
University of Massachusetts Amherst University of Massachusetts Amherst

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst

Doctoral Dissertations Dissertations and Theses

October 2019

Three Essays on Data-Driven Optimization for Scheduling in Three Essays on Data-Driven Optimization for Scheduling in

Manufacturing and Healthcare Manufacturing and Healthcare

Ekin Koker

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2

 Part of the Health Information Technology Commons, Industrial Engineering Commons,

Manufacturing Commons, Operational Research Commons, and the Other Operations Research, Systems

Engineering and Industrial Engineering Commons

Recommended Citation Recommended Citation
Koker, Ekin, "Three Essays on Data-Driven Optimization for Scheduling in Manufacturing and Healthcare"
(2019). Doctoral Dissertations. 1727.
https://scholarworks.umass.edu/dissertations_2/1727

This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at
ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

https://scholarworks.umass.edu/
https://scholarworks.umass.edu/dissertations_2
https://scholarworks.umass.edu/etds
https://scholarworks.umass.edu/dissertations_2?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1727&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1239?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1727&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1727&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/301?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1727&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/308?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1727&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/310?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1727&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/310?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1727&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_2/1727?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1727&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

THREE ESSAYS ON DATA-DRIVEN OPTIMIZATION FOR SCHEDULING IN

MANUFACTURING AND HEALTHCARE

A Dissertation Presented

by

EKIN KOKER

Submitted to the Graduate School of the

University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

SEPTEMBER 2019

Industrial Engineering & Operations Research

© Copyright by Ekin Koker 2019

All Rights Reserved

THREE ESSAYS ON DATA-DRIVEN OPTIMIZATION FOR SCHEDULING IN

MANUFACTURING AND HEALTHCARE

A Dissertation Presented

by

EKIN KOKER

Approved as to style and content by:

Hari Balasubramanian, Co-Chair

Ana Muriel, Co-Chair

Anna Nagurney, Member

Sundar Krishnamurty, Department Head

Mechanical and Industrial Engineering

DEDICATION

This dissertation is dedicated to my partner and soul mate, Mari Lentz.

v

ACKNOWLEDGMENTS

I would like to say thank you to everyone who has supported me through this journey.

My advisors, Prof. Ana Muriel and Hari Balasubramanian, who have been the most

amazing guides, both in research and in life. They are the best advisors any PhD student

could ever wish for.

Prof. Anna Nagurney, my dissertation committee member, who provided valuable

feedback for this dissertation and was supportive of all my academic efforts.

Ted Acworth and Mike Trachtman at Artaic, the industry collaborators who provided

funding for a research project that became the first essay of this dissertation through

Center for e-Design at UMass. The views expressed in this dissertation are of the authors

alone and not of Artaic or Center for e-Design.

National Science Foundation (NSF) who provided funding for another research project

that became the second essay of this dissertation through Grant #1254519. The views

expressed in this dissertation are of the authors alone and not of the National Science

Foundation. I also would like to acknowledge Joanne Alvarez-Oh of Quinnipiac

University, whose earlier work I have built upon in this essay.

Vivek Saxena and Josh Kuledge at Advisory Aerospace, the industry collaborators who

provided the research project that became the third essay of this dissertation.

A shout-out to my fellow PhD friends, Deniz Besik, Pritha Dutta, Destenie Nock and

Rodrigo Mercado Fernandez is well deserved. Without my peers this process would be

much harder.

vi

I would like to extend my sincere gratitude to my parents and my brother, Birgul, Cetin

and Baris Koker, who supported me throughout my entire life. I would not be where I am

without their help.

Finally, I would like to acknowledge my partner and soul mate, Mari Lentz and our cat,

Artemis. You were my family when it counted, and you always will be. This dissertation

would not have been possible without you. I love you both.

vii

ABSTRACT

THREE ESSAYS ON DATA-DRIVEN OPTIMIZATION FOR SCHEDULING IN

MANUFACTURING AND HEALTHCARE

SEPTEMBER 2019

EKIN KOKER, B.S., ISTANBUL TECHNICAL UNIVERSITY

M.S., SABANCI UNIVERSITY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Ana Muriel and Hari Balasubramanian

This dissertation consists of three essays on data-driven optimization for scheduling in

manufacturing and healthcare. In Chapter 1, we briefly introduce the optimization

problems tackled in these essays. The first of these essays deals with machine scheduling

problems. In Chapter 2, we compare the effectiveness of direct positional variables

against relative positional variables computationally in a variety of machine scheduling

problems and we present our results. The second essay deals with a scheduling problem

in healthcare: the team primary care practice. In Chapter 3, we build upon the two-stage

stochastic integer programming model introduced by Alvarez Oh (2015) to solve this

challenging scheduling problem of determining patient appointment times to minimize a

weighted combination of patient wait and provider idle times for the team practice. To

overcome the computational complexity associated with solving the problem under the

large set of scenarios required to accurately capture uncertainty in this setting, our

approach relies on a lower bounding technique based on solving an exhaustive and

mutually exclusive group of scenario subsets. Our computational results identify the

structure of optimal schedules and quantify the impact of nurse flexibility, patient

crossovers and no-shows. We conclude with practical scheduling guidelines for team

primary care practices. The third essay deals with another scheduling problem observed

viii

in a manufacturing setting similar to first essay, this time in aerospace industry. In

Chapter 4, we propose mathematical models to optimize scheduling at a tactical and

operational level in a job shop at an aerospace parts manufacturer and implement our

methods using real-life data collected from this company. We generalize the Multi-Level

Capacitated Lot-Sizing Problem (MLCLSP) from the literature and use novel

computational techniques that depend on the data structure observed to reduce the size of

the problem and solve realistically-sized instances in this chapter. We also provide a

sensitivity analysis of different modeling techniques and objective functions using key

performance indicators (KPIs) important for the manufacturer. Chapter 5 proposes

extensions of models and techniques that are introduced in Chapters 2, 3 and 4 and

outlines future research directions. Chapter 6 summarizes our findings and concludes the

dissertation.

keywords: Machine scheduling, computational comparison, mathematical modelling,

appointment scheduling, team primary care practice, two-stage stochastic integer

programming, multi-level capacitated lot-sizing, hierarchical job shop scheduling,

aerospace manufacturing

ix

CONTENTS

Page

ACKNOWLEDGMENTS ...v

ABSTRACT .. vii

LIST OF TABLES ... xiv

LIST OF FIGURES ... xvi

CHAPTER

1. INTRODUCTION ...1

2. COMPUTATIONAL COMPARISON OF DIRECT POSITIONAL

VARIABLES AGAINST RELATIVE POSITIONAL VARIABLES IN

MACHINE SCHEDULING PROBLEMS ..5

2.1. Introduction ..5
2.2. Literature Review...7

2.3. Mathematical Models...10

2.3.1. Parallel Machine Models ...10

2.3.1.1. Direct Positional Model ..11

 2.3.1.1.1. Sets ...11

 2.3.1.1.2. Parameters ..11
 2.3.1.1.3. Variables ..11

 2.3.1.1.4. Model ...12

2.3.1.2. Relative Positional Model ...13

 2.3.1.2.1. Parameters ..13
 2.3.1.2.2. Sets ...13

 2.3.1.2.3. Variables ..13
 2.3.1.2.4. Model ...14

2.3.2. Parallel Machine with Sequence-Dependent Setup Time

Models..15

2.3.2.1. Direct Positional Model ..15

 2.3.2.1.1. Sets ...15
 2.3.2.1.2. Parameters ..15

x

 2.3.2.1.3. Variables ..16

 2.3.2.1.4. Model ...16

2.3.2.2. Relative Positional Model ...17

 2.3.2.2.1. Parameters ..17
 2.3.2.2.2. Sets ...17

 2.3.2.2.3. Variables ..18
 2.3.2.2.4. Model ...18

2.3.3. Flexible Flow Shop Models (Tubing without Setups)19

2.3.3.1. Direct Positional Model ..19

 2.3.3.1.1. Sets ...19

 2.3.3.1.2. Parameters ..20

 2.3.3.1.3. Variables ..21
 2.3.3.1.4. Model ...21

2.3.3.2. Relative Positional Model ...23

 2.3.3.2.1. Parameters ..23
 2.3.3.2.2. Sets ...23
 2.3.3.2.3. Variables ..24

 2.3.3.2.4. Model ...25

2.3.4. Flexible Flow Shop with Sequence Dependent Setups

Models (Tubing with Setups)...27

2.3.4.1. Direct Positional Model ..27

 2.3.4.1.1. Sets ...27

 2.3.4.1.2. Parameters ..27
 2.3.4.1.3. Variables ..28
 2.3.4.1.4. Model ...29

2.3.4.2. Relative Positional Model ...30

 2.3.4.2.1. Parameters ..31

 2.3.4.2.2. Sets ...31
 2.3.4.2.3. Variables ..31
 2.3.4.2.4. Model ...32

2.4. Computational Study ...34

2.4.1. Experimental Setup ..34
2.4.2. Results ..35

xi

2.5. Conclusions ..37

2.5.1. Findings..37
2.5.2. Implementation ..38

2.5.2.1. Excel tool ..38
2.5.2.2. Node.js Implementation ..42

3. STOCHASTIC APPOINTMENT SCHEDULING IN A TEAM

PRIMARY CARE PRACTICE WITH TWO FLEXIBLE NURSES AND

TWO DEDICATED PROVIDERS ...43

3.1. Introduction ..43

3.2. Literature Review...47
3.3. Modeling Approach ...53

3.3.1. Description of Team Primary Care Practice53

3.3.2. Integer Programming Formulation ..55

 3.3.2.1 Sets…………...…………………………………………..55

 3.3.2.2 Parameters………………………………………………..55

 3.3.2.3 Variables…………………………………………………55

3.3.3. Tightening of the Formulation ...59

3.4. Scheduling Guidelines ...63

3.4.1. Scheduling Guidelines for HC Appointments64
3.4.2. Effect of Service Time Distribution and Variance70

3.4.3. Value of Stochastic Solution (VSS) ...72
3.4.4. Effect of Nurse Flexibility ...73

3.4.5. Effect of Crossovers ...75

3.4.6. Sensitivity to Cost Ratio and Granularity of Appointment

Slots..79

3.5. Computational Performance ..80

3.5.1. Effectiveness of Tightened Formulation ..80
3.5.2. Impact of Lower Bound Based on Solving Mutually

Exclusive Scenario Subsets..82

3.6. Extension To Incorporate No-Shows ...83
3.7. Conclusion ...85

4. HIERARCHICAL PLANNING AND EXECUTION MODELS FOR JOB

SHOP SCHEDULE OPTIMIZATION ..88

xii

4.1. Introduction ..88

4.2. Literature Review...93

4.3. Mathematical Models...98

4.3.1. Planning Model ..102

4.3.1.1. Sets ..102

4.3.1.2. Parameters ...103
4.3.1.3. Variables ...104

4.3.1.4. Model ..104

4.3.2. Execution Model ..106

4.3.2.1. Additional/Modified Sets ..106
4.3.2.2. Additional/Modified Parameters106
4.3.2.3. Additional/Modified Variables106
4.3.2.4. Model ..107

4.4. Industrial Test Application, Computational Methods And Results110

4.4.1. Description of Industrial Test Application110
4.4.2. Data Pre-Processing ...112

4.4.3. Computational Methods and Results ...117
4.4.4. Sensitivity Analysis of Order Linking, Objective Functions

and KPIs ...118

4.4.4.1. Delivery Model ...120

4.4.4.2. Revenue Model ...120
4.4.4.3. Customer Priority Model ..121
4.4.4.4. KPI Descriptions ...122

4.4.4.5. Sensitivity Analysis of Pegged vs. Unpegged

Model Performances ..123

4.4.4.6. Sensitivity Analysis of Different Objective

Functions ..126

4.5. Conclusion ...129

5. EXTENSIONS / FUTURE RESEARCH DIRECTIONS....................................131

5.1. Extensions of Chapter 2 ...131

5.2. Extensions of Chapter 3 ...132

5.2.1. Flexibility in Second Stage (Provider) ...132

5.2.1.1. Flexible Nurses and Providers with Crossover132
5.2.1.2. Proof of M2 ...135

xiii

5.2.2. Relaxation of Homogeneous Patient Assumption138

5.2.2.1. Sets ..138
5.2.2.2. Parameters ...139
5.2.2.3. Variables ...140
5.2.2.4. Model ..141

5.3. Extensions of Chapter 4 ...148

6. CONCLUSION ..150

APPENDICES

A.TP MODEL WITHOUT PATIENT CROSSOVERS………………………………..153

B.COMPUTATIONAL RESULTS FOR LOGNORMALLY DISTRIBUTED NURSE

AND PROVIDER SERVICE TIMES………………………………………………….154

C.PROOF OF THEOREMS 1 AND 2 (FROM ALVAREZ OH (2015))……………...160

BIBLIOGRAPHY ..165

xiv

LIST OF TABLES

Table Page

Table 2.4.1 Objective Function Value and Optimality Gap for Direct Positional and

Relative Positional Models for PMP and FFS with and without Setups 36

Table 2.4.2 T-Test for Optimality Gaps.. 36

Table 2.4.3 T-Test for Objective Function Values ... 37

Table 3.4.1: Comparison of results for practice, identical and staggered policies – small

instance (5 patients per provider) and empirical service times ... 67

Table 3.4.2: Comparison of results for dedicated vs. flexible nurses – small instances (5

patients per provider) for empirical and lognormal service times 74

Table 3.4.3: Comparison of results for dedicated vs. flexible nurses – small instance (5

patients per provider) and large instance (10 patients per provider) for lognormal service

times .. 75

Table 3.4.4: Comparison of results for dedicated vs. flexible nurses – large instance (10

patients per provider) and lognormal service times with regular and quadrupled variance

... 75

Table 3.4.5: Comparison of results for models with vs. without crossovers – small

instance (5 patients per provider) for empirical and lognormal service times 77

Table 3.4.6: Comparison of results for models with vs. without crossovers – small

instance (5 patients per provider) and large instance (10 patients per provider) for

lognormal service times .. 78

Table 3.4.7: Comparison of results for models with vs. without crossovers – large

instance (10 patients per provider) for lognormal service times with regular and

quadrupled variance .. 78

Table 3.5.1 Computational performance for models with and without tightening

constraints with allowance of 1 hour .. 81

Table 3.5.2 Computational performance for models with and without tightening

constraints with allowance of 4 hours ... 81

Table 4.4.1 Planning Instance Set Sizes ... 110

Table 4.4.2 Execution Instance Set Sizes ... 111

Table 4.4.3 Routing Information for part X .. 114

xv

Table 4.4.4 Cumulative Calculation of Weekly Requirements 114

Table 4.4.5 KPIs ... 123

Table 4.4.6 Comparison of Pegged vs. Unpegged Model Performances 124

Table 4.4.7 Comparison of Different Objective Functions... 126

Table 4.4.8 Customer Performance Comparison .. 129

Table B.1 Optimality Gaps for Medium (8 patients per provider) and Large Instances (10

patients per provider) with Lognormally Distributed Service Times with and without

Lower Bounds Created by Solving 100 Groups of 10-Scenario Problems……………154

Table B.2 Schedules for Small Instances (5 patients per provider) with Lognormally

Distributed Service Times for Cost Ratio 4 (0.8:0.2 idle time/wait time) and for Different

Service Time Variance………………………………………………………………….155

Table B.3 Schedules for Small Instances (5 patients per provider) with Lognormally

Distributed Service Times for Cost Ratio 2 (0.67:0.33 idle time/wait time) and for

Different Service Time Variance……………………………………………………….155

Table B.4 Schedules for Small Instances (5 patients per provider) with Lognormally

Distributed Service Times for Cost Ratio 1 (0.5:0.5 idle time/wait time) and for Different

Service Time Variance………………………………………………………………….156

Table B.5 Wait time vs. Idle Time(min) for Small Instances (5 patients per provider) with

Lognormally Distributed Service Times for different Cost Ratios (4 (0.8:0.2 idle

time/wait time), 2 (0.67:0.33 idle time/wait time) and 1 (0.5:0.5 idle time/wait

time))……………………………………………………………………………………157

Table B.6 Wait time vs. Idle Time (min) for Small Instances (5 patients per provider)

with Lognormally Distributed Service Times for Models with and without Crossovers for

Cost Ratio of 4 (0.8:0.2 weights on idle time/wait time)……………………………….157

Table B.7 Wait time vs. Idle Time (min) for Small Instances (5 patients per provider)

with Lognormally Distributed Service Times for Models with and without Crossovers for

Cost Ratio of 1 (0.5:0.5 weights on idle time/wait time)……………………………….158

Table B.8 Percentages of Crossovers for Instances with Lognormally Distributed Service

Times……………………………………………………………………………………158

Table B.9 Wait Time vs. Idle Time for Small Instance (5 patients per provider) with

Lognormally Distributed Service Times with 5-minute vs. 15-minute Appointment

Intervals…………………………………………………………………………………159

Table B.10 Wait Time vs. Idle Time for Small Instances (5 patients per provider) with

Lognormally Distributed Service Times with Continuous vs. 15-minute Appointment

Intervals…………………………………………………………………………………159

xvi

LIST OF FIGURES

Figure Page

Figure 2.1.1 Production Process at Artaic .. 7

Figure 2.5.1: TimeData Tab .. 40

Figure 2.5.2: Projects Tab – Left Side .. 40

Figure 2.5.3: Projects Tab – Right side... 41

Figure 2.5.4: Optimizer Tab .. 41

Figure 2.5.5: Gantt Tab ... 42

Figure 3.1.1: Patient flow example in a team practice seeing 6 patients 44

Figure 3.3.1:Distribution of service time with nurse and provider 54

Figure 3.4.1: Schedules for small, medium and large instances 65

Figure 3.4.2: Schedules of practice, identical, and staggered policies for small instances

... 66

Figure 3.4.3: Average wait time per patient ... 68

Figure 3.4.4: Average provider idle time between patients .. 68

Figure 3.4.5: 90th percentile of wait time per patient ... 69

Figure 3.4.6: 90th percentile provider idle time between patients 69

Figure 3.4.7: Schedules for small, medium and large instances with lognormally-

distributed service times ... 71

Figure 3.4.8: Schedules for small instances with lognormally-distributed service times

with increasing service time variances ... 72

Figure 3.5.1: Computational performance of tightened formulation 82

Figure 3.6.1: Schedules under different no-show rates ... 84

xvii

Figure 4.1.1 Bill of materials for a simple end item. Number in parenthesis represents the

number of units of that part required to build one unit of the parent part (units per parent,

UPP). ... 89

Figure 4.3.1 BOM in weeks (same as Figure 4.1.1) ... 99

Figure 4.3.2 BOM in days (BOO) .. 100

Figure 4.3.3 BOM+BOO .. 100

Figure 4.4.1 Data Pre-Processing Steps .. 113

Figure 4.4.2 Comparison of Unpegged vs. Pegged Model ... 119

Figure 4.4.3 Due Dates of Orders in Backlog ... 127

Figure 4.4.4 Total Revenue by Model Type ... 128

1

CHAPTER 1

INTRODUCTION

This dissertation consists of three essays on data-driven optimization for scheduling in

manufacturing and healthcare. Scheduling has been a focus of interest in operations

research literature for decades. In this work, we built upon existing mathematical models

and also develop new ones for a variety of problems both in deterministic and stochastic

settings. In particular, these research problems rise from real-life scenarios that occur in

manufacturing and healthcare environments. The need for optimal schedules in these

settings allowed us to collaborate and collect data from real-life practitioners and come

up with models, tools and guidelines that are driven by this data. The research problems

themselves are novel and challenging and we hope that the research presented here will

be useful for other practitioners in similar or different fields facing similar problems. The

dissertation is organized as follows:

In Chapter 2, we present two different types of modeling techniques for two different

problem families in machine scheduling: parallel machine and flexible flow shop. The

modeling techniques consist of different types of decision variables: one of them, we

refer to as direct positional variables while the other one we refer to as relative positional

variables. Direct positional variables assign jobs to different positions in different

machines while the relative positional variables determine whether one job comes before

or after another. Hence, the positions of jobs are decided relative to one another. We

compare these modeling techniques computationally using randomly generated instances

and we present our findings. The models are based on a problem observed at a

manufacturing company. We also collected data from this company and created random

2

instances based on this data. Finally, we implemented the most practically relevant model

as initially an Excel tool that can be used by anyone and then in a cloud environment

used by the company.

In Chapter 3, we build upon Alvarez Oh (2015)’s work on a healthcare scheduling

problem: the team primary care practice. Team primary care practice scheduling problem

consists of two nurses flexibly seeing patients before they are seen by their dedicated

provider. Alvarez Oh (2015) proposes a stochastic integer programming model that

minimizes a weighted combination of patients’ wait time and providers’ idle time. This

system can be defined as a tandem queue. The problem is novel because the First-Come-

First-Serve (FCFS) structure in the second stage (provider) creates a modeling

complexity which is called patient crossover. FCFS allows the patients that are scheduled

to be seen later during the session to be seen earlier if they complete before the patients

that are scheduled earlier. Hence the name patient crossover, since a patient crosses over

another one in schedule. This structure is not trivial to model and she overcomes this

using a second-largest logic exploiting the special circumstances that are created by

having two nurses and two providers. She then generates and solves random instances

with 1000 scenarios and comes up with practical insights that can be used by primary

care practices. We build upon her work by generalizing her insights using newly created

problem instances with a different distribution, tightening the optimality gap and

allowing one to solve for larger problem instances using a lower-bounding scheme,

analyzing the effects of problem characteristics such as the value of stochastic solution,

cost ratio, nurse flexibility, service time variability and patient crossover. This Chapter is

based on our work in Alvarez Oh et al. (2018).

3

In Chapter 4, we propose mathematical models to optimize scheduling at a tactical and

operational level in a job shop at an aerospace parts manufacturer and implement our

methods using real-life data collected from this company. Aerospace parts manufacturing

involves highly complex Bill-of-Materials (BOM) structures with many intermediate and

end products. Another complication observed at a manufacturing setting is the limited

amount of resources available at the job shop. Production and inventory levels of each

item at different time periods must be determined and setup times must also be

considered. Therefore, we generalize the Multi-Level Capacitated Lot-Sizing Problem

(MLCLSP) from the literature by solving it at first in tactical level (planning stage) and

then in operational level (execution stage). The problem thus becomes Hierarchical Job

Shop Scheduling Problem (HJSP) introduced here for the first time. Planning and

execution problems have different time horizons and different requirements, but they are

also connected because planning problem’s output becomes execution problem’s input.

In particular, we introduce large setups (that take longer than a day) for the first time and

consider due dates, backlogs and lost sales. We also use novel computational techniques

that depend on the data structure to reduce the size of the problem to solve realistically-

sized instances in this chapter. Finally, we provide a sensitivity analysis of different

modeling techniques and objective functions using key performance indicators (KPIs)

important for the manufacturer.

In Chapter 5, we propose extensions to what we have accomplished in Chapters 2, 3 and

4 and outline future research directions. In particular, the modeling techniques that are

described in Chapter 2 can be applied to more machine scheduling problem families and

further computational studies can be done using more random problem instances.

4

Moreover, the problem described in Chapter 3 can be further generalized by allowing

flexibility in the second stage (provider) and relaxing the homogeneity assumption on

patients, thus allowing different patient types to be scheduled and sequenced using a

single optimization model. Finally, the problem in Chapter 4 can be further generalized

by considering machine availability/maintenance requirements, computational findings

can be strengthened by doing a full computational study using benchmark instances or

heuristics from the literature can be compared to our exact methods.

We summarize our contributions and conclude the dissertation in Chapter 6.

5

CHAPTER 2

COMPUTATIONAL COMPARISON OF DIRECT POSITIONAL VARIABLES

AGAINST RELATIVE POSITIONAL VARIABLES IN MACHINE

SCHEDULING PROBLEMS

My advisor Ana Muriel and our industry partners Mike Trachtman and Ted Acworth

from Artaic have collaborated with me in this project and contributed to the work

described in this essay.

2.1. Introduction

Machine scheduling problems are one of the most widely studied problem families in

operations research. The roots of the problem go as far back as to late 19th and early 20th

century when the industrial revolution began. With the introduction of factories and

automation into our lives, the need for planning the shop floor arose. To be able to scale

the businesses into sustainable levels and make a profit, it was crucial to be as efficient as

possible with the usage of time. This also corresponded to the rise of operations research

as a discipline, right after World War 2. It was a prosperous era and customers were

demanding products faster and faster. Therefore, scheduling became the focus of

operations research, and in particular, machine scheduling.

However, the problem turned out to be challenging and most of the literature on machine

scheduling has focused on developing heuristics, testing meta-heuristics or exploring the

effectiveness of dispatching rules. Even though the prominence of computers allows us to

solve problems of larger scale today, the tradition of machine scheduling continued as it

is, mostly avoiding exact methods.

6

Therefore, comparison of different modeling techniques in exact approaches such as

mixed integer programming received surprisingly little attention in the machine

scheduling literature. In this essay, we compare the effectiveness of direct positional

variables against relative positional variables computationally in a variety of machine

scheduling problems such as parallel machine and flow shop scheduling and we present

our results.

The motivation behind our study is Artaic, a custom mosaic design studio and

manufacturer in Boston, MA. They use robotic fabrication, which allows for fast, flexible

and accurate assembly of unique tile work for their customers. They have two production

stages. The first one is tile tubing, which groups different colored tiles into tubes that feed

the tiles to the second stage, which is automated tile assembly. In this stage, the unique

design is loaded up into the computer, which is translated into schematics for the robotic

hand to build. The product is then packaged and shipped to the customer. The process can

be summarized in Figure 2.1.1 below:

7

Figure 2.1.1 Production Process at Artaic1

The second stage is the bottleneck of their production and can be modeled as a parallel

machine scheduling problem. Explicitly including the first stage makes the problem a

Flexible Flow Shop. That is why our focus is on mathematically modelling these two

problems and coming up with efficient exact methodologies to solve them. Because the

jobs at Artaic have due dates, our objective will be to minimize a weighted combination

of makespan (to reduce inventory) and total tardiness (to increase customer satisfaction).

The remainder of the essay is organized as follows: in Section 2.2, we briefly summarize

the literature. In Section 2.3, we present the mathematical models. In Section 2.4, we

present our computational study and the results. We conclude the essay in Section 2.5.

2.2. Literature Review

In our review, we will only focus on papers that compare exact approaches, due to the

enormity of the machine scheduling literature.

Stafford, Tseng and Gupta (2005) model Permutation Flowshop Scheduling Problem

using 2 mixed integer linear program families, which consist of 3 and 5 models,

respectively. The families are called Wagner and Manne, named after the early

1 Image from http://hizook.com/blog/2012/08/02/artaic-revolutionizing-tile-mosaics-

through-robotic-assembly

8

researchers proposing the modeling approaches. In our terminology, the Wagner family

of models corresponds to direct positional variables and the Manne family of models

corresponds to relative positional variables. They only consider makespan as their single

objective function. Their main purpose is to summarize the models found in the literature

and to present new models, compare problem size complexity, solve a common set of

problems to resolve conflicting results found in the literature and explore the limits of

solvable problems using new technologies. Even though the permutation flowshop differs

from our tubing model, which is flexible flowshop, their findings are in parallel with

ours, which is that the direct positional variables (Wagner family of models) dominate

relative positional variables (Manne family of models).

Keha, Kowala and Fowler (2008) model Single Machine Scheduling Problem using 4

different mixed integer programs, 2 of which use relative positional variables. One of the

remaining 2 is a direct positional model and the other one is a time-indexed model. They

consider weighted completion time, maximum lateness, number of tardy jobs and

weighted tardiness as their objective functions. They also consider release dates as a

factor in their computational study. For weighted completion time, they find that one of

the two relative positional models called linear ordering performs the best. They find that

the performance of various formulations depends on a lot of different factors, e.g. the

range of processing time. Because the direct positional model seems to be promising,

they improve upon their formulation by adding valid inequalities and present the results.

They believe that an expert in integer programming may prefer this formulation to

investigate further using a method such as branch and cut. They also find that even

9

though the time-indexed and linear ordering (relative positional) variables are used most

widely in the literature, the direct positional variables seems to have potential.

Unlu and Mason (2010) model Parallel Machine Scheduling Problem using 4 different

mixed integer programs, 2 of which use relative positional variables (called Network

model and Linear Ordering Model in the paper). One of the remaining 2 is direct

positional and the other one is time-indexed. Even though they propose models for non-

identical and unrelated parallel machine scheduling problems and a variety of different

objectives, they consider only makespan and weighted completion time as the objective

functions and only identical parallel machine in their computational study. They also

consider ready-times (release dates) in the computational study. They have a lengthy

analysis for each objective function/number of parallel machines/existence of release

dates combination, but to summarize, they believe the time-indexed and one of the

relative positional models is superior to others. Therefore, according to their results, the

direct positional model seems inferior which is contradicting our findings so far.

However, our study differentiates from theirs since we consider unrelated parallel

machines, setup times and due dates, the latter important since part of our objective

function is based on due dates and they do not consider them at all.

Demir and Isleyen (2013) model the Flexible Job Shop Scheduling Problem (FJSP) using

5 different mixed integer programs, 3 of which use relative positional variables. One of

the remaining 2 is a direct positional model and the other one is a time-indexed model,

which they propose for the first time for FJSP with unrelated parallel machines. Even

though they do a literature review of mathematical models for FJSP which include a

variety of different objectives, they consider only makespan as the objective function in

10

their computational study. Similarly, even though they mention setup times in the

literature review, they do not consider it in their models and their computational study.

Out of 5 models they consider, only one of the relative positional models is linear and the

remaining 4 models including direct positional model is nonlinear. The only linear model,

which is a relative positional model, outperforms the other ones in solution time and

optimality gap. Their newly-proposed, time-indexed model is outperformed by the other

ones. FJSP is similar to our model, which is FFSP, that explicitly considers tubing stage.

Yu and Hung (2016) model the Parallel Machine Scheduling problem using 3 different

mixed integer programs, all of which use relative positional variables. Their objective is

to minimize total tardiness in the existence of ready dates. They find that one of these

models that is enhanced with assignment variables (assigning jobs to machines), performs

the best. Since they do not consider direct positional variables at all, their results are not

directly comparable to ours.

Our contribution to the literature is thus four-fold: 1) above papers consider only one

problem family (single machine, job shop, flowshop or parallel machine) while our essay

encompasses multiple problem families, 2) we use makespan and tardiness as a combined

objective, as opposed to the typical use of single objectives for the most of the literature,

3) Sequence-dependent setups are considered as a complicating factor, which is not

considered in most of the comparison literature and 4) Our models are grounded and

tested based on a real-life application, which is not the case in most of the literature.

2.3. Mathematical Models

2.3.1. Parallel Machine Models

11

2.3.1.1. Direct Positional Model

2.3.1.1.1. Sets

J = 1..n Jobs

I = 1..m Machines

K = 1..n Positions on the machines

2.3.1.1.2. Parameters

n = number of jobs

m = number of machines

𝑑𝑗 = Due date of job 𝑗

𝑎𝑗,𝑖 = 1 if job 𝑗 can be done on machine 𝑖, 0 otherwise

𝑝𝑗,𝑖 = Processing time of job 𝑗 on machine 𝑖

𝑐𝑗 = Penalty for tardiness of job 𝑗

𝑠𝑗 = Earliest start time of job 𝑗

𝑀 = 𝑀𝑎𝑥𝑗(𝑠𝑗) + ∑ 𝑝𝑗,𝑖𝑖,𝑗 A very large number

2.3.1.1.3. Variables

𝐶max = Makespan - completion time of all jobs

𝑡𝑘,𝑖 = Completion time of job at positions k on machine 𝑖, 𝑘 =

0. . 𝑛

12

𝐷𝑗 = Tardiness of job 𝑗

𝑥𝑗,𝑘,𝑖 = 1 if job 𝑗 is assigned to position 𝑘 on machine 𝑖, 0

otherwise

2.3.1.1.4. Model

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐶max + ∑ 𝑐𝑗 ∗ 𝐷𝑗𝑗

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜
𝐶𝑚𝑎𝑥 ≥ 𝑡𝑘,𝑖 ∀ 𝑘 ∈ 𝐾 , 𝑖 ∈ 𝐼 (1)

𝑡𝑘,𝑖 ≥ 𝑡𝑘−1,𝑖 + ∑ 𝑝𝑗,𝑖 ∗ 𝑥𝑗,𝑘,𝑖𝑗 ∀ 𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼 (2)

𝑡𝑘,𝑖 ≥ (𝑠𝑗 + 𝑝𝑗,𝑖) ∗ 𝑥𝑗,𝑘,𝑖 ∀ 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼 (3)

𝑡𝑘,𝑖 ≤ 𝑑𝑗 + 𝑀 ∗ (1 − 𝑥𝑗,𝑘,𝑖) + 𝐷𝑗 ∀ 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼 (4)

∑ 𝑎𝑗,𝑖 ∗ 𝑥𝑗,𝑘,𝑖𝑖,𝑘 = 1 ∀ 𝑗 ∈ 𝐽 (5)

𝑡0,𝑖 = 0 ∀ 𝑖 ∈ 𝐼 (6)
∑ 𝑥𝑗,𝑘,𝑖𝑖,𝑘 ≤ 1 ∀ 𝑗 ∈ 𝐽 (7)

∑ 𝑥𝑗,𝑘,𝑖𝑗 ≤ 1 ∀ 𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾 (8)

∑ 𝑥𝑗,𝑘,𝑖𝑗 ≥ ∑ 𝑥𝑗,𝑘+1,𝑖𝑗 ∀ 𝑖 ∈ 𝐼, 𝑘 ∈ 1. . 𝑛 − 1 (9)

Objective function is to minimize a weighted combination of makespan and tardiness.

Constraint 1 ensures that the makespan is after all jobs on all machines are complete.

Constraint 2 calculates completion time of the job 𝑗 at position 𝑘 on machine 𝑖 as after

completion time of previous position 𝑘 − 1 plus the processing time of job 𝑗 on machine

𝑖. Constraint 3 ensures the completion time of job 𝑗 at position 𝑘 on machine 𝑖 as after

earliest start time of job 𝑗 plus processing time of job 𝑗, if job 𝑗 is assigned to position 𝑘

on machine 𝑖. Constraint 4 ensures if job 𝑗 is assigned to position 𝑘 on machine 𝑖 (notice

the big 𝑀 parameter becomes zero), then it must be completed at its due date or a

tardiness is incurred. Constraint 5 ensures all jobs are assigned to a machine that can

process that job and to a position on that machine. Constraint 6 initiates the position 0's

completion time as 0. Constraint 7 ensures job 𝑗 is assigned to at most one position and

one machine. Constraint 8 ensures at most one job is assigned to position 𝑘 on machine 𝑖.

13

These constraints also prevent more than one 𝑥𝑗𝑘𝑖 variable to become 1 when parameter

𝑎𝑗𝑖 is 0 for one of the x variables in constraint 5. Constraint 9 ensures smaller positions

are filled first.

2.3.1.2. Relative Positional Model

2.3.1.2.1. Parameters

Same as above

2.3.1.2.2. Sets

𝑄𝑖 = Jobs that can be processed on machine 𝑖 (𝑗 | 𝑎𝑗𝑖 > 0)

𝑄0𝑖 = {0} ∪ 𝑄𝑖 Jobs that can be processed on machine 𝑖, with artificial job

0

𝑄𝐿𝑖 = 𝑄𝑖 ∪ {𝑛 + 1} Jobs that can be processed on machine 𝑖, with artificial

final job 𝑛 + 1

𝑄0𝐿𝑖 = {0} ∪ 𝑄𝑖 ∪ {𝑛 + 1} Jobs that can be processed on machine 𝑖, with both artificial

jobs

𝑅𝑗 = Machines that job j requires (𝑖 | 𝑎_(𝑗, 𝑖) > 0)

2.3.1.2.3. Variables

𝐶max = Makespan - completion time of all jobs

𝑥𝑖,𝑗,𝑘 = 1 if job 𝑗 follows job 𝑘 on machine 𝑖, 0 otherwise

(𝑖 ∈ 𝐼, 𝑗 ∈ 𝑄𝐿𝑖 , 𝑘 ∈ 𝑄0𝑖)

14

𝑦𝑖,𝑗 = 1 if job j is assigned to machine i, 0 otherwise (𝑖 ∈ 𝐼, 𝑗 ∈

 𝑄0𝐿𝑖)

𝑡𝑗𝑖 = Completion time of job 𝑗 on machine 𝑖

𝐿𝑗 = Tardiness of job 𝑗

2.3.1.2.4. Model

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐶max + ∑ 𝑐𝑗 ∗ 𝐿𝑗𝑗

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜
𝐶𝑚𝑎𝑥 ≥ 𝑡𝑗,𝑖 ∀ (𝑗 ∈ 𝐽, 𝑖 ∈ 𝐼) (1)

 𝑡𝑗,𝑖 ≥ 𝑡𝑘,𝑖 + 𝑝𝑗,𝑖 − 𝑀 ∗ (1 − 𝑥𝑖,𝑗,𝑘) ∀ (𝑖 ∈ 𝐼, 𝑗 ∈ 𝑄𝑖, 𝑘 ∈ 𝑄𝑖: 𝑘 ≠ 𝑗) (2)

 𝑡𝑗,𝑖 ≥ (𝑠𝑗 + 𝑝𝑗,𝑖) ∗ (𝑦𝑖,𝑗) ∀ (𝑗 ∈ 𝐽, 𝑖 ∈ 𝑅𝑗) (3)

𝑡𝑗,𝑖 ≤ 𝑑𝑗 + 𝐿𝑗 + 𝑀 ∗ (1 − 𝑦𝑖,𝑗) ∀ (𝑗 ∈ 𝐽, 𝑖 ∈ 𝑅𝑗) (4)

∑ 𝑥𝑖,𝑗,𝑘𝑗 ∈𝑄𝐿𝑖:𝑗≠𝑘 = 𝑦𝑖,𝑘 ∀ (𝑖 ∈ 𝐼, 𝑘 ∈ 𝑄0𝑖) (5)

∑ 𝑥𝑖,𝑗,𝑘𝑘∈ 𝑄0𝑖:𝑘≠𝑗 = 𝑦𝑖,𝑗 ∀ (𝑖 ∈ 𝐼, 𝑗 ∈ 𝑄𝐿𝑖) (6)

𝑦𝑖,0 = 1 ∀ (𝑖 ∈ 𝐼) (7)
𝑦𝑖,𝑛+1 = 1 ∀ (𝑖 ∈ 𝐼) (8)
∑ 𝑦𝑖,𝑗 𝑖∈ 𝑅𝑗

 = 1 ∀ (𝑗 ∈ 𝐽) (9)

The objective function is to minimize the makespan and tardiness. Constraint 1 makes

sure that the makespan is after all jobs on all machines are complete. Constraint 2 allows

if job 𝑗 follows job 𝑘, completion time of job 𝑗 is after completion time of job 𝑘 plus

processing time of job 𝑗 on machine 𝑖. Constraint 3 ensures that the completion time of

job 𝑗 on machine 𝑖 after earliest start time of job 𝑗 plus processing time of job 𝑗, if job 𝑗 is

assigned to machine 𝑖. Constraint 4 ensures that completion time of job 𝑗 on machine 𝑖

must either be less than or equal to due date or tardiness occurs if job 𝑗 is assigned to

machine 𝑖. Constraint 5 assigns a successor for each job that is assigned to machine 𝑖,

first job succeeds artificial job 0. Constraint 6 assigns a predecessor for each job that is

assigned to machine 𝑖, last job precedes artificial final job. Constraint 7 ensures artificial

15

job 0 occurs on all machines. Constraint 8 ensures artificial final job occurs on all

machines. Constraint 9 assigns all jobs to machines that can process them.

2.3.2. Parallel Machine with Sequence-Dependent Setup Time Models

2.3.2.1. Direct Positional Model

2.3.2.1.1. Sets

J = 1..n Jobs

I = 1..m Machines

K = 1..n Positions on the machines

U = 1..o Geometries

2.3.2.1.2. Parameters

n = number of jobs

m = number of machines

o = number of geometries

𝑑𝑗 = Due date of job 𝑗

𝑎𝑗,𝑖 = 1 if job 𝑗 can be done on machine 𝑖, 0 otherwise

𝑝𝑗,𝑖 = Processing time of job 𝑗 on machine 𝑖

𝑐𝑗 = Penalty for tardiness of job 𝑗

𝑠𝑗 = Earliest start time of job 𝑗

16

𝑓𝑢,𝑣,𝑖 = Setup time from geometry 𝑢 to 𝑣 on machine 𝑖

𝑔𝑢,𝑖 = Initial setup time of geometry 𝑢 on machine 𝑖

𝑞𝑗,𝑢 = 1 if job 𝑗 is geometry 𝑢, 0 otherwise

𝑀 = 𝑀𝑎𝑥𝑗(𝑠𝑗) + ∑ 𝑝𝑗,𝑖 + ∑ 𝑓𝑢,𝑣,𝑖 + ∑ 𝑔𝑢,𝑖𝑢,𝑖𝑢,𝑣,𝑖𝑖,𝑗 A very large number

2.3.2.1.3. Variables

𝐶max = Makespan - completion time of all jobs

𝑡0..𝑛,𝑖 = Completion time of jobs at positions 0 through n on machine 𝑖

𝐷𝑗 = Tardiness of job 𝑗

𝑥𝑗,𝑘,𝑖 = 1 if job 𝑗 is assigned to position 𝑘 on machine 𝑖, 0 otherwise

𝑦𝑢,𝑣,𝑖,𝑘 = 1 if there is a setup from geometry 𝑢 to 𝑣 on machine 𝑖 at position 𝑘; 0

otherwise.

2.3.2.1.4. Model

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐶max + ∑ 𝑐𝑗 ∗ 𝐷𝑗𝑗

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜
𝐶𝑚𝑎𝑥 ≥ 𝑡𝑘,𝑖 ∀ 𝑘 ∈ 𝐾 , 𝑖 ∈ 𝐼 (1)
𝑡𝑘,𝑖 ≥ 𝑡𝑘−1,𝑖 + ∑ 𝑝𝑗,𝑖 ∗ 𝑥𝑗,𝑘,𝑖𝑗 + ∑ 𝑓𝑢,𝑣,𝑖 ∗ 𝑦𝑢,𝑣,𝑖,𝑘𝑢,𝑣 ∀ 𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼 (2)

𝑡𝑘,𝑖 ≥ (𝑠𝑗 + 𝑝𝑗,𝑖) ∗ 𝑥𝑗,𝑘,𝑖 ∀ 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼 (3)

𝑡𝑘,𝑖 ≤ 𝑑𝑗 + 𝑀 ∗ (1 − 𝑥𝑗,𝑘,𝑖) + 𝐷𝑗 ∀ 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼 (4)

∑ 𝑎𝑗,𝑖 ∗ 𝑥𝑗,𝑘,𝑖𝑖,𝑘 = 1 ∀ 𝑗 ∈ 𝐽 (5)

𝑡0,𝑖 = ∑ 𝑞𝑗,𝑢 ∗ 𝑔𝑢,𝑖 ∗ 𝑥𝑗,1,𝑖𝑢,𝑗 ∀ 𝑖 ∈ 𝐼 (6)

∑ 𝑥𝑗,𝑘,𝑖𝑖,𝑘 ≤ 1 ∀ 𝑗 ∈ 𝐽 (7)

∑ 𝑥𝑗,𝑘,𝑖𝑗 ≤ 1 ∀ 𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾 (8)

∑ 𝑥𝑗,𝑘,𝑖𝑗 ≥ ∑ 𝑥𝑗,𝑘+1,𝑖𝑗 ∀ 𝑖 ∈ 𝐼, 𝑘 ∈ 1. . 𝑛 − 1 (9)

 ∑ 𝑞𝑗,𝑢 ∗ 𝑥𝑗,𝑘−1,𝑖𝑗 + ∑ 𝑞𝑙,𝑣 ∗ 𝑥𝑙,𝑘,𝑖𝑙 ≤ 𝑦𝑢,𝑣,𝑖,𝑘 + 1 ∀ (𝑖 ∈ 𝐼, 𝑘 ∈ 2. . 𝑛, 𝑢 ∈ 𝑈, 𝑣 ∈ 𝑈) (10)

17

Constraint 1 makes sure that the makespan is after all jobs on all machines are complete.

Constraint 2 calculates completion time of the job 𝑗 at position 𝑘 on machine 𝑖 as after

completion time of previous position 𝑘 − 1 plus the processing time of job 𝑗 on machine

𝑖 plus the setup time from geometry 𝑢 to geometry 𝑣 on machine 𝑖, if there is a setup at

that position. Constraint 3 ensures the completion time of job 𝑗 at position 𝑘 on machine 𝑖

as after earliest start time of job 𝑗 plus processing time of job 𝑗, if job 𝑗 is assigned to

position 𝑘 on machine 𝑖. Constraint 4 ensures if job 𝑗 is assigned to position 𝑘 on

machine 𝑖 (notice the big M parameter becomes zero), then it must be completed at its

due date or a tardiness is incurred. Constraint 5 ensures all jobs are assigned to a machine

that can process that job and to a position on that machine. Constraint 6 initiates the

position 0's completion time as the initial setup time of job 𝑗 at position 1, job 𝑗 being

geometry 𝑢. Constraint 7 ensures job 𝑗 is assigned to at most one position and one

machine. Constraint 8 ensures at most one job is assigned to position 𝑘 on machine 𝑖.

Constraint 9 ensures smaller positions are filled first. Constraint 10 ensure that if job 𝑗,

which is geometry 𝑢, and job 𝑙, which is geometry 𝑣, is assigned to positions 𝑘 − 1 and

𝑘, then there is a setup from geometry 𝑢 to 𝑣.

2.3.2.2. Relative Positional Model

2.3.2.2.1. Parameters

Same as above

2.3.2.2.2. Sets

𝑄𝑖 = Jobs that can be processed on machine 𝑖 (𝑗 | 𝑎𝑗𝑖 > 0)

18

𝑄0𝑖 = {0} ∪ 𝑄𝑖 Jobs that can be processed on machine 𝑖, with artificial job 0

𝑄𝐿𝑖 = 𝑄𝑖 ∪ {𝑛 + 1} Jobs that can be processed on machine 𝑖, with artificial final job

𝑛 + 1

𝑄0𝐿𝑖 = {0} ∪ 𝑄𝑖 ∪ {𝑛 + 1} Jobs that can be processed on machine 𝑖, with both artificial

jobs

𝑅𝑗 = Machines that job j requires (𝑖 | 𝑎_(𝑗, 𝑖) > 0)

2.3.2.2.3. Variables

𝐶max = Makespan - completion time of all jobs

𝑥𝑖,𝑗,𝑘 = 1 if job 𝑗 follows job 𝑘 on machine 𝑖, 0 otherwise (𝑖 ∈ 𝐼, 𝑗 ∈ 𝑄𝐿𝑖 , 𝑘 ∈ 𝑄0𝑖)

𝑦𝑖,𝑗 = 1 if job j is assigned to machine 𝑖, 0 otherwise (𝑖 ∈ 𝐼, 𝑗 ∈ 𝑄0𝐿𝑖)

𝑡𝑖,𝑗 = Completion time of job j on machine 𝑖, j=0,1…..,n.

𝐿𝑗 = Tardiness of job 𝑗

2.3.2.2.4. Model

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐶max + ∑ 𝑐𝑗 ∗ 𝐿𝑗𝑗

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜
𝐶𝑚𝑎𝑥 ≥ 𝑡𝑖,𝑗 ∀ (𝑗 ∈ 𝐽, 𝑖 ∈ 𝐼) (1)

 𝑡𝑖,𝑗 ≥ 𝑡𝑖,𝑘 + 𝑝𝑗,𝑖 + ∑ 𝑞𝑗,𝑢 ∗ 𝑞𝑘,𝑣 ∗ 𝑓𝑢,𝑣,𝑖𝑢,𝑣 − 𝑀 ∗ (1 − 𝑥𝑖,𝑗,𝑘) ∀ (𝑖 ∈ 𝐼, 𝑗 ∈ 𝑄𝑖 , 𝑘 ∈ 𝑄𝑖: 𝑘 ≠ 𝑗)

 (2)

 𝑡𝑖,𝑗 ≥ (𝑠𝑗 + 𝑝𝑗,𝑖) ∗ (𝑦𝑖,𝑗) ∀ (𝑗 ∈ 𝐽, 𝑖 ∈ 𝑅𝑗) (3)

𝑡𝑖,𝑗 ≤ 𝑑𝑗 + 𝐿𝑗 + 𝑀 ∗ (1 − 𝑦𝑖,𝑗) ∀ (𝑗 ∈ 𝐽, 𝑖 ∈ 𝑅𝑗) (4)

∑ 𝑥𝑖,𝑗,𝑘𝑗 ∈𝑄𝐿𝑖:𝑗≠𝑘 = 𝑦𝑖,𝑘 ∀ (𝑖 ∈ 𝐼, 𝑘 ∈ 𝑄0𝑖) (5)

∑ 𝑥𝑖,𝑗,𝑘𝑘∈ 𝑄0𝑖:𝑘≠𝑗 = 𝑦𝑖,𝑗 ∀ (𝑖 ∈ 𝐼, 𝑗 ∈ 𝑄𝐿𝑖) (6)

𝑡𝑖,0 = ∑ 𝑞𝑗,𝑢 ∗ 𝑔𝑢,𝑖 ∗ 𝑥𝑖,𝑗,0𝑢∈ 𝑈,𝑗∈ 𝑄𝑖
 ∀ 𝑖 ∈ 𝐼 (7)

𝑦𝑖,0 = 1 ∀ (𝑖 ∈ 𝐼) (8)
𝑦𝑖,𝑛+1 = 1 ∀ (𝑖 ∈ 𝐼) (9)
∑ 𝑦𝑖,𝑗 𝑖∈ 𝑅𝑗

 = 1 ∀ (𝑗 ∈ 𝐽) (10)

19

𝑡𝑖,𝑗 ≥ 𝑡𝑖,0 + 𝑝𝑗,𝑖 − 𝑀 ∗ (1 − 𝑥𝑖,𝑗,0) ∀(𝑖 ∈ 𝐼, 𝑗 ∈ 𝑄𝑖) (11)

The objective function is to minimize the makespan and tardiness. Constraint 1 makes

sure that the makespan occurs after all jobs on all machines are complete. Constraint 2

allows if job 𝑗 follows job 𝑘, completion time of job 𝑗 is after completion time of job 𝑘

plus processing time of job 𝑗 on machine 𝑖 and setup time from geometry 𝑢 to geometry 𝑣

on machine 𝑖 (given job 𝑗 is geometry 𝑢 and job 𝑘 is geometry 𝑣). Constraint 3 ensures

that the completion time of job 𝑗 on machine 𝑖 after earliest start time of job 𝑗 plus

processing time of job 𝑗, if job 𝑗 is assigned to machine 𝑖. Constraint 4 ensures that

completion time of job 𝑗 on machine 𝑖 must either be less than or equal to due date or

tardiness occurs if job 𝑗 is assigned to machine 𝑖. Constraint 5 assigns a successor for

each job that is assigned to machine 𝑖, first job succeeds artificial job 0. Constraint 6

assigns a predecessor for each job that is assigned to machine 𝑖, last job precedes

artificial final job. Constraint 7 initiates the job 0's completion time as the initial setup

time of job 𝑗 at position 1, job 𝑗 being geometry 𝑢. Constraint 8 ensures artificial job 0

occurs on all machines. Constraint 9 ensures artificial final job occurs on all machines.

Constraint 10 assigns all jobs to machines that can process them. Constraint 11 allows if

job 𝑗 follows job 0, completion time of job 𝑗 is after initial setup time (completion time of

job 0) plus processing time of job 𝑗 on machine 𝑖.

2.3.3. Flexible Flow Shop Models (Tubing without Setups)

2.3.3.1. Direct Positional Model

2.3.3.1.1. Sets

J = 1..n Jobs

20

I = 1..m Machines

𝐼𝑡 ∈ 𝐼 Machines that require tubing

𝐼𝑛𝑡 ∈ 𝐼 Machines that do not require tubing

K = 1..n Positions on the machines

U = 1..o Geometries

H = 1..e Tubing Stations

2.3.3.1.2. Parameters

n = number of jobs

m = number of machines

o = number of geometries

e = number of tubing stations

𝑑𝑗 = Due date of job 𝑗

𝑎𝑢,𝑖 = 1 if geometry 𝑢 can be done on machine 𝑖, 0

otherwise

𝑝𝑢,𝑖 = Unit processing time of geometry 𝑢 on machine 𝑖

𝑐𝑗 = Penalty for tardiness of job 𝑗

𝑠𝑗 = Earliest start time of job 𝑗

𝑞𝑗,𝑢 = 1 if job 𝑗 is geometry 𝑢, 0 otherwise

21

𝑟𝑢,ℎ = Unit tubing time of geometry 𝑢 on tubing station ℎ

𝑤𝑢,ℎ = 1 if geometry 𝑢 can be processed on station ℎ, 0

otherwise

𝛼𝑗 = Output of job 𝑗

𝑀 = 𝑀𝑎𝑥𝑗(𝑠𝑗) + ∑ 𝛼𝑗 ∗ 𝑞𝑗,𝑢 ∗ 𝑝𝑢,𝑖

𝑖∈ 𝐼,𝑗∈ 𝐽,𝑢∈ 𝑈

+ ∑ 𝛼𝑗 ∗ 𝑞𝑗,𝑢 ∗ 𝑟𝑢,ℎℎ∈ 𝐻,𝑗∈ 𝐽,𝑢∈ 𝑈 A very large number

2.3.3.1.3. Variables

𝐶max = Makespan - completion time of all jobs

𝑡0..𝑛,𝑖 = Completion time of jobs at positions 0 through n on

machine 𝑖

𝐿𝑗 = Tardiness of job 𝑗

𝑥𝑗,𝑘,𝑖 = 1 if job 𝑗 is assigned to position 𝑘 on machine 𝑖, 0

otherwise

𝜏0..𝑛,ℎ = Completion time of jobs at positions 0 through n on tubing station

ℎ

𝑧𝑗,𝑘,ℎ = 1 if job 𝑗 is assigned to position 𝑘 on tubing station ℎ, 0 otherwise

𝜌𝑗,𝑖 = Possible start time of job 𝑗 on machine 𝑖, after tubing

2.3.3.1.4. Model

22

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐶max + ∑ 𝑐𝑗 ∗ 𝐿𝑗𝑗

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜
𝐶𝑚𝑎𝑥 ≥ 𝑡𝑘,𝑖 ∀ 𝑘 ∈ 𝐾 , 𝑖 ∈ 𝐼 (1)
𝑡𝑘,𝑖 ≥ 𝑡𝑘−1,𝑖 + ∑ 𝑞𝑗,𝑢 ∗ 𝑝𝑢,𝑖 ∗ 𝛼𝑗 ∗ 𝑥𝑗,𝑘,𝑖𝑗,𝑢 ∀ 𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼 (2)

𝑡𝑘,𝑖 ≥ (𝜌𝑗.𝑖 + ∑ 𝑞𝑗,𝑢 ∗𝑢 𝑝𝑢,𝑖 ∗ 𝛼𝑗) − 𝑀 ∗ (1 − 𝑥𝑗,𝑘,𝑖) ∀ 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼 (3)

𝜌𝑗,𝑖𝑛𝑡
= 𝑠𝑗 ∀ 𝑗 ∈ 𝐽, 𝑖𝑛𝑡 ∈ 𝐼𝑛𝑡 (4)

𝑡𝑘,𝑖 ≤ 𝑑𝑗 + 𝑀 ∗ (1 − 𝑥𝑗,𝑘,𝑖) + 𝐿𝑗 ∀ 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼 (5)

∑ 𝑎𝑢,𝑖 ∗ 𝑞𝑗,𝑢 ∗ 𝑥𝑗,𝑘,𝑖𝑖,𝑘 = 1 ∀ 𝑗 ∈ 𝐽 (6)

𝑡0,𝑖 = 0 ∀ 𝑖 ∈ 𝐼 (7)
∑ 𝑥𝑗,𝑘,𝑖𝑖,𝑘 ≤ 1 ∀ 𝑗 ∈ 𝐽 (8)

∑ 𝑥𝑗,𝑘,𝑖𝑗 ≤ 1 ∀ 𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾 (9)

∑ 𝑥𝑗,𝑘,𝑖𝑗 ≥ ∑ 𝑥𝑗,𝑘+1,𝑖𝑗 ∀ 𝑖 ∈ 𝐼, 𝑘 ∈ 1. . 𝑛 − 1 (10)

 𝜏𝑘,ℎ ≥ 𝜏𝑘−1,ℎ + ∑ 𝑞𝑗,𝑢 ∗ 𝑟𝑢,ℎ ∗ 𝛼𝑗 ∗ 𝑧𝑗,𝑘,ℎ𝑗,𝑢 ∀ (𝑘 ∈ 𝐾, ℎ ∈ 𝐻) (11)

𝜏𝑘,ℎ ≥ (𝑠𝑗 + ∑ 𝑞𝑗,𝑢 ∗ 𝑟𝑢,ℎ ∗ 𝛼𝑗𝑢) ∗ 𝑧𝑗,𝑘,ℎ ∀ (𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾, ℎ ∈ 𝐻) (12)

∑ 𝑤𝑢,ℎ ∗ 𝑞𝑗,𝑢 ∗ 𝑧𝑗,𝑘,ℎℎ∈ 𝐻,𝑘∈ 𝐾,𝑢∈ 𝑈 = 1 − ∑ 𝑥𝑗,𝑘,𝑖𝑛𝑡𝑘∈ 𝐾 ∀ (𝑗 ∈ 𝐽, 𝑖𝑛𝑡 ∈ 𝐼𝑛𝑡) (13)

𝜏0,ℎ = 0 ∀ (ℎ ∈ 𝐻) (14)
 ∑ 𝑧𝑗,𝑘,ℎℎ,𝑘 ≤ 1 − ∑ 𝑥𝑗,𝑘,𝑖𝑛𝑡𝑘 ∀ (𝑗 ∈ 𝐽, 𝑖𝑛𝑡 ∈ 𝐼𝑛𝑡) (15)

∑ 𝑧𝑗,𝑘,ℎ𝑗 ≤ 1 ∀ (ℎ ∈ 𝐻, 𝑘 ∈ 𝐾) (16)

∑ 𝑧𝑗,𝑘,ℎ𝑗 ≥ ∑ 𝑧𝑗,𝑘+1,ℎ𝑗 ∀ (ℎ ∈ 𝐻, 𝑘 ∈ 1. . 𝑛 − 1) (17)

𝜌𝑗,𝑖𝑡
 + 𝑀 ∗ (1 − 𝑧𝑗,𝑘,ℎ) ≥ 𝜏𝑘,ℎ ∀ (𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾, ℎ ∈ 𝐻, 𝑖𝑡 ∈ 𝐼𝑡) (18)

Constraint 1 makes sure that the makespan is after all jobs on all machines are complete.

Constraint 2 calculates completion time of the job 𝑗 at position 𝑘 on machine 𝑖 as after

completion time of previous position 𝑘 − 1 plus the processing time of job 𝑗 on machine

𝑖. Constraint 3 ensures the completion time of job 𝑗 at position 𝑘 on machine 𝑖 as after

possible start time of job 𝑗 after tubing station, plus processing time of job 𝑗, if job 𝑗 is

assigned to position 𝑘 on machine 𝑖. For the machines that there is no tubing, the earliest

start time and possible start time after tubing are equal, using constraint 4. Constraint 5

ensures if job 𝑗 is assigned to position 𝑘 on machine 𝑖 (notice the big M parameter

becomes zero), then it must be completed at its due date or a tardiness is incurred.

Constraint 6 ensures all jobs are assigned to a machine that can process that job and to a

position on that machine. Constraint 7 initiates the position 0's completion time as 0.

Constraint 8 ensures job 𝑗 is assigned to at most one position and one machine. Constraint

23

9 ensures at most one job is assigned to position 𝑘 on machine 𝑖. Constraint 10 ensures

smaller positions are filled first. Constraint 11 calculates completion time of the job 𝑗 at

position 𝑘 on tubing station ℎ as after completion time of previous position 𝑘 − 1 plus

the tubing time of job 𝑗 on tubing station ℎ. Constraint 12 ensures the completion time of

job 𝑗 at position 𝑘 on tubing station ℎ as after earliest start time of job 𝑗 plus tubing time

of job 𝑗, if job 𝑗 is assigned to position 𝑘 on tubing station ℎ. Constraint 13 ensures all

jobs are assigned to a tubing station that can process that job and to a position on that

station, if the job is not assigned to a machine that doesn’t require tubing. Start time for

tubing at position 0 is zero using constrain 14. Constraint 15 ensures job j is assigned to

at most one position and one tubing station, if it is not assigned to a machine that doesn’t

require tubing. Constraint 16 ensures at most one job is assigned to position 𝑘 on tubing

station ℎ. Constraint 17 ensures smaller positions are filled first on tubing stations also.

Constraint 18 links tubing completion time of a job to possible start time on machines

that require tubing.

2.3.3.2. Relative Positional Model

2.3.3.2.1. Parameters

Same as above

2.3.3.2.2. Sets

𝑄𝑖 = Jobs that can be processed on machine 𝑖 (𝑗 | ∑ 𝑞𝑗𝑢 ∗ 𝑎𝑢𝑖𝑢 > 0)

𝑄0𝑖 = {0} ∪ 𝑄𝑖 Jobs that can be processed on machine 𝑖, with artificial job 0

24

𝑄𝐿𝑖 = 𝑄0𝑖 ∪ {𝑛 + 1} Jobs that can be processed on machine 𝑖, with artificial final job

𝑛 + 1

𝑄0𝐿𝑖 = {0} ∪ 𝑄𝑖 ∪ {𝑛 + 1} Jobs that can be processed on machine 𝑖, with both artificial

jobs

𝑅𝑗 = Machines that job j requires (𝑖 | ∑ 𝑞𝑗𝑢 ∗ 𝑎𝑢𝑖𝑢 > 0)

𝑊ℎ = Jobs that can be processed on tubing station ℎ (𝑗 | ∑ 𝑞𝑗𝑢 ∗ 𝑤𝑢ℎ𝑢 > 0)

𝑊0ℎ = {0} ∪ 𝑊ℎ Jobs that can be processed on station ℎ, with artificial job 0

𝑊𝐿ℎ = 𝑊ℎ ∪ {𝑛 + 1} Jobs that can be processed on station ℎ, with artificial final job 𝑛 +

1

𝑊0𝐿ℎ = {0} ∪ 𝑊ℎ ∪ {𝑛 + 1} Jobs that can be processed on station ℎ, with both artificial

jobs

𝑉𝑗 = Stations that job j requires (ℎ | ∑ 𝑞𝑗𝑢 ∗ 𝑤𝑢ℎ𝑢 > 0)

2.3.3.2.3. Variables

𝐶max = Makespan - completion time of all jobs

𝑥𝑖,𝑗,𝑘 = 1 if job 𝑗 follows job 𝑘 on machine 𝑖, 0 otherwise (𝑖 ∈ 𝐼, 𝑗 ∈ 𝑄𝐿𝑖 , 𝑘 ∈

 𝑄0𝑖)

𝑦𝑖,𝑗 = 1 if job j is assigned to machine 𝑖, 0 otherwise (𝑖 ∈ 𝐼, 𝑗 ∈ 𝑄0𝐿𝑖)

𝑡𝑖,0..𝑛 = Completion time of job 0..n on machine 𝑖

𝐿𝑗 = Tardiness of job 𝑗

25

𝜏𝑗,ℎ = Completion time of job 𝑗 on tubing station ℎ

𝑧𝑗,𝑘,ℎ = 1 if job 𝑗 is follows job 𝑘 on tubing station ℎ, 0 otherwise (ℎ ∈ 𝐻, 𝑗 ∈

 𝑊𝐿ℎ, 𝑘 ∈ 𝑊0ℎ)

𝜌𝑗,𝑖 = Possible start time of job 𝑗 on machine 𝑖, after tubing

𝜁𝑗,ℎ = 1 if job j is assigned to station ℎ, 0 otherwise (ℎ ∈ 𝐻, 𝑗 ∈ 𝑊0𝐿ℎ)

2.3.3.2.4. Model

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐶max + ∑ 𝑐𝑗 ∗ 𝐿𝑗𝑗

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜
𝐶𝑚𝑎𝑥 ≥ 𝑡𝑖,𝑗 ∀ (𝑗 ∈ 𝐽, 𝑖 ∈ 𝐼) (1)

 𝑡𝑖,𝑗 ≥ 𝑡𝑖,𝑘 + ∑ 𝑞𝑗,𝑢 ∗ 𝑝𝑢,𝑖 ∗ 𝛼𝑗𝑢 − 𝑀 ∗ (1 − 𝑥𝑖,𝑗,𝑘) ∀ (𝑖 ∈ 𝐼, 𝑗 ∈ 𝑄𝑖 , 𝑘 ∈ 𝑄𝑖: 𝑘 ≠ 𝑗) (2)

𝑡𝑖,𝑗 ≥ 𝜌𝑗,𝑖 + ∑ 𝑞𝑗,𝑢 ∗ 𝑝𝑢,𝑖 ∗ 𝛼𝑗𝑢 − 𝑀 ∗ (1 − 𝑦𝑖,𝑗) ∀ (𝑖 ∈ 𝐼, 𝑗 ∈ 𝑄𝑖) (3)

𝜌𝑗,𝑖𝑛𝑡
 = 𝑠𝑗 ∀ (𝑗 ∈ 𝐽, 𝑖𝑛𝑡 ∈ 𝐼𝑛𝑡) (4)

𝑡𝑖,𝑗 ≤ 𝑑𝑗 + 𝑀 ∗ (1 − 𝑦𝑖,𝑗) + 𝐿𝑗 ∀ (𝑖 ∈ 𝐼, 𝑗 ∈ 𝑄𝑖) (5)

∑ 𝑥𝑖,𝑗,𝑘𝑗∈ 𝑄𝐿𝑖:𝑗≠𝑘 = 𝑦𝑖,𝑘 ∀ (𝑖 ∈ 𝐼, 𝑘 ∈ 𝑄0𝑖) (6)

∑ 𝑥𝑖,𝑗,𝑘𝑘∈ 𝑄0𝑖:𝑘≠𝑗 = 𝑦𝑖,𝑗 ∀ (𝑖 ∈ 𝐼, 𝑗 ∈ 𝑄𝐿𝑖) (7)

𝑡𝑖,0 = 0 ∀ (𝑖 ∈ 𝐼) (8)
 𝑦𝑖,0 = 1 ∀ (𝑖 ∈ 𝐼) (9)
𝑦𝑖,𝑛+1 = 1 ∀ (𝑖 ∈ 𝐼) (10)
∑ 𝑦𝑖,𝑗𝑖∈ 𝑅𝑗

 = 1 ∀ (𝑗 ∈ 𝐽) (11)

𝑡𝑖,𝑗 ≥ 𝑡𝑖,0 + ∑ 𝑞𝑗,𝑢 ∗ 𝑝𝑢,𝑖 ∗ 𝛼𝑗𝑢 − 𝑀 ∗ (1 − 𝑥𝑖,𝑗,0) ∀ (𝑖 ∈ 𝐼, 𝑗 ∈ 𝑄𝑖) (12)

𝜏𝑗,ℎ ≥ 𝜏ℎ,𝑘 + ∑ 𝑞𝑗,𝑢 ∗ 𝑟𝑢,ℎ ∗ 𝛼𝑗𝑢 − 𝑀 ∗ (1 − 𝑧ℎ,𝑗,𝑘) ∀ (ℎ ∈ 𝐻, 𝑗 ∈ 𝑊ℎ , 𝑘 ∈ 𝑊ℎ: 𝑘 ≠ 𝑗) (13)

𝜏𝑗,ℎ ≥ (𝑠𝑗 + ∑ 𝑞𝑗,𝑢 ∗ 𝑟𝑢,ℎ ∗ 𝛼𝑗𝑢) ∗ 𝜁𝑗,ℎ ∀ (ℎ ∈ 𝐻, 𝑗 ∈ 𝑊ℎ) (14)

∑ 𝑧ℎ,𝑗,𝑘𝑗∈ 𝑊𝐿ℎ:𝑗≠𝑘 = 𝜁𝑘,ℎ ∀ (ℎ ∈ 𝐻, 𝑘 ∈ 𝑊0ℎ) (15)

∑ 𝑧ℎ,𝑗,𝑘𝑘∈ 𝑊0ℎ:𝑘≠𝑗 = 𝜁𝑗,ℎ ∀ (ℎ ∈ 𝐻, 𝑗 ∈ 𝑊𝐿ℎ) (16)

𝜁0,ℎ = 1 ∀ (ℎ ∈ 𝐻) (17)
𝜁𝑛+1,ℎ = 1 ∀ (ℎ ∈ 𝐻) (18)
∑ 𝜁𝑗,ℎℎ∈ 𝑉𝑗

 = 1 − 𝑦𝑖𝑛𝑡,𝑗 ∀ (𝑗 ∈ 𝐽, 𝑖 ∈ 𝐼𝑛𝑡) (19)

𝜌𝑗,𝑖 + 𝑀 ∗ (1 − 𝜁𝑗,ℎ) ≥ 𝜏𝑗,ℎ ∀ (𝑗 ∈ 𝐽, ℎ ∈ 𝑉𝑗, 𝑖 ∈ 𝐼𝑡) (20)

Constraint 1 makes sure that the makespan is after all jobs on all machines are complete.

Constraint 2 allows that if job 𝑗 follows job 𝑘, completion time of job 𝑗 is after

completion time of job 𝑘 plus processing time of job 𝑗 on machine 𝑖.Constraint 3 ensures

the completion time of job 𝑗 on machine 𝑖 is after possible start time of job 𝑗 after tubing

26

plus processing time of job 𝑗, if job 𝑗 is assigned to machine 𝑖. Constraint 4 ensures that

for machines that do not require tubing, the earliest start time and possible start time after

tubing are equal. Constraint 5 ensures if job 𝑗 is assigned to machine 𝑖 (notice the big M

parameter becomes zero), then it must be completed at its due date or a tardiness is

incurred. Constraint 6 assigns a successor for each job that is assigned to machine 𝑖, first

job succeeds artificial job 0. Constraint 7 assigns a predecessor for each job that is

assigned to machine 𝑖, last job precedes artificial final job. Constraint 8 initiates the job

0's completion time as 0. Constraint 9 allows artificial job 0 to occur on all machines.

Constraint 10 allows artificial final job to occur on all machines. Constraint 11 assigns

jobs to machines that can process them. Constraint 12 allows if job 𝑗 follows job 0,

completion time of job 𝑗 is after completion time of job 0 plus processing time of job 𝑗 on

machine 𝑖. Constraint 13 ensures that the completion time of job 𝑗 on tubing station ℎ is

after earliest start time of job 𝑗 plus tubing time of job 𝑗, if job 𝑗 is assigned to tubing

station ℎ. Constraint 14 calculates completion time of the job 𝑗 on tubing station ℎ as

after completion time of previous job 𝑘 plus the tubing time of job 𝑗 on tubing station ℎ.

Constraint 15 assigns a successor for each job that is assigned to tubing station ℎ, first job

succeeds artificial job 0. Constraint 16 assigns a predecessor for each job that is assigned

to tubing station ℎ, last job precedes artificial final job. Constraint 17 allows artificial job

0 to occur on all tubing stations. Constraint 18 allows artificial final job to occur on all

tubing stations. Constraint 19 assigns jobs to tubing stations that can process them, if the

job is not assigned to a machine that doesn’t require tubing. Constraint 20 links tubing

completion time of a job to possible start time on machines that require tubing.

27

2.3.4. Flexible Flow Shop with Sequence Dependent Setups Models (Tubing with

Setups)

2.3.4.1. Direct Positional Model

2.3.4.1.1. Sets

J = 1..n Jobs

I = 1..m Machines

𝐼𝑛𝑡 ∈ 𝐼 Machines that do not require tubing beforehand

𝐼𝑡 ∈ 𝐼 Machines that require tubing beforehand

K = 1..n Positions on the machines

U = 1..o Geometries

H = 1..e Tubing Stations

2.3.4.1.2. Parameters

n = number of jobs

m = number of machines

o = number of geometries

e = number of tubing stations

𝑑𝑗 = Due date of job 𝑗

𝑎𝑢,𝑖 = 1 if geometry 𝑢 can be done on machine 𝑖, 0 otherwise

28

𝑝𝑢,𝑖 = Unit processing time of geometry 𝑢 on machine 𝑖

𝑐𝑗 = Penalty for tardiness of job 𝑗

𝑠𝑗 = Earliest start time of job 𝑗

𝑓𝑢,𝑣,𝑖 = Setup time from geometry 𝑢 to 𝑣 on machine 𝑖

𝑔𝑢,𝑖 = Initial setup time of geometry 𝑢 on machine 𝑖

𝑞𝑗,𝑢 = 1 if job 𝑗 is geometry 𝑢, 0 otherwise

𝑟𝑢,ℎ = Unit tubing time of geometry 𝑢 on tubing station ℎ

𝑤𝑢,ℎ = 1 if geometry 𝑢 can be processed on station ℎ, 0 otherwise

𝛼𝑗 = Size of job 𝑗

𝑀 = 𝑀𝑎𝑥𝑗(𝑠𝑗) + ∑ 𝛼𝑗 ∗ 𝑞𝑗,𝑢 ∗ 𝑝𝑢,𝑖𝑖∈ 𝐼,𝑗∈ 𝐽,𝑢∈ 𝑈 + ∑ 𝛼𝑗 ∗ 𝑞𝑗,𝑢 ∗ 𝑟𝑢,ℎℎ∈ 𝐻,𝑗∈ 𝐽,𝑢∈ 𝑈 +

∑ 𝑓𝑢,𝑣,𝑖𝑢∈ 𝑈,𝑣∈ 𝑈,𝑖∈ 𝐼 + ∑ 𝑔𝑢,𝑖𝑢∈ 𝑈,𝑖∈ 𝐼 A very large number

2.3.4.1.3. Variables

𝐶max = Makespan - completion time of all jobs

𝑡𝐾,𝑖 = Completion time of jobs at position k, k= 0…n, on machine 𝑖

𝐿𝑗 = Tardiness of job 𝑗

𝑥𝑗,𝑘,𝑖 = 1 if job 𝑗 is assigned to position 𝑘 on machine 𝑖, 0 otherwise

𝑦𝑢,𝑣,𝑖,𝑘 = 1 if there is a setup from geometry 𝑢 to 𝑣 on machine 𝑖 at position 𝑘

𝜏𝑘,ℎ = Completion time of job at position k, k= 0…n, on tubing station ℎ

29

𝑧𝑗,𝑘,ℎ = 1 if job 𝑗 is assigned to position 𝑘 on tubing station ℎ, 0 otherwise

𝜌𝑗,𝑖 = Possible start time of job 𝑗 on machine 𝑖, after tubing

2.3.4.1.4. Model

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐶max + ∑ 𝑐𝑗 ∗ 𝐿𝑗𝑗

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜
𝐶𝑚𝑎𝑥 ≥ 𝑡𝑘,𝑖 ∀ 𝑘 ∈ 𝐾 , 𝑖 ∈ 𝐼 (1)
𝑡𝑘,𝑖 ≥ 𝑡𝑘−1,𝑖 + ∑ 𝑞𝑗,𝑢 ∗ 𝑝𝑢,𝑖 ∗ 𝛼𝑗 ∗ 𝑥𝑗,𝑘,𝑖𝑗,𝑢 + ∑ 𝑓𝑢,𝑣,𝑖 ∗ 𝑦𝑢,𝑣,𝑖,𝑘𝑢,𝑣 ∀ 𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼 (2)

𝑡𝑘,𝑖 ≥ (𝜌𝑗.𝑖 + ∑ 𝑞𝑗,𝑢 ∗𝑢 𝑝𝑢,𝑖 ∗ 𝛼𝑗) − 𝑀 ∗ (1 − 𝑥𝑗,𝑘,𝑖) ∀ 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼 (3)

𝜌𝑗,𝑖𝑛𝑡
= 𝑠𝑗 ∀ 𝑗 ∈ 𝐽, 𝑖 ∈ 𝐼𝑛𝑡 (4)

𝑡𝑘,𝑖 ≤ 𝑑𝑗 + 𝑀 ∗ (1 − 𝑥𝑗,𝑘,𝑖) + 𝐿𝑗 ∀ 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼 (5)

∑ 𝑎𝑢,𝑖 ∗ 𝑞𝑗,𝑢 ∗ 𝑥𝑗,𝑘,𝑖𝑖,𝑘 = 1 ∀ 𝑗 ∈ 𝐽 (6)

𝑡0,𝑖 = ∑ 𝑞𝑗,𝑢 ∗ 𝑔𝑢,𝑖 ∗ 𝑥𝑗,1,𝑖𝑢,𝑗 ∀ 𝑖 ∈ 𝐼 (7)

∑ 𝑥𝑗,𝑘,𝑖𝑖,𝑘 ≤ 1 ∀ 𝑗 ∈ 𝐽 (8)

∑ 𝑥𝑗,𝑘,𝑖𝑗 ≤ 1 ∀ 𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾 (9)

∑ 𝑥𝑗,𝑘,𝑖𝑗 ≥ ∑ 𝑥𝑗,𝑘+1,𝑖𝑗 ∀ 𝑖 ∈ 𝐼, 𝑘 ∈ 1. . 𝑛 − 1 (10)

 ∑ 𝑞𝑗,𝑢 ∗ 𝑥𝑗,𝑘−1,𝑖𝑗 + ∑ 𝑞𝑙,𝑣 ∗ 𝑥𝑙,𝑘,𝑖𝑙 ≤ 𝑦𝑢,𝑣,𝑖,𝑘 + 1 ∀ (𝑖 ∈ 𝐼, 𝑘 ∈ 2. . 𝑛, 𝑢 ∈ 𝑈, 𝑣 ∈ 𝑈) (11)

 𝜏𝑘,ℎ ≥ 𝜏𝑘−1,ℎ + ∑ 𝑞𝑗,𝑢 ∗ 𝑟𝑢,ℎ ∗ 𝛼𝑗 ∗ 𝑧𝑗,𝑘,ℎ𝑗,𝑢 ∀ (𝑘 ∈ 𝐾, ℎ ∈ 𝐻) (12)

𝜏𝑘,ℎ ≥ (𝑠𝑗 + ∑ 𝑞𝑗,𝑢 ∗ 𝑟𝑢,ℎ ∗ 𝛼𝑗𝑢) ∗ 𝑧𝑗,𝑘,ℎ ∀ (𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾, ℎ ∈ 𝐻) (13)

∑ 𝑤𝑢,ℎ ∗ 𝑞𝑗,𝑢 ∗ 𝑧𝑗,𝑘,ℎℎ∈ 𝐻,𝑘∈ 𝐾,𝑢∈ 𝑈 = 1 − ∑ 𝑥𝑗,𝑘,𝑖𝑛𝑡𝑘∈ 𝐾 ∀ (𝑗 ∈ 𝐽, 𝑖 ∈ 𝐼𝑛𝑡) (14)

𝜏0,ℎ = 0 ∀ (ℎ ∈ 𝐻) (15)
 ∑ 𝑧𝑗,𝑘,ℎℎ,𝑘 ≤ 1 − ∑ 𝑥𝑗,𝑘,𝑖𝑛𝑡𝑘 ∀ (𝑗 ∈ 𝐽, 𝑖 ∈ 𝐼𝑛𝑡) (16)

∑ 𝑧𝑗,𝑘,ℎ𝑗 ≤ 1 ∀ (ℎ ∈ 𝐻, 𝑘 ∈ 𝐾) (17)

∑ 𝑧𝑗,𝑘,ℎ𝑗 ≥ ∑ 𝑧𝑗,𝑘+1,ℎ𝑗 ∀ (ℎ ∈ 𝐻, 𝑘 ∈ 1. . 𝑛 − 1) (18)

𝜌𝑗,𝑖 + 𝑀 ∗ (1 − 𝑧𝑗,𝑘,ℎ) ≥ 𝜏𝑘,ℎ ∀ (𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾, ℎ ∈ 𝐻, 𝑖 ∈ 𝐼𝑡) (19)

Constraint 1 makes sure that the makespan is after all jobs on all machines are complete.

Constraint 2 calculates completion time of the job 𝑗 at position 𝑘 on machine 𝑖 as after

completion time of previous position 𝑘 − 1 plus the processing time of job 𝑗 on machine

𝑖 plus the setup time from geometry 𝑢 to geometry 𝑣 on machine 𝑖, if there is a setup at

that position. Constraint 3 ensures the completion time of job 𝑗 at position 𝑘 on machine 𝑖

as after possible start time of job 𝑗 after tubing station, plus processing time of job 𝑗, if

job 𝑗 is assigned to position 𝑘 on machine 𝑖. For the set of jobs that there is no tubing, the

30

earliest start time and possible start time after tubing are equal, using constraint 4.

Constraint 5 ensures if job 𝑗 is assigned to position 𝑘 on machine 𝑖 (notice the big M

parameter becomes zero), then it must be completed at its due date or a tardiness is

incurred. Constraint 6 ensures all jobs are assigned to a machine that can process that job

and to a position on that machine. Constraint 7 initiates the position 0's completion time

as the initial setup time of job 𝑗 at position 1, job 𝑗 being geometry 𝑢. Constraint 8

ensures job 𝑗 is assigned to at most one position and one machine. Constraint 9 ensures at

most one job is assigned to position 𝑘 on machine 𝑖. Constraint 10 ensures smaller

positions are filled first. Constraint 11 ensure that if job 𝑗, which is geometry 𝑢, and job 𝑙,

which is geometry 𝑣, is assigned to positions 𝑘 − 1 and 𝑘, then there is a setup from

geometry 𝑢 to 𝑣. Constraint 12 calculates completion time of the job 𝑗 at position 𝑘 on

tubing station ℎ as after completion time of previous position 𝑘 − 1 plus the tubing time

of job 𝑗 on tubing station ℎ. Constraint 13 ensures the completion time of job 𝑗 at position

𝑘 on tubing station ℎ as after earliest start time of job 𝑗 plus tubing time of job 𝑗, if job 𝑗

is assigned to position 𝑘 on tubing station ℎ. Constraint 14 ensures all jobs are assigned

to a tubing station that can process that job and to a position on that station, if the job is

not assigned to WAT. Start time for tubing at position 0 is zero using constrain 15.

Constraint 16 ensures job j is assigned to at most one position and one tubing station, if it

is not assigned to a machine that requires tubing. Constraint 17 ensures at most one job is

assigned to position 𝑘 on tubing station ℎ. Constraint 18 ensures smaller positions are

filled first on tubing stations also. Constraint 19 links tubing completion time of a job to

possible start time on machines that require tubing.

2.3.4.2. Relative Positional Model

31

2.3.4.2.1. Parameters

Same as above

2.3.4.2.2. Sets

𝑄𝑖 = Jobs that can be processed on machine 𝑖 (𝑗 | ∑ 𝑞𝑗𝑢 ∗ 𝑎𝑢𝑖𝑢 > 0)

𝑄0𝑖 = {0} ∪ 𝑄𝑖 Jobs that can be processed on machine 𝑖, with artificial job 0

𝑄𝐿𝑖 = 𝑄0𝑖 ∪ {𝑛 + 1} Jobs that can be processed on machine 𝑖, with artificial final job

𝑛 + 1

𝑄0𝐿𝑖 = {0} ∪ 𝑄𝑖 ∪ {𝑛 + 1} Jobs that can be processed on machine 𝑖, with both artificial

jobs

𝑅𝑗 = Machines that job j requires (𝑖 | ∑ 𝑞𝑗𝑢 ∗ 𝑎𝑢𝑖𝑢 > 0)

𝑊ℎ = Jobs that can be processed on tubing station ℎ (𝑗 | ∑ 𝑞𝑗𝑢 ∗ 𝑤𝑢ℎ𝑢 > 0)

𝑊0ℎ = {0} ∪ 𝑊ℎ Jobs that can be processed on station ℎ, with artificial job 0

𝑊𝐿ℎ = 𝑊ℎ ∪ {𝑛 + 1} Jobs that can be processed on station ℎ, with artificial final job 𝑛 +

1

𝑊0𝐿ℎ = {0} ∪ 𝑊ℎ ∪ {𝑛 + 1} Jobs that can be processed on station ℎ, with both

artificial jobs

𝑉𝑗 = Stations that job j requires (ℎ | ∑ 𝑞𝑗𝑢 ∗ 𝑤𝑢ℎ𝑢 > 0)

2.3.4.2.3. Variables

𝐶max = Makespan - completion time of all jobs

32

𝑥𝑖,𝑗,𝑘 = 1 if job 𝑗 follows job 𝑘 on machine 𝑖, 0 otherwise (𝑖 ∈ 𝐼, 𝑗 ∈ 𝑄𝐿𝑖 , 𝑘 ∈ 𝑄0𝑖)

𝑦𝑖,𝑗 = 1 if job j is assigned to machine 𝑖, 0 otherwise (𝑖 ∈ 𝐼, 𝑗 ∈ 𝑄0𝐿𝑖)

𝑡𝑖,0..𝑛 = Completion time of job 0..n on machine 𝑖

𝐿𝑗 = Tardiness of job 𝑗

𝜏𝑗,ℎ = Completion time of job 𝑗 on tubing station ℎ

𝑧𝑗,𝑘,ℎ = 1 if job 𝑗 is follows job 𝑘 on tubing station ℎ, 0 otherwise(ℎ ∈ 𝐻, 𝑗 ∈ 𝑊𝐿ℎ, 𝑘 ∈

 𝑊0ℎ)

𝜌𝑗,𝑖 = Possible start time of job 𝑗 on machine 𝑖, after tubing

𝜁𝑗,ℎ = 1 if job j is assigned to station ℎ, 0 otherwise (ℎ ∈ 𝐻, 𝑗 ∈ 𝑊0𝐿ℎ)

2.3.4.2.4. Model

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐶max + ∑ 𝑐𝑗 ∗ 𝐿𝑗𝑗

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜
𝐶𝑚𝑎𝑥 ≥ 𝑡𝑖,𝑗 ∀ (𝑗 ∈ 𝐽, 𝑖 ∈ 𝐼) (1)

 𝑡𝑖,𝑗 ≥ 𝑡𝑖,𝑘 + ∑ 𝑞𝑗,𝑢 ∗ 𝑝𝑢,𝑖 ∗ 𝛼𝑗

𝑢

+ ∑ 𝑞𝑗,𝑢 ∗ 𝑞𝑘,𝑣 ∗ 𝑓𝑢,𝑣,𝑖

𝑢,𝑣

− 𝑀 ∗ (1 − 𝑥𝑖,𝑗,𝑘)

∀ (𝑖 ∈ 𝐼, 𝑗 ∈ 𝑄𝑖 , 𝑘 ∈ 𝑄𝑖: 𝑘 ≠ 𝑗) (2)
𝑡𝑖,𝑗 ≥ 𝜌𝑗,𝑖 + ∑ 𝑞𝑗,𝑢 ∗ 𝑝𝑢,𝑖 ∗ 𝛼𝑗𝑢 − 𝑀 ∗ (1 − 𝑦𝑖,𝑗) ∀ (𝑖 ∈ 𝐼, 𝑗 ∈ 𝑄𝑖) (3)

𝜌𝑗,𝑖𝑛𝑡
 = 𝑠𝑗 ∀ (𝑗 ∈ 𝐽, 𝑖 ∈ 𝐼𝑛𝑡) (4)

𝑡𝑖,𝑗 ≤ 𝑑𝑗 + 𝑀 ∗ (1 − 𝑦𝑖,𝑗) + 𝐿𝑗 ∀(𝑖 ∈ 𝐼, 𝑗 ∈ 𝑄𝑖) (5)

∑ 𝑥𝑖,𝑗,𝑘𝑗∈ 𝑄𝐿𝑖:𝑗≠𝑘 = 𝑦𝑖,𝑘 ∀ (𝑖 ∈ 𝐼, 𝑘 ∈ 𝑄0𝑖) (6)

∑ 𝑥𝑖,𝑗,𝑘𝑘∈ 𝑄0𝑖:𝑘≠𝑗 = 𝑦𝑖,𝑗 ∀ (𝑖 ∈ 𝐼, 𝑗 ∈ 𝑄𝐿𝑖) (7)

𝑡𝑖,0 = ∑ 𝑞𝑗,𝑢 ∗ 𝑔𝑢,𝑖 ∗ 𝑥𝑖,𝑗,0𝑢∈ 𝑈,𝑗∈ 𝑄𝑖
 ∀ (𝑖 ∈ 𝐼) (8)

 𝑦𝑖,0 = 1 ∀ (𝑖 ∈ 𝐼) (9)
𝑦𝑖,𝑛+1 = 1 ∀ (𝑖 ∈ 𝐼) (10)
∑ 𝑦𝑖,𝑗𝑖∈ 𝑅𝑗

 = 1 ∀ (𝑗 ∈ 𝐽) (11)

𝑡𝑖,𝑗 ≥ 𝑡𝑖,0 + ∑ 𝑞𝑗,𝑢 ∗ 𝑝𝑢,𝑖 ∗ 𝛼𝑗𝑢 − 𝑀 ∗ (1 − 𝑥𝑖,𝑗,0) ∀ (𝑖 ∈ 𝐼, 𝑗 ∈ 𝑄𝑖) (12)

𝜏𝑗,ℎ ≥ 𝜏ℎ,𝑘 + ∑ 𝑞𝑗,𝑢 ∗ 𝑟𝑢,ℎ ∗ 𝛼𝑗𝑢 − 𝑀 ∗ (1 − 𝑧ℎ,𝑗,𝑘) ∀ (ℎ ∈ 𝐻, 𝑗 ∈ 𝑊ℎ , 𝑘 ∈ 𝑊ℎ: 𝑘 ≠ 𝑗) (13)

𝜏𝑗,ℎ ≥ (𝑠𝑗 + ∑ 𝑞𝑗,𝑢 ∗ 𝑟𝑢,ℎ ∗ 𝛼𝑗𝑢) ∗ 𝜁𝑗,ℎ ∀ (ℎ ∈ 𝐻, 𝑗 ∈ 𝑊ℎ) (14)

∑ 𝑧ℎ,𝑗,𝑘𝑗∈ 𝑊𝐿ℎ:𝑗≠𝑘 = 𝜁𝑘,ℎ ∀ (ℎ ∈ 𝐻, 𝑘 ∈ 𝑊0ℎ) (15)

33

∑ 𝑧ℎ,𝑗,𝑘𝑘∈ 𝑊0ℎ:𝑘≠𝑗 = 𝜁𝑗,ℎ ∀ (ℎ ∈ 𝐻, 𝑗 ∈ 𝑊𝐿ℎ) (16)

𝜁0,ℎ = 1 ∀ (ℎ ∈ 𝐻) (17)
𝜁𝑛+1,ℎ = 1 ∀ (ℎ ∈ 𝐻) (18)
∑ 𝜁𝑗,ℎℎ∈ 𝑉𝑗

 = 1 − 𝑦𝑖𝑛𝑡,𝑗 ∀ (𝑗 ∈ 𝐽, 𝑖𝑛𝑡 ∈ 𝐼𝑛𝑡) (19)

𝜌𝑗,𝑖𝑡
 + 𝑀 ∗ (1 − 𝜁𝑗,ℎ) ≥ 𝜏𝑗,ℎ ∀ (𝑗 ∈ 𝐽, ℎ ∈ 𝑉𝑗, 𝑖𝑡 ∈ 𝐼𝑡) (20)

Constraint 1 makes sure that the makespan is after all jobs on all machines are complete.

Constraint 2 allows that if job 𝑗 follows job 𝑘, completion time of job 𝑗 is after

completion time of job 𝑘 plus processing time of job 𝑗 on machine 𝑖 and setup time from

geometry 𝑢 to geometry 𝑣 on machine 𝑖 (given job 𝑗 is geometry 𝑢 and job 𝑘 is geometry

𝑣).Constraint 3 ensures the completion time of job 𝑗 on machine 𝑖 is after possible start

time of job 𝑗 after tubing plus processing time of job 𝑗, if job 𝑗 is assigned to machine 𝑖.

Constraint 4 ensures that for the machine that don’t require tubing, the earliest start time

and possible start time after tubing are equal because there is no tubing. Constraint 5

ensures if job 𝑗 is assigned to machine 𝑖 (notice the big M parameter becomes zero), then

it must be completed at its due date or a tardiness is incurred. Constraint 6 assigns a

successor for each job that is assigned to machine 𝑖, first job succeeds artificial job 0.

Constraint 7 assigns a predecessor for each job that is assigned to machine 𝑖, last job

precedes artificial final job. Constraint 8 initiates the job 0's completion time as the initial

setup time of job 𝑗 following job 0, job 𝑗 being geometry 𝑢. Constraint 9 allows artificial

job 0 to occur on all machines. Constraint 10 allows artificial final job to occur on all

machines. Constraint 11 assigns jobs to machines that can process them. Constraint 12

allows if job 𝑗 follows job 0, completion time of job 𝑗 is after initial setup time

(completion time of job 0) plus processing time of job 𝑗 on machine 𝑖. Constraint 13

ensures that the completion time of job 𝑗 on tubing station ℎ is after earliest start time of

job 𝑗 plus tubing time of job 𝑗, if job 𝑗 is assigned to tubing station ℎ. Constraint 14

34

calculates completion time of the job 𝑗 on tubing station ℎ as after completion time of

previous job 𝑘 plus the tubing time of job 𝑗 on tubing station ℎ. Constraint 15 assigns a

successor for each job that is assigned to tubing station ℎ, first job succeeds artificial job

0. Constraint 16 assigns a predecessor for each job that is assigned to tubing station ℎ,

last job precedes artificial final job. Constraint 17 allows artificial job 0 to occur on all

tubing stations. Constraint 18 allows artificial final job to occur on all tubing stations.

Constraint 19 assigns jobs to tubing stations that can process them, if the job is not

assigned to machines that don’t require tubing. Constraint 20 links tubing completion

time of a job to possible start time on machines that require tubing.

2.4. Computational Study

2.4.1. Experimental Setup

In our computational study, we tested the aforementioned 4 problems, which we also list

below:

• Parallel Machines (3 Machines)

• Parallel Machines with Setups (3 Machines)

• Flexible Flow Shop (2 Station 1 and 3 Station 2)

• Flexible Flow Shop with Setups (2 Station 1 and 3 Station 2)

We generated 5 random instances for each of our 4 problems, with 5 different instance

sizes, thus a total of 100 instances:

• 10 jobs

• 15 jobs

35

• 21 jobs

• 31 jobs

• 41 jobs

An early data set we have received from Artaic contained 21 jobs, so we generated our

medium-sized instances to match that data set. We added 10 and 20 jobs to those

instances to create larger ones, and we used more typical, rounded numbers (10 and 15)

for our instances smaller than the medium size. We solved these instances using IBM

ILOG CPLEX Studio using CPLEX 12.7 on a computer with Windows 10 Home and 64

bit with Intel(R) Core™ i7-6700 CPU @ 3.40 GHz, and 32GB RAM. We limited the

runtime of instances to 1 hour.

2.4.2. Results

We present the results for our computational experiments Table 2.4.1 below, comparing

objective function values and optimality gaps for each instance under direct positional

models and relative positional models:

PMP Direct Positional Model Relative Positional Model

Size Objective Gap Objective Gap

10 756.47 0.00% 756.47 0.00%

15 985.44 0.01% 986.05 11.83%

21 1327.31 2.82% 1328.91 71.61%

31 1636.25 10.14% 1653.22 78.80%

41 2392.34 14.27% 2410.38 84.45%

PMP with
Setups Direct Positional Model Relative Positional Model

Size Objective Gap Objective Gap

10 758.06 0.00% 758.06 0.00%

15 989.13 0.01% 989.56 12.94%

21 1330.81 3.48% 1334.17 71.77%

31 1649.91 11.20% 1655.62 78.71%

41 2419.10 15.43% 2423.60 84.54%

36

FFS Direct Positional Model Relative Positional Model

Size Objective Gap Objective Gap

10 839.00 0.00% 839.00 0.00%

15 1091.05 5.03% 1100.67 21.43%

21 1380.10 7.73% 1413.41 62.56%

31 1765.13 16.71% 1863.92 69.78%

41 2555.02 20.02% 2734.14 78.16%

FFS with
Setups Direct Positional Model Relative Positional Model

Size Objective Gap Objective Gap

10 839.45 0.00% 839.45 0.00%

15 1093.80 7.95% 1095.00 20.51%

21 1387.39 8.04% 1395.67 61.72%

31 1786.99 18.25% 1873.35 69.94%

41 2564.49 20.54% 2699.56 77.91%

Table 2.4.1 Objective Function Value and Optimality Gap for Direct Positional and

Relative Positional Models for PMP and FFS with and without Setups

We compared the means of objective function values and optimality gaps for direct

positional model and relative positional model using a t-test and found out that the

difference between two means are statistically significant. The results of our t-tests are

given below in Table 2.4.2 and Table 2.4.3:

 Variable 1 Variable 2

Mean 0.080821496 0.478345112

Variance 0.006882863 0.114977324

Observations 100 100

Pearson Correlation 0.666174073

Hypothesized Mean Difference 0

df 99

t Stat
-
13.68499511

P(T<=t) one-tail 7.32414E-25

t Critical one-tail 1.660391157

P(T<=t) two-tail 1.46483E-24

t Critical two-tail 1.9842169

Table 2.4.2 T-Test for Optimality Gaps

 Variable 1 Variable 2

Mean 1477.363438 1507.510903

37

Variance 398392.6521 443447.4348

Observations 100 100

Pearson Correlation 0.996508467

Hypothesized Mean Difference 0

df 99

t Stat
-
4.684527996

P(T<=t) one-tail 4.47577E-06

t Critical one-tail 1.660391157

P(T<=t) two-tail 8.95155E-06

t Critical two-tail 1.9842169

Table 2.4.3 T-Test for Objective Function Values

2.5. Conclusions

2.5.1. Findings

Based on the results of our computational experiments and statistical tests, we conclude

that the direct positional formulation dominates relative positional formulation in Parallel

Machine and Flexible Flow Shop Scheduling problems. This modeling approach allows

for the exact solution of relatively complex machine scheduling problems of moderate

size that include:

• Parallel Machines

• Flexible Flow Shops

• Sequence-dependent setups

• Start dates

• Due dates and tardiness

• Real-life inspired problems

The motivation behind our study was Artaic, a manufacturer of unique tile products that

use automation. We were able to present our results and receive feedback on usability of

38

our models. The most practical model that can be solved the fastest, the parallel machine

model without setups, is implemented and being used integrated in their cloud computing

environment to respond to customer demand and schedule their orders in a timely

fashion. The implementation will be explained further in the next section.

2.5.2. Implementation

We delivered two implementations of our models to Artaic: the earlier version was an

Excel tool developed for optimization of schedules of the jobs that Artaic is committed

to. The later version was a Node.js application that can be used by Artaic to solve the

problem in their cloud computing environment. Both versions used the most practical

model that can be solved the fastest, the parallel machine model without setups. The

Excel tool can also visualize the optimal schedule in a Gantt chart and can simulate

different schedules given by the decision maker. The Node.js application can list all the

jobs, the machines that they are assigned to, and their start and completion times, which

can then be put in a Google Gantt chart for visualization purposes. We will explain the

use of each implementation briefly below:

2.5.2.1. Excel tool

The Excel tool consists of 4 tabs: TimeData tab consists of the unit manufacturing time of

each different type of job (different types of tiles). Project tab uses the information from

TimeData tab and the order information received from the customer (which is inputted to

this tab by the decision maker) to calculate time needed for each project. The output from

the optimization model is also projected back to this tab. Optimizer tab reflects the data

from Projects tab into matrices that can be used by the optimizer. This tab also has the

39

optimization model coded in a free Excel add-in called Solver Studio.2 We coded the

model in PuLP, an open-source Python-based COIN-OR modelling language developed

by Stu Mitchell, which is included with SolverStudio. Once the user inputs the project

data into Project tab, all they must do is specify the time limit on Optimizer tab and hit

Solve Model. The output is projected into Optimizer tab and reflected back to Projects

tab using formulas. The user can then copy-paste the optimal assignment of jobs into

columns that will assign the jobs to different machines in different sequences. Finally, the

Gantt tab uses the input from the Projects tab to display the schedule in a Gantt chart.

This is how the Excel tool can also serve as a simulation tool. The assignment that is

copy-pasted from optimal columns to assignment columns then can be changed to see the

effect of different schedules, which allows the Gantt chart to act as a simulator of

different schedules. The tool is also color coded for ease of display. The screenshots from

the Excel tool can be found below:

2 Solverstudio.org

40

Figure 2.5.1: TimeData Tab

Figure 2.5.2: Projects Tab – Left Side

41

Figure 2.5.3: Projects Tab – Right side

Figure 2.5.4: Optimizer Tab

42

Figure 2.5.5: Gantt Tab

2.5.2.2. Node.js Implementation

Node.js is an open-source, cross-platform JavaScript run-time environment for executing

JavaScript code server-side.3 Due to Artaic having a cloud server that can work with

Node.js, we also coded our model using the Node.js package GLPK4. Our

implementation takes in the high-level model file that we wrote on GMPL5 and the

problem data that will be given by the decision maker as an input, solves it using GLPK

and prints out all the jobs, the machines that they are assigned to, and their start and

completion times in a table format to a text file, which can then be easily put into a

Google Gantt chart6 for visualization purposes. This was the final implementation

delivered to Artaic, which is currently being used as far as we know.

3 https://nodejs.org/en/ - https://en.wikipedia.org/wiki/Node.js
4 https://www.gnu.org/software/glpk/ - https://github.com/hgourvest/node-glpk
5 https://en.wikibooks.org/wiki/GLPK/GMPL_(MathProg)
6 https://developers.google.com/chart/interactive/docs/gallery/ganttchart

https://nodejs.org/en/
https://en.wikipedia.org/wiki/Node.js
https://www.gnu.org/software/glpk/
https://github.com/hgourvest/node-glpk
https://en.wikibooks.org/wiki/GLPK/GMPL_(MathProg)
https://developers.google.com/chart/interactive/docs/gallery/ganttchart

43

CHAPTER 3

STOCHASTIC APPOINTMENT SCHEDULING IN A TEAM PRIMARY CARE

PRACTICE WITH TWO FLEXIBLE NURSES AND TWO DEDICATED

PROVIDERS

My advisors Ana Muriel and Hari Balasubramanian and their former PhD student Joanne

Alvarez-Oh from Quinnipiac University have collaborated with me in this project and

contributed to the work described in this essay.

3.1. Introduction

According to Alvarez Oh (2015), effective scheduling in primary care practices plays an

important role in smoothing patient flow. Many papers have studied the scheduling

problem in the outpatient setting, but commonly assume a single step in the patient flow

process: the provider step. However, most practices also involve a nurse step prior to the

provider step. According to the empirical data analysis in Oh et al. (2013), nurse service

time durations are comparable for many appointments to provider service time durations.

For example, for routine physicals and well child exams – two common appointment

types in primary care – nurses spend as much time with the patients as providers do. In

addition, Oh et al. (2013) reports that there is a significant difference in the performance

as well as the structure of the optimal schedule in a single provider practice when the

nurse step is explicitly considered in the scheduling formulation compared to when it is

not.

Another common assumption is a single resource at each step: for example, a solo

provider working at the practice. However, the majority of practices (68%) have two or

more providers (Bodenheimer and Pham, 2010). In her consultations with practices, she

44

has noticed that nurses work as a team in prepping patients for provider appointments.

Nurses flexibly see patients scheduled on providers’ calendars whenever they are

available, while providers stay dedicated to their appointment schedules. She calls this a

team primary care practice.

Figure 3.1.1: Patient flow example in a team practice seeing 6 patients

This multi-step patient flow process with multiple human resources at each step coupled

with uncertain service times makes the problem difficult from an optimal scheduling

viewpoint. Figure 3.1.1 shows an example of a team primary care practice. Patient

waiting can occur in the lobby and the exam room – i.e. there are two queueing steps in

the patient flow process. Each provider has a set of patients whose appointment times

determine the sequence in which they are seen by a nurse. But since the nurses can see

any of the two providers’ patients, a crossover can happen in the schedule when the

nurse’s service time for a particular patient is long. In Figure 3.1.1, a longer than

expected nurse service time for Patient 3 results in Patient 5 seeing the other nurse, and

potentially completing the nurse step and being seen by the provider earlier.

Choosing to keep the original sequence versus following the new crossover sequence has

implications for both patients’ waiting time as well as the idle time of the provider. From

45

a queuing viewpoint, this is a choice of queue discipline at the second step of a tandem

queue. The queue discipline could be either to see patients in the original appointment

sequence (no crossovers allowed), or to see patients on a first come first serve basis

(allow crossovers). While she has observed that situations that lead to crossover are

common in practice, it is not clear what their operational impact is or what a practice’s

strategy should be.

Alvarez Oh (2015) contributes a new 2-stage stochastic integer programming formulation

of the team primary care practice that allows for nurse flexibility and patient crossovers

while minimizing a weighted combination of provider idle time and patient wait time. To

the best of our knowledge, appointment scheduling in team primary care practices has not

been tackled from a mathematical programming perspective before her work. Modeling

nurse flexibility and patient crossovers is non-trivial when we consider that the

appointment times need to be optimally determined in the first stage, and the resulting

patient flows through the practice need to be identified. Computationally the problem

becomes more challenging given a set of probabilistic nurse and provider service time

scenarios that get realized in the second stage. For a feasible first stage solution of

appointment times, sequence changes due to crossover can happen in some scenarios

while in other scenarios the original sequence will be retained. Thus, tracking patient

flow in each scenario within the framework of a stochastic program poses a modeling

challenge which is tackled in this paper.

In this essay, we build upon Alvarez Oh (2015)’s work by helping to answer the

following practically relevant questions:

46

• What does the literature on outpatient scheduling that consider multiple

resources and steps look like and how does this work compare to the rest?

• Do optimal team practice schedules consistently exhibit a certain structure that

translate to generalizable guidelines?

• How does the (flexible) team practice perform in comparison to a practice in

which each nurse is dedicated to a single provider?

• What if we impose that, despite the possibility of crossover, the provider sees

patients in the same sequence as their original appointment times? How would

the wait and idle times of such a solution compare with a solution that did

allow crossovers?

• How do patient no-shows and greater variability in service times affect

optimal schedules?

From the computational tractability viewpoint, we demonstrate the use of tightening

constraints and a lower bounding procedure to solve realistic instances with a large

number of scenarios.

The rest of the essay is structured as follows. In Section 3.2, we provide a brief literature

review, particularly focusing on studies considering multiple resources and steps, and

exact solution approaches. In Section 3.3, we revisit the team practice, and introduce the

mathematical model and solution method by Alvarez Oh (2015). The computational

study is divided into two parts: in Section 3.4, we revisit practical guidelines relevant for

practices by Alvarez Oh (2015) and built upon them by generalizing her findings with a

new set of experiments using lognormal distribution and analyzing the effects of nurse

flexibility, patient crossovers, and service time variability. In Section 3.5 we revisit

47

computational feasibility results from Alvarez Oh (2015) and present our findings

regarding the effect of our new lower-bounding technique. In Section 3.6, we revisit

Alvarez Oh (2015)’s incorporation of no-shows. In Section 3.7, we summarize our

conclusions. This essay is based on our work in Alvarez-Oh et al. (2018).

3.2. Literature Review

Outpatient appointment scheduling is a widely studied topic. It refers to a broad class of

problems ranging from primary care to specialty clinics and outpatient procedure centers

(nuclear medicine and chemotherapy infusion centers) to surgical scheduling. The

characteristics of each setting have led to a unique set of assumptions and modeling

approaches in the literature. For a comprehensive review of recent literature related to

optimization in appointment scheduling, we refer the reader to Ahmadi-Javid, Jalali and

Klassen (2016).

Papers in appointment scheduling can be broadly split into three categories based on the

time horizon modeled: on the more operational side, papers that focus on a single day,

optimizing direct wait time of the patients at the clinic; on the more tactical side, papers

that focus on multiple days/weeks, optimizing indirect wait time between an appointment

request and an actual appointment day; and papers that focus on a combination of both. In

the latter two categories, rather than provide a comprehensive review, we will instead

provide a few representative examples. We will explore in more detail papers that focus

on a single day, which are the most closely related to our study. Furthermore, we restrict

ourselves to papers that consider multiple resources and multiple steps in the patient flow

process and use an exact solution approach.

48

Zacharias and Armony (2017) combine tactical and operational level scheduling by

jointly optimizing panel size (the number of patients a primary care physician or a

practice cares for in the long term) and the number of offered appointments per day.

Their objective is to minimize clinical delay (direct wait time) and appointment delay

(indirect wait time) and by using a single-server, two-stage queueing model (an

appointment book and the clinic itself) they demonstrate that an “Open Access” policy,

where the clinic tries to offer a same-day appointment with high probability, is optimal.

Wang & Gupta (2011) consider assigning dynamically arriving phone requests for

appointments with patient preferences to multiple primary care providers (i.e. a single

step with multiple servers). The problem is motivated as an MDP and solved with

heuristics. Other papers that consider multiple days or weeks in their model and multiple

stages include Perez et al. (2011) and Perez et al. (2013) (nuclear medicine clinics);

Castro & Petrovic (2012) and Conforti et al. (2010) (radiotherapy treatment).

We now discuss papers that schedule a single day. El-Sharo et al. (2015) focus on the

overbooking aspect of single-stage, multi-server outpatient scheduling in the presence of

no-shows, cancellations and walk-ins. Wang & Fung (2014a), Wang et al. (2015) and

Wang & Fung (2014b) study outpatient scheduling with patient preferences using

different approaches (MDP, DP and IP, respectively). All of their work involves a single-

stage queue with multiple servers (doctors). Tsai and Teng (2014) approach the online

scheduling problem for physical therapy in a rehabilitation service which involve a single

stage but multiple servers such as therapy equipment. Balasubramanian et al. (2014)

consider assigning dynamically arriving same-day requests to multiple primary care

providers (i.e. a single step with multiple servers) to maximize the number of same-day

49

patients seen in the day. They use a stochastic dynamic programming approach. Hahn-

Goldberg et al. (2014) consider a multi-stage, multi-server chemotherapy scheduling

problem and use the deterministic version to come up with templates that are dynamically

adjusted, also considering future requests. Lin (2015) consider an appointment scheduling

problem in an eye clinic where the patients go through different pathways (stages) and

use different servers (doctors, nurses, optometrists) and propose an adaptive scheduling

heuristic with memory (previous distinct schedules are recorded). Liang and Turkcan

(2016) focus on a single-stage, multi-server queue in an oncology clinic and propose

mixed integer programming models for nurse assignment and patient scheduling. Their

unique contribution is they consider patient acuity levels that estimate nurse requirements

more accurately.

Surgical scheduling research differs substantially from the rest of the outpatient

appointment research since it can be done both in an inpatient and an outpatient setting.

However, the outpatient surgical scheduling closely relates to our study. Three examples

for outpatient surgical scheduling with multiple steps and resources are Saremi et al.

(2013), Bai, Storer and Tonkay (2016) and Neyshabouri and Berg (2016). Saremi et al.

(2013) consider 3 stages of the operating room: pre-operation, surgery and recovery in

PACU (post-anesthesia care unit). Bai, Storer and Tonkay (2016) tackle the multiple-OR

and PACU surgery scheduling problem by using a sample-gradient based algorithm.

Neyshabouri and Berg (2016) consider 2 stages of the operating room: surgery and SICU

(surgical intensive care unit). They decompose the 2 stages into separate mixed integer

linear programs and use a column & constraint generation algorithm. SICU length-of-stay

(LOS) is in a different time-scale from PACU stay and surgery duration since SICU LOS

50

might take a few days while PACU stay and surgery duration usually take only hours.

These two time-scale features make their problem different from Saremi et al. (2013) and

Bai, Storer and Tonkay (2016). For a more extensive review of recent research on

outpatient surgical scheduling with multiple steps and resources, we point to the literature

review section in Neyshabouri and Berg (2016). Our essay differs from surgical

scheduling because the shared (flexible) resources are upstream in primary care (nurses),

as opposed to downstream in surgery (PACU or SICU beds). Patient crossovers (FCFS in

second stage) are a direct consequence of this fact, and make the problem more

challenging.

The two papers, in addition to Oh et al. (2013), that relate most closely to our work are

Castaing et al. (2016) and Kuiper and Mandjes (2015). Castaing et al. (2016) formulate

the outpatient scheduling problem in chemotherapy infusion centers as a two-stage

stochastic program. One interesting aspect of the problem is that the infusion chairs are

considered as the main resource and the nurses are considered as an external resource;

nurses can care for multiple patients at the same time. To reduce waste of expensive

chemotherapy drugs, a common practice is to delay the preparation of a dose until the

patient is ready. The objective is to minimize a weighted combination of wait time and

total length of operations, which directly correlates with staff overtime. Because of the

weakness in their formulation due to big-M type of constraints, they face high run times

for the solution procedure and propose decomposition heuristics that perform well.

Kuiper and Mandjes (2015) approach the outpatient appointment scheduling problem as a

tandem-type queuing model with two stages and single server at each stage. The

objective is to minimize a weighted combination of patient wait time and provider idle

51

time. They approximate the service times with their phase-type counterparts, which fit the

distribution using first two moments. They propose a recursive method to evaluate the

sojourn-time distribution of patients and computationally determine optimal schedules in

a transient as well as steady-state environment. They also consider extensions such as

heterogeneous service-time distributions and blocking, where the buffer between two

stages are finite (clients cannot move between two stages because the servers are busy).

They observe the familiar dome-shape pattern in their optimal schedules.

Finally, in our previous work in Oh et al. (2013), we formulate a two-stage stochastic

integer program for the single-provider primary care practice composed of a single nurse

and provider. The model is optimally scheduled and sequenced patient appointments

using stochastic service time of two service steps, nurse and provider, and new patient

classifications with the objective of minimization of patient wait time and provider idle

time. We suggest the scheduling guidelines obtained by the optimal schedules as well as

heuristic schedules capable of accommodating patient time-of-day preferences.

All of the papers above either consider 1) a single-stage with multiple servers, 2) multiple

stages with a single server, 3) multiple stages and servers but with a single server at each

stage, or 4) multiple stages and servers but deal with the problem deterministically. None

of them deal with crossovers. This is understandable because problems involving

multiple steps with multiple resources at each step, stochastic service durations and

crossovers are intractable using exact approaches. We tackle this issue by exploiting the

structural properties of the problem with two servers and by developing tightening

constraints and lower bounding techniques.

52

In contrast to Oh et al. (2013) and the rest of the literature, this essay contributes to

current research on outpatient appointment scheduling by formulating a 2-stage stochastic

programming model (an exact approach) for a two-stage problem (nurse and provider

stages) with two servers at each stage (two flexible nurses and two dedicated providers)

in a primary care practice. We also consider a homogeneous mix of patients in this study

in contrast to the heterogeneous (different patient classifications) in our previous work in

Oh et al. (2013). To the best of our knowledge, the problem of appointment scheduling in

primary care practices with multiple stages and servers under stochasticity with flexible

resources and patient crossovers (FCFS in second stage) has not been tackled before

using an exact approach.

53

3.3. Modeling Approach

3.3.1. Description of Team Primary Care Practice

Alvarez Oh (2015) considers appointment scheduling for a team primary care practice in

which two flexible nurses share patients while each provider oversees appointments only

from his/her own panel (the configuration shown in Figure 3.1.1). At the practice that

motivated this study, there are morning and afternoon sessions distinguished by a lunch

break. Each session consists of appointment slots, and the length of each slot is 15

minutes. The patient visit consists of the following steps: after check-in, a patient waits in

the lobby until a nurse calls (wait time in the lobby); the first available nurse calls the

patient into the exam room and examines the patient (nurse service time); after the nurse

step, the patient waits in the exam room until her/his primary provider is available (wait

time in the exam room); and once the provider finishes with the previous patient, she/he

will examine the patient (service time with provider). A provider takes care of the earliest

available patient from his own panel after the nurse step. In other words, the provider

sees patients in the order of their finish times at the nurse step (first come first serve),

instead of the order of appointment times. Patient crossover will thus occur when a

patient with an earlier appointment may have a long nurse service and end up seeing the

provider after a patient with a later appointment.

For service time distributions, Alvarez Oh (2015) focuses on empirical distribution and

we extend her work and generalize her results by also considering lognormal distribution.

Figure 3.3.1 shows empirical distributions of service time with nurse and provider for

high complexity (HC) patient visits. This data was collected at the collaborating practice

as part of the time study in Oh et al (2013). Type HC involves physicals and complex

54

conditions, which require long service time with nurses and providers. Community health

centers based in low-income and medically underserved neighborhoods often schedule a

full day of HC appointments for primary care providers.

Figure 3.3.1:Distribution of service time with nurse and provider

According to Alvarez Oh (2015), as shown in Figure 3.3.1, service times with both nurse

and provider are highly variable. On average, a type HC appointment takes 17.8 min with

nurse (standard deviation: 10.7 min.; CV=0.6), and 19.5 min. with provider (standard

deviation: 8.2; CV=0.42). Although provider service times tend to be longer, the service

time distribution for the nurse step is skewed to the right, leading to nurse visits that are

significantly longer than the provider visits. It is apparent that the nurse and provider

steps should be effectively coordinated in order to avoid long patient waits or low

provider utilization.

In addition to random samples of empirical data on HC appointments, we also use

samples from lognormal distributions for nurse and provider service time distributions.

The lognormal distribution allows us to control for the mean while increasing the

variance of service times, thereby allowing us to test a wider range of cases and establish

the generalizability of our findings.

55

3.3.2. Integer Programming Formulation

Alvarez Oh (2015) formulates a mixed integer program to schedule patients into

appointment slots. Key features of the model are to accommodate two sequential steps -

nurse and provider, multiple human resources at each step, stochastic service times,

flexible nurses, providers dedicated to own panels, and patient crossover. She uses a

fixed, predetermined appointment length of 15-minutes and consider homogeneous

patients. The objective of the model is to minimize a weighted measure of provider idle

time and patient wait time across all scenarios. She assumes that the patients punctually

arrive at the appointed time since 89% of patients come early or on time based on the

data analysis.

She uses the following notation to formulate the problem.

3.3.2.1. Sets

I Set of patients to be scheduled in the session, indexed by i = 1,…, I

𝐽𝑘 Set of patients to be scheduled with provider k, indexed by j = 1,…, 𝐽𝑘

S Set of scenarios, indexed by s = 1,…, S

K Set of providers, indexed by k = 1,2

3.3.2.2. Parameters

𝛼 Weight for idle time

𝛽 Weight for wait time

𝜏𝑖,𝑠
𝑁 Service time of patient i with nurse under scenario s

𝜏𝑗,𝑠
𝑃𝑘 Service time of the jth patient to see provider k under scenario s

𝑓[𝑗, 𝑘] Patient index (in the overall set of patients in the practice) of the jth patient of

provider k

3.3.2.3. Variables

56

𝑦𝑖,𝑠
𝑠𝑡𝑎𝑟𝑡 Start time of patient i with nurse under scenario s

𝑦𝑖,𝑠
𝑓𝑖𝑛𝑖𝑠ℎ

 Finish time of patient i with nurse under scenario s

𝑡𝑗,𝑠
𝑘 Finish time with nurse of the jth patient in provider k’s panel under scenario s

𝑧𝑗,𝑠
𝑘,𝑠𝑡𝑎𝑟𝑡

 Start time of the jth patient to visit with provider k under scenario s

𝑧𝑗,𝑠
𝑘,𝑓𝑖𝑛𝑖𝑠ℎ

 Finish time of the jth patient to visit with provider k under scenario s

𝑁𝑖,𝑠
𝑚𝑎𝑥 Maximum of the finish times of patients 1,…, i-1 with nurses under scenario s

𝑃𝑗,𝑠
𝑘,𝑚𝑎𝑥

 Maximum of the finish times of patients 1,…, j of provider k’s panel under

scenario s

Xi Appointment slot assigned to patient i, an integer variable in {0,1,2,...}.

The team practice problem, which we refer to as Problem TP, is modeled as the

following integer program.

𝑀𝑖𝑛.
1

𝑆
 (𝛼 [∑ ∑ ((𝑧𝐽𝑘,𝑠

𝑘,𝑓𝑖𝑛𝑖𝑠ℎ
− ∑ 𝜏𝑗,𝑠

𝑃𝑘

𝐽𝑘

𝑘=1

))

𝑠𝑘

]

+ 𝛽 [∑ ∑(𝑦𝑖,𝑠
𝑠𝑡𝑎𝑟𝑡 − 15𝑋𝑖)

𝑛

𝑖=1𝑠

+ ∑ (∑ ∑(𝑧𝑗,𝑠
𝑘,𝑠𝑡𝑎𝑟𝑡 − 𝑡𝑗,𝑠

𝑘)

𝐽𝑘

𝑗=1𝑘

)

𝑠

]) (1)

Subject to. 𝑦𝑖,𝑠
𝑠𝑡𝑎𝑟𝑡 = 0 ∀𝑠 ∈ 𝑆, 𝑖 = 1,2 (2)

 𝑧0,𝑠
𝑘,𝑓𝑖𝑛𝑖𝑠ℎ

= 0 ∀𝑘 ∈ 𝐾, 𝑠 ∈ 𝑆 (3)

 𝑋𝑖 = 0 𝑖 = 1,2 (4)

 𝑦3,𝑠
𝑠𝑡𝑎𝑟𝑡 ≥ min (𝑦1,𝑠

𝑓𝑖𝑛𝑖𝑠ℎ
, 𝑦2,𝑠

𝑓𝑖𝑛𝑖𝑠ℎ
) ∀𝑠 ∈ 𝑆 (5)

 𝑁3,𝑠
𝑚𝑎𝑥 ≥ max (𝑦1,𝑠

𝑓𝑖𝑛𝑖𝑠ℎ
, 𝑦2,𝑠

𝑓𝑖𝑛𝑖𝑠ℎ
) ∀𝑠 ∈ 𝑆 (6)

 𝑁𝑖,𝑠
𝑚𝑎𝑥 ≥ max (𝑁𝑖−1,𝑠

𝑚𝑎𝑥 , 𝑦𝑖−1,𝑠
𝑓𝑖𝑛𝑖𝑠ℎ

) ∀𝑖 ∈ 4. . 𝐼, 𝑠 ∈ 𝑆 (7)

 𝑦𝑖,𝑠
𝑠𝑡𝑎𝑟𝑡 ≥ min (𝑁𝑖−1,𝑠

𝑚𝑎𝑥 , 𝑦𝑖−1,𝑠
𝑓𝑖𝑛𝑖𝑠ℎ

) ∀𝑖 ∈ 4. . 𝐼, 𝑠 ∈ 𝑆 (8)

 𝑦𝑖,𝑠
𝑓𝑖𝑛𝑖𝑠ℎ

= 𝑦𝑖,𝑠
𝑠𝑡𝑎𝑟𝑡 + 𝜏𝑖,𝑠

𝑁 ∀𝑖 ∈ 𝐼, 𝑠 ∈ 𝑆 (9)

 𝑦𝑖,𝑠
𝑠𝑡𝑎𝑟𝑡 ≥ 15𝑋𝑖 ∀𝑖 ∈ 𝐼, 𝑠 ∈ 𝑆 (10)

57

 𝑡𝑗,𝑠
𝑘 = 𝑦𝑓[𝑗,𝑘],𝑠

𝑓𝑖𝑛𝑖𝑠ℎ
 ∀𝑘 ∈ 𝐾, 𝑗 ∈ 𝐽𝑘, 𝑠 ∈ 𝑆 (11)

 𝑧1,𝑠
𝑘,𝑠𝑡𝑎𝑟𝑡 ≥ min (𝑡1,𝑠

𝑘 , 𝑡2,𝑠
𝑘) ∀𝑘 ∈ 𝐾, 𝑠 ∈ 𝑆 (12)

 𝑃2,𝑠
𝑘,𝑚𝑎𝑥 ≥ max (𝑡1,𝑠

𝑘 , 𝑡2,𝑠
𝑘) ∀𝑘 ∈ 𝐾, 𝑠 ∈ 𝑆 (13)

 𝑃𝑗,𝑠
𝑘,𝑚𝑎𝑥 ≥ max(𝑃𝑗−1,𝑠

𝑘,𝑚𝑎𝑥, 𝑡𝑗,𝑠
𝑘) ∀𝑘 ∈ 𝐾, 𝑗 ∈ {3. . 𝐽𝑘}, 𝑠 ∈ 𝑆 (14)

 𝑧𝑗,𝑠
𝑘,𝑠𝑡𝑎𝑟𝑡 ≥ min(𝑃𝑗,𝑠

𝑘,𝑚𝑎𝑥, 𝑡𝑗+1,𝑠
𝑘) ∀𝑘 ∈ 𝐾, 𝑗 ∈ {2. . 𝐽𝑘 − 1}, 𝑠 ∈ 𝑆 (15)

 𝑧𝐽,𝑠
𝑘,𝑠𝑡𝑎𝑟𝑡 ≥ 𝑃𝐽𝑘,𝑠

𝑘,𝑚𝑎𝑥 ∀𝑘 ∈ 𝐾, 𝑠 ∈ 𝑆 (16)

 𝑧𝑗,𝑠
𝑘,𝑓𝑖𝑛𝑖𝑠ℎ

= 𝑧𝑗,𝑠
𝑘,𝑠𝑡𝑎𝑟𝑡 + 𝜏𝑗,𝑠

𝑃𝑘 ∀𝑘 ∈ 𝐾, 𝑗 ∈ 𝐽𝑘 , 𝑠 ∈ 𝑆 (17)

 𝑧𝑗,𝑠
𝑘,𝑠𝑡𝑎𝑟𝑡 ≥ 𝑧𝑗−1,𝑠

𝑘,𝑓𝑖𝑛𝑖𝑠ℎ
 ∀𝑘 ∈ 𝐾, 𝑗 ∈ 𝐽𝑘, 𝑠 ∈ 𝑆 (18)

 𝑋 ≥ 0, 𝐼𝑁𝑇; 𝑦𝑠𝑡𝑎𝑟𝑡, 𝑦𝑓𝑖𝑛𝑖𝑠ℎ, 𝑧𝑠𝑡𝑎𝑟𝑡 , 𝑧𝑓𝑖𝑛𝑖𝑠ℎ ≥ 0

The objective function (1) minimizes a weighted average measure of provider idle time

and patient wait time across all scenarios. Note that provider idle time is calculated as the

finish time of the last patient minus the sum of the service times of all patients with

provider k under each scenario. The wait time in the lobby is the difference between the

patient’s start time with nurse and the appointment time. The wait time in the exam room

is calculated as the sum of the differences of the patients’ start times with provider and

finish times at the nurse step. Constraints (2-4) initialize the start time with nurses for the

first two patients, and set the 0th patient finish time with provider k to be zero in every

scenario. Constraint (5) makes sure that patient 3 is seen by the earliest available nurse,

by comparing the finish times of the first two patients with nurses. Constraint (6)

calculates the maximum finish time of the first two patients with nurses. Similarly,

Constraint (7) keeps track of maximum finish time with nurse for patients 1 to patient i-1.

The max value for patients 1 through i-2 is compared with the finish time of patient i-1

with nurses in constraint (8) to find the earliest time a nurse is available to take care of

the subsequent patient i. Constraint (9) calculates the finish time of patient i with nurse,

as the start time plus the service time with nurse. Constraint (10) ensures that a nurse can

only see a patient after the patients’ appointment time (recall that patients arrive

58

punctually; they are not available any earlier or later than their appointment time).

Constraint (11) assigns the nurse finish time of patient i in the full schedule to the finish

time with nurse of the corresponding patient j in provider k’s panel for each scenario s;

that is, it transfers information from the full ordered set of patients in the practice, to the

ordered set of patients in doctor k’s panel. Constraints (13-14) track the maximum of the

nurse finish times of the first j-1 patients scheduled from provider k’s panel, and this max

value is recursively updated in constraint (15). Constraints (12 and 15) ensure that each

provider k serves the patient j who finishes the nurse step earlier; this is done by

comparing the nurse finish times of the first j+1 patients in provider k’s panel, to account

for possible crossover. Constraint (16) ensures the start time of the last patient seen by

provider k is no sooner than the finish time with nurse for all the patients in the panel.

Constraint (17) calculates the finish time of patient j as the start time plus service time

with provider k. Constraint (18) ensures that provider k starts to examine the jth patient

after seeing the j-1th patient.

The current model with min and max constraints can be reformulated into a linear

program as follows. The max constraints can be easily broken into two inequalities, one

for each term in the maximum. For min constraints (5, 8, 12, and 15), she applies a big M

method and introduce two sets of binary variables.

ni,s 1 if the earliest nurse available to see patient i is the one that serves patient

i-1, that is, there is some earlier patient that is still seeing the other nurse; 0,

otherwise

𝑝𝑗,𝑠
𝑘 1 if crossover occurs, that is, the jth patient to see provider k is the 𝑗 + 1

59

patient in his appointment schedule; 0, otherwise

Each of the min constraints is reformulated into two constraints. Let M1 and M2 be

sufficiently large constants. Constraint (8) is rewritten as constraints (8-1 and 8-2):

𝑦𝑖,𝑠
𝑠𝑡𝑎𝑟𝑡 ≥ 𝑁𝑖−1,𝑠

𝑚𝑎𝑥 − 𝑀1𝑛𝑖,𝑠 ∀𝑖 ∈ 4. . 𝐼, 𝑠 ∈ 𝑆 (8-1)

𝑦𝑖,𝑠
𝑠𝑡𝑎𝑟𝑡 ≥ 𝑦𝑖−1,𝑠

𝑓𝑖𝑛𝑖𝑠ℎ
− 𝑀1(1 − 𝑛𝑖,𝑠) ∀𝑖 ∈ 4. . 𝐼, 𝑠 ∈ 𝑆 (8-2)

Similarly, constraint (15) becomes constraints (15-1 and 15-2):

𝑧𝑗,𝑠
𝑘,𝑠𝑡𝑎𝑟𝑡 ≥ 𝑃𝑗−1,𝑠

𝑘,𝑚𝑎𝑥 − 𝑀2𝑝𝑗,𝑠
𝑘 ∀𝑘 ∈ 𝐾, 𝑗 ∈ {2. . 𝐽𝑘 − 1}, 𝑠 ∈ 𝑆 (15-1)

𝑧𝑗,𝑠
𝑘,𝑠𝑡𝑎𝑟𝑡 ≥ 𝑡𝑗+1,𝑠

𝑘 − 𝑀2(1 − 𝑝𝑗,𝑠
𝑘)∀𝑘 ∈ 𝐾, 𝑗 ∈ {2. . 𝐽𝑘 − 1}, 𝑠 ∈ 𝑆 (15-2)

Constraints (5) and (12) follow the same structure.

3.3.3. Tightening of the Formulation

The proposed integer programming model is computationally challenging because the

number of scenarios needs to be sufficiently high to ensure robustness of the solution. We

use 1000 scenarios in our experiments as it provides a good balance between robustness

and computational complexity.

Alvarez Oh (2015) states that for instances with more than 5 patients per provider, the

general model fails to find a guaranteed optimal solution within 4-hours of computation

time. She thus seeks strategies to tighten the formulation. Specifically, she derives tight

lower bounds on the big M parameters, stage-based bounds, and additional constraints to

eliminate unnecessary processing and strengthen the formulation. In addition, we also

propose a lower bound on the optimal cost based on solving the problem for exhaustive

and mutually exclusive subsets of scenarios. As we shall see in the computational section,

this significantly helps reduce the computational time.

60

Alvarez Oh (2015) tightens the big M constraints, constraints (5 and 8) with 𝑀1 and

constraints (12 and 15) with 𝑀2. 𝑀1 is a bound on the difference of nurse finish times of

patient i+1 and the maximum of patients 1 through i; and 𝑀2 is a bound on the

difference of nurse finish times between provider k’s patient j and j+1. The following

theorems provide closed form expressions for tight values of 𝑀1 and 𝑀2, respectively.

The proofs are provided in Appendix.

Theorem 1. The value of 𝑀1 for each patient under each scenario can be given by

𝑀𝑖,𝑠
1 = 𝑀𝑎𝑥 {𝜏𝑖−1,𝑠

𝑁 + 𝑀𝑎𝑥{0,30 − 𝜏𝑖−2,𝑠
𝑁 }, 𝑀𝑎𝑥

𝑟=1,…,𝑖−2
{𝜏𝑟,𝑠

𝑁 − ∑ 𝜏𝑢,𝑠
𝑁𝑖−1

𝑢=𝑟+1 }}

Theorem 2. The value of 𝑀2 for patient j of provider k under scenario s can be provided

by

𝑀𝑗,𝑠
2,𝑘 =

𝑀𝑎𝑥 {𝜏𝑖+2,𝑠
𝑁 + 𝜏𝑖+1,𝑠

𝑁 + 𝑀𝑎𝑥{ 0, −𝜏𝑖,𝑠
𝑁 + 30}, 𝑀𝑎𝑥

𝑟=1,…,𝑗,𝑟 𝑖𝑛 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟’𝑠 𝑘 𝑝𝑎𝑛𝑒𝑙
{𝜏𝑟,𝑠

𝑁 − ∑ 𝜏𝑢,𝑠
𝑁𝑖+1

𝑢=𝑟+1 }}

where i = f[j,k]; that is, i is the patient number in the overall practice schedule

corresponding to the jth patient in provider k’s schedule.

Next, we derive a tight lower bound on the optimal solution as follows. Let S be the full

set of scenarios, that is S ={1,2,…S}.

• Step 1: Divide the set of scenarios S into a number of exhaustive and

mutually exclusive subsets {S 1, S 2,…, S n} such that S= S 1 S 2 …

S n.

È È È

61

• Step 2: Solve Problem TP under each scenario subset S i,. Let denote

the optimal cost, and let Si be the size of set S i, , i=1,2,…,n.

• Step 3: Calculate the lower bound on Problem TP under the full set of

scenarios S as .

In addition, Alvarez Oh (2015) proposes stage-based lower bounds (see Santos et al.

1995) for both the nurse and provider steps. At the nurse step she derives lower bounds

for the start time and finish time with nurses for each patient under each scenario s. At the

provider step, she determines bounds on the finish time of the last patient with each

provider k, which is essentially session completion time of each provider. Her lower

bounds are derived using constraints (5-9) to calculate the start time and finish time with

nurses without consideration of the appointment times introduced in constraint (10). In

other words, the earliest time a patient visit starts can be calculated recursively as the

second largest value of the finish times up to patient i-1 at the nurse step. This provides

tight lower bounds for the nurse start and finish times of patient i in the nurse step and the

completion time with provider k in the provider step under scenario s.

She also introduces additional constraints to further tighten the formulation and reduce

unnecessary processing. First, the appointment times can be required to be in ascending

order, w.l.o.g.; that is, the appointment time of patient i+1 must be greater than or equal

to that of patient i.

𝑋𝑖 ≤ 𝑋𝑖+1 ≤ ⋯ ≤ 𝑋𝐼, ∀𝑖 ∈ 𝐼 (19)

		
C

S
i

*

		
C

S

LB =
1

S
S

i
C

S
i

*

i=1

n

å

62

Second, when appropriate, she restricts the appointment schedule to have at most one

open slot (slack) between consecutive patients, both within the overall set of patients in

the practice [constraint (20)] and within the patients in a provider k’s panel [constraint

(21), with i and i+2 as consecutive patients in provider k’s panel]. Observe that constraint

(21) does not allow for double booking within provider k’s panel. This is appropriate for

the complex appointments, Type HC, under consideration, as they require long service

times; double-booking would highly increase patient wait time. Note also that she is

assuming that all patients show up at their appointment time. When no-shows are

prevalent, this constraint will be relaxed to allow for double-booking.

𝑋𝑖+1 − 𝑋𝑖 ≤ 2, ∀𝑖 ∈ 𝐼 (20)

1 ≤ 𝑋𝑖+2 − 𝑋𝑖 ≤ 2, ∀𝑖 ∈ 𝐼 (21)

She notes that the initial model, without these additional constraints, is fully general and

yields solutions that follow these properties. These assumptions are the result of

observing the properties of the optimal schedules for small instances. The associated

constraints are then added to solve the larger instances. They are also backed up by her

analysis of the time data obtained from the observed practice. According to the data, 12%

of the patients take over 30 minutes (2 slots) and only 3% over 45 min. with nurse. 10%

of the patients spend time with provider over 30 min. and the maximum service time is

44 minutes for the provider.

63

3.4. Scheduling Guidelines

In this section, we use the optimal schedules to derive guidelines that practices can follow

to better balance patient wait and provider idle time. In particular, we identify when to

add slack, the quality of schedules that ignore the stochastic nature of nurse and provider

visit times, and the impact on performance of sharing nurses across providers and

allowing for crossovers.

In our experiments, we use both empirical and lognormal visit time distributions, and

study small, medium and large instances: 5 patients, 8 patients and 10 patients per

provider, respectively. These values are chosen based on observed practice, average

service times of 20 minutes and the typical 4-hr length of morning and afternoon

sessions. Considering the initial time with the nurse, the slacks in between patients and

the variability of service times, the large instances are reasonably sized. The small

instances are chosen as half of the size of the large instances and medium instances are

chosen as a value in between. Please note that although the observed practice is unlikely

to have only 5 patients per provider per session, due to computational challenges, the

small instances are analyzed because it allows us to find the exact optimal solutions. We

also include results for medium instances to show the progression of the shape of optimal

policies as the number of patients increases. Numerical results, however, are only

presented for either small instances because the results are optimal, or practical large

instances that show how the effect of different factors becomes more pronounced.

In the objective function, we use coefficients of 0.8 for idle time and 0.2 for wait time

(Cost Ratio = 4) since we find these weights align best with the desired performance of

64

the practice in our study. In Section 3.4.6 we explore the sensitivity of the results to this

cost ratio.

3.4.1. Scheduling Guidelines for HC Appointments

Figure 3.4.1 below shows the optimal schedules for small (5 patients per provider),

medium (8 patients per provider) and large (10 patients per provider) instances with HC

appointments following the empirical nurse and provider visit times observed in practice.

The small instances were solved by Alvarez Oh (2015) while we solved the medium and

large instances to optimality. The first important structural property of these schedules is

that they are staggered, i.e. the slack for each of the two providers is not scheduled for the

same appointment interval.

65

Schedule for

Small

Instance

Schedule for

Medium

Instance

 Schedule for

Large

Instance

Time PCP 1 PCP 2 PCP 1 PCP 2 PCP 1 PCP 2

0:00

0:15

0:30

0:45

1:00

1:15

1:30

1:45

2:00

2:15

2:30

2:45

3:00

3:15

Figure 3.4.1: Schedules for small, medium and large instances

Alvarez Oh (2015) notes that the times given above indicate when the patients are asked

to arrive to the practice relative to the practice’s working hours. For example, if the

practice opens up at 9 AM, the patient scheduled at time 0:00 will arrive at 9 AM. In the

practice we have observed, providers are busy with paperwork and other necessary tasks

before their first and after their last patients. It is only the idle time between patients that

causes inefficiency.

In her effort to derive scheduling guidelines, she compares three schedules: practice

policy schedule, identical schedule, and optimal staggered schedule, according to her

observation above. The practice policy schedule follows the scheduling rules of the

practice that inspired our study. Their policy is to book a HC appointment in two 15-min

slots, as they regard HC appointments as 30-min appointments – in other words, a 15-min

66

slack is placed after every HC appointment. The identical schedule is determined by the

solution of her model with an additional constraint (22) which makes sure that both

providers have identical schedules.

𝑋𝑖 = 𝑋𝑖+1, ∀𝑖 ∈ 1,3,5 (22)

Figure 3.4.2 displays the schedules of practice, identical, and staggered policies for small

instances.

 Practice

Policy
 Identical Staggered

Time PCP 1 PCP 2 PCP 1 PCP 2 PCP 1 PCP 2

0:00

0:15

0:30

0:45

1:00

1:15

1:30

1:45

2:00

Figure 3.4.2: Schedules of practice, identical, and staggered policies for small instances

As shown in Figure 3.4.2, the identical schedule consists of three appointments followed

by slack and two appointments. The first three appointments are consecutively scheduled

since the wait time has not accumulated yet. In the staggered schedule, the schedule of

provider 1 follows the identical schedule while the schedule of provider 2 assigns slack

after two appointments; staggering in this fashion allows a steadier flow into the flexible

nurse step. For the team practice under study, her model suggests to schedule two HC

appointments followed by slack, a similar scheduling structure proposed in Oh et al.

(2013) for the single-provider practice. In addition, since her patient indexing makes the

67

jth patient of provider 1 be patient i=2j-1, and that of provider 2 be patient i=2j, in the

overall practice sequence, and thus gives nurse priority to the patients of provider 1 over

provider 2 given the same appointment times, the schedule for provider 1 is more packed

(i.e. has fewer and later empty slots).

Next, we compare the wait time, idle time and completion time performance of the three

schedules: practice policy, identical and staggered. The values specified below are given

for small instances, but medium and large instances also follow similar results. The

identical schedule provides about 25% better objective value and 45% lower idle time

compared to the practice policy, on average over the 1000 scenarios. In the practice

policy, however, the wait time performance is significantly better (3.5 minutes per

patient) while the average idle time is more than one hour with only 5 patients per

provider. The practice schedule introduces more than enough slack, which causes very

low wait times but unsustainably high idle times. The objective difference between the

identical and staggered schedules, however, is only 2%. This is because although the

staggered schedule improves 17% on wait time, the idle time increases 5% compared to

the identical schedule. The numerical values for each policy are given below in Table

3.4.1:

Table 3.4.1: Comparison of results for practice, identical and staggered policies – small

instance (5 patients per provider) and empirical service times

To provide a better perspective, Alvarez Oh (2015) displays the performance of the

practice as the session unfolds, for each of the ten patients in the sequence. Figures 3.4.3

 Practice Policy Identical Staggered

Wait Time (per patient) 3.45 13.03 10.79

Idle Time (per provider) 62.38 34.09 35.76

Objective Function Value 106.72 80.59 78.81

68

and 3.4.4 show the wait time per patient and idle time between patients for all three

schedules. In the figures, we omit the first patient for each provider, patients p1 and p2 in

the practice, because they are always scheduled at the beginning of the session and

independent of the appointment policy used.

Figure 3.4.3: Average wait time per patient

Figure 3.4.4: Average provider idle time between patients

Figure 3.4.3 shows that the wait time per patient followed by the practice policy is way

below the 15-min. line but providers go idle more than 10 minutes before seeing each

patient, on average. It is because unneeded slack is scheduled, which results in inefficient

use of resources. In the identical and staggered schedules, the wait time accumulates and

then drops down where slack has been added. The patient wait time of the staggered

schedule stays consistently around the 15-min line. Thus, patients in the staggered

schedule experience less wait time than those in the identical schedule: three patients wait

slightly more than 15 min. in the staggered while five patients wait more than 15 min in

the identical.

69

 The idle time of both the identical and the staggered schedules (Figure 3.4.4) is in a

similar range and much less than 10-min. per patient after the very first two patients.

Next, we study the 90th percentile of wait time per patient and idle time between patients

for the three schedules, to see how they perform in the “worst case”.

Figure 3.4.5: 90th percentile of wait time per patient

Figure 3.4.6: 90th percentile provider idle time between patients

Figures 3.4.5 and 3.4.6 show that each patient’s wait time in the practice policy’s worst

case is approximately 30 minutes below the wait times associated with the identical and

staggered policies. On the other hand, the provider idle time in the practice policy’s worst

case is almost twice that of the identical and staggered. Comparing wait time between the

identical and the staggered policies, only two patients in the staggered schedule wait

more than 45 min. while four patients spend more than 45 min. to wait in the identical

schedule. Therefore, the staggered schedule performs fairly well.

In summary, she derives the following guidelines for the scheduling of HC appointments

in the practice under study: 1) team practices are better off staggering slack slots rather

70

than locating them identically in both providers’ schedules; 2) the patients of the provider

with nurse priority will have a more packed schedule (less slack); 3) two HC

appointments should be followed by a slack slot, except perhaps in the first sequence of

the session; 4) no double-booking for a provider in the absence of no-shows, since HC

appointments have long and highly variable service times.

3.4.2. Effect of Service Time Distribution and Variance

To generalize Alvarez Oh (2015) and our analyses and insights, we test instances with

lognormally-distributed nurse and provider service times. This allows us to assess the

effect of the distributional shape, while keeping the service time mean and variance

constant, as well as the effect of increasing the service time variance while keeping the

mean the same.

Figure 3.4.7 below shows the optimal schedules for small (5 patients per provider),

medium (8 patients per provider) and large (10 patients per provider) instances with

lognormally-distributed service times, with the same mean and variance as in the

empirical distribution.

Schedule for

Small

Instance

Schedule for

Medium

Instance

 Schedule for

Large

Instance

Time PCP 1 PCP 2 PCP 1 PCP 2 PCP 1 PCP 2

0:00

0:15

0:30

0:45

1:00

1:15

1:30

1:45

71

2:00

2:15

2:30

2:45

3:00

3:15

Figure 3.4.7: Schedules for small, medium and large instances with lognormally-

distributed service times

As can be seen above, the structures of optimal schedules in instances with lognormally-

distributed service times are very similar to those with empirically-distributed service

times, and the guidelines we developed for HC appointments still hold.

In order to test the effect of service time variance on the structure of optimal schedules,

we created two more sets of instances with lognormally-distributed nurse and provider

service times with doubled variance (CV=0.59 for provider and 0.85 for nurse) and

quadrupled variance (CV=0.84 for provider and 1.2 for nurse), respectively. The mean is

kept constant. As the service time variance increases, the optimal schedule gets more

packed. i.e. less slack is introduced; see Figure 3.4.8. Intuitively, this makes sense as the

practice is placing a higher weight (0.8) on idle time, relative to wait time (0.2).

72

Schedule for
Regular
Variance

Schedule for
Doubled
Variance

 Schedule for
Quadrupled
Variance

Time PCP 1 PCP 2 PCP 1 PCP 2 PCP 1 PCP 2

0:00

0:15

0:30

0:45

1:00

1:15

1:30

Figure 3.4.8: Schedules for small instances with lognormally-distributed service times

with increasing service time variances

3.4.3. Value of Stochastic Solution (VSS)

The stochastic nature of nurse and provider visit times results in a computationally

challenging, large-scale problem including a wide set of scenarios. What would be the

loss in performance associated with the schedule generated by a deterministic model that

simply considers average nurse and provider visit times? VSS is calculated as the

difference between the expected cost (over all scenarios) of the schedule generated by the

deterministic, or single scenario, version of the problem with expected nurse and provider

times, and the cost of the optimal schedule suggested by the stochastic problem. VSS is

under 2% of the objective function value of the stochastic solution for all cases, which

shows that the deterministic solution is actually a very good heuristic for this problem.

Interestingly, the schedules generated by the deterministic model are also staggered,

which further demonstrates the superiority of staggered schedules and explains the high

quality of the deterministic solution. The deterministic model thus provides a very

effective and efficient heuristic for the case of interest to our practice, a cost ratio of

provider idle time to patient wait time of 4, where packed schedules are attractive. The

73

VSS, however, increases as more weight is placed on patient wait, being around 10%

when the ratio is 1 (0.5:0.5).

3.4.4. Effect of Nurse Flexibility

Next, we compare the joint performance in wait time and idle time between two

independent single nurse-provider practices and a 2-flexible-nurse, 2-provider team

practice, seeing 5 patients per provider. Table 3.4.2 displays the objective function

values, mean and 90th percentile of wait time per patient and idle time per provider for the

two practices under empirical and lognormal service time distributions; that is, wait time

is averaged across all patients and idle time is averaged across the providers. Then, the

mean and 90th percentiles are found across 1000 scenarios. The results given from this

point on will focus on staggered policy as the optimal solution. We must note that we

compared the effect of nurse flexibility statistically using a paired t-test for the means of

the objective function over 1000 scenarios and found out that the difference is significant

(p-value ~= 0) under all settings.

74

Table 3.4.2: Comparison of results for dedicated vs. flexible nurses – small instances (5

patients per provider) for empirical and lognormal service times

Table 3.4.2 shows that while the wait time and idle time performance of the team practice

(flexible nurses) dominates that of the single provider practices (a.k.a. dedicated nurses),

the impact is rather low from an operational viewpoint. The objective function

improvements are 6.5% and 7.5% for empirical and lognormal service time distributions,

respectively. However, the benefits of nurse flexibility increase with the increase in the

number of patients and the variance in service time, as illustrated by Tables 3.4.3 and

3.4.4. Table 3.4.3 shows the 5 patients per provider and 10 patient per provider cases

under lognormally distributed service times. Although the objective function

improvements are similar in percentage, 7.5% and 6.5% for 5 and 10 patients per

provider, respectively, the 90th percentile improvements in wait time and idle time are

more pronounced, with a reduction of 5.5 minutes in wait time and 6.5 minutes in idle

time for the case with 10 patients per provider while it is 6.5 minutes reduction in idle

time and 1.5 minutes increase in wait time for the case with 5 patients per provider.

 Empirical Distribution Lognormal Distribution

Dedicated
Nurses

Flexible
Nurses

Dedicated
Nurses

Flexible
Nurses

Mean Wait Time 11.93 10.79 11.75 10.35

Mean Idle Time 37.68 35.76 37.12 34.92

90th Percentile of Wait
Time 27.41 25.21 22.01 23.52

90th Percentile of Idle
Time 63 56 60 53.55

Objective Function Value 84.15 78.81 82.89 76.57

 5 patients per provider 10 patients per provider

Dedicated
Nurses

Flexible
Nurses

Dedicated
Nurses

Flexible
Nurses

Mean Wait Time 11.75 10.35 15.57 14.08

Mean Idle Time 37.12 34.92 56.83 54.52

75

Table 3.4.3: Comparison of results for dedicated vs. flexible nurses – small instance (5

patients per provider) and large instance (10 patients per provider) for lognormal service

times

Finally, Table 3.4.4 shows the regular and quadrupled service time variance cases for

lognormal distribution, for 10 patients per provider. The objective function improvement

increases from 6.5% for the regular service time variance to 18% for the quadrupled

service time variance. Wait time and idle time improvements are also much more

pronounced, reaching 8 and 10 minutes for the mean and 21 and 22.5 minutes for the 90th

percentile.

Table 3.4.4: Comparison of results for dedicated vs. flexible nurses – large instance (10

patients per provider) and lognormal service times with regular and quadrupled variance

3.4.5. Effect of Crossovers

Crossovers naturally happen in the case of flexible nurses as a later patient in the

schedule of a provider may complete the nurse step before an earlier patient with a longer

nurse visit time. In our model, we assume that the provider will see next the patient that

90th Percentile of Wait
Time 22.01 23.52 34.62 26.96

90th Percentile of Idle
Time 60.00 53.55 87.00 81.50

Objective Function Value 82.89 76.57 153.23 143.57

 Regular Service Time Variance
Quadrupled Service Time
Variance

Dedicated
Nurses

Flexible
Nurses

Dedicated
Nurses

Flexible
Nurses

Mean Wait Time 15.57 14.08 30.22 22.00

Mean Idle Time 56.83 54.52 90.05 79.61

90th Percentile of Wait
Time 34.62 26.96 72.73 51.78

90th Percentile of Idle
Time 87.00 81.50 155.55 133.05

Objective Function Value 153.23 143.57 264.95 215.39

76

first becomes available, thus allowing for patient crossover, to minimize uncomfortable

patient wait time in the exam room. What would be the loss of performance if crossover

is disallowed and providers see patients in the same sequence as they arrive at the

practice and are seen by the nurses? Observe that the no-crossover model is easier but not

trivial to formulate and solve because tracking patient flow at the flexible nurse step still

requires the introduction of binary variables and M constraints; see online companion for

the detailed formulation. The provider step, however, follows the original patient

sequence and is straightforward. As a result, the second set of binary variables and M

constraints (in the original team care problem with crossovers) are no longer necessary

and solution speed is improved. In what follows, we compare the joint performance in

objective function value, wait time and idle time. We must note that we compared the

effect of crossovers statistically using a paired t-test for the means of the objective

function over 1000 scenarios and found out that the difference is significant (p-value ~=

0) under all settings.

Table 3.4.5 displays the objective function value, mean and 90th percentile of wait time

and idle time for a team practice with crossover vs. a team practice without crossover for

5 patients per provider for empirically and lognormally distributed service times.

77

Table 3.4.5: Comparison of results for models with vs. without crossovers – small

instance (5 patients per provider) for empirical and lognormal service times

Table 3.4.5 shows that while the wait time and idle time performance of the practice with

crossovers dominates that of the practice without crossovers, the impact is rather low

from an operational viewpoint. The benefits of patient crossover, however, increase with

the number of patients and service time variance, as shown in Tables 3.4.6 and 3.4.7.

Table 3.4.6 shows the cases with 5 patients per provider and 10 patients per provider

under lognormally distributed service times. Although the objective function

improvements are similar in percentage, around 5% for both 5 and 10 patients per

provider, the 90th percentile improvement in idle time is significantly more pronounced

for the larger-size problem, with savings of almost 10 minutes, while the wait time is

slightly worse, increasing by about 1 minute relative to the no-crossover solution.

 Empirical Distribution Lognormal Distribution

 Crossover No Crossover Crossover No Crossover

Mean Wait Time 10.79 11.81 10.35 10.56

Mean Idle Time 35.76 36.98 34.92 37.28

90th Percentile of Wait Time 25.21 27.40 23.52 24.21

90th Percentile of Idle Time 56.00 59.50 53.55 58.00

Objective Function Value 78.81 82.79 76.57 80.77

78

Table 3.4.6: Comparison of results for models with vs. without crossovers – small

instance (5 patients per provider) and large instance (10 patients per provider) for

lognormal service times

Finally, Table 3.4.7 shows the performance comparison for the cases of regular vs

quadrupled service time variance with lognormal distribution and 10 patients per

provider. The objective function improvement of the schedule with vs without crossovers

increases from 5% for the regular service time variance to 14.5% for the quadrupled

service time variance. The value of the model with crossovers to reduce both wait time

and idle time is significantly higher for quadrupled service time variance. The wait time

is reduced by 3 minutes for mean and 4 minutes for 90th percentile while the idle time is

reduced by 17 minutes for mean and 24 minutes for 90th percentile.

Table 3.4.7: Comparison of results for models with vs. without crossovers – large

instance (10 patients per provider) for lognormal service times with regular and

quadrupled variance

While the impact of crossovers is more significant on idle time under the cost ratio of 4

under consideration, further tests using a cost ratio of 1 show even greater improvements

 5 patients per provider 10 patients per provider

 Crossover No Crossover Crossover No Crossover

Mean Wait Time 10.35 10.56 15.38 14.14

Mean Idle Time 34.92 37.28 48.38 56.07

90th Percentile of Wait Time 23.52 24.21 30.41 28.77

90th Percentile of Idle Time 53.55 58.00 74.55 84.05

Objective Function Value 76.57 80.77 138.93 146.27

Regular Service Time
Variance

Quadrupled Service Time
Variance

 Crossover No Crossover Crossover No Crossover

Mean Wait Time 15.38 14.14 24.78 27.28

Mean Idle Time 48.38 56.07 72.62 89.41

90th Percentile of Wait
Time 30.41 28.77 57.68 61.27

90th Percentile of Idle Time 74.55 84.05 124.10 148.05

Objective Function Value 138.93 146.27 215.32 252.19

79

on wait time. In the most extreme case, with quadrupled service time variance and 90th

percentile, the improvement is 38%, from 33 minutes to 20 minutes. These results can be

found on the appendix of our essay.

In general, the probability of occurrence of patient crossover increases when the number

of patients per provider increases and when the variance in the service time increases. In

the small instance with empirical distribution, there was only a 5% chance that a

particular patient will experience crossover. Therefore, it is not a surprise that a schedule

that considered crossover did not have a significant impact. On the other hand, in the

large instance with lognormal service time distribution and quadrupled service time

variance, there is a 15% chance that a particular patient in the schedule will experience

crossover. A patient flow model that accounts for crossovers is therefore more beneficial

in the latter situation.

3.4.6. Sensitivity to Cost Ratio and Granularity of Appointment Slots

The appendix contains further sensitivity analyses with respect to the idle to wait time

cost ratio and the appointment slot length. Increasing the weight placed on wait time, by

varying the idle to wait time cost ratios from the original (0.8:0.2) to (0.66:0.34) and

(0.5:0.5) has the expected results. The number of open slots increases. The original

practice schedule, leaving one open slot after every patient, becomes then attractive.

Increasing the granularity of the appointment slot lengths, by reducing the slot duration

from the original 15 minutes to 5 minutes, and even further allowing unrestricted

appointment times, results in just modest improvements in the optimal patient wait and

provider idle time. This suggests that it may not be worth the added complexity it entails

for patients.

80

3.5. Computational Performance

3.5.1. Effectiveness of Tightened Formulation

Alvarez Oh (2015) evaluates the computational performance of the model, with and

without tightening constraints for the case of five patients per provider. In the model

without tightening constraints, she applies the big M method with a sufficiently large M

value of 200.

In evaluating the computational performance of various approaches, she reports the

optimality gap, which can be defined as the relative gap between the objective of the best

integer solution and the objective of the best node remaining generated by CPLEX. Her

model is implemented with IBM ILOG Optimization Programming Language using

CPLEX 12.6 and run on a Windows 8.1 pro and 64 bit with Intel(R) Core™ i7-4770 CPU

@ 3.40 GHz, 3401 Mhz, and 32GB RAM. The solution and its performance (speed and

quality) may depend on the particular sample of scenarios selected, which is denoted as a

replication. This is especially true if the sample is small. For that reason, she generates

two replications of 1000 scenarios by randomly sampling from the empirical service time

distribution. The model contains 118,002 constraints, 15,000 binary variables, and 10

integer variables. Tables 3.5.1 and 3.5.2 present the optimality gap for the various models

with and without tightening constraints after 1 hour and 4 hour run times, respectively.

81

Gap
Model
with large M

Model
with tight M

Model
with large M
& bounds

Model
with tight M &
bounds

1st replication 46.93% 14.02% 1.46% 1.05%

2nd replication 59.80% 15.59% 1.54% 1.34%

Table 3.5.1 Computational performance for models with and without tightening

constraints with allowance of 1 hour

Gap
Model
with large M

Model
with tight M

Model
with large M
& bounds

Model
with tight M &
bounds

1st replication 28.52% 10.54% 1.27% 0.91%

2nd replication 32.16% 10.74% 1.32% 1.13%

Table 3.5.2 Computational performance for models with and without tightening

constraints with allowance of 4 hours

As shown in Tables 3.5.1 and 3.5.2, the gap significantly decreases when incorporating

tight M values and bounds, with the bounds narrowing the optimality gap far more

quickly. It is interesting to note that when running the model for 4 hours, all models

produce the same objectives and schedules. However, she cannot confirm the quality of

the solution produced by the formulation without any tightening bounds or tight M. Due

to the time limit, the search process has not been completed to guarantee optimality;

however, the best integer solution has not improved after a certain time. The significant

computational effort shows that “one of the incumbents found in the first minutes of the

branch and bound process was indeed the best solution that was to be found (Topaloglu

2006).” The objectives and schedules obtained by the model satisfy the goal of the study

from the practical viewpoint.

Next, she investigates the computational performance of the tightened formulation. As

shown in Figure 3.5.1, at the end of node 0, the gap reaches close to 5.24% in 62 seconds

82

in the 1st replication and 4.81% in 70 seconds in the 2nd replication. Within 10 mins, the

gap is 1.2% in the 1st replication and 1.7% in the 2nd replication. The objective after 10

min. is only 0.03% and 0.2% higher than that after 4hours, respectively. Therefore, the

tightened formulation leads to a near optimal solution very quickly.

Figure 3.5.1: Computational performance of tightened formulation

The computational experiments for medium and large HC cases and lognormally

distributed instances were performed in the same computer as Alvarez Oh (2015)’s and

show similar results regarding tightening of the formulation.

3.5.2. Impact of Lower Bound Based on Solving Mutually Exclusive Scenario

Subsets

For the medium and large cases (8 and 10 patients per provider respectively), we apply

the lower bounding technique described in Section 3.3. For the medium case, we split the

1000 scenarios of the medium practice into 50 mutually exclusive groups of 20. It takes 3

hours 45 minutes to solve the 50 groups to create the lower bound, but because that lower

bound is very tight, the optimality gap for the original full 1000-scenario problem

decreases down to 8% within 10 minutes, and 2% within 4 hours.

83

Due to the high computation times, for the large case we use the lower bounding

technique with even smaller subsets of scenarios: 100 mutually exclusive subsets with 10

scenarios in each subset. It takes 1 hour and 10 minutes to solve the corresponding 100

sub-problems to create a lower bound, but because that lower bound is tight, the

optimality gap decreases down to 6.4% within 4 hours (5 hours and 10 minutes total)

while solving the global problem.

Thus, we conclude that the lower bounding technique is extremely useful in cutting down

the optimality gap for large instances. Without this lower bound, optimality gaps can be

as high as 22% for large instances at the end of 4 hours.

When solving instances drawn from various lognormal service time distributions, we find

that as the service time variance increases relative to a fixed mean, problem TP gets

computationally easier. Again, detailed results can be found in the appendix to our essay.

3.6. Extension To Incorporate No-Shows

In this section, we re-iterate the results from Alvarez Oh (2015) regarding no shows:

Until now, we have assumed that scheduled patients always show up to their

appointments, since the practice that inspired our study has only a 3% patient no-show

rate. In this section, she studies the performance of our models and suggest scheduling

guidelines for various no-show rates. She considers no-show rates ranging from 5 to 30

percent (Cayirli and Veral, 2003), in increments of 5 percent. The method to model the

different no-show rates within her stochastic programming formulation is to randomly

place zero-length visit durations with nurse and provider in the data used to generate the

scenarios. This approach captures provider idle time exactly, but results in an

84

approximation of patient wait times. While the wait time of all the patients seen by the

provider is calculated correctly, the objective function also includes the wait time the

patient who did not show up would have experienced. As in previous sections, she

optimizes appointment times by solving the model with the tightened formulation, but

she makes sure to allow for double-booking of appointment slots.

 5% 10% 15% 20% 25% 30%

Time PCP 1 PCP 2 PCP 1 PCP 2 PCP 1 PCP 2 PCP 1 PCP 2 PCP 1 PCP 2 PCP 1 PCP 2

0:00

0:15

0:30

0:45

1:00

1:15

Figure 3.6.1: Schedules under different no-show rates

Figure 3.6.1 displays the schedule under different no-show rates. As expected, the

schedule gets packed when no-show rates increase. With a 25 percent no-show rate, slack

is no longer needed in the schedule, even when double-booking the first two patients of

one of the providers. The optimal schedule under 30% patient no-shows includes one

open slot (slack) since both providers are double-booked at the beginning of the session.

Double booking the first two patients of provider 1 is a robust scheduling guideline in the

range of 5-30% no-shows. The double-booking is followed by an open slot for no-show

rates in the range of 5-20%; no slack is necessary under 30% no-shows. It is also

interesting to note that the slack position is pushed down, to later in the schedule, as the

no-show rates increase. Because of no-shows, wait time and idle time accumulates at a

slower pace. In addition, although her formulation allows double-booking any two

85

consecutive patients, the optimal solutions generated only suggest double-booking the

very first two appointments.

3.7. Conclusion

In this essay, we build upon a challenging outpatient scheduling problem presented by

Alvarez Oh (2015): the team primary care practice. The system can be modeled as a

tandem queue: the patients are first seen by a team of nurses in a flexible manner and

then seen by their dedicated provider. We restrict our study to the case of two nurses and

two providers, which is highly relevant because larger practices often operate in smaller

independent teams such as the one studied.

While a first-come-first-serve (FCFS) queueing policy at the second step (provider) is

attractive in practice, it results in a significant modelling challenge as patients will

crossover and see the provider in a sequence different from that suggested by their

appointment times. Alvarez Oh (2015) developed a stochastic mixed integer program to

solve this unique problem and we generalize her insights based on the structure of the

optimal schedules.

In particular, we draw the following conclusions:

1. The optimal schedule is staggered, introducing slacks for the two providers in

different time slots. The later slack is assigned to the provider whose patients are

given priority at the nurse step, resulting in a more packed schedule with potentially

fewer open appointment slots for that provider.

2. A deterministic model based on average nurse and provider visit times provides a

fast, high quality heuristic for the stochastic team care problem, producing schedules

86

within 2% of optimality for all instances tested under the cost ratio of 4 (provider idle

time is weighted 4 times higher than patient wait time) suggested by the practice we

collaborated with. When a heavier weight is placed on patient wait time the quality of

the deterministic solution deteriorates. For a cost ratio of 1, the optimality gap is

around 10% for all levels of service time variance tested.

3. As the variance of the service times increases, the benefits of nurse flexibility and

accounting for crossovers on wait time and idle time grow. An optimized schedule

allowing for nurse flexibility and patient crossovers leads to significantly lower wait

time and idle time when the service time variance is high.

4. As the relative value placed on idle vs. wait time is decreased, the optimal schedules

approach the current practice policy where a slack is introduced after every patient.

5. The advantages in reduced wait and idle time of increasing the granularity of

appointment slots are rather small and do not outweigh the operational disadvantage

in difficult-to-remember appointment times for patients.

6. As the no-show rate increases, the optimal schedules get more packed (introduce less

slack), the slacks are scheduled later, towards the end of the time horizon, and

double-booking of the first two patients becomes attractive.

Because of the computationally challenging nature of the problem, we developed

methods to improve the solution time and optimality gap. Alvarez Oh (2015) had

tightened the big-M parameters using the problem structure and generated additional cuts

and constraints to close the optimality gap. In addition, we generate a strong lower bound

by solving the stochastic mixed integer program for exhaustive and mutually exclusive

subset of the full set of scenarios and close the optimality gap even further and solve

87

larger problem sets. This allowed us to solve realistically-sized problems within a

reasonable time frame and optimality gap.

88

CHAPTER 4

HIERARCHICAL PLANNING AND EXECUTION MODELS FOR JOB SHOP

SCHEDULE OPTIMIZATION

My advisor Ana Muriel, her undergraduate research assistant Isabelle Levi and our

industry partners Josh Kuledge and Vivek Saxena from Advisory Aerospace have

collaborated with me in this project and contributed to the work described in this essay.

4.1. Introduction

Hierarchical job shop schedule planning and execution is a challenging tactical and

operational problem (HJSP) observed in aerospace industry. In this problem, the amount

of production and inventory on a job shop must be determined on a tactical (usually

weekly) and then on an operational (usually daily) level. Tactical level corresponds to

planning phase whereas operational level corresponds to execution phase of the

manufacturing system. The problem that we are tackling here is inspired by a real-life

industrial application observed at an aerospace parts manufacturer.

Aerospace parts manufacturing involves highly complex Bill-of-Materials (BOM)

structures with many intermediate and end products that can be represented by a network

or a tree graph, a simple example of which can be seen below. The connections (arcs) in

the network or tree graph represent how these parts are manufactured or assembled to

each other. The nodes in the network or tree graph represent the parts/items themselves.

The node at the higher level is called a parent whereas the node at the lower level is

called a child. The nodes at the highest level/end items without a parent (top assembly)

represent the final parts/assembly that are usually demanded by a customer, although it is

not uncommon to have a demand for sub-assemblies/children items as spare parts. Figure

89

4.1.1 shows a simple BOM tree with one end item. The aerospace manufacturer produces

many end items with BOM their trees overlapping. One final level that can be considered

on top of the end items is the order level. Customers may demand many end items in a

single order, creating a parent level composed of orders.

Figure 4.1.1 Bill of materials for a simple end item. Number in parenthesis represents the

number of units of that part required to build one unit of the parent part (units per parent,

UPP).

A common complication observed in manufacturing settings is the limited amount of

resources available. These limited resources might be raw materials, machines or

personnel. There are only so many machining hours that can be dedicated to making of

the products demanded by the customers. Even if we ignore down-time or maintenance

and the job shop is operated 24/7, there are only 24 hours that a machine can be run in a

given day. If the limited resources are an issue, the job shop scheduling problem is called

“capacitated”.

Child level
(Level 2)

Parent level
(Level 1)

End item
level (Level 0)

End item

Part I (3)
2 weeks

Part I-I (1)
1 week

Part I-II (2)
1 week

Part II (2)
3 weeks

Part II-I (3)
2 weeks

90

In the literature, the type of job shop scheduling problems described above has a common

name: Multi-Level Capacitated Lot-Sizing Problem (MLCLSP). Lot-Sizing here refers to

determining how big the production lot should be on a limited resource/machine before

switching over to a different product. Lot-Sizing generally implies setups/setup costs that

must be completed/paid before a production batch/lot can be started. Therefore, a balance

must be achieved between producing large amounts after a setup versus keeping a smaller

inventory. Multi-Level refers to the BOM structure described above. Finally, capacitated

refers to the limited resources.

HJSP differs from the problems seen in the literature because two separate MLCLSPs

must be solved hierarchically at first a tactical level and then at an operational level. The

tactical problem’s output becomes the operational problem’s input. In our case, this

corresponds to solving a planning problem that determines the broad production and

inventory levels on a BOM structure composed of higher-level items and assemblies over

multiple weeks (approximately 12 or 13 weeks corresponding to a quarter). Then, once

these production levels are determined, execution of this production plan must be

operationalized with a time horizon/production window of 2 weeks (10 or 12 days,

depending on whether a 5-day or a 6-day working week is implemented). This is

necessary when planning the shop’s schedule in the aerospace industry because the

production lead time for these products can be up to 12 weeks. The longer-term picture

is necessary in order to prioritize what needs to be completed in the short term. It is

important to note that the BOM structure needs to be adapted to the timescale modeled in

order to appropriately account for the resources needed each period. In the planning

problem a part requiring several processing steps on limited resources (as shown in the

91

BOO) is divided into a sequence of part-steps where several consecutive processing steps

are grouped only if they can be completed within a week, so that the necessary capacity

used that week is correctly allocated. In the execution problem, the part will be broken

down into smaller part-steps, where processing steps are grouped only if they can be

completed within one day. Each part-step will be a node in the adapted BOM, whose

parent is simply the next part-step in the processing of that part. The operational BOM

thus differs from the tactical BOM. In the operational BOM, the items on the tactical

BOM are broken down into further sub-assemblies and sub-items that correspond to day-

to-day manufacturing operations.

MLCLSP is a so-called “big-bucket” problem where multiple items can be produced over

the course of a period (in the case of the planning problem described above, weeks) but

the sequencing of items going from one period to another is not considered. A “small-

bucket” version of the problem is where only a single item can be produced in a period

using a limited resource, due to shortness of the time horizon. The reader is referred to

Sahling et al. (2009) for a discussion of the differences between these two problems. In

HJSP, both planning and execution problems are technically “big-bucket” problems. This

is due to the size of the production in the aerospace industry: even at a daily level,

multiple items must be produced on a single machine. However, the execution problem

also has characteristics of a “small-bucket” problem: the time horizon is much smaller

and the sequencing of items going from one period to another must be considered. This is

because considering the sequencing makes a big difference. If a particular item is setup in

a given period and that item is the last item produced on the machine in that period (or its

setup is completed precisely at the end of the period), the setup state carries over: the

92

machine does not have to be setup again, if that item is continued to be produced as the

first item on the machine in the next period. This is called a setup carry-over. MLCLSP

with setup carry-over is a generalized version of the MLCLSP called MLCLSP-L (multi-

level capacitated lot-sizing problem with linked lot sizes) in the literature.

One more differentiating/complicating factor in HJSP is the existence of long setups that

take multiple days to complete. Although a small percentage of setups in the execution

problem exhibit this behavior. It needs to be considered to be able to model the

manufacturing setting accurately. This subset of items and machines that need many days

of setup will be captured by a set, Γ𝐿 in our modeling approach. These long setups

complicate the problem even further – they need special sets and constraints that were not

considered in the previous MLCLSP literature. Finally, we also explore the option of

backlogs and lost-sales.

MLCLSP has been proven to be NP-hard. Therefore, HJSP as a generalization/extension

on MLCLSP can also be considered to be NP-hard. The complexity of the MLCLSP has

led researchers to develop many heuristics/meta-heuristics to provide high-quality

solutions for industrial sized problems. Therefore, exact methods have not yet been

explored to their full potential. The development of more powerful computers and

availability of better commercial optimization software in the recent years, together with

the use of tight formulations, has led us to consider an exact solution methodology. In

this essay, we propose a full mathematical model for the challenging problem of HJSP

and offer computational methods to decrease the size of the problem to allow a

commercial solver to find a solution in a reasonable amount of computation time. We test

our approach on an industrial-size problem provided by the aerospace parts manufacturer

93

mentioned above. We were able to find solutions for this problem in a reasonable amount

of time that renders it a useful tool in practice.

The remainder of the essay is organized as follows. In Section 4.2, we briefly review the

relevant literature. In Section 4.3, we present our mathematical modelling approach. In

Section 4.4, we define the test application provided by the aerospace parts manufacturer,

describe our computational method to reduce the size of the problem and present our

results. In Section 4.5 we will conclude the essay and future research directions will be

given in Section 5, along with the remainder of the chapters.

4.2. Literature Review

The importance of effective production lot sizes in the presence of fixed costs was first

recognized at the turn of the 20th century, with the introduction of the classic Economic

Ordering Quantity (EOQ) problem by Harris (1913). A rich literature ensued to tackle the

many related problems that arise as assumptions of this basic problem are relaxed. In

particular, for the case of dynamic demand over T periods, which is known as the Lot

Sizing Problem (LSP), Wagner and Whitin (1958) present an exact dynamic

programming algorithm that runs in time O(T2). Linear run time algorithms are now

available for this problem; e.g. Wagelmans, van Hoesel and Kolen (1992).

The capacitated version of LSP (CLSP) was introduced by Manne (1958), to account for

the existence of resources with limited capacities. Since many excellent reviews of the

literature exist, we will not go deep into reviewing these papers. For a relatively recent

review, we refer the reader to Karimi, Ghomi and Wilson (2003).

94

The multi-Level version of CLSP (MLCLSP) was introduced by Billington et al. (1983).

This problem considers a BOM structure where components are assembled into sub-

assemblies and final products, as discussed above. Similar to CLSP, there are many

reviews of MLCLSP. For a recent review, we refer the reader to Buschkühl et al. (2010).

In this section, we will review the papers that are most closely related to our essay and

will highlight how our work differs from them.

Chen and Chu (2003) model a supply chain planning problem as an MLCLSP. They

develop a heuristic approach to solve this problem based on Lagrangian Relaxation (LR)

and local search. Their approach only relaxes the binary setup constraints and forces them

to take the value of 1 if the corresponding continuous variable is non-zero. They solve the

relaxed linear problem (LP) using the simplex method and update the Lagrange

multipliers using a surrogate subgradient method. A feasible solution is obtained at each

step and improved by a local search by changing two setup variables at a time. They take

advantage of a special structure of the LSP and improve upon the local search, reducing

computation time. They use numerical experiments to show the effectiveness of their

approach by comparing their solutions to those obtained by a commercial solver. They

solve small sized problems (10 items, 6 periods) to 1% optimality gap within a second

and their algorithm finds solutions to medium sized problems (60 items, 12 periods)

within 360 seconds. The objective function value obtained by the algorithm is 10.5%

better than the solution found by the commercial solver when it terminates after 10000

seconds.

Stadtler (2003) proposes a time-oriented decomposition heuristic to solve the MLCLSP

with general product structures, multiple constrained resources and setup times. The

95

heuristic depends on an internally rolling lot-sizing window and the lot-sizing decisions

are made sequentially. This approach decomposes the problem into submodels, which are

represented by the “Simple Plant Location” model formulation. They test their approach

using a computational study and find that their approach provides better solutions than

another heuristic by Tempelmeier and Derstroff (1996), as well as the ability to solve

larger problem sizes.

Robinson and Lawrence (2004) solve the coordinated version of MLCLSP using an LR

heuristic algorithm. The coordinated version of the problem arises when a family of items

share the setup costs on a common resource and coordination of these items becomes

economically attractive. Specifically, if the items from the same family use the same

resource at the same time, their costs are lower. This is similar to sequence-dependent

setups with the exception that coordination is considered at the objective function and not

at the constraints. Computational experiments show the algorithm to yield a 22.5% cost

reduction compared to a current scheduling practice at a manufacturing firm, using an

industrial-size problem obtained from the manufacturer.

Sahling et al. (2009) extends the MLCLSP by allowing setup carry overs and considers

the version of the problem called MLCLSP-L introduced in the previous section. In this

version, partial sequencing of the items (mainly, the first and the last item produced in a

period) is important because setup states can be carried over from one period to another.

They solve this problem using a fix-and-optimize heuristic which fixes binary setup

variables from previous periods and optimizes only a small subset of them. They do a

computational study to show that their algorithm provides high-quality solutions with a

moderate computational effort. This paper is the most relevant one in the literature to our

96

study since our execution model also considers partial sequencing of the items similar to

this paper. The differences between this paper and ours will be discussed below, along

with the rest of the literature.

Mohammadi et al. (2010) discuss the MLCLSP with sequence-dependent setups. They

provide an exact model which they determine is impractical to solve for non-small

instances. They use rolling-horizon fix-and-relax heuristics to solve them and also

analyze trade-offs between quality of the solutions and computation time. Sequence-

dependent setups are a generalized version of setup carry overs since they also consider

within-period sequencing of items and not just the first and last items in a period. Setups

of items depend on which item they are scheduled after. Setup carry over is a special case

of sequence dependent setups where if the same items are scheduled one after another at

the end of the period and the beginning of the next period, setup becomes zero.

Helber and Sahling (2010) use the fix-and-optimize heuristic introduced by Sahling et al.

(2009) to solve MLCLSP with positive lead times. They compare their algorithm to

previous algorithms by Tempelmeier and Derstroff (1996) and Stadtler (2003) and

conclude that it outperforms them. This paper is also relevant for our purposes because

HJSP deals with positive lead times as well.

Ramezanian, Saidi-Mehrabad and Fattahi (2013) solve the MLCLSP with availability

constraints. In a manufacturing environment, machines might not be available due to

breakdown or maintenance, so this paper includes maintenance planning into MLCLSP

using availability constraints. They also consider sequence-dependent setups. They

propose a MIP formulation and develop three heuristics based on their formulation and

rolling-horizon framework. Computational experiments show that their heuristics solve

97

small instances (3 items, 2 machines, 2 maintenance tasks, 3 periods) to 5.99% optimality

gap within 12.3 seconds and large instances (15 items, 15 machines, 2 maintenance tasks,

15 periods) to 28.02% optimality gap within 1807.5 seconds.

Here is where our essay falls within and differentiates from the rest of the literature

mentioned above. HJSP solves two MLCLSPs hierarchically, first at a tactical and then at

an operational level. This is necessary in the aerospace application considered because

manufacturing lead times span over many weeks (up to 12 weeks) requiring an overall

order coordination tool at the larger timescale, as well as an operational tool at the

microscale to schedule daily production in the shop. A different BOM structure exists at

each timescale. The tactical BOM is broken down into further items and operations to

provide the level of detail necessary for the operational BOM. We will refer to the

tactical level problem as the planning problem and to operational level problem as the

execution problem for the remainder of the paper. The planning problem is a classic

MLCLSP similar to the rest of the literature whereas the execution problem is an

MLCLSP-L, similar to Sahling et al. (2009) which is a special case of sequence-

dependent setups described in Mohammadi et al. (2010). We also consider positive lead

times like Helber and Sahling (2010). We solve an actual industrial test problem like

Robinson and Lawrence (2004). To the extent of our knowledge, Robinson and Lawrence

(2004) and ours are the only papers in the recent literature that solve a real-life problem

instead of randomly generated test instances. In working on a real application, some new

challenges need to be addressed, such as capturing the current status of the shop in the

mathematical model based on the data available.

98

The main contribution of our essay is thus three-fold: 1) we introduce a hierarchical

planning-execution approach to address the long lead times experienced in the aerospace

industry. 2) We generalize the MLCLSP literature to consider due dates and

corresponding delay penalties, as well as to consider setups that take more than one

period at the execution timescale. 3) We apply the model to a real industry setting and

address the non-trivial data processing requirements necessary for the model to

accurately represent current shop conditions and processing steps at the different

timescales. Moreover, setups that take longer than a period are being introduced in our

essay for the first time. Finally, while the literature has focused on heuristics, we solve

our problem using an exact approach (mathematical model implemented using a

commercial solver) within reasonable times for application in practice. As can be seen

above, most of the recent MLCLSP literature focuses on LR and time-

decomposition/rolling-horizon approaches to solve realistically-sized instances. However,

recent developments in computer hardware and optimization software plus a novel

computational method that we use to reduce the size of the problem allowed us to solve

our problem optimally, in contrast to recent literature which focus heavily on heuristic

methods.

We will describe the problem and our solution method (MIP) in the next section.

4.3. Mathematical Models

We first present the planning model where the plan is over a few months to allow for

sufficient time to complete full orders. We then use the rough production schedule in the

early periods output of that model as input to the execution model, where a detailed

schedule will be generated. Therefore, we will be considering two different time scales

99

for two different but related problems. Weeks and days are the case for our particular

application, but other timescales may be appropriate for other cases. We will use the

example on Figure 4.1.1 to explain how BOM changes on different time scales and how

they relate to each other:

Figure 4.3.1 BOM in weeks (same as Figure 4.1.1)

Child level
(Level 2)

Parent level
(Level 1)

End item
level (Level 0)

End item

Part I (3)
2 weeks

Part I-I (1)
1 week

Part I-II (2)
1 week

Part II (2)
3 weeks

Part II-I (3)
2 weeks

100

Figure 4.3.2 BOM in days (BOO)

Figure 4.3.3 BOM+BOO

As you can see above, weekly BOM break down into further operations (part-step

numbers or PSNs) in the daily BOM (BOO). Therefore, the output from the weekly

planning model feeds into the daily execution model. It is technically possible to create a

Sub Operations (Level 2)

Main Operations (Level 1)

End Item (Level 0) Part I-I (1
week)

Operation I
(2 days)

Operation I-
1 (1 day)

Operation I-
2 (1 day)

Operation II
(5 days)

Operation
II-1 (2 days)

Operation
II-2 (1 day)

Operation
II-3 (2 days)

Sub Operations (Level 4)

Main Operations (Level 3)

Child level (Level 2)

Parent level (Level 1)

End item level (Level 0) End item

Part I (3) 2
weeks

Part I-I (1) 1
week

Operation I
(2 days)

Operation I-
1 (1 day)

Operation I-
2 (1 day)

Operation II
(5 days)

Operation
II-1 (2 days)

Operation
II-2 (1 day)

Operation
II-3 (2 days)

Part I-II (2) 1
week

Part II (2) 3
weeks

Part II-I (3) 2
weeks

101

plan considering both levels, but the orders are not finalized and are considered only as

forecasts at the planning phase. Therefore, it is not realistic or necessary to consider every

minute detail of operations during the planning. Only the first couple of periods (in our

case, 2 weeks) are finalized and fixed in the planning horizon and therefore that plan is

fed into the execution model. Once weekly plans are updated with finalized orders, the

execution models can be re-run, adjusting to dynamic demand as necessary.

Again, these examples in weeks and days are in line with our current application, but we

will refer to them as planning periods and execution periods to be more general for the

remainder of the modeling sections. Below are the assumptions implicitly made in the

formulation given the length of the periods:

• A single setup is needed for the same part in a period.

• Several processes may be needed to complete a part in one period.

• Lost sales penalty is proportional to the number of periods from the order due date

until the end of the planning period and the number of units undelivered. This

penalty can be modified by the user.

• The length of the execution period is assumed to be equal to the first two planning

periods for simplicity. This is easily generalizable.

• Units Per Parent (UPP) matrix is used to define the BOM. This is the amount

given in parentheses in the BOM examples above and only applies to direct

children of a parent.

• Units Per Order (UPO) matrix is used to define the number of units of each item

needed for an order. This includes indirect children, unlike the UPP. This is

102

calculated by solving a simple one-period uncapacitated optimization problem

using the BOM.

• End items are also referred to as top assemblies for the modeling sections.

• If an order is started in period 1 and its lead time is 2 periods, it will be delivered

in period 3. Production may be completed at the end of period 2 but packaging

and shipping preparation are also necessary, so it makes intuitive sense to have it

ready for the customer on the next period.

• The two models, planning and execution, are connected through vector

parameters U1 and U2 which capture the planned production for the first and

second periods, respectively, given by the planning model, and set the

requirements input for the execution model.

• 𝜖 is a small reward or penalty used to direct the model towards particular

objectives, and this can again be fine-tuned by the user.

4.3.1. Planning Model

4.3.1.1. Sets

𝐼 ∶= 𝑆𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑝𝑎𝑟𝑡𝑠

𝐼𝑐 ∶= 𝑆𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑝𝑎𝑟𝑡𝑠 𝑡ℎ𝑎𝑡 𝑟𝑒𝑞𝑢𝑖𝑟𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒

𝐾 ∶= 𝑆𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑝𝑎𝑟𝑡𝑠 𝑤𝑖𝑡ℎ 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 𝑖𝑛 𝑡ℎ𝑒 𝐵𝑂𝑀,

𝑢𝑠𝑒𝑑 𝑡𝑜 𝑑𝑒𝑓𝑖𝑛𝑒 𝑈𝑛𝑖𝑡𝑠 𝑃𝑒𝑟 𝑃𝑎𝑟𝑒𝑛𝑡 (𝑈𝑃𝑃) 𝑚𝑎𝑡𝑟𝑖𝑥

𝑇 ∶= 𝑆𝑒𝑡 𝑜𝑓 𝑝𝑒𝑟𝑖𝑜𝑑𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑙𝑎𝑛𝑛𝑖𝑛𝑔 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 (𝑙𝑎𝑟𝑔𝑒 𝑡𝑖𝑚𝑒𝑠𝑐𝑎𝑙𝑒; 𝑒. 𝑔. 𝑤𝑒𝑒𝑘𝑠)

 𝐽 ∶= 𝑆𝑒𝑡 𝑜𝑓 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠

103

𝑂 ∶= 𝑆𝑒𝑡 𝑜𝑓 𝑜𝑟𝑑𝑒𝑟𝑠

𝛤 ∶= 𝑆𝑒𝑡 𝑜𝑓 𝑝𝑎𝑖𝑟𝑠 (𝑖, 𝑗) 𝑤ℎ𝑒𝑟𝑒 𝑖𝑡𝑒𝑚 𝑖 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑠 𝑎 𝑠𝑒𝑡𝑢𝑝 𝑜𝑛 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑗

𝛩 ≔ 𝑆𝑒𝑡 𝑜𝑓 𝑝𝑎𝑖𝑟𝑠 (𝑖, 𝑜) 𝑤ℎ𝑒𝑟𝑒 𝑖𝑡𝑒𝑚 𝑖 𝑖𝑠 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑡𝑜 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑜𝑟𝑑𝑒𝑟 𝑜

4.3.1.2. Parameters

𝑝 ∶= 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑒𝑟𝑖𝑜𝑑𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑙𝑎𝑛𝑛𝑖𝑛𝑔 ℎ𝑜𝑟𝑖𝑧𝑜𝑛

𝑄𝑜 ∶= 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑛𝑖𝑡𝑠 𝑑𝑒𝑚𝑎𝑛𝑑𝑒𝑑 𝑖𝑛 𝑜𝑟𝑑𝑒𝑟 𝑜

𝐵𝑜,𝑖 ∶= 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑒𝑠 𝑤ℎ𝑒𝑡ℎ𝑒𝑟 𝑜𝑟𝑑𝑒𝑟 𝑜 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑠 𝑝𝑎𝑟𝑡 𝑖 𝑎𝑠 𝑓𝑖𝑛𝑎𝑙 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑎𝑏𝑙𝑒

𝐷𝑜 ∶= 𝐷𝑢𝑒 𝑑𝑎𝑡𝑒 𝑜𝑓 𝑜𝑟𝑑𝑒𝑟 𝑜

𝑅𝑖,𝑗 ∶= 𝑡𝑖𝑚𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑡𝑜 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑝𝑎𝑟𝑡 𝑛𝑢𝑚𝑏𝑒𝑟 𝑖 𝑜𝑛 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑗

𝑆𝑖,𝑗 ∶= 𝑠𝑒𝑡 𝑢𝑝 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑗𝑜𝑏 𝑖 𝑜𝑛 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑗

𝐶𝑗,𝑡 ∶= 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑗

𝑀𝑖,𝑗,𝑡 ∶= 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑝𝑎𝑟𝑡 𝑖 𝑜𝑛 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑗 𝑖𝑛 𝑎 𝑝𝑒𝑟𝑖𝑜𝑑

𝑁𝑖,𝑘 ∶= 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑛𝑖𝑡𝑠 𝑜𝑓 𝑝𝑎𝑟𝑡 𝑖 𝑛𝑒𝑒𝑑𝑒𝑑 𝑡𝑜 𝑏𝑢𝑖𝑙𝑑 𝑎 𝑢𝑛𝑖𝑡 𝑜𝑓 𝑘 (𝑈𝑃𝑃)

𝑁𝑖
𝑜 ∶= 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑛𝑖𝑡𝑠 𝑜𝑓 𝑝𝑎𝑟𝑡 𝑖 𝑛𝑒𝑒𝑑𝑒𝑑 𝑡𝑜 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑜𝑟𝑑𝑒𝑟 𝑜,

𝑖𝑛𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑎𝑙𝑙 𝑙𝑒𝑣𝑒𝑙𝑠 𝑜𝑓 𝑡ℎ𝑒 𝐵𝑂𝑀 (𝑈𝑃𝑂)

𝐿𝑖 ∶= 𝑝𝑎𝑟𝑡 𝑖 𝑙𝑒𝑎𝑑 𝑡𝑖𝑚𝑒

𝐴𝑖,𝑡 ∶

= 𝑝𝑎𝑟𝑡 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑟 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑙𝑦 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑜𝑓 𝑝𝑎𝑟𝑡 𝑖 𝑖𝑛 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑒𝑟𝑖𝑜𝑑 𝑡

104

𝑃𝑜 ∶= 𝑜𝑟𝑑𝑒𝑟 𝑜 𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (𝑝𝑒𝑟 𝑢𝑛𝑖𝑡)

𝐻𝑖 ∶= 𝑝𝑎𝑟𝑡 𝑖 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑟𝑒𝑣𝑒𝑛𝑢𝑒 𝑡𝑜𝑤𝑎𝑟𝑑𝑠 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑛𝑔 𝑎𝑛 𝑜𝑟𝑑𝑒𝑟

𝑉𝑖
0 ∶= 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑜𝑓 𝑝𝑎𝑟𝑡 𝑖

𝜖 ≔ 𝑆𝑚𝑎𝑙𝑙 𝑟𝑒𝑤𝑎𝑟𝑑/𝑝𝑒𝑛𝑎𝑙𝑡𝑦

4.3.1.3. Variables

 𝑢𝑖,𝑜,𝑡 ∶= 𝑞𝑡𝑡𝑦 𝑜𝑓 𝑝𝑎𝑟𝑡 𝑖 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 𝑑𝑒𝑠𝑡𝑖𝑛𝑒𝑑 𝑓𝑜𝑟 𝑜𝑟𝑑𝑒𝑟 𝑜;

𝑡ℎ𝑒𝑠𝑒 𝑝𝑎𝑟𝑡𝑠 𝑤𝑖𝑙𝑙 𝑏𝑒 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 + 𝐿𝑖

 𝑤𝑜,𝑡 ∶= 𝑞𝑡𝑡𝑦 𝑜𝑓 𝑡𝑜𝑝 𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦 𝑖𝑛 𝑜𝑟𝑑𝑒𝑟 𝑜 𝑟𝑒𝑎𝑑𝑦 𝑡𝑜 𝑠ℎ𝑖𝑝 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡

 𝑎𝑖,𝑜,𝑡 ∶= 𝑝𝑎𝑟𝑡 𝑖 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑙𝑦 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝑠 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑜𝑟𝑑𝑒𝑟 𝑜

 𝑉𝑖,𝑜,𝑡 ∶= 𝑝𝑎𝑟𝑡 𝑖 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 𝑑𝑒𝑠𝑡𝑖𝑛𝑒𝑑 𝑓𝑜𝑟 𝑜𝑟𝑑𝑒𝑟 𝑜 𝑤ℎ𝑒𝑟𝑒 𝑡 ∈ {0 ∪ 𝑇}

 𝑧𝑖,𝑗,𝑡 ∶= 1 𝑖𝑓 𝑝𝑎𝑟𝑡 𝑖 𝑖𝑠 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑜𝑛 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑗 𝑖𝑛 𝑝𝑒𝑟𝑖𝑜𝑑 𝑡, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

4.3.1.4. Model

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑃𝑒𝑛𝑎𝑙𝑡𝑦: ∑ (𝑃𝑜(𝑝 + 1 − 𝐷𝑜)(𝑄𝑜 − ∑ 𝑤𝑜,𝑡𝑡∈ 𝑇))𝑜∈ 𝑂: 𝐷𝑜<=𝑝 +

 ∑ (𝑃𝑜(𝑡 − 𝐷𝑜)𝑤𝑜,𝑡)𝑜∈ 𝑂,𝑡∈ 𝑇: 𝑡>𝐷𝑜
 − ∑ (𝜖(𝐷𝑜 − 𝑡)𝑤𝑜,𝑡)𝑜∈ 𝑂,𝑡∈ 𝑇: 𝑡<𝐷𝑜

 +

 ∑ 𝐻𝑖(𝑁𝑖
𝑜 − ∑ (𝑎𝑖,𝑜,𝑡 + 𝑢𝑖,𝑜,𝑡) 𝑡 ∈𝑇)𝑖∈ 𝐼,𝑜∈ 𝑂 (1)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

 ∑ (𝑎𝑖,𝑜,𝑡 + 𝑢𝑖,𝑜,𝑡)𝑡 ∈𝑇 ≤ 𝑁𝑖
𝑜 ∀(𝑖 ∈ 𝐼, 𝑜 ∈ 𝑂) (2)

 ∑ 𝑤𝑜,𝑡𝑡 ∈𝑇 ≤ 𝑄𝑜 ∀(𝑜 ∈ 𝑂) (3)

 ∑ (𝑅𝑖,𝑗(∑ 𝑢𝑖,𝑜,𝑡𝑜 ∈𝑂) + 𝑆𝑖,𝑗𝑧𝑖,𝑗,𝑡)𝑖 ∈𝐼𝑐 ≤ 𝐶𝑗,𝑡 ∀(𝑡 ∈ 𝑇, 𝑗 ∈ 𝐽) (4)

𝑢𝑖,𝑜,𝑡 ≤ 𝑚𝑖𝑛(𝑀𝑖,𝑗,𝑡, 𝑁𝑖
𝑜) 𝑧𝑖,𝑗,𝑡 ∀(𝑖 ∈ 𝐼𝑐, 𝑗 ∈ 𝐽, 𝑜 ∈ 𝑂, 𝑡 ∈ 𝑇: 𝑆𝑖,𝑗 > 0) (5)

𝑉𝑖,𝑜,𝑡 = 𝑉𝑖,𝑜,𝑡−1 + 𝑎𝑖,𝑜,𝑡 + 𝑢𝑖,𝑜,𝑡−𝐿𝑖
− ∑ 𝑁𝑖,𝑘𝑢𝑘,𝑜,𝑡

𝑘 ∈𝐾

 − 𝐵𝑜,𝑖𝑤𝑜,𝑡

105

∀(𝑖 ∈ 𝐼, 𝑜 ∈ 𝑂, 𝑡 ∈ 𝑇: 𝑡 > 𝐿𝑖) (6)

𝑉𝑖,𝑜,𝑡 = 𝑉𝑖,𝑜,𝑡−1 + 𝑎𝑖,𝑜,𝑡 − ∑ 𝑁𝑖,𝑘𝑢𝑘,𝑜,𝑡

𝑘 ∈𝐾

− 𝐵𝑜,𝑖𝑤𝑜,𝑡

∀(𝑖 ∈ 𝐼, 𝑜 ∈ 𝑂, 𝑡 ∈ 𝑇: 𝑡 ≤ 𝐿𝑖) (7)

 ∑ 𝑉𝑖,𝑜,0𝑜 ∈𝑂 ≤ 𝑉𝑖
0 ∀(𝑖 ∈ 𝐼) (8)

∑ 𝑎𝑖,𝑜,𝑡𝑜 ∈𝑂 ≤ 𝐴𝑖,𝑡 ∀(𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇) (9)

Objective function (1) minimizes the total penalty, which is the sum of penalties for the

unsatisfied orders at the end of the planning period, orders that are due past their

deadline, a small reward for orders satisfied before their deadlines and revenue loss for

the production requirements that are unfulfilled. Constraint (2) limits overproduction and

constraint (3) limits over-delivery. Constraint (4) establishes capacity for a period for the

constrained resources. Constraint (5) ensures that production is not possible without

setup. Constraint (6) and (7) are inventory balance constraints based on the given period

and lead time of items. If the given period is lower than or equal to the part’s lead time,

the demand for that part can only be satisfied by the inventory or scheduled completions.

If the current period is greater than the part’s lead time, demand can be satisfied by the

production within the planning horizon. Constraint (8) establishes initial inventory and

constraint (9) establishes availability of parts undergoing processing at the beginning of

the planning horizon (over the lead time window). Some parts can be scheduled to be

available later as a result of a quality non-conformance event or other special

circumstances. For full generality, we allow parameter A and variable a to be positive for

any period in the planning horizon.

We now present the execution model. We only highlight the differences between the

planning and execution model since execution model is based on the planning model but

considers additional operational requirements as necessary.

106

4.3.2. Execution Model

4.3.2.1. Additional/Modified Sets

𝑇 ∶= 𝑆𝑒𝑡 𝑜𝑓 𝑝𝑒𝑟𝑖𝑜𝑑𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 (𝑠ℎ𝑜𝑟𝑡 𝑡𝑖𝑚𝑒𝑠𝑐𝑎𝑙𝑒; 𝑒. 𝑔. 𝑑𝑎𝑦𝑠)

𝛤𝐿 ∶= 𝑆𝑒𝑡 𝑜𝑓 𝑝𝑎𝑖𝑟𝑠 (𝑖, 𝑗) 𝑤ℎ𝑒𝑟𝑒 𝑖𝑡𝑒𝑚 𝑖 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑠 𝑎 𝑙𝑎𝑟𝑔𝑒 𝑠𝑒𝑡𝑢𝑝

(𝑙𝑜𝑛𝑔𝑒𝑟 𝑡ℎ𝑎𝑛 𝑎𝑛 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑝𝑒𝑟𝑖𝑜𝑑) 𝑜𝑛 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑗

4.3.2.2. Additional/Modified Parameters

𝑝𝑒 ∶= 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑒𝑟𝑖𝑜𝑑𝑠 𝑖𝑛 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 ℎ𝑜𝑟𝑖𝑧𝑜𝑛

𝑆𝑖,𝑗
𝐿

≔ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑒𝑟𝑖𝑜𝑑𝑠 (𝑟𝑜𝑢𝑛𝑑𝑒𝑑 𝑢𝑝) 𝑡ℎ𝑒 𝑠𝑒𝑡𝑢𝑝 𝑜𝑓 𝑝𝑎𝑟𝑡 𝑖 𝑡𝑎𝑘𝑒𝑠 𝑜𝑛 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑗, 𝑓𝑜𝑟 (𝑖, 𝑗)

∈ 𝛤

𝐹𝑖,𝑗: = 1 𝑖𝑓 𝑝𝑎𝑟𝑡 𝑖 𝑖𝑠 𝑎𝑡 𝑡𝑖𝑚𝑒 0 𝑏𝑒𝑖𝑛𝑔 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑖𝑛 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑗, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑈𝑖,𝑜
1 ∶= 𝑈𝑛𝑖𝑡𝑠 𝑜𝑓 𝑝𝑎𝑟𝑡 𝑖 𝑡𝑜 𝑏𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑

/𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑓𝑜𝑟 𝑜𝑟𝑑𝑒𝑟 𝑜 𝑜𝑛 𝑝𝑙𝑎𝑛𝑛𝑖𝑛𝑔 𝑝𝑒𝑟𝑖𝑜𝑑 1

𝑈𝑖,𝑜
2 ∶= 𝑈𝑛𝑖𝑡𝑠 𝑜𝑓 𝑝𝑎𝑟𝑡 𝑖 𝑡𝑜 𝑏𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑

/𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑓𝑜𝑟 𝑜𝑟𝑑𝑒𝑟 𝑜 𝑜𝑛 𝑝𝑙𝑎𝑛𝑛𝑖𝑛𝑔 𝑝𝑒𝑟𝑖𝑜𝑑 2

𝑈𝑖,𝑜
1 𝑎𝑛𝑑 𝑈𝑖,𝑜

2 𝑎𝑟𝑒 𝑔𝑖𝑣𝑒𝑛 𝑏𝑦 𝑡ℎ𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑙𝑎𝑛𝑛𝑖𝑛𝑔 𝑚𝑜𝑑𝑒𝑙. : 𝑈(𝑖,𝑜)
1

= 𝑢𝑖,𝑜,1 + 𝑎𝑖,𝑜,1 𝑎𝑛𝑑 𝑈𝑖,𝑜
2 = 𝑢𝑖,𝑜,2 + 𝑎𝑖,𝑜,2

4.3.2.3. Additional/Modified Variables

 𝑓𝑖,𝑗,𝑡 ∶= 1 𝑖𝑓 𝑝𝑎𝑟𝑡 𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑝𝑎𝑟𝑡 𝑡𝑜 𝑏𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑖𝑛 𝑝𝑒𝑟𝑖𝑜𝑑 𝑡,

107

𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑛𝑔 𝑓𝑟𝑜𝑚 𝑝𝑒𝑟𝑖𝑜𝑑 𝑡 − 1, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 𝑙𝑖,𝑗,𝑡 ∶= 1 𝑖𝑓 𝑝𝑎𝑟𝑡 𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑙𝑎𝑠𝑡 𝑝𝑎𝑟𝑡 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑖𝑛 𝑝𝑒𝑟𝑖𝑜𝑑 𝑡 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑛𝑔 𝑡𝑜 𝑝𝑒𝑟𝑖𝑜𝑑 𝑡

+ 1, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 𝜑𝑖,𝑜
11 ∶= 𝑢𝑛𝑑𝑒𝑟𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑡𝑜 𝑝𝑙𝑎𝑛 𝑖𝑛 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑝𝑙𝑎𝑛𝑛𝑖𝑛𝑔 𝑝𝑒𝑟𝑖𝑜𝑑

 𝜑𝑖,𝑜
12 ∶= 𝑢𝑛𝑑𝑒𝑟𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑒𝑐𝑜𝑛𝑑 𝑤𝑒𝑒𝑘 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛

𝑝𝑙𝑎𝑛𝑛𝑒𝑑 𝑓𝑜𝑟 𝑓𝑖𝑟𝑠𝑡 𝑝𝑙𝑎𝑛𝑛𝑖𝑛𝑔 𝑝𝑒𝑟𝑖𝑜𝑑

 𝜑𝑖,𝑜
22 ∶= 𝑢𝑛𝑑𝑒𝑟𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑡𝑜 𝑝𝑙𝑎𝑛 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑒𝑐𝑜𝑛𝑑 𝑝𝑙𝑎𝑛𝑛𝑖𝑛𝑔 𝑝𝑒𝑟𝑖𝑜𝑑

𝑧𝑖,𝑗,𝑡 ∶= 1 𝑖𝑓 𝑠𝑒𝑡𝑢𝑝 𝑖𝑠 𝒄𝒐𝒎𝒑𝒍𝒆𝒕𝒆𝒅 𝑓𝑜𝑟 𝑝𝑎𝑟𝑡 𝑖 𝑜𝑛 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑗 𝑖𝑛 𝑝𝑒𝑟𝑖𝑜𝑑 𝑡, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑒 ∶= 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑝𝑒𝑟𝑖𝑜𝑑𝑠 𝑝𝑒𝑟 𝑝𝑙𝑎𝑛𝑛𝑖𝑛𝑔 𝑝𝑒𝑟𝑖𝑜𝑑

4.3.2.4. Model

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑃𝑒𝑛𝑎𝑙𝑡𝑦: ∑ 𝑃𝑜(𝜑𝑖,𝑜
11 + 𝜑𝑖,𝑜

12 + 𝜑𝑖,𝑜
22)𝑖 ∈𝐼,𝑜 ∈𝑂 +𝜖 (∑ 𝑃𝑜(𝑝 + 1 −𝑜 ∈𝑂: 𝐷𝑜≤𝑝

𝐷𝑜)(𝑄𝑜 − ∑ 𝑤𝑜,𝑡𝑡 ∈𝑇) + ∑ 𝑃𝑜(𝑡 − 𝐷𝑜)𝑤𝑜,𝑡𝑜 ∈𝑂,𝑡 ∈𝑇: 𝑡>𝐷𝑜
− ∑ 𝜖(𝐷𝑜 −𝑜 ∈𝑂,𝑡 ∈𝑇: 𝑡<𝐷𝑜

𝑡)𝑤𝑜,𝑡 + ∑ 𝐻𝑖𝑖 ∈𝐼,𝑜 ∈𝑂 (𝑁𝑖
𝑜 − ∑ (𝑎𝑖,𝑜,𝑡 + 𝑢𝑖,𝑜,𝑡)𝑡 ∈𝑇)) (10)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

 ∑ (𝑎𝑖,𝑜,𝑡 + 𝑢𝑖,𝑜,𝑡)𝑡 ∈𝑇 ≤ 𝑈𝑖,𝑜
1 + 𝑈𝑖,𝑜

2 ∀(𝑖 ∈ 𝐼, 𝑜 ∈ 𝑂) (11)

 ∑ 𝑤𝑜,𝑡𝑡 ∈𝑇 ≤ 𝑄𝑜 ∀(𝑜 ∈ 𝑂) (12)

 ∑ 𝑅𝑖,𝑗𝑖 ∈𝐼2 (∑ 𝑢𝑖,𝑜,𝑡𝑜 ∈𝑂) + ∑ (𝑆𝑖,𝑗𝑧𝑖,𝑗,𝑡)𝑖 ∈𝐼𝑐: (𝑖,𝑗)∈𝛤−𝛤𝐿 ≤ 𝐶𝑗,𝑡 ∀(𝑡 ∈ 𝑇, 𝑗 ∈ 𝐽) (13)

∑ (∑ 𝑅𝑘,𝑗𝑘 ∈𝐼𝑐 (∑ 𝑢𝑘,𝑜,𝑠𝑜 ∈𝑂) + ∑ 𝑆𝑘,𝑗𝑧𝑘,𝑗,𝑠𝑘 ∈𝐼𝑐: (𝑘,𝑗)∈𝛤−𝛤𝐿)𝑠∈{𝑡−𝑆𝑖,𝑗
𝐿 +1..𝑡} + 𝑆𝑖,𝑗𝑧𝑖,𝑗,𝑡 ≤

 ∑ 𝐶𝑗,𝑠𝑠 ∈{𝑡−𝑆𝑖,𝑗
𝐿 +1..𝑡} ∀ ((𝑖, 𝑗) ∈ 𝛤𝐿 , 𝑡 ∈ {𝑆𝑖,𝑗

𝐿 . . 𝑝𝑒}) (14)

∑ 𝑅𝑖,𝑗𝑖 ∈𝐼𝑐 (∑ 𝑢𝑖,𝑜,𝑡𝑜 ∈𝑂) + ∑ (𝑆𝑖,𝑗𝑧𝑖,𝑗,𝑡)𝑖 ∈𝐼𝑐: (𝑖,𝑗)∈𝛤−𝛤𝐿 +

∑ (∑ 𝐶𝑗,𝑡𝑠 ∈{𝑡+1,..,𝑡+𝑆𝑖,𝑗
𝐿 −1} 𝑧𝑖,𝑗,𝑠 + 𝑧𝑖,𝑗,𝑡𝑚𝑎𝑥(0, (𝑆𝑖𝑗 − ∑ 𝐶𝑗𝑠)𝑠∈{𝑡−𝑆𝑖,𝑗

𝐿 +1,..,𝑡−1})) ≤𝑖 ∈𝐼𝑐: (𝑖,𝑗)∈𝛤𝐿

 𝐶𝑗𝑡 ∀(𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇) (15)

108

𝑧𝑖,𝑗,𝑡 + 𝑧𝑘,𝑗,𝑠 ≤ 1 ∀((𝑖, 𝑗) ∈ 𝛤𝐿 , (𝑘, 𝑗) ∈ 𝛤𝐿 , 𝑡 ∈ {𝑆𝑖,𝑗
𝐿 . . 𝑝𝑒}, 𝑠 ∈ {𝑡 − 𝑆𝑖,𝑗

𝐿 + 1. . 𝑡}: 𝑘 ≠ 𝑖)

 (16)

 𝑧𝑖,𝑗,𝑡 + 𝑧𝑖,𝑗,𝑠 ≤ 1 ∀ ((𝑖, 𝑗) ∈ 𝛤𝐿 , 𝑡 ∈ {𝑆𝑖,𝑗
𝐿 . . 𝑝𝑒}, 𝑠 ∈ {𝑡 − 𝑆𝑖,𝑗

𝐿 + 1. . 𝑡 − 1) (17)

𝑧𝑖,𝑗,𝑡 + 𝑧𝑘,𝑗,𝑠 ≤ 1 ∀ (
 (𝑖, 𝑗) ∈ 𝛤𝐿 , (𝑘, 𝑗)

∈ 𝛤 − 𝛤𝐿 , 𝑡 ∈ 𝑆𝑖,𝑗
𝐿 . . 𝑝𝑒 , 𝑠 ∈ 𝑡 − 𝑆𝑖,𝑗

𝐿 + 1. . 𝑡 − 1
) (18)

𝑧𝑖,𝑗,𝑡 = 0 ∀ ((𝑖, 𝑗) ∈ 𝛤𝐿 , 𝑡 ∈ {1. . 𝑆𝑖,𝑗
𝐿 − 1}) (19)

𝑢𝑖,𝑜,𝑡 ≤ 𝑚𝑖𝑛(𝑀𝑖,𝑗,𝑡, 𝑈𝑖,𝑜
1 + 𝑈𝑖,𝑜

2) (𝑧𝑖,𝑗,𝑡 + 𝑓𝑖,𝑗,𝑡) ∀(𝑖 ∈ 𝐼𝑐, 𝑗 ∈ 𝐽, 𝑜 ∈ 𝑂, 𝑡 ∈ 𝑇: 𝑆𝑖,𝑗 > 0)

(20)

𝑉𝑖,𝑜,𝑡 = 𝑉𝑖,𝑜,𝑡−1 + 𝑎𝑖,𝑜,𝑡 + 𝑢𝑖,𝑜,𝑡−𝐿𝑖
− ∑ 𝑁𝑖,𝑘𝑢𝑘,𝑜,𝑡𝑘 ∈𝐾 − 𝐵𝑜,𝑖𝑤𝑜,𝑡 ∀(𝑖 ∈ 𝐼, 𝑜 ∈ 𝑂, 𝑡 ∈

𝑇: 𝑡 > 𝐿𝑖) (21)

𝑉𝑖,𝑜,𝑡 = 𝑉𝑖,𝑜,𝑡−1 + 𝑎𝑖,𝑜,𝑡 − ∑ 𝑁𝑖,𝑘𝑢𝑘,𝑜,𝑡

𝑘 ∈𝐾

− 𝐵𝑜,𝑖𝑤𝑜,𝑡 ∀(𝑖 ∈ 𝐼, 𝑜 ∈ 𝑂, 𝑡 ∈ 𝑇: 𝑡 ≤ 𝐿𝑖)

(22)

∑ 𝑉𝑖,𝑜,0𝑜 ∈𝑂 ≤ 𝑉𝑖
0 ∀(𝑖 ∈ 𝐼) (23)

∑ 𝑎𝑖,𝑜,𝑡𝑜 ∈𝑂 ≤ 𝐴𝑖,𝑡 ∀(𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇) (24)

𝑙𝑖,𝑗,𝑡 ≥ 𝑓𝑖,𝑗,𝑡+1 ∀(𝑖 ∈ 𝐼𝑐 , 𝑗 ∈ 𝐽, 𝑡 ∈ 1. . 𝑝 − 1) (25)

𝑧𝑖,𝑗,𝑡 + ∑ 𝑢𝑖,𝑜,𝑡𝑜 ∈𝑂 ≥ 𝑓𝑖,𝑗,𝑡+1 ∀(𝑖 ∈ 𝐼𝑐, 𝑗 ∈ 𝐽, 𝑡 ∈ 1. . 𝑝 − 1) (26)

𝑧𝑘,𝑗,𝑡 ≤ (2 − (𝑓𝑖,𝑗,𝑡 + 𝑙𝑖,𝑗,𝑡)) ∀(𝑖, 𝑘 ∈ 𝐼𝑐, 𝑖 ≠ 𝑘, 𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇) (27)

∑ 𝑓𝑖,𝑗,𝑡𝑖 ∈𝐼𝑐 ≤ 1 ∀(𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇) (28)

 ∑ 𝑙𝑖,𝑗,𝑡𝑖 ∈𝐼2 ≤ 1 ∀(𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇) (29)

𝑓𝑖,𝑗,1 = 𝐹𝑖,𝑗 ∀(𝑖 ∈ 𝐼𝑐, 𝑗 ∈ 𝐽) (30)

𝜑𝑖,𝑜
11 ≥ 𝑈𝑖,𝑜

1 − ∑ 𝑢𝑖,𝑜,𝑡𝑡 ∈𝑇: 𝑡≤𝑒 ∀(𝑖 ∈ 𝐼, 𝑜 ∈ 𝑂) (31)

𝜑𝑖,𝑜
12 ≥ 𝑈𝑖,𝑜

1 − ∑ 𝑢𝑖,𝑜,𝑡𝑡 ∈𝑇: 𝑡≤2𝑒 ∀(𝑖 ∈ 𝐼, 𝑜 ∈ 𝑂) (32)

𝜑𝑖,𝑜
22 ≥ 𝑈𝑖,𝑜

2 − ∑ 𝑢𝑖,𝑜,𝑡𝑡 ∈𝑇: 𝑡≤2𝑒 ∀(𝑖 ∈ 𝐼, 𝑜 ∈ 𝑂) (33)

Objective function (10) minimizes penalty similar to objective function (1) from planning

model with the exception that the main target is to limit the deviation from the planned

production plan as much as possible with a small consideration to daily deadlines,

delivery rewards and revenue losses. Constraint (11) limits overproduction and constraint

109

(12) limits over-delivery similar to constraints (2) and (3) from planning model.

Constraint (13) establishes capacity for the constrained resources for the items that don’t

have setups longer than a period. Constraint (14) manages capacity jointly for the items

that have setups longer than a period by employing cumulative capacity calculations.

Constraint (15) calculates the total utilization of the machine j at execution period t,

which adds all production, plus regular part setups, plus full capacity if a large part setup

is completed within its setup time, plus the remaining setup if the large setup is

completed that same period and enforces it to be less than or equal to daily capacity,

which is 𝐶𝑗𝑡. Constraint (16) ensures that two large setups (setups longer than a period)

cannot be completed within the overlapping setup windows for two different items on the

same resource. Constraint (17) is analogous to (16) but concerning setups for the same

item. Constraint (18) ensures that a large setup and a small setup cannot be scheduled at

the same time (it does allow for one to be completed in a given period and the other one

started afterwards that period if capacity allows). Constraint (19) ensures that large setups

can only be completed after the required time window. Constraint (20) ensures that an

item can be produced only if setup for the item has been completed on that period or it is

the first item continuing from previous period (its setup had already been done).

Constraint (21) and (22) are inventory balance constraints similar to constraints (6) and

(7) from the planning production model. Constraint (23) and (24) establish initial

inventory and availability of items within the first couple of tactical periods, similar to

constraints (8) and (9) from the planning production model. Constraint (25) ensures that

if an item is the first item in period t+1, not needing a setup, it must be the last item in

period t. Constraint (26) ensures that if an item is the first item in period t+1, it must have

110

either completed setup in period t or must have been produced in period t; that is,

production can span several periods after a setup. Constraint (27) ensures that if an item

is the first and last item in period t, that resource cannot be setup for any other part during

that period (note that the length of a period is selected to be short enough that an

additional setup for the same product would never be effective). Constraints (28) and (29)

ensure that there can only be one first item and one last item, respectively, in a given

period and constrained resource. Constraints (30) initialize the first item (current

equipment setup) in the first period. Constraints (31)-(33) calculate the deviation from the

production plan, assuming e execution periods per planning periods.

4.4. Industrial Test Application, Computational Methods And Results

4.4.1. Description of Industrial Test Application

The size of planning and execution problems are given in Tables 4.4.1 and 4.4.2 below:

Set Description Size Units

O Orders 450 Orders

I Items 6795 Items

𝐼𝑐
 Items that require

limited resources

1419 Items

J Limited resources 15 Machines

K Parent items 2391 Items

N (UPP) Parent-child

relationships (BOM)

14701 Tuples of items

T Time periods 13 Weeks

Customers Customers 44 Customers

Table 4.4.1 Planning Instance Set Sizes

111

Set Description Size Units

O Orders 296 Orders

I Items 8744 Items

 𝐼𝑐
 Items that require

limited resources

3005 Items

J Limited resources 30 Machines

K Parent items 4648 Items

N (UPP) Parent-child

relationships (BOM)

15541 Tuples of items

T Time periods 10 Days

Customers Customers 39 Customers

Γ𝐿 Items that require

setups that take

longer than a day

43 Items

U1 & U2 First and second

week production

requirements from

the planning model

1723 each, 3446

total

Items

Table 4.4.2 Execution Instance Set Sizes

A test application instance this size has never been attempted to be solved before in the

MLCLSP literature. There are 450x6795x13 = 39,750,750 production variables (u) for

the planning problem and 296x8744x10 = 25,882,240 production variables (u) for the

execution problem. Observe that while the number of orders is reduced because some are

not active in the first two weeks of the plan, the number of parts is significantly higher

because each part may have been subdivided into subparts to adapt to the smaller

timescale. Furthermore, there are 1419x15x13 = 276,705 binary setup (z) variables for

the planning problem and 3005x30x10=901,500 binary setup (z) variables for the

execution problem. Similar numbers can be calculated for the rest of the variables (e.g.

112

sequencing variables in the execution problem, which are also binary) which are equally

high.

4.4.2. Data Pre-Processing

Please note that this sub-section and sub-section 4.4.4. are based on the work by Levy

(2019). A series of pre-processing steps were implemented in order to organize the

information according to the model. The steps shown below are applicable to the data

structure for the planning model. Pre-processing for the execution model follows a

similar method. Recall that the parts in the BOM that require multiple operations over

several time periods need to be broken down into part-steps; that is part numbers are

broken down into several part-step numbers (PSN’s) to allow us to capture the use of

capacitated resources each time period. This not only requires changes to the UPP file,

but also to the demand file since the final demand is no longer for that part but for its last

part-step, and to the initial inventory and current conditions, which again need to describe

the processing step (or part-step) that the part is currently at.

113

Figure 4.4.1 Data Pre-Processing Steps

As discussed above, the planning model’s solutions are based on weekly time buckets.

However, the company’s routing process data was not formatted in any specific way and

simply displayed the amount of time to complete each step of a part’s routing process.

For example, let X be the name of a part; Table 4.4.3 shows the routing information of

part X according to the company’s Lead Time and Bill of Operations (LTBOO) file.

Step Machine Run Time Setup Time Move Time Time (hrs)

1 Cutting of Material 0.25 16 16.25

2 Multi-Axis Turning – Small 5 0.25 16 21.25

3 Multi-Axis Turning – Small 5 0.25 16 21.25

4 Multi-Axis Turning – Small 5 0.25 16 21.25

5 Manual Turning 2 2 16 20

114

6 Deburr 0.16 16 16.16

7 Codemark 0.25 0.03 16 16.28

8 Inspection 0.25 16 16.25

Table 4.4.3 Routing Information for part X

In this example, it is important to note that only steps 2-7 and step 8 require capacitated

resources. In other words, some steps along a part’s routing process may not have

measurable capacities or capacities that the company needs to consider. Meanwhile, in

order to transform the previous data into weekly steps, an iterative algorithm was

developed and executed in Excel. The table below shows the outcome of this process

given the new (weekly) step numbers associated with each processing step on the first

column.

Step Machine Run

Time

Setup

Time

Move

Time

Time Cumulative Time

(hrs)

1 Cutting of Material 0.25 16 16.25 16.25

1 Multi-Axis Turning

- Small

5 0.25 16 21.25 37.5

1 Multi-Axis Turning

- Small

5 0.25 16 21.25 58.75

1 Multi-Axis Turning

- Small

5 0.25 16 21.25 80

2 Manual Turning 2 2 16 20 20

2 Deburr 0.16 16 16.16 36.16

2 Codemark 0.25 0.03 16 16.28 52.44

2 Inspection 0.25 16 16.25 68.69

Table 4.4.4 Cumulative Calculation of Weekly Requirements

The algorithm takes the cumulative time of each step as long as the value is less than 80

hours, which corresponds to two 40 hour shifts per week. These steps are then grouped

115

into one step, and then the next iteration begins in the following row. While there are

slight exceptions to this rule in order to account for steps without measurable capacities,

one can see from the previous example that part X no longer has 8 steps, but rather 2

steps that each take one week. The model interprets each of these steps as a different part,

so part X now involves X_1, X_2, etc. This iterative process was applied to each routing

process, which was not only almost 57,000 rows of data, but now meant that all of the

other data files that referenced part numbers would have to be adjusted according to their

new step numbers. These processes are outlined in Figure 4.4.1 by the arrows in steps 2

through 5.

However, many challenges were encountered when trying to format the data as a result of

certain gaps and misalignment between the various files. The list below outlines some of

these challenges in greater detail.

• Missing data: Instances of missing data often took place in the Bill of Materials

(BOM) file which provides the UPP parameter values. Some values were either

not available or not whole numbers.

• Multiple variations of data: Instances of repeated variations of data similarly often

took place in the BOM file. For example, while a child to parent relationship may

appear more than once in the file if it is used in more than one top assembly, the

issue arises when the UPP values at each occurrence are different.

• Disagreement between files: The misalignment between files was the most

common issue. A popular example was between the BOM and LTBOO file,

116

where a part in the BOM file which was listed as a buy part also had a

corresponding routing process in the LTBOO file.

• Outlier values: This problem was most popular in the LTBOO file, specifically

among the data for run times, set up times, queue times, and wait times. Some

parts had extremely large values for this data which did not align with the

majority of other similar processes.

While these issues may seem negligible at a first glance, the software used to solve the

models (AMPL) cannot read the data when it is not completely free of errors, since it is

unable to make assumptions to overcome these errors. In order to utilize the data

effectively, these errors had to be manually fixed upon discovery, though given that this

process is both tedious and inefficient, the idea of an automated pre-processing tool was

introduced. This tool also allows us to generate random instances using the company’s

data, which we will convert into a full computational study in the future. The tool was

implemented in MATLAB and does the following data pre-processing steps:

1. Randomly selects n unique orders from backlog file, where n is decided by the

user

2. Scans BOM for part number corresponding to first order

3. Selects all relevant UPP line items and populates information in a new small-scale

BOM file

4. Generates corresponding UPP line items for part step numbers

5. Repeats steps 2-4 for each order

117

6. Sends reduced backlog and BOM to a consolidated input file in Excel

4.4.3. Computational Methods and Results

As can be seen from Section 4.4.1., real-life industrial-sized instances are behemoths and

that is the reasoning behind most of the literature focusing on heuristic methods.

However, one aspect of the data structure that we can take advantage of is the sparsity of

the item-order and item-machine matrices. In our case, only one item is required by an

order (however, parents of that item needed for that order still must be calculated through

BOM explosion, which we defined as UPO) and an item requires only a small percentage

of the machines. Therefore, we reduce the size of the problem significantly by only

defining the production/inventory/setup variables for the item-order and item-machine

combinations that exist. We define these combinations as sub-sets in our mathematical

model (Γ for item-machine combinations, Θ for item-order combinations) and define the

variables through these sub-sets.

To give an example of the efficiency of this linking, 25,882,240 production variables in

the execution problem reduce only to 3446 because we only define production variables

in the execution problem for the production of the items that are directed by the planning

model (U1 and U2) because the main objective of the execution model is to meet the

production demand calculated from the planning model.

Other than reducing the problem size through linking as described above, our

computational approach is to code the mathematical models described above using

AMPL IDE commercial optimization software and solving them using Gurobi 7.0 (for

planning model) and CPLEX 12.7 (for execution model) on a PC with Intel Core™ i7-

118

6700 CPU @3.40 GHz and 32 GB RAM. We limited the computation time to 6 hours for

planning model and 4 hours for execution model.

Planning model is solved within the time limit with an optimality gap of 0.0464% and

execution model is solved by CPLEX in 3.66 seconds with an optimality gap of 2.82%,

which makes us optimistic about the implementation of our solution at the manufacturer’s

site. Time limits are well within the acceptable window: planning horizon is 3 months

and execution horizon is 2 weeks, so a couple of hours to solve the planning problem and

a couple of seconds to solve the execution problem is matching well with the needs of the

industry.

We will now continue with sensitivity analysis on sub-section 4.4.4. Please note that the

sub-section 4.4.4. is based on the work by Levy (2019).

4.4.4. Sensitivity Analysis of Order Linking, Objective Functions and KPIs

Due to large computation time still required for the planning model, we also developed a

simpler version of our model without linking orders to items (by removing the order set

from the model), which we call the unpegged model (our current model therefore

becomes the pegged model). Given that the unpegged model has significantly less

variables, it takes much less time to solve, which makes it the favorable framework for

testing and validation. However, an output from the unpegged version is not particularly

useful to a company that is seeking to apply more transparency along the production floor

and monitor progress of specific customer orders, since it does not connect parts to their

corresponding orders. Although the pegged model requires a much larger computation

time, it is the ideal framework to use during implementation for its traceability feature.

119

Figure 4.4.2 Comparison of Unpegged vs. Pegged Model

Note that although the unpegged model is better for validation purposes, the pegged

model also needs to be validated to prove that it is working as intended. This was

achieved through small examples. Due to reduced complexity, small examples are

expected to have the same results both for pegged and unpegged model and we were able

to receive the exact same results and therefore conclude that our models are validated.

For larger, more complex examples, the results are expected to differ since the models

consider different complexity levels, as will be seen on our sensitivity analysis below.

The differences between the models can also be explained by the optimality gaps. The

pegged model has an optimality gap, even though it is very small, whereas the unpegged

model is solved to optimality.

Due to the tactical nature of the planning model, we also developed different objective

functions based on the preferences of the aerospace parts manufacturer and ran a

120

sensitivity analysis using KPIs. Below are the three objective functions we have

analyzed, including the penalty function described above:

4.4.4.1. Delivery Model

The main performance metric that is prioritized in the delivery model is on-time

deliveries. Below is the objective function, which maximizes on-time deliveries while

penalizing both incomplete and late orders, rewards early production and every step of

production towards completing an order, and incentivizes the use of inventory.

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦: (∑ 𝑀 ∑ 𝑤𝑜𝑡

𝑡:𝑡≤𝐷𝑜𝑜: 𝐷𝑜≤𝑝

)

− [(∑ (𝑃𝑜(𝑝 + 1 − 𝐷𝑜)) × (𝑄𝑜 − ∑ 𝑤𝑜𝑡

𝑡

)

𝑜: 𝐷𝑜≤𝑤𝑒𝑒𝑘𝑠

)

+ (∑ 𝑃𝑜(𝑡 − 𝐷𝑜)𝑤𝑜,𝑡

𝑜,𝑡:𝑡>𝐷𝑜

) − (∑ 𝜀1(𝐷𝑜 − 𝑡)𝑤𝑜,𝑡

𝑜,𝑡:𝑡<𝐷𝑜

)

+ (∑ 𝐻𝑖

𝑖,𝑜

(𝑁𝑖
𝑜 − ∑ 𝑎𝑖,𝑜,𝑡 + 𝑢𝑖,𝑜,𝑡

𝑡

)) + (∑ 𝜀2(𝑢𝑖,𝑜,𝑡)

𝑖,𝑜,𝑡

)]

The first component of the objective function rewards each quantity of an order that is

produced before its due date. In order to provide the greatest reward for completion and

ensure that this key performance indicator (KPI) is prioritized over anything else,

coefficient M is typically assigned a very large number, such as 100,000. Meanwhile, ε1

and ε2 are typically assigned much smaller values, such as 0.01 and 0.001 to slightly

highlight the rewards and penalties previously mentioned.

4.4.4.2. Revenue Model

121

The main KPI that is prioritized in the revenue model is revenue. Below is the objective

function, which is the same as the delivery model except for the features of the first

component.

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑅𝑒𝑣𝑒𝑛𝑢𝑒: (∑ 𝑀(𝑅𝑒𝑣𝑜)(𝑤𝑜,𝑡)

𝑜,𝑡

)

− [(∑ (𝑃𝑜(𝑝 + 1 − 𝐷𝑜)) × (𝑄𝑜 − ∑ 𝑤𝑜𝑡

𝑡

)

𝑜: 𝐷𝑜≤𝑝

)

+ (∑ 𝑃𝑜(𝑡 − 𝐷𝑜)𝑤𝑜,𝑡

𝑜,𝑡:𝑡>𝐷𝑜

) − (∑ 𝜀1(𝐷𝑜 − 𝑡)𝑤𝑜,𝑡

𝑜,𝑡:𝑡<𝐷𝑜

)

+ (∑ 𝐻𝑖

𝑖,𝑜

(𝑈𝑃𝑂𝑖,𝑜 − ∑ 𝑎𝑖,𝑜,𝑡 + 𝑢𝑖,𝑜,𝑡

𝑡

)) + (∑ 𝜀2(𝑢𝑖,𝑜,𝑡)

𝑖,𝑜,𝑡

)]

The function prioritizes the total revenue associated with order completions, which is

simply the product of the quantities completed by the revenue associated with each unit

in that order. Just as in the delivery model, this KPI is given a high weight by applying a

large value to the coefficient M that multiplies the total revenue. As a result, orders with

high returns in revenue are pushed through production by the program.

4.4.4.3. Customer Priority Model

The last type of model (also used above in our modeling section) allows a company to

prioritize a set of orders, typically by customer. Once again, the objective function is

displayed below, which has only one different component from the previous two

functions.

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑃𝑒𝑛𝑎𝑙𝑡𝑦: (∑ (𝑃𝑜(𝑝 + 1 − 𝐷𝑜)) × (𝑄𝑜 − ∑ 𝑤𝑜𝑡𝑡)𝑜: 𝐷𝑜≤𝑝) + (∑ 𝑃𝑜(𝑡 −𝑜,𝑡:𝑡>𝐷𝑜

𝐷𝑜)𝑤𝑜,𝑡) − (∑ 0.5 ∗ 𝑃𝑜(𝐷𝑜 − 𝑡)𝑤𝑜,𝑡𝑜,𝑡:𝑃𝑜=𝑀,𝑡<𝐷𝑜
) − (∑ 𝜀1(𝐷𝑜 − 𝑡)𝑤𝑜,𝑡𝑜,𝑡:𝑡<𝐷𝑜

) +

(∑ 𝐻𝑖𝑖,𝑜 (𝑁𝑖
𝑜 − ∑ 𝑎𝑖,𝑜,𝑡 + 𝑢𝑖,𝑜,𝑡𝑡)) + (∑ 𝜀2(𝑢𝑖,𝑜,𝑡)𝑖,𝑜,𝑡)

122

By applying an appropriately large delay penalty parameter, Po, for the set of order of

interest, one can easily prioritize completions of those orders. The goal of the objective

function is to minimize a penalty which decreases as more and more parts of highly

prioritized orders get completed. In addition, the third component of the function rewards

early completions of the prioritized orders. The section states that for all orders and time

periods such that the order has a specific penalty, M, and the time period is before the due

date of the specific order, the penalty decreases by the following factor:

0.5 ∗ 𝑃𝑜(𝐷𝑜 − 𝑡)𝑤𝑜,𝑡

This factor incentivizes early production of the specified orders. Meanwhile, the overall

objective also penalizes both incomplete and late orders, rewards early production and

every step of production towards completing an order, and incentivizes the use of

inventory.

4.4.4.4. KPI Descriptions

The table below describes the KPI’s used to evaluate the different frameworks and

models. Since all tests were run over a 13-week time horizon, each on-time delivery

(OTD) performance benchmark was also broken up by month. It is also important to note

that the KPI’s corresponding to orders represent full order completions, whereas those

corresponding to units represent top assembly completions that together make up one

order.

KPI Description

OTD_Orders overall percentage of orders completed on-time

OTD_Orders_Month1 percentage of orders due during first month

completed on-time

123

OTD_Orders_Month2 percentage of orders due during second month

completed on-time

OTD_Orders_Month3 percentage of orders due during third month

completed on-time

OTD_Units overall percentage of order units completed on

time

Average_OTD_Units average percentage of order units completed on

time

OTD_Units_Month1 percentage of order units due during first month

completed on-time

OTD_Units_Month2 percentage of order units due during second

month completed on-time

OTD_Units_Month3 percentage of order units due during third month

completed on-time

Overdue total number of incomplete order units

Overdue_Month1 number of incomplete order units during first

month

Overdue_Month2 number of incomplete order units during second

month

Overdue_Month3 number of incomplete order units during third

month

PenaltyIndex objective function penalty

Revenue total revenue from completed order units

CustomerOTD_Orders percentage of orders completed on time per

customer

CustomerOTD_Units percentage of order units completed on time per

customer

CustomerProportionSatisfied_Orders percentage of orders completed per customer

CustomerProportionSatisfied_Units percentage of order units completed per customer

Table 4.4.5 KPIs

4.4.4.5. Sensitivity Analysis of Pegged vs. Unpegged Model Performances

124

The table below compares the results from the pegged and unpegged frameworks across

multiple KPI’s and uses colored directional arrows to indicate relative performance.

Table 4.4.6 Comparison of Pegged vs. Unpegged Model Performances

The KPI’s are also broken down by model; in this case, the delivery and customer

priority models are displayed. In terms of on-time delivery of both top assemblies and

full orders, the pegged framework produces slightly better results. The pegged framework

averages almost 10% higher in the average number of units that are delivered on-time

Framework Analysis

KPI Pegged Unpegged % Difference

Average_OTD_Units

Customer Priority 13.66%

On-Time Delivery 6.23%

OTD_Orders

Customer Priority 13.64%

On-Time Delivery 5.13%

OTD_Orders_Month1

Customer Priority 0.00%

On-Time Delivery 0.00%

OTD_Orders_Month2

Customer Priority 30.00%

On-Time Delivery 14.81%

OTD_Orders_Month3

Customer Priority 0.00%

On-Time Delivery 4.08%

OTD_Units_Month1

Customer Priority 58.82%

On-Time Delivery 0.00%

OTD_Units_Month2

Customer Priority 3.27%

On-Time Delivery 2.86%

OTD_Units_Month3

Customer Priority 2.45%

On-Time Delivery 1.46%

PenaltyIndex

Customer Priority 5.30%

On-Time Delivery 0.33%

Revenue

Customer Priority 0.04%

On-Time Delivery 0.39%

125

across all orders, as well as in the total number of orders delivered on time. While there

appears to be more drastic differences in performance at the monthly level, it is important

to note that the actual values are quite close. For example, the percent difference between

OTD_Orders_Month2 for customer priority is 30%; meanwhile, the KPI for the pegged

framework is 51% and the KPI for the unpegged framework is 37%. The percent

difference between OTD_Units_Month1 for the customer priority model also appears

very large, at 58.8%, but simply considering this information is misconstruing. In reality,

the KPI for the pegged framework is 2% and the KPI for the unpegged framework is

1.12%. Lastly, the penalty indices only differ on average by 2.8% and the revenue values

by 0.4%, which suggests that both frameworks are very comparable in terms of

optimality.

The largest relative differences between the two models are on KPIs for customer priority

as explained above, mostly favored towards the pegged model. That makes intuitive

sense, because the model that can differentiate between different customer orders (pegged

model) will be able to satisfy customer priorities better.

The greatest difference between the two frameworks is actual computation time. Given

the computing parameters previously outlined at the end of sub-section 4.4.2., Data

Preprocessing, while the unpegged model typically took less than 30 seconds to solve, the

pegged model often took up to 12 hours. Though this may be manageable for a company

that only plans to run the tool every few weeks, the pegged framework is not an ideal

version for testing and validation. The pegged framework certainly provides a more

beneficial output, whereas the unpegged framework is very useful for running many

126

different tests to obtain fast results. Meanwhile, it is recommended that both frameworks

be adjusted simultaneously.

4.4.4.6. Sensitivity Analysis of Different Objective Functions

The table below captures the results from running the three models across the unpegged

framework.

KPI

Customer

Priority

On-Time

Delivery Revenue

OTD_Orders 25.63% 35.63% 26.25%

OTD_Orders_Month1 3.41% 6.82% 4.55%

OTD_Orders_Month2 37.78% 55.56% 37.78%

OTD_Orders_Month3 80.77% 96.15% 80.77%

Average_OTD_Units 27.09% 36.46% 27.71%

OTD_Units 51.12% 56.25% 52.32%

OTD_Units_Month1 1.12% 7.66% 4.30%

OTD_Units_Month2 72.27% 76.34% 72.27%

OTD_Units_Month3 95.39% 99.71% 95.39%

Overdue 291 362 319

Overdue_Month1 1515 1509 1512

Overdue_Month2 1084 1053 1067

Overdue_Month3 474 455 471

PenaltyIndex 5327327.692 530952.8386 532963.562

Revenue 59604.78007 60078.62334 60263.8587

Table 4.4.7 Comparison of Different Objective Functions

The on-time delivery model excels relative to the other models at completing orders on-

time. However, it is important to recognize that the input data has clearly skewed the

results, since many orders appear to be due before t=0 or before their estimated lead

127

times, so it is critical to understand the type of data used to test the model in order to

evaluate the results appropriately.

Figure 4.4.3 Due Dates of Orders in Backlog

Figure 4.4.3 shows that not only do more than 250 of the orders considered in the

company’s backlog have due dates between -3 and 2.4 weeks, but there are even a few

orders that appear to have been due up to 30 weeks before the models were even tested.

Therefore, if the tool is being given orders that are due in unfeasible time frames, it is

wrong to expect that the tool’s performance during the first few weeks is going to provide

acceptable results.

Fortunately, as the months progress across each KPI category, the values also improve,

which suggests that true performance improvement can be seen once the tool has been up

and running. Especially during month 2, the discrepancy between OTD_Orders and

OTD_units shows that even if orders aren’t being fully completed, all models are pushing

through production due to a feature across all objective functions that rewards every step

towards completing an order.

128

While the revenue model generates the most revenue from all completed units, it is

important to note that the value is only greater than the lowest revenue-generating model

by 1%.

Figure 4.4.4 Total Revenue by Model Type

By increasing the value of M in the objective, a user can increase the incentive for

completing highly profitable orders.

The only difference when testing the customer priority model was that customer K2 was

given a much larger priority. There appeared to be no significant differences in

performance by customer across the three models for 34 out of the 42 customers

observed. However, for the remaining 8 customers, the impact of the customer

prioritization model is illustrated in Table 4.4.8, which shows the percentage of units

satisfied pertaining to specific customers.

Customer
Customer

Priority

On-Time

Delivery
Revenue

K2 99.85% 81.16% 85.15%

Customer
Priority

$59,604.78

On-Time
Delivery

$60,078.62

Revenue
$60,263.86

Total Revenue by Model Type

129

P2 94.54% 97.27% 97.27%

E1 72.22% 100.00% 100.00%

D2 72.22% 75.00% 68.75%

K1 71.53% 86.86% 86.86%

W1 41.18% 64.71% 70.59%

A1 29.24% 24.40% 38.35%

C2 27.78% 11.11% 33.33%

Table 4.4.8 Customer Performance Comparison

A color scheme is applied to each row to highlight the performance across each model.

As shown by the table, almost 100 percent of customer K2’s units are completed using

the customer priority model, whereas only between 81 and 85 percent of the customer’s

units are typically completed using the default data. Meanwhile, the seven other

customers listed must experience slightly less satisfaction as illustrated by the red and

yellow cells in the first column. Thus, it is important that companies weigh the impact

that the prioritization model could potentially have on the rest of their customers.

4.5. Conclusion

In this essay, we have introduced the Hierarchical Job Shop Schedule Planning and

Execution Problem (HJSP) which consists of solving two Multi-Level Capacitated Lot-

Sizing Problems (MLCLSPs) sequentially at a tactical and then an operational level.

HJSP is inspired by a problem observed at an aerospace parts manufacturer. The

operational level problem, which we call the execution problem allows continuous setups

and setups that take longer than a day. Both problems allow positive lead-times, back-

orders and loss sales. Due dates are also considered. We solve a real-life industrial-sized

test application using an instance provided by the aerospace manufacturer. We exploit

130

structure of the problem to reduce the size of the problem and implement our models on a

commercial optimization software that solves our problem to near-optimality. A data pre-

processing tool on MATLAB is also generated. Finally, we also run a sensitivity analysis

of the planning model by comparing a simplified version (unpegged) against the full

version (pegged) and different objective functions using KPIs.

131

CHAPTER 5

EXTENSIONS / FUTURE RESEARCH DIRECTIONS

My advisors Ana Muriel and Hari Balasubramanian have collaborated with me and

contributed to the work described in this chapter.

5.1. Extensions of Chapter 2

There are many different future research directions that we propose to take to build upon

our work in Chapter 2. To name a few:

• We plan to further investigate and strengthen our findings using more random

computational instances of different sizes and allowing for longer solution times

for the problems that have already been investigated (Parallel Machine and

Flexible Flow Shop Scheduling).

• We also plan to further investigate the relationship between modeling approaches

and computational complexity in machine scheduling problems by modeling

different problems, such as job shop scheduling and open shop scheduling

problems, using direct and relative positional variables.

• We plan to compare and contrast the exact solution methodologies proposed in

this study and heuristic/meta-heuristic solution methodologies commonly used in

the machine scheduling literature, such as Genetic Algorithms, Lagrangian

Relaxation, etc.

• Finally, we plan to find more real-life examples of machine scheduling problems

and help the decision makers using our current models or a custom modeling

approach/decision tools similar to what we did in this study for Artaic.

132

5.2. Extensions of Chapter 3

5.2.1. Flexibility in Second Stage (Provider)

Note that one of the assumptions in team primary care practice model was that the

providers were dedicated to patients, i.e. the patient could not see any provider they

wanted, they had to go to their dedicated provider. Even though this assumption is

important for continuity of care in primary care practices, there are advantages to having

flexible providers as well, the main one being the improvements on patient wait time and

provider idle time. As we have seen on Chapter 3, flexibility in the first stage (nurse) had

significant benefits, especially when the service time variability increases. Therefore,

there is a potential benefit to flexibility in the second stage (provider) as well. We plan to

investigate this potential using similar experiments to the ones in Chapter 3. We already

developed models with and without crossovers, as given below:

5.2.1.1. Flexible Nurses and Providers with Crossover

𝑦𝑖,𝑠
𝑠𝑡𝑎𝑟𝑡 Start time of patient i with nurse under scenario s

𝑦𝑖,𝑠
𝑓𝑖𝑛𝑖𝑠ℎ

 Finish time of patient i with nurse under scenario s

𝑧𝑖,𝑠
𝑠𝑡𝑎𝑟𝑡 Start time of the ith patient to visit with a provider under scenario s

𝑧𝑖,𝑠
𝑓𝑖𝑛𝑖𝑠ℎ

 Finish time of the ith patient to visit with a provider under scenario s

𝑁𝑖𝑠
𝑚𝑎𝑥 Maximum of the finish times of patients 1,…, i-1 with nurses under scenario s

𝑃𝑖,𝑠
𝑚𝑎𝑥 Maximum of the finish times of the first i-1 patients to be seen by the

133

providers under scenario s

𝑋𝑖 Appointment slot assigned to patient i, an integer variable in {0,1,2,...}.

Observe that 𝑧𝐼,𝑠
𝑓𝑖𝑛𝑖𝑠ℎ

 𝑎𝑛𝑑 𝑃𝐼,𝑠
𝑚𝑎𝑥 represent the times at which the last two patients will

finish with the providers, and thus the completion time of the two providers. The second

largest logic tells us what is the time at which a nurse is available for patient i, and at the

same time it represents the time at which the i-1th patient has finished with the nurses and

is available to be seen by a provider. Then once we have patients in the order at which

they finish with the nurses, we apply the second largest logic again at the providers step.

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒

1

𝑆
(𝛼 [∑ (𝑧𝐼,𝑠

𝑓𝑖𝑛𝑖𝑠ℎ
+ 𝑃𝐼,𝑠

𝑚𝑎𝑥 − ∑ 𝜏𝑖,𝑠
𝑃

𝐼

𝑖=1

)

𝑠

]

+ 𝛽 [∑ ∑(𝑦𝑖,𝑠
𝑠𝑡𝑎𝑟𝑡 − 15𝑋𝑖) + ∑ (∑ 𝑧𝑖,𝑠

𝑠𝑡𝑎𝑟𝑡

𝐼

𝑖=1

− ∑ 𝑦𝑖,𝑠
𝑓𝑖𝑛𝑖𝑠ℎ

𝐼

𝑖=1

)

𝑠

𝑛

𝑖=1𝑠

])

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

 𝑦1,𝑠
𝑠𝑡𝑎𝑟𝑡 = 0 ∀𝑠 ∈ 𝑆

 𝑦2,𝑠
𝑠𝑡𝑎𝑟𝑡 = 0 ∀𝑠 ∈ 𝑆

 𝑧0,𝑘,𝑠
𝑓𝑖𝑛𝑖𝑠ℎ

= 0 ∀𝑘 ∈ 𝐾, ∀𝑠 ∈ 𝑆

 𝑋1 = 0

 𝑋2 = 0

 𝑦3,𝑠
𝑠𝑡𝑎𝑟𝑡 ≥ min(𝑦1,𝑠

𝑓𝑖𝑛𝑖𝑠ℎ
, 𝑦2,𝑠

𝑓𝑖𝑛𝑖𝑠ℎ
) ∀𝑠 ∈ 𝑆

 𝑁3,𝑠
max ≥ max(𝑦1,𝑠

𝑓𝑖𝑛𝑖𝑠ℎ
, 𝑦2,𝑠

𝑓𝑖𝑛𝑖𝑠ℎ
) ∀𝑠 ∈ 𝑆

 𝑁𝑖,𝑠
max ≥ max(𝑁𝑖−1,𝑠

𝑚𝑎𝑥 , 𝑦𝑖−1,𝑠
𝑓𝑖𝑛𝑖𝑠ℎ

) ∀𝑖 ∈ 4. . 𝐼 ∀𝑠 ∈ 𝑆

134

 𝑦𝑖,𝑠
𝑠𝑡𝑎𝑟𝑡 ≥ min(𝑁𝑖−1,𝑠

𝑚𝑎𝑥 , 𝑦𝑖−1,𝑠
𝑓𝑖𝑛𝑖𝑠ℎ

) ∀𝑖 ∈ 4. . 𝐼 ∀𝑠 ∈ 𝑆

 𝑦𝑖,𝑠
𝑓𝑖𝑛𝑖𝑠ℎ

= 𝑦𝑖,𝑠
start + τi,s

N ∀i ∀s

 𝑧1,𝑠
𝑠𝑡𝑎𝑟𝑡 ≥ min (𝑦1,𝑠

𝑓𝑖𝑛𝑖𝑠ℎ
, 𝑦2,𝑠

𝑓𝑖𝑛𝑖𝑠ℎ
) ∀𝑠 ∈ 𝑆

 𝑧𝑖,𝑠
𝑠𝑡𝑎𝑟𝑡 ≥ min(𝑁𝑖+1,𝑠

𝑚𝑎𝑥 , 𝑦𝑖+1,𝑠
𝑓𝑖𝑛𝑖𝑠ℎ

) ∀𝑗 ∈ {2. . 𝐼}, 𝑠 ∈ 𝑆

 𝑧𝑗,𝑠
𝑓𝑖𝑛𝑖𝑠ℎ

= 𝑧𝑗,𝑠
𝑠𝑡𝑎𝑟𝑡 + 𝜏𝑗,𝑠

𝑝
 ∀𝑗 ∈ 𝐽𝑘 , 𝑠 ∈ 𝑆

 𝑧3,𝑠
𝑠𝑡𝑎𝑟𝑡 ≥ min(𝑧1,𝑠

𝑓𝑖𝑛𝑖𝑠ℎ
, 𝑧2,𝑠

𝑓𝑖𝑛𝑖𝑠ℎ
) ∀𝑠 ∈ 𝑆

 𝑃3,𝑠
max ≥ max(𝑧1,𝑠

𝑓𝑖𝑛𝑖𝑠ℎ
, 𝑧2,𝑠

𝑓𝑖𝑛𝑖𝑠ℎ
) ∀𝑠 ∈ 𝑆

 𝑃𝑖,𝑠
max ≥ max(𝑃𝑖−1,𝑠

𝑚𝑎𝑥 , 𝑧𝑖−1,𝑠
𝑓𝑖𝑛𝑖𝑠ℎ

) ∀𝑖 ∈ 4. . 𝐼 ∀𝑠 ∈ 𝑆

 𝑧𝑖,𝑠
𝑠𝑡𝑎𝑟𝑡 ≥ min(𝑃𝑖−1,𝑠

𝑚𝑎𝑥 , 𝑧𝑖−1,𝑠
𝑓𝑖𝑛𝑖𝑠ℎ

) ∀𝑖 ∈ 4. . 𝐼 ∀𝑠 ∈ 𝑆

 𝑋 ≥ 0, 𝐼𝑁𝑇; 𝑦𝑠𝑡𝑎𝑟𝑡 , 𝑦𝑓𝑖𝑛𝑖𝑠ℎ, 𝑧𝑠𝑡𝑎𝑟𝑡 , 𝑧𝑓𝑖𝑛𝑖𝑠ℎ ≥ 0

Observe that the number of binary variables has not increased!

If we don’t allow for crossover then the patients will always be ordered in the sequence

of the original practice schedule and the problem can be formulated as:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒

1

𝑆
(𝛼 [∑ (𝑧𝐼,𝑠

𝑓𝑖𝑛𝑖𝑠ℎ
+ 𝑃𝐼,𝑠

𝑚𝑎𝑥 − ∑ 𝜏𝑖,𝑠
𝑃

𝐼

𝑖=1

)

𝑠

]

+ 𝛽 [∑ ∑(𝑦𝑖,𝑠
𝑠𝑡𝑎𝑟𝑡 − 15𝑋𝑖) + ∑ (∑ 𝑧𝑖,𝑠

𝑠𝑡𝑎𝑟𝑡

𝐼

𝑖=1

− ∑ 𝑦𝑖,𝑠
𝑓𝑖𝑛𝑖𝑠ℎ

𝐼

𝑖=1

)

𝑠

𝑛

𝑖=1𝑠

])

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

 𝑦1,𝑠
𝑠𝑡𝑎𝑟𝑡 = 0 ∀𝑠 ∈ 𝑆

 𝑦2,𝑠
𝑠𝑡𝑎𝑟𝑡 = 0 ∀𝑠 ∈ 𝑆

 𝑧0,𝑘,𝑠
𝑓𝑖𝑛𝑖𝑠ℎ

= 0 ∀𝑘 ∈ 𝐾, ∀𝑠 ∈ 𝑆

 𝑋1 = 0

 𝑋2 = 0

135

 𝑦3,𝑠
𝑠𝑡𝑎𝑟𝑡 ≥ min(𝑦1,𝑠

𝑓𝑖𝑛𝑖𝑠ℎ
, 𝑦2,𝑠

𝑓𝑖𝑛𝑖𝑠ℎ
) ∀𝑠 ∈ 𝑆

 𝑁3,𝑠
max ≥ max(𝑦1,𝑠

𝑓𝑖𝑛𝑖𝑠ℎ
, 𝑦2,𝑠

𝑓𝑖𝑛𝑖𝑠ℎ
) ∀𝑠 ∈ 𝑆

 𝑁𝑖,𝑠
max ≥ max(𝑁𝑖−1,𝑠

𝑚𝑎𝑥 , 𝑦𝑖−1,𝑠
𝑓𝑖𝑛𝑖𝑠ℎ

) ∀𝑖 ∈ 4. . 𝐼 ∀𝑠 ∈ 𝑆

 𝑦𝑖,𝑠
𝑠𝑡𝑎𝑟𝑡 ≥ min(𝑁𝑖−1,𝑠

𝑚𝑎𝑥 , 𝑦𝑖−1,𝑠
𝑓𝑖𝑛𝑖𝑠ℎ

) ∀𝑖 ∈ 4. . 𝐼 ∀𝑠 ∈ 𝑆

 𝑦𝑖,𝑠
𝑓𝑖𝑛𝑖𝑠ℎ

= 𝑦𝑖,𝑠
start + τi,s

N ∀i ∀s

 𝑧𝑖,𝑠
𝑠𝑡𝑎𝑟𝑡 ≥ 𝑦𝑖,𝑠

𝑓𝑖𝑛𝑖𝑠ℎ
 ∀𝑖 ∈ 𝐼, 𝑠 ∈ 𝑆

 𝑧𝑗,𝑠
𝑓𝑖𝑛𝑖𝑠ℎ

= 𝑧𝑗,𝑠
𝑠𝑡𝑎𝑟𝑡 + 𝜏𝑗,𝑠

𝑝
 ∀𝑗 ∈ 𝐽𝑘 , 𝑠 ∈ 𝑆

 𝑧3,𝑠
𝑠𝑡𝑎𝑟𝑡 ≥ min(𝑧1,𝑠

𝑓𝑖𝑛𝑖𝑠ℎ
, 𝑧2,𝑠

𝑓𝑖𝑛𝑖𝑠ℎ
) ∀𝑠 ∈ 𝑆

 𝑃3,𝑠
max ≥ max(𝑧1,𝑠

𝑓𝑖𝑛𝑖𝑠ℎ
, 𝑧2,𝑠

𝑓𝑖𝑛𝑖𝑠ℎ
) ∀𝑠 ∈ 𝑆

 𝑃𝑖,𝑠
max ≥ max(𝑃𝑖−1,𝑠

𝑚𝑎𝑥 , 𝑧𝑖−1,𝑠
𝑓𝑖𝑛𝑖𝑠ℎ

) ∀𝑖 ∈ 4. . 𝐼 ∀𝑠 ∈ 𝑆

 𝑧𝑖,𝑠
𝑠𝑡𝑎𝑟𝑡 ≥ min(𝑃𝑖−1,𝑠

𝑚𝑎𝑥 , 𝑧𝑖−1,𝑠
𝑓𝑖𝑛𝑖𝑠ℎ

) ∀𝑖 ∈ 4. . 𝐼 ∀𝑠 ∈ 𝑆

 𝑋 ≥ 0, 𝐼𝑁𝑇; 𝑦𝑠𝑡𝑎𝑟𝑡 , 𝑦𝑓𝑖𝑛𝑖𝑠ℎ, 𝑧𝑠𝑡𝑎𝑟𝑡 , 𝑧𝑓𝑖𝑛𝑖𝑠ℎ ≥ 0

Even though the early tests show high optimality gaps for the crossover model, the results

are promising. First of all, the big-M parameters can be tightened similar to dedicated

provider model. The nurse stage hasn’t changed, so the only big-M parameter that must

be improved is on the provider stage. Below is a method for doing so, similar to the

proofs in the Appendix:

Proof of M1 and stage-based lower bounds are the same as dedicated provider model. For

the provider stage-based lower bound, we pick the minimum of the two simulated

provider lower bounds from the previous model as the general lower bound for the

provider.

5.2.1.2. Proof of M2

For constraints 𝑧𝑖,𝑠
𝑠𝑡𝑎𝑟𝑡 ≥ min(𝑃𝑖−1,𝑠

𝑚𝑎𝑥 , 𝑧𝑖−1,𝑠
𝑓𝑖𝑛𝑖𝑠ℎ

) ∀𝑖 ∈ 4. . 𝐼 ∀𝑠 ∈ 𝑆 to be valid, we must

ensure that

136

𝑀2𝑖,𝑠 ≥ (𝑃𝑖−1,𝑠
𝑚𝑎𝑥 − 𝑧𝑖−1,𝑠

𝑓𝑖𝑛𝑖𝑠ℎ
)

+
 ∀𝑖 ∈ 4. . 𝐼, 𝑠 ∈ 𝑆

where 𝑃𝑖−1,𝑠
𝑚𝑎𝑥 is the maximum of the finish times of patients 1 through i-2 with a provider

for that scenario. That is, M2 must be an upper bound on the difference in finish times

with provider of the two patients that are seen by a provider at the time patient i starts

service, and it can vary for each patient in the sequence and from scenario to scenario.

We consider two cases: In Case1, the finish time of patient i-1 with provider is greater

than or equal to the maximum of the finish times of patient from 1 to i-2 with providers;

and in Case2, it is strictly lower.

Case 1: 𝑃𝑖−1,𝑠
𝑚𝑎𝑥 ≤ 𝑧𝑖−1,𝑠

𝑓𝑖𝑛𝑖𝑠ℎ
, the difference 𝑧𝑖−1,𝑠

𝑓𝑖𝑛𝑖𝑠ℎ
 - 𝑃𝑖−1,𝑠

𝑚𝑎𝑥 needs to be bound:

In this case, observe that

a. 𝑧𝑖−1,𝑠
𝑓𝑖𝑛𝑖𝑠ℎ

 = 𝑧𝑖−1,𝑠
𝑠𝑡𝑎𝑟𝑡 + 𝜏𝑖−1,𝑠

𝑃 and by definition, 𝑧𝑖−1,𝑠
𝑠𝑡𝑎𝑟𝑡 ≥ 𝑁𝑖,𝑠

max

b. By definition: 𝑃𝑖−1,𝑠
𝑚𝑎𝑥 ≥ 𝑧𝑖−2,𝑠

𝑓𝑖𝑛𝑖𝑠ℎ
= 𝑧𝑖−2,𝑠

𝑠𝑡𝑎𝑟𝑡 + 𝜏𝑖−2,𝑠
𝑃 , and thus 𝑃𝑖−1,𝑠

𝑚𝑎𝑥 − 𝜏𝑖−2,𝑠
𝑃 ≥

𝑧𝑖−2,𝑠
𝑠𝑡𝑎𝑟𝑡. Again, by definition, 𝑧𝑖−2,𝑠

𝑠𝑡𝑎𝑟𝑡 ≥ 𝑁𝑖−1,𝑠
𝑚𝑎𝑥 .

c. Combining the two, the difference in finish times with provider is 𝑧𝑖−1,𝑠
𝑓𝑖𝑛𝑖𝑠ℎ

 - 𝑃𝑖−1,𝑠
𝑚𝑎𝑥

= 𝑧𝑖−1,𝑠
𝑠𝑡𝑎𝑟𝑡 + 𝜏𝑖−1,𝑠

𝑃 − 𝑃𝑖−1,𝑠
𝑚𝑎𝑥 ≥ 𝑁𝑖,𝑠

max + 𝜏𝑖−1,𝑠
𝑃 − 𝑃𝑖−1,𝑠

𝑚𝑎𝑥 ≥ 𝑁𝑖,𝑠
max + 𝜏𝑖−1,𝑠

𝑃 −

 𝑧𝑖−2,𝑠
𝑓𝑖𝑛𝑖𝑠ℎ

= 𝑁𝑖,𝑠
max + 𝜏𝑖−1,𝑠

𝑃 − 𝑧𝑖−2,𝑠
𝑠𝑡𝑎𝑟𝑡 − 𝜏𝑖−2,𝑠

𝑃 ≥ 𝑁𝑖,𝑠
max + 𝜏𝑖−1,𝑠

𝑃 − 𝑁𝑖−1,𝑠
𝑚𝑎𝑥 − 𝜏𝑖−2,𝑠

𝑃

d. The difference in the maximum of nurse finish time of patients 1..i-1 (𝑁𝑖,𝑠
max) and

1..i-2 (𝑁𝑖−1,𝑠
max) is 𝑁𝑖,𝑠

max − 𝑁𝑖−1,𝑠
max . Patients i-1 and i-2 can be at most 30 minutes

apart in appointment and have nurse processing times 𝜏𝑖−1,𝑠
𝑁 and 𝜏𝑖−2,𝑠

𝑁 , so the

maximum 𝑁𝑖,𝑠
max − 𝑁𝑖−1,𝑠

max can be is 30+𝜏𝑖−1,𝑠
𝑁 − 𝜏𝑖−2,𝑠

𝑁

137

Thus, the difference 𝑧𝑖−1,𝑠
𝑓𝑖𝑛𝑖𝑠ℎ

− 𝑃𝑖−1,𝑠
𝑚𝑎𝑥 is bound by 𝜏𝑖−1,𝑠

𝑃 + 𝑀𝑎𝑥{0,30 + 𝜏𝑖−1,𝑠
𝑁 − 𝜏𝑖−2,𝑠

𝑁 −

𝜏𝑖−2,𝑠
𝑃 }.

Case 2: 𝑃𝑖−1,𝑠
𝑚𝑎𝑥 > 𝑧𝑖−1,𝑠

𝑓𝑖𝑛𝑖𝑠ℎ
, the difference 𝑃𝑖−1,𝑠

𝑚𝑎𝑥 − 𝑧𝑖−1,𝑠
𝑓𝑖𝑛𝑖𝑠ℎ

 needs to be bound

In this case, observe that while patient i-1 has finished with one provider, say provider1

w.l.o.g., the other provider, provider2, is still busy with an earlier patient. The difference

between the two can be calculated depending on which patient is still with provider2. If

patient r is still with provider2, it means that patients r+1, r+2, …, through i-1 are seen

by provider1, we have that:

a. 𝑃𝑖−1,𝑠
𝑚𝑎𝑥 = 𝑧𝑟,𝑠

𝑠𝑡𝑎𝑟𝑡 + 𝜏𝑟,𝑠
𝑃

b. 𝑧𝑖−1,𝑠
𝑓𝑖𝑛𝑖𝑠ℎ

≥ 𝑧𝑟+1,𝑠
𝑠𝑡𝑎𝑟𝑡 + 𝜏𝑟+1,𝑠

𝑃 + 𝜏𝑟+2,𝑠
𝑃 + ⋯ + 𝜏𝑖−1,𝑠

𝑃

c. 𝑧𝑟,𝑠
𝑠𝑡𝑎𝑟𝑡 ≤ 𝑧𝑟+1,𝑠

𝑠𝑡𝑎𝑟𝑡 since patients are seen by the provider in the order of their

appointment times, 𝑋1 ≤ 𝑋2 ≤ ⋯ ≤ 𝑋𝐼.

d. Thus, the difference 𝑃𝑖−1,𝑠−
𝑚𝑎𝑥 − 𝑧𝑖−1,𝑠

𝑓𝑖𝑛𝑖𝑠ℎ
≤ 𝜏𝑟,𝑠

𝑃 − ∑ 𝜏𝑢,𝑠
𝑃𝑖−1

𝑢=𝑟+1

𝑀𝑎𝑥
𝑟=1,…,𝑖−2

{𝜏𝑟,𝑠
𝑃 − ∑ 𝜏𝑢,𝑠

𝑃𝑖−1
𝑢=𝑟+1 } will provide the tight bound.

The overall bound on the difference for both cases then is

𝑀𝑎𝑥{𝐶𝑎𝑠𝑒1, 𝐶𝑎𝑠𝑒 2} = 𝑀𝑎𝑥 {𝜏𝑖−1,𝑠
𝑃 + 𝑀𝑎𝑥{0,30 + 𝜏𝑖−1,𝑠

𝑁 − 𝜏𝑖−2,𝑠
𝑁 −

𝜏𝑖−2,𝑠
𝑃 }, 𝑀𝑎𝑥

𝑟=1,…,𝑖−2
{𝜏𝑟,𝑠

𝑃 − ∑ 𝜏𝑢,𝑠
𝑃𝑖−1

𝑢=𝑟+1 }}

For future research directions, we propose a similar approach to what has been

accomplished in Chapter 3: generate random instances with different sizes and

138

distributions, solve them and improve upon optimality gaps using improved big-M

parameters and the methods from Chapter 3 (tightening constraints, stage-based lower

bounds, lower-bounding scheme using separate scenario groups, etc.), come up with

scheduling guidelines, run sensitivity analyses and analyze the effect of different problem

characteristics, mainly focusing on the difference between dedicated providers and

flexible providers.

5.2.2. Relaxation of Homogeneous Patient Assumption

One assumption that we had on Chapter 3 was that the patient set was homogeneous, i.e.

their service time came from the same distribution. Relaxing this assumption would lead

to having different types of patients similar to Oh et al. (2013). The type of patient that

we analyzed on Chapter 3 was High Complexity (HC). However, Oh et al. (2013) also

introduces Low Complexity (LC) and Same Day (SD) patients. The research problem for

team primary care practice becomes how to combine the model from Oh et al. (2013)

with the model from Chapter 3 and have a model that can handle different types of

patients with multiple nurses and providers. This would introduce sequencing different

types patients in addition to scheduling them to time slots. The main challenge would

then be to handle crossovers while also tracking the types of patients. This is doable if

you only allow one crossover per patient. Below is a mathematical model that we have

developed for two nurses and two providers for this purpose:

5.2.2.1. Sets

• 𝐼: Set of patients that must be scheduled over the time horizon.

• 𝐾: Set of providers.

139

• 𝐽𝑘: Set of patients that will visit provider 𝑘, indexed consecutively.

• 𝐼𝑘: Set of patients that will visit provider 𝑘, using their original indexes, e.g. patient

1,3,5 will visit provider 1, while patient 2,4,6 will visit provider 2. W.l.o.g. it can be

assumed that odd numbered patients will visit provider 1 while even numbered

patients will visit provider 2.

• 𝑆: Set of scenarios.

5.2.2.2. Parameters

• 𝛼: Weight of provider idle time in objective function.

• 𝛽: Weight of patient wait time in objective function.

• 𝐻𝐻𝐶
𝑘 : Number of high complexity patients of provider 𝑘.

• 𝐻𝐿𝐶
𝑘 : Number of low complexity patients of provider 𝑘.

• 𝐻𝑆𝐷
𝑘 : Number of same day patients of provider 𝑘.

• 𝜏𝑖,𝑠
𝑁,𝐻𝐶

: Nurse time of patient 𝑖 under scenario 𝑠 if patient is type HC.

• 𝜏𝑖,𝑠
𝑁,𝐿𝐶

: Nurse time of patient 𝑖 under scenario 𝑠 if patient is type LC.

• 𝜏𝑖,𝑠
𝑁,𝑆𝐷

: Nurse time of patient 𝑖 under scenario 𝑠 if patient is type SD.

• 𝜏𝑗,𝑠
𝑃𝑘,𝐻𝐶

: Provider time of 𝑗𝑡ℎ patient of provider 𝑘 under scenario 𝑠 if patient is type

HC.

• 𝜏𝑗,𝑠
𝑃𝑘,𝐿𝐶

: Provider time of 𝑗𝑡ℎ patient of provider 𝑘 under scenario 𝑠 if patient is type

LC.

140

• 𝜏𝑗,𝑠
𝑃𝑘,𝑆𝐷

: Provider time of 𝑗𝑡ℎ patient of provider 𝑘 under scenario 𝑠 if patient is type

SD.

• 𝑓[𝑗, 𝑘]: Patient index of 𝑗𝑡ℎ patient of provider 𝑘 in the overall set of patients in the

practice.

• 𝑀: A very large number.

5.2.2.3. Variables

• 𝑋𝑖: Appointment slot of patient 𝑖, an integer between 0 and 15.

• 𝐴𝑖 = {
1 𝑖𝑓 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑖 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑎𝑠 𝑡𝑦𝑝𝑒 𝐻𝐶

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• 𝐵𝑖 = {
1 𝑖𝑓 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑖 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑎𝑠 𝑡𝑦𝑝𝑒 𝐿𝐶

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• 𝐶𝑖 = {
1 𝑖𝑓 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑖 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑎𝑠 𝑡𝑦𝑝𝑒 𝑆𝐷

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• 𝐷𝑗
𝑘 = {

1 𝑖𝑓 𝑗𝑡ℎ 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑜𝑓 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟 𝑘 𝑖𝑠 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑙𝑦 (𝑏𝑒𝑓𝑜𝑟𝑒 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟𝑠)
𝑡𝑦𝑝𝑒 𝐻𝐶

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• 𝐸𝑗
𝑘 = {

1 𝑖𝑓 𝑗𝑡ℎ 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑜𝑓 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟 𝑘 𝑖𝑠 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑙𝑦 (𝑏𝑒𝑓𝑜𝑟𝑒 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟𝑠)
𝑡𝑦𝑝𝑒 𝐿𝐶

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• 𝐹𝑗
𝑘 = {

1 𝑖𝑓 𝑗𝑡ℎ 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑜𝑓 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟 𝑘 𝑖𝑠 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑙𝑦 (𝑏𝑒𝑓𝑜𝑟𝑒 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟𝑠)
𝑡𝑦𝑝𝑒 𝑆𝐷

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• 𝑄𝑗,𝑠
𝑘 = {

1 𝑖𝑓 𝑗𝑡ℎ 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑡𝑜 𝑣𝑖𝑠𝑖𝑡 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟 𝑘 (𝑎𝑓𝑡𝑒𝑟 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟𝑠)
𝑡𝑦𝑝𝑒 𝐻𝐶 𝑢𝑛𝑑𝑒𝑟 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝑠

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

141

• 𝑊𝑗,𝑠
𝑘 = {

1 𝑖𝑓 𝑗𝑡ℎ 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑡𝑜 𝑣𝑖𝑠𝑖𝑡 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟 𝑘 (𝑎𝑓𝑡𝑒𝑟 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟𝑠) 𝑡𝑦𝑝𝑒 𝐿𝐶 𝑢𝑛𝑑𝑒𝑟
𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝑠

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• 𝑈𝑗,𝑠
𝑘 = {

1 𝑖𝑓 𝑗𝑡ℎ 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑡𝑜 𝑣𝑖𝑠𝑖𝑡 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟 𝑘 (𝑎𝑓𝑡𝑒𝑟 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟𝑠) 𝑡𝑦𝑝𝑒 𝑆𝐷 𝑢𝑛𝑑𝑒𝑟
𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝑠

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• 𝑛𝑖,𝑠 = {

1 𝑖𝑓 𝑡ℎ𝑒 𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡 𝑛𝑢𝑟𝑠𝑒 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑡𝑜 𝑠𝑒𝑒 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑜𝑛𝑒
𝑡ℎ𝑎𝑡 𝑠𝑒𝑟𝑣𝑒𝑠 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑖 − 1, 𝑡ℎ𝑎𝑡 𝑖𝑠, 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑠𝑜𝑚𝑒 𝑒𝑎𝑟𝑙𝑖𝑒𝑟 𝑝𝑎𝑡𝑖𝑒𝑛𝑡

𝑡ℎ𝑎𝑡 𝑖𝑠 𝑠𝑡𝑖𝑙𝑙 𝑠𝑒𝑒𝑖𝑛𝑔 𝑡ℎ𝑒 𝑜𝑡ℎ𝑒𝑟 𝑛𝑢𝑟𝑠𝑒, 𝑢𝑛𝑑𝑒𝑟 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝑠
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• 𝑝𝑗,𝑠
𝑘 = {

1 𝑖𝑓 𝑡ℎ𝑒 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 𝑜𝑐𝑐𝑢𝑟𝑠, 𝑡ℎ𝑎𝑡 𝑖𝑠, 𝑡ℎ𝑒 𝑗𝑡ℎ𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑡𝑜 𝑠𝑒𝑒 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟 𝑘

𝑖𝑠 𝑡ℎ𝑒 𝑗 + 1𝑠𝑡𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑖𝑛 𝑡ℎ𝑒𝑖𝑟 𝑎𝑝𝑝𝑜𝑖𝑛𝑡𝑚𝑒𝑛𝑡 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒, 𝑢𝑛𝑑𝑒𝑟 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝑠
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• 𝑦𝑖,𝑠
𝑠𝑡𝑎𝑟𝑡: Start time of patient 𝑖 with a nurse, under scenario 𝑠

• 𝜏𝑖,𝑠
𝑁 : Service time of patient 𝑖 with a nurse, under scenario 𝑠

• 𝑦𝑖,𝑠
𝑓𝑖𝑛𝑖𝑠ℎ

: Finish time of patient 𝑖 with a nurse, under scenario 𝑠

• 𝑡𝑗,𝑠
𝑘 : Finish time of 𝑗𝑡ℎ patient of provider k with a nurse, under scenario 𝑠

• 𝑁𝑖,𝑠
𝑚𝑎𝑥: Maximum of the finish time of patients 1..𝑖 − 1, under scenario 𝑠

• 𝑧𝑗,𝑠
𝑘,𝑠𝑡𝑎𝑟𝑡

: Start time of 𝑗𝑡ℎ patient to visit provider 𝑘, under scenario 𝑠

• 𝜏𝑗,𝑠
𝑃𝑘: Service time of 𝑗𝑡ℎ patient to visit provider 𝑘 with their provider, under

scenario 𝑠

• 𝑧𝑗,𝑠
𝑘,𝑓𝑖𝑛𝑖𝑠ℎ

: Finish time of 𝑗𝑡ℎ patient to visit provider 𝑘, under scenario 𝑠

5.2.2.4. Model

142

Minimize

1

𝑆
(𝛼[∑ ((𝑧𝐽1,𝑠

1,𝑓𝑖𝑛𝑖𝑠ℎ
− ∑ 𝜏𝑗,𝑠

𝑃1) + (𝑧𝐽2,𝑠
2,𝑓𝑖𝑛𝑖𝑠ℎ

− ∑ 𝜏𝑗,𝑠
𝑃2))]𝐽2

𝑗=1
𝐽1
𝑗=1𝑠 + 𝛽[∑ ∑ (𝑦𝑖,𝑠

𝑠𝑡𝑎𝑟𝑡 −𝑛
𝑖=1𝑠

15𝑋𝑖) + ∑ (∑ (𝑧𝑗,𝑠
1,𝑠𝑡𝑎𝑟𝑡 − 𝑡𝑗,𝑠

1) + ∑ (𝑧𝑗,𝑠
2,𝑠𝑡𝑎𝑟𝑡 − 𝑡𝑗,𝑠

2)])𝐽2
𝑗=1

𝐽1
𝑗=1𝑠 (1)

subject to

 𝑦1,𝑠
𝑠𝑡𝑎𝑟𝑡 = 0 ∀𝑠 ∈ 𝑆 (2)

𝑦2,𝑠
𝑠𝑡𝑎𝑟𝑡 = 0 ∀𝑠 ∈ 𝑆 (3)

𝑧0,𝑠
𝑘,𝑓𝑖𝑛𝑖𝑠ℎ

= 0 ∀𝑘 ∈ 𝐾 ∀𝑠 ∈ 𝑆 (4)

𝑋1 = 0 (5)

𝑋2 = 0 (6)

𝑦3,𝑠
𝑠𝑡𝑎𝑟𝑡 ≥ min(𝑦1,𝑠

𝑓𝑖𝑛𝑖𝑠ℎ
, 𝑦2,𝑠

𝑓𝑖𝑛𝑖𝑠ℎ
) ∀𝑠 ∈ 𝑆 (7)

 𝑦3,𝑠
𝑠𝑡𝑎𝑟𝑡 ≥ 𝑦1,𝑠

𝑓𝑖𝑛𝑖𝑠ℎ
− 𝑀3,𝑠

1 𝑛3,𝑠 ∀𝑠 ∈ 𝑆 (7-1)

 𝑦3,𝑠
𝑠𝑡𝑎𝑟𝑡 ≥ 𝑦2,𝑠

𝑓𝑖𝑛𝑖𝑠ℎ
− 𝑀3,𝑠

1 (1 − 𝑛3,𝑠)∀𝑠 ∈ 𝑆 (7-2)

𝑁3,𝑠
𝑚𝑎𝑥 ≥ max(𝑦1,𝑠

𝑓𝑖𝑛𝑖𝑠ℎ
, 𝑦2,𝑠

𝑓𝑖𝑛𝑖𝑠ℎ
) ∀𝑠 ∈ 𝑆 (8)

𝑁𝑖,𝑠
𝑚𝑎𝑥 ≥ max(𝑁𝑖−1,𝑠

𝑚𝑎𝑥 , 𝑦𝑖−1,𝑠
𝑓𝑖𝑛𝑖𝑠ℎ

) ∀𝑖 ∈ 4. . 𝐼, 𝑠 ∈ 𝑆 (9)

𝑦𝑖,𝑠
𝑠𝑡𝑎𝑟𝑡 ≥ min(𝑁𝑖−1,𝑠

𝑚𝑎𝑥 , 𝑦𝑖−1,𝑠
𝑓𝑖𝑛𝑖𝑠ℎ

) ∀𝑖 ∈ 4. . 𝐼, 𝑠 ∈ 𝑆 (10)

 𝑦𝑖,𝑠
𝑠𝑡𝑎𝑟𝑡 ≥ 𝑁𝑖−1,𝑠

𝑚𝑎𝑥 − 𝑀𝑖,𝑠
1 𝑛𝑖,𝑠 ∀𝑖 ∈ 4. . 𝐼, 𝑠 ∈ 𝑆 (10-1)

 𝑦𝑖,𝑠
𝑠𝑡𝑎𝑟𝑡 ≥ 𝑦𝑖−1,𝑠

𝑓𝑖𝑛𝑖𝑠ℎ
− 𝑀𝑖,𝑠

1 (1 − 𝑛𝑖,𝑠) ∀𝑖 ∈ 4. . 𝐼, 𝑠 ∈ 𝑆 (10-2)

143

𝑦𝑖,𝑠
𝑓𝑖𝑛𝑖𝑠ℎ

= 𝑦𝑖,𝑠
𝑠𝑡𝑎𝑟𝑡 + 𝜏𝑖,𝑠

𝑁 ∀𝑖 ∈ 𝐼, 𝑠 ∈ 𝑆 (11)

𝑦𝑖,𝑠
𝑠𝑡𝑎𝑟𝑡 ≥ 15𝑋𝑖 ∀𝑖 ∈ 𝐼, 𝑠 ∈ 𝑆 (12)

𝐴𝑖 + 𝐵𝑖 + 𝐶𝑖 = 1 ∀𝑖 ∈ 𝐼 (13)

∑ 𝐴𝑖 = 𝐻𝐻𝐶
𝑘 ∀𝑘 ∈ 𝐾𝑖 𝑖𝑛 𝐼𝑘

 (14)

∑ 𝐵𝑖 = 𝐻𝐿𝐶
𝑘 ∀𝑘 ∈ 𝐾𝑖 𝑖𝑛 𝐼𝑘

 (15)

∑ 𝐶𝑖 = 𝐻𝑆𝐷
𝑘 ∀𝑘 ∈ 𝐾𝑖 𝑖𝑛 𝐼𝑘

 (16)

𝜏𝑖,𝑠
𝑁 = 𝜏𝑖,𝑠

𝑁,𝐻𝐶𝐴𝑖 + 𝜏𝑖,𝑠
𝑁,𝐿𝐶𝐵𝑖 + 𝜏𝑖,𝑠

𝑁,𝑆𝐷𝐶𝑖 ∀𝑖 ∈ 𝐼, ∀𝑠 ∈ 𝑆 (17)

𝑡𝑗,𝑠
𝑘 = 𝑦𝑓[𝑗,𝑘],𝑠

𝑓𝑖𝑛𝑖𝑠ℎ
 ∀𝑘 ∈ 𝐾, 𝑗 ∈ 𝐽𝑘, 𝑠 ∈ 𝑆 (18)

𝑧𝑗,𝑠
𝑘,𝑠𝑡𝑎𝑟𝑡 ≥ max(𝑡𝑗−1,𝑠

𝑘 , 𝑚𝑖𝑛(𝑡𝑗,𝑠
𝑘 , 𝑡𝑗+1,𝑠

𝑘)) ∀𝑘 ∈ 𝐾, 𝑗 ∈ 𝐽𝑘, 𝑠 ∈ 𝑆 (19)

 𝑧𝑗,𝑠
𝑘,𝑠𝑡𝑎𝑟𝑡 ≥ 𝑡𝑗−1,𝑠

𝑘 − 𝑀𝑗,𝑠
2,𝑘(1 − 𝑝𝑗−1,𝑠

𝑘)∀𝑘 ∈ 𝐾, 𝑗 ∈ 2. . 𝐽𝑘, 𝑠 ∈ 𝑆 (19-1)

 𝑧𝑗,𝑠
𝑘,𝑠𝑡𝑎𝑟𝑡 ≥ 𝑡𝑗,𝑠

𝑘 − 𝑀𝑗,𝑠
2,𝑘(𝑝𝑗−1,𝑠

𝑘) − 𝑀𝑗,𝑠
2,𝑘(𝑝𝑗,𝑠

𝑘)∀𝑘 ∈ 𝐾, 𝑗 ∈ 2. . 𝐽𝑘 − 1, 𝑠 ∈ 𝑆 (19-2)

 𝑧1,𝑠
𝑘,𝑠𝑡𝑎𝑟𝑡 ≥ 𝑡1,𝑠

𝑘 − 𝑀1,𝑠
2,𝑘𝑝1,𝑠

𝑘 ∀𝑘 ∈ 𝐾, 𝑠 ∈ 𝑆 (19-3)

 𝑧𝐽𝑘,𝑠
𝑘,𝑠𝑡𝑎𝑟𝑡 ≥ 𝑡1,𝑠

𝑘 − 𝑀𝐽𝑘−1,𝑠
2,𝑘 𝑝𝐽𝑘−1,𝑠

𝑘 ∀𝑘 ∈ 𝐾, 𝑠 ∈ 𝑆 (19-4)

 𝑧𝑗,𝑠
𝑘,𝑠𝑡𝑎𝑟𝑡 ≥ 𝑡𝑗+1,𝑠

𝑘 − 𝑀𝑗,𝑠
2,𝑘(1 − 𝑝𝑗,𝑠

𝑘)∀𝑘 ∈ 𝐾, 𝑗 ∈ 1. . 𝐽𝑘 − 1, 𝑠 ∈ 𝑆 (19-5)

𝑧𝑗,𝑠
𝑘,𝑓𝑖𝑛𝑖𝑠ℎ

= 𝑧𝑗,𝑠
𝑘,𝑠𝑡𝑎𝑟𝑡 + 𝜏𝑗,𝑠

𝑃𝑘 ∀𝑘 ∈ 𝐾, 𝑗 ∈ 𝐽𝑘, 𝑠 ∈ 𝑆 (20)

𝑧𝑗,𝑠
𝑘,𝑠𝑡𝑎𝑟𝑡 ≥ 𝑧𝑗−1,𝑠

𝑘,𝑓𝑖𝑛𝑖𝑠ℎ
 ∀𝑘 ∈ 𝐾, 𝑗 ∈ 𝐽𝑘, 𝑠 ∈ 𝑆 (21)

144

𝐷𝑗
𝑘 = 𝐴𝑓[𝑗,𝑘] ∀𝑘 ∈ 𝐾, 𝑗 ∈ 𝐽𝑘 (22)

𝐸𝑗
𝑘 = 𝐵𝑓[𝑗,𝑘] ∀𝑘 ∈ 𝐾, 𝑗 ∈ 𝐽𝑘 (23)

𝐹𝑗
𝑘 = 𝐶𝑓[𝑗,𝑘] ∀𝑘 ∈ 𝐾, 𝑗 ∈ 𝐽𝑘 (24)

𝑄𝑗,𝑠
𝑘 ≥ max(𝐷𝑗−1,𝑠

𝑘 , 𝑚𝑖𝑛(𝐷𝑗,𝑠
𝑘 , 𝐷𝑗+1,𝑠

𝑘)) ∀𝑘 ∈ 𝐾, 𝑗 ∈ 𝐽𝑘 , 𝑠 ∈ 𝑆 (25)

 𝑄𝑗,𝑠
𝑘 ≥ 𝐷𝑗−1,𝑠

𝑘 − (1 − 𝑝𝑗−1,𝑠
𝑘)∀𝑘 ∈ 𝐾, 𝑗 ∈ 2. . 𝐽𝑘 , 𝑠 ∈ 𝑆 (25-1)

 𝑄𝑗,𝑠
𝑘 ≥ 𝐷𝑗,𝑠

𝑘 − (𝑝𝑗−1,𝑠
𝑘) − (𝑝𝑗,𝑠

𝑘)∀𝑘 ∈ 𝐾, 𝑗 ∈ 2. . 𝐽𝑘 − 1, 𝑠 ∈ 𝑆 (25-2)

 𝑄1,𝑠
𝑘 ≥ 𝐷1,𝑠

𝑘 − 𝑝1,𝑠
𝑘 ∀𝑘 ∈ 𝐾, 𝑠 ∈ 𝑆 (25-3)

 𝑄𝐽𝑘,𝑠
𝑘 ≥ 𝐷1,𝑠

𝑘 − 𝑝𝐽𝑘−1,𝑠
𝑘 ∀𝑘 ∈ 𝐾, 𝑠 ∈ 𝑆 (25-4)

 𝑄𝑗,𝑠
𝑘 ≥ 𝐷𝑗+1,𝑠

𝑘 − (1 − 𝑝𝑗,𝑠
𝑘)∀𝑘 ∈ 𝐾, 𝑗 ∈ 1. . 𝐽𝑘 − 1, 𝑠 ∈ 𝑆 (25-5)

𝑊𝑗,𝑠
𝑘 ≥ max(𝐸𝑗−1,𝑠

𝑘 , 𝑚𝑖𝑛(𝐸𝑗,𝑠
𝑘 , 𝐸𝑗+1,𝑠

𝑘)) ∀𝑘 ∈ 𝐾, 𝑗 ∈ 𝐽𝑘 , 𝑠 ∈ 𝑆 (26)

 𝑊𝑗,𝑠
𝑘 ≥ 𝐸𝑗−1,𝑠

𝑘 − (1 − 𝑝𝑗−1,𝑠
𝑘)∀𝑘 ∈ 𝐾, 𝑗 ∈ 2. . 𝐽𝑘, 𝑠 ∈ 𝑆 (26-1)

 𝑊𝑗,𝑠
𝑘 ≥ 𝐸𝑗,𝑠

𝑘 − (𝑝𝑗−1,𝑠
𝑘) − (𝑝𝑗,𝑠

𝑘)∀𝑘 ∈ 𝐾, 𝑗 ∈ 2. . 𝐽𝑘 − 1, 𝑠 ∈ 𝑆 (26-2)

 𝑊1,𝑠
𝑘 ≥ 𝐸1,𝑠

𝑘 − 𝑝1,𝑠
𝑘 ∀𝑘 ∈ 𝐾, 𝑠 ∈ 𝑆 (26-3)

 𝑊𝐽𝑘,𝑠
𝑘 ≥ 𝐸1,𝑠

𝑘 − 𝑝𝐽𝑘−1,𝑠
𝑘 ∀𝑘 ∈ 𝐾, 𝑠 ∈ 𝑆 (26-4)

 𝑊𝑗,𝑠
𝑘 ≥ 𝐸𝑗+1,𝑠

𝑘 − (1 − 𝑝𝑗,𝑠
𝑘)∀𝑘 ∈ 𝐾, 𝑗 ∈ 1. . 𝐽𝑘 − 1, 𝑠 ∈ 𝑆 (26-5)

𝑈𝑗,𝑠
𝑘 ≥ max(𝐹𝑗−1,𝑠

𝑘 , 𝑚𝑖𝑛(𝐹𝑗,𝑠
𝑘 , 𝐹𝑗+1,𝑠

𝑘)) ∀𝑘 ∈ 𝐾, 𝑗 ∈ 𝐽𝑘 , 𝑠 ∈ 𝑆 (27)

 𝑈𝑗,𝑠
𝑘 ≥ 𝐹𝑗−1,𝑠

𝑘 − (1 − 𝑝𝑗−1,𝑠
𝑘)∀𝑘 ∈ 𝐾, 𝑗 ∈ 2. . 𝐽𝑘, 𝑠 ∈ 𝑆 (27-1)

145

 𝑈𝑗,𝑠
𝑘 ≥ 𝐹𝑗,𝑠

𝑘 − (𝑝𝑗−1,𝑠
𝑘) − (𝑝𝑗,𝑠

𝑘)∀𝑘 ∈ 𝐾, 𝑗 ∈ 2. . 𝐽𝑘 − 1, 𝑠 ∈ 𝑆 (27-2)

 𝑈1,𝑠
𝑘 ≥ 𝐹1,𝑠

𝑘 − 𝑝1,𝑠
𝑘 ∀𝑘 ∈ 𝐾, 𝑠 ∈ 𝑆 (27-3)

 𝑈𝐽𝑘,𝑠
𝑘 ≥ 𝐹1,𝑠

𝑘 − 𝑝𝐽𝑘−1,𝑠
𝑘 ∀𝑘 ∈ 𝐾, 𝑠 ∈ 𝑆 (27-4)

 𝑈𝑗,𝑠
𝑘 ≥ 𝐹𝑗+1,𝑠

𝑘 − (1 − 𝑝𝑗,𝑠
𝑘)∀𝑘 ∈ 𝐾, 𝑗 ∈ 1. . 𝐽𝑘 − 1, 𝑠 ∈ 𝑆 (27-5)

𝜏𝑗,𝑠
𝑃𝑘 = 𝜏𝑗,𝑠

𝑃𝑘,𝐻𝐶
𝑄𝑗,𝑠

𝑘 + 𝜏𝑗,𝑠
𝑃𝑘,𝐿𝐶

𝑊𝑗,𝑠
𝑘 + 𝜏𝑗,𝑠

𝑃𝑘,𝑆𝐷
𝑈𝑗,𝑠

𝑘 ∀𝑘 ∈ 𝐾, 𝑗 ∈ 𝐽𝑘 , ∀𝑠 ∈ 𝑆 (28)

𝑄𝑗,𝑠
𝑘 + 𝑊𝑗,𝑠

𝑘 + 𝑈𝑗,𝑠
𝑘 = 1 ∀𝑘 ∈ 𝐾, 𝑗 ∈ 𝐽𝑘 , ∀𝑠 ∈ 𝑆 (29)

𝑝𝑗,𝑠
𝑘 + 𝑝𝑗+1,𝑠

𝑘 ≤ 1∀𝑘 ∈ 𝐾, 𝑗 ∈ 1. . 𝐽𝑘 − 1, 𝑠 ∈ 𝑆 (30)

Objective function (1) minimizes the expected weighted provider idle time and patient

wait time. Constraints (2) and (3) make sure that first two patients start their nurse time at

the beginning of the planning horizon, since there are two nurses in the practice who can

see them. Constraints (4) initializes the artificial zeroth patient finish times as zero.

Constraints (5) and (6) sets the appointment times of the first two patients to the very first

appointment. Constraints (7) ensure that the third patient’s nurse start time is after the

minimum of the first two patients, since that is the earliest time that a nurse becomes

available. Constraints (8) ensure the maximum finish time with nurse of the first two

patients is captured by variables 𝑁3,𝑠
𝑚𝑎𝑥. Constraints (9) have a similar purpose of

calculating the maximum finish time with nurse of patients 1 through i − 1. Constraints

(10) calculate the nurse start time of patient i as after the minimum of nurse finish time of

patient i − 1 and the maximum of nurse finish times of patients 1 through i − 2, since this

is when one of the two nurses becomes available. Constraints (11) calculate the nurse

finish times of patients as the addition of the nurse start time and the nurse service time.

146

Constraints (12) ensure that the nurse start times of patients are after the arrival of

patients. Constraints (13) assign exactly one type of patient to each patient index in the

schedule. Constraints (14), (15) and (16) ensure that all types of patients of all providers

are assigned to their corresponding patient indexes. Constraints (17) calculate the nurse

service time of patients according to their assigned types. Constraints (18) capture the

nurse finish time of patients of provider k in the 𝑡𝑗,𝑠
𝑘 variables. These constraints basically

match the nurse finish times from nurse indexes to provider indexes through f[j,k]

parameters in their original order. Then, constraints (19) calculate the provider start time

of 𝑗𝑡ℎ patient to be seen by provider k according to possible crossovers. In our

calculations, we limit the number of crossovers at the provider step to 1. This allows us to

trace the patients according to their types, which allows us to calculate their correct

service times. One-step crossover on provider step is actually a very reasonable

assumption since it allows up to 3 crossovers in the nurse step. To illustrate, let’s say

1,3,5 is first provider’s patients and 2,4,6 is second provider’s patients. If patient 1 had

two crossovers before them in the provider step, it means actually 4 people crossed over

them in the nurse step. Thus, they are seen at patient 5’s position on provider step and

patients 2,3,4 and 5 were finished before them in nurse step. Considering 15-minute slots,

hence on average 15 minutes per patient, this corresponds to 60 minutes of nurse time for

patient 1 on average, which is almost unrealistically long. Even though there are some

cases that this might happen, we assume the patient with the later appointment time is

waited for a bit and patient with earlier appointment time is allowed in first. How it is

allowed using constraints (19) is that the patient that’s going to be seen in 𝑗𝑡ℎ position

can either be 𝑗 − 1𝑠𝑡 , 𝑗𝑡ℎ, 𝑜𝑟 𝑗 + 1𝑠𝑡 originally. Constraints (19-1) are active if patient j

147

crosses over patient j − 1 and patient j − 1 is seen at 𝑗𝑡ℎ position. Constraints (19-5) are

active if patient j + 1 crosses over patient j and patient j + 1 is seen at 𝑗𝑡ℎ position.

Constraints (19-2), (19-3) and (19-4) are active if no crossovers happen, (19-3) and (19-

4) being specifically designed for the very first and last patient of provider k. Constraints

(20) calculate the provider finish time of patients as the addition of provider start time

and provider service time. Constraints (21) ensure the start time of patient j of provider k

is after finish time of patient j − 1 of the same provider. Constraints (22)-(24) match the

patient types from the nurse step to the provider step using their original indexes. Then,

constraints (25)-(27) assign the actual patient types according to the order they are seen in

the provider step, using a similar procedure to constraints (19). Constraints (28) calculate

the provider service times of patients according to their corresponding types. Constraints

(29) ensure there is only one type of patient assigned to each index at provider step and

constraints (30) ensure the number of crossovers is limited to 1 in the provider step.

Initial tests show that this problem is actually more difficult to solve than our problem in

Chapter 3 resulting in higher optimality gaps and smaller solvable instances, possibly due

to higher number of binary variables in the second stage. However, since the complexity

comes from tracking patient types for crossover purposes, a model without crossover

(where patients are seen in the order that they are scheduled) seems promising. Also, the

tightening constraints, big-M parameter improvements and lower-bounding techniques

from Chapter 3 can be adapted to be applied to this problem as well, promising potential

improvements to this model.

Therefore, for future research directions, we propose to model this problem without

crossovers, generate random instances for this problem and for the problem without

148

crossovers and solve them, apply tightening constraints, big-M parameter improvements

and lower-bounding techniques similar to the ones from Chapter 3 and improve the

solvable problem sizes and optimality gaps, perform sensitivity analyses and an

investigation on problem characteristics such as the effects of service time variability,

nurse and provider flexibility and patient crossovers, similar to the ones from Chapter 3

and come up with scheduling guidelines.

5.3. Extensions of Chapter 4

Future research directions for this chapter include:

• Consideration of machine availability / maintenance activities similar to

Ramezanian, Saidi-Mehrabad and Fattahi (2013).

• Generalization of setup carry overs to sequence-dependent setups similar to

Mohammadi et al. (2010)

• Implementation of our models and methods on the benchmark instances from the

literature.

• Generation and analysis of random instances based on our test application.

• Comparison of our models and methods to heuristics from the literature on our

test application.

• Connection of execution models going from one execution time-horizon to

another, guided by the planning model and implementation of our tools at the

manufacturing site.

• Comparison of current scheduling guidelines performed at the site to our methods.

149

• Analysis of optimal solutions and derivation of easy-to-implement scheduling

guidelines.

150

CHAPTER 6

CONCLUSION

In this dissertation, we presented three essays on mathematical models and solution

techniques driven by data for scheduling optimization for novel problems in

manufacturing and healthcare.

In Chapter 2, we presented an essay regarding computational comparison of two exact

optimization modeling techniques (direct positional and relative positional variables) on a

family of machine scheduling problems. We presented different mathematical models

using these techniques for Parallel Machine and Flexible Flow Shop Scheduling

problems, with and without sequence-dependent setups. We generated random instances

of different sizes driven by data from a manufacturing company (Artaic) and solved them

using CPLEX Studio 12.7 optimization package by coding the models in this

environment for our computational study. We observed that one modeling technique

(direct positional variables) dominates the other (relative positional variables)

significantly using a statistical test (t-test). We also implemented the most practical

model using Excel and Node.js, a cloud computing software.

In Chapter 3, we built upon Alvarez Oh (2015)’s work and presented another essay

regarding a challenging scheduling problem in healthcare: the team primary care practice.

Our contributions include a literature review, generating a lower-bounding technique that

can solve larger problem sizes and decrease optimality gaps, generalizing her results and

guidelines using a new set of problem instances from a different service time distribution,

sensitivity analyses of different problem characteristics such as cost ratio, service time

variability, nurse flexibility and patient crossovers. We used the same computational

151

setting (CPLEX 12.6 optimization package) as Alvarez Oh (2015) for our computational

experiments.

In Chapter 4, we introduced a generalization of Multi-Level Capacitated Lot-Sizing

Problem (MLCLSP) called Hierarchical Job Shop Scheduling Planning and Execution

Problem (HJSP), inspired by a real-life example observed in aerospace industry. We

proposed mathematical models and implemented our methods on real-life data instances

gathered from the aerospace parts manufacturer. Due to the size of the problem, we have

introduced methods to reduce the size of the problem that exploit aspects of the data

structure and were able to solve the instances within a reasonable computational time

window to optimality. We have performed additional sensitivity analyses based on

different modeling techniques and objective functions using KPIs relevant for the

company.

In Chapter 5, we presented extensions of the research in Chapters 2, 3 and 4, outlined

future research directions and proposed further research. These include additional

computational experiments similar to the ones on Chapter 2, generalization of modeling

techniques to more machine scheduling problem families such as Job Shop and Open

Shop Scheduling and comparison of exact methodologies to heuristics and meta-

heuristics. They also include generalization of models from Chapter 3 by including

flexibility in second stage (provider) and relaxing the homogeneous patient assumption.

The preliminary models are presented, and further computational experiments are

proposed. Finally, research on Chapter 4 can be extended further by solving benchmark

instances from the literature and comparing heuristics against our exact methods.

Comparisons between current scheduling methods and our tools can also be made.

152

Models can be generalized by considering additional aspects of the problem. Easy-to-

implement scheduling guidelines can be derived by analyzing the optimal solutions.

Finally, implementation can be further improved upon and made useful by connecting

different execution horizons together using the outputs from the planning model and

execution model and iteratively solving the execution model.

153

APPENDIX A

 TP MODEL WITHOUT PATIENT CROSSOVERS

The model without crossovers is identical for the nurse step, but lends itself to a much

easier formulation of the provider step as the sequence of patients is fixed regardless of the

scenario.

 𝑀𝑖𝑛.
1

𝑆
 (𝛼 [∑ ∑ ((𝑧𝐽𝑘,𝑠

𝑘,𝑓𝑖𝑛𝑖𝑠ℎ
− ∑ 𝜏𝑗,𝑠

𝑃𝑘

𝐽𝑘

𝑘=1

))

𝑠𝑘

]

+ 𝛽 [∑ ∑(𝑦𝑖,𝑠
𝑠𝑡𝑎𝑟𝑡 − 15𝑋𝑖)

𝑛

𝑖=1𝑠

+ ∑ (∑ ∑(𝑧𝑗,𝑠
𝑘,𝑠𝑡𝑎𝑟𝑡 − 𝑡𝑗,𝑠

𝑘)

𝐽𝑘

𝑗=1𝑘

)

𝑠

]) (1)

Subject to. 𝑦𝑖,𝑠
𝑠𝑡𝑎𝑟𝑡 = 0 ∀𝑠 ∈ 𝑆, 𝑖 = 1,2 (2)

 𝑧0,𝑠
𝑘,𝑓𝑖𝑛𝑖𝑠ℎ

= 0 ∀𝑘 ∈ 𝐾, 𝑠 ∈ 𝑆 (3)

 𝑋𝑖 = 0 𝑖 = 1,2 (4)

 𝑦3,𝑠
𝑠𝑡𝑎𝑟𝑡 ≥ min (𝑦1,𝑠

𝑓𝑖𝑛𝑖𝑠ℎ
, 𝑦2,𝑠

𝑓𝑖𝑛𝑖𝑠ℎ
) ∀𝑠 ∈ 𝑆 (5)

 𝑁3,𝑠
𝑚𝑎𝑥 ≥ max (𝑦1,𝑠

𝑓𝑖𝑛𝑖𝑠ℎ
, 𝑦2,𝑠

𝑓𝑖𝑛𝑖𝑠ℎ
) ∀𝑠 ∈ 𝑆 (6)

 𝑁𝑖,𝑠
𝑚𝑎𝑥 ≥ max (𝑁𝑖−1,𝑠

𝑚𝑎𝑥 , 𝑦𝑖−1,𝑠
𝑓𝑖𝑛𝑖𝑠ℎ

) ∀𝑖 ∈ 4. . 𝐼, 𝑠 ∈ 𝑆 (7)

 𝑦𝑖,𝑠
𝑠𝑡𝑎𝑟𝑡 ≥ min (𝑁𝑖−1,𝑠

𝑚𝑎𝑥 , 𝑦𝑖−1,𝑠
𝑓𝑖𝑛𝑖𝑠ℎ

) ∀𝑖 ∈ 4. . 𝐼, 𝑠 ∈ 𝑆 (8)

 𝑦𝑖,𝑠
𝑓𝑖𝑛𝑖𝑠ℎ

= 𝑦𝑖,𝑠
𝑠𝑡𝑎𝑟𝑡 + 𝜏𝑖,𝑠

𝑁 ∀𝑖 ∈ 𝐼, 𝑠 ∈ 𝑆 (9)

 𝑦𝑖,𝑠
𝑠𝑡𝑎𝑟𝑡 ≥ 15𝑋𝑖 ∀𝑖 ∈ 𝐼, 𝑠 ∈ 𝑆 (10)

 𝑡𝑗,𝑠
𝑘 = 𝑦𝑓[𝑗,𝑘],𝑠

𝑓𝑖𝑛𝑖𝑠ℎ
 ∀𝑘 ∈ 𝐾, 𝑗 ∈ 𝐽𝑘, 𝑠 ∈ 𝑆 (11)

 𝑧𝑗,𝑠
𝑘,𝑠𝑡𝑎𝑟𝑡 ≥ 𝑡𝑗,𝑠

𝑘 ∀𝑘 ∈ 𝐾, 𝑗 ∈ 𝐽𝑘 , 𝑠 ∈ 𝑆 (12)

 𝑧𝑗,𝑠
𝑘,𝑓𝑖𝑛𝑖𝑠ℎ

= 𝑧𝑗,𝑠
𝑘,𝑠𝑡𝑎𝑟𝑡 + 𝜏𝑗,𝑠

𝑃𝑘 ∀𝑘 ∈ 𝐾, 𝑗 ∈ 𝐽𝑘 , 𝑠 ∈ 𝑆 (13)

 𝑧𝑗,𝑠
𝑘,𝑠𝑡𝑎𝑟𝑡 ≥ 𝑧𝑗−1,𝑠

𝑘,𝑓𝑖𝑛𝑖𝑠ℎ
 ∀𝑘 ∈ 𝐾, 𝑗 ∈ 𝐽𝑘, 𝑠 ∈ 𝑆 (14)

 𝑋 ≥ 0, 𝐼𝑁𝑇; 𝑦𝑠𝑡𝑎𝑟𝑡, 𝑦𝑓𝑖𝑛𝑖𝑠ℎ, 𝑧𝑠𝑡𝑎𝑟𝑡 , 𝑧𝑓𝑖𝑛𝑖𝑠ℎ ≥ 0

154

APPENDIX B

 COMPUTATIONAL RESULTS FOR LOGNORMALLY DISTRIBUTED

NURSE AND PROVIDER SERVICE TIMES

Computational Performance as Service Time Variance Increases

Without Scenario-Groups Lower Bounds

Gaps

Regular

Variance

Doubled

Variance

Quadrupled

Variance

Medium

Instances 12.71% 10.64% 7.12%

Large

Instances 22.41% 18.39% 11.15%

With Scenario-Groups Lower Bounds

Gaps

Regular

Variance

Doubled

Variance

Quadrupled

Variance

Medium

Instances 3.81% 3.66% 3.44%

Large

Instances 5.05% 5.14% 4.32%

Table B.1 Optimality Gaps for Medium (8 patients per provider) and Large Instances (10

patients per provider) with Lognormally Distributed Service Times with and without

Lower Bounds Created by Solving 100 Groups of 10-Scenario Problems

Schedule Sensitivity to Service Time Variance and Idle vs. Wait Time Cost Ratio

The optimal schedules displayed below show 1) when idle time is prioritized with a cost

ratio of 4, fewer empty slots are needed as variability increases, and 2) as a heavier

weight is placed on wait time, with cost ratios of 2 and 1, more slack is added and

variability does not affect the optimal schedule.

155

Schedule for

Regular

Variance

Schedule for

Doubled

Variance

 Schedule for

Quadrupled

Variance

Time PCP 1 PCP 2
PCP

1

PCP

2

 PCP

1

PCP

2

0:00

0:15

0:30

0:45

1:00

1:15

1:30

Table B.2 Schedules for Small Instances (5 patients per provider) with Lognormally

Distributed Service Times for Cost Ratio 4 (0.8:0.2 idle time/wait time) and for Different

Service Time Variance

Schedule for

Regular

Variance

Schedule for

Doubled

Variance

 Schedule for

Quadrupled

Variance

Time PCP 1 PCP 2
PCP

1

PCP

2

 PCP

1

PCP

2

0:00

0:15

0:30

0:45

1:00

1:15

1:30

Table B.3 Schedules for Small Instances (5 patients per provider) with Lognormally

Distributed Service Times for Cost Ratio 2 (0.67:0.33 idle time/wait time) and for

Different Service Time Variance

156

Schedule for

Regular

Variance

Schedule for

Doubled

Variance

 Schedule for

Quadrupled

Variance

Time PCP 1 PCP 2
PCP

1

PCP

2

 PCP

1

PCP

2

0:00

0:15

0:30

0:45

1:00

1:15

1:30

1:45

2:00

Table B.4 Schedules for Small Instances (5 patients per provider) with Lognormally

Distributed Service Times for Cost Ratio 1 (0.5:0.5 idle time/wait time) and for Different

Service Time Variance

 CR1 CR2 CR4

 Mean Median

90th

Percentile Mean Median

90th

Percentile Mean Median

90th

Percentile

 Regular Variance

Wait 3.69 1.7 9.3 9.44 6.4 21.2 10.35 7.2 23.52

Idle 56.39 55.5 78 36.08 34.5 54.5 34.92 33.5 53.55

 Objective Function: 74.84 Objective Function: 79.56 Objective Function: 76.57

 Doubled Variance

Wait 5.59 2.7 14.31 10.05 6.1 23.92 14.41 9.6 32.62

Idle 61.12 60.25 89.5 46.06 43 73 38.32 34.5 65

 Objective Function: 89.07 Objective Function: 94.90 Objective Function: 90.14

 Quadrupled Variance

157

Wait 7.98 3.4 20.51 13.3 7.25 33.03 17.79 10.7 43.22

Idle 66.9 64 103.05 49.93 44.5 85.1 43.23 36.5 80.05

 Objective Function: 106.81 Objective Function: 110.89 Objective Function: 104.75

Table B.5 Wait time vs. Idle Time(min) for Small Instances (5 patients per provider) with

Lognormally Distributed Service Times for different Cost Ratios (4 (0.8:0.2 idle

time/wait time), 2 (0.67:0.33 idle time/wait time) and 1 (0.5:0.5 idle time/wait time))

Effect of Crossovers

 No crossover Crossover

 Mean Median 90th Percentile Mean Median 90th Percentile

 Regular Variance

Wait 10.56 7.1 24.21 10.35 7.2 23.52

Idle 37.28 35.5 58 34.92 33.5 53.55

 Objective Function: 80.77 Objective Function: 76.57

 Doubled Variance

Wait 17.07 11.35 39.62 14.41 9.6 32.62

Idle 41.08 37 69.5 38.32 34.5 65

 Objective Function: 99.87 Objective Function: 90.13

 Quadrupled Variance

Wait 21.75 13.65 50.55 17.79 10.7 43.22

Idle 48.95 41 89 43.23 36.5 80.05

 Objective Function: 121.82 Objective Function: 104.75

Table B.6 Wait time vs. Idle Time (min) for Small Instances (5 patients per provider)

with Lognormally Distributed Service Times for Models with and without Crossovers for

Cost Ratio of 4 (0.8:0.2 weights on idle time/wait time)

 No crossover Crossover

 Mean Median 90th Percentile Mean Median 90th Percentile

 Regular Variance

Wait 4.46 2 11.41 3.69 1.7 9.3

158

Idle 57.02 56.5 79 56.39 55.5 78

 Objective Function: 79.32 Objective Function: 74.84

 Doubled Variance

Wait 7.51 3.5 19.13 5.59 2.7 14.31

Idle 62.83 61 92 61.12 60.25 89.5

 Objective Function: 100.38 Objective Function: 89.07

 Quadrupled Variance

Wait 12.08 5.4 31.21 7.98 3.4 20.51

Idle 70.04 66 108.05 66.9 64 103.05

 Objective Function: 130.44 Objective Function: 106.81

Table B.7 Wait time vs. Idle Time (min) for Small Instances (5 patients per provider)

with Lognormally Distributed Service Times for Models with and without Crossovers for

Cost Ratio of 1 (0.5:0.5 weights on idle time/wait time)

Instance Crossover Percentage

Small instance, regular variance 5.35%

Small instance, doubled variance 10.34%

Small instance, quadrupled variance 13.40%

Medium instance, regular variance 7.49%

Medium instance, doubled variance 12.39%

Medium instance, quadrupled variance 13.70%

Large instance, regular variance 8.95%

Large instance, doubled variance 18.64%

Large instance, quadrupled variance 15.13%

Table B.8 Percentages of Crossovers for Instances with Lognormally Distributed Service

Times

Effect of Decreasing the Length Appointment Time Slots

Our model considers 15min appointment slots; that is, patients will only be given

appointments at the quarters of the hour (e.g. 8AM, 8:15AM, 8:30AM, etc.). Below, we

159

first compare the performance of these 15min slot appointments to 5min slots (e.g. 8AM,

8:05AM, 8:10AM, etc.) As an extreme case, we also consider the continuous

appointment problem, where patients can be given appointments at any time (e.g.

8:03AM).

 5 minutes Appointment 15 minutes Appointment

 Mean Median

90th

Percentile Mean Median

90th

Percentile

Wait 9.91 6.6 23.3 10.35 7.2 23.52

Idle 34.53 33 53.5 34.92 33.5 53.55

 Objective Function: 75.07 Objective Function: 76.57

Table B.9 Wait Time vs. Idle Time for Small Instance (5 patients per provider) with

Lognormally Distributed Service Times with 5-minute vs. 15-minute Appointment

Intervals

 Continuous Appointment 15 minutes Appointment

 Mean Median 90th Percentile Mean Median 90th Percentile

 Regular Variance

Wait 10.45 7 24.4 10.35 7.2 23.52

Idle 33.68 32 53 34.92 33.5 53.55

 Objective Function: 74.8 Objective Function: 76.57

 Doubled Variance

Wait 13 8.2 31.93 14.41 9.6 32.62

Idle 39.15 35.5 64.55 38.32 34.5 65

 Objective Function: 88.64 Objective Function: 90.13

 Quadrupled Variance

Wait 15.79 9.05 39.81 17.79 10.7 43.22

Idle 44.86 38 82 43.23 36.5 80.05

 Objective Function: 103.36 Objective Function: 104.75

Table B.10 Wait Time vs. Idle Time for Small Instances (5 patients per provider) with

Lognormally Distributed Service Times with Continuous vs. 15-minute Appointment

Intervals

160

APPENDIX C

 PROOF OF THEOREMS 1 AND 2 (FROM ALVAREZ OH (2015))

Proof of Theorem 1

For constraints (7) to be valid, we must ensure that

𝑀𝑖,𝑠
1 ≥ (𝑁𝑖−1,𝑠

𝑚𝑎𝑥 − 𝑦𝑖−1,𝑠
𝑓𝑖𝑛𝑖𝑠ℎ

)
+

 ∀𝑖 ∈ 4. . 𝐼, 𝑠 ∈ 𝑆

where 𝑁𝑖−1,𝑠
𝑚𝑎𝑥 is the maximum of the finish times of patients 1 through i-2 with a nurse for

that scenario. That is, M1 must be an upper bound on the difference in finish times with

nurse of the two patients that are seen by a nurse at the time patient i-1 starts service, and

it can vary for each patient in the sequence and from scenario to scenario. We consider

two cases: In Case1, the finish time of patient i-1 with nurse is greater than or equal to the

maximum of the finish times of patient from 1 to i-2 with nurses; and in Case2, it is

strictly lower.

Case 1: 𝑁𝑖−1,𝑠
𝑚𝑎𝑥 ≤ 𝑦𝑖−1,𝑠

𝑓𝑖𝑛𝑖𝑠ℎ

In this case, observe that

e. The appointment time of patient i-1 is at most 30 minutes after that of patient i-2,

and thus 𝑋𝑖−1 ≤ 𝑦𝑖−2,𝑠
𝑠𝑡𝑎𝑟𝑡 + 30.

f. By definition: 𝑁𝑖−1,𝑠
𝑚𝑎𝑥 ≥ 𝑦𝑖−2,𝑠

𝑓𝑖𝑛𝑖𝑠ℎ
= 𝑦𝑖−2,𝑠

𝑠𝑡𝑎𝑟𝑡 + 𝜏𝑖−2,𝑠
𝑁 , and thus 𝑁𝑖−1,𝑠

𝑚𝑎𝑥 − 𝜏𝑖−2,𝑠
𝑁 ≥

𝑦𝑖−2,𝑠
𝑠𝑡𝑎𝑟𝑡.

g. Combining the two, we get that patient i-1 is available at time:

𝑋𝑖−1 ≤ 𝑦𝑖−2,𝑠
𝑠𝑡𝑎𝑟𝑡 + 30 ≤ 𝑁𝑖−1,𝑠

𝑚𝑎𝑥 − 𝜏𝑖−2,𝑠
𝑁

+ 30.

161

h. A nurse will be available to serve patient i-1 at time 𝑁𝑖−1,𝑠
𝑚𝑎𝑥 or earlier.

i. The start time of patient i-1 with the nurse is

𝑦𝑖−1,𝑠
𝑠𝑡𝑎𝑟𝑡 ≤ 𝑀𝑎𝑥{ 𝑁𝑖−1,𝑠

𝑚𝑎𝑥 , 𝑁𝑖−1,𝑠
𝑚𝑎𝑥 − 𝜏𝑖−2,𝑠

𝑁 + 30}.

Thus, the difference 𝑦𝑖−1,𝑠
𝑓𝑖𝑛𝑖𝑠ℎ

− 𝑁𝑖−1,𝑠
𝑚𝑎𝑥 is bounded by 𝜏𝑖−1,𝑠

𝑁 + 𝑀𝑎𝑥{0,30 − 𝜏𝑖−2,𝑠
𝑁 }.

Case 2: 𝑁𝑖−1,𝑠
𝑚𝑎𝑥 > 𝑦𝑖−1,𝑠

𝑓𝑖𝑛𝑖𝑠ℎ

In this case, observe that while patient i-1 has finished with one nurse, say nurse1

w.l.o.g., the other nurse, nurse2, is still busy with an earlier patient. The difference

between the two can be calculated depending on which patient is still with nurse2. If

patient r is still with nurse2, it means that patients r+1, r+2, …, through i-1 are seen by

nurse1, we have that:

e. 𝑁𝑖−1,𝑠
𝑚𝑎𝑥 = 𝑦𝑟,𝑠

𝑠𝑡𝑎𝑟𝑡 + 𝜏𝑟,𝑠
𝑁

f. 𝑦𝑖−1,𝑠
𝑓𝑖𝑛𝑖𝑠ℎ

≥ 𝑦𝑟+1,𝑠
𝑠𝑡𝑎𝑟𝑡 + 𝜏𝑟+1,𝑠

𝑁 + 𝜏𝑟+2,𝑠
𝑁 + ⋯ + 𝜏𝑖−1,𝑠

𝑁

g. 𝑦𝑟,𝑠
𝑠𝑡𝑎𝑟𝑡 ≤ 𝑦𝑟+1,𝑠

𝑠𝑡𝑎𝑟𝑡 since patients are seen by the nurse in the order of their

appointment times, 𝑋1 ≤ 𝑋2 ≤ ⋯ ≤ 𝑋𝐼.

h. Thus, the difference 𝑁𝑖−1,𝑠−
𝑚𝑎𝑥 − 𝑦𝑖−1,𝑠

𝑓𝑖𝑛𝑖𝑠ℎ
≤ 𝜏𝑟,𝑠

𝑁 − ∑ 𝜏𝑢,𝑠
𝑁𝑖−1

𝑢=𝑟+1

𝑀𝑎𝑥
𝑟=1,…,𝑖−2

{𝜏𝑟,𝑠
𝑁 − ∑ 𝜏𝑢,𝑠

𝑁𝑖−1
𝑢=𝑟+1 } will provide the tight bound.

The overall bound on the difference for both cases then is

𝑀𝑎𝑥{𝐶𝑎𝑠𝑒1, 𝐶𝑎𝑠𝑒 2} = 𝑀𝑎𝑥 {𝜏𝑖−1,𝑠
𝑁 + 𝑀𝑎𝑥{0,30 − 𝜏𝑖−2,𝑠

𝑁 }, 𝑀𝑎𝑥
𝑟=1,…,𝑖−2

{𝜏𝑟,𝑠
𝑁 −

∑ 𝜏𝑢,𝑠
𝑁𝑖−1

𝑢=𝑟+1 }}

162

Proof of Theorem 2

For the M2 constraints to be valid we must ensure that

𝑀𝑗,𝑠
2𝑘 ≥ (𝑃𝑗,𝑠

𝑘,𝑚𝑎𝑥 − 𝑦𝑖+2,𝑠
𝑘,𝑓𝑖𝑛𝑖𝑠ℎ

)
+

where 𝑃𝑗,𝑠
𝑘,𝑚𝑎𝑥 is the maximum of the finish times at the nurse step of patients 1,…, j of

provider k’s panel under scenario s. That is, M2 is a bound on the difference of nurse

finish times of subsequent patients seen by provider k, for j=1, 2, …, Jk, for provider k.

Observe that if 𝑡𝑗,𝑠 = 𝑦𝑖,𝑠
𝑓𝑖𝑛𝑖𝑠ℎ

 then 𝑡𝑗+1,𝑠 = 𝑦𝑖+2,𝑠
𝑓𝑖𝑛𝑖𝑠ℎ

 where j is the jth patient in provider’s

k panel, who is the ith patient in the practice. We again consider two cases: In Case1 the

nurse finish time of patient i+2 is greater than or equal to the maximum of the nurse

finish times of patients of provider k up to patient j; and in Case2 it is lower.

Case 1: 𝑃𝑗,𝑠
𝑘,𝑚𝑎𝑥 ≤ 𝑦𝑖+2,𝑠

𝑓𝑖𝑛𝑖𝑠ℎ

In this case, observe that

a. The appointment time of patient i+2 is at most 30 minutes after that of patient i;

thus

𝑋𝑖+2 ≤ 𝑦𝑖,𝑠
𝑠𝑡𝑎𝑟𝑡 + 30

b. By definition: 𝑃𝑗,𝑠
𝑘,𝑚𝑎𝑥 ≥ 𝑦𝑖,𝑠

𝑓𝑖𝑛𝑖𝑠ℎ
= 𝑦𝑖,𝑠

𝑠𝑡𝑎𝑟𝑡 + 𝜏𝑖,𝑠
𝑁 , and thus 𝑃𝑗,𝑠

𝑘,𝑚𝑎𝑥 − 𝜏𝑖,𝑠
𝑁 ≥ 𝑦𝑖,𝑠

𝑠𝑡𝑎𝑟𝑡

c. Combining the two, we get that patient i+2 is available at time:

𝑋𝑖+2 ≤ 𝑦𝑖,𝑠
𝑠𝑡𝑎𝑟𝑡 + 30 ≤ 𝑃𝑗,𝑠

𝑘,𝑚𝑎𝑥 − 𝜏𝑖,𝑠
𝑁 + 30

163

d. Patient i+1 (from the other provider’s panel) will be seen by a nurse at a time no

later than 𝑀𝑎𝑥{𝑃𝑗,𝑠
𝑘,𝑚𝑎𝑥, 𝑃𝑗,𝑠

𝑘,𝑚𝑎𝑥 − 𝜏𝑖,𝑠
𝑁 + 30}. This is using that consecutive

patients arrive at most 30 minutes apart to the practice.

e. A nurse will be available for patient i+2 at time 𝑀𝑎𝑥{𝑃𝑗,𝑠
𝑚𝑎𝑥, 𝑃𝑗,𝑠

𝑚𝑎𝑥 − 𝜏𝑖,𝑠
𝑁 + 30} +

𝜏𝑖+1,𝑠
𝑁 , or earlier. This is a bound on the time a nurse will be available if patient

i+2 is scheduled to see a nurse right after patient i+1 finishes.

f. The start time of patient i+2 with the nurse is

𝑦𝑖+2,𝑠
𝑠𝑡𝑎𝑟𝑡 ≤ 𝑀𝑎𝑥{ 𝑃𝑗,𝑠

𝑚𝑎𝑥 − 𝜏𝑖,𝑠
𝑁 + 30, 𝑀𝑎𝑥{ 𝑃𝑗,𝑠

𝑚𝑎𝑥 , 𝑃𝑗,𝑠
𝑚𝑎𝑥 − 𝜏𝑖,𝑠

𝑁 + 30} + 𝜏𝑖+1,𝑠
𝑁 }

= 𝜏𝑖+1,𝑠
𝑁 + 𝑃𝑗,𝑠

𝑚𝑎𝑥 + 𝑀𝑎𝑥{ 0, 𝜏𝑖,𝑠
𝑁 + 30}

Thus, the difference 𝑦𝑖+2,𝑠
𝑓𝑖𝑛𝑖𝑠ℎ

− 𝑃𝑗,𝑠
𝑚𝑎𝑥 is bounded by 𝜏𝑖+2,𝑠

𝑁 + 𝜏𝑖+1,𝑠
𝑁 + 𝑀𝑎𝑥{ 0, −𝜏𝑖,𝑠

𝑁 + 30}

Case 2: 𝑃𝑗,𝑠
𝑚𝑎𝑥 > 𝑦𝑖+2,𝑠

𝑓𝑖𝑛𝑖𝑠ℎ

In this case, observe that while patient i+2 has finished with one nurse, say nurse1

w.l.o.g., the other nurse, nurse2, is still busy with an earlier patient 𝑟 ≤ 𝑖 from the same

provider. The difference between the two can be calculated depending on which patient is

still with nurse2. If patient r is still with nurse2, it means that patients r+1, r+2, …,

through i+1 were seen by nurse1, we have that:

a. 𝑃𝑗,𝑠
𝑚𝑎𝑥 = 𝑦𝑟,𝑠

𝑠𝑡𝑎𝑟𝑡 + 𝜏𝑟,𝑠
𝑁

b. 𝑦𝑖+2,𝑠
𝑓𝑖𝑛𝑖𝑠ℎ

≥ 𝑦𝑟+1,𝑠
𝑠𝑡𝑎𝑟𝑡 + 𝜏𝑟+1,𝑠

𝑁 + 𝜏𝑟+2,𝑠
𝑁 + ⋯ + 𝜏𝑖+2,𝑠

𝑁

c. 𝑦𝑟+1,𝑠
𝑠𝑡𝑎𝑟𝑡 ≥ 𝑦𝑟,𝑠

𝑠𝑡𝑎𝑟𝑡 since patients are seen in the order of their appointment times,

𝑋1 ≤ 𝑋2 ≤ ⋯ ≤ 𝑋𝐽.

164

d. Thus, the difference 𝑃𝑗,𝑠
𝑚𝑎𝑥 − 𝑦𝑖+2,𝑠

𝑓𝑖𝑛𝑖𝑠ℎ
 ≤ 𝜏𝑟,𝑠

𝑁 − ∑ 𝜏𝑢,𝑠
𝑁𝑖+2

𝑢=𝑟+1

The maximum in 𝑀𝑎𝑥
𝑟=1,…,𝑗,𝑟 𝑖𝑛 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟’𝑠 𝑘 𝑝𝑎𝑛𝑒𝑙

{𝜏𝑟,𝑠
𝑁 − ∑ 𝜏𝑢,𝑠

𝑁𝑖+2
𝑢=𝑟+1 } will give us the bound

we are looking for in this case.

The overall bound on the difference for both cases then is

𝑀𝑎𝑥{𝐶𝑎𝑠𝑒1, 𝐶𝑎𝑠𝑒 2} = 𝑀𝑎𝑥 {𝜏𝑖+2,𝑠
𝑁 + 𝜏𝑖+1,𝑠

𝑁 + 𝑀𝑎𝑥{ 0, −𝜏𝑖,𝑠
𝑁 +

30}, 𝑀𝑎𝑥
𝑟=1,…,𝑗,𝑟 𝑖𝑛 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟’𝑠 𝑘 𝑝𝑎𝑛𝑒𝑙

{𝜏𝑟,𝑠
𝑁 − ∑ 𝜏𝑢,𝑠

𝑁𝑖+2
𝑢=𝑟+1 }}

165

BIBLIOGRAPHY

Ahmadi-Javid, A., Jalali, Z., & Klassen, K. J. (2017). Outpatient appointment systems in

healthcare: A review of optimization studies. European Journal of Operational

Research, 258(1), 3-34.

Alvarez Oh, H.J. (2015). Guidelines for Scheduling in Primary Care: An Empirically

Driven Mathematical Programming Approach (Doctoral dissertation). Retrieved from

https://scholarworks.umass.edu/cgi/viewcontent.cgi?article=1410&context=dissertations_

2

Alvarez-Oh, H. J., Balasubramanian, H., Koker, E., & Muriel, A. (2018). Stochastic

appointment scheduling in a team primary care practice with two flexible nurses and two

dedicated providers. Service Science, 10(3), 241-260.

Bai, M., Storer R.H. & Tonkay, G.L. (2016). A sample gradient-based algorithm for a

multiple-OR and PACU surgery scheduling problem, IISE Transactions, DOI:

10.1080/0740817X.2016.1237061

Balasubramanian, H., Biehl, S., Dai, L., & Muriel, A. (2014). Dynamic allocation of

same-day requests in multi-physician primary care practices in the presence of

prescheduled appointments. Health Care Management Science, 17(1), 31–48.

Billington, P. J., McClain, J. O., & Thomas, L. J. (1983). Mathematical programming

approaches to capacity-constrained MRP systems: Review, formulation and problem

reduction. Management Science, 29(10), 1126-1141.

Bodenheimer, T., and Pham, H. H. (2010) Primary care: current problems and proposed

solutions. Health Affairs (ProjectHope), 29, 799–805.

https://scholarworks.umass.edu/cgi/viewcontent.cgi?article=1410&context=dissertations_2
https://scholarworks.umass.edu/cgi/viewcontent.cgi?article=1410&context=dissertations_2

166

Buschkühl, L., Sahling, F., Helber, S., & Tempelmeier, H. (2010). Dynamic capacitated

lot-sizing problems: a classification and review of solution approaches. Or

Spectrum, 32(2), 231-261.

Castaing, J., Cohn, A., Denton, B. T., & Weizer, A. (2016). A stochastic programming

approach to reduce patient wait times and overtime in an outpatient infusion center. IIE

Transactions on Healthcare Systems Engineering, 6(3), 111-125.

Castro, E., & Petrovic, S. (2012). Combined mathematical programming and heuristics

for a radiotherapy pre-treatment scheduling problem. Journal of Scheduling,

15(3), 333–346.

Cayirli, T., and Veral, E. (2003) Outpatient scheduling in health care: A review of

literature. Production and Operations Management: an International Journal of the

Production and Operations Management Society, 12, 519-549.

Chen, H., & Chu, C. (2003, September). Supply chain planning with order/setup costs

and capacity constraints a new Lagrangian relaxation approach. In 2003 IEEE

international conference on robotics and automation (Cat. no. 03CH37422) (Vol. 2, pp.

1743-1748). IEEE.

Conforti, D., Guerriero, F., & Guido, R. (2010). Non-block scheduling with priority

for radiotherapy treatments. European Journal of Operational Research, 201 (1),

289–296.

Demir, Y., Isleyen, K. Evaluation of mathematical models for flexible job-shop

scheduling problems. Applied Mathematical Modelling 37 (2013) 977–988.

167

El-Sharo, M. D., Zheng, B., Yoon, S. W., & Khasawneh, M. T. (2015). An overbooking

scheduling model for outpatient appointments in a multi-provider clinic. Operations

Research for Health Care, 6, 1–10.

Hahn-Goldberg, S., Carter, M. W., Beck, J. C., Trudeau, M., Sousa, P., & Beattie, K.

(2014). Dynamic optimization of chemotherapy outpatient scheduling with uncertainty.

Health Care Management Science, 17(4), 379–392.

Harris F.W. (1913) How many parts to make at once. Factory, The Magazine of

Management, 10(2), 135–6.

Helber, S., & Sahling, F. (2010). A fix-and-optimize approach for the multi-level

capacitated lot sizing problem. International Journal of Production Economics, 123(2),

247-256.

Karimi, B., Ghomi, S. F., & Wilson, J. M. (2003). The capacitated lot sizing problem: a

review of models and algorithms. Omega, 31(5), 365-378.

Keha, A.B., Khowala, K. Fowler, J.W. (2009). Mixed integer programming formulations

for single machine scheduling problems. Computers & Industrial Engineering, 56, 357–

367.

Kuiper, A., & Mandjes, M. (2015). Appointment scheduling in tandem-type service

systems. Omega, 57, 145-156.

Levy, I. (2019). An optimization tool to solve a capacitated multi-level job-shop

scheduling problem with setup times (Unpublished honor’s thesis). University of

Massachusetts Amherst, Amherst, MA.

168

Liang, B., & Turkcan, A. (2015). Acuity-based nurse assignment and patient scheduling

in oncology clinics. Health Care Management Science, 19(3), 207–226.

Lin, C. K. Y. (2015). An adaptive scheduling heuristic with memory for the block

appointment system of an outpatient specialty clinic. International Journal of Production

Research, 53(24), 7488–7516.

Manne, A. S. (1958). Programming of economic lot sizes. Management science, 4(2),

115-135.

Mohammadi, M., Ghomi, S. F., Karimi, B., & Torabi, S. A. (2010). Rolling-horizon and

fix-and-relax heuristics for the multi-product multi-level capacitated lotsizing problem

with sequence-dependent setups. Journal of Intelligent Manufacturing, 21(4), 501-510.

Neyshabouri, S. & Berg B.P. (2016). Two-stage robust optimization approach to elective

surgery and downstream capacity planning, European Journal of Operational Research,

http://dx.doi.org/10.1016/j.ejor.2016.11.043

Oh, H. J., Muriel, A., and Balasubramanian H., Atkinson, K., and Ptaszkiewicz, T. (2013)

Guidelines for scheduling in primary care under different patient types and stochastic

nurse and provider service times. IIE Transactions on Healthcare Systems Engineering 3,

4, 263-279.

Pérez, E., Ntaimo, L., Malavé, C. O., Bailey, C., & McCormack, P. (2013). Stochastic

online appointment scheduling of multi-step sequential procedures in nuclear medicine.

Health care management science, 16(4), 281-299.

169

Pérez, E., Ntaimo, L., Wilhelm, W. E., Bailey, C., & McCormack, P. (2011). Patient and

resource scheduling of multi-step medical procedures in nuclear medicine. IIE

Transactions on Healthcare Systems Engineering, 1 (3), 168–184.

Ramezanian, R., Saidi-Mehrabad, M., & Fattahi, P. (2013). MIP formulation and

heuristics for multi-stage capacitated lot-sizing and scheduling problem with availability

constraints. Journal of Manufacturing Systems, 32(2), 392-401.

Robinson Jr, E. P., & Lawrence, F. B. (2004). Coordinated capacitated lot‐sizing problem

with dynamic demand: A Lagrangian heuristic. Decision Sciences, 35(1), 25-53.

Sahling, F., Buschkühl, L., Tempelmeier, H., & Helber, S. (2009). Solving a multi-level

capacitated lot sizing problem with multi-period setup carry-over via a fix-and-optimize

heuristic. Computers & Operations Research, 36(9), 2546-2553.

Santos, D.L., Hunsucker, J.L. & Deal, D.E. (1995). Global lower bounds for flow shops

with multiple processors. European Journal of Operational Research, 80, 1, 112-120.

Saremi, A., Jula, P., ElMekkawy, T., & Wang, G. G. (2013). Appointment scheduling of

outpatient surgical services in a multistage operating room department. International

Journal of Production Economics, 141 (2), 646–658.

Stadtler, H. (2003). Multilevel lot sizing with setup times and multiple constrained

resources: Internally rolling schedules with lot-sizing windows. Operations

Research, 51(3), 487-502.

Stafford Jr, E. F., Tseng, F. T., & Gupta, J. N. (2005). Comparative evaluation of MILP

flowshop models. Journal of the Operational Research Society, 56(1), 88-101.

170

Tempelmeier, H., & Derstroff, M. (1996). A Lagrangean-based heuristic for dynamic

multilevel multiitem constrained lotsizing with setup times. Management Science, 42(5),

738-757.

Topaloglu, S. (2006). A multi-objective programming model for scheduling emergency

medicine residents. Computers & Industrial Engineering, 51(3), 375-388.

Tsai, P. F. J., & Teng, G. Y. (2014). A stochastic appointment scheduling system on

multiple resources with dynamic call-in sequence and patient no-shows for an outpatient

clinic. European Journal of Operational Research, 239(2), 427-436.

Unlu, Y., & Mason, S. J. (2010). Evaluation of mixed integer programming formulations

for non-preemptive parallel machine scheduling problems. Computers & Industrial

Engineering, 58(4), 785-800.

Wagelmans, A., Van Hoesel, S., & Kolen, A. (1992). Economic lot sizing: an O (n log n)

algorithm that runs in linear time in the Wagner-Whitin case. Operations Research, 40(1-

supplement-1), S145-S156.

Wagner, H. M., & Whitin, T. M. (1958). Dynamic version of the economic lot size

model. Management science, 5(1), 89-96.

Wang, J., & Fung, R. Y. (2014a). Adaptive dynamic programming algorithms for

sequential appointment scheduling with patient preferences. Artificial Intelligence in

Medicine, 63(1), 33–40.

171

Wang, J., & Fung, R. Y. (2014b). An integer programming formulation for outpatient

scheduling with patient preference. Industrial Engineering & Management Systems,

13(2), 193–202.

Wang, J., Fung, R. Y., & Chan, H. K. (2015). Dynamic appointment scheduling with

patient preferences and choices. Industrial Management & Data Systems, 115(4),

700–717.

Wang, W. Y., & Gupta, D. (2011). Adaptive appointment systems with patient

preferences. Manufacturing & Service Operations Management, 13(3), 373–389.

Yu, S. H., & Hung, Y. F. (2016, December). Comparisons of three mixed integer

programming models for parallel machine scheduling. In 2016 IEEE International

Conference on Industrial Engineering and Engineering Management (IEEM) (pp. 917-

921). IEEE.

Zacharias, C., & Armony, M. (2016). Joint panel sizing and appointment scheduling in

outpatient care. Management Science, 63(11), 3978-3997.

	Three Essays on Data-Driven Optimization for Scheduling in Manufacturing and Healthcare
	Recommended Citation

	tmp.1565019056.pdf.qagMc

