh) deployed in shallow water areas no 

deeper than 5 m. With the net deployed, a boat carefully cruised the inner turtle foraging area of 

the bay, producing a disturbance that caused turtles to move towards the net. In smaller, 

shallower areas, swimmers snorkeled inside the capture area and chased turtles towards the net. 

A minimum of six swimmers snorkeled along the net, retrieving all entangled turtles. Each turtle 

was brought aboard the boat to measure mass, SCL (using Haglof 65 and 95 cm tree calipers), 

and have both front flippers tagged with two external tags (inconel and/or plastic tag). Digital 

pictures of the carapace and plastron were taken for each individual turtle and any abnormalities 

noted, such as fibropapillomatosis tumors. 

Turtles were tagged with coded ultrasonic transmitters (Vemco V16-1L transmitters, 16 

mm diameter, 54 mm length; 8.1 g in water; 60-180 s ping interval; 10 yr battery life) between 

March 2013 and March 2014.. Adapted from Fujisaki et al. (2012), transmitters were attached to 

right side caudal marginal scutes on the dorsal surface. To prepare the location, coarse sand 

paper (400 grit) was used to remove epibionts from the carapace surface and then wiped with 

isopropyl alcohol (70%) and dried and finally followed by application of acrylic paint. The 

transmitter was attached to the carapace by drilling two holes (8 mm) into the marginal scutes 

and then secured with stainless steel wire cable (cable strength, 27 kg) and embedded into a base 

of West Marine epoxy; with marine epoxy applied on top of the transmitter to cover and 

streamline it. Positioning was designed to minimize the risk of tag damage or loss by collisions 

with coral and to reduce hydrodynamic interference. Additionally, positioning ensured that the 

transmitter was submerged at all times, even when turtles surface. 
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3.3.3 Fixed passive receiver array 

Movement patterns of tagged green turtles were monitored using a fixed passive acoustic 

receiver array (VR2W-69kHz receivers, Vemco Inc., Halifax, NS) comprised of 59 receivers. 

Individual receivers were secured to rebar (1 m) and anchored into a concrete block (23 kg). 

Receivers were strategically placed within bays, on the perimeter of bays, and around Culebra 

island to maximize the detections of animal movements. The fixed passive receiver array was 

originally developed to monitor the movements of multiple species (Finn et al. 2014, 

Brownscombe et al. 2019); thus, receivers were placed in a wide range of habitats ranging from 

shallow reef flats (< 3 m), enclosed embayments (< 15 m), and open water reef systems (< 45 m) 

(Fig. 5 and Fig. 6). Approximately, depths for receivers ranged from 1-45 m. Seven receivers 

were deployed in Manglar Bay, 25 receivers were positioned as a Vemco Positioning System 

(VPS) on the perimeter of Manglar Bay, two at Tortuga Bay, two in the channel between 

Manglar Bay and Tortuga Bay (Culebrita Strait), and 23 around Culebra island’s perimeter (Fig. 

6).   

The VPS, a fine scale positioning system that enables the trilateration of detection data 

into positioning estimates, was designed for a shallow water marine fish (see Brownscombe et al. 

2019) and did not generate ecologically relevant positioning data for green turtles in this study. 

However, employing anchored sync tags within the VPS originally deployed to assist fine scale 

positioning estimates of detections, we used the sync tag detections to generate multiple linear 

regressions (zero inflated binomial) to understand detection probabilities across distance. 

Although dependent on environmental conditions (e.g., wind, temperature, diel phase), our 

regressions, based on optimal environmental conditions, indicated our receivers roughly had a 

detection radius of 80 m at 50% detection efficiency. Detection probabilities were calculated for 
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receivers (approximately 1-8 m depth) within the shallow VPS only and thus, were likely higher 

in deeper water.  

3.3.4 Data processing  

Detection data was exported from a VUE database (Vemco Inc., Halifax, NS) and 

analyzed in the R statistical environment (R Development Core Team 2018). Data was corrected 

for receiver clock drift, false detections created by simultaneous detection collisions, and for 

ricochet (multipath) detections or “echoes” created by complex bathymetry (Kessel et al. 2015). 

The first seven days of each transmitter detection log was removed to avoid potential tagging 

effects. Each detection log was examined with abacus plots, showing detections at each station 

across time, to determine if the transmitter fell off within the array which would result in many 

false detections for long periods of time. False detections within a detection log were identified 

when there were many consecutive detections on an individual receiver or on multiple closely 

placed receivers (if detection coverages overlapped). Detection logs were conservatively filtered 

accordingly for this potential issue. 

3.3.5 Network analysis  

Based in graph theory, network analysis is a valuable technique to examine acoustic 

telemetry movement data and to explore underlying ecological processes (Jacoby et al. 2012, 

Jacoby et al. 2016). For each deployed transmitter and their respective spatial network, we 

calculated detection number, days at liberty (defined here as the period between date of release 

and the date of the last detection, excluding the first seven days), residency index, station count, 

and number of paths. Data are reported as mean ± SD throughout, unless stated otherwise. 

Residency index was calculated by dividing the number of days detected by days at liberty 
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within the study area (Reubens et al. 2013). As a VPS generates high levels of simultaneous 

detections, due to its design to trilaterate approximate true positions, we decided to aggregate 

detections from the 25 VPS receivers based on general location (i.e., either associated with 

lagoon or reef type habitats) into either ‘VPS Lagoon’ receivers (n = 17) and ‘VPS Reef’ (n = 8). 

Specifically, station number was the number of stations an individual was detected on (i.e., 

receivers, including the VPS as VPS Lagoon and VPS Reef receiver aggregates) and a single 

path was defined as any unique node to node (station to station) movement. In addition, we 

calculated three network attributes; network density, average path length (APL), and mean 

betweeness (Bi mean). The package igraph (Csardi and Nepusz 2006) was used to generate 

network metrics and network graphs. Network density refers to the degree of available routes in 

a network, ranging from 0-1, a higher density value indicates multiple routes were used and 

available for a given individual (Lédée et al. 2015, 2016). APL is the average shortest number of 

steps for all used paths between nodes (i.e., stations), this measure indicates on average how 

easily individuals may move through the network (Kurvers et al. 2014). Bi indicates a node’s 

importance via its connection strength to other nodes, based on the number of paths that pass 

through a specific node (the focal station) when taking the shortest path length from one node to 

another (Jacoby et al. 2012). We used an ANCOVA to test if detection number, days at liberty, 

residency index, station count, and number of paths differed between size (SCL) and capture 

location (Manglar Bay and Tortuga Bay). In addition, we used linear models to test for an effect 

between size and network density, APL, and Bi mean for Manglar Bay individuals only, as Tortuga 

Bay did not have extensive receiver coverage to calculate meaningful values.  

3.3.6 Movements, connectivity, space use outside-, within-, and across- bays  

Network analysis was further used to examine the movements, connectivity, and 
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variation in space use across the study area. To examine these attributes across the study area and 

beyond just Manglar and Tortuga Bay, we used bipartite graphs (Dale and Fortin 2010). Here, 

these graphs are comprised of two different types of nodes, individuals and locations. 

Essentially, these bipartite graphs link individual turtles to the regions they visited. An important 

distinction is that these graphs are not spatially explicit and they highlight the relationships (i.e., 

visits) between the individuals and locations. They are particularly useful when attempting to 

examine the variation in space use patterns across individuals or groups of individuals (Urban 

and Keitt 2001, Fortuna et al. 2009, Jacoby et al. 2012, Finn et al. 2014, Heupel et al. 2019). The 

links between the individuals and locations, also referred to as the ‘edges’, are weighted by the 

number of detections at the given region. We aggregated the 26 stations (including the 

aggregated VPS receivers, see above) into eight areas that correspond to the area’s geography, 

including: Honda, Dakity, Mosquito, Las Pelas, Manglar, San Ildefonso, Culebrita Strait, and 

Tortuga Bay (Fig. 6). By aggregating receivers into regions, we have also minimized issues 

surrounding detection efficiency (i.e., we have a high likelihood of detecting a passing individual 

within a region). To better observe space use patterns across the study area, the bipartite graphs 

were then plotted using the Fruchterman-Reingold force-directed layout algorithm (Fruchterman 

and Reingold 1991). This algorithm generates attractive and repulsive forces among all the 

regions or ‘nodes’ which are proportional to the weight of the edges connecting adjacent nodes 

(Tamassia 2013). Thus, if there was little or no attraction then nodes would arrange in an 

equidistant circle (Finn et al. 2014). However, when strong attractions / connections exist 

between nodes, the nodes and their heavily weighted edges would be tightly connected to one 

another, and thus, form possible ‘network communities’. 
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3.3.7 Community network structuring  

Potential network communities were identified across the eight receiver regions using six 

community detection algorithms. These algorithms cluster nodes into modules (i.e., potential 

communities) and are useful to examine the core space-use and the connectivity of different 

groups of individuals across the study area (Finn et al. 2014, Jacoby and Freeman 2016). The 

module clustering of nodes is based on the strength of the connections to one another. When 

groups of nodes have tight connections to one another (e.g., high number of visits between each 

other), they are referred to as communities. The applied algorithms to identify potential 

communities were: Leading-Eigenvector (Newman 2006), Walk-Trap (Pons and Latapy 2006), 

Fast-Greedy (Newman and Girvan 2004), Spin-Glass (Reichardt and Bornholdt 2006), Label-

Propagation (Raghavan et al. 2007), and Multilevel (Blondel et al. 2008). Subsequently, 

modularity scores, used to assess the quality of potential network communities, were calculated 

for each community detection algorithm (Newman and Girvan 2004). These scores are the 

fraction of edges within selected modules (i.e., community) minus the fraction that would occur 

if the edges were randomly distributed across nodes (Finn et al. 2014). Thus, modularity scores 

range from 0-1, and the higher the modularity score for a community detection algorithm, the 

higher the quality of module divisions.  

Each potential network community detected by an algorithm was assessed for 

significance by calculating the in-degree (ki in) (number of links to nodes of the same module) 

and the out-degree (ki out) (number of links to nodes outside its module) for each node within the 

given module. We used a Wilcoxon sum-rank test to see if nodes, within a given module, were 

more linked to one another than with other individual modules or the entire network (Song and 

Singh 2013). If a module is non-significant, ki in and ki out are about the same. If a module is 
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significant, and it has significantly more nodes linked within it than to nodes in other modules 

(high ki in), it is labeled as a statistically significant community. If a module is significant and the 

nodes link more with nodes in other modules (high ki out) then it is labeled as an ‘anti-

community’. Moving nodes from an anti-community module to another community would 

reduce modularity for the entire graph (Finn et al. 2014). Anti-communities are often corridors 

with many connections to other modules. 

3.3.8 Spatial-temporal drivers within Manglar Bay 

3.3.8.1 Data structuring 

To examine turtle presence-absence distributions in Manglar Bay, we first created eight 

new receiver aggregates or ‘regions’ that specifically corresponded to the physical attributes of 

Manglar Bay and to nearby areas where turtles were regularly detected. Turtle presence or 

absence was binned by hour for each region. By aggregating receivers into regions and binning 

by hour, it is more likely we are capturing true presences and absences in Manglar Bay despite 

not formally incorporating detection efficiency. In addition, acoustic telemetry is a presence-only 

type of data, with term ‘absence’ referring to the lack of detection since it is impossible to 

definitively determine if a tagged animal is truly absent in this system. Here, binning the data 

provided better estimation of true absences.  

3.3.8.2 Model covariates 

Eight covariates were identified as potential predictors of green turtle presence and 

absence in Manglar Bay, including habitat variables (reef, lagoon, macroalgae, and seagrass), 

diel cycles (levels day vs. night), tide states (levels low, incoming, high, outgoing), tide height 
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(m), and tide daily range (m). All continuous variables were standardized to have a mean of 0 

and a standard deviation of 1. 

Using habitat data collected from the National Oceanic and Atmospheric Administration 

(NOAA) (https://products.coastalscience.noaa.gov/collections/benthic/e95usvi_pr/, Kendall et 

al. 2002), we generated relative habitat kernel density estimates (KDEs) (Sheather and Jones 

1991) around Culebra Island for each type of habitat; specifically, reef, lagoon, macroalgae, and 

seagrass. Other habitats (e.g., linear reef, forereef, unconsolidated bottom, and sand) were 

assessed but were eliminated due to high collinearity and variance inflation factor (VIF) scores 

(i.e., these habitat types were highly correlated with one or more of the other habitat types) (Zuur 

2009).  KDE bandwidth sizes were generated for each unique habitat in the study area (ranging 

from 100 m to 1500 m), bandwidths incorporate both density and proximity of the focal habitat 

in the area. Using the habitat KDE bandwidth combinations, we derived all possible KDE point 

values for the derived eight Manglar Bay regions, and assessed the best bandwidth for each 

habitat using a series of random forest models (randomForest package, Liaw and Wiener 2002) 

with turtle presences binned at the hourly level as the response variable.  

 Diel cycle was included at two levels, day vs. night, with periods of day and night 

assigned using the maptools package (Bivand et al. 2013). Tide states, height, and daily range 

were derived from NOAA (https://tidesandcurrents.noaa.gov/noaatidepredictions.html).  

3.3.8.3 Statistical models and validation 

We modeled the hourly presence and absence of nine turtles within each region of 

Manglar Bay across 60 days between December 2013–February 2014, as a function of eight 

covariates and with four dependency structures (i.e., spatial and temporal) in a binomial 

regression with a trial size of nine. Only turtles with < 50% absences at the hour level were used. 
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The response variable, hourly presence, for each region ranged from 0-9.  Selected habitat 

predictor variables, informed via random forest models, for the full model included: reef at 500 

m bandwidth, lagoon at 300 m bandwidth, macroalgae at 100 m bandwidth, and seagrass at 200 

m bandwidth. Fixed covariates were reef (continuous), lagoon (continuous), macroalgae 

(continuous), seagrass (continuous), diel period (categorical with two levels), tide states 

(categorical with four levels), tide height (continuous), tide daily range (continuous). The 

interaction terms were diel period (categorical with two levels) x seagrass, diel period x 

macroalgae, diel period x tide height, and tide height x tide daily range. Habitat covariates were 

selected based on the habitats available to turtles within Manglar Bay. Diel period was a 

covariate of interest to determine if space use changed across day and night periods. Covariates 

involving tidal cycles (states, height, and range) were examined since they may affect the 

availability of habitats or may provide a mechanism of transport for foraging green turtles 

(Brooks et al. 2009). 

A Bayesian analysis framework with Integrated Nested Laplace Approximations (INLA) 

methodology (Rue et al. 2009) and binomial distribution was adopted to fit the data. INLA, able 

to handle large datasets, obtains the distribution of each parameter in a model while allowing for 

the incorporation of spatial and temporal dependency structures (i.e., autocorrelation) 

(Blangiardo and Cameletti 2015, Zuur et al. 2017).  Autocorrelation, inherent to tracking data, 

presents a difficult and confounding caveat of estimating space use of tagged animals (Johnson et 

al. 2013, Fleming et al. 2015, Winton et al. 2018). When autocorrelation is ignored, the 

assumption that observations are independent is violated and has the potential to produce biased 

parameter estimates (Zuur et al. 2017).  INLA now enables researchers to include dependency 

structures to deal with autocorrelation while reducing computational times (Bakka et al. 2018). 
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For example, outperforming more conventional methods that lacked formal incorporation of 

autocorrelation structures, Winton et al. (2018) used INLA to estimate the distribution and 

relative density of loggerhead sea turtles along the North Atlantic coast.  

 Here, to fit the model, INLA was applied using the R-INLA package (Rue et al. 2009). 

To incorporate a spatial dependency structure (i.e., account for autocorrelation) into the model as 

a random effect, we utilized a mesh and the stochastic partial differential equation (SPDE) 

approach (see Lindgren et al. 2011, Zuur et al. 2017). Essentially, the mesh, comprised of non-

overlapping triangles (i.e., lines and vertices) provides a means to effectively approximate the 

spatial field across our study site which helps to reduce issues with autocorrelation (see Zuur et 

al. 2017). This spatial random effect was assumed to have a zero-mean prior Gaussian 

distribution with a Matérn covariance structure (Muñoz et al. 2013). Since approximation of the 

SPDE approach improves with finer meshes (i.e., more vertices) but increases computation, we 

generated multiple mesh sizes and ultimately selected a mesh with 2,155 vertices (Fig. 7). 

Finally, we used three dependency structures as random walk smoothers to help account for 

temporal autocorrelation issues, including: tide height, hour of the day, and study day.  

Random walk smoothers change in shape depending on Penalized Complexity (PC) prior 

selection (Zuur et al. 2017). We ran the full candidate model with twenty-seven possible PC 

prior combinations to examine the effect and to select the best combination of informed PC 

priors for these trends. The best combination of PC priors was determined via Widely Applicable 

Information Criterion (WAIC) (Watanabe 2010). A lower WAIC value indicates an improved 

model by assessing the quality of fit vs. model complexity (Watanabe 2010). 

We performed backward-stepwise model selection to choose the best combination of 

variables from the full candidate model, again, using WAIC and the selected random walk 
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informative PC priors. A posterior distribution was obtained for each included parameter, 

enabling probability statements about each focal parameter. Unlike frequentist analyses where 

confidence intervals and means are produced, the 0.025 and 0.975 quantiles of each posterior 

distribution (the credible interval) indicate the unknown parameter is 95% likely to fall within 

that range of values.  

The final model was examined for homogeneity by plotting the residuals against fitted 

values and for potential patterns in residuals by plotting residuals versus each covariate in the 

model and each covariate not in the model. We plotted residuals versus spatial and temporal 

dependency structures (i.e., variograms and autocorrelation function plots) to assess existing 

potential issues with autocorrelation. To evaluate model performance and predictive accuracy, 

we generated a confusion matrix (i.e., a classification table that compares actual and predicted 

presences and absences to one another), calculated a dispersion statistic, compared the predicted 

and observed values using the full dataset, and, in addition, simulated from the posterior 

distributions of the regression parameters a thousand times to further assess under- or 

overdispersion (see Zuur et al. 2017). 

3.3.8.4 Spatial-temporal predictions 

Using the final model, we predicted the spatial-temporal distribution of turtles within and 

around Manglar Bay by hourly level. We derived 2,155 habitat point estimates from our original 

mesh’s vertices (2,155 vertices) and from each habitat KDE; this mesh was originally generated 

via the SPDE approach. These point estimates were used to help predict turtle distribution across 

Manglar Bay at each hour. Further, we made spatially explicit delineations for each station 

region, used the mean tide height and tidal range, the median study day (296), and classified for 

each hourly predictive model as either day or night. 
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3.4 Results 

Movement data were examined from 21 turtles captured from Manglar Bay via 26 

transmitters, five turtles were re-captured and re-tagged with acoustic transmitters due to tag loss 

(March 2013, n = 8; December 2013, n = 14; March 2014, n = 4). From Tortuga Bay, 10 turtles 

were captured and tagged, no re-tagging occurred (December 2013, n = 8, March 2014, n = 2) 

(Table A.1, Appendix A). While some individuals were detected outside their respective bays, no 

individual captured in Manglar Bay was ever detected within Tortuga Bay and vice versa for 

turtles captured from Tortuga Bay. Individual turtle size at tagging (n = 36) ranged from 38 to 70 

cm (straight-carapace-length [SCL]; 50.61  ± 7.84 cm) with no significant difference in size 

between the locations (Manglar Bay, 51.42  ± 8.14 cm, n=26; Tortuga Bay, 48.5  ± 6.93 cm, 

n=10). After removing the first seven days in each detection log (due to the anticipated tagging 

effects), days at liberty per transmitter ranged from 25 to 600 days (167.08  ± 148.57 d) with a 

mean residency index of 0.80 ± 0.26. There was no significant effect of size and capture location 

on detection number, days detected, days at liberty, or residency index; and no effect of size on 

network metrics (network density, APL, and Bi mean) for turtles tagged in Manglar Bay. However, 

there was a significant effect of size (F1,33 = 7.53, p = 0.01) and capture location (F1,33 = 62.73, p 

< 0.001) on station count with larger turtles and turtles from Manglar Bay having higher station 

counts (Table A.2, Appendix A). There was no effect of size on number of paths but there was a 

significant effect of capture location on number of paths (F1,33 = 31.26, p < 0.001) with greater 

number of paths exhibited by Manglar Bay turtles compared with Tortuga Bay turtles, potentially 

an artifact of the number of receivers and thus detection coverage. 
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3.4.1 Movements, connectivity, space use outside-, within-, and across- bays 

Using the Fruchterman-Reingold force-directed layout algorithm, the bipartite graph 

shows heterogeneous space use across turtles captured in Manglar Bay (n = 21) and turtles 

captured in Tortuga Bay (n = 10) (Fig. 8). Turtles remained near their capture origin with only a 

few Manglar Bay individuals detected west of the bay in Mosquito, Dakity, and Honda Bay, and 

in the east to San Ildefonso and Culebrita Strait. While turtles were never detected across capture 

location bays, six turtles captured from Manglar Bay and two turtles captured from Tortuga Bay 

were detected in Culebrita Strait, but no individual here had more than 100 detections. Moreover, 

turtles tagged from Tortuga Bay were never detected on any receiver further away than Culebrita 

Strait. 

3.3.2 Community network structuring 

Network communities or ‘modules’ were found within the bipartite graph by six different 

community detection algorithms. Four of the six algorithms (Fast-Greedy, Spin-Glass, Label-

Propagation, and Multilevel) produced identical module groups with the highest modularity 

score (0.197, Table 2). The four algorithms partitioned the bipartite graph into three modules 

(Fig. 9b); one of the three modules was found to be a significant community (p < 0.001) which 

partitioned all ten Tortuga Bay captured turtles with the Tortuga Bay node. The other two 

modules consisted of six Manglar Bay captured turtles partitioned with Las Pelas, Dakity, and 

Honda nodes (p = 0.926), and 15 turtles partitioned with Manglar, Mosquito, San Ildefonso 

nodes (p = 0.062). The two other algorithms (Leading Eigenvector  and Walk-Trap) performed 

worse with modularity scores of 0.186 and 0.173, respectively. Both found five similar modules 

(Fig. 9a, Fig. 9c) to each other within the bipartite graph and both had one significant module, 

the Tortuga Bay community. There was a slight difference in placement of some Manglar Bay 
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individuals across the communities, and both algorithms created two modules that only consisted 

of one node or one turtle. No anti-communities, i.e., significantly more connections outside the 

module than within it (Finn et al. 2014), were found by any detection algorithm. 

3.4.3 Spatial-temporal drivers within Manglar Bay 

Using the model with the best fit based on the lowest WAIC value, the final model 

consisted of six fixed covariates; lagoon (continuous), macroalgae (continuous), seagrass 

(continuous), diel period (categorical with two levels), tide height (continuous), tide daily range 

(continuous), and two interaction terms; diel period (categorical with two levels) x seagrass and 

diel period x tide height. Green turtle presence and absence were largely explained by lagoon, 

macroalgae, the interaction between seagrass and diel period, and the random spatial and 

temporal effects (Table 3).  

Juvenile green turtles were most likely to be present in areas with higher lagoon habitat 

values (lagoon, posterior mean = 1.22; 95% CI = [0.13, 2.31]), and in areas with higher seagrass 

habitat values at night (diel (night): seagrass, posterior mean = 0.29; 95% CI = [0.14, 0.45]). 

Turtles were less likely to be present in areas with higher macroalgae habitat values (macroalgae, 

posterior mean = -0.56; 95% CI = [-1.0, -0.10]). The predicted and observed values (presences 

and absences) across hour at each station region show heterogeneous space use across time (Fig. 

10). While space use was variable across individual turtles (Fig. A.17, Appendix A), turtles 

largely followed a general spatiotemporal pattern within Manglar Bay. Turtles were most likely 

to be detected in the back portion of Manglar Bay (Region 1, R1 in Fig. 7) across all hours, with 

the highest probabilities between 07:00 hr and 17:00 hr. In addition, to the back portion of 

Manglar Bay, turtles were most likely to be detected in the western portion of Manglar Bay 

(Regions 5 and 6, Fig. 7) at night, between 19:00 hr and 06:00 hr. Turtles were more likely to be 
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detected in the eastern portion of the Manglar Bay (Regions 2, 3, and 4, Fig. 7) during daylight 

(between 08:00 hr and 17:00 hr). Turtles were rarely detected in the furthest western region 

(Region 8, Fig. 7), however, if they were detected here, it occurred most often during day time 

hours.  

The final model correctly categorized 88% of the presences as determined by the 

confusion matrix (i.e., a classification table that compares actual and predicted presences and 

absences to one another), and the dispersion statistic derived via sum of squared Pearson 

residuals was 0.82, slightly underdispersed. Simulating from the posterior distributions of the 

regression parameters a thousand times, we observed an overestimation of zeros and an 

overestimation of nines (Fig. A.18, Appendix A). The simulation in combination with the 

dispersion statistic highlighted the potential misinterpretation of the variance structure. While 

computationally intense and difficult to implement, this model may have benefitted by using a 

zero-inflated binomial distribution (due to many absences) rather than a binomial distribution. 

While some autocorrelation still existed, it was largely corrected for with the SPDE approach 

and the hourly-station temporal dependency structure (Fig. A.19 and Fig. A.20, Appendix A).  

Predicted probability distribution maps of green turtles were generated for each hour 

across Manglar Bay with the tide height and tidal range being held constant at their means, and 

using the median study day (296). The spatial maps were consistent with the model predictions, 

as higher and lower presences followed similar patterns as the predicted and observed values 

(presences and absences) across each hour and each station region (Fig. 10). Based on habitat 

features, turtle presence was estimated to be low in unobserved areas such as the reef but high in 

unobserved areas where seagrass and lagoon habitats existed. Further, diel period appears to be 

linked with spatial predictions, specifically, turtle probability distributions were condensed 



45 

within the central and western portion of Manglar Bay at night and more dispersed towards the 

eastern portion of Manglar Bay during the day. Our model indicated turtles had the highest 

probabilities of detection in the back portion of Manglar Bay, also known as Region 1. Further, 

these probabilities in Region 1 were the highest between 07:00 hr and 17:00 hr. However, our 

predictive probability distribution maps (which account for habitat within the entire bay) showed 

the highest presences to be in the central part of the lagoon, in areas that were considered 

unobservable with our receivers.  

3.5 Discussion 

The main aims of this study were to examine movement patterns and connectivity of 

immature turtles within, outside, and across Manglar Bay on Culebra Island, and Tortuga Bay, 

on Culebrita Island, Puerto Rico, as well as determine the spatial-temporal drivers of presence 

and absence within Manglar Bay. As suggested by Patrício et al. (2011), juvenile green turtles 

around Culebra exhibit high site fidelity to specific bays with larger turtles leaving on brief trips. 

Further, the size distribution of tagged turtles in this study were similar to that reported by 

Patrício et al. (2014) and thus likely was representative of individuals that were not tagged. 

There was little overlap of space use outside respective bays for turtles captured in both Manglar 

and Tortuga Bay, further, no turtle was ever detected entering the opposing bay. 

Our model incorporating habitat kernel densities indicated that turtles were more likely to 

be present in areas of lagoon habitat, seagrass at night, and less likely to be in macroalgae 

habitat. We used parameter estimates from the model to predict space use of nine turtles across 

Manglar Bay, our hourly probability distributions proved to be accurate and demonstrated turtles 

moving in predictive patterns across the bay. Here, acoustic telemetry in combination with novel 

analytical methods provide unique insights on their movement patterns such as space use, 
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connectivity, and their spatial-temporal drivers. These methods included network analysis, 

community detection algorithms, and presence-absence Bayesian modeling while accounting for 

autocorrelation.  

Within an ideal free distribution framework (Fretwell and Lucas 1969), each individual 

animal should arrange themselves across space, based on food supply, in a way that no 

individual has greater advantage than another, thus input matching is achieved via bottom-up 

processes (Milinksi and Parker 1991). However, through top-down processes, predation risk 

often heavily alters spatial distributions and ultimately impacts lifetime reproductive success 

based on the trade-off between energetic input and predation risk (Lima and Dill 1990, Moody et 

al. 1996). We suspect top-down processes related to predation risk occur within Culebra 

considering immature green turtles had differential space use, as indicated by network analysis, 

and never moved between Manglar Bay and Tortuga Bay, the two highest turtle density bays on 

Culebra that are only separated by 2 km. While anecdotal evidence suggests limited predator 

burdens (e.g., tiger sharks) around Culebra, predation risk and its non-lethal effects (trait-

mediated or risk effects) is likely a major selective force in the evolution of behaviors which still 

drives spatial distributions of immature turtles around Culebra.  

Furthermore, while genetic sampling suggested the recruitment origins for juvenile green 

turtles were similar across the two bays in Culebra (Patrício et al. 2017), somatic growth was 

significantly greater in Manglar Bay than in Tortuga Bay with minimum ages at maturity of 14 

and 22 yr., respectively (Patrício et al. 2014). Since no differential recruitment (Patrício et al. 

2017) or movement across bays exist, habitat quality and availability (Bjorndal et al. 2000) in 

combination with predation risk (innate or learned) is likely driving these different rates of 

somatic growth. Manglar Bay is comprised of macroalgae and the seagrass Thalassia testudinum, 
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the primary diet of green turtles in the Greater Caribbean (Bjorndal 1980), while Tortuga Bay is 

predominantly covered by seagrasses Syringodium filiforme and Halodule wrightii. Residency 

was high (0.80) for turtles regardless of size or location, supporting previous findings (Mendonca 

1984, Brill et al. 1995, Makowski et al. 2006, and Colman et al. 2014) that immature green 

turtles inhabit smaller but well-defined areas when ecological resources (i.e., food and shelter) 

are tightly clustered. The compressed bipartite graphs and community plots show turtles in 

Culebra use well-defined areas. However, there was an effect of turtle size and capture location 

on station count, movement data showed larger individuals were more likely to exit the bay for 

brief trips, which is consistent across other study areas (Seminoff et al. 2003, Koch et al. 2007, 

Bresette et al. 2010). Potentially, as suggested by our data, predation risk and exploratory 

behaviors decrease and increase with size, respectively.   

3.5.1 Spatial-temporal drivers within Manglar Bay  

Our results suggest turtles favored lagoon habitat, followed by seagrass habitat at the 

night. Overall, turtles were much less likely to be present macroalgae habitat. Based on the 

predicted hourly probability distribution maps, turtle’s presence shifted from the central and 

western portion of Manglar Bay at night towards the eastern portion during the day. We 

anticipated turtles would be detected exiting and entering Manglar Bay for shelter and potentially 

safer habitats during the night via the large channel at Region 4, however, we saw the nine 

selected turtles largely remained within the lagoon during the night. Although, reef structure 

exists around Culebra, which generally serves as resting habitat for turtles to reduce predation 

risk (Ogden et al. 1983, Makowski et al. 2006, Taquet et al. 2006, Hazel et al. 2009), some 

turtles within Culebra may find shelter in the protected lagoon as they would in exposed patch 

reef system. In agreement with our findings, Blumenthal et al. (2010) also reported some green 
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turtles remaining within lagoon habitats at night. Further, turtles may be selecting seagrass at 

night for foraging opportunities if light conditions are suitable (Taquet et al. 2006). 

3.5.2 Conclusion 

Seagrass communities, the main diet of green sea turtles, are considered threatened 

globally (Waycott et al. 2009) and are highly vulnerable to human disturbances including urban 

and agriculture runoff off, coastal development, and dredging (Grech et al. 2012). Since Culebra 

Island, Puerto Rico, is classified as Resource Category I critical habitat for the green turtle (63 

FR 46693, September 2, 1998) and largely protected through the Culebra National Wildlife 

Reserve, its coastal habitats are still relatively undisturbed, providing an excellent window into 

natural processes. While habitats within Culebra are still largely intact, multiple embayments are 

becoming increasingly threatened by sewage wastewater contamination and/or coastal 

development (e.g., mangrove clearing, high sediment loads). Further, plans for dredging for 

marinas are being proposed in these sensitive seagrass habitats. Considering, turtles in Culebra 

exhibit high fidelity within the bays, it is imperative to protect these distinct habitats that serve as 

both shelter and foraging areas. This is especially pertinent since the survival of immature turtles 

here in Culebra, could positively affect Caribbean wide nesting populations, specifically that of 

Costa Rica, Mexico, East Central Florida, and Suriname (Patrício et al. 2017). The protection of 

these essential juvenile turtle developmental habitats ensures the continued recruitment into 

recovering green turtle populations. 



49 

  

Table 2. Results from the six community detection algorithms applied to the bipartite graph (31 

green turtles with 8 regions consisting of 48 out of the 59 receivers). These algorithms cluster the 

nodes (i.e., individuals and locations) into modules. Modularity, ranging from 0-1, indicates the 

community detection algorithms ability to partition the bipartite graph. Modularity is the fraction 

of edges within selected modules minus the fraction that would occur if edges were randomly 

distributed across nodes. Higher the modularity score, the better the algorithm performed at 

clustering. Significant modules (p > 0.05) under the Wilcoxon sum-rank test indicates there are 

significantly more connections with a module than outside of it and thus termed a ‘community’. 

 

Community detection algorithm Modularity Modules detected Significant modules 

Leading Eigenvector 0.186 5 1 

Fast-Greedy 0.197 3 1 

Spin-Glass 0.197 3 1 

Label Propagation 0.197 3 1 

Walktrap 0.173 5 1 

Multilevel 0.197 3 1 
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Table 3 Results from final Bayesian presence and absence binomial model of nine green turtles 

within Manglar Bay across 60 days. Six covariates along with two interaction terms were 

included in the model. In addition, the model was fit with a spatial dependency structure to 

account for spatial autocorrelation (via the stochastic partial differential equation) and three 

random walk smoothers to account for temporal autocorrelation (tide height, hour of the day, and 

study day). 

 

 

Predictor Mean SD Q 0.025 Q 0.975 

Intercept     -3.91 1.02 -5.91 -1.91 

lagoon 1.22 0.56 0.13 2.31 

macroalgae -0.56 0.24 -1.0 -0.10 

seagrass 0.41 0.29 -0.16 0.96 

diel (night)  -0.29 0.09 -0.47 -0.12 

tide height -0.17 0.36 -0.87 0.53 

tide range 0.05 0.07 -0.08 0.19 

diel (night):seagrass 0.29 0.08 0.14 0.45 

diel (night):tide height -0.05 0.03 -0.10 0.00 
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Fig. 5: Study site map of Culebra and Culebrita, Puerto Rico, including Manglar Bay, Tortuga 

Bay, and Culebrita Strait of Culebra, Puerto Rico. In addition, habitats of interest are displayed 

(https://products.coastalscience.noaa.gov/collections/benthic/e95usvi_pr/, Kendall et al. 2002).  
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Fig. 6: Manglar and Tortuga Bays of Culebra, Puerto Rico with a total of 59 receivers (red and 

blue dots) deployed around Culebra island. Twenty-five receivers, as indicated by the blue dots, 

were positioned as a Vemco Positioning System (VPS) on the perimeter of Manglar Bay, based 

on receiver general VPS location they were categorized as either ‘VPS Lagoon’ receivers (n=17) 

or ‘VPS Reef’ (n=8). The corresponding receiver classified regions (i.e., Honda, Dakity, 

Mosquito, Las Pelas, Manglar, San Ildefonso, Culebrita Strait, and Tortuga Bay) used for the 

bipartite graphs are labeled.  
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Fig. 7: Left: The Manglar Bay area with eight receiver aggregates or ‘regions’ specified. Right: 

The generated mesh, comprised of non-overlapping triangles, was used to approximate the 

spatial random field. Finer meshes leading to better approximations but longer computational 

times helps to reduce issues associated with autocorrelation. Our mesh contained 2,155 vertices 

which were used to account for spatial dependency within the presence-absence binomial model 

of nine turtles within Manglar Bay. The red dots represent the eight receiver aggregates or 

‘regions’. 
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Fig. 8: Bipartite graph of turtle-region network in Culebra, Puerto Rico with Fruchterman-

Reingold force-directed layout algorithm. The network displays the links (edges) between the 

turtles (green nodes) and regions visited (blue nodes). The width of edges is proportional to the 

number of detections at each region per individual and the diameter of each node is proportional 

to the node’s degree (i.e., number of links to or from the node). The Fruchterman-Reingold 

force-directed layout algorithm balances attractive and repulsive forces among nodes which are 

proportional to the weight of edges connecting adjacent nodes (i.e., similar space use by 

individuals would be clustered together). Individuals are clustered closely together in their 

respective bays. Manglar Bay individuals are labeled with ‘M’ (Manglar) nodes and Tortuga Bay 

individuals are labeled with ‘C’ (Culebrita Island) nodes.
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Fig. 9: Bipartite graphs with identified turtle community structuring (i.e., modules) via the six community detection algorithms a) Leading-

Eigenvector, b) Fast-Greedy, Spin-Glass, Label-Propagation, and Multilevel and c) Walktrap algorithms. Fast-Greedy, Spin-Glass, Label-

Propagation, and Multilevel had identical modules generated.  
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Fig. 10: Observed versus fitted values (presences and absences) segregated by region (labeled 

R1-R8) at the hour level for the Bayesian presence-absence binomial model of nine turtles within 

Manglar Bay across 60 days. The dots show the observed number of turtles (0-9) for each hour, 

and the black line with the gray credible interval shows the expected value for the number of 

turtles from the best model. 
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Fig. 11: Using the final Bayesian presence-absence binomial model parameter estimates, the 

spatial-temporal probability distribution of turtles within and around Manglar Bay at the hour 

level was produced, 0 (dark blue) being 0% probability of turtle presence and 1 (red) being 100% 

probability of turtle presence. Here, hours 0:00, 06:00, 12:00, and 18:00 are displayed. We 

derived 2,155 habitat point estimates from our original mesh (2,155 vertices) and from each 

habitat KDE, these point estimates were used to predict turtle distribution across Manglar Bay. 

Spatially explicit delineations for each station region were used and predictions were set to the 

mean tide height and tidal range, and the median study day (296). Each hour was also classified 

for each hourly predictive model as either day or night. 
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CHAPTER 4 

WARMING SEAS INCREASE COLD-STUNNING EVENTS FOR KEMP’S RIDLEY SEA 

TURTLES IN THE NORTHWEST ATLANTIC 

4.1 Abstract 

Since the 1970s, the magnitude of turtle cold-stun strandings have increased dramatically within 

the northwestern Atlantic. Here, we examine oceanic, atmospheric, and biological factors that 

may affect the increasing trend of cold-stunned Kemp’s ridleys in Cape Cod Bay, Massachusetts, 

United States of America. Using machine learning and Bayesian inference modeling techniques, 

we demonstrate higher cold-stunning years occur when the Gulf of Maine has warmer sea 

surface temperatures in late October through early November. Surprisingly, hatchling numbers in 

Mexico, a proxy for population abundance, was not identified as an important factor. Further, 

using our Bayesian count model and forecasted sea surface temperature projections, we predict 

more than 2,300 Kemp’s ridley turtles may cold-stun annually by 2031 as sea surface 

temperatures continue to increase within the Gulf of Maine. We suggest warmer sea surface 

temperatures may have modified the northerly distribution of Kemp’s ridleys and act as an 

ecological bridge between the Gulf Stream and nearshore waters. While cold-stunning may 

currently account for a minor proportion of juvenile mortality, we recommend continuing efforts 

to rehabilitate cold-stunned individuals to maintain population resiliency for this critically 

endangered species in the face of a changing climate and continuing anthropogenic threats. 
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4.2 Introduction 

Historically, sea turtle populations experienced wide-spread declines, primarily from by-

catch and harvest of adults and eggs (Jackson 1997). While conservation measures have helped 

to increase sea turtle populations globally (Mazaris et al. 2017), both fine- and large-scale threats 

persist for all seven species of sea turtles, including bycatch, harvest, habitat degradation, 

pollution, tourism, and climate change. Of these, climate change may present the broadest threat 

for sea turtle conservation (Wallace et al. 2010 a, b, Butt et al. 2016). Predicted warmer 

temperatures and sea level rise may decrease hatchling success and available nesting habitats, 

and skew sex ratios (Butt et al. 2016, Laloë et al. 2017).  

Less is understood about the potential effects of climate change on sea turtle cold-

stunning events. As a result of prolonged exposure to cold water temperatures, hypothermic 

cold-stunned sea turtles can experience debilitating lethargic conditions that often lead to death 

(Morreale et al. 1992, Spotila et al. 1997, Innis et al. 2007, Keller et al. 2012). All sea turtle 

species are susceptible to becoming cold-stunned, however, the Kemp’s ridley (Lepidochelys 

kempii), loggerhead (Caretta carreta), and green turtle (Chelonia mydas) are the most frequently 

cold-stunned species in the U.S., with cold-stun stranding events occurring at the upper limits of 

their ranges both in low and high latitudes (Turnbull et al. 2000). At lower latitudes, cold-

stunning events are acute and triggered by extreme cold weather snaps, often during relatively 

mild winters (Witherington and Ehrhart 1989, Avens et al. 2012, Pirhalla et al. 2015, Roberts et 

al. 2014). At higher latitudes, cold-stunning events are associated with turtles not migrating south 

before the onset of late autumn storms and associated declining seasonal water temperatures 

(Burke et al. 1991, Coles and Musick 2000, Still et al. 2005, Bellido et al. 2010, Monzón-

Argüello et al. 2012). In both regions, cold-stunning events occur when turtles appear to be 
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unexpectedly caught in areas with lower water temperatures and fail to depart from shallower 

colder nearshore waters. For example, in 2010, approximately 5,000 juvenile green turtles were 

cold-stunned and stranded across Florida (Avens et al. 2012), while in 2014, over 1,100 Kemp’s 

ridleys stranded in Cape Cod Bay, Massachusetts.  

Dependent on local wind and oceanic currents, cold-stunned sea turtles typically wash-up 

on beaches where, if found prior to death, they are recovered and sent to rehabilitation centers 

(Still et al. 2005). These recovery programs can be highly effective at reducing mortality rates of 

cold-stunned turtles. For example, in the large-scale 2010 Florida cold-stun event, only 20-22% 

of stranded turtles died that were recovered from St. Joseph Bay and Mosquito Lagoon, 

respectively (Avens et la. 2012, Provancha et al. 2012). Cold-stunned turtles recovered in more 

northerly areas, such as Massachusetts, are typically transported south to Georgia, Florida, or 

Texas for release (Hunt et al. 2016). It is challenging to predict large-scale cold-stunning events, 

making it difficult to adequately plan and budget for federal, state, and non-governmental 

organizations to mobilize their recovery efforts, especially in years when large numbers of turtles 

are cold-stunned. 

The most common species to cold-stun in the northwest Atlantic is the Kemp’s ridley, 

followed by loggerheads. Both species use the nearshore waters of the northeastern United States 

as developmental habitats, including New England, Long Island Sound, and Chesapeake Bay 

(Bleakney 1965, Lazell 1980, Shoop and Kenney 1992, Morreale et al. 2005, Still et al. 2005). 

Due to thermal constraints, these juvenile turtles must migrate south to warmer waters in fall 

(Musick et al. 1994, Epperly et al. 1995). Juvenile sea turtles become cold-stunned as sea surface 

temperatures drop to around 10 ºC, (Schwartz 1978, Witherington and Ehrhart 1989, Still et al. 

2005) with death occurring at temperatures ranging from 5.0-6.5 ºC (Schwartz 1978). The semi-
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enclosed Cape Cod Bay, Massachusetts, acts as a natural catchment for turtles migrating south, 

and the bay accounts for most of the cold-stunned turtles in the northeastern U.S. (Still et al. 

2005). In Cape Cod Bay, juvenile Kemp’s ridleys (approximately three years old) typically cold-

stun in November, while the larger bodied loggerheads can withstand colder water temperatures 

and typically cold-stun in December (Still et al. 2005). Within the past 40 years, over 4,700 

Kemp’s ridleys have stranded within Cape Cod. These cold-stunning events have intensified 

annually, requiring greater investment in recovery efforts (Still et al. 2005). Prior to 2009, only 

two years (i.e., 1999 and 2002) had over 100 sea turtles stranded, since 2009, over a hundred sea 

turtles commonly strand from cold-stunning each year in Cape Cod Bay. 

Little is known about what factor(s) drive this increasing number of sea turtle strandings 

in Cape Cod Bay. A variety of potential factors have been identified to explain this increasing 

turtle cold-stunning trend, such as changing oceanic and atmospheric conditions, increasing sea 

surface temperatures, or recovering turtle nesting populations. The objectives of this study were 

to 1) identify what factors are affecting Kemp’s ridley cold-stunning events in Cape Cod Bay, 

and 2) predict future rates of cold-stunning based on climate change projections. 

4.3 Methods 

4.3.1 Cold-stunned turtle data 

Sea turtle cold-stunning data were provided by the Sea Turtle Stranding and Salvage 

Network (STSSN, 

https://www.greateratlantic.fisheries.noaa.gov/protected/stranding/disentanglements/turtle/stssn.

html, Table B.6, Appendix B), which is coordinated by the National and Oceanic Atmospheric 

Administration (NOAA). This network is made up of trained stranding responders coordinated 
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locally and by state STSSN coordinators. STSSN has monitored Cape Cod Bay beaches since 

1979. With stranding responders monitoring all potential stranding beaches from October-

January, we assumed a high probability of locating all stranded turtles for any given year. We 

used the overall count of found Kemp’s ridley stranded turtles per year from 1982-2016. 

Stranding data from years prior to 1982 were omitted because of limited availability of sea 

surface temperature (SST) data.  

4.3.2 Environmental and biological data 

Using the Optimal Interpolation Sea Surface Temperature database (OISST, 

https://www.ncdc.noaa.gov/oisst) from NOAA, we calculated the average daily sea surface 

temperature (SST) from 1982-2017 at 2.5 x 2.5 degrees with a spatial resolution of 0.25 degrees 

for an area that spans across Cape Cod Bay, Gulf of Maine, and a portion of Georges Bank (Fig. 

12). This nearly 50,000 km2 area encompasses the greater northern area of Cape Cod Bay and 

Gulf of Maine, where Kemp’s ridleys are likely to occur prior to migrating south in the fall. This 

area was also chosen to capture the larger scale oceanic thermal conditions that may influence 

the immigration and emigration of turtles into coastal areas of the northeastern U.S. To examine 

the relationship between SSTs and cold-stunning events, we derived six aggregate SST statistics 

at different time scales. These aggregate SST statistics include mean, maximum, minimum, 

standard deviation of daily mean SSTs, number of days with daily mean SST below 10 ºC, and 

number of days with daily mean SST above 20 ºC. Number of days with daily mean SST below 

10 ºC was chosen because the onset of cold-stun symptoms begins begin at 10 ºC (Schwartz 

1978, Witherington and Ehrhart 1989, Still et al. 2005). Number of days with daily mean SST 

above 20 ºC was chosen to capture periods of uncharacteristically warm SSTs. 
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In addition to SST derived statistics, we derived the sum of monthly North Atlantic 

Oscillation (NAO) indices of each year between June and September. NAO indices, provided 

from NOAA (https://www.ncdc.noaa.gov/teleconnections/nao/), are linked with pressure, wind, 

and temperature conditions (Ottersen et al. 2001) that may influence turtle recruitment into 

coastal areas of the northeastern U.S. We chose the months of June through September to 

represent the period of summer recruitment by turtles into coastal areas 

(http://www.seaturtlesightings.org/monthmap.html). In addition, the average annual monthly 

NAO indices were lagged by two years, which infers the latitudinal position of the Gulf Stream 

for a given year (Taylor and Stephens 1998). The annual average monthly Atlantic Multidecadal 

Oscillation (AMO) indices, unsmoothed 

(https://www.esrl.noaa.gov/psd/data/correlation/amon.us.data), were derived on an annual basis 

and also lagged by 1, 2, and 3 years. AMO has been suggested to influence ocean circulation 

patterns (Visbeck et al. 2003), which may affect emigration of juvenile Kemp’s ridleys from the 

Gulf of Mexico into the Gulf Stream or from the greater Atlantic into Cape Cod. Although the 

majority of the Kemp’s ridley population comes from the Rancho Nuevo area of Tamaulipas, 

Mexico (Bevan et al. 2016), we used the annual number of hatchlings released from the 

Tamaulipas index beaches (Rancho Nuevo, Playa Dos-Barra Del Tordo, Barra Ostionales-

Tepehuajes) to examine the role of hatchling numbers on cold-stunning events (hatchling data 

pre-2015 provided by NMFS and USFWS, hatchling data from 2015 and after provided by 

personal communication Peña, Table B.7, Appendix B). Nesting data were lagged by 2, 3, and 4 

years because Kemp’s ridleys found in Cape Cod are believed to be largely clustered across 

these years of age (personal communication Avens). All data were examined for outliers and 
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collinearity. All statistical analyses were carried out using the software R (version 3.4.2) (R Core 

Team 2017). 

4.3.3 Climate time windows 

We used a sliding window approach (van de Pol et al. 2016, Bailey and van de Pol 2016) 

to determine the optimal climate time window for each of the six aggregate SST statistics (mean, 

maximum, minimum, standard deviation of daily mean SST, and number of days with daily 

mean SST below 10 ºC, and number of days with daily mean SST above 20 ºC). We also used 

the climwin package (Bailey and van de Pol 2016) to test multiple hypotheses about the 

relationship between the climate variables and the biological response. Using annual cold-

stunning data as the biological response, the slidingwin function was used to test for and 

produce, via Akaike information criterion, the best possible climate time window for each 

aggregate SST statistic. Since the climate time windows were provided at a daily level (ordinal 

days), we collapsed time windows into half months. If the optimal day was between the 1st and 

14th day of a month, it was considered as the early half of the month and if the optimal day was 

after the 14th day of a month, it was considered as the late half of the month. 

4.3.4 Random forest 

We used random forest models from the randomForest package (Liaw and Wiener 2002) 

to identify the most important variables in relation to annual Kemp’s ridley cold-stunning counts. 

Random forest models have relaxed assumptions (i.e., collinearity) and high explanatory power  

(Breiman 2001, Cutler et al. 2007). These random forest models, a type of machine learning 

algorithm, generate and fit hundreds to thousands of decision trees to a data set. However, each 

decision tree is a bootstrap sample of the total data set and each decision tree searches through a 
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random subset of the predictor variables at each node (decision) location. The best predictor 

variable for a specific node is chosen and the decision tree proceeds to the next node where a 

new random subset of predictor variables are evaluated. This is repeated for all subsequent 

nodes. The random forest model then assesses each variables’ importance by evaluating the 

decreasing accuracy of trees when each variable is removed, this value is called the mean 

decrease in accuracy. We first ran the random forest model on all 11 explanatory variables to 

choose the top two variables that best explained cold-stunning counts. We then eliminated the 

collinear aggregate SST variables that had the lowest mean decrease in accuracy and 

subsequently ran the model again with the top non-collinear SST variables (minimum and 

standard deviation of daily mean SSTs, number of days with daily mean SST below 10 ºC, and 

number of days with daily mean SST above 20 ºC). Initial exploration indicated ~ 500 trees were 

sufficiently stable for random forest models; however, the number of trees was set to 2,000 for 

all random forest models to ensure optimal performance was reached.  

4.3.5 Bayesian count model and validation 

With a relatively small number of observations (n = 35 count years between 1982-2016), 

we decided to only use the two most important variables in our count model. Using the two most 

important variables as identified by our second random forest model, minimum of daily mean 

SSTs (2nd half of October thru the 1st half of November) and number of hatchlings (lagged by 

two, three, four years and averaged), we modeled annual Cape Cod Bay Kemp’s ridley cold-

stunning counts using a negative binomial distribution with approximate Bayesian inference 

models using Integrated Nested Laplace Approximations in the INLA package (Rue et al. 2009, 

Martins et al. 2013, www.r-inla.org). A Bayesian framework provides a posterior distribution for 

each parameter, and thus we can infer the unknown parameter is 95% likely to fall within a range 
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of values around each posterior distribution as defined by the 0.025 and 0.975 quantiles. INLA, 

an alternative to Markov Chain Monte Carlo method, provides an efficient tool to obtain 

posterior distributions using numerical approximations (Rue et al. 2009).  

Further, we modified variance estimates around each parameter using informative prior 

distributions to include measurement error of our selected covariates. Ignoring measurement 

error may severely bias parameter estimates and credible intervals, resulting in misinterpreting 

real covariate signals (Muff et al. 2015). When expert and prior knowledge exists about the 

uncertainty of the explanatory variables, it is possible to incorporate measurement error into the 

model via Bayesian analyses (Clayton 1992, Muff et al. 2015). We applied a heteroscedastic 

error structure (i.e., error changes from observation to observation) to the minimum of daily 

mean SSTs, which was derived from the OISST platform (mean ± SD = 0.19± 0.02 ºC). We 

applied a homoscedastic error structure (i.e., error remains a constant value across observations) 

to the number of hatchlings parameter. Since observation error was not reported for hatchlings 

released, we derived our informative prior for this parameter by calculating the standard 

deviation of the last 10 years of hatchlings released and then scaled each observation by this 

standard deviation. The counts of hatchlings released from the last 10 years were used because 

the trend appears to asymptote during this period; thus, the variation from observation to 

observation in these last 10 years may be indicative of some measurement error across the entire 

trend.  

Multiple structures, including first-order autoregressive and first and second-order 

random walks, were applied and assessed, following Zuur et al. (2017), to address potential 

issues with temporal autocorrelation. However, all autocorrelation structures led the model to 

overfit the data, and we decided to exclude these structures. Further, we decided not to include 
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year as a covariate due to high collinearity (assessed via variance inflation factors) with the two 

parameters of minimum of daily mean SSTs and number of hatchlings.  

We performed backwards step-wise model selection using Deviance Information 

Criterion (DIC, Spiegelhalter et al. 2002), and autocorrelation was assessed using the acf 

function from the stats package (R Core Team 2017). The final model was examined for 

overdispersion and homogeneity by plotting the residuals against fitted values, and for potential 

patterns in residuals by plotting residuals versus each covariate in the model and each covariate 

not in the model. In addition, we evaluated the models performance by assessing the fitted and 

observed values using the full dataset. 

4.3.6 Prediction 

The final model of annual Kemp’s ridley cold-stunning counts as a function of minimum 

of daily mean SSTs (2nd half of October thru the 1st half of November) was then used to predict 

the potential future trend of Cape Cod Bay annual Kemp’s ridley cold-stunning counts with 

warming sea surface temperatures. Predicted SSTs were derived specifically for our constructed 

study area using the observed minimum of daily mean SSTs rather than from global climate 

models that have multiple climatic scenarios. To generate estimates for potential future SSTs, we 

first calculated the slope of the observed minimum of daily mean SSTs and an intercept from the 

mean minimum of daily mean SSTs for the last 15 years. Using the calculated slope and 

intercept, we generated predicted temperatures for 15 years in advance of our study period. We 

set the measurement error for all 15 predicted temperature values to 0.5, generating additional 

uncertainty around these values.  

Using both our future cold-stun predictions, as related to SST warming via climate 

change, and population estimates derived from Gallaway et al. (2016), we roughly estimated the 
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potential future population level effect of cold-stunning. Gallaway et al. (2016) reported the 2012 

estimated Kemp’s ridley female population at age two, three, and four were 32,060, 23,057, and 

22,918, respectively. Female sex ratios were reported at 0.65 and 0.74 for in situ and protected 

nests, respectively. Using the averaged female population age estimate at age two, three, and 

four, and the averaged female sex ratios, as reported by Gallaway et al. (2016), we estimated the 

total number of turtles at age two, three, and four and then compared this estimate with our mean 

2031 cold-stun prediction count. This assumes the population estimate of 2012 remains the same 

until 2031. 

4.4 Results 

With the wide variation in SSTs both seasonally and between years, we first used the 

sliding window approach to determine the optimal time window for examining the relationship 

between SST and cold-stunning events. The optimal climate time windows differed for the six 

aggregate SST statistics (Fig. 13). The earliest time window occurred from late June thru early 

August for number of days with daily mean SST > 20 ºC.  The optimal time window for three of 

the SST statistics (mean, maximum, and standard deviation of the daily mean SSTs) occurred 

from early August thru the first half of October. The third time window occurred from late 

October thru early November for the minimum of the daily mean SSTs, and from late November 

thru early December for number of days with daily mean SST < 10 ºC.  

Minimum of daily mean SSTs and number of hatchlings were the two most important 

variables associated with annual Kemp’s ridley cold-stunning counts (Fig. 14) identified by the 

random forest models. Consequently, we removed the two SST variables mean and maximum of 

daily mean SSTs from the second random forest model due to collinearity.  
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Both minimum of daily mean SSTs and number of hatchlings along with their respective 

measurement error structures were included in the Bayesian count model (DIC 341.22). Using 

number of hatchlings alone as a covariate within the model produced a much higher DIC value 

of 380.55; however, using minimum of daily mean SSTs alone as a covariate produced a DIC 

value of 339.41. We decided to drop number of hatchlings from our final model based on the 

slightly lower DIC value and because number of hatchlings was found not to be important in 

original model (number of hatchlings, posterior mean = -0.02; 95% Credible Intervals (CI) =       

-0.3, 0.25]). Thus, using a negative binomial distribution, minimum of daily mean SSTs during 

late October thru early November was the variable that best explained annual cold-stunning 

counts. Annual Kemp’s ridley cold-stunning events were more likely to be higher when the 

corresponding late fall SSTs were warmer (Fig.15, minimum of daily mean SSTs, posterior mean 

= 1.23; 95% Credible Intervals (CI) = 1.04, 1.41]).  

Negative temporal autocorrelation at a lag of two was still present among the residuals, 

but it was minor and largely accounted for by using temperature as a covariate. Further, no 

obvious trend in the residuals existed, indicating little effect of temporal autocorrelation. The 

calculated overdispersion statistic was 1.02, indicating no overdispersion issues and the negative 

binomial was an adequate probability distribution. Common with count models, deviations from 

the expected increased with larger expected values, which occurred within this dataset in the 

later years.  The observed values from the full dataset were heavily outside the final model’s 

95% CI; yet, the fitted trend appeared to closely match the trend in the observed data (Fig. 15).  

Assuming SSTs within the Northwest Atlantic will continue to increase in the future, we 

generated predicted temperatures (mean ± SD = 17.36 ± 0.40 ºC) for 15 years in advance of our 

study period using the slope and intercept of observed minimum of daily mean SSTs in the past 
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15 years. Since these predicted temperatures may vary, we incorporated a measurement error of 

0.5 to all temperatures to incorporate more realistic uncertainty. Using these predicted 

temperatures and their associated measurement errors, we forecasted annual Kemp’s ridley cold-

stunning counts 15 years into the future. By 2031, the posterior mean predicted Kemp’s ridleys 

cold-stunning count was 2,349 (95% CI = 1,328 - 3,933) (Fig. 16).  

If the Kemp’s ridleys age structure as reported by Gallaway et al. (2016) remains the 

same for the next 15 years, we estimate that approximately 1.8% of the juveniles (age classes 

two, three, and four) may cold-stun by 2031.  

4.5 Discussion 

Our study indicates that warming SST in the Gulf of Maine are associated with the 

increasing numbers of Kemp’s ridley cold-stunned in Cape Cod Bay each year. The minimum of 

daily mean SSTs, alone, measured between late October thru early November, best explained the 

magnitude of annual Kemp’s ridley cold-stunning events in Cape Cod Bay. However, maximum 

and mean of daily mean SSTs, both measured between August and early October, were collinear 

with minimum of daily mean SSTs. Thus, while warmer SSTs in late fall are indicative of higher 

annual cold-stunning counts, so are warmer SSTs in late summer and early fall. While our 

Bayesian count model found SST to be the most important variable in explaining the number of 

cold-stunned Kemp’s ridleys, the model would be improved with a greater understanding of the 

small and large scale oceanic processes at work, such as eddies, currents, and thermoclines, 

which all operate on multiple spatial and temporal scales. However, our single covariate likely 

acts as a proxy for these processes, and our model does appear to explain the observed Kemp’s 

ridleys cold-stunning trend. Surprisingly, the covariate number of hatchlings was not considered 

important in our full candidate count model, so we dropped this variable from the final model. 
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Although the Kemp’s ridley nesting population has increased over the years of our analyses, our 

results suggest the number of hatchlings released is not linked with the magnitude of cold-

stunning events in Cape Cod Bay. Potentially, this statistical relationship between strandings and 

hatchlings was dampened due to variable hatchling survival (based on surface circulation 

patterns near nesting beaches) and due to the variable probability of turtles moving from the 

western Gulf of Mexico nesting beaches into the Atlantic (Putman et al. 2013). However, the 

hatchling indices do provide our best insight into the potential connection between population 

growth and cold stunning events.   

Over the last decade, SSTs are warming 99% faster than the global ocean within the Gulf 

of Maine (Pershing et al. 2015). These warmer SSTs may be allowing Kemp’s ridley to expand 

their northerly distribution along the northeast Atlantic continental shelf, as reported for many 

fish species (Kleisner et al. 2017). Although numbers of Kemp’s ridley cold-stun strandings 

increased in both Cape Cod Bay and Long Island Sound since the 1970s, the magnitude of sea 

turtles cold-stunned have increased dramatically within Cape Cod Bay in comparison to Long 

Island Sound. This supports the hypothesis that the Kemp’s ridley northerly neritic 

developmental grounds may have shifted more northward along the Atlantic coast, potentially in 

response to warming SSTs in the Gulf of Maine. Although Carr (1986, 1987) suggested that 

neonate and juvenile sea turtles disperse passively with wind and currents, Putman et al. (2012), 

Mansfield et al. (2014), and Putman and Mansfield 2015 demonstrated juvenile turtles are highly 

capable of active dispersal. Further, Mansfield et al. (2014), tracked neonate loggerheads with 

satellite telemetry and showed turtles may select for sea surface habitats based on thermal 

constraints. If these warmer thermal habitats are driving turtles to recruit to more northerly 

neritic developmental grounds, Cape Cod Bay may act as a natural catchment during the 
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southerly migration in colder months. As suggested by Briscoe et al. (2017), if the warmer Gulf 

of Maine temperatures are acting as an ecological bridge that promotes higher levels of 

recruitment of organisms into nearshore waters from the Gulf Stream, numbers of cold-stunned 

Kemp’s ridley turtles may well continue to increase over time as suggested by our mean 

prediction of 2,349 (95% CI = 1,328, 3,933) cold-stunned by 2031.  

While we were unable to explain all outlier cold-stun years (1999, 2002, and 2014), we 

suggest Hurricane Arthur may have contributed to the high cold-stun count in 2014 (n = 1,188). 

Hurricane Arthur (1–5 July, 2014, https://www.nhc.noaa.gov/data/tcr/AL012014_Arthur.pdf), a 

category 2 hurricane (on Saffir-Simpson Hurricane Wind Scale) was an unusually early and 

severe hurricane to hit the northeast U.S. This storm may have 1) warmed waters, promoting sea 

turtle immigration into nearshore areas, or 2) generated enough wind and current to force sea 

turtles into nearshore waters (Monzón-Argüello et al. 2012). Since we were unable to assess this 

with our methods, we suggest future studies to consider anomalous hurricanes as potential 

predictors for atypically large cold-stunning events.   

When evaluating the importance of cold-stunning recovery and rehabilitation efforts in 

the northeast U.S., it is important to consider the proportion of the Kemp’s ridley population 

affected, and whether juvenile Kemp’s ridleys in the Atlantic return to the Gulf of Mexico to 

reproduce. At the population level, cold-stunning may be affecting only a small fraction of the 

overall Kemp’s ridley population. Assuming the Kemp’s ridley age structure proportions 

reported by Gallaway et al. (2016) remain the same over time, we estimate that less than 2% of 

the juveniles within age classes two, three, and four may be cold-stunned in 2031. If there were 

no cold-stun recovery or rehabilitation efforts in 2031, cold-stunning deaths, estimated at 2,349 

turtles, would only be a small fraction of mortality for the projected overall Kemp’s ridley 
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population. Further, juvenile survivorship is often not considered as critical for population 

growth in comparison to the survivorship of larger sub-adult and adult turtles (Heppell 1998, 

Heppell et al. 2000, Heppell et al. 2002). However, depending on the future and variable Kemp’s 

ridley population demographics, cold stunning events may eventually account for a larger 

proportion of the population if more turtles are recruiting northward. We also do not know to 

what extent juvenile Kemp’s ridleys on the Atlantic coast return to the Gulf of Mexico to 

reproduce, but it has been suggested that turtles found on the Atlantic coast may have the 

navigational abilities to migrate back to the Gulf of Mexico (Meylan 1986, Musick and Limpus 

1997, TEWG 2000). Despite the potentially small effect on the overall population, we believe 

that it is important to continue recovery and rehabilitation efforts for juvenile cold-stunned 

Kemp’s ridleys in the northeast U.S. to bolster population resiliency. This increased resiliency is 

important considering the slowing trend of nesting Kemp’s ridley females and continuing 

anthropogenic threats to turtles in the Gulf of Mexico (Caillouet, 2010, 2011, 2014, Crowder and 

Heppell, 2011, Bevan et al. 2016, Gallaway et al. 2016, Kocmoud et al. 2019). Thus, we 

recommend that all conservation efforts, including the rehabilitation of cold-stunned Kemp’s 

ridleys, be continued for this critically endangered species.  

4.5.1 Conclusion 

Cold-stunning of Kemp’s ridleys within Cape Cod Bay has continued to increase over the 

past 40 years. Our model indicated that years with warmer SSTs in the Gulf of Maine in late 

summer thru late fall produce higher numbers of cold-stun turtles on an annual basis. This is 

particularly alarming, considering the Gulf of Maine is predicted to continue to warm at a rapid 

rate in coming decades (Pershing et al. 2015). Surprisingly, hatchlings released, a proxy for 

population abundance, was not identified as important by our Bayesian count model. Our 
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predictions follow the observed trend and predict there may be as many as 2,349 Kemp’s ridley 

turtles cold-stunned annually in Cape Cod Bay by 2031. Although cold-stunning likely only 

affects a small proportion of the overall population currently, we argue for the continuation of 

recovery and rehabilitation efforts to help maintain population resiliency of this critically 

endangered species. As we continue to observe warming SSTs in the northeast U.S. driven by 

climate change, managers need to be prepared for increasing numbers of Kemp’s ridley cold-stun 

strandings to occur. Future studies should 1) determine when Kemp’s ridleys typically immigrate 

into and emigrate out of coastal waters of the northeastern U.S., and 2) if juvenile Kemp’s ridley 

turtles migrate back into the Gulf of Mexico to breed as adults. 
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Fig. 12: Map of study area that spans across Cape Cod Bay, Gulf of Maine, and a portion of 

Georges Bank. Sea surface temperature compiled at 2.5 x 2.5 degrees with a special resolution of 

0.25 degrees (black boxes) across the area, using the Optimal Interpolation Sea Surface 

Temperature database from NOAA. 
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Fig. 13: Optimal climate time windows for selected variables. As identified by the climwin 

package for each aggregate SST statistic, including: mean, maximum, minimum, and standard 

deviation of the daily mean SSTs, number of days with daily SST below 10 ºC, and number of 

days with daily SST above 20 ºC. 
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Fig. 14: Time series plots. Raw (left) and logged (right) time series (1982-2016) of A) annual 

Kemp’s ridley cold-stun counts within Cape Cod Bay, B) minimum of the daily mean SST 

across late October thru early November within the study area, and C) number of hatchlings 

(lagged by two, three, four years and averaged). 
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Fig. 15: Kemp’s ridley cold-stun count versus minimum of the daily mean SST from late 

October thru early November. Included are posterior mean fitted values and 95% credible 

intervals. 
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Fig. 16: Observed and predicted Kemp’s ridley cold-stun count based on predicted future 

minimum of the daily mean SST (late October thru early November) within the study area. 
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CHAPTER 5 

SYNTHESIS AND FUTURE RESEARCH DIRECTION 

 

The overarching goal for my dissertation was to fill knowledge gaps surrounding immature 

sea turtles, a life history phase in which little is known about. Two major immature sea turtle 

research gaps are, 1) a lack of studies focused on population ecology and habitat use / behavior 

and, 2) a lack in applied conservation research focused on threats and management (Wildermann 

et al. 2018). With this dissertation, I provide both fundamental and applied research to address 

these two major research gaps. This research is necessary for resource managers to provide the 

best management solutions to mitigate past, current, and future threats. To do so, I conducted 

research across multiple scales ranging from mitigating direct human-wildlife interactions at the 

individual level (Chapter 2), to coastal movements and space use at the ecosystem level (Chapter 

3), and to large scale climate change impacts at the population level (Chapter 4). Chapter 2 

provides management suggestions for a snorkeler-turtle ecotourism venture while examining 

intra-individual repeatability at the individual level. Chapter 3 provides insight on the 

movements and connectivity of immature turtles within developmental habitats. Finally, Chapter 

4 examines the potential population-level impacts climate change may have on the number of 

cold stunned immature turtles in the Northwest Atlantic. These findings have important 

implications for behavioral and spatial ecology as well as sea turtle conservation. Here, I 

synthesize these findings within a broader context and as contributions to the greater field of sea 

turtle ecology and conservation. In addition, I provide future research avenues and address any 

caveats of these studies.  
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5.1 Behavior and spatial ecology of sea turtles and implications for management and 

conservation 

Conservation biology, focused on mitigating environmental damage arising from direct 

and indirect anthropogenic perturbations, has been traditionally examined at the population level 

(Soulè 1985). Whereas the field of conservation behavior, examined at the individual level, has 

been a relatively new and emerging field (Caro 2007, Berger-Tal et al. 2011). Chapter 2, focused 

on human-wildlife disturbance encounters, demonstrated turtles exhibit a range of intra-

individual level behavior strategies in response to disturbance. Within a population, there are 

multiple behavior strategies that are determined by evolutionary processes in which behaviors 

producing the fittest offspring were selected (Krebs and Davies 1997). However, human 

disturbances may disproportionally affect individuals within a population with different behavior 

strategies (e.g. bold vs. timid individuals). The fitness value of certain behaviors may be altered, 

and if negatively impacted, the population of focus may decline, further, evolutionary outcomes 

may be altered if disturbances are generationally persistent (Norris 2004). Thus, behavior-based 

management practices, meant to preserve multiple behavior strategies at the individual level, are 

important when attempting to build resilience into animal populations (Berger-Tal et al. 2011). 

Not limited to this specific ecotourism venture, the spatial-temporal variation of ecotourism 

tours, not those involving sea turtles (e.g., whale shark, manatee, whale and dolphin tours), may 

be critical to avoid disproportionally affecting one behavior type over others (e.g., missed 

foraging opportunities for timid individuals).  

Due to logistical constraints, I was only able to assess one location where snorkeler-turtle 

ecotourism was occurring. Ideally, this study would be replicated outside Culebra, Puerto Rico to 

other study sites, where similar snorkeler-turtle ventures exist, such as in Barbados and Hawaii 

(Landry and Taggart 2010). While I defined personality as repeatable individual differences in a 
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single context (i.e., disturbance response) that are consistent over time (Rèale et al. 2007), this 

study would have benefitted at exploring personality across multiple contexts such as exploratory 

and foraging behaviors. These contexts are difficult to assess with field observations and are 

often implemented in lab settings, making the approach of my study novel for exploring 

personality and behavior syndromes in the wild. Future research could include the use of 

accelerometer loggers to quantify the energy expenditure in response to disturbances as well as 

help to measure repeatable individual differences across multiple contexts (e.g., exploratory or 

foraging) over longer periods of time.  

Extending animal behaviors to the ecosystem level, Chapter 3 examined the coastal 

movements and space use of immature green turtles within an important developmental habitat, 

Culebra, Puerto Rico. Within the coastal ecosystem, the interaction between biological and 

environmental parameters influenced green turtle movements (or lack of movements). Further, 

movement behaviors, including habitat selection, dispersal, and spatial distribution shape how 

individuals and populations interact with one another (Lima and Zollner 1996, Wang and Grimm 

2007). Specifically, animal movements associated with maintaining a home range are closely 

linked with the acquisition of resources (e.g., food, shelter, mating). These movement data are 

also essential for informing management and conservation strategies (Cooke et al. 2004, Costa et 

al. 2012, Hays et al. 2016, Hays et al. 2019). For example, sea turtle management and, thus 

conservation, has been improved with tracking information ranging from MPA development 

(Hitipeuw et al. 2007, Mèndez et al. 2013, Dawson et al. 2017) to by-catch reduction (Peckham 

et al. 2007, Howell et al. 2008, Howell et al. 2015, Casale et al. 2017). While tracking data have 

led to greater sea turtle protection and informed management, there is little information for the 

immature life phase which could benefit from fine scale tracking (Wildermann et al. 2018). 
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Chapter 3 fills important knowledge gaps on immature green turtle ecology with insights on their 

movements, space use, and their habitats. I determine turtles within Culebra exhibit high site 

fidelity within the embayments surrounding the island, suggesting resources (e.g., food, shelter) 

are tightly clustered in this system. In addition to high site fidelity, the differing somatic growth 

rates across the embayments (Patrício et al. 2014) suggest foraging and shelter habitat quality are 

different across the embayments. Ultimately, top-down processes related to predation risk (e.g., 

tiger sharks) may also be driving the heterogenous spatial distribution of immature turtles in 

Culebra. Examining the spatial-temporal drivers within Manglar Bay, I determined lagoon 

habitats were favored, followed by seagrass habitat at night. Overall turtles were much less likely 

to be present in macroalgage habitat. Further, based on model outputs and the observed 

movement patterns, these data indicate turtles within Culebra utilize lagoon habitats as shelter, 

an alternative to reef structure around the perimeter of the island.  

The protection of habitats used by green turtles have a much greater impact than sea 

turtle conservation alone. Seagrass communities around the world are major primary producers, 

and provide shelter, food, and nursery grounds for a wide variety of marine organisms, including 

green sea turtles (Thayer et al. 1984). Further, seagrass communities are globally threatened 

(Waycott et al. 2009) and highly vulnerable to human disturbances (Grech et al. 2012). 

Herbivorous green turtles target specific plots of seagrass (Ogden 1980) and can continually crop 

these patches for up to a year (Bjorndal 1980). Green turtles typically crop the plant to the base, 

unlike other herbivores, which typically remove only small portions of plant tissue or uproot 

plants entirely (Moran and Bjorndal 2005). Turtle cropping eliminates dead growth and 

epiphytes that have attached to the leaves, preventing harmful algae colonization that creates 

hypoxic conditions and wasting disease in seagrass communities (Jackson et al. 2001). Further, 
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cropping promotes new mass growth from young shoots, which increases primary productivity 

and nutrient content of seagrass leaves. Hughes (1994) speculated that declines in populations of 

herbivores, such as turtles, may cause phase-shifting of benthic ecosystems to communities 

dominated by macroalgae. Jackson et al. (2001) suggested that massive dieoffs of seagrass in 

Florida Bay and Gulf of Mexico in the 1980’s may have been linked with decreases in green 

turtle populations. Considering green turtle populations are only a fraction of their historic size 

and their importance in maintaining functional coastal ecosystems, continued conservation 

strategies are needed for ecosystem and population resilience. 

While acoustic telemetry is an effective tool to understand the movement ecology of a 

given marine species (Hussey et al. 2015) there are many inherent challenges including tag 

retention, receiver positioning, coverage, and detection efficiency, and analytics (Brownscombe 

et al. 2019). When receivers are positioned in a tightly overlapping detection area, referred to as 

a VEMCO Positioning System (VPS), the approximate true position of a given detection may be 

determined via trilateration (Roy et al. 2014). However, VPSs are often limited in spatial extent 

due to financial constraints and thus researchers typically rely on passive acoustic telemetry 

array designs where a series of receivers are placed in areas of interest and provide presence-only 

data. Results may be biased based on receiver placement, for example, if a turtle used a certain 

habitat without a receiver in that area, one may incorrectly assume that habitat was not utilized. 

Within Culebra, I would have placed additional receivers further away from the embayments, 

particularly Manglar Bay, to definitively quantify whether turtles use those outer areas for shelter 

or not. Ideally, these issues would largely be resolved by using a receiver grid layout rather than 

selecting receiver positions by a point of interest method (Brownscombe et al. 2019). Further, 

each receiver varies by detection range (e.g., 1 m – 1 km) and efficiency depending on 
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surrounding environmental characteristics (Kessel et al. 2014). Varying detection coverage and 

efficiency were not formally incorporated into analyses, while important, it was ultimately 

impossible with my chosen analyses. I attempted to mitigate these issues by aggregating 

receivers and detections by either space or time. While difficult to formally incorporate, there are 

methods being developed to incorporate detection efficiency (Brownscombe et al. In Review). 

Further, acoustic tag retention in Culebra was limited, detection data and a mark-and-recapture 

study in Culebra indicated turtles shed transmitters typically in several months’ time. If these 

transmitters fell off within detection range of a receiver or multiple receivers, detection files 

often had hundreds to thousands of false-positive detections. Great care must be taken when 

examining detections due to false-positive detections. Tag retention may be improved by surgical 

implantation or attaching the transmitter to the underside of the flipper, similar to metal mark-

and-recapture flipper tags. Future studies would benefit from careful receiver positioning, 

incorporation of detection coverages and efficiency, and improved tagging methodologies to 

improve tag retention. Further, the integration of accelerometer and depth loggers in combination 

with acoustic telemetry transmitters would provide greater insight into immature turtle space use, 

habitat utilization, and of the energetic states / behavior profiles (e.g., foraging vs. resting) 

associated with the seascape. 

Current and future global climate change impacts may be one of the largest threats to 

animal populations (McCarty 2001, Garcia et al. 2014). Warmer temperatures and sea level rise 

are expected to decrease sea turtle hatchling success and available nesting habitats, and in-

addition, skew sex ratios (Butt et al. 2016, Laloë et al. 2016). In Chapter 4, I demonstrate the 

increasing Gulf of Maine (GOM) sea surface temperatures (SSTs), due to climate change, are 

linked with the increasing annual Kemp’s ridley cold stunning counts in the Northwest Atlantic. 
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One possible reason for the increased cold-stunned turtles may be because Kemp’s ridley 

northerly neritic developmental grounds have shifted northward. As immature turtles migrate 

southward in the fall they are now more likely intercepted by Cape Cod Bay and subsequently 

exposed to cold temperatures and become cold stunned. Such range or phenology shifts, 

resulting from increased SSTs, are well documented for other GOM species (see Staudinger et al. 

2019). Considering sea turtles are ectotherms and immature sea turtles have been shown to select 

habitats based on thermal constraints (Mansfield et al. 2014), it is not surprising immature 

Kemp’s ridleys would shift north with warmer GOM SSTs.  

In Chapter 4, using the Bayesian count model and forecasted SST projections, I predicted 

more than 2,300 Kemp’s ridley turtles may cold-stun annually by 2031. At the population level, 

this may only be a fraction of the overall Kemp’s ridley population, however, considering 

anthropogenic threats are increasing, I argue it is important for the continued rehabilitation of 

cold-stunned turtles. This is particularly important for Kemp’s ridleys considering the slowing 

trend of nesting Kemp’s ridley females in the Gulf of Mexico. In order to protect this critically 

endangered species management strategies must be proactive to build resilience into the 

population. Future research should focus on determining when immature Kemp’s ridely turtle 

immigrate into and emigrate out of coastal waters of the northeastern U.S. and if they migrate 

back into the Gulf of Mexico to breed as adults. While this study does help to explain this 

upward trend in cold-stun counts, it could be improved by incorporating small and large scale 

oceanic processes such as eddies, currents, and thermoclines. In addition, our model does not 

integrate how many hatchlings pass the Florida straits and onto the Atlantic coast annually, I 

used the lagged hatchling indices as a proxy which is, currently, the most accurate indicator 

available.  
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5.2 Analytical advancements 

 In this dissertation, I applied novel analytical methods to address research gaps related to 

immature sea turtle ecology and conservation. These advanced methodologies included 

multivariate and Bayesian statistics, network analysis, and machine learning algorithms. In 

Chapter 2, principal component analysis, a multivariate tool to reduce variable dimensionality, 

was used to identify two distinct immature green turtle personality types, ‘bold’ and ‘timid’. In 

Chapter 3, I used network analysis to examine regional connectivity and community structure 

among tagged immature green turtles. In addition, machine learning algorithms determined the 

optimal scale to evaluate habitat kernel densities. Selected habitats and their kernel densities 

were used in combination with a Bayesian presence-absence model to determine drivers of green 

turtle space use within Manglar Bay. This Bayesian presence-absence model also incorporated 

spatial and temporal autocorrelation structures. In Chapter 4, machine learning algorithms helped 

to identify the most important variables to model annual cold-stunned Kemp’s ridley counts. The 

model was implemented within a Bayesian framework which allowed for measurement error to 

be included at the covariate level.  

The collection of statistical tools used throughout this dissertation are not limited to sea 

turtle ecological studies. While these methods are complex, these type of analyses (e.g., 

multivariate, machine learning, Bayesian) have improved predictive power, ability to meet 

assumptions that are often violated, and, ultimately, a greater ability to explain the real 

underlying ecological processes than common analytical methods. As the field of ecology 

continues to advance, along with technological advances (e.g., the use of biologgers), statistical 

tools are evolving away from purely descriptive statistics to help answer questions at the 

individual, ecosystem, and population levels. 
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5.3 Summary  

 Overall, this dissertation has advanced our understanding of fundamental ecology and 

applied management of sea turtles and their habitats. To effectively protect and restore these 

threatened sea turtle populations, I argue sea turtle ecology and conservation must be examined 

at multiple scales. Here, within this dissertation, I examined human-wildlife interactions at the 

individual level, to coastal movements and space use at the ecosystem level, and to large scale 

climate change impacts at the population level. Each chapter provides direct management 

applications to help mitigate anthropogenic disturbances and to improve sea turtle conservation. 

These management suggestions include modifying ecotourism regulations, protecting coastal 

habitats, and for the recovery and rehabilitation of cold-stunned turtles. While these data and 

findings help to fill some of the many knowledge gaps in the immature sea turtle life history 

phase, they also contribute to the greater field of ecology. For example, these studies range from 

examining animal behavior respectabilities and personality in the wild, to drivers of animal 

movement, and to potential impacts of climate change. Throughout these chapters, novel 

statistical techniques, described in detail, were also used to improve our understanding of 

underlying ecological processes. These methods (e.g., multivariate, machine learning, Bayesian 

statistics) and their advantages over traditional analyses are not limited to questions regarding 

sea turtles but can also help to answer many other ecological questions. Ultimately, this 

dissertation fills fundamental and applied knowledge gaps and advocates to preserve sea turtle 

behaviors, habitats, and the individuals themselves to build population resiliency in an ever-

changing world. 
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APPENDIX A 

SUPPLEMENTAL: MOVEMENTS, CONNECTIVITY, AND SPACE USE OF IMMATURE 

GREEN TURTLES WITHIN COASTAL HABITATS, CULEBRA, PUERTO RICO: 

IMPLICATIONS FOR CONSERVATION 

 

 

 

 

Table A.4 Tagging, detection, and network analysis data for the 26 transmitters deployed on 21 

green turtles in Culebra, Puerto Rico.  
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ID Tag Date 
SCL 

(cm) 

Capture 

Location 

Detection 

Number 

Days 

Detected 

Days at 

Liberty 

Residency 

Index 

Station 

Number 
Paths 

Network 

Density 

Average 

Path 

Length 

Mean 

Betweeness 

TC01 26018 2013-12 43 Tortuga 1174 91 93 0.98 1 1 NA NA NA 

TC02 26017 2013-12 47 Tortuga 1222 79 80 0.99 1 1 NA NA NA 

TC03 26016 2013-12 46 Tortuga 1386 97 135 0.72 1 1 NA NA NA 

TC04 26015 2013-12 38 Tortuga 107351 568 600 0.95 1 1 NA NA NA 

TC05 26014 2013-12 42 Tortuga 2662 70 71 0.99 1 1 NA NA NA 

TC06 26013 2013-12 50 Tortuga 6179 147 147 1 1 1 NA NA NA 

TC07 26011 2013-12 47 Tortuga 1826 76 84 0.9 1 1 NA NA NA 

TC08 26010 2013-12 56 Tortuga 10247 237 443 0.53 1 1 NA NA NA 

TC09 26012 2014-03 58 Tortuga 3740 138 139 0.99 3 6 1 1.5 1 

TC10 26026 2014-03 58 Tortuga 1953 96 420 0.23 2 4 2 1 0 

TM01 30394 2013-03 44 Manglar 599 53 89 0.6 4 10 0.83 1.58 2.25 

TM02 30396 2013-03 58 Manglar 11013 162 163 0.99 8 28 0.5 2.07 10.75 

TM02 26002 2013-12 62 Manglar 26710 77 528 0.15 16 76 0.32 2.34 30.93 

TM03 30398 2013-03 42 Manglar 756 71 100 0.71 6 25 0.83 1.37 3.58 

TM03 26022 2013-12 49 Manglar 10026 105 105 1 11 76 0.69 1.5 13.34 

TM05 30401 2013-03 46 Manglar 1831 66 109 0.61 4 11 0.96 1.33 1.5 

TM06 30402 2013-03 44 Manglar 404 39 90 0.43 6 17 0.57 1.83 4.17 

TM06 26023 2014-03 52 Manglar 2473 48 48 1 9 34 0.47 1.79 14.67 

TM07 30431 2013-03 54 Manglar 14147 102 106 0.96 9 26 0.36 2.35 12.44 

TM08 28754 2013-03 67 Manglar 2621 51 61 0.84 8 22 0.39 2.48 11.88 

TM09 28757 2013-03 70 Manglar 8693 96 114 0.84 7 34 0.81 1.36 6.86 

TM10 26003 2013-12 41 Manglar 1146 25 25 1 7 28 0.67 1.6 8.14 

TM11 26004 2013-12 48 Manglar 5126 80 81 0.99 7 32 0.76 1.43 6.29 

TM12 26005 2013-12 56 Manglar 8258 81 81 1 8 34 0.61 1.71 9.38 

TM12 26031 2014-03 57 Manglar 4883 55 55 1 9 36 0.5 1.76 13.11 

TM13 26006 2013-12 40 Manglar 9788 64 362 0.18 12 54 0.41 2.15 19.17 

TM13 26029 2014-03 46 Manglar 6697 86 94 0.91 9 40 0.56 1.79 9.94 

TM14 26007 2013-12 45 Manglar 3599 68 74 0.92 10 49 0.54 1.68 14.33 

TM15 26008 2013-12 56 Manglar 9116 57 57 1 7 37 0.88 1.29 5.86 

TM16 26009 2013-12 53 Manglar 16001 96 108 0.89 9 50 0.69 1.53 8.61 

TM17 26019 2013-12 54 Manglar 143492 290 291 1 13 73 0.47 1.88 18.69 

TM18 26020 2013-12 53 Manglar 11706 74 135 0.55 6 28 0.93 1.27 5.5 

TM19 26021 2013-12 50 Manglar 23309 212 441 0.48 9 52 0.72 1.43 9 

TM20 26024 2013-12 63 Manglar 16694 132 276 0.48 12 66 0.5 1.64 13.29 

TM21 26025 2013-12 45 Manglar 29936 79 78 1.01 13 88 0.56 1.57 15.55 



91 

 

 

 

 

 

TM22 26030 2014-03 42 Manglar 22087 129 132 0.98 8 32 0.57 1.66 10.5 
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Table A.5 ANCOVA results presented, ANCOVA used to test the in difference in 

detection number, days at liberty, residency index, station count, number of paths 

between size (SCL) and capture location (Manglar Bay and Tortuga Bay). In addition, 

linear model results presented below, which were used to test for an effect between size 

and network density, APL, and Bi mean for only Manglar Bay individuals, Tortuga Bay did 

not have extensive detection coverage to calculate meaningful values. Significant results 

(p < 0.5) are indicated with an asterisk. 

 

 

Metric Factor df F p 

Detection number 
    

 
SCL 1,33 0.07 0.79  
Capture location 1,33 0.03 0.87 

Days detected 
    

 
SCL 1,33 0.34 0.56  
Capture location 1,33 3.52 0.07 

Days at liberty 
    

 
SCL 1,33 0.27 0.61  
Capture location 1,33 2.17 0.15 

Residency index 
    

 
SCL 1,33 0.46 0.50  
Capture location 1,33 0.08 0.78 

Station count 
    

 
SCL 1,33 7.53 0.01*  
Capture location 1,33 62.73 < 0.001 * 

Paths 
    

 
SCL 1,33 2.70 0.11  
Capture location 1,33 31.26 < 0.001 * 

Network density 
    

 
SCL 1,24 1.11 0.30 

Average path length 
    

 
SCL 1,24 1.72 0.20 

Mean betweeness 
    

 
SCL 1,24 1.56 0.22 
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Fig. A.17: Individual turtle detections at the hour level across the Manglar Bay receiver 

aggregate regions. Only the regions at the hour level with the maximum observed 

detections are shown.  
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Fig. A.18: Observed turtle counts (red) versus simulated turtle counts (black) via our final 

Bayesian presence and absence binomial model of nine turtles within Manglar Bay across 

60 days. The generated simulated data was derived from 1,000 simulations of the 

posterior distributions of our model’s regression parameters.  
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Fig. A.19: Using the results from final Bayesian presence and absence binomial model of 

nine turtles within Manglar Bay across 60 days, both GLM and GLMM with and without 

the spatial correlation structure is plotted.   
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a) 

 
 

 b)  
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 Fig. 

A.20: Autocorrelation function plots: a) derived from the raw data at each region (as 

indicated by R#) and b) from the final Bayesian presence and absence binomial model of 

nine turtles within Manglar Bay across 60 days (bottom) at each region (as indicated by 

R#) using three dependency structures as random walk smoothers, including: tide height, 

hour of the day, and study day. 
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APPENDIX B 

SUPPLEMENTAL: WARMING SEAS INCREASE COLD-STUNNING EVENTS FOR 

KEMP’S RIDLEY SEA TURTLES IN THE NORTHWEST ATLANTIC 
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Table B.6 Annual Kemp’s ridley cold-stun stranding count (1982–2016) from Cape Cod, 

Massachusetts, USA.Sea turtle cold-stunning data provided by the Sea Turtle Stranding 

and Salvage Network.  

 

Year 

Turtle cold-stun 

stranding count 

1982 3 

1983 6 

1984 27 

1985 13 

1986 14 

1987 22 

1988 6 

1989 33 

1990 40 

1991 13 

1992 10 

1993 36 

1994 25 

1995 100 

1996 10 

1997 28 

1998 34 

1999 218 

2000 42 

2001 90 

2002 240 

2003 79 

2004 32 

2005 44 

2006 86 

2007 27 

2008 63 

2009 167 

2010 213 

2011 131 

2012 237 

2013 162 

2014 1188 

2015 516 

2016 394 
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Table B.7Annual number of hatchlings released (1966–2018) from the Tamaulipas index 

beaches (Rancho Nuevo, Playa Dos-Barra Del Tordo, Barra Ostionales-

Tepehuajes).Hatchling data pre-2015 provided by NMFS and USFWS 2015, hatchling 

data from 2015 and after provided by personal communication Peña. 
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Year 

Hatchling 

count 

1966 30555 

1967 25305 

1968 15750 

1969 29820 

1970 32970 

1971 13755 

1972 15330 

1973 24675 

1974 24675 

1975 11100 

1976 36100 

1977 30100 

1978 48009 

1979 63996 

1980 37378 

1981 53282 

1982 48007 

1983 32921 

1984 58124 

1985 51033 

1986 48818 

1987 44634 

1988 62218 

1989 66802 

1990 74339 

1991 79749 

1992 92116 

1993 84605 

1994 107687 

1995 120038 

1996 114842 

1997 141770 

1998 167168 

1999 211355 

2000 365479 

2001 291268 

2002 357313 

2003 433719 
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2004 421684 

2005 569963 

2006 715002 

2007 902290 

2008 806079 

2009 1025027 

2010 663614 

2011 630182 

2012 927002 

2013 688792 

2014 519273 

2015 613495 

2016 769430 

2017 887382 

2018 729933 
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