
University of Massachusetts Amherst University of Massachusetts Amherst 

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst 

Doctoral Dissertations Dissertations and Theses 

October 2019 

FUNCTION AND DISSIPATION IN FINITE STATE AUTOMATA - FUNCTION AND DISSIPATION IN FINITE STATE AUTOMATA - 

FROM COMPUTING TO INTELLIGENCE AND BACK FROM COMPUTING TO INTELLIGENCE AND BACK 

Natesh Ganesh 

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2 

 Part of the Artificial Intelligence and Robotics Commons, Nanoscience and Nanotechnology 

Commons, Other Computer Engineering Commons, Other Computer Sciences Commons, Other Electrical 

and Computer Engineering Commons, Other Neuroscience and Neurobiology Commons, Other Physics 

Commons, Power and Energy Commons, Probability Commons, and the Theory and Algorithms 

Commons 

Recommended Citation Recommended Citation 
Ganesh, Natesh, "FUNCTION AND DISSIPATION IN FINITE STATE AUTOMATA - FROM COMPUTING TO 
INTELLIGENCE AND BACK" (2019). Doctoral Dissertations. 1724. 
https://scholarworks.umass.edu/dissertations_2/1724 

This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at 
ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized 
administrator of ScholarWorks@UMass Amherst. For more information, please contact 
scholarworks@library.umass.edu. 

https://scholarworks.umass.edu/
https://scholarworks.umass.edu/dissertations_2
https://scholarworks.umass.edu/etds
https://scholarworks.umass.edu/dissertations_2?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1724&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1724&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/313?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1724&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/313?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1724&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1724&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1724&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/278?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1724&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/278?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1724&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/62?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1724&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/207?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1724&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/207?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1724&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/274?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1724&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/212?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1724&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1724&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1724&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_2/1724?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1724&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu


FUNCTION AND DISSIPATION IN FINITE STATE
AUTOMATA - FROM COMPUTING TO INTELLIGENCE

AND BACK

A Dissertation Presented

by

NATESH GANESH

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

September 2019

Electrical and Computer Engineering



c© Copyright by Natesh Ganesh 2019

All Rights Reserved



FUNCTION AND DISSIPATION IN FINITE STATE
AUTOMATA - FROM COMPUTING TO INTELLIGENCE

AND BACK

A Dissertation Presented

by

NATESH GANESH

Approved as to style and content by:

Neal G Anderson, Chair

Marco Duarte, Member

Weibo Gong, Member

David Moorman, Member

Robert Jackson, Department Chair
Electrical and Computer Engineering



To all of my grandparents who would have loved to read this.



ACKNOWLEDGMENTS

This has been a long, arduous and joyful journey (do I know of any other way?),

but here I am at the precipice of completing this stage of my PhD career looking

forward to whatever adventure is up next. At this moment, I am reflecting back on

all those who have helped complete this dream of mine. I would like to start by

thanking my parents who have been extremely supportive of my goals and ambitions,

believing in my work at times when I did not myself. I would next thank my advisor

Prof. Anderson who has been both a great mentor and a good friend, giving me a

good mix of the intellectual freedom that I crave and the scientific rigor that I need.

I want to take this moment to also thank my committee for agreeing to help me

complete this journey. Last but not the least, I want to thank my partner Ashley

who has been my rock over the last few years, helping me (kicking my butt) over the

finish line. I am forever grateful for all your help, patience, belief and sacrifice. There

have been so many friends over the years - ones whose names I remember and those

that I do not, who have played a crucial role in shaping me and my thinking over

the course of my PhD - to all of you, a big thank you. It takes a village to raise a

child and help me get my PhD. So for that, I am indebted to all of you. Thank you

everyone!!

v



ABSTRACT

FUNCTION AND DISSIPATION IN FINITE STATE
AUTOMATA - FROM COMPUTING TO INTELLIGENCE

AND BACK

SEPTEMBER 2019

NATESH GANESH

B.Tech., NATIONAL INSTITUTE OF TECHNOLOGY, TRICHY, INDIA

M.Sc., UNIVERSITY OF MASSACHUSETTS, AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Neal G Anderson

Society has benefited greatly by the technological revolution and the tremendous

growth in computing powered by Moore’s law. However, we are fast approaching

the ultimate physical limits in terms of both device sizes and the associated energy

dissipation. It is important to characterize these limits in a physically grounded and

implementation-agnostic manner, in order to capture the fundamental energy dissipa-

tion costs associated with performing computing operations with classical information

in nanoscale quantum systems. It is also necessary to identify and understand the

effect of quantum indistinguishability, noise, and device variability on these dissipa-

tion limits. Identifying these parameters is crucial to designing more energy efficient

computing systems moving forward. In this dissertation, we will provide a physical

description a finite state automata, an abstract tool commonly used to describe com-

putational operations under the Referential Approach to physical information theory.
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We will derive the fundamental limits of dissipation associated with a state transition

in deterministic and probabilistic finite state automata, and propose efficacy measures

to capture how well a particular state transition has been physically realized. We will

use these dissipation bounds to understand the limits of dissipation during learn-

ing during training and testing phases in feedforward and recurrent neural networks.

This study of dissipation in neural network provides key hints at how dissipation is

fundamentally intertwined with learning in physical systems. These ideas connect-

ing energy dissipation, entropy and physical information provide the perfect toolkit

to critically analyze the very foundations of computing, and our computational ap-

proaches to artificial intelligence. In the second part of this dissertation, we derive

the non-equilibrium reliable low dissipation condition for predictive inference in self-

organized systems. This brings together the central ideas of homeostasis, prediction

and energy efficiency under a single non-equilibrium constraint. The work was further

extended to study the relationship between adaptive learning and the reliable high

dissipation conditions, and the exploitation-exploration trade-offs in active agents.

Using these results, we will discuss the differences between observer dependent and

independent computing, and propose an alternative novel descriptive framework of

intelligence in physical systems using thermodynamics. This framework is called

thermodynamic intelligence and will be used to guide the engineering methodologies

(devices and architectures) required to implement these descriptions.
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CHAPTER 1

INTRODUCTION

The tremendous success of the computing industry over the last seven decades has

been primarily driven by Moore’s law [1]. This self-fulfilling prophecy predicted the

doubling of computing power approximately every 18 months through the shrinking

of transistor devices, and enabled the first technology revolution. However, as we fast

approach the fundamental physical limits to scaling, things have begun to slow down

with thermal noise, quantum effects and device variability making further shrinking

unfeasible - death by size [150]. Since 2004, Dennard scaling [5] has slowed down and

clock frequencies have started to flatten out, as the industry have embraced the use of

multiple cores that can operate in a parallel fashion. However, continued addition of

extra cores is not viable and does not guarantee improved speed in computing - death

by parallelism [3], [4]. Last, but not the least is the problem of energy consumption

and dissipation, which will be the main focus of this thesis. As we approach the

fundamental limits to dissipation, the challenge of controlling the heat dissipated is

going to affect the density of devices that are packed in our chips, as well as how fast

they are run - death by heat [6]. It is estimated that the amount of energy required

for computing systems account for about 5% of the total energy expenditure of the

United States, and this number is expected to grow. It is predicted that at this current

rate, computing will be unsustainable by 2040, since it will require more energy than

the world can produce - death by starvation. There are important economic factors to

consider with approximately 50% of the lifetime budget of a modern high-performance

computing center being used to pay the energy bill. In order to sustain the growing

1



demands for computing and sustainably usher in the next technological revolution,

we need to work to overcome these major barriers.

There are two possible paths for computing moving forward - Evolutionary and

Revolutionary [150]. The evolutionary path deals with continuing scaling of CMOS

devices as well as new FET devices, changes to architecture with better pipelines, 3D

design, improved parallelism through multicore systems and using application spe-

cific integrated chips (ASICs). While these approaches should continue to improve

our computing systems, the return on investment is expected to plateau quickly. It is

hard to imagine a second technological revolution built on the back of the More Moore

evolutionary approach. The revolutionary path (i.e. More than Moore) on the other

hand involves the study of novel devices like carbon nanotube transistors, memristors,

spintronics, photonics, quantum and molecular devices, as well as non von-Neumann

acrchitectures - crossbar, neuromorphic, computation-in-memory. There is a need

for significant work in these new technologies across the stack - to improve device

reliability and signal to noise ratio (SNR), identify optimal architectures and com-

puting paradigms under which these new devices can be utilized well, and fabrication

techniques to minimize defect rates when scaling up production. It is also important

to identify the problem/application space in which these more than Moore strategies

will provide clear benefits over existing technology. Many of these problems have

hindered their progress, with systems based on CMOS devices and the von Neumann

architecture continue to be the industry standard for performing large number of

mathematical and logical operations efficiently.

In addition to the fast approaching end to Moore’s law is the shift in the focus of

the industry away from performing traditional mathematical operations, and towards

building intelligent systems that learn from large amounts of data. These two factors

together provide for an unique opportunity to explore these novel unconventional

devices, architectures and theoretical frameworks for new tasks at hand. Artificial
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intelligence (AI) achieved through powerful machine learning techniques have led

to remarkable success in the fields of computer vision, healthcare, natural language

translation, recommendation systems and the potential to power future technologies

like self-driving cars and lifelong learning robots. However the current state of the

systems are severely limited by the amount of data and compute available to learn the

necessary task. The demand for compute power by machine learning systems have

been doubling every 3.5 months, at a super-Moore rate [8]. Even with availability of

large amounts of cheap compute, this is not sustainable and it is paramount that we

understand how to build AI systems in an energy efficient manner.

In order to achieve the goals of this dissertation, the following list of objectives need

to be met -

(a) Devise a technology-agnostic description of a general finite-state automaton

(FSA) instantiated in a physical system, and utilize it to obtain the funda-

mental lower bound on the average energy dissipated per FSA state transition

operated in steady state. Apply these bounds to simple finite-state automata

to understand the relationship between the energy dissipation, inputs, state

transitions and use them to define irreversibility in FSAs.

(b) Characterize feed-forward and recurrent neural networks as finite-state automata

and use the bounds on dissipation from above to understand the ultimate lim-

its to learning and inference in these networks, as well as the effect of different

network parameters on the dissipation.

(c) Without assuming learning apriori, describe the non-equilibrium thermody-

namic conditions under which physical systems realize adaptive learning and

predictive inference.
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(d) Propose a new physical framework of thermodynamic intelligence, and describe

the changes in devices, architectures, programmability and design methodolo-

gies that is necessary to realize it.

The thesis is organized as follows -

Chapter 2: In this first of two review chapters, the basics of classical information theory is

introduced. Important ideas in classical information theory like entropy, condi-

tional entropy and relative entropy are discussed. These concepts are then used

to build into concepts like rate-distortion theory and computational channels

that are necessary later in this dissertation. The chapter ends with a discussion

on Landauer’s Principle which introduced the vital physical consequences of

information processing,

Chapter 3: In this second review chapter, we will continue to build upon the important

concept of classical information as a physical quantity and focus on quantum

systems specifically. The density matrix formalism used to characterize a quan-

tum systems is used to define the quantum mechanical equivalent of classical

information theory concepts like entropy and mutual information. The referen-

tial approach to physical information theory - the framework that the rest of

the dissertation will utilize is used to provide physical descriptions of abstract

logical operations, as well recast Landauer’s principle under this framework.

Important computational efficacy measures for logical operations are discussed

and their connection to the dissipation is elucidated.

Chapter 4: Finite state automata are a powerful computational model that is very com-

monly used. In this chapter, we discuss an abstract deterministic irreducible

FSA driven by independent identically distributed (IID) inputs, and introduce

the equivalent physical description under the referential approach. These are

used to derive the fundamental lower bound on dissipation in steady state for a
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deterministic irreducible FSA. These dissipation bounds were applied to simple

illustrative cases, and studied to derive the condition for physical irreversibil-

ity in FSA. The approach was further extended to include more general FSA

like deterministic (but not necessarily irrducible) and probabilistic FSA, as well

FSA driven by time-correlated inputs. The chapter ends with an extension of

the efficacy measures (from the previous chapter for logical transformation) to

capture how well a FSA state transition has been physically instantiated.

Chapter 5: In this chapter, we introduce neural networks which form the basis of many

modern techniques in AI. Feed-forward networks - their training and use in

classification is discussed and characterized as a FSA, consisting of both the

neural nodes and network weights. The results from the previous chapter are

used to determine the fundamental dissipation limits in these networks for train-

ing and testing. The effect of input data probabilities and training parameters

such as learning rate on the dissipation is also studied. The chapter continues

with the study of dissipation limits in recurrent Hopfield and Boltzmann net-

works. The fundamental dissipation limit for the simulated annealing technique

and a dissipation complexity measure for optimization problems are introduced.

Chapter 6: This will be first of two chapters in which we will build towards a physically

grounded theory of thermodynamic intelligence. The chapter begins with an

introduction to both equilibrium and non-equilibrium thermodynamics, as well

as complexity and self-organization. This is followed by deriving the non-

equilibrium reliable low dissipation condition under which predictive inference

capabilities emerges in complex self-organized systems. The relationship be-

tween this condition and the stability-plasticity problem (which captures the

trade-off between a system’s prediciton capability for a finite amount of mem-

ory) is briefly explored. These conditions are further extended to active agents
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that can act on their environment to study exploitation-exploration trade-offs

in such systems. The chapter ends with discussion on incorporating information

theoretic measures into recent published results on dissipation driven adapta-

tion.

Chapter 7: In this chapter, we start by examining the fundamental philosophical under-

pinnings of current computational approaches to intelligence. The difference

between observer dependent versus independent computation and intelligence

is discussed, and while we desire the latter, we explore why our current ap-

proaches will only produce the first. The results from the previous chapter

are visited as path forward to explain observer-independent intelligence. The

chapter concludes with a discussion of this new framework of thermodynamic

intelligence as a path towards building energy efficient AI systems, and the en-

gineering challenges that needs to be overcome in order to reboot computing

for intelligence [7].

Chapter 8: In this last chapter of the dissertation, the results of the work presented in the

previous chapters are summarized. This is followed by a brief reflection of this

unique time in the computing field that we find ourselves in, important ideas

to think about moving forward, as well as future work.

This dissertation will be the story of my own intellectual journey, beginning at

characterizing the ultimate dissipation bounds for finite state automata, extending

those results to simple neural networks to understand the limits to learning and finally

using these results to questions the very fundamentals of computing as we explore

the non-equilibrium thermodynamic conditions under which predictive intelligence

emerges in systems. Since the work will pull topics from different areas like informa-

tion theory, quantum mechanics, non-equilibrium thermodynamics and finite-state

automata, we will start by discussing the necessary ideas needed for this dissertation
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over the next two chapters. The results in Chapters 4,5 and 6 on FSAs, neural net-

works and thermodynamic conditions for predictive inference have been rigorously

derived, while Chapter 7 is more speculative as we discuss the foundational princi-

ples of computing and a new engineering paradigm to build energy efficient artificial

intelligence systems.
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CHAPTER 2

INTRODUCTION TO CLASSICAL INFORMATION
THEORY

This will be the first of two chapters that will introduce technical content impor-

tant for the research completed in this dissertation. We shall start by first introducing

the idea of a communication channel and various components associated with it. Clas-

sical information theory was invented by Claude Shannon, in order to mathematically

quantify the amount of information that is transmitted over a communication chan-

nel. The source coding and channel coding theorems based on information theory

forms the basis of modern communication theory. We will explain a variety of im-

portant concepts under information theory including self-entropy, joint entropy and

mutual information, and explore their properties. These sections of this chapter have

been adapted from the lecture notes of ECE697PT Physical Information Theory 1

[21]. We will build on these ideas and introduce both Rate Distortion theory and

the Information Bottleneck, the latter which will be utilized in later chapters. Fol-

lowing this, we will explore the idea of logical operations as computational channels,

and how those can be described using information theoretic-measures. The chapter

will conclude with a discussion of Landauer’s principle that provides an important

connection between the abstract and physical notions of information.

1The notes are not publicly available or peer-reviewed, but some of the important information
theory concepts are also available in [10].
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Figure 2.1. The communication channel framework used by Shannon in [11], and
adapted from [21].

2.1 Communication Process & Channel

Classical information theory was originally formulated to be used in the field of

digital communication. Shannon described the “fundamental problem of commu-

nication” in his seminal paper, A Mathematical Theory of Communication [11] as

“...reproducing at one point either exactly or approximately a message selected at an-

other point.” This would require a mathematical description of this process and a

“...represent(ation of) the various elements involved as mathematical entities, suit-

ably idealized from their physical counterparts.” The framework used by Shannon

for analyzing this process is given by the Fig.(2.1) [11].

The various elements from the communication process are

• Information Source - The process of generating a string of symbols from a set

of available symbols. This string of symbols is the message that needs to be

transmitted. In this dissertation, we will be mainly focused on what are referred

to as discrete information sources - a process generating messages from a finite

alphabet of symbols. A popular type of discrete information source that is often

used in the study of communication theory are discrete IID sources. A discrete

IID source is a process that generates sequences X = X(0)X(1)X(2)..., of inde-

pendently identically distributed (IID) discrete random variables X(n), drawn

from a d-ary {x} = {x1, x2, x3, ..., xd} given by a probability mass function

{p} = {p(x1), p(x2), p(x3), ..., p(xd)}.
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• Transmitter - A process mapping messages from the source into signals, or

physical disturbances in the channel. This process also includes encoding -

translating the strings of symbols from an IID information source into a more

efficient form before transmitting it. There are advantages to coding strings

(or blocks) of source symbols instead of individual symbols, and this is known

as block coding. In “fixed-length” block coding, strings of source output are

divided into length-N message blocks xN = x(0)x(1)...x(k)...x(N−1), and generates

a length-M codeword sequence C(xN) = c(0)c(1)c(2)...c(M−1) for each message

block according to a codebook, which maps each of the dN possible message

blocks xN into a corresponding codeword.

• Receiver - A process detecting disturbances in the channel, decoding and map-

ping them back into messages for delivery to their ultimate destination. The

coded messages are decoded using a decoding rule that assigns a length-N se-

quence D(C(xN)), constructed from the symbols in the source alphabet, to each

M -digit codeword C(xN). A code is lossless if there is a decoding scheme such

that D(C(xN)) = xN for all possible source messages xN . This means that

the decoding scheme can perfectly reconstruct every possible message from the

source without ambiguity in a noiseless channel. On the other hand in lossy

coding, D(C(xN)) 6= xN for one or messages that is generated by the source and

hence the decoder cannot successfully reconstruct every source message.

• Channel - The part of the physical world that can be used for propagating

transmitted signals through space and time to the receiver. The most common

type of channels that are studied in communication systems are discrete memo-

ryless channels. The memoryless characteristic ensures that the transmission of

each symbol is independent of which symbols were previously sent or received.

Such a channel is characterized by an input variable X with finite alphabet
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{xi}, output Y with alphabet {yj} and the channel matrix - a set of condi-

tional probabilities {qj|i} = Prob{Y = yj|X = xi}, which is the probability

that symbol yj is received when the input symbol xi is transmitted.

• Noise Source - A process that corrupts the message signal, and inhibits the

receivers ability to distinguish the received signal from the transmitted one and

to decode the messages. If this disturbance is produced by the channel, it is

referred to as channel noise, but in general refers to any physical factor that

limits the ability of the receiver to distinguish between different messages. Noise

sources are often modeled as Gaussian sources.

In the next section, classical information theory will be introduced as an important

tool to quantify the amount of information in the messages that will be sent through

the communication channel. These tools are exceptionally powerful through their use

in the noiseless and noisy coding theorems [10]. Our focus however will be in the use

of these tools in computational channels.

2.2 Classical Information Theory

Information theory seeks to obtain the fundamental limits on the reliability of

compressing and exchanging data. The theory, originally used in the communication

field, has since developed and found applications in a wide variety of disciplines [10].

Application of this theory to nanoelectronic circuits is necessary as their intended

purpose includes communication, computation and information storage. It can also

be used to develop many important performance metrics which will help in the explo-

ration of future devices. Information theory allows us to connect such performance

measures directly with related thermodynamic quantities such as thermodynamic en-

tropy and energy dissipation, and hence provide us with important knowledge on the

capabilities of these nanoelectronic circuits.
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2.2.1 Entropy

Entropy is a measure of the disorder of the system. It was originally a thermody-

namic concept, but since been adapted to other fields of study, including information

theory, complex systems and machine learning. It is a central concept that links

these multiple fields and plays a crucial role in understanding physical conceptions of

information. It can be expressed as

A state of high order → low probability

A state of low order → high probability

The information entropy introduced by Claude Shannon is often eponymously called

Shannon entropy or Shannon self-information. Shannon entropy is a measure of the

uncertainty associated with a random variable. For an event X with n outcomes, (xi,

i = 1, 2, 3, ..., n) the information entropy, denoted by H(X) or H({p(xi)}), is defined

as

H(X) =
n∑
i=1

p(xi) logb p(xi). (2.1)

where p(xi) is the probability mass function of the outcome xi, b is the base of the

logarithm used. The unit of the information entropy H depends on the value of base

b, and is expressed in bits when b = 2 and in nats when b = e. For our purposes we

shall use b = 2. The above definition was evolved for Shannon entropy by imposing

three reasonable conditions on the quantitative measure of the “information content

of an event”. These are

(i) Information is non-negative.

(ii) Least probable events provide the most information.

(iii) Information is additive for independent events.

This relationship between the probability of an event and the associated entropy

can be understood using the following example. Let us say a coin with known prob-
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abilities of coming up heads or tails is tossed. The entropy of the unknown result of

a toss of the coin is maximized, in the situation of maximum uncertainty with heads

and tails equally probable. The amount of information associated with each toss can

be quantified to be one bit of information. However if we the coin is not fair, and one

side is more likely to come up than the other, this reduced uncertainty is reflected in

a lower entropy, and each toss of the coin delivers less than one bit of information.

A double-headed coin which never comes up tails is an extreme case in which there

is no uncertainty, the entropy is zero and each toss of the coin delivers zero bits of

information.

The use of the logarithm function allows the entropy function as defined above,

to follow the first and third condition (assuming entropy vanishes for p(xi) = 0).

If there is a set of n mutually exclusive events (aj, j = 1, 2, ..., n) each with equal

probability p(aj) = 1
n
, the Shannon entropy of this set of events is equal to logb n units.

Furthermore, consider a set of m mutually exclusive events which are independent

from the previous set of events, with the probability of each event given as 1
m

. The

Shannon entropy associated with this set would then be logbm units. If both sets are

considered together, i.e. for the set of mn possible events each with a probability of

1
mn

, the Shannon entropy is logb(mn) = logbm+ logb n units which is the sum of the

Shannon entropies of the two independent sets of events.

2.2.2 Joint Entropy

Using the definition of the joint probability of the event X = xi and Y = yj as

pij = Prob{X = xi, Y = yj}

the joint Shannon entropy of the probability mass function {pij} is given as

H(X, Y ) = −
∑
i

∑
j

pijlog2pij

The joint entropy is symmetric with H(X, Y ) = H(Y,X) and is bounded as
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H∗ ≤ H(X, Y ) ≤ H(X) +H(Y )

where H∗ is the larger of the self-entropies H(X) and H(Y ). Equality is achieved in

the lower bound when X can be completely inferred from Y or vice versa, and equality

in the upper bound is achieved when X and Y are independent random variables

2.2.3 Conditional Entropy

For an input X = xi that is transmitted through a channel to produce output

Y , distributed with conditional probabilities qj|i, the conditional entropy of Y for the

fixed input X = xi is given as

H(Y |xi) = −
∑
j

qj|ilog2qj|i

The conditional entropy is the expectation of this quantity over all inputs, and is the

average entropy of Y given that X is known.

H(Y |X) =
∑
i

piH(Y |xi)

= −
∑
i

∑
j

piqj|i log2 qj|i

Unlike joint entropy, the conditional entropy is not symmetric and is bounded as

0 ≤ H(Y |X) ≤ H(Y )

where equality is achieved in the lower bound when each xi uniquely maps onto a

single output yj, with qj|i = 1 for only one j for every i and zero for other j’s. Equality

is achieved in the upper bound when X and Y are independent of each other. The

conditional entropy is related to the self and joint entropies as below

H(X, Y ) = H(X) +H(Y |X) = H(Y ) +H(X|Y )
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2.2.4 Relative Entropy and Shannon Mutual Information

The relative entropy or Kullback-Liebler divergence is a distance measure used to

determine the similarities between the two distributions {pk} and {qk}, and defined

as

H(P ||Q) = H({pk}||{qk}) =
∑
k

pk[log2 pk − log2 qk]

The relative entropy is bounded as 0 ≤ H(P ||Q) ≤ ∞, with equality achieved in the

lower bound if and only if {pk} = {qk}.

The Shannon mutual information between two variables X and Y is used to mea-

sure the dependence of one variable on another i.e., the amount of correlation be-

tween X and Y . For two discrete random variables X and Y with joint pmf {pij}

and marginal pmfs {pi}, the mutual information is defined as

I(Y ;X) = H(Y ) +H(X)−H(Y,X)

= H({pij}||{piqj})

(2.2)

where H({pij}||{piqj}) is the relative entropy between the {pij} and {piqj} distribu-

tions.

H({pij}||{piqj}) =
∑
i

∑
j

pij [log2(pij)− log2(piqj)]

Using the relationship between self, joint and conditional entropies from before

H(Y,X) = H(X) +H(Y |X) = H(Y ) +H(X|Y ) = H(X, Y )
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the mutual information I(X;Y ) can be rewritten as

I(X;Y ) = H(X) +H(Y )−H(X, Y )

= H(Y )−H(Y |X)

= H(X)−H(X|Y )

Mutual information is symmetric and thus I(X;Y ) = I(Y ;X). It is also bounded as

0 ≤ I(Y ;X) ≤ H∗∗

where H∗∗ is the lesser of H(X) and H(Y ), and equality in the lower bound is achieved

when X is independent of Y . Equality in the upper bound with I(X;Y ) = H(X), is

achieved when the output Y completely determines the input X for all j, and there

is one and only one i for each j with qj|i > 0.

2.3 Rate Distortion Theory

The noiseless coding theorem gives us the minimum rate at which we can code at

asymptotically small decoding error. However if we are willing to tolerate a certain

amount of error in order to code at rates below this limit, we want to know how the

code rate and error probability are related. The branch of information theory that

considers these trade os is called rate-distortion theory. It gives an analytical expres-

sion for how much compression can be achieved using lossy compression methods, and

created by Claude Shannon in his foundational work on information theory. The rate

is usually understood as the number of bits per data sample to be stored or transmit-

ted, and distortion can be defined in a number of ways but the most common way

is to use the mean squared error - the expected value of the square of the difference

between input and output signal.

The rate and distortion can be related using the following optimization problem -
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minqY |X(y|x) Iq(Y ;X) subject to Dq ≤ D∗

where qY |X(y|x) is the conditional probability distribution of the compressed signal

Y for a given input signal X, and Iq(Y ;X) is the mutual information between Y and

X. Dq and D∗ are the distortion between X and Y for qY |X(y|x), and the prescribed

maximum distortion respectively. If we use the mean squared error for the distortion

measure, we can define it as

Dq =
∫ +∞
−∞

∫ +∞
−∞ qY |X(y|x)pX(x)(x− y)2dxdy

Calculating a rate distortion function requires the stochastic description of the input

X in terms of it’s pX(x), and then aims at finding the conditional pdf qY |X(y|x) that

minimizes the rate Iq(y;X) for a given distortion D∗. These definitions can be formu-

lated measure-theoretically to account for discrete and mixed random variables. An

analytical solution to this minimization problem is often difficult to obtain except in

some instances. The Blahut - Arimoto algorithm [13] is an elegant iterative technique

for numerically obtaining rate distortion functions of arbitrary finite input/output

alphabet sources and much work has been done to extend it to more general problem

instances.

2.3.1 Information Bottleneck

The information bottleneck method [140] is a technique in information theory

for finding the best trade-off between accuracy and complexity when summarizing

or compressing a random variable X, given a joint probability distribution p(X, Y )

between X and an observed relevant variable Y . The information bottleneck can

also be viewed as a rate distortion problem, with a distortion function that measures

how well Y is predicted from a compressed representation Z, compared to its direct

prediction from X. For the compressed variable Z, the bottleneck can be represented

as the following constraint optimization problem
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minp(z|x) I(X;Z)− βI(Z;Y )

where I(Z;Y ) and I(X;Z) the mutual information between Z and Y , and X and Z

respectively. We can view I(Z;Y ) and I(X;Z) as representing accuracy and com-

plexity respectively. β is the Lagrange trade-off parameter. Solving this equation for

p(z|x), we get the solution

p(z|x) = p(z)
Z(x,β)

exp (−βDKL[p(y|x)|p(y|z)])

with

Z(x, β) =
∑
z

p(z) exp (−βDKL[p(y|x)|p(y|z)])

where Z(x, β) is the normalization partition function. The detailed derivation is

available in appendix (A.1).

It is important to note that the Kullback-Leibler divergence, DKL[p(y|x)|p(y|z)],

emerged as the relevant “effective distortion measure” from our variational principle

and is not assumed otherwise. It is therefore natural to consider it as the “correct”

distortionD(x, z) = DKL[p(y|x)|p(y|z)] for quantization in the information bottleneck

setting. The following three equations are solved self-consistently in an iterative

manner to obtain the desired distributions for p(z) and p(z|x)

p(y|z) =
∑
x

p(y|x)p(x|z)

p(z) =
∑
x

p(z|x)p(x)

p(z|x) = p(z)
Z(x,β)

exp (−βDKL[p(y|x)|p(y|z)])

The information bottleneck approach discussed here has been used in wide variety

of scenarios including in machine learning, signal processing and dynamical systems.

One of the important applications of the information bottleneck is the past-future
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information bottleneck, and it’s use in predictive inference. Consider a compression of

the past trajectories ←−x t onto the current state of a system st. These states are then

used to map onto or make predictions of future trajectories −→x t. Both of these func-

tions can be probabilistic and characterized by the probability distributions p(st|←−x t)

and p(−→x t|st). The complexity of a model (in this case here on how the past trajecto-

ries are mapped onto the state of the system), is captured by I(←−x t; st) the amount of

information about the past trajectories that the state contains. Thus if all the past

trajectories are mapped onto a single state or if each trajectory is mapped onto all

the states, we have complexity I(←−x t; st) = 0. The predictive power of the model is

captured by I(st;
−→x t) the amount of information the current state st contains about

the future trajectories −→x t. We are thus looking for an assignment of these past tra-

jectories onto the states that produce maximal predictive power at fixed memory.

In order to do so, we solve the past-future information bottleneck as a constraint

optimization problem

maxp(st|←−x t) (I(st;
−→x t)− λI(←−x t; st))

where λ is the Langrange parameter controlling the tradeoff between model complex-

ity and predictive power. For each value of λ, this optimization results in an optimal

probabilistic assignment of past trajectories to model states, i.e., the information bot-

tleneck finds a family of optimal models that are parameterized by λ. Each of these

solutions satisfies the self-consistent equations

p(st|←−x t) = p(st)
Z(←−x t)exp

(
− 1
λ
DKL[p(−→x t|←−x t)||p(−→x t|st)]

)
p(−→x t|st) =

∑
←−x t

p(←−x t,
−→x t)

p(st|←−x t)

p(st)

p(st) =
∑
←−x t

p(st|←−x t)p(
←−x t)

with the normalization constant Z(←−x t)
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Z(←−x t) =
∑
st

p(st)exp

(
−1

λ
DKL[p(−→x t|←−x t)||p(−→x t|st)]

)
The solutions can be compared to the Gibbs-Boltzmann distribution and the La-

grange parameter λ has been identified as a pseudo-temperature, and is not to be

confused with physical temperature. In the limit of large λ, fluctuations prevent

any structure from being resolved. We can see clearly that p(−→x t|st) is higher when

DKL[p(−→x t|←−x t)||p(−→x t|st)] is lower, and that entails the prediction of future trajecto-

ries made from the state of the system described through p(−→x t|st) be similar to the

actual conditional distribution of the future trajectories p(−→x t|←−x t) and explains the

information bottleneck approach to predictive inference. This approach to predic-

tive learning and its emergence in physical systems will be explored further in later

chapters.

2.4 Computational Channels

Comptutation is the deliberate process of converting inputs into outputs using

a specific model (like Turing machines, finite state automaton, Lambda calculus)

and a series of steps (like an algorithm). Winograd and Cowan [14] adapted Shan-

non’s conception of the noisy communication channel to the information theoretic

characterization of noisy computation as a memoryless “computation channel.” Like

Shannon’s discrete communication channel, it consists of an input alphabet, an out-

put alphabet, and a set of conditional probabilities that characterize the statistical

properties of the channel. A logical transformation L : xi → L(xi) maps d inputs

xi ∈ {xi} into r outputs yj ∈ {yj} as

yj = L(xi) ∀i ∈ Sj

where Sj is the set of indices labeling all of the inputs xi that map into the same

output yj , as specified by the truth table for L. For a deterministic computation

channel implementing L,
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qj|i = 1 ∀i ∈ Sj

qj|i = 0 ∀i /∈ Sj

The quantity H(X|Y ) serves as a measure of the average uncertainty in the channel

input given the channel output, with H(X|Y ) > 0 indicating that, for at least one

output, information is lost in the mapping from input X to output Y . Information

loss is undesirable in communication channels, where the goal is to infer every one of

the channel inputs from the channel outputs without ambiguity (H(X|Y ) = 0), but

is completely natural in the computation channels that correspond to many logical

transformations. Thus for a channel that implements a logically irreversible trans-

formation, it follows that the information loss ∆I = H(X) − I(Y ;X) > 0 (with the

transformation being logically reversible when −∆I = 0). Winograd and Cowan iden-

tified this connection and stated that “the destruction of information” as the defining

feature of computation - “We say that computation occurs if H(X|Y ) greater than

0 i.e, if the output symbols do not completely specify the input configurations; and

we say that communication occurs if H(X|Y ) = 0, i.e. if the output symbols com-

pletely specify the input configurations...It follows...that computation occurs if H(X)

is greater than H(Y ), i.e. if information is lost going from X and Y” [14].

Even in ideal computation channels, information is necessarily lost while going

from input to output that directly implements a logically irreversible operation. Such

irreversible operations include AND, OR, NAND, NOR, etc., which form the cor-

nerstones of logical operations that are performed in all general purpose computing

(these operations have the property that the number of inputs d is greater than the

number of outputs r). Consider the computation channel that directly implements

the AND operation. If the input pmf is uniform (pi = 1
4
∀i), the input entropy is

H(X) = 2 bits and the mutual information is I(X;Y ) = H(Y ) = 0.81 bits, indi-

cating a loss of H(X|Y ) = 1.19 bits of information in the channel. This (selective)

destruction of information, which is required for direct implementation of the AND
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operation, would render it a very poor communication channel. Ultimately informa-

tion in both communication and computation channels have to be implemented in

physical systems, and thus necessary to understand the physical consequences of in-

formation processing. In order to do that, we will briefly review statistical mechanics

and equilibrium thermodynamics needed to do this.

2.5 Statistical Mechanics

Statistical mechanics is the branch of physics of that deals with studying physical

systems with a large number of degrees of freedom [17]. The approach is based on

statistical methods, probability theory and the microscopic physical laws, and can

be used to explain the thermodynamic properties of large systems - both in and

out of equilibrium. While classical mechanics deals with a single state, statistical

mechanics introduces the statistical ensemble, which is a large collection of virtual,

independent copies of the system in various states. The statistical ensemble is a

probability distribution over all possible states of the system. In classical statistical

mechanics, the ensemble is a probability distribution over phase points (points in

the space of position and momentum vectors), as opposed to a single phase point in

ordinary mechanics. In quantum statistical mechanics, the ensemble is a probability

distribution over pure states, and can be compactly summarized as a density matrix.

Both pure states and density matrices will be discussed in the next chapter.

2.5.1 Microstates & Macrostates

Microstates and macrostates provide a statistical description of physical systems

in mechanics. A microstate is a specific microscopic configuration of a thermodynamic

system that it may occupy with a certain probability in the course of its evolution. In

a classical system of point particles, for example, a microstate defines the position and

momentum of every particle. For most systems of interest, the number of microstates
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is astronomically large. The macrostate of a system on the other hand is specified

by the value of macroscopic variables, such as temperature, pressure, volume and

density. There may be a huge number of microstates, all corresponding to the same

macrostate [134]. For example, suppose if one were to measure the total energy and

volume of a box of gas, there would be an enormous number of arrangements of the

individual gas molecules that all add up to that energy and volume. A macrostate Ω is

thus characterized by a probability distribution p(i|Ω), that describes the probability

of finding the system in a certain microstate i ∈ {i}Ω (the set of all microstates that

correspond to the same macrostate Ω), corresponding to that macrostate. Statistical

mechanics shows how the concepts from macroscopic observations (such as tempera-

ture and pressure) are related to the description of microscopic state that fluctuates

around an average state.

2.6 Thermodynamics

Thermodynamics is the study of heat, and its relationship to energy and work [17].

These quantities are governed by the laws of thermodynamics, applicable irrespective

of the composition or specific properties of the material or system in question. The

strength of thermodynamics lies in its universal applicability. Equilibrium thermody-

namics is the study of transfers of matter and/or energy in systems as they pass from

one state of thermodynamic equilibrium to another, where ‘thermodynamic equilib-

rium’ indicates a state of balance. In an equilibrium state there are no unbalanced

potentials, or driving forces, between macroscopically distinct parts of the system. An

important goal of equilibrium thermodynamics is to determine for a given system in a

well-defined initial equilibrium state and its surroundings, what will be the final equi-

librium state of the system after a specified thermodynamic operation has changed

its surroundings. The system and the surroundings are separated by a cleared defined

boundary - allowing one to clearly say whether a given part of the world is in the
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system or in the surroundings. If matter is not able to pass across the boundary,

then the system is said to be closed; otherwise, it is open. A closed system may still

exchange energy with the surroundings unless the system is an isolated one, in which

case neither matter nor energy can pass across the boundary.

The entropy is a state variable and a measure of the number of possible microscopic

configurations or microstates, which comply with the macroscopic state of the system.

For the macrostate Ω with probability distribution p(i|Ω), we can view the entropy

as

SΩ = −
∑
i

p(i|Ω) ln p(i|Ω)

as the entropy of the system in macrostate Ω. Entropy plays a very important role in

the physical sciences across various disciplines. We can already start to see a possible

connection between thermodynamic entropy and Shannon entropy discussed earlier

in the chapter. In fact when Shannon came up with the formula for his entropy

measure, he was initially unaware of thermodynamic entropy and was encouraged by

von Neumann (who introduced quantum entropy) to call his measure entropy [16].

It is important to understand the relationship between these two quantities as it

is significant for topics discussed later in this dissertation. Consider a system in a

thermodynamic macrostate (of our choice) Ω with underlying microstate distribution

{pΩ
i }. As before the thermodynamic entropy SΩ = −

∑
i

pΩ
i ln pΩ

i . Now consider that

there is computational variable of interest X that is obtained by measuring some

observable of the system such that it can take values from the set {xk}. Let πk be the

probability of finding the system in the computational state xk, where we have πk =∑
i∈Mk

pΩ
i where Mk is the set of all microstates of Ω that map to the k-th computational

state. We have the Shannon entropy measure in bits to be HX = −
∑
k

πk log2 πk.

The relationship between the thermodynamic SΩ and Shannon HX entropy can be

seen as simple extension of the Shannon grouping rule.
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SΩ = kB ln(2)

[
HX +

∑
k

πkH({Ω|xk})

]

where H({Ω|xk}) = −
∑
i∈Mk

p
(k)
i log2 p

(k)
i and p

(k)
i =

pΩ
i

πk
. There is also a kB ln(2) factor

up front in order to convert from Shannon entropy units to thermodynamic entropy

units. ln(2) is to account for the that thermodynamic entropy is calculated to base

e and Shannon entropy to base 2. kB is the Boltzmann constant and it factors given

the relationship thermodynamic entropy has with energy dissipation and temperature.

The value of kB = 1.380649× 10−23 J/K and the definition of the Kelvin is based on

this value of kB (It is thus entirely possible to redefine all physical variables so that

the value of kB = 1). Thus if we chose the computationally relevant state and the

thermodynamic macrostate such that there is no uncertainty in the microstate of Ω

given the computationally relevant state xk i.e. H({Ω|xk}) = 0 for all k, and if we

measure HX in base e and rescale all physical constants such that kB = 1, we would

have SΩ = HX .

The three laws of thermodynamics are

1. The first law is called the Law of Conservation of Energy, states that energy

cannot be created or destroyed in an isolated system and energy is transformed

from one form to another. It can also be stated as the total energy in the

universe is constant. Any change in the internal energy (∆E) of a system is

given by the sum of the heat (Q) that flows across its boundaries, and the work

(W ) done on the system by the surroundings: ∆E = Q+W . For example, the

transformation of stored body energy to kinetic energy (W ) of the pushed car

plus the heat generated (Q) by the action of pushing. The entropy can also be

seen as measure of the heat loss.

2. The second law of thermodynamics states that the entropy of any isolated sys-

tem always increases. It is also alternatively stated as the entropy of the uni-

verse (an isolated system) only increases and never decreases. For example,
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consider a room containing a glass of melting ice as one system. The difference

in temperature between the warmer room and the colder glass of ice and wa-

ter is equalized as heat from the room is transferred to the ice-water mixture.

The temperature of the glass and its contents and the temperature of the room

achieve balance after some period of time. While the entropy of the room has

decreased, the entropy of the ice and water in the glass has increased more than

the entropy of the room has decreased. The second law defines the “arrow of

time,” in that it proves there are processes that cannot be reversed in time. It

is the only fundamental physical law that distinguishes past from the future,

since all microscopic dynamics are reversible in time whereas the macroscopic

world is irreversible [17].

3. The third law of thermodynamics states that the entropy of a system approaches

a constant minimum value as the temperature approaches absolute zero.

The entropy of a system is maximized at thermal equilibrium, with the probability

distribution of microstates i and j with energies Ei and Ej is given by the Boltzmann

distribution

p(i)
p(j)

= exp
[
−(Ei−Ej)

kBT

]
or alternatively

p(i) =
exp

(
−Ei
kBT

)
Z

where kB is the Boltzmann constant again and T is the temperature of the thermal

bath that the system is in contact with. Z is the partition function given by Z =∑
k

exp

(
−Ek
kBT

)
. In the example above, when the system of the room and ice water

system has reached temperature equilibrium, there is no further entropy change as

the entropy of the final state is at its maximum. The entropy of the thermodynamic

system is a measure of how far such an equalization has progressed. A detailed review
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of modern equilibrium thermodynamics is available at [17]. In the next section, we will

briefly extend this connection between information theory and thermodynamics by

discussing the entropic and energy consequences of irreversible information processing

in physical systems.

2.7 Landauer’s Principle

The principle first put forward by Rolf Landauer, pertains to the lower theoretical

limits of energy dissipation associated with logical computation, and provides an

inextricable link between the abstract and physical notions of computation [60]. It

plays a central role in resolving an important paradox associated with the second law

of thermodynamics called Maxwell’s Demon. It is best restated by Bennett in [19]

as “any logically irreversible manipulation of information, such as the erasure of a

bit or the merging of two computation paths, must be accompanied by a corresponding

entropy increase in non-information bearing degrees of freedom of the information

processing apparatus or its environment.” It allows us to relate thermodynamical

quantities to the amount of information associated with the system. The entropic

and energetic forms of the principle are given as

∆S ≥ −kB ln(2)∆I

∆E ≥ −kBT ln(2)∆I

where kB is the Boltzmanns constant, T is the absolute temperature of the envi-

ronment and −∆I is the amount of information lost in an operation. The entropic

form of Landauer’s principle indicates that the entropy increase (∆S) (in thermody-

namic units) is lower bounded by kB ln(2) per bit of information lost (−∆I) in the

information-processing operation. The energetic form associates a minimum energy

increase (∆ ) of kBT ln(2) per bit of information lost. It is commonly assumed in these
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inequalities that the loss of information from a physical system is a state transforma-

tion that reduces uncertainty in the system state, as quantified by a self-referential

information measure, defined in the terms of the state of the system undergoing the

information loss.

Landauer’s principle remains a topic that is widely studied given its connection to

fundamental concepts of information, with continued debate on its validity. Questions

arise out of confusion over how the systems and their boundaries are specified, how

entropies, energies and information are defined in these systems of interest. The lack

of rigor in Landauer’s original paper to arrive at the inequalities only compounded

the problem further. There is a rich history of work seeking to clarify the wide range

of issues surrounding Landauer’s Principle [20]. In the next chapter, we shall briefly

review the Referential framework to physical information, where information in a

system is a correlational measure that is described with respect to a referent. This

referent remains unchanged during the process of information loss, and provides a

suitable framework for studying information processing in computing systems.

2.8 Summary

In this chapter, we reviewed some of the critical ideas that are necessary for this

dissertation moving forward. We began with the discussion of a communication chan-

nel, and how the need to quantify the amount of information transmitted across a

channel inspired the birth of the important field of information theory. Definitions

for self-entropy, joint and conditional entropy and Shannon mutual information were

provided. We then continued with the concept of a computation channel and char-

acterized computation as a necessary loss of information. Definitions of micro and

macrostates, thermodynamic entropy as well as the laws of thermodynamics were

briefly discussed. The chapter ended with the introduction of Landauer’s principle,

an important principle pertaining to the physical consequences associated with the
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manipulation of information in a system. In the next chapter, we will continue down

this path of the importance of the physicality of information, by studying quantum

systems and how classical information is instantiated in the states of these systems.
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CHAPTER 3

INTRODUCTION TO PHYSICAL INFORMATION
THEORY AND THE REFERENTIAL APPROACH

In the previous chapter, we provided a brief introduction to important concepts in

classical information theory, communication and computation channels. Over the last

60 years of Moore’s law scaling, the size of the device implementing computation has

become extremely small, and these devices now have to be described using quantum

mechanics (as opposed to classical mechanics) and quantum effects play an extremely

crucial role. We note that this is still a study of classical information (distinguishable

1’s and 0’s) in quantum systems and not quantum information (that uses qubits and

forms the basis of quantum computing).

Similar to the statistical description of systems in classical mechanics, we will in-

troduce the density matrix formalism for quantum mechanics using notes from [21],

and also discuss the realization of a computation channel in a physical system. The

central concept in this framework is the density matrix of the system, and it will

be used to define a quantum equivalent of classical information theoretic quantities

like entropy and mutual information. There are some important distinctions between

classical and quantum systems, and these differences are reflected in the important

results related to these information theoretic quantities. This chapter will also con-

tain a review of the Referential Approach to physical information theory [21], [22],

[23], [24], [25],[26], [27]. We will define a referent, setup the physical system for infor-

mation processing and describe its use in quantifying information loss in computing

systems. This part of the chapter will conclude with revisiting Landauer’s principle
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Figure 3.1. Physical view of the communication channel, adapted from [21].

for information processing in physical systems under this framework. Physical im-

plementation of computations at the quantum scale are often noisy due to quantum

indistinguishability and device variability. The chapter will conclude with a discus-

sion on this phenomenon, and a review of information theoretic measures that are

used to quantify “how well” a logical operation has been carried out in these chan-

nels. The relationship between these computational efficacy measures and the lower

bound on dissipation is explored and the trade-offs between the energy efficiency and

efficacy of realization is explored.

3.1 Information Processing in Physical Systems

Analogous to the discussion of the components of an abstract communication sys-

tem in the previous chapter, we will briefly discuss the realization of those components

in physical systems required for both communication and computation, as indicated

in Fig.(3.1).

• Source - The source is the process generating messages and the physical system

in which these messages are registered. For a classical discrete information

source, the messages are realized in distinguishable source system states drawn

from a fixed alphabet.

• System - The part of the physical universe that will function as the channel

and propagate the information through via evolution of its physical state.
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• State preparation - This the process of mapping messages into physical chan-

nel states, with transmission of a given symbol being equivalent to preparation

of the channel in a corresponding signal state.

• Measurement - A physical interaction with the channel system that produces

a measurement outcome, correlated to the pre-measurement channel state. The

measurement outcome is registered in the state of another physical system that

acts as the measurement apparatus.

• Environment - Physical systems that are not directly controlled by the state

preparation process and can interact with the channel and/or measurement

apparatus to affect the measurement outcomes.

In the next section, we will formalize these components with respect to classical

information in quantum systems.

3.2 Physical Information in Quantum Systems

Information is encoded in the states of classical and quantum physical systems.

In quantum systems, the encoding of information is done by using the quantum state

vectors of the system of interest. In most scenarios, the state vector of a quantum

system is either not defined, or only probabilities for various state vectors are avail-

able. In such situations, the density matrix formalism is used, and will be discussed

in detail in the following section. We will introduce the concept of von Neumann

entropy, quantum equivalents of joint, conditional, relative and mutual information

under the density matrix formalism. These are all necessary concepts for understand-

ing information processing in quantum systems. A detailed treatment of quantum

mechanics, entropy and information in quantum systems is available in [28],[51].
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3.2.1 Density Matrix Formalism

We want a description of physical systems in quantum mechanics that answer the

addresses the following question -

(1) Specify the state of the isolated physical system.

(2) Describe the dynamical evolution of the system state.

(3) Be able to predict measurement outcomes.

(4) Handle description of multi-component systems.

In quantum mechanics, the state of an isolated physical system is represented

by a normalized state vector in a complex Hilbert state space of the system. The

density matrix formalism is used in the case where the state vector for a system is

not defined or the state vector is not known; and only the probabilities of various

vectors are known.

Definition: The density matrix operator is a positive operator with unit trace de-

fined on the complex Hilbert state space of the system, and represents a statistical

description of a quantum system.

Since it is positive operator, it is Hermitian and normal and the trace of the

operator Tr[ρ̂] = 1. Now consider a quantum system that is known to be in some

state vector ψi〉 from the fixed set {|ψi〉}, where the |ψi〉 are normalized but need not

be orthogonal. Let pi indicate the probability that the system is with state vector

|ψi〉. The possible states of the system as indicated by the state vector, together

with their corresponding probabilities, constitutes an ensemble of states denoted as

εS = {pi, ||ψi〉〈ψi|}. |ψi〉〈ψi|} represents the outer product of the vector |ψi〉 with

itself. The density operator associated with this ensemble of the system is given by

ρ̂ =
∑
i

pi|ψi〉〈ψi|
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In a more general case, we construct an ensemble of mixed states given by {pi, ρ̂i}

where we have pi to be the probability of the mixed state ρ̂i. The mixed in turn is

given as an expectation over the outer-product of the state vectors |ψ(i)
n 〉〈ψ(i)

n |. Thus

we have ρ̂i =
N∑
n=1

p(i)
n |ψ(i)

n 〉〈ψ(i)
n | and

∑
n

p
(n)
i = 1. The density operator of the ensemble

of mixed states is given by

ρ̂ =
∑
i

piρ̂i

While the trace of the density operator ρ̂ is equal to one for both pure and mixed

state, we have that for pure states Tr[ρ̂2] = 1 and for mixed states Tr[ρ̂2] < 1.

The density operator for an isolated quantum system evolves in time according

to the Louiville equation, which can be viewed as a version of the time-dependent

Schroedinger equation for density operators. The change in the system density oper-

ator ρ̂(t) with respect to time t is given by the equation below

ih̄dρ̂(t)
dt

= [Ĥ, ρ̂(t)] = Ĥρ̂(t)− ρ̂(t)Ĥ

where Ĥ is the Hamiltonian operator for the system. [A,B] is the commutation

operation over two operators and given as [A,B] = AB − BA. This can also be

written for an isolated system in state ρ̂(t1) at time t1, and it will evolve to state

ρ̂(t2) at time t2 according to the equation

ρ̂(t2) = Û(t1, t2)ρ̂(t1)Û(t1, t2)†

where Û(t1, t2) is the time development operator given by

Û(t1, t2) = exp
[
− i
h̄
Ĥ(t2 − t1)

]
i is the complex number such that i2 = −1 and h̄ = h

2π
with h being the Planck

constant.

Measurements are an important aspect of quantum mechanics, since they differ

significantly from measurements in classical mechanics (A measurement can often be
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simply thought of taking a stick, and poking a system in order to learn something

about it). In classical systems, measurement of a system does not change the system

state. This is not the case in the quantum systems, and the post-measurement state

of the quantum system is different from the pre-measurement state. Measurements of

quantum systems are characterized by a set of measurement operators {M̂j} defined

on the Hilbert space of the system, each associated with one possible measurement

outcome.

If measurement M is to be performed on a system in state ρ̂, then the a priori

probability for realization of the j-th outcome is

qj = Tr[M̂†
jM̂j ρ̂]

and the post-measurement state of the system after a measurement M is performed

and the j-th outcome is obtained

ρ̂′j = 1
qj
M̂j ρ̂M̂†

j

The completeness condition for the measurement operators is given as
∑
j

M̂†
jM̂j =

1, where the sum is over all measurement outcomes. In the case of blind measure-

ments, where we know a measurement M has been performed but do not know the

measurement outcome, the post-measurement state of the system is a mixture given

by

ρ̂′ =
∑
j

qj ρ̂
′
j =

∑
j

M̂j ρ̂M̂†
j

We will now move from discussion of density operators of individual systems to

composite multi-partite systems. The density operators of composite systems can be

defined on the composite Hilbert space, which is a direct product of the Hilbert spaces

for the component systems. The reduced density operator which provides the state

of an individual subsystem can be obtained from a partial trace of the composite-

system density operator excluding the subsystem of interest. For a bipartite system,
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the density operator for simply separable states on Hilbert space V ⊗W is given by

the tensor product on the density operators of the individual subsystems.

ρ̂VW = ρ̂V ⊗ ρ̂W

where ρ̂V and ρ̂W are the density operators on V and W respectively and are fully

uncorrelated. In the more general case, the states of the subsystem are not separable

and are mixtures as given below.

ρ̂VW =
∑
k

πkρ̂
VW
k

where the reduced density operators for the subsystems are achieved using a partial

trace operation.

ρ̂[V] = TrW [ρ̂VW ] ρ̂[W] = TrW [ρ̂VW ]

The partial trace operation over W of an outer product |v ⊗w〉〈v′ ⊗w′| over V ⊗W

is define as

TrW [|v ⊗ w〉〈v′ ⊗ w′| = |v〉〈v′|TrW |w〉〈w′|

The reduced density operator can be viewed as the ‘apparent’ local state of a

subsystem when a state vector or density operator cannot be properly defined for the

subsystem. Information about the state of a system is available only through measure-

ments and the reduced density operator ρ̂[V] is equivalent to the post-measurement

states of the system by performing a local measurement on the subsystem V of the

composite system VW .

We can summarize the postulates of quantum mechanics using the density matrix

formalism discussed as follows -

(1) The state of an isolated physical system is described by a density operator

defined on a complex Hilbert space, which represents the state space for the

system.
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(2) The density operator for an isolated quantum system evolves in time according

to the Liouville equation

ih̄dρ̂(t)
dt

= [Ĥ, ρ̂(t)] = Ĥρ̂(t)− ρ̂(t)Ĥ

where Ĥ is the Hamiltonian operator for the system.

(3) Every measurement M that can possibly be performed on a quantum system

is characterized by a complete set {M̂j} of measurement operators defined on

the Hilbert space of the system, each associated with one possible outcome of

the measurement.

(4) The state of a composite physical system is described by a density operator

defined on a composite-system Hilbert state space, which is the direct product

of the Hilbert spaces for the component systems. The state of an individual

subsystem of a composite system is described by a reduced density operator,

defined as the density operator obtained from a partial trace of the composite-

system density operator excluding the subsystem of interest.

Using the density matrix formalism from this section, we will now build into the

definitions of von Neumann entropy and quantum mutual information for physical

quantum systems as seen in [21].

3.2.2 Von Neumann Entropy

The von Neumann entropy (or quantum entropy) associated with a density oper-

ator ρ̂ is

S(ρ̂) = −Tr[ρ̂ log ρ̂].

If the density operator ρ̂ can be written in the form of a spectral decomposition as

ρ̂ =
∑
i

λi|φi〉〈φi|, where λi and |φi〉 are the eigenvalues and eigenvectors respectively.

Then log ρ̂ is an operator given as
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log ρ̂ =
∑
i

log(λi)|φi〉〈φi|

S(ρ̂) maps the density operator into a real number, much as the Shannon en-

tropy H({pi}) maps a probability distribution {pi} into a real number. S(ρ̂) can be

most conveniently calculated by solving for the eigenvalues {λi} of ρ̂, and applying

the result: the von Neumann entropy of ρ̂ is the Shannon entropy of its eigenvalue

spectrum.

S(ρ̂) = −
∑
i

λi log λi

The von Neumann entropy is non-negative and S(ρ̂ = |ψi〉〈ψi|) = 0 for pure state

|ψ〉 as the density operator for any pure state has identically one eigenvalue which is

λ = 1. In general for an ensemble of mixed states {pi, ρ̂i} it is bounded as

∑
i

piS(ρ̂i) ≤ S(ρ̂) ≤ H({pi}) +
∑
i

piS(ρ̂i)

Equality is achieved in the upper bound when the density operators ρ̂i have sup-

port on orthogonal spaces i.e., ρ̂iρ̂i′ = δii′ ρ̂i for all i, i′. For an ensemble of quantum

signal states ε = {pi, ρ̂i}, S(ρ̂) can be thought of as the “entropy of the average sig-

nal state,” while the quantity
∑
i

piS(ρ̂i) represents the “averaged entropy of signal

states,” and H({pi}) is the preparation entropy, which is the Shannon entropy of the

information source driving the state preparation process. The bounds now say that

the entropy of the average channel state is never less than the average entropy of the

channel state and never greater than the average of the channel state plus the prepa-

ration entropy. For pure signal states this bound reduces to 0 ≤ S(ρ̂) ≤ H({pi}).

3.2.3 Quantum Joint Entropy

The joint entropy of a composite system is simply the von-Neumann entropy of

the composite system density operator.

S(ρ̂VW) = −Tr[ρ̂VW log2ρ̂
VW ]
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Joint entropy is bounded above as

S(ρ̂VW) ≤ S(ρ̂[V]) + S(ρ̂[W])

where the equality condition is achieved for the case of simply separable states when

ρ̂VW = ρ̂[V] ⊗ ρ̂[W]. This inequality condition is called the subadditivity condition.

It is important to understand the joint entropy theorem [30] while studying joint

entropy of quantum systems. For a density operator on U ⊗ V of the form

ρ̂UV =
∑
i

piρ̂
UV
i =

∑
i

pi
(
|ui〉〈ui| ⊗ ρ̂Vi

)
where |ui〉 are orthogonal pure states on U and ρ̂Vi are arbitrary density operators on

V . Since the operator ρ̂UVi has orthogonal support on U ⊗ V , using the relationship

S(ρ̂) = H({pi}) +
∑
i

piS(ρ̂i) when the ρ̂i’s are orthogonal i.e.ρ̂iρ̂j = δij (from the

previous section), we obtain the joint entropy theorem

S(ρ̂UV) = H({pi}) +
∑
i

piS(ρ̂UVi )

for states of the form given above.

3.2.4 Quantum Conditional Entropy

The quantum conditional entropies for the composite system VW are defined as

S(ρ̂[V]|ρ̂[W]) = S(ρ̂VW)− S(ρ̂[W])

S(ρ̂[W]|ρ̂[V]) = S(ρ̂VW)− S(ρ̂[V])

Like the classical case, the quantum conditional is not symmetric S(ρ̂[V]|ρ̂[W]) 6=

S(ρ̂[W]|ρ̂[V]). However unlike the classical case, the quantum conditional entropy can

be negative.
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3.2.5 Quantum Relative Entropy & Quantum Mutual Information

The quantum relative entropy of two density operators denoted by ρ̂ and σ̂ defined

on the same vector space are

S(ρ̂||σ̂) = Tr[ρ̂log2ρ̂]− Tr[ρ̂log2σ̂]

The relative entropy acts as distance measure capturing the differences between the

two density operators. It is bounded as 0 ≤ S(ρ̂||σ̂) ≤ ∞, with equality in the lower

bound obtained if and only if the two density operators are the same σ̂ = ρ̂. The

relative entropy is not symmetric i.e. S(ρ̂||σ̂) 6= S(σ̂||ρ̂).

As in the classical case, the quantum relative entropy can be used to define the

quantum mutual information. The quantum mutual information “between” two sub-

systems V and W can be defined as the quantum relative entropy between the com-

posite system density operator ρ̂VW and the density operator implied by assuming

that the two subsystems are simply separable using the reduced density operators,

i.e. ρ̂[V]⊗ ρ̂[W]. The quantum mutual information or the correlation entropy between

V and W is given as

I(ρ̂[V]; ρ̂[W]) = S(ρ̂[V]) + S(ρ̂[W])− S(ρ̂VW)

The quantum mutual information is symmetric with I(ρ̂[V]; ρ̂[W]) = I(ρ̂[W]; ρ̂[V]),

and non-negative I(ρ̂[V]; ρ̂[W]) ≥ 0. Equality in the lower bound I(ρ̂[V]; ρ̂[W]) = 0, is

obtained for uncorrelated mixtures with ρ̂VW = ρ̂V ⊗ ρ̂W . For perfectly correlated

mixtures of the form

ρ̂VW =
∑
i

pi|vi ⊗ wi〉〈vi ⊗ wi|

with ρ̂[V] =
∑
i

pi|vi〉〈vi| and ρ̂[W] =
∑
i

pi|wi〉〈wi|. Thus we get S(ρ̂VW) = S(ρ̂[V]) =

S(ρ̂[W]) = H{pi}. This would make the quantum mutual information I(ρ̂[V]; ρ̂[W]) =

H({pi}) for perfectly correlated mixtures.
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We also have the following inequalities that are very useful while dealing with the

quantum mutual information in composite systems [21]

(a) Quantum relative entropy is monotonic for any two density operators ρ̂VW and

σ̂VW on the space V ⊗W . This can also be viewed as the fact that one cannot

increase the relative entropy by performing the partial trace on a system.

S(ρ̂VW ||σ̂VW) ≥ S(ρ̂W ||σ̂W)

(b) Quantum relative entropy also exhibits the property of strong sub-additivity.

For a tripartite system XYZ, we have

S(ρ̂[X ]) + S(ρ̂[Y]) ≥ S(ρ̂[XZ]) + S(ρ̂[YZ])

which can be equivalently written as

S(ρ̂XYZ) + S(ρ̂[Y]) ≥ S(ρ̂[XY]) + S(ρ̂[YZ])

3.2.6 Holevo Information and Accessible Information

The bound on von-Neumann entropy from the section above can be written as

0 ≤ S(ρ̂)−
∑
i

piS(ρ̂i) ≤ H({pi}) +
∑
i

piS(ρ̂i)−
∑
i

piS(ρ̂i)

0 ≤ χ(ε) ≤ H({pi})

with χ(ε) = S(ρ̂)−
∑
i

piS(ρ̂i), which is called the Holevo information or sometimes

the entropy defect for the ensemble ε = {pi, ρ̂i}. The Holevo information defined for an

ensemble is very important in understanding the amount of accessible information Iacc

for that ensemble. The accessible information is the maximum mutual information

between the random variables associated with the source output X and the channel

output Y , that can be from an optimum measurement M of an ensemble ε .
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Iacc = maxMI(Y : X)

It is very hard to calculate the Iacc for a general signal ensemble but there is very

useful upper bound provided by the Levitin-Holevo theorem [31]. Theorem: For a

quantum channel S and signal ensemble εS = {pi, ρ̂Si } with an associated density

operator ρ̂ =
∑
i

piρ̂i, the accessible information is upper bounded as

Iacc ≤ χ(εS)

where χ(εS) is the Holevo information of the ensemble χ(εS) and given by

χ(εS) = S(ρ̂S)−
∑
i

piS(ρ̂Si )

χ(ε) and I(X;Y ) have the same bounds. They are both non-negative and upper

bounded by the Shannon entropy of the source. The upper bound is achieved when the

signal states have support on orthogonal subspaces, and the accessible information is

less than or equal to the preparation entropy, and can be achieved using an appropriate

measurement. While the Holevo information places a fundamental physical limit on

the mutual information for the channel, it does not identify measurements that would

actually achieve equality in the bound or even tell us if such measurements exist. The

Holevo bound can also be seen as a corollary of the Schumacher, Westmoreland and

Wootters bound (SWW) bound [32].

Iacc ≤ χ(εS)−
∑
j

qjχ(εSj )

This is a tighter bound than the Holevo bound, and says that the accessible informa-

tion can never exceed the Holevo information of the as-prepared signal ensemble less

the average Holevo information “left in” the system after measurement.

3.3 Referential Approach to Physical Information Theory

The referential approach is based on the fundamental premise that information

is always about something else - and quantified as a measure of correlation between
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the system and a referent [24], [23], [25], [26]. The approach has many significant

advantages, one being the clear divide between the entropic self information of a

system and the mutual information of a system with a referent. Since quantum mutual

information is defined between two different systems, it cannot be defined between

the density operators of the same system at two different time instants. However

the referential approach allows the calculation of information loss in the system over

time with respect to an referent that remains unchanged during the course of the

information processing operation. Furthermore, in terms of engineering applications

in computing systems, the approach proves to be very beneficial, as the information

we manipulate and perform operations upon are usually physical encodings of input

information which is present in another location, for example the memory which can

act as our referent. The physical states of the memory are perfect for providing

a referent, as they remain unchanged during the course of the computation in the

arithmetic and logic unit (ALU) and allow us to measure the correlational information

between the memory and the ALU before and after the computation. Since such

memory elements like flip-flops and latches that provide storage capabilities are used

in abundance in the intermediate stages of multiple cycle calculations, analyzing

such processes using the referential approach can provide crucial insight. Thus the

referential approach to physical information theory must be explored in detail to reap

its full benefits. This approach has been explored in detail in [22], [23], [24], [25],[26],

[27]. In the next section, we will setup the physical system under this approach in

order to analyze the information loss, entropic and energetic costs associated with

implementing a logical transformation.

3.4 Logical Transformations under Referential Approach

In this section, we will review the description of logical transformations under the

referential approach from [22]. Logical transformations are an integral component
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of computing systems and it is necessary to have a physically grounded description

of these operations that allow us to determine the ultimate limits of dissipation as-

sociated with their realization. These logical transformations will be realized as L

machines, a concept introduced by Ladyman, Presnell, Short and Groisman for ide-

alized computation [50],[48]. They define this L machine as a “hybrid physical -

logical entity that combines a physical device, a specification of which physical states

of that device correspond to various logical states, and an evolution of that device

which corresponds to the logical transformation.”.

The original description assumed idealized computation, not taking into the effect

of noise on the physical realization. This was accounted for and a more general

description of logical L machines was provided under the referential approach in [22].

We will adopt the same description from [21], [22] to describe the input and output

ensembles of a d-input r-output logical transformation (with d ≤ r).

3.4.1 Input and Output Ensembles

In order to consider the implementation of a d-input r-output logical transfor-

mation L via evolution of the system S, we will start by defining a L-referent RL

associated with a d-input r-output logical transformation L. The L-referent consists

of

• A bipartite quantum system RL = RinRout.

• A set {r̂Rini } of d distinguishable pure states of Rin.

• A set {r̂Routj } of r distinguishable pure states of Rout.

• A set {r̂RLi } of d product states of RL - r̂RLi = r̂Rini ⊗ r̂Routj for all i ∈ {i}j =

{i|L(xi) = yj}.

where L is logical transformation that maps d logical input states xi ∈ {xi} into r

logical output states yj ∈ {yj} via xi ← L(xi) = yj. The input referent in most
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applications will be a real physical system which contains a physical instantiation

of the logical input that will remain unchanged until the process of computation is

complete. These include the cache, latches and flip-flops in the intermediate stages

of a multi-staged logical computation. The output referent is a perfect physical

instantiation of the logical outputs of a perfect logical transformation. It need not

exist and as the name suggests, it provides a reference to which we can compare our

actual physical outputs of the logical transformation.

The input ensemble is χ(εRLSX ) = {pi, ρ̂RLSi } where pi is the probability that RLS

is initially prepared in the state ρ̂RLSi = r̂RLi ⊗ ρ̂Si corresponding to the i-th logical

input xi. The density operator describing the statistical state of this ensemble is

ρ̂RLS =
d∑
i=1

piρ̂
RLS
i

In order to obtain the output ensemble, all the members of the input ensemble

must be evolved via C, a quantum operation (which is a linear, completely positive

map from the set of density operators into itself) to obtain the evolved input ensemble

χ(εRLS
′

X ) = {pi, ρ̂RLS
′

i }, where ρ̂RLS
′

i = r̂RLi ⊗ C(ρ̂Si ). The elements of the output

ensemble are εRLS
′

Y = {qj, ρ̂RLS
′

j }, can then be projected out of the statistical state

ρ̂RLS
′
=

d∑
i=1

piρ̂
RLS′
i out of the evolved input ensemble as

ρ̂RLS
′

j = 1
qj

Π̂RLSj ρ̂RLSΠ̂RLSj =
∑
i∈Sj

p
(j)
i ρ̂RLS

′

i

where Π̂RLSj is the projector associated with the j-th logical output and is given by

Π̂RLSj =
∑
i∈{i}j

π̂RLSi
1

1The general form for this projector is of the form∏̂RLS
j = ÎRLS −

∏
i∈Sj

(
ÎRLS − π̂RLS

i

)
where ÎRLS is the identity of ĤRLS . The π̂RLS

i are mutually orthogonal and the product terms on

the right reduces to ÎRLS −
∑
i∈Sj

π̂RLS
i and we get the reduced expression for the identity Π̂RLS

j .
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,on HRL ⊗HS with π̂RLSi = r̂RLi ⊗ π̂Si . π̂Si is the identity of the support of C(ρ̂Si ),

and Π̂RLSj is the identity for the support subspace associated with the j-th output.

We have the probability of the j-th output qj = Tr[Π̂RLSj ρ̂RLS
′
] =

∑
i∈Sj

pi and

p
(j)
i = pi

qj
. We define N -output ensembles εRLS

′

j = {p(j)
i , ρ̂RLS

′

i }|i ∈ Sj}, associated

with the r logical outputs, and the j-th reduced density operator is given by

ρ̂S
′

j = TrRL [ρ̂RLS
′

j ] =
∑
i∈Sj

p
(j)
i C(ρ̂Si )

ρ̂S
′

j is the physical representation of the j-th output stage or yj, and provides a

statistical representation of the outputs for input distribution {pi} in the state of

device S alone.

3.4.2 Revisiting Landauer’s Principle - Entropic & Energy Cost of Infor-

mation Processing

We will now restate the version of Landauer’s Principle [60] from [21] and [22]

under the referential approach. Consider a closed composite system consisting of an

“information bearing” subsystem RS and environment B. Let the states of R and S

be initially correlated and assume that RS is initially isolated from B. An operation

processing information aboutR which is encoded in S is given as an unitary evolution

Û of RSB that involves only interactions between S and B. The entropic form of

Landauer’s principle is given in Eq.(3.1) - the entropy increase is lower bounded at

kB ln(2) per bit of information that is lost during the information processing operation.

The detailed derivation of this bound is avialable in appendix (A.2).

∆S ≥ −kB ln(2)∆I (3.1)

where ∆S is the increase in total entropy of the system and bath combined and −∆I

is the loss of quantum mutual information between the system S and the referent R

over the information processing operation.
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In order to study the energy costs of operations that discard information, like

irreversible logical operations, we assume that the environment is initially a thermal

bath at temperature T . Using the entropic derivation of Landauers Principle, we can

obtain the energetic version of Landauer’s Principle -

∆〈EB〉 ≥ −kBT ln(2)∆SS

where ∆〈EB〉 is the expected energy increase in the environment and −∆SS is the

loss in von Neumann entropy of the system S. A detailed derivation of the bound

from [21] is available in appendix (A.2).

This inequality implies that there is a minimum environmental energy increase

of kBT ln(2) associated with every operation that reduces the system entropy ∆SS

by 1 bit, regardless of how much information is lost. The bound thus accommodates

scenarios in which entropy of S is increased and energy is transferred out of the

environment during processes that cause loss of information. This stands in contrast

with the traditional form of Landauers Principle which associates a energy transfer

into the environment with loss of information.

We will now illustrate this with a simple thermal reset example. Consider a simple

system RS which is initially perfectly correlated given by the density operator

ρ̂RS =
2∑
i=1

pi(|ri〉〈ri| ⊗ |si〉〈si|)

where {|ri〉} and {|si〉} are orthonormal sets spannings the spaces HR and HS re-

spectively. The quantum mutual information between R and S, and the entropy of

S is given as

I(ρ̂R; ρ̂S) = H({pi})

S(ρ̂S) = H({pi})

Let the system S interact with a large thermal bath B at temperature T - that

completely thermalizes the state of S such that
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ρ̂RS
′
=

2∑
i=1

pi(|ri〉〈ri| ⊗ ρ̂S
′

th

where ρ̂S
′

th = Z−1 exp−−HS
kBT

. HS is the Hamiltonian of the system with eigenvalues

E1 and E2. Since the nal states of R and S are completely uncorrelated, the final

quantum mutual information is

I(ρ̂R; ρ̂S
′
) = 0

and all information about R in S is erased. For sufficiently low temperatures we

have, ρ̂S
′
= |E1〉〈E1| and S(ρ̂S

′
) = 0. In this limit

∆I = I(ρ̂R; ρ̂S
′
)− I(ρ̂R; ρ̂S) = −H({pi})

∆S = S(ρ̂S
′
)− S(ρ̂S) = −H({pi})

∆S = ∆I

Thus we have the general bound on energy flow to be reduced to

∆〈EB〉 ≥ −kBT ln(2)∆I

This says that for this type of erasure operation - resetting of the system S to a

standard pure state - at least kBT ln(2) of energy is dissipated into the environment

per bit of information erased.

3.5 Noisy Computational Channels and Efficacy Measures

In this section, we will discuss the computational efficacy measures developed in

[22] to quantify noisy computational channel. A d-input, r-output discrete channel

with 0 < qj|i < 1 for at least one of the outputs yj, cannot be associated with the

implementation of any logical transformation, since direct implementation requires

that each xi map into one and only one output yj and this requirement is not met if
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0 < qj|i < 1 for any qj|i. Thus rather than trying to answer the question “what logical

transformation L is implemented by the noisy channel?”, we should try and answer

the question “How well does the noisy computational channel implement the logical

transformation L?” These measures will be further extended in the next chapter for

finite state automata.

3.5.1 Representational Faithfulness

For the computational channel to “complete the work” of implementing a logical

transformation L, then all device input states “belonging to” the same logical output

of L must evolve into the same device output state UL(S(in)
i ) = S(out)

j ∀i ∈ Sj =

{i|L(xi) = yj}. This condition requires that the evolved states should contain no

information that could help identify the state S(in)
i ∈ {S(in)

i }j which it is evolved.

{S(in)
i }j is the set of input states S(in)

i that map to the same j-th output state. This

implies

I(ρ̂Rinj ; ρ̂S
′

j ) = χ(εS
′

j ) = 0

From this, the following definition of representational faithfulness can be developed

[22], [21].

Definition ≡ For a quantum machine that implements a logical transformation

L and input distribution {pi}, the representational faithfulness is

fL ≡ 1− 1
HL(X|Y )

N∑
j=1

qjχ(εS
′

j )

where qj and HL(X|Y ) are the j-th output probability and the conditional entropy

associated with the logical transformation L for input distribution {pi} and χ(εS
′

j ) is

the Holevo information associated with the ensemble εS
′

j = {p(j)
i , ρ̂S

′
i |i ∈ {i}j} of the

final reduced device states ρ̂S
′

i representing the logical output states yj of L.

fLHL(X|Y ) is the average over all logical outputs, of information about the logical

input that is lost in producing the physical representations of the logical outputs. It

is bounded as 0 ≤ fL ≤ 1.
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3.5.2 Computational Fidelity

This efficacy measure is concerned with the distinguishability of the output states

independent of their faithfulness. It is related to the amount of information about

the correct logical output-encoded in output referent states- that is reflected in the

final physical state of S, i.e by the quantum mutual information

I(ρ̂Rout ; ρ̂S′) = S(ρ̂Rout) + S(ρ̂S′)− S(ρ̂RoutS′) = χ(εS
′

Y )

We obtain the following definition from [22], [21]

Definition: For a quantum machine implementing the logical transformation L

and input distribution {pi}, the computational fidelity is

FL = 1
HL(Y )

χ(εS
′

Y )

where HL(Y ) is the entropy associated with the logical transformation L for input

distribution {pi}, and χ(εS
′

Y ) is the Holevo information associated with the ensemble

εS
′

Y = {qj, ρ̂S
′

j } of final device states representing the logical outputs yj of L.

FLHL(Y ) indicates the amount of information about the logical output that is

present in the final device state. Computational fidelity is bounded as 0 ≤ FL ≤ 1.

3.5.3 Information Loss in Terms of Computational Fidelity and Repre-

sentational Faithfulness

Using mutual information, the information about the logical input X that is lost

as the system S evolves from its initial to final state to implement the logical trans-

formation is

−∆I = I(ρ̂Rin ; ρ̂S)− I(ρ̂Rin); ρ̂S
′
) (3.2)

If S initially holds all the information about X, since the xi are encoded in dis-

tinguishable input states of S, then I(ρ̂Rin); ρ̂S) = H(X) and the information loss
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−∆I = H(X)− I(ρ̂Rin); ρ̂S
′
)

where I(ρ̂Rin); ρ̂S
′
) = χ(εS

′
X ) and since χ(εS

′
X ) ≤ H(X), −∆I ≥ 0. The information loss

can be restated in terms of computational fidelity and representational faithfulness

[22]

−∆I = (1− FL)HL(Y ) + fLHL(X|Y ) (3.3)

The first term in Eq.(3.3) indicates the necessary desirable information loss that

is required to produce faithful representations of logical output states in channels im-

plementing the logical transformation. The second term accounts for the undesirable

information loss associated with the indistinguishability of the output states. From

the equation (3.3), we can clearly see that if the channel flawlessly implements the

logical transformation L i.e. FL = 1, fL = 1, −∆I = H(X|Y ), and if a channel that

produce unfaithful (fL = 0) yet perfectly distinguishable outputs (FL = 1), informa-

tion loss ∆I = 0 which is what is expected in a perfect communication channel.

3.5.4 Lower Bounds on Energy Dissipation in Terms of Efficacy Measures

In Eq. (3.3), we have related the information loss in a logical transformation L

with the efficacy which indicated how well the logical transformation L was achieved.

Since the information loss is directly related with the heat dissipation to the environ-

ment, substituting Eq. (3.3) in Eq. (A.2), we get

∆〈EB〉 ≥ kBT ln(2)[(1− FL)HL(Y ) + fLHL(X|Y ) + 〈∆SSi 〉] (3.4)

where 〈∆SSi 〉 is the average change in the von Neumann entropies of the system

state during the logical transformation L. We thus have a very important relation

between the lower bound on the physical cost the user must pay to achieve a logical

transformation, in terms of the performance metrics fidelity and faithfulness which

indicate how well the logical transformation was performed.
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3.6 Summary

In this chapter of technical background, we first explored the density matrix for-

malism of quantum mechanics including definitions for pure states, mixed states and

ensembles. The concepts of von Neumann entropy, joint and conditional entropy,

quantum mutual information and Holevo information were introduced and their prop-

erties discussed. This laid the groundwork to move onto the discussion of information

as a physical quantity under the Referential approach, in which information is always

discussed as the amount of correlation between two physical systems. The approach

is highly suitable to discuss information processing in computing systems as physical

processes. We set up the framework with descriptions of input and output ensembles

of a logical transformation, and derived the entropy and energy forms of Landauer’s

principle for physical system instantiating a logical transformation under the referen-

tial approach. The chapter concluded with the introduction of two efficacy measures

to capture how well a logical transformation is achieved in a noisy computational

channel. The two measures - computational fidelity and representational faithfulness

capture the distinguishability of the output states, and whether the physical output

states contain more information than what is allowed by the abstract logical map

respectively. The chapter concludes with substituting the measures in to the lower

bound on energy dissipation to obtain the relationship between how well a logical

transformation is physically instantiated with the minimum dissipation cost of that

instantiation.
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CHAPTER 4

DISSIPATION IN FINITE STATE AUTOMATA

There is a fundamental connection between irreversible information loss and en-

ergy dissipation in computational processes, as has been recognized since Landauer’s

work in the early 1960s [36]. An important implication of this connection is that the

minimum physical costs required for implementation of a specified computing process

can be determined from an abstract description of its computational behavior, pro-

vided that the abstract description appropriately captures and quantifies irreversible

information loss [38],[37]. Abstract descriptions of digital computing processes based

on finite-state automata (FSA) [39, 40], which are very general, powerful, and widely

used, are obvious candidates. If irreversible information loss in finite automata can

be quantified and tied to a sufficiently general physical description, then fundamental

lower bounds on dissipation can be obtained for particular FSAs and used to ex-

plore the inherent dissipative costs of a very wide variety of computing processes and

schemes.

While previous studies have addressed some aspects of irreversibility and dissipa-

tion in determinstic FSAs (e.g. [41]) and stochastic FSAs (e.g. [42]), we are aware

of no general, physically grounded approach for quantifying irreversible information

loss in specified FSAs and obtaining fundamental, implementation-independent lower

bounds on the resulting dissipation. Such an approach is provided in the present

chapter, starting with a large and important class of FSAs - deterministic, irreducible

FSAs - driven by a classical information source. Park of the work discussed in this

chapter has been published in [43], [44] and [45].

53



We will start the chapter with a discussion on reversibility and other aspects of

abstract FSAs that are relevant to this work, and establish our fundamental physical

description of deterministic FSAs. Following that we will state and prove a physical-

information-theoretic lower bound on the average amount of energy dissipated into a

thermal environment per state transition for a deterministic FSA driven by a random

input source with specified statistics. This “Landauer-like” bound is proportional to

the average information about past inputs that is lost from the FSA state on each

transition, which we propose as a measure of the computational irreversibility for

the FSA and illustrate the application of our approach to a simple FSA system. We

then compare the dissipation cost of generating outputs between two types of FSAs

- Mealy and Moore machines which differ in the input-output dependency. We then

extend our description from deterministic FSAs to probabilistic FSAs and derive the

lower bound on dissipation in terms of the information loss associated with a state

transition. We then introduce FSA computational efficacy measures, similar to the

ones from the previous chapter and describe the lower bound on dissipation with how

well the FSA has been physically implemented. We will finally discuss the dissipation

bounds of FSAs with temporally correlated inputs and see how these are different

from the FSAs studied earlier in the chapter, with a simple learning system as an

example. We will end this chapter summarizing the results.

4.1 Description of Finite-State Automata

4.1.1 Abstract Finite-State Automata

We begin with a brief discussion of abstract finite-state automata that emphasizes

the concepts, definitions, terminology, and notation used in this work. An abstract

FSA FA
∆
= {{σ}, {x}, {L}} consists of a finite set {σ} of states, a set {x} of input

symbols that induce transitions between states, and a set {L} of transition rules -

one for each input - that govern the state transitions. Specifically, for every input xj
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Figure 4.1. (a) State mapping disallowed in a deterministic FSA; no state σk can
map into two different states σk′ and σk′′ for any input xj. (b) State mapping dis-
allowed in a codeterministic FSA; no two states σk′ and σk′′ can map into the same
state σk for any input xj. (Adapted from [46].)

there is an “input transition rule” Lj that maps every “current state” σk to a “next

state” σ′kj = Lj(σk) ∈ {σ}. Outputs are generally defined for FSAs as well, but we

do not consider them in this work.

The reversibility of an abstract FSA is tied to two properties of the transition

rules. An FSA is deterministic if every input transition rule Lj assigns one and

only one next state to every current state, and is codeterministic if no transition rule

Lj maps more than one current state into any given next state (see Fig. 4.1). A

deterministic FSA is reversible if it is also codeterministic [46], and is irreversible if

it is not codeterministic.

In this work we will be concerned exclusively with deterministic FSAs, both re-

versible and irreversible. All input transition rules are necessarily bijective in re-

versible FSAs, whereas one or more of the Lj are non-injective in irreversible FSAs

(as in Fig. 1(b)). We also limit our consideration to irreducible FSAs, in which the

set {Lj} is such that every state is reachable from every other state in a finite number

of transitions via some sequence of inputs.
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The statistical properties of deterministic FSAs driven by random sequences –

including the amount of irreversible information loss – depend directly on the input

statistics. For input sequences generated by an IID classical information source, i.e.

random sequences ~X = X(1)X(2)... of identically distributed discrete random variables

X(n) = {q, x} (each with the same symbol set {x} and corresponding probability mass

function {q}), the conditional probability that an FSA in state σk will transition to

state σk′ on any given step is

pk→k′ =
∑

j∈{j}k→k′
qj

where
(
{j}k→k′ = {j|Lj(σk) = σk′}

)
. With this, a statistical transition matrix P

with elements pk→k′ can be constructed. P has two properties of interest here. First,

for the n-th input in the sequence ~X, P relates the “current state” probability vector

π(n−1) to the “next state” probability vector π(n) simply as π(n) = Pπ(n−1). (Here

π(n) is the vector with elements π
(n)
k , where π

(n)
k is the probability that the FSA is

in the state σk after the n-th transition. π(n−1) is defined similarly.) Second, since

π
(n−1)
k = π

(n)
k for all k in steady state, the “steady-state” occupation probabilities

for the FSA states are just the elements of the eigenvector π of P with eigenvalue 1

(π = Pπ). This eigenvector is unique for an irreducible FSA.

4.1.2 Physical Finite-State Automata

We now construct a very general physical description of a deterministic FSA, de-

fined abstractly as above. We formalize this description after identifying the physical

realizations of FSA states, inputs, and transitions.

• States: Abstract FSA states σk are faithfully represented in distinguishable

physical states1 σ̂Sk of a quantum-mechanical register system S, which interacts

1The σ̂S
k are quantum mechanical density operators. States σ̂S

k and σ̂S
k′ are distinguishable if they

have orthogonal support, so Tr[σ̂S
k σ̂

S
k′ ] = 0. σ̂S

k is a faithful physical representation of FSA state
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with its local environment B. Here B is taken to be a (finite) heat bath nominally

in a thermal state ρ̂Bth at temperature T .

• Inputs: Random length-n input strings ~X are physically instantiated in the

state of an n-partite “referent” system R = R0R1, which can be regarded

as a physical “input tape” that holds the output of a classical information

source. Subsets ~Xk = X(1)X(2)...X(n−1) of strings leading to FSA state σ̂Sk are

represented by distinguishable mixed states ρ̂R0
k of R0, and X(n) is represented

by a mixture of pure distinguishable states x̂R1
j of R1.

• State Transitions: The n-th state transition is realized by dynamical evolu-

tion of the state of S, conditioned on the state of R1 (i.e. the n-th input) and

in interaction with B (to the next state of S which is referred to as S ′). Global

evolution of the interacting joint R1SB producing this transition is assumed to

be governed by the time-dependent Schrodinger equation to ensure consistency

with physical law (implying unitary evolution of the state of R1SB). The n-th

input remains encoded in R1 at the conclusion of the FSA state transition.

To complete the “physical universe” relevant to description of the FSA, the FSA’s

local environment B is embedded in a “greater environment” B̄ which acts to “rether-

malize” B whenever it is driven from equilibrium by interaction with S during state

transitions. B̄ is also taken to include all other subsystems required for global closure

of the composite system RSBB̄.

Consider the n-th state transition, which is depicted schematically in Fig. 4.2.

Prior to this transition, the “current” FSA state encoded in the physical state of S is

correlated withR0 (i.e. the first n−1 inputs) but not yet withR1 (i.e. the n-th input).

At the completion of the n-th state transition, correlations will have been created

σk if it encodes no more information about the FSA history than is present in the corresponding
abstract FSA description.
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Figure 4.2. Physical description of an FSA undergoing a state transition. The
system S, which registers the FSA state, is initially correlated with previous inputs
physically encoded in R0 (Initial). On the state transition, S becomes correlated
with a new input encoded in R1 (Final). This generally weakens the preexisting
correlations between R0 and S, inducing dissipation into the FSA’s local environment
(a heat bath B).

between the state of S and the state of R1. This weakens the correlation between S

and R0 in an irreversible FSA, which amounts to an irreversible loss of information

from the FSA state about its own history. We will quantify this information loss in

the next section and show that it necessarily results in dissipation of energy to B, but

first provide the formal description of FSA state transitions upon which proof of the

dissipation bound is based.

Initial State: Prior to the n-th input, the statistical state of the composite RSB is

given by the density operator

ρ̂RSB = ρ̂R0S ⊗ ρ̂R1 ⊗ ρ̂Bth

or

ρ̂RSB =

(∑
k

π
(n−1)
k {ρ̂R0

k ⊗ σ̂
S
k }

)
⊗

(∑
j

qjx̂
R1
j

)
⊗ ρ̂Bth (4.1)

=
∑
k

∑
j

π
(n−1)
k qj ρ̂

RSB
kj .
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Here ρ̂R0
k is a statistical mixture of all states ofR0 instantiating input strings that map

the initial state of the machine to the k -th FSA state σ̂Sk , x̂R1
j is the state encoding

the n-th FSA input x
(n)
j in R1, and

ρ̂RSBkj = ρ̂R0
k ⊗ σ̂

S
k ⊗ x̂

R1
j ⊗ ρ̂Bth.

The FSA state is correlated only to the first n− 1 inputs.

State Transition: The n-th state transition is a unitary transformation

ρ̂RSB
′
= Û ρ̂RSBÛ †

of RSB involving interactions only between R1, S, and B:

Û = ÎR0 ⊗ ÛR1SB.

If the process is to physically implement an FSA defined by abstract states σk ∈ {σ}

(physically encoded in register states σ̂Sk ∈ {σ̂S}) and by input transition rules Lj ∈

{L}, then Û must be such that

ρ̂S
′

kj = TrRB[Û ρ̂RSBkj Û †] ∈ {σ̂S}.

This condition can be written as

ρ̂S
′

kj = L̃j(σ̂Sk ) ∈ {σ̂S}

to highlight connection to the abstract FSA description, where the L̃j ∈ {L̃} are

local, nonunitary input transition superoperators that act on S alone to induce the

required state transitions.
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Final State: At the conclusion of the n-th state transition, the state of RSB is:

ρ̂RSB
′
=
∑
j

qj

(
x̂R1
j ⊗

∑
k

π
(n−1)
k

(
ρ̂R0
k ⊗ ρ̂

SB′
kj

))
(4.2)

=
∑
k

∑
j

π
(n−1)
k qj ρ̂

RSB′
kj

where

ρ̂RSB
′

kj = ρ̂R0
k ⊗ L̃j(σ̂

S
k )⊗ x̂R1

j ⊗ ρ̂B
′

kj.

The new register state is correlated with the previous register state (thus the first

n−1 inputs) and the n-th input, as is must be at this stage, and the bath has become

correlated with the n-th input and the previous register state.

We conclude this section by noting that each FSA transition is implicitly followed

by a spontaneous “rethermalization” of B by the greater environment B̄. This process

“resets” B to a thermal state before the next FSA transition, washing all information

about the history of the FSA from the register’s immediate surroundings into the

greater environment. Since the “universe” RSBB̄ is globally closed, this amounts to

destruction of correlations between RS and B and creation of correlations between

RS and B̄. This rethermalization of the FSA’s immediate surroundings by a “greater”

environment is a realistic process; it accommodates treatment of a finite local envi-

ronment as an ordinary heat bath - with no memory of past interactions with the

FSA - at the beginning of every state transition. (See [37] for further discussion of

this heterogeneous environment model.)

4.2 Dissipation and Irreversibility in FSAs

We now state a fundamental dissipation bound for a physical FSA, defined as

above and denoted FP
∆
=
{
S,R, {σ̂S}, {x̂R}, {L̃}

}
, which we prove using a “referen-

tial approach” to physical information theory. This approach has been used to obtain

lower bounds on dissipation resulting from irreversible information loss in overwriting

60



[37], erasure [47], implementation of logical transformations [38, 49]), and instruction

execution in a simple processor [45]. We preface statement and proof of this bound

with a note on the essential feature that distinguishes FSAs from physical implemen-

tations of logical transformations in “L-machines” [38, 48]. In an L-machine, physical

representations of the input and output of a logical transformation L are encoded in

the initial and final states of the “machine,” respectively. In a physical FSA, however,

successive FSA states are internally encoded in the physical state of S whereas the

inputs xj are physically instantiated in an external referent system R. These inputs

influence transformation of the FSA state, selecting the transformation Lj that the

FSA state will undergo on each step, but inputs need not ever be directly encoded in

the physical state of the state register S in an FSA.

4.2.1 Dissipation Bound for FSAs in Steady State

Theorem-1: For physical FSA FP =
{
S,R, {σ̂S}, {x̂R}, {L̃}

}
and input pmf {q},

the input-averaged amount of energy dissipated to a thermal environment B on each

state transition is lower bounded in steady state as

∆〈EB〉 ≥ kBT ln(2)
∑
j

qj

(
IR0S − IR0S′

j

)
(4.3)

where kB is the Boltzmann constant, T is the environment temperature, and

IR0S−IR0S′
j is, for a state transition induced by input x̂R1

j , the reduction in quantum

mutual information between the state of the register system S and the sequence of

all past inputs physically instantiated in referent system R0. The bound is rigorously

derived in [138] and is available in the Appendix B.1 here.

4.2.2 Discussion: Irreversibility and Information Loss in FSA

We have shown above that the average amount of energy dissipated into the bath

per FSA transition is proportional to the quantity

61



−〈∆IR0S
j 〉 =

∑
j

qj

(
IR0S − IR0S′

j

)

i.e. to the input-averaged amount of physical information about R0 that is lost from

S on each state transition. We argue below that this physical-information-theoretic

quantity can be heuristically interpreted as the average amount of information that

the machine state loses about its own history on each transition, and propose it as

a measure irreversibility for irreducible FSA. This discussion is adapted from the

author’s paper on this very topic [43].

Prior to the state transition induced by the n-th input, the entire history of a

deterministic FSA’s evolution is reflected in the first n − 1 inputs and the initial

machine state. Since the first n − 1 inputs are taken to be physically encoded in

R0, and since the FSA state is encoded in S, it is natural to associate the mutual

information (or correlation entropy) IR0S with the “amount of information the FSA

state holds about its own dynamical history.”

In the n-th FSA state transition, transformation of the physical state of S - and

its correlation with the (fixed) physical state of R0 - depends on the n-th input

via the input-selective application of the mapping L̃j. If the state mapping induced

by an input x̂R1
j is bijective, then there is no loss of correlation between R0 and

S and IR0S = IR0S′
j . If, however, the state mapping induced by an input x̂R1

j is

non-injective, then IR0S > IR0S′
j .

It follows that for reversible FSAs - where, by definition, all inputs induce bijective

state transformations - the input-averaged reduction in mutual information is

−〈∆IR0S
j 〉 = 0

for any distribution {q} of input probabilities. It also follows that for irreversible FSAs

- where, by definition, at least one input induces a non-injective state transformation

- we have
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−〈∆IR0S
j 〉 > 0

which is upper bounded at H({π}) = −
∑

k πk log2 πk – the Shannon entropy associ-

ated with the state-occupation probabilities at steady-state – for FSAs that “forget

their entire history” on each state transition.

One can further show that

−〈∆IR0S
j 〉 =

∑
j

qjHj(S
(n−1)|S(n))

where Hj(S
(n−1)|S(n)) is the classical conditional Shannon entropy of the (n − 1)-

th state (represented by the random variable S(n−1) = {k(n−1), π
(n−1)
k }) -conditioned

on specification of the final state S(n) - for transitions induced by input xj. This

quantity, which can heuristically be interpreted as the statistical uncertainty in the

initial state given the final state (averaged over final states, and for the j-th input),

is upper bounded in steady state by the Shannon entropy H({π}) of the steady-state

occupation probabilities {π}. The input-averaged information loss per step is thus

bounded in steady state as

0 ≤ −〈∆IR0S
j 〉 ≤ H({π})

with equality in the lower bound for reversible FSAs and equality in the upper bound

for FSAs that irreversibly lose all information about prior inputs on each state tran-

sition.

These considerations recommend the quantity −〈∆IR0S
j 〉 as a quantitative mea-

sure of FSA irreversibility, and support its heuristic interpretation as the average

per-step loss of information from the the FSA state about its own history. It can be

evaluated directly as a classical2 conditional entropy defined for an abstract FSA FA

2Note that the “informationally classical” nature of the irreversibility measure and corresponding
dissipation bound do not in any way require that the physical machine states are themselves classical.
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Figure 4.3. (a) State diagram of a simple four-state, two-input up counter FSA
(top) that resets for input 0 and increments for input 1, together with the associated
input-specific state mappings (bottom). (b) Lower bound on the average per-step
amount of energy dissipated into the FSA’s local environment as a function of the
reset probability q0. This bound reflects the component of dissipation resulting solely
from irreversible information loss.

with input pmf {q}, and used with (B.1) to lower bound the energy dissipation per

step for any physical FSA FP that realizes FA and is driven by an input source with

these same statistics.

4.2.3 Illustrative Examples

We now illustrate application of our FSA dissipation bound to a simple example

FSA. We consider a 2-bit binary up-counter with reset, which has four states and two

inputs. On each step, the counter increments if the input is x1 = 1 and resets if the

input is x0 = 0. The state diagram for this FSA is shown in Fig. (4.3), together with

the individual input state mappings L1 and L0 implemented by the FSA for inputs

x1 and x0.

This example, albeit simple, provides a good illustration of the input dependence

of reversibility and dissipation in FSA, as up counting is reversible (L1 is bijective)

whereas resetting is irreversible (L0 is non-injective). Since there is no information

We have taken the states of S to be generally quantum states that – together with the quantum
dynamics governing state transitions – satisfy the stated requirements for faithful realization of FA

by FP .
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loss for xj = x1 = 1 and total information loss for xj = x0 = 0, we have IR0S′
1 = IR0S

and IR0S′
0 = 0) and the computational irreversibility is

−〈∆IR0S
j 〉 =

∑
j

qj

(
IR0S − IR0S′

j

)
= q0IR0S = q0H({π}).

where {π} is the distribution of states in steady state. The corresponding lower bound

on the average amount of energy dissipated into the bath on each step is simply

∆〈EB〉 ≥ kBT ln(2)q0H({π}).

This dissipation bound is plotted as a function of the reset probability q0 in Fig.

4.3(b). In the small q0 limit, where the FSA is reversibly cycling through its four

states, the lower bound approaches zero. Dissipation increases with increasing q0,

as the FSA state evolution becomes random and the probability of information loss

from reset increases, up to q0 ≈ 0.6. The bound decreases with further increase in q0,

as skewing of the state occupation probabilities toward π0 = 1 reduces H({π}), until

the bound finally vanishes at q0 = 1 where the counter is reset in every step (and

H({π} = 0). In this limit there is no fundamental minimum dissipation even though

the reset mapping is irreversible, since the FSA remains frozen in the reset state and

there is no nontrivial history about which the FSA state can lose information on any

step.

4.3 Dissipation in Moore Machine

Moore machines are a type of deterministic FSA in which the output is a function

of the current state only, as shown in Fig. (4.4). This is the major difference with

Mealy machines, where the output of the FSA depends upon the current state of the

machine and the input (and will be discussed in the next section). The state transition
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Figure 4.4. General block diagram of a Moore machine. The output state is only
dependent on the current state of the FSA.

in a FSA is synchronous i.e associated with a time event e.g. a rising clock edge.

Hence the output in a Moore machine changes synchronously with the state of the

FSA. We will be dealing with irreducible Moore machines only. Like in the previous

section the abstract Moore machine is defined by FAM
∆
= {{σ}, {x}, {L}, {ω}, {J }}

consists of a finite set {σ} and {ω} of automaton and output states respectively, a

set {x} of input symbols that induce transitions between the automata states, a set

{L} of deterministic transition rules that govern the automata state transitions and

a set {J } of deterministic transition rules that map the automaton states to their

respective outputs.

4.3.1 Description of Physical Moore FSA

In this section we will provide the physical description of the abstract Moore finite

state automaton FA. We will formalize the physical realization of it’s states, inputs,

outputs and state transition. This description will be very similar to the description

of the deterministic FSA from the previous section.

Automata and Output States: Since the output is only dependent on the current state

of the system, the k-th automata state σk and it’s corresponding output state ωk =

J (σk) of the abstract Moore machine can be recast as a larger irreducible FSA without

any outputs from the previous section in which the k-th state of this new FSA is given
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as δk = {σk, ωk}. Let the state of this larger FSA be instantiated in distinguishable

orthogonal states {δ̂SMk } of generally quantum mechanical register system SM . The

state probability of δk is equal to the state probability of σk. The system interacts

with a local bath B, a finite heat bath in a thermal state ρ̂B at temperature T at the

start of a cycle.

Inputs: Random length-(n+1) strings ~X are once again physically implemented in the

state of a (n+1)-partite referent systemR = R0R1R2. Subsets ~Xk = X(0)X(1)...X(n−1)

of strings that map to machine state σSk are grouped into the mixed states ρ̂R0
k of the

referent R0, and the new incoming inputs X(n) and X(n+1) are instantiated as a

mixture of distinguishable pure states x̂R1
j of R1, and x̂R2

j of R2 respectively.

State Transition and Output Generation: The n-th cycle is realized by the dynami-

cal evolution of the state of SM interacting with the heat bath. Global evolution of

RSMB producing the state transition and output generation is assumed to be gov-

erned by the time-dependent Schrodinger equation to ensure consistency with physical

law. A different evolution operator is required for the synchronous and asynchronous

transformations.

This physical universe is completed with the local bath B being embedded in a

larger environment B̄. After every evolution, B is driven from equilibrium due to

its interactions with SM , and the larger environment B̄ rethermalizes B. This resets

the local bath back to the thermal state before another transition, removing all the

information about the referents present in the the bath, into the greater environment.

The rethermalization process allows us to treat the local heat bath as an ordinary

bath with no prior information about the FSA or the output register, at the start of

every operation.
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4.3.2 Dissipation Bound for Moore Machines

Theorem-2: For an abstract Moore machine FAM
∆
= {{σ}, {x}, {L}, {ω}, {J }},

implemented as a physical FSA FM =
{
SM ,R, {δ̂SM}, {x̂R}, {L̃M}

}
and input pmf

{q}, the input-averaged amount of energy dissipated to a thermal environment B on

each state transition is lower bounded in steady state as

∆〈EB〉 ≥ kBT ln(2)
∑
j

qj

(
IR0SM − IR0S′M

j

)
(4.4)

where kB is the Boltzmann constant, T is the environment temperature, and IR0SM −

IR0S′M
j is, for a state transition induced by input x̂R1

j , the reduction in quantum

mutual information between the state of the automata plus output system SM , and

the sequence of all past inputs physically instantiated in referent systemR0. From the

previous section, we know that this bound of an irreducible FSA with no outputs is

only dependent on the steady state probability distribution of the automaton states.

Since the state distributions of the original Moore machine with output and this

larger FSA without the outputs are the same, the lower bound on dissipation for the

Moore machine with an output is simply equal to the lower bound on dissipation of

the same FSA without the output. We will demonstrate with a simple example in

the next subsection.

4.3.3 Dissipation Bound for Moore Machine with Separate Output Reg-

ister

Earlier in this section, we analyzed the lower bound on dissipation in Moore

machines in which the output state was absorbed into the automaton state to form

new state machine. Since the outputs are uniquely determined by each FSA state,

this new FSA has the same number of states as the original FSA and will have no

lower bound on dissipation for generating the Moore machine output. The lower

bound on dissipation for this realization of the Moore machine is identical to a FSA
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without an output. However it might be the case that the output is realized as a

separate register system. The lower bound on dissipation in this scenario would be

the sum of the lower bound of the outputless FSA in steady state plus the cost of

generating the output at every clock signal (once per every state transition).

From section 4.2.2, the lower bound on dissipation for a physical FSA in steady

state is given by

∆〈EBFSA〉 ≥ kBT ln(2)
∑
j

qj

(
IR0S − IR0S′

j

)
(4.5)

We assume that the system generating the output using the FSA states as inputs

can be modeled as a L-machine from the previous chapter section 3.4, where the initial

input states are perfectly correlated to the FSA automata states and the final states

are the necessary outputs. The lower bound on dissipation for output generation

instantiated in systemM (which is in contact with it’s thermal bath at temperature

T ) is

∆〈EBMM 〉 ≥ −kBT ln(2)∆SM (4.6)

where ∆〈EBMM 〉 is the change in average energy of bath BM during the logical trans-

formation. −∆SM is the loss in von Neumann entropy of the system over the trans-

formation that generates the output.

Thus the total lower bound on dissipation for a Moore machine which generates

the output in a separate system is given by the sum of the individual lower bounds.

We have

∆〈EBTotal〉 = ∆〈EBFSA〉+ ∆〈EBMM 〉 (4.7)
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In the next subsection, this lower bound on dissipation is compared to the lower

bound obtained for output generation in a Moore machine in the previous subsection

using the example FSA from Fig. 4.6.

4.3.4 Illustrative Example

Consider the 2-bit binary up-counter with reset from the previous section. This

FSA has four automata states, two inputs and 2 outputs. As before on each step, the

counter increments if the input is x1 = 1 and resets if the input is x0 = 0. The output

is 0 for the FSA states 00,01 and 10 and the output is 1 for the state 11. The state

diagram for this Moore machine is shown in Fig. 4.6(a) and the corresponding larger

FSA in which the outputs are combined as part of the FSA in Fig. 4.6(b), together

with the individual input state mappings L1 and L0 implemented by this FSA for

inputs x1 and x0.

The dissipation bound is plotted as a function of the reset probability q0 in Fig.

4.6(c). The bound is exactly identical to the bound for the counter FSA without

the outputs from the previous section. This indicates that there is no additional

minimum cost associated with generating outputs in a Moore machine, since the

outputs are only dependent on the FSA states. However this result is based on our

ability to incorporate the output into the state of the larger FSA. We will leave the

case of generating the outputs using a separate output register system for the final

defense. The dissipation associated with generating outputs using the automaton

state as inputs under a L-machine picture would add an additional cost on top of the

minimum dissipation of the FSA state transition.

The dissipation bound for the Moore FSA in Fig. 4.6(a) with a separate output

generation process is shown in Fig. 4.3.4. We have plotted the dissipation cost of the

FSA in steady state (which is equal to the dissipation cost of the Moore machine in

which the output is combined with the FSA state) plus a cost of generating a output
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Figure 4.5. (a) State diagram of a simple four-state, two-input up counter Moore
FSA with 2 outputs - 0 for states 00, 01, 10 and 1 for the state 11. (b) The equivalent
FSA of the Moore FSA from (a), in which the outputs have been incorporated into the
FSA state. (c) Lower bound on the average per-step amount of energy dissipated into
the FSA’s local environment as a function of the reset probability q0. This bound
identical to the bound of the irreducible FSA without outputs from the previous
section.

as a L-machine transformation - all as a function of reset probability (q0). We can

clearly see the excess dissipation spent in generating the output separately.

4.4 Dissipation in Mealy machines

Mealy machines are a type of deterministic FSA in which the next automata state

and output are both functions of the current state and the latest input, as shown in

Fig. (4.7). This is the major difference with Moore machines, where the output of

the FSA depends only upon the current state of the machine. The state transition in

a FSA is synchronous i.e associated with a time event like a rising clock edge. Hence

the output in a Moore machine changes synchronously with the state of the FSA,
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Figure 4.6. Dissipation bound for the Moore FSA with a separate output register
for the FSA in Fig. 4.6(a). In the figure, we have the dissipation bound associated
with the steady dissipation in the FSA, the bound for the output generation and the
bound on the total dissipation which is the sum of the previous two terms.

while in a Mealy machine, it can also change asynchronously with input change. In

this section, we will deal with irreducible Mealy machines.

We will define our Mealy machine cycle as the period between two successive au-

tomata state transitions. In this paper we will calculate the lower bound on dissipation

associated with one such cycle. The heat dissipation arising from the irreversible in-

formation loss comes from the automata state transition and output generation that

occurs at the start of a cycle. Before the completion of the cycle, multiple new inputs

can arrive. These new inputs will generate a new output every time, which adds to

the heat dissipation. For the purposes of this paper, we will allow for one new input

to arrive within the cycle.

4.4.1 Description of Physical Mealy FSA

In this section we will provide the physical description of the abstract Mealy finite

state automata FA. We will formalize the physical realization of this FSA’s states

and outputs, inputs and operations.
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Figure 4.7. Conventional block diagram of a Mealy machine. Both the next state of
the automata and the output are functions of the current state and the latest input
in the Mealy machine. The state transition is synchronous and depends on the clock
signal. However the output change is asynchronous and can occur whenever the input
or the state changes.

Automata and Output States: Abstract FSA and output states are physically instanti-

ated in distinguishable orthogonal states σ̂Sk and %̂Ol , of generally quantum mechanical

register systems S and O respectively. Both systems interact with the local bath B.

B is a finite heat bath in a thermal state ρ̂B at temperature T at the start of a cycle.

Inputs: Random length-(n+1) strings ~X that are physically implemented in the state

of a (n+1)-partite referent system R = R0R1R2. Subsets ~Xk = X(0)X(1)...X(n−1)

of strings that map to machine state σSk are grouped into the mixed states ρ̂R0
k of

the referent R0, and the new incoming inputs X(n) and X(n+1) are instantiated as a

mixture of distinguishable pure states x̂R1
j of R1, and x̂R2

j of R2 respectively.

State Transition and Output Generation: The n-th cycle is realized by the dynamical

evolution of the state of S and O, interacting with their heat baths. Global evolution

of ROSB producing the state transition and output generation is assumed to be

governed by the time-dependent Schrodinger equation to ensure consistency with

physical law. A different evolution operator is required for the synchronous and

asynchronous transformations.
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This physical universe is completed with the local bath B being embedded in

a larger environment B̄ [38]. After every evolution, B is driven from equilibrium

due to its interactions with S and O, and the larger environment B̄ rethermalizes

B. This resets the local bath back to the thermal state before another transition,

removing all the information about the referents present in the the bath, into the

greater environment. The rethermalization process allows us to treat the local heat

bath as an ordinary bath with no prior information about the FSA or the output

register, at the start of every operation.

The n-th Mealy machine cycle is shown in Fig. 4.8. Initially, the current FSA

state encoded in the physical state of S is correlated with R0, the first (n-1) inputs

only. The output register state is encoded in the state of O and depends on the

current state of S and R1, the latest input which arrived prior to the start of the

n-th cycle. The dynamical evolution of R1OSB will leave the system S in the next

FSA state, and the output system O with the new output. This will weaken the

correlation between OS and R0, which means irreversible information loss and would

necessarily dissipate heat. The new state of O will be correlated to both the new

state of S and input R1. During the course of the cycle, the next input R2 will not

induce a change in the state of S, but the state of O will be conditionally overwritten.

We will quantify all the information loss that occurs over the course of this cycle and

show that it results in dissipation.

Initial States: At the start of the n-th cycle, the state of ROSB is described within

the density operator formalism as
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ρ̂ROSB =
∑
j

qj

(
x̂R1
j ⊗

∑
k

π
(n−1)
k

[
ρ̂R0
k ⊗ σ̂

S
k ⊗ %̂Okj

])
⊗ρ̂R2 ⊗ ρ̂Bth

=
∑
j

∑
k

qjπ
(n−1)
k ρ̂ROSBkj . (4.8)

With ρ̂ROSBkj = ρ̂R0
k ⊗σ̂Sk ⊗%̂Okj⊗x̂

R1
j ⊗ρ̂R2⊗ρ̂Bth and %̂Okj = Vj{σ̂Sk }, the output produced

by state σ̂Sk and input x̂R1
j . 3

Intermediate States: The n-th synchronous state transition and output generation is

a unitary quantum evolution

ρ̂ROSB
′
= Û1ρ̂

ROSBÛ †1 of the state of the systemROSB involving interactions between

R1OS and B given as Û1 = ÎR0R2 ⊗ ÛR1OSB
1 . To implement the abstract FSA FA

faithfully, Û1 should have the property that ρ̂OS
′

kj = TrRB[Û1ρ̂
ROSB
kj Û †1 ] = L̄j{σ̂Sk } ⊗

V̄j
{
L̄j{σ̂Sk }

}
∈ {σ̂S ⊗ %̂O}.

Also L̄j ∈ {L̄} and V̄j ∈ {V̄} are local non-unitary superperators that act on S and

O respectively to induce state transitions and output generation.

At the end of the unitary evolution, the state of ROSB is

ρ̂ROSB
′

=
∑
j

qj

(
x̂R1
j ⊗ π

(n−1)
k

[
ρ̂R0
k ⊗ ρ̂

OSB′
kj

])
⊗ ρ̂R2

=
∑
j

∑
k

qjπ
(n−1)
k ρ̂ROSB

′

kj (4.9)

where

ρ̂ROSB
′

kj = ρ̂R0
k ⊗ L̄j{σ̂

S
k } ⊗ V̄j

{
L̄j{σ̂Sk }

}
⊗ x̂R1

j ⊗ ρ̂B
′

kj ⊗ ρ̂R2 .

The bath B driven from equilibrium is rethermalized by B̄ before the start of the next

unitary evolution.

3ρ̂R0

k , σ̂S
k , etc. are density operators i.e., positive operators with a unit trace defined on the

(complex Hilbert) state spaces of R and S and respectively. ⊗ denotes the tensor (or Kronecker)
product.

75



Figure 4.8. Physical description of a Mealy machine cycle- It begins with a physical
representation of the joint output-state register OS interacting with the local bath B
(Initial), S is correlated to R0 and, O is correlated to S and new input, instantiated
in referent R1 . The state of OS is transformed at the start of the cycle where both
the state of S and O changes by interaction with R1 and B (Intermediate). After the
larger environment B̄ then rethermalizes B, the system interacts with referent R2 to
produce a new output, with the state of S unchanged (O loses correlation with R1

but S does not).

Final States: The joint system ROSB evolves unitarily to generate the new output

with no change in the system state S. The final state 4 of the composite is given by

ρ̂ROSB
′′

=
∑
j′

qj′
(
x̂R2

j′ ⊗ ρ̂
R0R1OSB′′
j′

)
where

ρ̂R0R1OSB′′
j′ =

∑
j

qj

[
x̂R1
j ⊗

∑
k

π
(n−1)
k

(
ρ̂R0
k ⊗ L̄j{σ̂

S
k }

⊗V̄j′
{
L̄j{σ̂Sk }

})]
.

This asynchronous generation of the new output is given by the unitary Û2 =
∑
j′

x̂R2

j′ ⊗

ÎR0R1 ⊗ ÛOSBj′ where ÛSBj′ has the property TrB[ÛSBj′ ρ̂
OSB′ÛSB

†

j′ ] = ρ̂OS
′′

j′ and

ρ̂OS
′′

j′ =
∑
j,k

qjπ
(n−1)
k

[
L̄j{σSk } ⊗ V̄j′

{
L̄j{σSk }

}]
.

4The intermediate ρ̂′ and final ˆrho
′′

density operators both characterize the states of the same
system ROSB over the course of the Mealy cycle
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The final states are such that S is correlated to the first n inputs, and O is to

the (n + 1)-th input and the first n-inputs through S. The bath B is once again

rethermalized by the larger environment B̄, before the start of the next cycle.

4.4.2 Dissipation Bound for Mealy machine over one Cycle

Using the referential approach as before, we will now derive the fundamental

dissipation bound for a physical FSA-Mealy machine with an output register over

one cycle. In this case, the states of the automata and the output are encoded in the

states of S and O, and the inputs xj are instantiated in the referent system R. The

input will select the transformation that S and O will undergo over the course of the

cycle.

Theorem-3 For physical FSA FP = {S,O,R, {σ̂S}, {%̂O}, {x̂R}, {L̄}, {V̄}} and

input pmf {q}, the input averaged amount of energy dissipated to a thermal environ-

ment B over one Mealy machine cycle is lower bounded in steady state as

∆〈EB〉cycle ≥ kBT ln(2)

(∑
j

qj

[
IR0OS
j − IR0OS′

j

]
+IR1OS′ +

∑
j

qjS(ρ̂OS
′

j )−
∑
j′

qj′S(ρ̂OS
′′

j′ )

)
(4.10)

where kB is the Boltzmann constant and T is the environment temperature. IR0OS
j −

IR0OS′
j is, for a state transition induced by input x̂R1

j , the reduction in quantum

mutual information between the joint state of the output and automata register OS

and the sequence of all past inputs physically instantiated in referent system R0.

IR1OS′ is amount of quantum mutual information between the joint state OS at the

intermediate state and the referent R1. S(ρ̂OS
′

j ) and S(ρ̂OS
′′

j′ ) are the self entropies of

the states of OS associated with the j-th input of R1 and the j′-th input of R2, at
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the intermdeiate and final stages respectively. The rigorous proof of the theorem-3 is

provided in Appendix B.2.

4.4.3 Illustrative Example for Mealy Machines

We illustrate the application of the bound to a simple 2-bit binary up-counter

with reset, The counter has four automata states, four outputs and two inputs 0 and

1. On each step, the counter increments if the input is x1 = 1 and resets if the input

is x1 = 0. The output at each step is the value of the next state. The state diagram of

this FSA is shown in the Fig. (4.9a). We will assume that the automata and output

states are physically instantiated as orthogonal pure states.

The lower bound on the average amount of energy dissipated into the bath over

every cycle reduces to

∆〈EB〉cycle ≥ kBT ln(2) {q0H({π}) +H({ψ})−H({ω})}

where H(.) is the classical Shannon entropy function for a probability distribu-

tion. {π} is the steady state distribution of the FSA, q0 is the reset probability,

the distributions {ω} = {q0, q0 · π3, (1 − q0) · π0, (1 − q0) · π1, (1 − q0) · π2} and

{ψ} = {q0 · (1 + π3), (1− q0) · π0, (1− q0) · π1, (1− q0) · π2}.

The dissipation bound is plotted as a function of the reset probability q0 for the

counter with and without outputs, in the Fig. (4.9b). For q0 = 0, the bound reaches

zero as the FSA reversibly recycles between the counter and output states. The

dissipation increases with increasing q0 as the state evolution becomes more random.

The difference between the two cases illustrates the energy dissipation arising from

the output generation. This then starts to decrease as the FSA automata and output

states are increasingly present in the reset states, and vanishes for q0 = 1 as the states

hold no information about it’s history to lose.
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Figure 4.9. (a) State diagram of a simple 2-bit up-counter FSA with four automata
states, four output states and two inputs. The counter resets for input 0 and incre-
ments for input 1. The output at each step is the new state that the system transitions
to. (b) Lower bound on the average per-cycle amount of energy dissipated into the
local heat bath by the FSA with outputs (blue) and without outputs (red) [138], as a
function of the reset probability q0. The difference between the two bounds illustrates
the energy dissipation arising from the output generation.

4.5 Probabilistic Finite State Automata

In this section, a more general finite state automata called probabilistic finite state

automata will be described and the fundamental lower bound on energy dissipation for

this FSA will be derived. Below we will provide abstract and physical descriptions

of probabilistic finite state automata, and use them to obtain the lower bound on

dissipation.

4.5.1 Abstract Probabilistic Finite-State Automata

An abstract FSA FA
∆
= {{σ}, {x}, {L}} as discussed before consists of a finite set

{σ} of states, a set {x} of input symbols that induce transitions between states, and

a set {L} of transition rules - one for each input - that govern the state transitions.

Specifically, for every input xj there is an “input transition rule” Lj that can map

every “current state” σk to multiple “next states” σ′kj at certain probabilities. Outputs

are generally defined for FSAs as well, but we do not consider them right now. An

FSA is probabilistic if input transition rules Lj can assign more than one next state

to every current state with a non-zero probability.
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The statistical properties of FSAs driven by random sequences – including the

amount of irreversible information loss – depend directly on the input statistics. For

input sequences of identically distributed discrete random variables X(n) = {q, x}

(each with the same symbol set {x} and corresponding probability mass function

{q}), the conditional probability that an FSA in state σk will transition to state σk′

on any given step is

pk→k′ =
∑

j∈{j}k→k′

πk′|(k,j)qj

(
{j}k→k′ = {j|Lj(σk) = σk′}

)
.

where πk′|(k,j) is the probability that the k-th state maps to the k′ state for the j-th

input, and
∑
k

πk′|(k,j) = 1. We can now generate the statistical transition matrix P

with elements pk→k′ . As before P satisfies the Markov property, and the “steady-

state” occupation probabilities for the FSA states can be obtained from P , either as

an eigenvector with an eigenvalue 1, or using the relation limn→∞ P
n = Pss.

4.5.2 Physical Probabilistic Finite-State Automata

We will now construct a physical description of a probabilistic FSA, defined ab-

stractly as above. We formalize this description after identifying the physical realiza-

tions of FSA states, inputs, and transitions.

• States: The abstract FSA states σk are faithfully represented in distinguishable

physical states σ̂Sk of a generally quantum-mechanical register system S, which

interacts with its local environment B. Here B is taken to be a (finite) heat

bath nominally in a thermal state ρ̂Bth at temperature T .

• Inputs: Random length-n input strings ~X are physically instantiated in the

state of a n-partite “referent” system R = R0R1. The i-th string of R0 instan-

tiated as ρ̂R0
i , leads to the FSA state ρ̂Si - consisting of distinguishable mixed
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states σ̂Sk of S. X(n) is represented by a mixture of pure distinguishable states

x̂R1
j of R1.

• State Transitions: The n-th state transition is realized by dynamical evo-

lution of the state of S, conditioned on the state of R1 (i.e. the n-th input)

and in interaction with B. Global evolution of the interacting composite R1SB

producing this transition is assumed to be governed by the time-dependent

Schrodinger equation to ensure consistency with physical law (implying unitary

evolution of the state of R1SB). The n-th input remains encoded in R1 at the

conclusion of the FSA state transition.

The “physical universe” relevant to description of the FSA is completed with the

FSA’s local environment B, which is embedded in a “greater environment” B̄ and

acts to “rethermalize” B whenever it is driven from equilibrium by interaction with

S during state transitions. B̄ is also taken to include all other subsystems required

for global closure of the composite system RSBB̄.

Consider the n-th state transition, which is depicted schematically in Fig. Prior

to this transition, the “current” FSA state encoded in the physical state of S is

correlated with R0 (i.e. the first n − 1 inputs) but not yet with R1 (i.e. the n-th

input). At the completion of the n-th state transition, correlations will have been

created between the state of S and the state of R1, and weakens the correlation

between S and R0. We will quantify this information loss in the next section and

show that it necessarily results in dissipation of energy to B, but first provide the

formal description of the probabilistic FSA state transitions upon which proof of the

dissipation bound is based.

Initial State: Prior to the n-th input, the statistical state of the composite RSB is

given by the density operator

ρ̂RSB = ρ̂R0S ⊗ ρ̂R1 ⊗ ρ̂Bth
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ρ̂RSB =

(∑
i

pi{ρ̂R0
i ⊗ ρ̂Si }

)
⊗

(∑
j

qjx̂
R1
j

)
⊗ ρ̂Bth (4.11)

=
∑
i

∑
j

piqj ρ̂
RSB
ij .

Here ρ̂Si =
∑
k

πk|iσ̂
S
k is a statistical mixture of the states of S that are correlated to

the i-th input string of R0, that map the initial state of the machine to these FSA

states. πk|i is the probability that the i-th input maps onto the k-th distinguishable

state of the FSA, instantiated as σ̂Sk . The FSA state is correlated only to the first

n− 1 inputs, and x̂R1
j is the state encoding the n-th FSA input x

(n)
j in R1, and

ρ̂RSBij = ρ̂R0
i ⊗ ρ̂Si ⊗ x̂

R1
j ⊗ ρ̂Bth.

State Transition: The n-th state transition is a unitary transformation

ρ̂RSB
′
= Û ρ̂RSBÛ †

of RSB involving interactions only between R1, S, and B:

Û = ÎR0 ⊗ ÛR1SB.

If the process is to physically implement an FSA defined by abstract states σk ∈ {σ}

(physically encoded in register states σ̂Sk ∈ {σ̂S}) and by input transition rules Lj ∈

{L}, then Û must be such that

ρ̂S
′

ij = TrRB[Û ρ̂RSBij Û †].
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This condition can be written as

ρ̂S
′

ij = L̃j(ρ̂Si )

to highlight connection to the abstract FSA description, where the L̃j ∈ {L̃} are

local, nonunitary input transition superoperators that act on S alone to induce the

required state transitions.

Final State: At the conclusion of the n-th state transition, the state of RSB is:

ρ̂RSB
′

=
∑
j

qj

(
x̂R1
j ⊗

∑
i

pi

(
ρ̂R0
i ⊗ ρ̂SB

′

ij

))
(4.12)

=
∑
i

∑
j

piqj ρ̂
RSB′
ij

where

ρ̂RSB
′

ij = ρ̂R0
i ⊗ L̃j(ρ̂Si )⊗ x̂R1

j ⊗ ρ̂B
′

ij .

The new register state is correlated with the previous register state (thus the first

n−1 inputs) and the n-th input, as is must be at this stage, and the bath has become

correlated with the n-th input and the previous register state.

We conclude this section by noting that each FSA transition is implicitly followed

by a spontaneous “rethermalization” of B by the greater environment B̄. This process

“resets” B to a thermal state before the next FSA transition, washing all information

about the history of the FSA from the register’s immediate surroundings into the

greater environment. Since the “universe” RSBB̄ is globally closed, this amounts to

destruction of correlations between RS and B and creation of correlations between

RS and B̄. This rethermalization of the FSA’s immediate surroundings by a “greater”

environment is a realistic process; it accommodates treatment of a finite local envi-

ronment as an ordinary heat bath - with no memory of past interactions with the

83



FSA - at the beginning of every state transition. (See [37] for further discussion of

this heterogeneous environment model.)

4.5.3 Dissipation Bound for Probabilistic FSAs

In this section, we will state the following theorem for the lower bound on dissi-

pation for the probabilistic FSA described above.

Theorem: For a physical probabilistic FSA FP =
{
S,R, {σ̂S}, {x̂R}, {L̃}

}
and

input pmf {q}, the input-averaged amount of energy dissipated to a thermal environ-

ment B on each state transition is lower bounded in steady state as

∆〈EB〉 ≥ kBT ln(2)

∑
j

qj

(
IR0S − IR0S′

j

)
+
∑
i

pi(H({π(n−1)
k|i })−

∑
(j)

qjH({π(n)
k′|(i,j)}))


(4.13)

where kB is the Boltzmann constant, T is the environment temperature, and IR0S −

IR0S′
j is, for a state transition induced by input x̂R1

j , the reduction in quantum mutual

information between the state of the register system S and the sequence of all past

inputs physically instantiated in referent system R0. H({π(n−1)
k|i }) is the Shannon

entropy of {π(n−1)
k|i }, the probability that the i-th input maps to the k-th state of

the FSA before the (n − 1)-th transition. H({π(n)
k|(i,j)}) is Shannon entropy of the

distribution {π(n)
k|(i,j)}, the probability that the (i, j)-th inputs maps to the k′ state

after the state transition. The full derivation of this theorem is available in appendix

(B.3)

4.6 FSA Computational Efficacy Measures

In this section, we will describe computational efficacy measures for deterministic

finite state machines, similar to those described for deterministic L-machines intro-

duce in [37] and discussed in the previous chapter 3, section 3.5. These will allow

us to quantify how well the evolution of a physical system accurately instantiates a
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particular FSA state transition. The two measures derived here - FSA computational

fidelity and representational faithfulness will achieve this and provide a relationship

between the efficacy of an instantiation and the lower bound on dissipation.

As before, we can view the deterministic FSA as a set of deterministic L-machines

that are conditioned upon the j-th input. Since we know how to characterize the com-

putational efficacy of these L-machines already (from the previous chapter), we can

construct the FSA measures as a form of weighted average over the individual L-

machines. We will start by providing a different (general) description of the physical

deterministic FSA, one in which we do not assume that the physical states represent-

ing the automata states are not orthogonal and distinguishable. Prior to the n-th

input, let the statistical state of the composite RSB be given by the density operator

ρ̂RSB = ρ̂R0S ⊗ ρ̂R1 ⊗ ρ̂Bth

This can be expanded as

ρ̂RSB =

(∑
i

pi{ρ̂R0
i ⊗ ρ̂Si }

)
⊗

(∑
j

qjx̂
R1
j

)
⊗ ρ̂Bth (4.14)

=
∑
i

∑
j

piqj ρ̂
RSB
ij .

where S, R and B are instantiations of the FSA, inputs and thermal bath respectively.

We can rewrite the density operator in terms of the k abstract FSA states and the

state probability π
(n−1)
k as

ρ̂RSB =

(∑
k

π
(n−1)
k ρ̂R0S

k

)
⊗

(∑
j

qjx̂
R1
j

)
⊗ ρ̂Bth (4.15)
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where the density operator of the k-th state is given by ρ̂R0S
k (as opposed to orthogonal

σ̂Sk ’s from the earlier sections)

ρ̂R0S
k = 1

π
(n−1)
k

∑
i

piπ
(n−1)
k|i (ρ̂R0

i ⊗ ρ̂Si ).

where we have π
(n−1)
k|i as the probability that the i-th input string maps to the k-th

state of the FSA (assuming we are starting from an initial single state), and we have∑
k

π
(n−1)
k|i = 1.

At the conclusion of the n-th state transition, the state of RSB is:

ρ̂RSB
′

=
∑
j

qj

(
x̂R1
j ⊗

∑
i

pi

(
ρ̂R0
i ⊗ ρ̂SB

′

ij

))
(4.16)

=
∑
j

qj

(
x̂R1
j ⊗ ρ̂

R0S′
j

)

where ρ̂R0S′
j can be expanded as

ρ̂R0S′
j =

∑
i

pi(ρ̂
R0
i ⊗ ρ̂S

′

ij ) (4.17)

=
∑
k′

π
(n)
k′|j ρ̂

R0S′
k′|j

=
∑
k′

π
(n)
k′|j

(
1

π
(n)
k′|j

∑
i

piπ
(n)
k′|(i,j)(ρ̂

R0
i ⊗ ρ̂S

′

ij )

)

where π
(n)
k′|j is the probability that the j-th inputs maps to the k′ state of the FSA

at the n-th transition, and π
(n)
k′|(i,j) is the probability that the (i, j)-th inputs of R0R1

maps to the k′ of the FSA at the n-th transition. For consistency, we require that∑
k′
π

(n)
k′|j = 1 and

∑
k′
π

(n)
k′|(i,j) = 1.

As before the dissipation bound for the FSA in steady state is given as
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∆〈EB〉 ≥ kBT ln(2)
∑
j

qj

(
IR0S − IR0S′

j

)
where we now have

IR0S = S(ρ̂S)−
∑
i

piS(ρ̂Si )

IR0S′
j = S(ρ̂S

′
j )−

∑
i

piS(ρ̂S
′

ij )

We can rewrite the terms inside the bracket as IR0S − IR0S′
j as

IR0S − IR0S′
j = IR0S −H(X(n−1)) +H(X(n−1))− IR0S′

j

where H(X(n−1)) is the Shannon entropy of the variable X(n−1) with probability

distribution {π(n−1)
k }, that represents the probability distribution of the k states of

the FSA prior the n-th state transition. In the earlier derivation of the lower bound

on dissipation for deterministic FSAs, we have IR0S = H(X(n−1)). This is because

we implicitly assumed that there are orthogonal physical states {σ̂Sk } of S that are

the physical instantiations of the abstract FSA states, and evolution of the system

are faithful realization of the FSA state transitions. If the deterministic FSA indeed

is not properly physically instantiated (as it is required in order to define efficacy

measures), then we should expect for IR0S 6= H(X(n−1)). Clearly we can see that

the IR0S and H(X(n−1)) terms are independent of j. Remembering that since FSA

can be viewed as L-machines conditioned on the j-th input, the second half of the

expression above H(X(n−1))−IR0S′
j is very similar to the information loss term used

to obtain computational efficacy measures for L-machines in the previous chapter.

We can now write the H(X(n−1)) for the j-th conditioned L-machine as

H(X(n−1)) = H(Y
(n)
j ) +H(X(n−1)|Y (n)

j )
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where Y
(n)
j is a random variable that represents the states of the FSA after the n-th

state transition for the j-th input of R1, and are characterized by the probability

distribution {πk′|j}. H(X(n−1)|Y (n)
j ) is the conditional Shannon entropy of X(n−1)

given Y
(n)
j . We can expand IR0S′

j in a similar manner

IR0S′
j = S(ρ̂S

′

j )−
∑
i

piS(ρ̂S
′

ij ) (4.18)

= S(ρ̂S
′

j )−
∑
k′

π
(n)
k′|jS(ρ̂S

′

k′|j) +
∑
k′

π
(n)
k′|jS(ρ̂S

′

k′|j)−
∑
i

piS(ρ̂S
′

ij )

where we defined ρ̂S
′

k′|j = 1

π
(n)

k′|j

∑
i

piπ
(n)
k′|(i,j)(ρ̂

R0
i ⊗ ρ̂S

′
ij ) and that

∑
k′

π
(n)
k′|(i,j) = 1, we have

∑
k′

π
(n)
k′|j ρ̂

S′
k′|j =

∑
k′

π
(n)
k′|j

(
1

π
(n)
k′|j

∑
i

piπ
(n)
k′|(i,j)ρ̂

S′
ij

)
(4.19)

=
∑
k′

∑
i

piπ
(n)
k′|(i,j)ρ̂

S′
ij

=
∑
k′

π
(n)
k′|(i,j)

∑
i

piρ̂
S′
ij

=
∑
i

piρ̂
S′
ij

This allows us to write

∑
i

piS(ρ̂S
′

ij ) =
∑
k′

π
(n)
k′|j

(
1

π
(n)
k′|j

∑
i

piπ
(n)
k′|(i,j)S(ρ̂S

′

ij )

)

If we define the ensemble εS
′

Y
(n)
j

= {π(n)
k′|j, ρ̂

S′
k′|j} and the ensemble εS

′

k′|j = {piπk′|(i,j)
π

(n)

k′|j
, ρ̂S

′
ij },

we can then write the above expression for IR0S′
j as
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IR0S′
j = S(ρ̂S

′

j )−
∑
k′

π
(n)
k′|jS(ρ̂S

′

k′|j) +
∑
k′

π
(n)
k′|jS(ρ̂S

′

k′|j)−
∑
i

piS(ρ̂S
′

ij ) (4.20)

= χ(εS
′

Y
(n)
j

) +
∑
k′

π
(n)
k′|jχ(εS

′

k′|j)

where χ(εS
′

Y
(n)
j

) and χ(εS
′

k′|j) are the Holevo information associated with the εS
′

Y
(n)
j

and

εS
′

k′|j respectively. Thus we can write part of information loss about R0 associated

with j-th conditioned L machine of the FSA as

H(X(n−1))− IR0S′
j =

[
H(Y

(n)
j ) +H(X(n−1)|Y (n)

j )
]
−

[
χ(εS

′

Y
(n)
j

) +
∑
k′

π
(n)
k′|jχ(εS

′

k′|j)

]
Rearranging the above terms as

H(X(n−1))− IR0S′
j = H(Y

(n)
j )− χ(εS

′

Y
(n)
j

) +H(X(n−1)|Y (n)
j )−

∑
k′

π
(n)
k′|jχ(εS

′

k′|j)

As defined in the previous chapter, we can define the computational fidelity Fj

and representational faithfulness fj of the j-th L machine of the FSA as the following

Fj =
χ(εS

′

Y
(n)
j

)

H(Y
(n)
j )

fj = 1−

∑
k′

π
(n)
k′|jχ(εS

′

k′|j)

H(X(n−1)|Y (n)
j )

In the above equations,fj captures whether the logical transformation associated with

the j-th L is faithfully implemented, i.e. whether the physical states of S that rep-

resent the FSA states after the state transition have more information about the

present state than that is allowed by the logical state transition mappings. Fj is a

measure on the distinguishability of the FSA states irrespective of the faithfulness.,

and the amount of information of the next FSA states in the j-th L machine that

is encoded in the states of S. Now armed with the fidelity and faithfulness of each

of the conditioned L-machines, we can now derive the efficacy measures of the entire

deterministic FSA.
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4.6.1 FSA Representational Faithfulness

The L-machine representational faithfulness was used to capture whether the com-

putational channel completed the work of implementing a logical transformation L.

This would require all device input states belonging to the same logical output of L

must evolve into the same device output state. In FSAs, it would be necessary for

all the current FSA states (before the state transition) that map to the same next

abstract FSA state (after the state transition), to evolve to the same physical FSA

state of S. The FSA faithfulness measure will capture “how well” the physical system

realizes this across all the L-machines. This is equivalent to requiring that all of the

conditioned L to be instantiated faithfully. Thus ∀(j, k) ∈ {(j, k)}k′ , we would have

Lj(σ̂Sk ) = ρ̂S
′

jk = σ̂S
′

k′ . The FSA representational faithfulness will be defined as

fFSA = 1−

∑
j

∑
k′

π
(n)
k′|jχ(εS

′

k′|j)∑
j

H(X(n−1)|Y (n)
j )

(4.21)

This can be rewritten in terms of fj as

fFSA =

∑
j

qjfjH(X(n−1)|Y (n)
j )∑

j

qjH(X(n−1)|Y (n)
j )

(4.22)

Since we have 0 ≤ fj ≤ 1, we will also have 0 ≤ fFSA ≤ 1, with FFSA = 0 if and

only if the fj = 0 for all j. That would mean that each of the individual conditioned

L-machines are instantiated completely unfaithfully, and thus the entire FSA is also

unfaithfully instantiated. And when fj = 1 for all j, we have the representational

faithfulness of the FSA fFSA = 1, which indicates that the physical states of S after

the state transition do not contain more information about the previous states of the

FSA before the state transition than what is allowed by the abstract state mappings.
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4.6.2 FSA Computational Fidelity

The FSA computational fidelity FFSA is measure of the distinguishability of FSA

states after the state transition, independent of it’s faithfulness. It is related to

the amount of information about that states of the FSA after the transition that is

encoded in physical state of S. It can be defined as the

FFSA =

∑
j

qjχ(εS
′

j )∑
j

qjH(Y
(n)
j )

(4.23)

The above equation can be written in terms of the computational fidelity of the

conditioned L machines Fj as

FFSA =

∑
j

qjFjH(Y
(n)
j )∑

j

qjH(Y
(n)
j )

(4.24)

From the above equation we can see that similar to the Fj’s, 0 ≤ FFSA ≤ 1. Also

FFSA = 1 when all the Fj’s are equal to 1. This means that if in all the conditioned L

machines, if the states of the FSA after the state transition are perfectly distinguish-

able, then the states of FSA as a whole are perfectly distinguishable. Similarly we

have FFSA = 0, when Fj = 0 for all j. Thus if none of the states of the FSA in any

of the j L machines, then the states of the FSA as a whole are also indistinguishable.

Along with representational faithfulness, these efficacy measures allows us to quantify

how well a FSA state transition is instatiated in the evolution of a physical system

S. In the next subsection, we will relate these measures to the information loss that

occurs over the state transition.

4.6.3 Information Loss in the FSA in terms of FSA Efficacy Measures

In this section, we will describe the information lost about the past inputs R0 over

a state-transition in terms of the FSA efficacy measures described in the previous
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section. This will allow us to directly understand the effect of the efficacy measures

on the lower bound on dissipation.

IR0S −
∑
j

IR0S′
j = IR0S −H(X(n−1)) +H(X(n−1))−

∑
j

IR0S′
j

From the previous subsections, we know that we can write H(X(n−1))−
∑
j

IR0S′
j as

H(X(n−1))−
∑
j

IR0S′
j =

∑
j

qj

(
H(Y

(n)
j ) +H(X(n−1)|Y (n)

j )− χ(εS
′

Y
(n)
j

) +
∑
k′

π
(n)
k′|jχ(εS

′

k′|j)

)
(4.25)

Rearranging the terms, we can rewrite the above expression in terms of the FSA

efficacy measures as

H(X(n−1))−
∑
j

IR0S′
j = (1− FFSA)

∑
j

qjH(Y
(n)
j ) + fFSA

∑
j

qjH(X(n−1)|Y (n)
j )

(4.26)

Thus the information loss about R0 conditioned upon R1 can be written as

IR0S −
∑
j

IR0S′
j = IR0S −H(X(n−1)) (4.27)

+ (1− FFSA)
∑
j

qjH(Y
(n)
j ) + fFSA

∑
j

qjH(X(n−1)|Y (n)
j )

As was the case with information loss in the L machine, the first term in the

above equation represents the undesirable information loss associated with the indis-

tinguishability of the FSA states, and the second term corresponds to the necessary

information loss that is needed to faithfully implement the state transition. When

the FSA state transitions are implemented perfectly, IR0S−H(X(n−1)) and we would

have FFSA = 1 and fFSA = 1. Thus the conditioned information loss is given by
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IR0S −
∑
j

IR0S′
j =

∑
j

qjH(X(n−1)|Y (n)
j ). If the state transition is implemented un-

faithfully fFSA = 0, but with perfectly distinguishable states FFSA = 1, we have

IR0S −
∑
j

IR0S′
j = 0 if IR0S = H(X(n−1)).

4.6.4 Lower Bounds on Energy Dissipation in Terms of Efficacy Measures

In Eq. (4.27), we have related the conditioned information loss in a state transition

with the efficacy which indicated how well that FSA state transition was achieved.

Since this information loss is directly related with the heat dissipation to the envi-

ronment for a FSA in steady state, substituting Eq. (4.27) in Eq. (B.1), we get

∆〈EB〉 ≥ kBT ln(2)[IR0S −H(X(n−1)) (4.28)

+ (1− FFSA)
∑
j

qjH(Y
(n)
j ) + fFSA

∑
j

qjH(X(n−1)|Y (n)
j )]

The above equation provides a very important relation between the lower bound

on the physical cost the user must pay to achieve the FSA state transition in terms

of the efficacy measures fidelity and faithfulness that quantify how well the state

transition has been achieved.

4.7 Dissipation in FSA with Correlated Inputs

Throughout this chapter, we have described both deterministic and probabilistic

FSA that are driven by IID inputs. However in a lot of cases, the inputs to the FSA

are often temporally correlated, especially in learning operations which are character-

ized by inputs with significant spatial and temporal correlations. In this section, we

will provide the lower bound on dissipation in finite state automata for temporally

correlated inputs. The physical probabilistic/deterministic FSA will be described as

before, except for the fact that the inputs R will not be independent in time anymore

as shown in Fig. 4.10.
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Figure 4.10. Physical description of an FSA with correlated driving inputs under-
going a state transition. The system S, which registers the FSA state, is initially
correlated with previous inputs physically encoded in R0 and is indirectly correlated
to R1 through R0. The quantum mutual information between R1 and S before the
state transition IR1S can be seen as a prediction component.

Theorem: For physical FSA FP =
{
S,R, {ρ̂S}, {x̂R}, {L̃}

}
and input pmf {q},

the input-averaged amount of energy dissipated to a thermal environment B on each

state transition is lower bounded as

∆〈EB〉 ≥ kBT ln(2)

(∑
j

qj[S(ρ̂Sj )− S(ρ̂S
′

j )]

)
(4.29)

where kB is the Boltzmann constant and T is the environment temperature. For a

state transition induced by input x̂R1
j , ρ̂Sj and ρ̂S

′
j are the density operators associated

with the j-th input before and after the state transition. This can be rewritten in

information theoretic terms as

∆〈EB〉 ≥ kBT ln(2)
[
−∆SS + ∆IR1S

]
(4.30)

where −∆SS is the reduction in von Neumann entropy of the system S over the

transition, and ∆IR1S = IR1S′ −IR1S is the change in quantum mutual information

between the system S and the latest input R1. The quantum mutual information

between S and R1 before the state transition IR1S , can be seen as a measure of

prediction of the next input R1 by the system S. In the next few sections, we will
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describe a simple machine trying to learn the external input pixel values and calculate

the lower bound on dissipation for both temporally correlated and independent inputs.

The detailed proof of this theorem is available in appendix (B.4).

4.7.1 Illustrative Example: A Simple Learning Machine

We now apply the lower bound on dissipation for FSA with correlated inputs to a

device with a functionality and input environment inspired by learning applications.

This example is adapted from the author’s work in [44]. Consider a system comprising

an array of simplified artificial synapses. The system is a functionally enhanced

memory tasked with learning or creating a model of a slowly changing environment

from partial observations. While learning is essential, most experiences do not cause

a given synapse to change state, and we will exploit this low probability of actual

learning to lower the minimum energy of operation. The environment comprises

of an array of n × n (here n=3) data items or pixels that take the values 1 and

+1. We will evaluate two different scenarios for the environment, one where all the

pixels are spatially independent and the other where the pixels in a row are perfectly

correlated. Observations are of one pixel (or row) at a time, with probability p

that a specific pixel (respectively, row) is observed in each step in cases of spatially

independent (respectively, correlated) pixels. The system has an internal n×n array

of functionally enhanced storage cells and shift registers that drives both the row and

column of the internal array with the observed pixel value of 1 or +1. When the

selected cell receives (1, 1) or (+1,+1), it remembers the stimulus value. Each pixel

in the environment changes with time at a rate corresponding to a probability q of

a change per observation. The system will be modeled in steady state, so an initial

condition is not needed. The system could drive multiple rows and columns at once

and include both 1 and +1 data values in the same observation, but this will not be

considered here. An implementation of the example system is illustrated in Fig. 2A,
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which is an n× n array of the synapse machines in a framework that transmits data

past the array as shown.

The system monitors a stream of 2n parallel data inputs from the environment

(one for each row and column), which is assumed to be ongoing and which is not

destroyed or erased by the system. For the case of single pixel observations, the

stream provides a single nonzero, 0/1, stimulus on each set of 2n data inputs as

shown in Fig. 4.11(a) to write into the corresponding core. (In the case of the

spatially correlated environment, the stream contains multiple 0 inputs to update an

entire row of cores with the same value.) As the data flows downward through the 2n

shift registers, the values on the bottom row are translated into current in the blue

and red wires. The wires become rows and columns of an array tilted at 45 degrees

where the row-column intersections each flow through the center of a core. Each core

flips to align with its magnetic field, but only if the field is above a threshold and a

core will not flip if it is already in the correct state. The system would be engineered

to flip magnetization at 1.5 units of current flowing through each core. Thus, a core

exposed to +1 on the row wire and +1 on the column wire will have total current

+2 and would flip magnetization to the green state provided it was not in the right

state already. Vice versa for −1 and a red state. Magnetic cores dissipate energy

when they change state, but nearly zero energy otherwise. Unless the two currents

are in the same direction, the total current will be below the threshold and there will

no state change and no energy dissipation associated with core state changes. Fig.

4.11(a) illustrates the system processing the data, specifically at step n. Steps 1-3

cause the system to learn pixels, setting the three non-white cores shown in figure;

the white cores are irrelevant to the discussion and could be either red or green. The

system then experiences a long sequence of steps containing repeating known pixels.

In the last row of Table I, the learning machine observes a change in the external data

set. The {bottom, left} pixel changes from 1 to +1 and is recorded as the leftmost
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Figure 4.11. (a) The learning machine described in the section using the 3×3 cores
receiving 2 × 3 = 6 inputs from the environment [44]. (b) The dissipation analysis
using the bound for FSA with temporally correlated inputs described in this section.
Also included in the top-right corner is the gate equivalent circuit of every learning
core.

core in Fig. 4.11(a) flips. We now consider lower bounds on the energy dissipation

for this learning machine.

4.7.2 Dissipation Analysis for Learning Machine

In this section, we obtain lower dissipation bounds for the learning machine de-

scribed above. We will start with a limiting dissipation analysis of a single core, and

then calculate the same for the entire learning machine and elucidate the differences

in the dissipation for the two different pixel environment and the input stream cases

mentioned in the previous section. Each magnetic core behaves as a finite-state au-

tomaton, as does the entire learning machine. Thus we use the dissipation bounds

obtained earlier in the chapter for FSA driven by IID information sources [138], as well
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as by inputs with temporal correlations that would be common for learning scenarios

in slow-changing environments.

The FSA description of each core is as follows: The FSA state corresponds to the

current magnetization state of the core. FSA inputs l and r correspond to the current

states in the blue and red wire respectively. The next state of the core s′ depends

upon its current state s and the input values on the wires. We use the random

variables S, S ′, L and R for a statistical description of the current and next state

of the core, and for the two inputs, respectively. Assuming that the magnetization

states of the core are perfectly distinguishable, the minimum energy dissipated into

the environment (thermal bath B at temperature T ) as the core (in steady state)

undergoes a transition from s to s is

〈∆EB〉 ≥ kBT ln(2) [H(S|LR)H(S ′|LR)]

where H(S|LR) and H(S ′|LR) are the conditional Shannon entropies of the core

state distribution given the inputs, before and after the state transition respectively.

The inputs (l, r) = (+1,+1) and (l, r) = (1, 1) write +1 and 1 into the core states

respectively, regardless of the previous state. This merging of the core states for

certain l and r inputs is the source of the irreversibility and energy dissipation into

the environment.

We have calculated the limiting dissipation for the learning machine with p = 0.01

and q = 0.01, where p is the probability of seeing learnable data, i.e. the probability

of seeing the inputs (l, r) = (+1,+1) or (l, r) = (1, 1). And q is the probability

that given the presence of learnable data, the data value changes in the environment

since the last time that data was observed. The input probabilities are functions of

p, q, and the steady state core state distribution is P (S = +1) = P (S = 1) = 0.5.

The lower bound on energy dissipation calculated for a single core of the learning

machine both from the FSA description and the modified Landauer-like analysis

(Fig. 4.11(b)) is 〈∆EB〉 ≥ 0.0006kBT per operation. The 1, 000× difference between

98



the limiting dissipation for the magnetic core and the “kBT ln 2 per operation” rule of

thumb stems largely from the input probabilities selected for this learning example,

which correspond to learning with a slowly-changing environment. We now extend

our analysis to the entire learning machine for the two scenarios introduced in the

previous section. The magnetic cores are assumed not to interact with one other.

In the first case, the pixels in the 3 × 3 environment are spatially independent and

the cores updated one at a time randomly. The limiting dissipation bound for the

entire learning machine will be equal to the sum of the dissipation bounds for the

nine individual cores. For p = 0.01 and q = 0.01, we have the lower bound on

the energy dissipated into the environment for the nine-core learning machine to be

〈∆EB〉 ≥ 9 × 0.0006kT = 0.0054kT . In the second case, updating an entire row

with correlated inputs, will produce correlations between the cores of each row. As a

result, the limiting dissipation of the entire learning machine will be < 9 times that

of a single core. Using the same values for p and q as before, we have the lower bound

on the energy dissipation of the learning machine of 〈∆EB〉 ≥ 0.00168kBT . Thus, the

limiting dissipation values for variations of the learning machine can vary significantly,

depending upon the characteristics of the input environment and the updating scheme

employed, even for a fixed limiting dissipation values for the individual cores.

We propose the following Principle of aggregation conjecture:

The minimum energy dissipation of a function will always be less than or equal to the

minimum for a realization as a disaggregated group of lower level (often non-optimal)

logical primitives like NAND and NOr.

The proof of this conjecture is beyond the scope of this dissertation, but represents an

important problem that needs to be rigorously solved. However we will illustrate this

principle using the following example. Consider the magnetic core from the learning

machine. Each of the nine cores is functionally equivalent to the logic circuit in Fig.

4.11(b), comprised of NAND primitives (two of which use three-valued inputs). A
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dissipation analysis of this circuit using the same input distribution as the magnetic

core implementation, and assuming that the gate operations are not conditioned upon

l and r inputs, gives a dissipation bound of 〈∆EB〉 ≥ 2.8939kBT (obtained by calcu-

lating the lower bound on dissipation for each gate in the circuit given the probability

distributions of its inputs). This is much greater than 0.0006kBT , the large differ-

ence attributable to a highly non-optimal disaggregation of the logic function using

gate-level primitives. This dramatically illustrates both the aggregation principle and

the need for careful analysis and interpretation of the fundamental lower bound on

computation. Furthermore analysis of this type will pave the way moving forward in

identifying optimal primitives for implementation of different functions.

4.8 Summary

In this chapter, we introduced a physical description of finite state state automata

and derived a fundamental lower bound on the average energy dissipated per state

transition in a finite-state automaton was obtained for deterministic FSAs without

an output, Mealy machine with outputs and irreducible probabilistic FSA driven by

random, classical input strings. The bound, which follows from dynamical laws and

entropic inequalities alone, depends on the input-averaged amount of information the

FSA loses about its own history on each step as well as the temperature of the FSAs

local environment. In the case of the deterministic FSA, the quantity corresponding

to input-averaged information loss was proposed as a measure of the computational

irreversibility of an FSA driven by an input source with specified statistics. We then

calculated the bounds for a simple 2-bit counter with and without an output.

Following this, we introduced computational efficacy measures for the FSA, similar

to the ones discussed in the previous chapter for L-machines - the FSA computational

fidelity and representational faithfulness and established the relationship between

these measures and the lower bound on dissipation. We concluded the chapter by
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deriving the lower bound on dissipation for a FSA that is driven by a source that

produces temporally correlated inputs. The correlation between the FSA system S

and the incoming input forms a prediction component, which lowers the dissipation

bound. The theoretical tools obtained in this chapter can be used to explore limits

on the inherent dissipative characteristics of new and unfamiliar approaches to digital

computation, independent of considerations related to technological implementation.

In the next chapter, we will use these tools to study the fundamental lower bounds

on dissipation in neural networks, and establish the ultimate dissipation limits of

learning.
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CHAPTER 5

DISSIPATION IN NEURAL NETWORKS

With the future of computing heavily geared towards applications that involve

handling and learning from large amounts of data, nanoscale implementation of ma-

chine learning algorithms in neuromorphic hardware will greatly increase the efficiency

with which large amounts of data can be handled and learned from [53]. Possible im-

plementations include phase change material (PCM) [54], spin torque [55], memristor-

based [56] and optical [57] neuromorphic systems. As exploration of these and other

emerging computing paradigms intensifies, evaluation of their energy efficiency limits

will become increasingly important. We must know where these limits lie for com-

plex systems realized in existing and emerging nanocomputing paradigms - including

neuromorphic paradigms - if we are to comparatively assess their ultimate potential

for energy efficient computation.

In the previous chapter, the fundamental lower bounds on dissipation for FSA

were derived and calculated for simple example cases. In this chapter, we will extend

the that work and present results on fundamental, technology independent dissipa-

tion limits associated with training and testing feedforward neural networks will be

presented and evaluated for a simple perceptron on a classification task. Dissipa-

tion costs associated with the use of Hopfield and Boltzmann networks as content

addressable memories are also studied. Such analyses represent first steps in the de-

termination of fundamental efficiency limits for complex neuromorphic systems. The

chapter is organized as follows - we will first introduce feedforward networks, and

their training and testing procedures, followed by Hopfield and Boltzmann recurrent
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neural networks. We will then proceed to describe training and testing in feedfor-

ward and recurrent network as state transitions, and calculate the lower bound on

energy dissipation associated with each of these networks during both the training

and testing phases. We then study the effect of the learning rate, input probability

distributions, update policy and pseudo-temperature on the dissipation bound with

illustrative examples. The chapter will end with a discussion on the identification of

learning rules from thermodynamic cost functions.

5.1 Neural Networks and Threshold Logic

The idea of artificial neural networks were derived from their biological counter-

parts. They are networks of functions in which the nodes are made up of the simplest

kind of computing units that are a generalization of the common logic gates used in

conventional computing. These units usually operate by comparing their total input

with a threshold and are known as threshold logic. The directed edges of the net-

work between the nodes are weighted. The goal of this network is to behave like a

“mapping machine” and model the n-input, m-output function F : Rn → Rm.

The function computed at every nodal unit in the network is a simple function of

the n-incoming inputs. Since the inputs have to reduced to a single numerical value

in threshold computing units, they are divided into two functional parts. The first

part is the integration function f that reduces the n arguments to a single value,

and the output or activation function g produces the output of this node taking that

single value as its argument. A common integration function used is the weighted

addition function (where the inputs are weighted according to the strength of the

directed edges in the network. The whole operation can also be viewed as a matrix

multiplication). The McCulloh-Pitts neuron is one of the simplest forms of threshold

units which uses the weighted addition function for f , and the activation function is
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the non-linear Heaviside step function with threshold θ. Thus the output of these

units are always a 0 or a 1.

A simple and popular classification of these neural networks is based on the edges

between these nodes and the flow of information through the network. There are

feedforward networks in which there no cycles and information flows from the output

to one node, through the directed edge to the input of the next node. The computation

is well defined and there is no need to synchronize the computing units. These

networks are extremely powerful since it can be shown that any function F : {0, 1}n →

{0, 1} can be implemented with a network of McCulloh Pitts neurons of two layers

[58], [59]. The other type of neural networks are recurrent neural networks, in which

the connections do form a cycle. The output of a node is fed back to the input and

is a form of recursive computation. In addition to the interconnection between the

nodes, the temporal step at the current state of the network have to be also taken

into account for computing. In the following sections, we will delve deeper into both

types of neural networks and derive a lower bound on the dissipation associated with

learning and computing desired functions.

5.2 Feedforward Neural Networks: Perceptron

As defined previously, a feedforward network is a type of artificial neural network

wherein connections between the neuronal nodes do not form a cycle and the informa-

tion moves in only one direction - forward, from the input nodes, through the hidden

nodes (if any) and to the output nodes. The simplest kind of feedforward neural

network are single layer perceptron networks in which the inputs are fed directly to

the outputs via a series of weights. They can be constructed with the McCulloh-Pitts

neurons explained in the previous section. The sum of the products of the weights

(along the edges between the nodes) and the inputs is added together in each node,

and if the value is above the threshold µ, the neuron unit fires and produces the
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Figure 5.1. (a) AND gate as classification task. (b) Single node simple perceptron
with inputs (x1, x2), weights (w1, w2) and output y required to perform the AND
classification task. (c) Gradient descent on the squared error function E to obtain
the global minimum.

output value y of ’1’, otherwise it takes the deactivated value ’0’ [58]; as indicated

below

y =

 1 : w · x− µ ≥ 0

0 : w · x− µ < 0

where w · x =
∑
i

wixi is the dot product between the weights {w} and inputs {x},

and µ is the bias.

Perceptron neural networks are linear classifiers and can be used to perform sim-

ple classification tasks if the labeled data vectors (collection of inputs {x} and the

correct classification outputs d) are linearly separable, like in an AND or OR gate. If

the vectors are not linearly separable, we cannot find the right weights for which all

vectors are classified properly. The most famous example of the single-layer percep-

tron’s inability to solve problems with linearly non-separable vectors is the Boolean

exclusive-or problem. This however can be solved by using a multilayer perceptron,

trained with backpropagation algorithms.
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Training and Testing Phase in Perceptron Networks

In supervised machine learning techniques, there are two major phases called

training and testing. The labeled dataset is divided into two parts, one for each phase.

In the training phase, the training data is used to train the weights in the neural

network to perform the required classification task. The weights {w} of the network

are trained by a simple learning algorithm, implementing a form of gradient descent

on an error function E (using a step size determined by the learning rate parameter

η). There are a wide range of error functions like sqaured error, log likelihood, cross

entropy and distance metrics that are commonly used. We will use the squared error

between the calculated output y and sample output data d to create an adjustment

to the i-th weight at time t, to produce the new weight as shown below [58]. The

training phase is completed when the error function is below an acceptable threshold,

and we move on to the testing phase.

E = 1
2
(d− y)2

wi(t+ 1) = wi(t) + η dE
dwi
→ wi(t+ 1) = wi(t) + η(d− y)xi

The trained perceptron is then applied on the unseen testing data to determine

how well the network performs. It is important to reteirate that the weights are

not updated during this phase. If the test error is below an acceptable value, then

the network is ready to be used for the classification task. However if the test error

is above this threshold, we have to retrain the network with changed parameters

and datasets to ensure success on the next attempt. We will now build towards a

fundamental lower bound on dissipation in the next section for this type of neural

network.
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5.3 Lower Bound on Dissipation in FeedForward Perceptron

Comprehensive analyses of neuromorphic implementations of perceptron networks

should include the energy costs of training the network, as well as the costs of clas-

sification by the trained networks in the testing phase. To obtain fundamental lower

bound on dissipation costs associated with training and testing phases, we will de-

scribe both the feedforward networks and the discretized weights (the weights are

discretized by being ultimately realized as a state in a physical system) as a deter-

ministic finite-state automata (FSA), and use the FSA formulation from the previous

chapter to obtain the lower bound on dissipation associated with training and testing

these networks.

5.3.1 Training Phase

Initially in the training phase, the weights can be randomly initialized (preferably

to small values), and the labeled data containing inputs and their corresponding

outputs, is used to obtain weights that minimize the error function E. This entails

using the inputs and the current weights to generate the calculated output, and then

use gradient descent on the error function to change the weights. Thus the cost of

training the network should include the cost of generating the outputs, as well as

the cost of using the outputs to train the network. In a neuromorphic system, the

neural network nodes are physically instantiated in the states of the system S and

the generation of the output using the weights and the training data can be described

as state transitions of a FSA. In order to be able to differentiate between different

node and weight values, we assume that the physical states instantiating the neural

network are perfectly distinguishable. The lower bound on dissipation in the the t-th

training step to generate the output is given by

∆〈EBt 〉 ≥ kBT ln(2)
[
H(S(t))−H(S(t+1)|Rt)

]
(5.1)
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where H(S(t)) is the Shannon entropy of the state distribution associated with the

neural nodes (where the neural node states correspond to the joint state of the network

given that each node can take one of two binary states), before the t-th training step,

H(S(t+1)|Rt) is the conditional entropy of the neural node state distribution after the

output generation (given Rt, the training data used to train the weights at time t).

kB is the Boltzmann constant and T is the temperature of the thermal bath B.

If the discretized weights of the neural network are also physically instantiated

in the physical states of a system W , like in a neuropmorphic system in which the

weights are realized as the memristance value of the memristor synapses [63], then the

training of the weights can be described as state transitions of another deterministic

FSA (Fig. 5.2), with the transitions being dependent on the training learning rate

parameter η and training sample distribution. We have the bias fixed at µ = 1.5 here,

but it can be defined as an additional weight with a constant input value of 1, and the

optimal value can be obtained using the same gradient descent procedure as before.

There is a clear difference in the FSA, with a change in the learning parameter (Fig.

5.2). For a large value of η = 2, we see that the gradient descent procedure cannot

find the optimal set of weights to minimize the error function. For the lower value of

η = 0.5, the optimal weights are (1, 1) and the perceptron is trained to perform the

AND classification task.

We assume that the physical states instantiating the weights are perfectly distin-

guishable, and the lower bound on dissipation for training the weights in the t-th

training step is

∆〈EBt 〉 ≥ kBT ln(2)
[
H(W (t))−H(W (t+1)|Rt)

]
(5.2)

where H(W (t)) is the Shannon entropy of the weight distribution before the t-th

training step, H(W (t+1)|Rt) is the conditional entropy of the weight distribution after

the weight update (given Rt, the training data used to train the weights at time t). In
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Figure 5.2. (a) State transitions for learning rate η = 0.5. (w1, w2) = (1, 1) with a
bias of µ = 1.5 is the trained value of weights that performs the classification properly.
(b) State transitions for learning rate η = 2. There is no single value of the weights
with this η that achieves proper classification.

this paper, we will focus more on this cost of training the weights, once the output has

been generated and less on the cost of generating the output itself. The lower bound

on the total cost of training the weights in the training phase ∆〈EBtotal〉, is obtained

as the sum of lower bounds over N different time steps ∆〈EBtotal〉 =
N∑
t=1

∆〈EBt 〉. In

section 5.6, we will describe the variation of ∆〈EBtotal〉 for training the weights over

multiple time steps with varying values of η and different training data distributions.

We next move to the testing phase.

5.3.2 Testing Phase

As stated earlier, in the testing phase the trained weights are not changed anymore

and the only dissipation cost is associated with generating the outputs on the test

dataset. Once again, the generation of the output values by the physical instantiations

of the neural network nodes can be described as FSA state transition [64], and the

lower bound on dissipation in the m-th testing test is given as

∆〈EBm〉 ≥ kBT ln(2)
[
H(S(m))−H(S(m+1)|Rm)

]
(5.3)

where Rm now refers to the input from the test data used in the m-th testing step.

In the AND classification task, once the correct weights have been learned, the lower
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bound on dissipation for an uniform distribution on the test data inputs is equal

to 0.562kT per time step. This is lower than the value of 0.824kT per time step,

calculated using Landauer’s principle for a physical realization of an AND gate with

an uniform distribution of inputs.

5.3.3 Lower Bound on Dissipation for Varying Learning Rates

To ensure perceptron convergence to optimal weights, the learning rate parameter

is reduced according to a learning rate schedule. These include linear and exponential

down scaling of the learning rate, independent of the input information. There are

also adaptive learning rate techniques like Newton’s Hessian method, ADAGRAD

and ADADELTA [65] which use first and second order information from the inputs

to continuously adapt the learning rate. The choice of the initial learning rate and

the subsequent schedule is of extreme importance while training a network for a task.

If the learning rate is made too small, a very large number of steps are required to

converge to the optimal weights. On the other hand, if the rate is too large then

weights might not converge at all as seen in the case of η = 2 from the previous

section. It is thus important to study the effect of changing the learning parameter

during training on the dissipation lower bound. Since the FSA state transitions

depend upon the value of the learning rate parameter η, changing it’s value changes

the FSA description of the weights and the associated dissipation. The change in the

FSA description of the discretized weights when η is changed from 0.5 to 1 during

training is plotted in Fig. 4. We will work under the assumption that the learning

parameter is not physically instantiated and changed once externally during training,

independent of the inputs. It is also required that the physical system W , in which

the discretized weights are instantiated in, have enough number of distinguishable

states to accommodate all the different values of weights that are generated as the

learning rate is changed. Comparison of the lower bounds in dissipation for the case
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Figure 5.3. FSA description of the neural network weights during training with
η = 0.5 and µ = 1.5, and of the weights after the η and µ are changed during the
training phase to 1 and 1.75 respectively.

of fixed η, and the case where η is changed is presented in the results section (Fig.

7).

While we have described the learning parameter being changed externally, it is

important to note that in neuromorphic computing systems, the learning parameter

might be physically instantiated in a register system and can be changed according

to an adaptive schedule. The cost in this case would also include the dissipation

associated with this physical instantiation, and will be discussed in detail in future

works.

5.4 Recurrent Neural Networks - Hopfield & Boltzmann Net-

works

Recurrent neural networks are those neural networks where the connections be-

tween neuronal units form a directed cycle. They exhibit dynamic temporal behaviour

and can use their internal memory to process an arbitrary sequence of inputs. We

will introduce here two very popular recurrent networks - Hopfield and Boltzmann

networks, in this section and explore the dissipation cost associated with their use as

content addressable memories.
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5.4.1 Hopfield Networks

Hopfield network is a form of an artificial neural network that was popularized by

John Hopfield in 1982. It serves as a robust content addressable memory with binary

threshold nodes. The activation value of the neuronal units are thus +1 for firing,

and −1 for not firing instead of a 1 and 0. The next state of a nodal unit i - xi is

given as

xi+1 =

 1 : wi · x− θi ≥ 0

−1 : wi · x− θi < 0

where wi ·x =
N∑
j=1

wijxj and θi is the bias of unit i [58]. The Hopfield network consists

of N completely coupled units, i.e each unit is connected to every other unit except

itself. The network is symmetric i.e wij = wji and wii = 0.

The energy function E of the state x = {x1, x2, ..., xN} can be defined as

E(x) = −1
2

N∑
j=1

N∑
i=1

wijxixj +
N∑
i=1

θixi

For learning n patterns, we can calculate the necessary weights of the network that

will minimize the energy function given above by solving for the equation dE
dwij

= 0.

This gives us

wij = 1
n

n∑
k=1

εki ε
k
j

where εki is the i-th bit of the k-th pattern. The above learning rule is called the

Hebbian learning rule, named after Donald Hebb who proposed a synaptic mechanism

for learning in the brain where “increase in synaptic efficacy arises from the pre-

synaptic cell’s repeated and persistent stimulation of the post-synaptic cell.” [58] [59].

This can be summarized as “Cells that fire together, wire together.” For the weights

set to these values, the energy of the network is minimized at any one of the k patterns.
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The Hopfield model is isomorphic to an Ising model for magnetism at zero tem-

perature. The Ising model can be used to describe those systems made of particles

capable of adopting one of two states. The atoms in ferromagnetic material can be

modeled as particles of either spin 1/2 (up) or spin 1/2 (down). The spin points in

the direction of the magnetic field. All the atoms interact with each other, and this

interaction causes some of the atoms to flip their spin until equilibrium is reached

and the total magnetization of the material (which is the sum of the individual spins)

reaches a constant level. Under these conditions, we can show that the energy func-

tion for the Ising model is isomorphic or has the same form as the energy function

of Hopfield networks. The potential energy of certain state (x1, x2, ..., xn) of an Ising

system is of the form

E = −1
2

n∑
1,j

wijxixj +
n∑
i

−h∗xi

where wij represents the magnitude of the magnetic coupling between the atoms la-

beled i and j, and h∗ is the external field. The two systems are equivalent dynamically,

but only in the case of zero temperature, when the system behaves in a deterministic

manner at each state update.

In the Hopfield model, each individual unit preserves its state until they are asyn-

chronously selected for an update. Under these update dynamics, the network is

guaranteed to converge to the minimum of the energy function, and the state of the

network will not change after that. However Hopfield networks suffer from the prob-

lem of multiple spurious local minima in which the system might find itself stuck in

and unable to retrieve the required stored pattern. The number of patterns that can

be stored faithfully is dependent on the number of neurons (N) and their connections.

It was shown that the capacity of these networks was about 0.138N (approximately

138 vectors can be recalled from storage for every 1000 nodes) for the Hebbian learn-

ing rule [58]. Therefore, mistakes will occur if one tries to store a large number

of vectors exceeding this capacity. Perfect recalls and higher capacity of > 0.14N ,
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can be achieved in the network by using the Storkey learning method [69]. In the

following section, we will consider Boltzmann machines, which uses a time-varying

pseudo-temperature parameter and stochastic state updates as in the full Ising model

to overcome some of the limitations of the Hopfield networks.

5.4.2 Boltzmann Networks

In order to avoid local minima and arrive at the global one, noise is introduced

into the dynamics of the network. As the system converges to states of lower energy,

transitions to higher energy state are occasionally allowed to help skip out of local

minima, in a statistical sense. Neural network models with such stochastic dynamics

are called Boltzmann machines [58]. The Boltzmann machine is thus an Hopfield net-

work consisting of N units x1, x2, ..., xN , in which each unit is updated asynchronously

using the update rule

xi =

 1 with probability pi

−1 with probability 1− pi

pi = 1/
[
1 + exp

(
−(wi·x−θi)

Tp

)]
where Tp is a positive constant and a measure of the noise introduced, often referred

to as pseudo-temperature (not to be confused with the actual physical temperature).

The energy function of the Boltzmann network is the same as the energy function

of the Hopfield network, and with the use of non-zero temperatures and stochastic

updates, it is closer to the full Ising model. For extremely small values of Tp ≈ 0,

the Boltzmann network will behave like an Hopfield network. In order to achieve the

required final states in a Boltzmann network from the initial states, we use simulated

annealing. This approach takes it’s inspiration from the real-life phenomenon of

annealing processes, used to form crystals. The updates are started with a high

pseudo-temperature Tp, and reduced according to an annealing schedule. As the
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temperature Tp → 0, the system state distribution is heavily concentrated in the

global minimum. The choice of a good annealing schedule, according to which Tp

varies over time is very important. We will explore the exponential and logarithmic

annealing schedules in this paper.

Exponential: T np = T 0
pα

k with 0.8 < α < 0.9

Logarithmic: T np =
T 0
p

1+α log(1+k)
with α > 1

5.5 Lower Bound on Dissipation in Hopfield and Boltzmann

networks

The analysis of Hopfield and Boltzmann neural networks in this paper will only

focus on the dissipation incurred in the use of these networks as a content addressable

memory (CAM). We will not focus on the costs associated with the learning the neces-

sary weights in this case. There are closed form expressions for the weights using the

Hebbian rule, that can be calculated directly (without the need for training) for these

networks depending upon the input pattern that needs to be stored and appropriately

instantiated [70]. The network of N units is realized in the physical system S, and is

a deterministic FSA (in the case of Hopfield networks) and probabilistic FSA (in the

case of Boltzmann networks) of 2N states. In both Hopfield and Boltzmann networks,

the weights are initialized at the required values depending on the target pattern, and

they remain fixed throughout the entire update process. The initial distribution of

the patterns are instantiated in the states of S. The signal asynchronously updating

one of the N units at each time instant t will be instantiated as the referent Rt. The

update dynamics are implemented using unitary Hamiltonians that evolve the cur-

rent state of the network to the required next state according to the weight-dependent

transition rules. The system S is in contact with a thermal bath at temperature T .

If we assume that the physical states of the network are orthogonal pure states i.e.
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distinguishable, the t-th network update can be modeled as a FSA state transition

and the lower bound on dissipation is given by

∆〈EBt 〉 ≥ kBT ln(2)
[
H(S(t))−H(S(t+1)|Rt)

]
where H(S(t)) is the Shannon entropy of the state distribution of S at time t, and

H(S(t+1)|Rt) is the entropy of the updated state of S conditioned on the update

signal Rt. The lower bound on the total dissipation ∆〈EBtotal〉 for the entire process

as the network evolves from an initial distribution to the final state corresponding to

a minima is

∆〈EBtotal〉 = ∆〈EB0 〉+ ∆〈EB1 〉+ ....+ ∆〈EBt 〉

The 3 - node, 8 state neural network shown in Fig. 5 will be studied in this paper.

The network has two stable low energy states, with the lowest being the necessary

global minima. While the Hopfield network will get stuck in one of these two states,

the problem is avoided by using simulated annealing in the Boltzmann network. The

effect of node update policy and pseudo-temperature for this example network will

be presented in the results section.

5.6 Illustrative Example & Results

The formulation from the previous sections are used to calculate the lower bound

on total dissipation associated with feedfoward and recurrent neural networks. In Fig.

5.6, for the feedforward network from Fig. 5.2, we present the lower bound on the

dissipation per time step in training for both generating the output, the subsequent

weight change and the total cost of both for the first 70 training time steps when the

learning rate is set to η = 1. We can see that as we progress through the training

phase, the cost of the weight training increases, reaches a maximum and decreases

as the right weights are learned. The cost of generating the outputs in each time
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Figure 5.4. (a) Recurrent neural network with 3 nodes and the corresponding
weights between the nodes. The thresholds for each of the nodes are also indicated
within the node. (b) FSA state transition diagram of the neural network in (a), with
8 states and the two low energy stable states (gray).

step continuously increases and levels of at 0.811kT per time step once the correct

weights are learned. The total cost over 70 time steps for generating the output is

36.31kT , training the weight 1.4kT and the overall cost of training is 37.71kT . For

the remaining results in this paper, we will focus more on the cost of the weight

changes, as this would constitute learning in such networks.

Lower bounds on the dissipation per time step for training the weights are shown

for the first 60 time steps in Fig. 5.6(a). Results are shown for an uniform distribution

of the training data, and values η = 0.5, 1, and 2 of the learning parameter, assumed

fixed. Respective lower bounds on the total weight training costs ∆〈EBtotal〉 are 11.2kT ,

4.2kT and 47.98kT . The dissipation-per-training-step increases, reaches a maximum,

and then decreases as the neural networks learn the correct weights from the training

data. There is no fundamental lower bound on training cost once the right weights

have been learned. For η = 2, the dissipation never decreases as this choice of

learning parameter cannot find the optimal weights. η = 1 is a better choice of the

learning parameter, since it allows for learning of the right weights and at a lower

total dissipation than η = 0.5.
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Figure 5.5. Dissipation lower bound on output generation, weight training and total
cost over 70 time steps for simple perceptron learning the AND classification task at
learning rate of η = 1.

The difference in the dissipation bound with change in training data distribution is

explored in Fig. 5.6(b). There is a significant increase in ∆〈EBtotal〉 as the probability

of the 11 input is changed from 0.25 to 0.05. Since the input 11 is the only input that

maps to the output 1, any decrease in its probability significantly reduces the chances

of the right weights being learned, hence increasing the energy cost of training. These

results indicate that the learning parameter and the training distribution can thus be

changed in an optimal manner to balance learning of the correct weights, with the

minimum energy dissipation associated with doing so.

In Fig. 5.6, we see the variation in the lower bound in distribution for differ-

ent initial weight distributions over 30 time steps. We can see that the dissipation

lower bound reduces as the initial starting distributions are more skewed towards

the optimal weights. For the initial distribution of p(+1,+1) = 0, 0.5, 0.33 and 0.75

respectively, we have the corresponding total lower bounds on learning the optimal

weights to be 5.0264kBT ln(2), 4.62kBT ln(2), 3.7238kBT ln(2) and 2.1433kBT ln(2)

respectively.

In Fig. 5.6, we see the variation in the dissipation lower bound per time step

between a fixed learning rate of η = 0.5 (dashed) and the case where the learning
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Figure 5.6. (a) Dissipation lower bound of simple perceptron learning the AND
classification for 60 time steps, for different values of the learning parameter η during
training. (b) Dissipation lower bound of same perceptron for 150 steps, for η = 0.5
and different training data distributions.

rate is changed externally from η = 0.5 to η = 1 (bold) during training. The total

dissipation bound ∆〈EBtotal〉 over 100 time steps for the fixed η case is 11.24kT and

7.28kT for the latter. Thus while the learning rate of η = 0.5 did allow for convergence

towards the optimal weights, the value was too small and required more time steps

to converge resulting in a larger total dissipation. When η is changed from 0.5 to

1, the new parameter has a greater step size and allows for a quicker convergence

to optimal weights at a lower cost. If we were to decrease the learning rate from

η = 2 to η = 1, the weights converge to an optimal value of w = (1, 1) and the lower

bound on total dissipation for changing the weights decreases significantly from the

fixed case value of 60.83kT to 24.66kT . Thus we see the effects of both increasing and

decreasing the learning rate parameter on the associated total dissipation. Decreasing

η is accompanied by reduction in the total dissipation bound, if the new value allows

for the weights to converge to an optimal value that minimizes the cost function. Very

small values of η will achieve convergence, but will result in an higher dissipation and

must be properly tuned.
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Figure 5.7. Dissipation bounds for different initial starting weight distributions over
30 time steps.

The results for the lower bound on dissipation in using the Hopfield network from

Fig. 5.5 as a CAM, is shown in Fig. 5.6. This particular network contains two low

energy stable states and thus the final steady state distribution should contain both

the states with a non-zero probability. However the local minima can be avoided by

using simulated annealing, which will be examined next. The network is initialized

randomly and updated asynchronously, and the variation in the dissipation with

respect to the update policies are studied. In the random update policy, all 3 nodes

have an equal probability of being updated at any time step. In skewed policy - 1, all

3 nodes have a non-zero probability of being updated at any time step with one node

being preferred over others, and in skewed policy - 2, only 2 nodes have a non-zero

probability of being updated. The total dissipation over 100 times steps associated

with each of those policies are 1.994kT , 1.9926kT and 1.1158kT respectively. The

dissipation decreases as the update policy changes from random to being skewed.

Thus the choice of an optimal update policy can be made taking into account both

the dissipation costs involved and the rate of convergence to the minima.

In Fig. 5.6, the lower bound on dissipation associated with different annealing

schedules over multiple time-steps in a Boltzmann network are calculated. The net-
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Figure 5.8. Dissipation lower bound for 100 time steps, for a fixed learning rate
of η = 0.5 (dashed blue) and η = 2 (dashed black), and the case of learning rate
changing from η = 0.5 to η = 1 (solid red) and learning rate changing from η = 0.5
to η = 1 (solid green).

work is initialized in a random state, and the starting pseudo-temperature is T 0
p = 5.

The two annealing schedules used to reduce the pseudo-temperature, that have been

studied here are the exponential and logarithmic schedules. From the figure, it is very

clear that the lower bound on dissipation in each of the time-steps are different for the

two schedules. This is to be expected since the dissipation costs are dependent on the

state-transition probabilities, and those are functions of pseudo-temperature and the

annealing schedules. The sum of the dissipation bounds over the different time-steps

will give us the total dissipation ∆〈EBtotal〉 of the simulated annealing process using

the respective schedule. ∆〈EBtotal〉 ≥ 5.775kT and 5.438kT over 30 time steps for the

exponential and logarithmic schedules respectively. As in the case of the node update

policy, a dynamic annealing schedule to optimally reduce energy dissipation can be

evaluated.
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Figure 5.9. Variation in the lower bound on dissipation in an Hopfield network,
with different asynchronous update policies over many 100 time steps. The random
update policy is in blue, skewed update policy - 1 in red and skewed update policy -
2 in green.

5.7 Towards Thermodynamic Objective Functions

Machine learning techniques rely on performing some form of gradient descent to

minimize a pre-defined cost function. The ones used in Hopfield networks were mod-

eled after the total energy function in physical Ising spin systems [58] and emphasize

the rich historical connection between machine learning and physics. While we used

quadratic squared error as our cost function in this paper, a wide range of options

are now available depending upon the task at hand. If the discretized weights in

the neural network are modeled as a FSA, then the learning rule and the learning

rate η schedule can be obtained from how the training data input is encoded in the

weight states and the state transition mappings of the weights. We are interested

in deriving learning rules from a physically grounded approach, and looking for the

input encodings and transition mappings of the weights that will minimize the total

dissipation cost of training the weights ∆〈EBtotal〉 (we will ignore the cost of generating

the outputs for now). In order to ensure that we do not get only trivial solutions, we

will impose a memory constraint on the weights. From the principle of optimality, we

have that the dynamic state encodings and transition mappings between the weight

states has to be optimal for every time step, in order to be optimal for the entire
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Figure 5.10. Lower bound on dissipation for simulated annealing in a Boltzmann
network with 3 neural nodes over 30 time steps. The dissipation in each time step is
compared between the exponential (blue) and logarithmic (red) annealing schedules.

training phase. Thus the problem of finding the optimal state encoding to minimize

the total dissipation requires finding the optimal solution to minimize the dissipation

at the t-th step.

If the discretized weights of the neural network are physically instantiated in the

distinguishable states of a system W , then from Theorem-3 from section 4.7, the

lower bound on dissipation in each time step of training the weights with temporally

correlated inputs can be written as

∆〈EBt 〉 ≥ kBT ln(2)
[
−∆HW + IR1W ′ − IR1W

]
where IR1W and IR1W ′ is the Shannon mutual information between the latest training

data input R1 and the weights W before and after the t-th training step. −∆HW is

the difference in Shannon entropy of the state distribution of the weights, before and

after the training step. It is evident from the above expression that the fundamental

lower bound on dissipation for training the neural network weights according to the

learning rules is zero, once the weights that minimize the chosen cost function have

been learned. In order to obtain the optimal state encoding p(wW(t−1)|iR0) of the

past inputs R0 in the weights W , to minimize ∆〈EBt 〉, we construct the following
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Lagrangian L = ∆〈EBt 〉 + β(IR0W − It), where IR0W = It is the memory constraint

at time t, and β is the dissipation-memory tradeoff parameter. The solution can be

obtained by solving the following constrained optimization problem.

Minimizep(wW
(t−1)

|iR0 ){∆〈EBt 〉+ β(IR0W − It)}

Under simple assumptions, we can show that solving this problem is equivalent to

maximizing IR1W − β(IR0W − It), with respect to the state encoding p(wW(t−1)|iR0).

This is the Information Bottleneck algorithm discussed in section 2.3.1 of this disser-

tation and has been widely used in clustering problems [140], predictive inference and

deep learning [67]. The ideas presented above clearly elucidate the deep connection

between the physical cost of energy dissipation and learning algorithms. A detailed

discussion of using thermodynamics as the central concept of learning, is extremely

necessary and the focus of this dissertation in the next two chapters, as well as [68].

5.8 Conclusion

In this chapter, the fundamental energy costs of training in different types of

neural networks were explored in a framework that describes physical implementa-

tions of such networks (with discretized weights) as FSA. Two types of networks were

studied - feedforward perceptrons, and recurrent Hopfield and Boltzmann networks.

The fundamental lower bounds on energy dissipation were calculated for a simple

perceptron, learning the AND classification task. This was followed by an analysis of

the dissipation costs associated with the use of Hopfield and Boltzmann networks as

content addressable memory. This physically grounded approach has provided fun-

damental bounds on the dissipative costs necessarily incurred, that are independent

of implementation details. While focused on simple networks in this chapter, the

FSA description of neural networks are more general and can be applied to a wider

class of systems like multilayer neural networks. These bounds are an important first
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step towards determining the ultimate performance limits of neuromorphic systems

and identifying sources of inefficiency. Identification of neural network learning algo-

rithms that minimize the dissipative cost of training were also discussed. This final

concept will influence the work in the next couple of chapters where we analyze the

fundamental connections between physical intelligence and thermodynamics.
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CHAPTER 6

A THERMODYNAMIC TREATMENT OF INTELLIGENT
SYSTEMS

6.1 Introduction

In this age of big data, the computing industry has shifted its focus towards

tasks that involve handling and learning from data. The tremendous progress made

in the field of machine learning to perform numerous learning tasks has been due

to two major driving factors. The first is the emergence of extremely sophisticated

learning algorithms for supervised learning and reinforcement learning techniques.

However a large number of these algorithms achieve learning by performing gradient

descent on a task dependent energy or loss function, and are problem specific and

narrow in applicability. They also require significantly large labeled datasets to train

them. The community has now sets its target in improving the understanding of

unsupervised learning, and development of cost functions that are applicable over a

large range of tasks. The other is the availability of powerful specialized hardware

like graphic (GPU) and tensor (TPU) processing units have made realization of these

resource intensive algorithms feasible. As we approach the physical limits to scaling

and dissipation, we have started to look away from these conventional computing

devices and architectures as solutions to our new computing tasks. Understanding

how complex biological systems are able to process and learn from data will improve

our ability to build intelligent systems. In the previous chapter, I presented results

on the lower bounds on dissipation in neural networks and introduced the concept of

using energy dissipation as the sole objective function to be optimized for learning
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algorithm in neural networks. In this chapter, I will look to extend that idea further

into a more general picture and obtain the thermodynamic constraints under which

learning emerges in a physical system.

In the recent past, there has been increased research into developing fundamental

relationships between thermodynamics, information theory and neurobiological sys-

tems [71],[72]. Since intelligent processes are physical as well, extending such work

to establish the thermodynamic conditions under which a physical system exhibit

learning capabilities would be extremely beneficial in the design and fabrication of

intelligent systems, and usher in the new paradigm of thermodynamic computing [74].

In Section 6.2 and 6.3, clear definitions of the different terms that will be used in this

paper will be provided. Recent progress made in fluctuation theorems to describe

driven non-equilibrium systems will be presented in section 6.4 and their implications

discussed. In section 6.5 - 6.7, the fundamental lower bound on dissipation for a

physical system implementing a finite state automata over a state transition is used

to analyze two important concepts associated with intelligence - adaptive learning

and predictive inference. In section 6.8, the results from the previous sections are

extended to study active agents with the ability to act on their environment. The

chapter concludes in section 6.10 with a brief discussion of the results and what they

entail for the future.

In this chapter and through the rest of this dissertation, we will define intelligence

as comprising of two important and distinct phenomenon - one that involves the

accumulation/learning of information from the environment and other which is the

use of this accumulated information to predict future inputs. We will refer to these

two components as adaptive learning and predictive inference respectively and discuss

them in detail in later sections. As this chapter seeks to bridge the gap between

thermodynamics, information theory and the learning capabilities of complex systems,

it is important to clearly introduce some of the concepts that will be used in this
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chapter. These will include definitions for complex systems, measures used to quantify

complexity, self-assembly and self-organization processes and thermodynamics.

6.2 Complex Systems & Complexity

Complex systems are those systems in which “large networks of highly interacting

non-linear components with no central control, simple rules of operation give rise to

complex collective behavior, sophisticated information processing, and adaptation via

learning or evolution” [139]. This makes them and their relationship to their environ-

ment difficult to model. They cal also be defined as a system “that exhibits notrivial

emergent and self-organizing behaviours. Good examples of such systems include bi-

ological organisms, cellular automata, cities, financial markets, world wide web and

artificial neural networks. Significant research has been carried out on characterizing

the complexity of such systems and understanding their behavior.

While there are some distinct properties of complex systems, it is not yet very

clear on how to best quantify this complexity in a complex system. A number of

measures have been suggested, but there is not a single universally accepted metric of

complexity. A good measure of complexity must be low in the cases of high amounts

of order and randomness, and higher for a suitable combination of the two. A non-

exhaustive list has been provided in [?], some of which are - size, entropy, algorithmic

information content, logical depth, thermodynamic depth, fractal dimension, com-

putational capacity and statistical complexity. In this chapter, we will us statistical

and information-theoretic measures to measure the complexity of those systems of

interest [?]. The statistical complexity of the system measures the minimum amount

of information about the past behavior of the system that is required to predict the

future behavior of the system. For a system A interacting with external signals R,

the mutual information IRA can be used to calculate this amount of information. A
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more complex system will require greater correlation (memory) of the signals in the

past the system interacted with to predict the future.

6.3 Self-assembly & Self-organization

Self-organization and self-assembly are terms that have become extremely popular

across different fields in the recent years. While both describe processes that can give

rise to collective order from dynamic small-scale interactions, they often have differ-

ent meanings ascribed to them and worse, even used interchangeably. Since biological

systems are self-organized, it is necessary to briefly define the process and distinguish

it from self-assembly. From [139], self-organization (often referred to as dynamic self-

assembly) is defined as “a dissipative non-equilibrium order at macroscopic levels, be-

cause of collective, non-linear interactions between multiple microscopic components.

This order is induced by interplay between intrinsic and extrinsic factors, and decays

upon removal of the energy source. In this context, microscopic and macroscopic are

relative” (Fig. 6.1(b)).

Self-assembly is a “non-dissipative process that produces structural order on a

macroscopic level, because of collective interactions between multiple (usually micro-

scopic) components that do not change their character upon integration into the self-

assembled structure. This process is spontaneous because the energy of unassembled

components is higher than the self-assembled structure, which is in static equilibrium,

persisting without the need for energy input” (Fig. 6.1(a)). According to the second

law of thermodynamics, for any spontaneous process that occurs in a closed system,

the increase in entropy translates to a decrease in free-energy ∆F = ∆E−T∆S < 0.

Self-assembly processes are characterized as free-energy minimization, with the min-

imum value attained at equilibrium (where ∆F = 0). On the other hand, self-

organized systems are generally not in equilibrium and are characterized by exchange

of both matter and energy with the environment. These processes are characterized
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Figure 6.1. (a) Self-assembly process characterized by no external driving fields and
the spontaneous evolution to the equilibrium state of minimum free energy. (b) Non-
equilibrium self-organization process in which the external fields produces different
structures. The process is dissipative and the system loses its order when the external
energy source is removed.

by non-equilibrium thermodynamics which will be discussed in detail in the next

section.

6.4 Non-equilibrium Thermodynamics & Fluctuation Theo-

rems

Non-equilibrium thermodynamics is the branch of thermodynamics that deal with

systems that are not in thermodynamic equilibrium, but can be described using vari-

ables that are used to describe equilibrium systems. Almost all systems, including

self-organized systems found in nature are not in equilibrium, for they change over

time and subject to flux of matter and energy to and from other systems. Hence

the thermodynamic study of non-equilibrium systems requires more general concepts

than those that are dealt with by equilibrium thermodynamics.

The Crooks fluctuation theorem represent an important breakthrough in the field.

The theorem establishes the relationship between the relative likelihoods of differ-

ent dynamical paths or trajectories that the microstates of a non-equilibrium system

could traverse, to the entropy production associated with those trajectories [135]. Us-
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Figure 6.2. The Crooks Fluctuation theorem provides a quantitative relationship
between the likelihoods of the forward and reverse trajectory of microstates when
driven by an external field with the heat dissipated ∆Q into the thermal bath as the
system traverses the trajectory.

ing time-reversal symmetry and conservation of energy, Crooks derived the following

relationship

π(γ)
π(γ∗)

= exp
[

∆Q(γ)
kBT

]
where the left hand side is the ratio of the relative likelihoods of a certain trajectory

γ of microstates (a sequence of microstates over time) to its time reversed trajectory

γ∗, and ∆Q(γ) is the heat dissipated into the thermal reservoir (at temperature T )

as the system traverses trajectory γ and shown in Fig. 6.2. The relationship above

indicates that a certain forward trajectory is more likely than the time reversed one

by an exponential factor of the heat ∆Q(γ). The relationship is extremely powerful

as it holds even in the presence of external fields driving the system. The Jarzynski

equality can be seen as a special case of the Crook’s fluctuation theorem, and given

as

e−∆F/kBT = e−W̄/kBT

where ∆F is the free energy difference between two states, and W̄ is the average

work done on the system. Applying Jensen’s inequality (φ(E[X]) ≤ E[φ(X)] for a
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Figure 6.3. The macrostate fluctuation theorem quantifies the relationship between
the likelihood of driving a system in macrostate I (with microstate distribution pi(x))
to macrostate II (with microstate distribution pf (x)) in time τ with the internal
entropy change in the system and the heat dissipated ∆Q into the bath [80].

random variable X and convex function φ) to the above equality, we get the second

law of thermodynamics ∆F ≤ W̄ . The Jarzynski and Crooks theorems have both

been verified using biomolecular and simulation experiments.

While Crook’s Fluctuation theorem dealt with microtrajectores in systems, Eng-

land developed a generalization of this relationship to understand the likelihood ratios

associated with transition between macrostates (shown in Fig. 6.3) by integrating over

all microstates under a macrostate and over all relevant trajectories. These were used

to study self-organized systems in [79] and [80], where the authors discuss using the

relationship to develop a dissipation-driven theory of adaptation. The result central

to these papers is the following equation, which relates the statistics of arbitrary

macro-observables to the dissipation.

π(II∗ → I∗)

π(I → II)
= 〈e

ln

[
pf (j|II)
pin(i|I)

]
〈e−β∆Qi→j〉〉I→II (6.1)

I and II correspond to a macro-observable of the system driven by an Hamiltonian at

two different times. Each of these macro-observables correspond to a set of microstates

{i}I and {j}II respectively. p0(i|I) and pf (j|II) are probability distributions of the

microstates given the different macroscopic variable values of I and II respectively

at the two different time instances. 〈ln
[
pf (j|II)
pin(i|I)

]
〉I→II is the difference in internal
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entropy of the system and we will denote it as ∆S. 〈〈e−β∆Qi→j〉〉I→II corresponds to

the exponential of the dissipation associated with transitions from microstate i in I,

to microstate j in II averaged over all trajectories from i to j (the average calculated

by the inner expectation bracket) and over all microstates i ∈ I to j ∈ II (calculated

by the outer expectation bracket). β = 1/kBT , where kB is the Boltzmann constant

and T is the temperature of the thermal bath that the system is in contact with.

π(II∗ → I∗) is the probability of the reverse process, if the system is driven by the

time-reversed Hamiltonian of the forward process.

England focused on the non-equilibrium constraints, and studied the conditions

under which the system is more likely to be in one macrostate over another, and used

it to propose a dissipation driven theory of adaptation [79]. While there is some good

intuitive notion behind this hypothesis and simulation experiments are now being

performed to verify it, we will use information theoretic measures to cast adaptation

as adaptive learning, and characterize the connection to the dissipation in a later

section. In the next section, we will introduce a physical description of passive agents

as FSA, and use these fluctuation theorems to obtain thermodynamic constraints for

emergence of predictive inference in self-organized systems.

6.5 Passive Agents as Finite State Automata

Agency is the capacity of the system to act on it’s environment. Passive agents are

systems that simply interact with external signals from the environment, but cannot

affect which future inputs the system interacts with. Active agents are those agents

that interact with the environment and determine the future inputs that the systems

interacts with and a lot more interesting to study. Before we move onto active agents,

it is important to understand how learning behavior might emerge in passive agents

that simply interact with external signals. In order to do so, we model the passive

agent as physical finite state automata.
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6.5.1 Physical FSA Description of Passive Agents

Passive agents like traditional FSAs described in previous sections are character-

ized by their internal states, the inputs that they receive, and the mapping that defines

transitions between these internal states. The physical description of a passive agent

is identical to the physical descriptions of Markov FSA that has been described in the

chapter 4. We once again cast that description of the states, inputs and transitions

below

• Internal States: The internal FSA states of the agent are faithfully repre-

sented in the distinguishable physical states of a quantum-mechanical system

S. The Markov property implies that the next state of the FSA depends only

upon the current state of S, and the next input. The system S interacts with

it’s environment B, a (finite) heat bath nominally in a thermal state ρ̂Bth at

temperature T .

• Inputs: Input strings ~X that the agents interacts with are physically in-

stantiated in the state of a “referent” system R = R0R1. Subsets ~Xk =

X(1)X(2)...X(t−1) of strings leading to the current FSA state are represented

by R0, and X(t) is represented by R1 as before. In general, we assume that R0

and R1 are correlated.

• State Transitions: The t-th state transition is realized by dynamical evolution

of the state of S, conditioned on the state of R1 and in interaction with B.

Global evolution of the interacting composite R1SB producing this transition is

assumed to be governed by the time-dependent Schrodinger equation to ensure

consistency with physical law. The t-th input remains encoded in R1 at the

conclusion of the FSA state transition.

The “physical universe” relevant to description of the FSA is completed with

the FSA’s thermal bath B, embedded in a “greater environment” B̄ which acts to
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“rethermalize” B whenever it is driven from equilibrium by interaction with S during

the state transitions.

6.5.2 Lower Bound on Dissipation for Passive Agents

Since passive agents are simply modeled as a Markov FSA from the previous

chapters, we have the lower bound on dissipation for the agent as it interacts with

external inputs to be the lower bound on dissipation over a state transition for the

FSA instantiated in a general quantum system S [138] as

∆〈EB〉 ≥ kBT ln(2)
[
−∆SS + ∆IR1S

]
where B is a thermal bath at temperature T , and ∆〈EB〉 is the change in the expected

energy of the bath and captures the dissipation associated with the state transition.

−∆SS is the change in von Neumann entropy of the system, and ∆IR1S is the change

in quantum mutual information between the system S and the input signalR1 driving

the transition. IR1S is the correlation between the incoming input R1 and the agent

S before the transition, and can be seen as a measure of prediction of future inputs

by the agent. A much detailed description of the physical instantiation of a FSA, and

derivation of the bound is provided in the previous chapters.

Since we intend to leave the detailed analysis of emergence of learning behavior

in quantum systems for the future, we will continue forward with classical systems.

A similar bound on dissipation for a Markov FSA has been derived by the authors

in [82] from a completely classical perspective. The lower bound derived in [82] is

equivalent to the equation below

∆〈EB〉 ≥ kBT ln(2)
[
−∆HS + ∆IR1S

]
(6.2)

where −∆HS is the change in classical Shannon entropy, and ∆IR1S is the change

in classical Shannon mutual information between R1 and S. The dependency of the
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dissipation bound on the mutual information between the R1 and S, especially the

prediction component, provides significant insight into the conditions under which

learning is achieved in self-organized systems. These conditions will be discussed in

the next section.

6.6 Dissipation Driven Adaptation & Learning

In this section, we will briefly discuss Jeremy England’s dissipation driven adap-

tation hypothesis, cast adaptation as adaptive learning and extend upon the results

from [79]. Engand studied the non-equilibrium conditions under which the system is

more likely to be in one macrostate over another, and used it to propose the following

[79] - “while any given change in shape for the system is mostly random, the most

durable and irreversible of these shifts in configuration occur when the system hap-

pens to be momentarily better at absorbing and dissipating work. With the passage of

time, the ‘memory’ of these less erasable changes accumulates preferentially, and the

system increasingly adopts shapes that resemble those in its history where dissipation

occurred. Looking backward at the likely history of a product of this non-equilibrium

process, the structure will appear to us like it has self-organized into a state that is

well adapted to the environmental conditions. This is the phenomenon of dissipative

adaptation.’

The above hypothesis can be stated mathematically as follows. Taking negative

logarithm on both sides of the fluctuation theorem Eq.(6.1), we have

− ln

[
π(II∗ → I∗)

π(I → II)

]
= − ln〈e

ln

[
pf (j|II)
p0(i|I)

]
〈e−β∆Qi→j〉〉I→II

Using cumulant generating function - logE[etX ] =
+∞∑
n=0

τn
tn

n!
= µt+σ2 t

2

2
+ ... where τn

is n-th moment, and µ and σ2 correspond to the first (mean) and second (variance)

moment respectively.
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− ln〈〈e
ln

[
pf (j|II)
p0(i|I)

]
e−β∆Qi→j〉〉I→II

= β〈∆Q− 1

β
ln

[
pf (j|II)

p0(i|I)

]
〉I→II −

β2

2
σ2
I→II + ...

= κI→II − γI→II

where − 1
β
〈ln
[
pf (j|II)
p0(i|I)

]
〉I→II = kBT ln(2)∆SI→II , is the change in entropy of the

microstates of the system, as system evolves from macrostate I to II. We de-

fine κI→II = β〈∆Q〉I→II + kBT ln(2)∆SI→II as the sum of the mean of dissipa-

tion into the bath and the change in internal microstate entropy for transitions

under the external drive, averaged over all trajectories and microstates. γI→II =

κI→II + ln〈e
ln

[
pf (j|II)
p0(i|I)

]
〈e−β∆Qi→j〉〉I→II represents the fluctuations about the mean

κI→II . Now we can see that from the above equation, that a system is more likely

to be in macrostate II than I, if κI→II >> γI→II(≈ 0) - this is referred to as the

condition of reliable high dissipation when ∆〈Q〉 >> 0 and fluctuations about this

average dissipation is low.

The condition of reliable high dissipation has been studied experimentally in [17]

(though the quantity in focus was the rate of change of entropy and not dissipation), as

well through simulation in toy chemical spaces [136] where the property of adaptation

was characterized as resonance with the driving field. In this dissertation, evolution

will be viewed as combination of processes of homeostasis (where the macrostate I of

system does not change in time) and adaptation which entail irreversible macrostate

changes in a system (from I → II) in which the final state appears to more ‘fitter’

than the starting state. The latter will be viewed as the process of learning the

environment over different time-scales and also referred to as adaptive learning. The

concept of viewing evolution and adaptation as learning is not novel and extensively

discussed in [85], [86], [87], [88], [89]. In [85], Valiant seeks to explain Darwinian
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evolution as a special learning mechanism that he refers to as Probably Approximately

Correct or PAC learning. In [88], Harper discusses the dynamics of the population

following the replicator equation [90] as an inference process. He showed that as

such a population approaches an ‘evolutionary optimum’ (corresponding to maximum

fitness), the amount of Shannon information it has ‘left to learn’ about the optimal

population is non-increasing. We would like to simply provide a thermodynamic

context to this learning process.

In the previous section, the lower bound on dissipation in passive agents under

the FSA model was presented. We can show that when the Shannon entropy change

remains fixed and focusing only on the information part of the lower bound, we have

the average energy dissipation into the bath to be directly proportional to ∆IR1S .

∆IR1S characterizes the change in correlation between the physical system S and

the driving signal R1, with an increase in correlation indicating the ’learning of the

driving signal’. The reliable high dissipation condition κI→II >> 0 can be satisfied

by this increase in driving signal (environmental) correlation since κI→II ∝ ∆IR1S . If

we assume that the increased correlation with the environment is a sign of increasing

fitness over time, then such processes can we be viewed as adaptive learning in the

system of the environment driving it.

While dissipation driven adaptation forms an important aspect of explaining the

correlation exhibited by physical systems to the input signals driving the system,

it does not explain the ability of physical agents to utilize information to exhibit

a key aspect of intelligence - prediction. As stated earlier in this section, we will

view evolution of a system as a combination of adaptive learning and homeostatic

processes. In the next section, we will derive the thermodynamic conditions that

will capture the relationship between dissipation, homeostasis and prediction in both

passive and active agents.

138



Figure 6.4. Homeostasis of a physical system which maintains the macro-observable
at I while being driven by an external field over a time period τ and dissipates ∆Q
into the bath. The system is characterized by an initial microstate distribution of
pi(x) and a final distribution of pf (x).

6.7 Dissipation, Homeostasis and Prediction in Passive Agents

In the previous section, we presented the fluctuation theorem for macrostate-to-

macrostate transitions from [79] and it’s relationship to adaptive learning. It was also

mentioned that the evolution of systems can be divided into adaptive learning and

maintaining homeostasis. We will now use the same fluctuation theorems to further

explore the homeostatic conditions under which prediction capabilities would emerge

in self-organized systems. We define homeostasis as the property of a system in which

a variable is actively regulated to remain very nearly constant. It’s a defining feature

of living systems, fundamental to the field of cybernetics [137] and it’s role in neuronal

plasticity has gained prominence [137]. Let us consider the case of a classical system

in a non-equilibrium state driven by an external Hamiltonian in which the value of a

macroscopic variable(s) corresponding to the macrostate I remains fixed over a finite

time period. This corresponds to the system being homeostatic with respect to that

macrostate I.

In the Eq.(6.1), for homeostasis we set I = II (as shown in the Fig. 6.4) to get

π(I→II)
π(II→I) = 1 and

〈e
ln

[
pf (j|I)
p0(i|I)

]
〈e−β∆Qi→j〉i→j〉I→I = 1
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Taking negative logarithm on both sides and using the cumulant generating function,

we get

− ln〈e
ln

[
pf (j|I)
p0(i|I)

]
〈e−β∆Qi→j〉i→j〉I→I = 0

− ln〈〈e
ln

[
pf (j|I)
p0(i|I)

]
e−β∆Qi→j〉〉I→I

= β〈∆Q− 1

β
ln

[
pf (j|I)

p0(i|I)

]
〉I→I −

β2

2
σ2
I→I + ...

= κ− γ

= 0

where − 1
β
〈ln
[
pf (j|I)
p0(i|I)

]
〉I→I = kBT ln(2)∆H, is the change in entropy of the microstates

of the system, as macrostate I is maintained. We define κ = 〈∆Q〉I→I+kBT ln(2)∆H

as the sum of the mean of dissipation into the bath and the change in internal entropy

for transitions under the external drive, averaged over all trajectories and microstates.

γ = κ+ ln〈e
ln

[
pf (j|I)
p0(i|I)

]
〈e−β∆Qi→j〉〉I→I represents the fluctuations about the mean κ. If

κ is low when the macroscopic variable corresponding to I remains fixed, we would

require the fluctuations γ to be low as well since κ = γ. This also implies that the

value of β〈∆Q〉I→I + kBT ln(2)∆H over different micro-trajectories are concentrated

around the mean. We will call this special case of the fluctuation theorem under

homeostasis when κ = γ to be reliable low dissipation (similar to how κ >> γ was

called reliable high dissipation).

The exact value of the mean dissipation into the bath 〈∆Q〉, as the system is

driven by a Hamiltonian is very system specific, and can vary significantly. Since

a system in a non-equilibrium state driven by an external field can be modeled as

a FSA, we can substitute the lower bound on dissipation for a FSA from Eq.(6.3)

for the actual mean dissipation, to obtain a lower bound on κ and gain insight into
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the correlation between the system and the external driving signals, when the lower

bound on κ is minimized.

〈∆Q〉I→I + kBT ln(2)∆HSI→I ≥ kBT ln(2)
[
−∆HSShannon + ∆IR1S

]
+ kBT ln(2)∆HSI→I

It is important to note that the internal Shannon entropy terms (HSShannon) in the

lower bound for κ, and the macrostate entropy HSI→I from the fluctuation theorem

expression need out cancel out as discussed in Chapter-2. Since it is possible to

express the macrostate entropy in terms of the Shannon entropy, the two terms can

be combined together. Using this previous discussion we can write (assuming both

terms are in the same units) ∆HSI→I −∆HSShannon = −α∆HSShannon. Thus we have

κ = 〈∆Q〉I→I + kBT ln(2)∆HSI→I ≥ kBT ln(2)
[
−α∆HSShannon + ∆IR1S

]
A criticism of the results obtained here would be that we are using the lower bound

on dissipation, rather than the actual dissipation. It is important to note that since

we were looking at the case where κ and the fluctuations about the mean γ are low,

the lower bound expression is not a bad approximation of the actual dissipation. In

fact, many biological systems operate near the limits of energy efficiency [83], and the

bound might only be a few orders below the actual energy dissipation. Furthermore,

the change in information and non-information bearing entropy terms in the lower

bound provide significant insight into the components associated with the actual

dissipation. The ∆IR1S term in the lower bound is dependent on the correlation

between the system S and the external signals R = R0R1 that drives this transition.

−∆HSShannon corresponds to the change in the distribution of states that are correlated

to the driving input.
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It is of interest to us to understand how the driving inputs are mapped onto

the system (in a FSA model) when the system satisfies the reliable low dissipation

condition. At some time t, letR0 correspond to the driving signals that have produced

the current state of the system S, and R1 be the incoming signal that will drive the

next state transition. R0 andR1 are assumed to be correlated, which is often the case.

Let there be a finite number of states {kSt } of S such that the past inputs map onto

these states using the mapping p(kSt |iR0) and we assume that amount of information

between R0 and S - IR0S at time t is equal to It. IR0S can be viewed as a measure of

the system’s memory and viewed as the result of dissipation driven adaptive learning.

We are now interested in how R0 is encoded in the current state of the system S,

so that the lower bound on κ, for the transition driven by R1 is minimized. This is

equivalent to calculating the mapping p(kSt |iR0) of the i-th input of R0 to the k-th

state of S at time t, that will minimize κ ≥ kBT ln(2)
[
−α∆HSShannon + ∆IR1S

]
. The

problem reduces to solving a constrained optimization problem with the Lagrangian

L

L = κ+ λ(IR0S − It)

Replacing κ with the expression for the lower bound, we get

minp(kSt |iR0 )(kBT ln(2)
[
−α∆HSShannon∆IR1S

]
+ λ(IR0S − It))

where λ is the trade-off parameter between κ and IR0S . Since we are interested in the

mapping p(kSt |iR0) that minimizes the Lagrangian for any state transition mapping,

the solution is independent of IR1S′ and HS
′

Shannon, and the problem reduces to

maxp(kSt |iR0 )(IR1S − αHSShannon − λ(IR0S − It))

The constraint optimization problem above is the information bottleneck algo-

rithm, an information theoretic technique to achieve optimal data representation and

predictive inference [92]. The solution for p(kSt |iR0) is of the form
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p(kSt |iR0) ∝ e
−1
λ [DKL[p(jR1 |iR0 )|p(jR1 |kSt )]−ln p(kSt )]

whereDKL[a|b] is the Kullback-Liebler (KL) divergence between distributions {a} and

{b}.DKL[a|b] ≥ 0 for any two distributions with equality achieved when {a} = {b}.

The above solution indicates that in an homeostatic system with a finite amount of

memory, when κ is minimized with respect to the mapping p(kSt |iR0) of the input iR0

to state kSt we have that

(a) p(kSt |iR0) is higher if DKL[p(jR1|iR0)|p(jR1|kSt )] is lower. This entails that the

actual conditional distribution of the input {p(jR1|iR0)} be similar to the pre-

dicted distribution of the next inputs by the system state {p(jR1|kSt )}. Thus

the probability of i-th input of R0 to the k-th state of S is greater if that state

allows for better prediction of the next driving input jR1 .

(b) p(kSt |iR0) is higher if ln p(kSt ) is lower. This is achieved when p(kSt )→ 1 indicat-

ing a preference of sparser distributions of {p(kt)} over broader distributions.

Thus we see that in systems for which the lower bound on κ is minimized i.e. the

reliable low dissipation condition, the mapping of the past signals in the states of

the system is skewed towards better prediction the next driving input and sparse

representations.

The transition state probability p(lSt+1|kSt , jR1) is the probability that the k-th

state of S at time t maps to the l-th state at time (t + 1) when driven by the j-

th input of R1, and characterizes the system’s temporal dynamics with respect to

the driving signal. The state transition probabilities p(lSt+1|kSt , jR1) when the system

maintains the reliable low dissipation over a finite time period can be obtained from

the following differential equation

dp(lSt+1|iR0 ,jR1 )

dp(kSt |iR0 )
= p(lSt+1|p(kSt , jR1) + p(kSt |iR0)

dp(lSt+1|p(kSt ,jR1 )

dp(kSt |iR0 )
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This equation is obtained under the assumption that the p(lSt+1|p(kSt , jR1) is time-

varying and dependent on past mappings p(kSt |iR0) i.e.
dp(lSt+1|p(kSt ,jR1 )

dp(kSt |iR0 )
6= 0. The

solution to the above equation is extremely specific to the choice of distributions and

is often not tractable. However if we assume that
dp(lSt+1|iR0 ,jR1 )

dp(kSt |iR0 )
= Q[p(kSt |iR0)] where

Q is some function of p(kSt |iR0), then we can say that

p(lSt+1|kSt , jR1) ∝ e
−1
λ
{DKL[p(mR2 |iR0jR1 )|p(mR2 |lSt+1)]}

× e
1
λ′ {DKL[p(jR1 |iR0 )|p(jR1 |kSt )]}

The first term on the right hand side corresponds to the ‘generative’ component

maximizing prediction as before. In addition, p(lSt+1|kSt , jR1) is higher, if the second

term, DKL[p(jR1|iR0)|p(jR1|kSt )] is higher. This term corresponds to a ‘recognition’

component minimizing past errors. We thus see that when a macroscopic variable is

homeostatically maintained in an energy efficient low dissipation manner in a driven

non-equilibrium systems, the dynamics of the homeostatic system can be charac-

terized by the state-transition probabilities that exhibit top-down generative and

bottom-up recognition components. This is exactly what is seen systems like the

human brain which exhibit prediction-centric intelligence [142], [97].

Similar results have also been proposed for information engines in [141]. The so-

lutions here are related to the unsupervised learning techniques from the Helmholtz

machine [143] and variational autoencoders [144], that use generative and recognition

components to learn optimal encodings of the underlying structure in unlabeled data.

Unlike these algorithms, where learning is the a priori goal, the results presented here

hint that the preference for predictive dynamics of the driving signals in self-organized

systems is the result of specific thermodynamic conditions. Rather than looking to

make the physical implementations of learning algorithms more energy efficient, we

should recognize that physical systems that satisfy the reliable low dissipation ther-
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modynamic condition exhibit dynamics with a preference for predictive inference and

sparse representations. We will next illustrate the reliable low dissipation condition

and the preferred encodings of the input in the states of the system with a simple

example. Following that we will briefly extend these results to active agents and

then proceed to define a new computing paradigm based on these thermodynamic

conditions.

6.7.1 Illustrative Example

The reliable low dissipation condition is powerful since it brings together 3 very

important ideas in dissipation, homeostasis and prediction in a non-equilibrium sce-

nario. Given that these are ultimately thermodynamical conditions, they need to be

experimentally tested and verified by measuring observables such as heat dissipation,

entropy (or suitable substitutes) and temporal dynamics in self-organized systems.

There is additional complexity of identifying the suitable spatial and temporal scale

to study these conditions in both biological and artificial systems. Given that, we

will illustrate the implications of the theoretical results from the above section with

a simple example of a system with two states.

Consider the system S with two states k = 0, 1. Let us assume these are the

states of the system when S satisfies the reliable low dissipation condition. The

system is being driven by a string of inputs made up of 0’s and 1’s. We will discuss

a couple of cases with different conditional distributions for the inputs and see how

that influences the mapping onto the states of the system. Now from the reliable low

dissipation condition we know that the encoding of the i-th input on the k-th state

of the system is dependent on the closeness of the prediction of the next input to the

actual conditional distribution of the input.

p(kSt |iR0) ∝ e
−1
λ [DKL[p(jR1 |iR0 )|p(jR1 |kSt )]−ln p(kSt )]
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We will start by focusing on the Kullback-Liebler divergence component of the equa-

tion keeping in mind that the other exponent is a sparsity criterion driving the system

towards narrower state distributions. The DKL can be expanded as

DKL[p(jR1|iR0)|p(jR1 |kSt )] =
∑
j=0,1

p(jR1|iR0) log2

[
p(jR1|iR0)

p(jR1|kSt )

]
Writing out the terms clearly we have

DKL[p(jR1|iR0)|p(jR1|kSt )] = p(0R1 |iR0) log2

[
p(0R1 |iR0 )

p(1R1 |kSt )

]
+ p(1R1|iR0) log2

[
p(1R1 |iR0 )

p(1R1 |kSt )

]
For p(0St |0R0), we have

DKL[p(jR1|0R0)|p(jR1|0St )] = p(0R1|0R0) log2

[
p(0R1 |0R0 )

p(1R1 |0St )

]
+p(1R1 |0R0) log2

[
p(1R1 |0R0 )

p(1R1 |0St )

]
For the input conditional distribution given by p(0R1 |0R0) = 1, p(1R1|0R0) = 0,

p(0R1 |1R0) = 0 and p(1R1 |1R0) = 1 we get

DKL[p(jR1|0R0)|p(jR1|0St )] = p(0R1|0R0) log2

[
p(0R1 |0R0 )

p(1R1 |0St )

]
DKL[p(jR1|0R0)|p(jR1|0St )] = − log2 p(0

R1|0St )

Thus we have p(0St |0R0) ∝ e
1
λ

[log2 p(1
R1 |0St )]. This implies that the probability that

0R0 maps to the state 0St depends upon the conditional probability that 0R1 is pre-

dicted by the state 0St . For simplicity, let us assume that the prediction by every

state is the state itself. This gives us that p(0R1|0St ) = p(1R1 |1St ) = 1. Under this

assumption for the prediction by the states, we have DKL = [p(jR1|0R0)|p(jR1|0St )] =

− log2 p(0
R1 |0St ) = 0 is minimized. Other factors being equal, we have that for the

given input conditional distribution and state prediction p(0St |0R0) → 1. Likewise

we can show that p(1St |1R0) → 1 and conversely p(1St |0R0) → 0. Of course these

mappings would be very different if the mapping of the state into the outputs were

different as well. But we are beginning to see the input-FSA state mappings that are

preferred under specific thermodynamic conditions. Like any other scientific hypothe-

sis, further experimental evidence is specific self-organized networks will be necessary

to confirm these results.
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6.8 Active Agents as Finite State Automata

Active agents are those agents that can interact and affect the inputs they receive

through their actions. These are very important since we would require our intelligent

systems to be able to interact, learn and act intelligently in a dynamic environment.

In this paper, we are interested in active agents with a fixed set of actions. In this

section, I will provide a physical finite state automata (FSA) description of such an

agent, and the lower bound on dissipation over state transitions.

6.8.1 Physical FSA Description of Active Agents

Active agents are characterized by their internal states, the inputs that they re-

ceive, a mapping that defines transitions between these internal states, and state-

dependent actions that influence future inputs. We construct a very general physical

description of an active agent as a Markov FSA by identifying the physical realizations

of the agent states, inputs, and state transitions.

• Internal States: The internal FSA states are faithfully represented in the

distinguishable physical states of a joint quantum-mechanical system SA. The

Markov property implies that the next state of the FSA depends only upon the

current state of SA, and the next input. We will also assume (without loss

in generality) that these internal states can be divided into - action states of

system A that affect the next input to the joint system, and sensory states of

system S that do not affect the incoming inputs. State transitions in both S

and A are however dependent on the input. ). The mapping from the states of a

physical system A to the action policy will not be explored in detail, beyond the

assumption that they are fixed for the given system. The joint system interacts

with it’s environment B, a (finite) heat bath nominally in a thermal state ρ̂Bth

at temperature T .
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Figure 6.5. Finite state automata description of an active agent SA with sensory
and action states.

• Inputs: Input strings ~X are physically instantiated in the state of a “referent”

system R = R0R1, which can be regarded as a physical “input tape” that holds

the output of a classical information source. Subsets ~Xk = X(1)X(2)...X(t−1) of

strings leading to the current FSA state are represented by R0, and X(t) is

represented by R1. In general, we assume that R0 and R1 are correlated,

and that the input distribution of R1 is dependent on the current state of the

subsystem A and R0.

• State Transitions: The t-th state transition is realized by dynamical evolution

of the state of SA, conditioned on the state of R1 and in interaction with B.

Global evolution of the interacting composite R1SAB producing this transition

is assumed to be governed by the time-dependent Schrodinger equation to ensure

consistency with physical law. The t-th input remains encoded in R1 at the

conclusion of the FSA state transitions.

To complete the “physical universe” relevant to description of the FSA, we will

once again have that the FSA’s local environment B is embedded in a “greater en-

vironment” B̄ which acts to “rethermalize” B whenever it is driven from equilibrium

by interaction with S during state transitions.
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6.8.2 Lower Bound on Dissipation for Active Agents

In this section, I will present the lower bound on dissipation over a state transition

for the interactive FSA described above, instantiated in a general quantum system

SA, based on the derivation in [138].

∆〈EB〉 ≥ kBT ln(2)
[
−∆SSA + ∆IR1SA

]
where B is a thermal bath at temperature T , and ∆〈EB〉 is the change in the expected

energy of the bath and captures the dissipation associated with the state transition.

−∆SSA is the change in von Neumann entropy of the system, and ∆IR1SA is the

change in quantum mutual information between the system SA and the input signal

R1 driving the transition. IR1SA is the correlation between R1 and SA, before the

transition and can be seen as a measure of prediction of the incoming input. A

much detailed description of the physical instantiation of a FSA, and derivation of

the bound is provided in [138].

We will continue forward with classical systems and leave the detailed analysis

of the emergence of learning in quantum systems for the future. A similar bound

on dissipation for a Markov FSA has been derived by the authors in [82] from a

completely classical perspective. The lower bound derived in [82] is equivalent to the

equation below

∆〈EB〉 ≥ kBT ln(2)
[
−∆HSA + ∆IR1SA

]
(6.3)

where −∆HSA is the change in Shannon entropy, and ∆IR1SA is the change in clas-

sical Shannon mutual information between R1 and SA. In the next section, we will

discuss the relationship between the reliable low dissipation conditions and prediction

dynamics in active agents.
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6.9 Dissipation, Homeostasis and Prediction in Active Agents

We will now use the fluctuation theorems to study the physical conditions under

which prediction capabilities would emerge in self-organized active agents. Consider

the case of a classical system in a non-equilibrium homeostatic state with macrostate

I fixed over a finite time period. Setting I = II in Eq.(6.1) again we get π(I → II) =

π(II → I) and

〈e
ln

[
pf (j|I)
p0(i|I)

]
〈e−β∆Qi→j〉i→j〉I→I = 1

Taking negative logarithm on both sides and using the cumulant generating function,

this equation can be reduced to

− ln〈e
ln

[
pf (j|I)
p0(i|I)

]
〈e−β∆Qi→j〉i→j〉I→I = 0

− ln〈〈e
ln

[
pf (j|I)
p0(i|I)

]
e−β∆Qi→j〉〉I→I

= κI − γI

= 0

where κI and γI represent the mean and fluctuations about the mean as before, when

the system maintains it’s macrostate I over a finite period of time. If κI is low when

the macroscopic variable I remains fixed, the fluctuations γI needs to be low as well

to satisfy κI = γI . This implies that the value of β〈∆Q〉I→I + kBT ln(2)∆HI→I

over different micro-trajectories are concentrated around the mean, and once again

corresponds to the condition of reliable low dissipation for active agents.

As before, I will model the agent system in a non-equilibrium state as an interac-

tive FSA, and substitute the FSA lower bound on dissipation from Eq.(6.3) to obtain

a lower bound on κ. We use this substitution to gain insight into the correlation
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between the system and the external driving signals, when the lower bound on κ is

minimized under homeostasis.

κ = 〈∆Q〉I→I + kBT ln(2)∆HI→I

≥ kBT ln(2)
[
−∆HSAShannon + ∆IR1SA + ∆HI→I

]
The macrostate entropy HI→I is related to the Shannon entropy HSAShannon depending

upon the choice of macro-observable I as well as the information bearing variable.

We will characterize their relationship as ∆HI→I = −α∆HSAShannon.

We will make similar assumptions for the FSA models active agents of as we did

for passive agents. At some time t, let R0 correspond to the driving signals that

have produced the current state of the system SA, and R1 be the incoming signal

that will drive the next state transition. R0 and R1 are assumed to be correlated,

which is often the case. Let there be a finite number of states {kSt , lAt } of SA such

that the past inputs map onto these states using the mapping p(kSt , l
A
t |iR0) and we

assume that amount of information between R0 and SA - IR0SA at time t is equal

to It. IR0SA can be viewed as a measure of the system’s memory and viewed as the

result of dissipation driven adaptive learning. We are now interested in how R0 is

encoded in the current state of the system SA, so that the lower bound on κ, for the

transition driven by R1 is minimized. This is equivalent to calculating the mapping

p(kSAt |iR0) of the i-th input of R0 to the (k, l)-th state of SA at time t, that will

minimize κ ≥ kBT ln(2)
[
−α∆HSShannon + ∆IR1S

]
.

The problem can again be cast as a constrained optimization problem with the

Lagrangian

L = κ+ λ(IR0SA − It)

Replacing κ with the expression for the lower bound, we get
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minp(kSt ,lAt |iR0 )

[
−∆HSAShannon + ∆IR1SA + ∆HI→I + λ(IR0SA − It)

]
where λ is the trade-off parameter between κ and IR0SA. Since we are interested

in the mapping p(kSt , l
A
t |iR0) that minimizes the Lagrangian for any state transition

mapping, the solution is independent of IR1S′ and HS
′A′ . Thus the problem reduces

to

minp(kSt ,lAt |iR0 )(αH
SA − IR1SA + λ(IR0SA − It))

This is equivalent to

maxp(kSt ,lAt |iR0 )(IR1SA −HSA − λ(IR0SA − It))

The constraint optimization problem above is the information bottleneck algorithm,

an information theoretic technique to achieve interactive learning [92]. The solution

for p(kSt , l
A
t |iR0) is of the form

p(kSt , l
A
t |iR0) ∝ e

−1
λ [DKL[p(jR1 |iR0 )|p(jR1 |kSt ,lAt )]−ln p(kSt ,l

A
t )]

× e
1
λ [DKL[p(jR1 |iR0 ,lAt )|q(jR1 )]]

(6.4)

where DKL[a|b] is the Kullback-Liebler (KL) divergence between distributions {a}

and {b}. The optimal encoding of iR0 to state kSt l
A
t , p(kSt , l

A
t |iR0) is dependent on 3

factors

• Exploitation - DKL[p(jR1 |iR0)|p(jR1|kSt , lAt )] is low. This implies that those

input R0 - state SA mappings that improve prediction of the next driving

input jR1 (true conditional distribution {p(jR1|iR0)} and predicted distribution

{p(jR1 |kSt , lAt )} are similar) are preferred. We identify this as the exploitation
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component, that looks to maximize the prediction of future inputs from past

ones in both the sensory and action states. This is very interesting to analyze

particularly for the states that influence action. The states of A that maximize

the prediction of the next input produced by a fixed action policy, are the

states and by extension the actions that are more probable. This might seem a

little counter-intuitive at first but align well with the predictions of free-energy

principle in neuroscience [146]. At this juncture, it is a reasonable to argue

that the action that maximizes input prediction in certain cases, might be one

that produces a passive agent with no action. This problem is addressed by the

exploration component in the equation that is discussed next.

• Exploration - DKL[p(jR1|iR0 , lAt )|q(jR1)] is higher. This entails those action

states that allow for the conditional future distribution p(jR1|iR0 , lAt ) to deviate

from the average distribution of future inputs p(jR1) are preferred. This would

correspond to an exploration component in state encodings. The conditional

distribution of inputs produced by action states of A - {p(jR1|iR0 , lAt } that

differ from the average future input {|q(jR1)} are more preferred. This strikes a

tradeoff with the exploitation component and ensure a system does not remain

passive. Also note that the exploration component arose as part of the optimal

solution that minimizes κ, and did not have to be artificially introduced as it

often the case in techniques like reinforcement learning [101].

• Sparsity - ln p(kSt , l
A
t ) is higher. This happens when p(kSt , l

A
t ) → 1 for a par-

ticular state of the system SA which indicates that sparse distributions of the

system states are preferred over dense distributions. The importance of sparse

representations in intelligent systems has been well analyzed in [98], and plays

a crucial role in the design of neuromorphic system [99].
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We see that in active agents that satisfy the condition of reliable low dissipation, the

encoding of the past signals in the states of the agent system is a balanced trade-off

between exploitation, exploration and sparsity factors. It is important to note that

while these components themselves have been observed in other learning approaches

[102], it has been derived from the fluctuation theorems without assuming prediction

as the intended goal beforehand.

The transition state probability p(uSt+1v
A
t+1|kSt lAt , jR1) is the probability that the

(kS , lA)-th state of SA at time t, maps to the (uS , vA)-th state at time (t+ 1) when

driven by the j-th input of R1, and characterizes the system dynamics with respect to

the driving signal. These are dependent upon all three related factors of exploitation,

exploration and sparsity. The dependency of the state transition probabilities on the

exploitation components, when the system maintains the thermodynamic conditions

described above are explored below.

p(uSt+1v
A
t+1|kSt lAt , jR1) ∝ e

−1
λ
{DKL[p(mR2 |iR0jR1 ,vAt+1)|p(mR2 |uSt+1v

A
t+1)]}

× e 1
λ′ {DKL[p(jR1 |iR0 ,lAt )|p(jR1 |kSt lAt )]}

The first term on the right hand side corresponds to the ‘generative’ component of

states in SAmaximizing prediction as before. In addition to these, p(uSt+1v
A
t+1|kSt lAt , jR1)

increases if the second DKL term is higher, corresponding to a ‘recognition’ compo-

nent minimizing past errors. The dynamics of the homeostatic system in which a

macroscopic variable is maintained in an energy efficient manner, are characterized

by state-transition probabilities that exhibit both top-down generative and bottom-

up recognition components. Similar components have been observed in the cerebral

cortex of the human brain, and also used in unsupervised learning techniques like the

Helmholtz machine [143] and variational autoencoders [144]. An analysis of the state

transition probability dependence with respect to exploration components, indicates
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that there is a trade off between exploration components of the two time steps, as

shown below.

p(uSt+1v
A
t+1|kSt lAt , jR1) ∝ e

1
λ
{DKL[p(mR2 |iR0jR1 ,vAt+1)|p(mR2 ])}

× e
−1
λ′ {DKL[p(jR1 |iR0 ,lAt )|p(jR1 )]}

The results presented in this section show that in active agents that satisfy the re-

liable low dissipation condition for homeostasis, the temporal dynamics of the system

exhibit a tradeoff between exploitation, exploration and sparsity. By not assuming the

prediction dynamics apriori and/or artificially introducing the exploration compo-

nent, the results here indicate significant first steps in identifying a task independent

objective functions for active agents to determine their action policies. These results

are closely tied to ideas of intrinsic motivation in agents [103], [104]. In order to

make the jump from our current successes with narrow intelligence to an artificial

general intelligence, we need agents to be capable of lifelong learning. Some defining

characteristics of lifelong learning include - continuous learning and adaptation to the

changing environments, and the capability to generalize and apply the accumulated

knowledge to new situations. In the next section, we will review the problem of catas-

trophic forgetting and how these thermodynamic conditions might provide a strong

base to build off for such lifelong learning agents.

6.10 Reliable Low Dissipation and Catastrophic Forgetting

One of the biggest disadvantages of current machine learning algorithms is the

problem of catastrophic forgetting - the tendency of an artificial neural network to

completely and abruptly forget previously learned information upon learning new in-

formation. The problem had been identified decades ago [145], and is a manifestation
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of the stability-plasticity dilemma in connectionist networks, which encode informa-

tion in a distributed manner. It corresponds to the trade-off between the system’s

ability to hold onto past information when presented with new information (stabil-

ity), and it’s ability to generalize and infer from it’s inputs (plasticity). In order to

make the jump from our current techniques for narrow intelligence to an artificial

general intelligence, it is vitally important to address this problem. Success would

allow for the realization of systems that exhibit continuous incremental learning and

adaptation to the changing environments, and the capability to generalize and apply

the accumulated knowledge to new situations. Ongoing research into new algorithms

and architectures have produced progress in transfer and lifelong learning to overcome

the stability-plasticity problem, but have achieved limited success [126].

In this section, I will focus on the relationship between catastrophic forgetting and

the thermodynamic conditions discussed above. In a Markov finite state automata

description of an agent, the input encoding scheme to overcome the stability-plasticity

problem in the system would maximize the system’s ability to predict future inputs

(plasticity) for a finite amount of memory (stability). This can be framed as a con-

strained optimization problem of the form

maxEncoding (Plasticity) - β (Stability)

Using mutual information based measures for plasticity (IR1S) and stability (IR0S)

in a Markov state machine descriptions, the above optimization problem for encoding

p(kS |iR0) can be stated as the following

maxp(kS |iR0 ) IR1S − βIR0S

We know this to be the past-future information bottleneck problem, and has been

suggested as a suitable objective function for lifelong learning [107]. It is shown to be

capable of explicitly capturing the underlying predictive structure of a process [108].
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In the previous section, we have seen that systems realizing the physical condition of

reliable low dissipation κ = γ, is equivalent to implementing the above information

bottleneck. While the memory in such systems will be achieved through reliable high

dissipation, the ability to generalize and predict new inputs matches up with the

optimal solution. Thus physical systems that exhibit reliable low dissipation have the

ability to transfer knowledge, overcome the stability-plasticity problem, and offer a

compelling candidate system for lifelong learning.

6.11 Discussion & Conclusion

In this chapter, we introduced the non-equilibrium conditions for predictive infer-

ence in physical systems using the macrostate fluctuation theorems. The reliable low

dissipation condition represents a powerful relationship between homeostasis, energy

efficiency and prediction in passive agents. According to the condition, the energy

efficient dynamics of a system maintaining homeostasis is the predictive behavior the

systems exhibits of future inputs. Furthermore we were able to extract the generative

and error corrective components of the predictive dynamics exhibited under the low

dissipation condition. In addition to the reliable low dissipation condition, we also

added greater context to the reliable high dissipation condition proposed under the

dissipation driven adaptation. The reliable low dissipation condition was then further

extended to active agents to explain exploitation-exploration trade-offs in the optimal

action policy of these agents. Finally we proposed the reliable low dissipation con-

dition as a possible solution to the stability-plasticity dilemma and achieve lifelong

learning.

There is a need for a fundamental shift in our strategies to achieve learning and

intelligence in computing systems. A possible radical new strategy to move forward is

that of thermodynamic computing, an engineering framework that seeks to combine

information theory and thermodynamics and place it at the very heart of comput-

157



ing moving forward. In order to achieve physical systems capable of learning in a

dynamic environment, we need to move away from physical implementation of task

dependent algorithms, and focus more on processes to realize thermodynamic condi-

tions like those presented in this chapter under which physical systems will exhibit

optimal predictive encoding of the external signals. We need to identify more con-

ditions and translate these results into effective guidelines and design principles for

self-organization processes. In the next chapter, we will delve in the philosophical

underpinnings of underlying our current computational approaches to building intel-

ligent systems and then situate our new thermodynamic approach in this landscape

which help us understand these ideas in the larger contet. I will further develop the

ideas presented in this chapter and discuss the engineering methodologies required to

build thermodynamic computers moving forward.
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CHAPTER 7

THERMODYNAMIC INTELLIGENCE FRAMEWORK

7.1 Introduction

The Rebooting Computing Initiative was started as IEEE Future Directions Group

in 2012 with the stated goal of rethinking the computer “from soup to nuts, including

all aspects from device to user interface,” working from a holistic viewpoint taking

into account evolutionary and revolutionary approaches [115]. This need for and

unique opportunity to reboot computing has been driven by two important factors

that we mentioned in the previous chapter - the shift in the focus of the computing

industry away from traditional logical and mathematical operations towards data-

centric applications which require the handling and learning from large amounts of

data. The second is the imminent and inevitable end of Moore’s law brought about

by physical limits to CMOS scaling (death by scaling) and energy efficiency (death

by heat). The last time we were here was over six decades ago, when we first started

designing computing systems. It was the perfect storm of the right task of performing

large mathematical operations meeting the necessary system architecture and CMOS

device technology that led to the first computer technology revolution. Needless

to say, we have made tremendous progress in those six decades, to find ourselves

right where we started - a new task of producing intelligent systems, looking for new

architectures and devices to effectively achieve them in.

In the previous chapter, we introduced the non-equilibrium reliable high and low

dissipation conditions for adaptive learning and predictive inference in sections 6.6

and 6.7 respectively. These conditions provide an alternative physical description of
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intelligence and will look to challenge the central premise of our current computational

approaches to building intelligent systems - the brain is a computer and intelligence

can be described and achieved through an algorithm. This approach is based on the

computational theory of the brain, and will be discussed in detail in the sections to

follow. Extremely sophisticated machine learning algorithms have been developed

and implemented on traditional computer hardware to very impressive effect. In

spite of the massive improvement in performance afforded by machine learning tech-

niques in the recent past, these state of art algorithms are heavily outperformed by

the human brain over a wide range of tasks, and with respect to energy efficiency of

implementation. The growing consensus in the field is that if human general intelli-

gence and beyond is the goal, we have to look beyond modifying existing techniques

and more towards living systems. The next major technological leap will require a

fundamental shift away from our current notions on intelligence, and figure out how

it can be optimally realized in artificial systems.

The goal of this chapter is to explore the fundamental ideas at the foundations

of our current approaches to artificial intelligence and place the thermodynamic con-

straints from the previous chapter in larger context. Exploration of what computing

is and what it entails will help us understand the nature of intelligence that is realized

with our current computational approaches. It will also enable us to distinguish this

type of intelligence from our own. Identifying the difference will allow us to address

it, and explore new theoretical frameworks and approaches to engineering intelligent

systems. Just as the first computer technology revolution was built on the theoretical

foundations of the Turing machine, it is necessary to ask if we need to look beyond

this existing framework, and seek new ideas in order to build efficient intelligent sys-

tems and embark on another technology revolution. I must note that this chapter will

have a strong philosophical flavor to it, which is unavoidable given the nature of the

foundational issues that the chapter looks to tackle. While one might be forgiven for
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not pondering about the philosophical implications of all our engineering endeavors

(Is a bridge, still a bridge if no one uses it?), that cannot be the case when it comes to

artificial intelligence. Such technology has tremendous potential to change the world,

and it is necessary that we understand these complex systems we are designing. Fur-

thermore, I hope to show that understanding these fundamental (often philosophical)

differences will help us in designing intelligent systems in a more optimal manner.

The chapter will be organized as follows. We will start with a quick review of the

computational theory of the brain, and explore the fundamental differences between

observer dependent and independent computing. We will then build on the idea of

observer dependent computing to talk about the current state machine learning al-

gorithms. Also included are discussions on the differences between these algorithms

and the human brain, as well as introduction of a simulation-emulation scale for their

implementations. Using the results on the fundamental non-equilibrium conditions

for learning from the previous chapter, we will introduce the framework of thermo-

dynamic intelligence and explain the ability of these systems to exhibit observer-

independent intelligence. Finally we will explore the realization of thermodynamic

intelligence in physical systems under an engineering framework called thermody-

namic computing. The chapter concludes with a summary of the results and a brief

discussion of important issues to consider moving forward.

7.2 Computational Theory of the Brain

The quest for artificial intelligence lies at the very heart of the field of computing.

Alan Turing, one of the earliest pioneers of computer science was very interested in

the existence of programs that would make machines indistinguishable from human

in their intelligence, and proposed the famous Turing test in his seminal paper “Com-

puting machinery and intelligence” [116]. Turing was also interested in the idea of

training connectionist networks for learning and proposed the unorganized Type-A

161



and Type-B machines [117]. The collection of ideas which understands and describes

our intelligence as a computation, being run on the hardware of the human brain

is called the computational theory of the brain/mind [118], and forms the central

tenet behind all of our current approaches to AI. Under this picture, the computa-

tions achieved by the brain to produce our intelligence is the only thing that matters,

and the nature of the hardware that produces them is not of consequence. If these

computations were properly identified and implemented in any hardware system like

our modern day digital computers, the systems achieves the same intelligence as the

human brain. In the quest for an artificial general intelligence, it is this last statement

that I think is important to analyze and possibly challenge. In order to do that, we

have to go back to the very fundamentals of what computing is, and what it entails.

7.2.1 Revisiting the Fundamentals of Computing

Information and computing - the bedrocks of our field, are probably two of the

most widely used and often misunderstood terms in science, engineering and philos-

ophy. For most of us, computing in a practical useful sense corresponds to what is

achieved by our modern day digital ’computers’ - artificial silicon based systems that

have been designed to execute programs. Many decades ago we would refer to people

as computers, given their ability to compute. This would be one of the reasons for

which the title of Turing’s seminal paper was ’computing machinery’, rather than

computers. Turing machines were invented as a way to model our own ability to

follow a set of instructions and execute mathematical or logical operations, it heavily

influenced the invention of the first computing machines. However over time, with

advancements in engineering, we were able to come up with ways to automate this

process of executing instructions very efficiently, and the word ’computer’ has ac-

quired the meaning it has today. Initially these systems were able to perform simple

logical and mathematical operations, but improvements to CMOS technology, archi-
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Figure 7.1. (a) Traditional CMOS circuit implementing a NAND gate with inputs
A and B, and output Out. (b) A physical systems of 4 states A,B,C and D evolving
into states X and Y is observer independent. Different interpretations of the input
and output state encodings will realize different NAND and NOR operations. The
computing achieved in this case is observer dependent. (c) Comparing the incomplete
and complete picture of computing in our digital computers. The external observer
who interprets the evolution of a system as a computation is often missed.

tectures and the programs themselves have enabled it to perform a wide range of

sophisticated functions, and become vitally important to our everyday life. If we are

go to beyond these traditional cases of computing, and look at broader examples like

an apple falling from a tree or a pencil at rest on a desk, there are questions to be

asked on whether these systems are computing their own time evolution functions?

While these are important discussions to be had on the fundamental definitions of

computing and their implications, they are beyond the scope of this dissertation. We

will focus on computing from this practical useful sense, and use it in our discussion

of computing from an observer dependent and observer independent sense [119].
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Consider the CMOS circuit shown in Fig.(1a). There are two input nodes A and

B, and an output node Out. From the figure, we can see that if logic 1’s and 0’s

were encoded as voltage highs and lows respectively as it usually is in digital logic,

the CMOS implementation behaves like a Boolean NAND gate. For the inputs 00,01

and 10, the system produces the output 1, and the output 0 for the input 11. It is

immediately clear that if the encodings were to be modified, the same CMOS circuit

can be used to achieve a logic NOR gate. Thus nothing about the physical circuit

makes it a NAND or NOR gate Fig.(1b). It is our interpretation of the states of

the system as inputs, outputs and determination of the encoding scheme that makes

the physical CMOS circuit a system implementing a computation - logical NAND or

NOR. While the time evolution of the physical system is an observer independent

phenomenon, the computation achieved through the evolution is not. This observer

dependence of computations achieved in artificial systems is very important, and often

very easy to miss given the sophistication of these systems. In Fig.(1c), we can see

that when we think of computing systems, we restrict ourselves to inputs, outputs

and the process that produces the outputs from the inputs. However all of these are

defined and interpreted by an observer, external to the system. When it comes to our

modern day computers, nothing about physical system in on itself, imbues them with

the property of computation. It completely comes down to the capabilities of this

external observer to interpret the evolution of a physical system as an instantiation

of a faithful computation. We are these observers who interpret the keystrokes on

a keyboard as input, and the symbols on a monitor as outputs, thus making the

processes that occur in the CPU to convert the inputs to outputs as computation. It

is our interpretation that makes all these machines around us ’computers’. And our

intelligence plays a significant role in not only interpreting the evolution of systems

as computations, but also manipulating the physical structure of systems to achieve
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the computations we desire (all of silicon based integrated circuits fall under this

category).

In contrast, our own ability to perform computations is observer independent. We

do not need an external observer to interpret and decide when we have or have not

achieved a computation. This ability to perform observer independent computations

is a vital characteristic of our ’true’ intelligence, and fundamentally different from

that exhibited by our computers [119], [120]. An important question that one should

be asking immediately would be - what is it about our brains and our intelligence,

that allows us to compute in an observer independent manner and also understand

observer dependent computing?How do we understand and achieve this in artificial

physical systems without resorting to observer dependent approaches again? One

possible answer that has been suggested is that consciousness bestows ourselves with

the property of observer independence. Consciousness is an extremely complex phe-

nomenon, and often defined so broadly that attributing the observer independence

property to it is simply explaining away the problem, without really addressing it. We

would be explaining one phenomenon that we do not fully understand by attributing

it to another phenomenon that we understand even less of. Rather than referring to

the broad phenomenon of consciousness as a solution, I will instead use recent results

on the thermodynamic conditions for intelligence citeNatesh to propose explanations

of this unique ability.

7.3 Computational Approach of Machine Learning Algorithms

In the previous section, we introduced the distinction between observer dependent

and independent computing. Before we move on to thermodynamic intelligence, it

is important to understand where and how our current machine learning approaches

fit in this picture. Our recent success with machine learning techniques have only

served to reinforce the computational theory of the brain - that our intelligence can
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be described as an algorithm, and achieved by implementing in digital computers.

It is amazing how far we have come since the turn of the decade when the use of

specialized hardware - graphic processing units (GPU), made the execution of re-

source intensive learning algorithms extremely viable. Significant improvements in

image and object recognition by different research groups in 2011 and 2012 anchored

the start of what is now known as the “deep learning revolution.” In the five plus

years since then, it is an understatement to say that the field of machine learning

has grown exponentially. Artificial neural networks have significantly diversified and

applied successfully in vastly different fields. AI has become quite the buzzword for

both established companies and new startups looking to disrupt the market. While

there continues to be large number of different approaches and architectures being

developed rapidly, these techniques can be broadly classified as supervised, unsuper-

vised and reinforcement learning [121]. The area of supervised learning is the most

popular one, and where a significant amount of existing work has been carried out.

Reinforcement learning has become extremely popular over the last couple of years,

especially with the success of Google DeepMind’s AlphaGo system. A good portion

of unsupervised learning is currently carried out by converting it into a supervised

learning problem. However moving forward, the general consensus is that unsuper-

vised learning should form the bedrock of AI systems going forward, and the focus of

the field needs to shift towards improving it.

The ability of these techniques to generate rich functionality through the training

data has produced a general misunderstanding about the nature of these machine

learning techniques. Machine learning software can be built by assembling networks

of parameterized functional blocks, and by training them from examples using some

form gradient based optimization. The end result of this process is very much sim-

ilar to a regular program, except it is parameterized, automatically differentiated

and trainable. And like regular programs, they can be implemented and compiled
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using a programming language and compilers. In recognition of this, the field has

rebranded themselves recently from deep learning to differentiable programming. Ma-

chine learning techniques are simply a sophisticated form of programming. They are

not fundamentally any different from other traditional programs that have been run

on computers over the years. Our current approach to AI can thus be summarized as

intelligence through observer dependent computing. This has tremendous implications

when it comes to analyzing the nature of intelligence produced by systems executing

these programs.

7.3.1 Intelligence Through Computing

In order to understand the idea of intelligence through computing better, let

us analyze the technological landscape [123], where we have been successful, and the

techniques used to achieve that success. From Fig.(2), we can see that the area of most

interest right now is on the top right-hand corner of the technology landscape, with

systems that are capable of real time learning of information in a dynamic real world

environment, use of old information to predict new ones and being able to transfer that

knowledge across domains - characteristics of human general intelligence. The two

areas to the left of the y-axis correspond to traditional computing applications, where

static and dynamic modeling techniques have been extremely successful. The lower

right quadrant has employed differentiable programming implemented in traditional

hardware like GPUs to learn in a static offline manner, and represent the current

state of the field. We have been using a mix of these existing techniques such as

differential equations, search algorithms, deep learning, probability and statistical

methods that have been successful in these other quadrants to the top right one, with

limited success. The question we need to address is - are these techniques sufficient?

If not, where will our new ideas come from?
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Figure 7.2. Our current computing applications can be divided according to a tech-
nological conceptual landscape. This landscape is divided between applications that
are programmed and those which learn on the x-axis, and between online dynamic
environment vs a static offline one on the y-axis. The conceptual landscape discusses
the various foundational techniques that are used to achieve success in the corre-
sponding area of the graph. The top right corner is the area of intense interest and
ripe for exploration [123].

While discussing the difference between observer dependent versus observer inde-

pendent intelligence, I will limit myself to the standard implementation of machine

learning algorithms in traditional hardware like GPUs for the observer dependent case

due to two major reasons - this particular implementation accounts for a significant

proportion of AI systems achieved currently. Secondly, it is necessary to establish a

very clear example of observer independent intelligence which is offered by this im-

plementation. Once we have dealt with cases that are black and white, we can then

move onto novel neuromorphic and self-organized computing systems which represent

different shades of gray. The failure to account for the external intelligent observer

produces major confusion about the nature of intelligence achieved by the learning

programs from the lower right quadrant. Once the dependence of these comput-

ing systems on external intelligent observers is understood, it becomes immediately

clear what the problem with computational algorithmic approaches to intelligence

are. We need observers who are themselves intelligent, to interpret the underlying

physical processes as computing, in order for the overall system to be perceived as
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intelligent. The intelligence of digital computers implementing learning algorithms,

and exhibiting appropriate input-output behavior are intelligent observer dependent

by definition. Such systems lose their computing capability, and as consequence their

’intelligence’ in the absence of an intelligent observer. All our current approaches to

intelligence in artificial systems suffer from this fundamental condition. If the human

race vanishes tomorrow, the flow of electrons through an integrated circuit or sym-

bols appearing on a LED monitor will have no computational significance, let alone

intelligence. It would be overly optimistic to expect observer independent intelligence

to simply emerge from observer dependent computing, by increasing the computing

resources or just implementing more complicated algorithms.

These systems can be thought of as mimicking human intelligence, albeit quiet

poorly as it stands in the present. I would like to go back to the Turing test once again,

in which the goal was to produce a computer program that can fool an human partic-

ipant into believing that the program is human. By allowing for an intelligent human

observer to participate, the test automatically allows for an observer-dependent intel-

ligence to pass this test. However the test itself is not suitable to draw the distinction

between a program mimicking our intelligence, and a system like us exhibiting ob-

server independent intelligence. If an algorithm for general intelligence did exist, that

when implemented on traditional computer hardware would respond to inputs in a

way that is indistinguishable from a real human, then we cannot know the nature of

system’s intelligence - whether it is observer dependent or independent from studying

it’s input-output behavior alone. We would need knowledge on whether or not the

underlying mechanisms inside the system employ observer dependent computing or

not.

One is tempted to say that while these thought experiments are interesting, it

does not really matter if our artificial systems exhibit observer independent intelli-

gence like us, or merely mimic it in an observer dependent manner. This is a valid
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objection to raise, and for benign applications like movie and music suggestions, sim-

ple text translation, etc. the difference does not matter as long as the system achieves

the necessary input-output relationships. This is not the case for more serious ap-

plications of machine learning like self-driving cars, robotic surgery and healthcare

insurance and management that we are attempting right now. There is a real danger

that without solid definitions and understanding of these fundamental concepts, the

entire field of AI will suffer from the hype produced by often spurious claims of con-

sciousness, personhood [124], legal rights and attribution of human emotions [125],

brought about by anthropomorphization of these systems. Artificial intelligence is a

technology that is capable of revolutionizing every aspect of society and our lives. As

with most groundbreaking technologies, it is accompanied by a large number of ethi-

cal and legal issues that needs to be studied and addressed before making important

policy decisions in the public and private domains. Vital to these decisions will be a

sound theoretical framework of intelligence - human and machine.

7.3.2 Machine Learning vs The Brain

It is important to understand that while artificial neural networks are based on

a computational algorithmic description of the brain, they are not heavily inspired

by it. The fundamental idea that have made neural networks, especially deep neural

networks with large number of hidden layers successful and viable is gradient based

optimization of task-dependent objective functions, using the backpropagation algo-

rithm. The backpropagation algorithm allows for calculation of the required error

gradients, starting from the output end and distribute it across the network layers

to determine the appropriate weights for error minimization. While we might con-

tinue to produce good results in image and speech recognition, playing games, and

or in limited domain scenarios - tasks in which humans have performed much better

than our computers historically, the techniques used to achieve these results are not
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based on actual processes that happen in our own brain. There is very little evidence

that backpropagation like mechanisms play a vital role in our intelligence. At best,

these techniques can be seen as very coarse descriptions of mechanisms that produce

intelligence in our biological brains. As a result, these algorithms often suffer in

terms of their performance across a wide variety of tasks and energy efficiency (There

is growing work now to improve upon knowledge transfer between tasks, with some

techniques looking to hippocampus-neocortex interactions in the brain for inspiration

[126]). They usually need millions of labeled training examples to learn for even sim-

ple tasks, large amounts of compute power for training and often struggle to transfer

knowledge between tasks. These systems are also extremely susceptible to adversarial

examples leading to catastrophic failures. Given the vast complexity of some of these

networks, with millions of nodes and weights, it often extremely hard to understand

their data representation schemes, the exact functioning of these networks and the

specific conditions under which they will fail. The race to build and deploy systems

in as many areas as possible, has sometimes devolved into an exercise of rapid flag

planting, without sufficient interest to build and/or test a solid theoretical framework

to answer all these above questions only further exasperates the problem. However

there is light at the end of the tunnel, as more researchers in this community recognize

this problem, and are taking steps to address it [127], [128]

7.3.3 A Simulation-Emulation Scale

These shortcomings should encourage us to ask a fundamental question on whether

the current computational approach is the optimal way to engineering artificial intel-

ligence? This issue can be pictured on a simulation-emulation scale of implementa-

tions as indicated in Fig.(3), with complete emulation (biological brain) at one end of

the scale, and an extremely detailed simulation on the other. The detailed simulation

approach involves detailed models of the microscopic ion channels, flow of neurotrans-
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mitters, expression of proteins, etc [129]. This becomes extremely resource intensive

very quickly, and definitely not scalable for commercial purposes. While being ex-

tremely useful, especially in the study of brain disorders and testing the effects of

pharmaceutical drugs, they will not be a viable alternative to current machine learn-

ing approaches to solve a wide variety of tasks. On the other end, total emulation will

involve figuring out how to grow a biological working brain and using it to perform

tasks that a general intelligence is capable of. While steady progress is being made on

this front through the growth of mini brains [130], given the slow speed of biological

neurons and the issue of their viability outside the human body (not to mention the

ethical issues that arise in this scenario), this does not seem as a suitable engineering

option in the short term. Our computational machine learning algorithms running

on traditional hardware, will lie (somewhere near the middle) on this scale closer to

the simulation end. Neuromorphic chips exploiting novel architectures and devices

like memristors [131], would offer an efficiency boost and would also lie near the mid-

dle, closer to emulation end. Systems which use utilize biological neurons [132] on

a chip for computing offer a very interesting prospect, and should be closer to the

emulation end than the simulation one. We can immediately notice the significant

increase in the computing resources required for achieving intelligence as we move

from the human brain (total emulation), through neuromorphic chips and machine

learning algorithms on traditional hardware, to detailed computational models (total

simulation). In the next section, I will discuss the alternative thermodynamic picture

for intelligence, with the goal of producing thermodynamic computers, that would be

closer to the emulation end than any of our current systems.

7.4 Thermodynamic Intelligence

The broad nature of intelligence is overtaken only by consciousness itself. In order

to present an alternative to the computataional view on intelligence, it is necessary
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Figure 7.3. A Simulation-Emulation scale for various implementations of intelligent
systems. The Human Brain Project, machine learning algorithms lie closer to the
simulation end. Neuromorphic hardware, mini-brains and biological neurons on a
chip lie towards the emulation end. Thermodynamic computing looks to produce
viable systems closer to the emulation side of the scale.

to define as it pertains to this paper. We will use a prediction centric definition of

intelligence - a system is intelligent if it can learn and predict future inputs based

on past inputs. There is another important component to intelligence that we will

refer to as adaptation, the thermodynamic conditions for which have been discussed

in detail in [133]. Biology is incredibly diverse and complex, especially when it comes

to the human brain. There are over a hundred known neurotransmitters, different

types of neurons, neurogenesis and pruning, glial cells and different types of impor-

tant plasticity mechanisms. While it is important to study these systems in detail,

they do not offer a viable way to emulate intelligence in artificial systems. This is

where these thermodynamic conditions offer significant advantages. These fundamen-

tal conditions will be applicable to biological systems, as well as provide an approach

to building intelligent systems of the same nature with inorganic material. Note that

while being useful, the ideas presented here are in its infancy and there is much work

to be done, including identifying the temporal and spatial mechanisms in which these

conditions are realized in biological systems. In order to establish the relationship
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between thermodynamics, information theory and intelligence necessary for a theory

of thermodynamic intelligence, we will employ the thermodynamic conditions from

the previous chapter.

7.4.1 Dissipation, Homeostasis & Intelligence

In previous chapter, the author used the fact that since homeostasis is the mainte-

nance of a macrostate I as the system is driven by an external field, it can be realized

in the macrostate fluctuation theorem by using the relation II = I in Eq(6.1). This

allowed the derivation of a general thermodynamic condition for homeostasis in a

complex self-organized system S ([138],[139]) driven by external signals R0R1. A

special case of this physical condition called reliable low dissipation, was shown to

be equivalent to the system implementing the solution to a constrained optimization

called the Information Bottleneck [140], [141].

Maximizep(kSt |iR0 )(IR1S − λ(IR0S))

where p(kSt |iR0) is the probability that the i-th past input R0 maps to the k-th state

of the homeostatic system S at some time t, and quantifies the encoding of external

signal in the states of the system. IR0S is the mutual information between the system

S and the past inputs (history) R0, and is a measure of the system’s finite complexity.

IR1S is mutual information between S and the future input R1, and is a measure

of prediction in the system. Thus homeostatic systems that satisfy the condition

of reliable low dissipation achieve signal encoding that maximally predict the next

driving input. This predictive encoding of external signals will form the basis of a

predictive thermodynamic intelligence in the system.

The state transition probability p(lSt+1|kSt , jR1) of a system satisfying the condition

of reliable low dissipation are of the form given below
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Figure 7.4. Hierarchical predictive coding architecture with the feedforward predic-
tions moving from higher levels to lower levels, and feedback prediction errors moving
in the opposite direction. The higher levels predicts the level below it, and the pre-
diction of the external signal at the lowest level interacts with the external signal to
general the prediction error. Propagating only the error signal in a feedback manner
is more efficient.

p(lSt+1|kSt , jR1) ∝ e
−1
λ
{DKL[p(mR2 |iR0jR1 )|p(mR2 |lSt+1)]}

× e
1
λ′ {DKL[p(jR1 |iR0 )|p(jR1 |kSt )]}

From the equation above, we can see that state transition probabilities p(lSt+1|kSt , jR1)

for a system satisfying reliable low dissipation has two components - a feedforward

’generative’ component (first term on the right hand side) that continues to maxi-

mize prediction, and a feedback ’recognition’ component minimizing errors (second

term on the right). This form of feedforward-feedback architecture (Fig.(4)) is used

in Helmholtz machines [143] and variational encoders [144] - popular unsupervised

machine learning techniques. But unlike machine learning algorithms, the predictive

intelligence that arise from the input encodings in the states of the system here is the

inevitable result of satisfying the thermodynamic conditions. This predictive coding

scheme has also been explored as a solution to the stability-plasticity problem [145]

in [133].
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These results are closely tied to a related framework called the free-energy princi-

ple [146] that looks to explain the underlying principle of the brain, and can be viewed

as a variational Bayesian approach to understanding perception and action. It defines

homeostasis, as a minimization of internal entropy of the system - which is a much

more specialized condition than the non-equilibrium conditions discussed above. The

free energy principle has been well developed over the years in neuroscience, and can

be reduced to the Information Bottleneck approach as well [147]. Perception and

action in the brain are studied under an hierarchical predictive coding architecture

[148], as shown in Fig.(4). Learning and our intelligence is the combination of feedfor-

ward predictions of the incoming sensory signal, and feedback of the prediction error

updating the system as indicated in the equations before. An extension of the results

presented above to include for active agents is derived in [133] (and in the previous

chapter) and the exploitation-exploration trade-offs studied.

7.4.2 Observer Independent Intelligence

In the previous sections, we discussed how intelligence was achieved through the

use of observer dependent computing under a computational approach. We will now

discuss how the thermodynamic conditions above could offer a possible explanation

for observer independent intelligence in systems satisfying the conditions. In observer

dependent computing and intelligence, the evolution of a physical system and it’s in-

teraction with external signals become an instantiation of specific computations when

the states of the system are interpreted as inputs and outputs. For implementation

of machine learning algorithms, this would require an external observer to choose

what the encoding of the inputs that needs to be learned into the states of the sys-

tem, and interpreting the evolution of the system as learning. This would make the

intelligence exhibited by such systems observer dependent. One should expect an ob-
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server independent intelligent system to achieve this without the need for an external

observer.

Imagine a system satisfying the thermodynamic conditions of reliable high and

low dissipation when driven by external signals. Only those signals interacting with

the system to satisfy the above conditions either become ‘memory’ or predicted and

corrected for by the system depending upon which condition they satisfy, and thus

effectively learned. Say the system S is driven by an external signal RARB, in which

the system satisfies the thermodynamic conditions only with respect to the signal

RA. In this case, the system makes predictions RA, and not RB. If it satisfies the

reliable high dissipation condition with respect to RB, then the system has increased

it’s correlations with RB and hence learns a memory of it. An observer independent

intelligent system doesn’t choose the signal that it wants to learn and predict, and

then satisfies the corresponding thermodynamic conditions for with respect to the

chosen signal(s). Those signals that satisfy the thermodynamic condition of reliable

high and low dissipation, appears as being chosen by the system S to become the inputs

to be learned and predicted by the system - forming the basis for independence from an

external observer. To an external intelligent observer who is studying the system, it

will appear as though the system is exhibiting predictive intelligence with respect to

inputRA, and the choice of input was made by the system, and thus dependent on the

system only. Note that, while only those signals that interact with any physical system

can be considered as inputs that affect computing, those that satisfy the specific

conditions would become the inputs for learning in observer independent manner. It

is necessary to state that the human brain is a vastly more complex system than

what we have discussed here, resulting in extremely rich behaviors. There are broad

range of phenomenon like awareness, attention and subjective experiences related

to consciousness that an observer independent intelligence like ourselves are capable
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Figure 7.5. The figure indicates the bigger picture noting how observer depen-
dent/independent computing and intelligence are related together, as well as the dis-
tinction between computing through intelligence and intelligence through computing.
The thermodynamic framework looks to address observer independent intelligence,
while the computational approaches produce observer dependent intelligence.

of. While the ideas presented here does not capture all this richness, the underlying

concepts provide a strong base to build upon for future work.

7.4.3 Computing Through Intelligence

Once the observer independent intelligence of a system is established, it is straight-

forward to see how the system is capable of performing observer independent com-

puting. The thermodynamic conditions above imply predictive learning in a system

as it continues to be driven by external signals. A system with sufficient memory can

learn numbers, simple logical and mathematical functions as a temporal prediction

task. The ability to observe and learn these functions like patterns allows the system

to calculate outputs, without having to employ the same algorithms that our digital

computers do. This form of computing through observer independent intelligence will

be observer independent. Performing addition is a pattern recognition task of learn-

ing numbers, the addition symbol, and being able to recognize and predict patterns

in the results of the addition operation, independent of an external observer. Notice

that it is easier to compute large calculations in your brain, when the inputs allow

for specific patterns in the outputs that the system can exploit to predict. Multi-
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ples of 5000 are a lot simpler to calculate than 4857. Of course, intelligent systems

like ourselves are also capable observer dependent computing - by manipulating and

interpreting external systems to be used as computational tools - from rudimentary

forms like a piece of pen and paper, an abacus to sophisticated supercomputers. The

information learned by the system, directly affects the observer-independent compu-

tation that the system performs, as well as the interpretation of external systems as

performing a computation. It is not possible for a person to add or multiply two

numbers without knowing what numbers or addition and multiplication are. For ex-

ample, say the system S that has only learned the AND function. It will only ever

be able to interpret the evolution of a system with 4 states, with 3 mapping into

one output as a AND implementation. This would be in contrast with a system that

has knowledge of both the AND and OR logical functions, which can then choose to

interpret the same physical evolution of the system in one of two ways.

In this section, we introduced the framework of thermodynamic intelligence us-

ing the fluctuation theorem conditions for predictive intelligence in an homeostatic

systems. These conditions were then used to discuss how systems satisfying these

conditions can exhibit observer independent intelligence, and be capable of achiev-

ing observer independent computing through this intelligence as shown in Fig.(5).

Now that we have established the fundamental distinction between our intelligence

and that exhibited by current learning algorithms, I will discuss a new engineering

paradigm that will seek to leverage the conditions for thermodynamic intelligence to

build more efficient learning systems.

7.5 Engineering Thermodynamic Intelligence

In order to discuss the new paradigm of thermodynamic computing, as a more ef-

fective approach to engineering intelligence in our artificial systems, it is important to

first look at the differences between top-down designed and bottom-up intrinsic com-
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putation. As discussed in detail before, our current approaches to building intelligent

machines are heavily rooted in a computational picture using learning algorithms.

They represent a top-down strategy of designing systems to perform the computa-

tions required for learning and intelligence. Designed computation refers to strategies

that encompasses a significant portion of our current approaches, especially in the

transistor paradigm where we build digital switches using the precise patterning of

lithographic techniques. In a top-down approach, we start with the big picture, an

overview of the system is formulated, specifying, but not detailing, any first-level

subsystems. Each subsystem is then refined in yet greater detail, sometimes in many

additional subsystem levels, until the entire specification is reduced to base elements.

Top-down design is also characterized by large amount of control of the underlying

microstructures by the engineer. When it comes to computing, this translates to

deciding on the higher level input-output behavior to be achieved, and then figuring

out the underlying architecture to do so. This process continues to lower register

and gate levels, before reaching that of the elemental devices which are usually logic

switches achieved using CMOS. Top-down design of computing systems produces sys-

tems that realize observer dependent computing and intelligence, since the designer

is the observer manipulating and interpreting the physical system as implementing

computing.

Intrinsic computation refers to leveraging a system’s internal spatial and tempo-

ral dynamics to achieve useful information processing. The challenge to overcome

here would be to understand the non-linear dynamics of the system used for intrinsic

computing at both an individual device and network level in order to use them ef-

fectively. These systems are characterized by a bottom-up approach to their design.

Bottom-up approach to design is less precise than top-down, and achieved through

the self-organization of a large number of interacting basic building blocks, by piecing

together of systems to give rise to more compex systems, thus making the original
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Figure 7.6. Steps in a (a) Top-down design process. (b) Bottom-up design process.

blocks, subsystems of the emergent systems. The goal of the engineer would be to

direct the self-organizing processes towards systems with useful temporal dynamics

that can be leveraged for the task at hand, without exercising significant control of

the underlying microstructures. Detailed discussion of these ideas are available in

[149], [150].

Bottom-up approaches can be used to achieve systems capable of both observer

dependent and independent computing. In reservoir computing for example, we utilize

complex self-organized systems and interpret their input-output behavior to realize

useful observer dependent computing. In the previous section, we discussed that the

dynamics of a complex self-organized system that satisfies the condition of reliable low

dissipation condition can exhibit predictive learning. In [?], the author discussed the

condition of reliable high dissipation that allows for the system to exhibit adaptation

as well. Bottom-up engineering of systems that satisfy these conditions, which we will

call thermodynamic computing will be capable of observer independent intelligence,

and by extension observer independent computing. Instead of a top-down approach of

describing and implementing intelligence as a computational process, thermodynamic

computing will look to engineer a non-equilibrium system - a thermodynamic computer

in a bottom-up manner to satisfy specific macrostate conditions of thermodynamic

intelligence, that will allow the system to exhibit intelligent behavior.
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As stated before, these ideas are still in their early stages, and there lies a number

of major challenges and opportunities ahead of us. A significant one is that of trans-

lating these thermodynamic conditions into design principles that can be physically

realized and observed in self-organizing systems. While we will require to make a ma-

jor effort towards interdisciplinary research in materials, fabrication techniques and

network dynamics to produce systems of interest, there is nothing in principle that

would prevent us from engineering such systems. In order to improve the efficiency

of machine learning implementations, we have moved away from the traditional von

Neumann architectures towards memristive crossbar architectures that have become

the standard for neuromorphic computing. We must be now willing to look past these

crossbar systems, and towards self-organized dendritic and small world networks that

might offer even greater efficiency. The need to precisely control these systems arises

fundamentally from the fact that we are trying to produce intelligence through ob-

server dependent computing in a top-down manner, and the control necessitates well

designed architectures. If general intelligence is the goal, we must be willing to trade

on control of underlying microstructures to achieve the required system level behav-

ior through bottom-up approaches. If the brain’s architecture can be convoluted and

‘messy’, why should our AI systems not be?. There are already existing technology

realizations that can provide an excellent base to build our thermodynamic computers

on. A very promising option would be self-organizing atomic switch networks with

memristive properties [151], [152] (Fig. 7.7), [153] possessing high device density,

rich non-linear properties and critical network behavior, and have already been used

for neuromorphic and reservoir computing applications. Successful realization of the

conditions of thermodynamic intelligence using such networks will not only experi-

mentally validate the larger framework, they will also signify a massive step towards

the goal of achieving observer-independent intelligence like our own in an artificial

system.
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Figure 7.7. Neuromophic atomic switch networks made using Ag nanowires, fab-
ricated using a combination of top-down and bottom-up self-organizing processes.
These networks exhibit edge of chaos behavior and used for simple time-series pre-
diction tasks [151], [152].

7.6 Summary & Conclusion

Given the limitations of our current intelligent systems, the goal of this chapter

was to analyze the fundamental ideas of computing underlying these approaches in

order to identify the type of intelligence produced by such systems. The intelligence

through computing approach would realize an observer dependent intelligence, that is

fundamentally different from the observer independent intelligence that humans are

capable of. I then presented an alternative framework of thermodynamic intelligence

drawing on recent results from the field of complex systems, non-equilibrium thermo-

dynamics and predictive learning. The condition of reliable low dissipation was used

to propose explanation of observer independent intelligence that systems satisfying

these conditions would be able to exhibit. Building off this idea, observer independent
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computing through intelligence was explored. These technical results were then used

to discuss a bottom-up approach to realizing thermodynamic intelligence in systems

called thermodynamic computing, that might represent a more optimal strategy to

building these systems than our current approaches. As the focus of the computing

industry continues to shift towards intelligent systems and with the end of Moore’s

law upon us, we are presented with the unique challenge of needing to look beyond

traditional ideas that have served us well for long and the unique opportunity to

explore novel methodologies across the stack.

In addition to the changes in our engineering approach that is brought about

by the distinction in intelligence produced by current machine learning systems and

ourselves, there are also significant legal and ethical implications that were hinted

at before. I will conclude the chapter here, by quickly mentioning those and leave

a detailed discussion for future work. Our current artificial intelligence systems no

matter how advanced a machine learning algorithm it is implementing, are observer

dependent and lose their intelligence sans our interpretation. This implies that they

are very different from us, and very much like our laptops, calculators and other

machines. If we cannot consider personhood and the rights that come along with it to

our calculators, then we cannot do so to any of our current machine learning systems,

even if they possess sophisticated input-output behavior. This also implies that these

machines cannot be held responsible and liable when they make catastrophic errors.

Just as we do not attribute the responsibility of an accident caused by a badly designed

brake pad to the car itself, the same should be true of the machine learning algorithms

employed in self-driving cars. Like other systems designed by engineers, the ultimate

responsibility of these observer dependent intelligent systems lies with the system

designer. The complex nature of these systems, and the ambiguity in the nature of

intelligence produced by them cannot serve as cover for poor engineering practices. A
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solid framework of intelligence is necessarily required in order to make sound policy

decisions on these AI systems that are being deployed all around us.
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CHAPTER 8

SUMMARY AND FUTURE WORK

The goal of this dissertation was to study the fundamental limits of dissipation

associated with state transitions in finite state automata, and then use these limits

to understand the type of state transitions and functional mappings that minimize

dissipation in physical systems. FSAs are powerful abstract tools of computing and

can be used to characterize different information processing operations. In Chapter

4, I started with a physical description of a deterministic irreducible FSAs under the

referential approach to physical information theory in section 4.1 and quantified the

dissipation bound for steady state transitions in terms of the information loss about

the external driving inputs in section 4.2. Section 4.2 also included a discussion

of irreversibility in FSA. The analysis was further extended to account for output

generation in Moore and Mealy machines in sections 4.3 and 4.4 respectively. I then

derived the dissipation bounds for broader class of probabilistic FSAs in section 4.5

and introduced computational efficacy measures for FSAs inspired by the same for

L-machines in section 4.6. The chapter concludes with derivation of the lower bound

on dissipation in FSAs with temporally correlated inputs in section 4.7, a result that

will continue to be used throughout the dissertation.

The lower bounds developed for these finite state automata were extended to

neural networks implementing learning algorithms, to understand the limits of dis-

sipation associated with learning in chapter 5. Learning systems are an important

focus of the computing industry at the moment, and these algorithms have to ul-

timately be implemented in physical systems. It is thus crucial to understand the
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limits of dissipation for these systems, and the parameters upon which they depend

on. We characterized the weight changes in the neural network according to a learn-

ing rule as state transitions in determinsitic FSAs, and used this model to determine

the lower bound on dissipation associated in the training testing phase of a simple

perceptron learning a classification task in section 5.3. The effect of learning rates

and training data distribution on the dissipation bound were also analyzed in the

same section. The analysis using the FSA formulation was then extended to study

the dissipation associated in recurrent neural networks, specifically with the use of

Hopfield and Boltzmann networks as content associative memories in section 5.4.

A dissipation bound for simulated annealing was derived and analyzed for different

annealing schedules in the same section. We also proposed formulating a learning al-

gorithm with the energy dissipation of network as the sole learning objective function

in section 5.5.

The insight gained from understanding the limits of dissipation in neural networks

allowed exploration of the very fundamental connections between thermodynamic

quantities such as energy dissipation and entropy, with the emergence of learning in

physical systems in chapter 6. In the recent past there has been increased interest

in using non-equilibrium thermodynamics to characterize complex biological systems.

In the same vein, we used the macrostate fluctuation theorems to present the reliable

low dissipation condition that quantifies the relationship between self-organization,

homeostasis, minimal dissipation and predictive inference for passive agents in section

6.5. In section 6.6, we used recent results on the reliable high dissipation condition

to discuss adaptive learning in physical results. The strength of thermodynamic

conditions of intelligence - predictive inference and adaptive learning - lie in their

independence of any specific realization, and hence offer a perfect base to build a

theory of intelligence in artificial systems to be based upon. These results were

also extended to active agents in section 6.7 to study exploration-exploitation trade-
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offs in the optimal policy. Initial work on the relationship between the reliable low

dissipation condition and catastrophic forgetting is discussed in section 6.8.

Chapter 7 focuses on the fundamental assumption that underlie our current com-

puting paradigm and the computational approach to intelligence in the brain. Under-

standing some of the philosophical basis of computing is necessary, since they have

determine our design thinking and engineering methodologies. In section (7.2), the

distinctions between observer dependent and independent computing is drawn and

our ability to perform the latter is discussed. The status of the current machine

learning approaches with respect to these issues is explored in section (7.3). Based

on the thermodynamic conditions of intelligence from the previous chapter, a new

bottom-up framework of physical intelligence called thermodynamic intelligence is

proposed in section (7.4). There is also detailed discussion on why thermodynamic

computing can produce observer independent computing. I conclude the chapter with

a discussion on the necessary changes to devices, network architectures and design

philosophies that is required moving forward to build a thermodynamic computer in

section (7.5).

The future is indeed very bright for the field of computing as these novel emerging

technologies mature and new application spaces open up. We are at a very unique mo-

ment, given the opportunity to be able to define new paradigms as we seek to create

another technological revolution. The dissertation reflects the author’s own intellec-

tual journey from characterizing the limits of dissipation in computing to questioning

the very fundamentals of it in order to understand the important connections between

thermodynamics and intelligence. There is much left to be done moving forward with

a lot of exciting research questions left to be answered.

The following are important questions that need to be addressed for us to make

progress in building efficient intelligent systems. I leave this for future work, and will

not be addressed as part of this dissertation.
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(a) Improving the non-equilibrium fluctuation theorems based on existing work on

thermodynamic lengths and information geometry to describe biological systems

more accurately.

(b) Mapping of the thermodynamic conditions into physical observables that can

be experimentally tested and verified on suitable test-bed systems. The neuro-

morphic atomic switch networks provide such a suitable test-bed system.

(c) Understanding the different spatial and temporal scales at which the thermo-

dynamic conditions apply at, thus understanding the relevant scales at which

intelligence is realized in the brain.

(d) Identifying optimal devices and architectures necessary for a thermodynamic

computer. Mapping the thermodynamic conditions into design constraints.

(e) The effect of physical temperature and noise on learning, and determining the

optimal temperature for intelligence.

(f) Understanding the role of emergence in complex systems.

(g) Discussing the role of consciousness in intelligence, and understanding if en-

ergy efficient realization of human level intelligence in physical structures also

inevitably produces consciousness.

(h) Improved understanding and characterization of information in physical sys-

tems, the role of observers and their capabilities when it comes to generating

information.
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APPENDIX A

TECHNICAL BACKGROUND

A.1 Information Bottleneck

The information bottleneck can be viewed as a rate distortion problem, with a

distortion function that measures how well Y is predicted from a compressed repre-

sentation Z, compared to its direct prediction from X. For the compressed variable

Z, the bottleneck is represented as the following constraint optimization problem

Minimizep(z|x)I(X;Z)− βI(Z;Y )

where I(Z;Y ) and I(X;Z) the mutual information between Z and Y , and X and

Z represent accuracy and complexity respectively. β is the Lagrange trade-off pa-

rameter. In order to solve this optimization problem, we construct the Lagrangian

Lg = I(X;Z)− βI(Z;Y )−
∑
x,z

λ(x)p(z|x), and differentiate it with respect to p(z|x)

and equate it to zero.

dL
dp(z|x)

= 0

where β is the Langrangian parameter for the information constraint and λ(x) is

normalization of the conditional distributions at each x. In order to calculate the

above equation, we need the following important identities

p(y|z) =
∑
x

p(y|x)p(x|z)

p(z) =
∑
x

p(z|x)p(x)
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p(z|y) =
∑
x

p(z|x)p(x|y)

and their derivatives with respect to p(z|x) are given as

δp(z)
δp(z|x)

= p(x)

δp(z|y)
δp(z|x)

= p(x|y)

Now starting with the Lagrangian Lg

Lg = I(X;Z)− βI(Z;Y )−
∑
x,z

λ(x)p(z|x)

Lg =
∑
x,z

p(z|x)p(x)log

[
p(z|x)

p(x)

]
− β

∑
z,y

p(z, y)log

[
p(z|y)

p(z)

]
−

∑
x,z

λ(x)p(z|x)

Taking the derivatives with respect to p(z|x) for a given x and z, we get

δLg
δp(z|x)

= p(x)[1 + log p(z|x)]− δp(z)

δp(z|x)
[1 + log p(z|x)]

−β

(∑
y

δp(z|y)

δp(z|x)
p(y)[1 + logp(z|y)]− δp(z)

δp(z|x)
[1 + log p(z)]

)
−λ(x)

Substituting the identities from earlier in the section and rearranging the equations

δLg
δp(z|x)

= p(x)

(
log
[
p(z|x)
p(x)

]
− β

∑
y

p(y|x) log

[
p(y|z)

p(y)

]
− λ(x)

p(x)

)

Adding and subtracting
∑
y

p(y|x) log

(
p(y|x)

p(y)

)
, and defining λ̄(x) to be
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λ̄(x) = λ(x)
p(x)
− β

∑
y

p(y|x) log

[
p(y|x)

p(y)

]

We substitute this into the equation for δLg
δp(z|x)

and equating it to 0, we have

δLg
δp(z|x)

= p(x)

(
log

[
p(z|x)

p(x)

]
+ β

∑
y

p(y|x) log

[
p(y|x)

p(y|z)

]
− λ̄(x)

)
= 0

Solving this equation for p(z|x), we get the solution

p(z|x) = p(z)
Z(x,β)

exp (−βDKL[p(y|x)|p(y|z)])

with

Z(x, β) = exp[βλ̄(x)] =
∑
z

p(z)exp (−βDKL[p(y|x)|p(y|z)])

where Z(x, β) is the normalization partition function.

It is important to note that the Kullback-Leibler divergence, DKL[p(y|x)|p(y|z)],

emerged as the relevant “effective distortion measure” from our variational principle

and is not assumed otherwise. It is therefore natural to consider it as the “correct”

distortionD(x, z) = DKL[p(y|x)|p(y|z)] for quantization in the information bottleneck

setting. The following three equations are solved self-consistently to obtain the desired

distributions for p(z) and p(z|x)

p(y|z) =
∑
x

p(y|x)p(x|z)

p(z) =
∑
x

p(z|x)p(x)

p(z|x) = p(z)
Z(x,β)

exp (−βDKL[p(y|x)|p(y|z)])
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A.2 Landauer’s Principle - Entropic & Energy Cost of Infor-

mation Processing

Consider a closed composite system consisting of an “information bearing” sub-

system RS and environment B. Let the states of R and S be initially correlated and

assume that RS is initially isolated from B. Initial state of the global system is

ρ̂ = ρ̂RS ⊗ ρ̂B

The quantum mutual information between R and S is given by

I(ρ̂R; ρ̂S) = IRS = S(ρ̂R) + S(ρ̂S)− S(ρ̂RS).

The initial total entropy is given by

Stot(ρ̂) = kB ln(2)[S(ρ̂RS) + S(ρ̂B)

A.2.1 Information Processing

An operation processing information about R which is encoded in S is given as

an unitary evolution Û of RSB that involves only interactions between S and B.

ρ̂′ = Û ρ̂Û †

where Û = ÛR ⊗ ÛS . The interactions between S and B will generally decrease the

correlations between R and S. Thus information about R is lost in S during the

operation. Final quantum mutual information between R and S is

I(ρ̂R; ρ̂S
′
) = IRS′ = S(ρ̂R) + S(ρ̂S

′
)− S(ρ̂RS

′
).

The final total entropy is

Stot(ρ̂
′) = kB ln(2)[S(ρ̂RS

′
) + S(ρ̂B

′
)]
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A.2.2 Information Loss and Change in Entropy

The change in total entropy during the information processing operation

∆S = Stot(ρ̂
′)− Stot(ρ̂)

The change in quantum mutual information is given by

∆I = I(ρ̂R; ρ̂S
′
)− I(ρ̂R; ρ̂S)

Thus we can see that

∆S ≥ −kB ln(2)∆I

This gives us the entropic form of Landauer’s principle - the entropy increase is

lower bounded at kB ln(2) per bit of information that is lost during the information

processing operation. We will now build upon this entropic bound and obtain the

energetic form of Landauer’s principle as well.

A.2.3 Information Loss and Energy Flow

In order to study the energy costs of operations that discard information, like

irreversible logical operations, it is assumed that the environment is initially a thermal

bath at temperature T . Thus the initial state of B is described by the canonical

density operator

ρ̂B = Z−1exp
(
− ĤB
kBT

)
where ĤB is the Hamiltonian of the bath, T is the bath temperature and Z is the

partition function given by

Z = Tr
[
exp

(
− ĤB
kBT

)]
The expected energy increase in the environment is given by

∆〈EB〉 ≥ 〈EB′〉 − 〈EB〉 = Tr[ρ̂B
′
ĤB]− Tr[ρ̂BĤB]
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Consider the quantity ∆〈EB〉 − T∆SB where ∆SB = S(ρ̂B
′
) − S(ρ̂B). Following

the derivation in [13], and using

ln ρ̂B = − ρ̂B

kBT
− lnZ

we get ∆〈EB〉 − T∆SB = kBT (Tr[ρ̂B
′
ln ρ̂B

′
]− Tr[ρ̂B ln ρ̂B]), which is the relative

entropy between initial and final environment states. Since relative entropy is non-

negative for any two density operators, we obtain the inequality

∆〈EB〉 ≥ T∆SB (A.1)

From the entropic derivation of Landauers Principle, we have that

∆S = ∆SRS + ∆SB ≥ −kB ln(2)∆I

∆SB ≥ −kB ln(2)[∆I + ∆SRS ]

Substituting into Eq.(A.1), we get

∆〈EB〉 ≥ −kBT ln(2)[∆I + ∆SRS ] (A.2)

Since we know ∆I + ∆SRS = ∆SS = S(ρ̂S
′
)− S(ρ̂S), this gives us

∆〈EB〉 ≥ −kBT ln(2)∆SS
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APPENDIX B

DISSIPATION BOUNDS IN FSA

B.1 Dissipation Bounds for Deterministic Irreducible FSA

in Steady State

Theorem: For physical FSA FP =
{
S,R, {σ̂S}, {x̂R}, {L̃}

}
and input pmf {q},

the input-averaged amount of energy dissipated to a thermal environment B on each

state transition is lower bounded in steady state as

∆〈EB〉 ≥ kBT ln(2)
∑
j

qj

(
IR0S − IR0S′

j

)
(B.1)

where kB is the Boltzmann constant, T is the environment temperature, and IR0S −

IR0S′
j is, for a state transition induced by input x̂R1

j , the reduction in quantum mutual

information between the state of the register system S and the sequence of all past

inputs physically instantiated in referent system R0. The bound is rigorously derived

in [138] and is available in the Appendix here.

Proof: Since von Neumann entropy S(ρ̂) is invariant under unitary similarity

transformations, and since R1SB evolves unitarily on each step, we have:

S(ρ̂R1SB) = S(ρ̂R1SB′). (B.2)

From (4.11) and the additivity of von Neumann entropy for separable (tensor product)

states, the initial state entropy is
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S(ρ̂R1SB) = S(ρ̂R1) + S(ρ̂S) + S(ρ̂Bth).

From (4.12) and the joint entropy theorem1, the entropy of the final state ρ̂R1SB′ =

TrR0 [ρ̂RSB
′
] is

S(ρ̂R1SB′) = S(ρ̂R1) +
∑
j

qjS(ρ̂SB
′

j )

where, in terms of the steady state occupation probabilities πk,

ρ̂SB
′

j ≡
∑
k

πkρ̂
SB′
kj .

Substitution of these initial and final entropies into (B.8) yields

S(ρ̂S) + S(ρ̂Bth) =
∑
j

qjS(ρ̂SB
′

j ). (B.3)

The sum on the right-hand side is upper bounded as

∑
j

qjS(ρ̂SB
′

j ) ≤
∑
j

qjS(ρ̂S
′

j ) + S

(∑
j

qj ρ̂
B′
j

)

by the subadditivity and concavity of the von Neumann entropy, so

S(ρ̂S) + S(ρ̂Bth) ≤
∑
j

qjS(ρ̂S
′

j ) + S(ρ̂B
′
)

where

ρ̂B
′ ≡

∑
j

qj ρ̂
B′
j .

1The joint entropy theorem states that, for a composite system UV, a set
{
|xUj 〉〈xUj |

}
of orthogonal

pure states of U , a set {ρ̂Vj } of general density operators on V, and a set of probabilities {qj},

S

(∑
i

pi|xUi 〉〈xUi | ⊗ ρ̂Vi

)
= S(ρ̂V) +

∑
i

piS(ρ̂Vi )

where S(ρ̂V) = H({qj}) = −
∑

j qj log2 qj is the Shannon entropy of {qj}. See [?] for an extensive
discussion of (generally quantum mechanical) entropy and its properties.
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Rearranging terms, we obtain the lower bound

∆SB ≥ S(ρ̂S)−
∑
j

qjS(ρ̂S
′

j ) (B.4)

on the entropy change ∆SB = S(ρ̂B
′
)− S(ρ̂Bth) of the bath for the state transition.

Since the states of R1S and B are initially separable, the dynamical evolution

of R1SB is unitary, and B is initially in a thermal equilibrium state, the expected

increase in the energy of the bath on each step is lower bounded by Partovi’s inequality

[52] as

∆〈EB〉 ≥ kBT ln(2)∆SB. (B.5)

With (B.16), this is

∆〈EB〉 ≥ kBT ln(2)

(
S(ρ̂S)−

∑
j

qjS(ρ̂S
′

j )

)
. (B.6)

In terms of the mutual information quantities

IR0S = S(ρ̂S)−
∑
k

πkS(σ̂Sk ), IR0S′
j = S(ρ̂S

′

j )−
∑
k

πkS(ρ̂S
′

kj)

which can again be rewritten as

∆〈EB〉 ≥ kBT ln(2)

(
IR0S +

∑
k

πkS(σ̂Sk )−
∑
j

qj

[
IR0S′
j +

∑
k

πkS(ρ̂S
′

kj)

])
.

Noting that ∑
k

πkS(σ̂Sk ) =
∑
j

qj
∑
k

πkS(ρ̂S
′

kj)

in steady state, the above bound simplifies to (B.1) and the theorem is proved.

B.2 Dissipation Bound for a Mealy Machine Over a Cycle

Theorem. For physical FSA FP = {S,O,R, {σ̂S}, {%̂O}, {x̂R}, {L̄}, {V̄}} and in-

put pmf {q}, the input averaged amount of energy dissipated to a thermal environ-

ment B over one Mealy machine cycle is lower bounded in steady state as
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∆〈EB〉cycle ≥ kBT ln(2)

(∑
j

qj

[
IR0OS
j − IR0OS′

j

]
+IR1OS′ +

∑
j

qjS(ρ̂OS
′

j )−
∑
j′

qj′S(ρ̂OS
′′

j′ )

)
(B.7)

where kB is the Boltzmann constant and T is the environment temperature. IR0OS
j −

IR0OS′
j is, for a state transition induced by input x̂R1

j , the reduction in quantum

mutual information between the joint state of the output and automata register OS

and the sequence of all past inputs physically instantiated in referent system R0.

IR1OS′ is amount of quantum mutual information between the joint state OS at the

intermediate state and the referent R1. S(ρ̂OS
′

j ) and S(ρ̂OS
′′

j′ ) are the self entropies of

the states of OS associated with the j-th input of R1 and the j′-th input of R2, at

the intermdeiate and final stages respectively.

Proof: Since von Neumann entropy S(ρ̂) is invariant under unitary similarity

transformations, and R1OSB evolves unitarily at the start of the cycle, we have:

S(ρ̂R1OSB) = S(ρ̂R1OSB′). (B.8)

Using the joint entropy theorem, we have the initial and final state entropies as

S(ρ̂R1SB) = S(ρ̂R1) +
∑
j

qjS(ρ̂OSj ) + S(ρ̂Bth),

S(ρ̂R1SB′) = S(ρ̂R1) +
∑
j

qjS(ρ̂OSB
′

j ).

Substituting for initial and final entropies into (B.8), and from subadditivity and

concavity of von Neumann entropy, we have

∑
j

qjS(ρ̂OSj ) + S(ρ̂Bth) ≤
∑
j

qjS(ρ̂S
′

j ) + S(ρ̂B
′
).
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Rearranging terms, we obtain the lower bound on the on the entropy change of the

bath ∆SB for the state transition

∆SB = S(ρ̂B
′
)− S(ρ̂Bth) ≥

∑
j

qj

[
S(ρ̂OSj )− S(ρ̂OS

′

j )
]
. (B.9)

The expected increase in the energy of the bath on each step is lower bounded by

Partovi’s inequality [52] as ∆〈EB〉 ≥ kBT ln(2)∆SB. With (B.16), this is

∆〈EB〉 ≥ kBT ln(2)
∑
j

qj

[
S(ρ̂OSj )− S(ρ̂OS

′

j )
]
. (B.10)

For the case of steady state in the FSA, the bound can be written in terms of mutual

information quantities as

∆〈EB〉1 ≥ kBT ln(2)
∑
j

qj

[
IR0OS
j − IR0OS′

j

]
. (B.11)

The lower bound on the energy dissipation associated with the unitary evolution of

the system R2OSB to produce the final states, is calculated using a similar set of

steps.

∆〈EB〉2 ≥ kBT ln(2)

[
IR1OS′ +

∑
j

qjS(ρ̂OS
′

j )

−
∑
j′

qj′S(ρ̂OS
′′

j′ )

]
(B.12)

The total dissipation over one cycle, ∆〈EB〉cycle = ∆〈EB〉1 + ∆〈EB〉2. Adding (B.11)

and (B.12) gives us the bound in (B.7).
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B.3 Dissipation Bounds for Probabilistic FSAs

Theorem: For a physical probabilistic FSA FP =
{
S,R, {σ̂S}, {x̂R}, {L̃}

}
and

input pmf {q}, the input-averaged amount of energy dissipated to a thermal environ-

ment B on each state transition is lower bounded in steady state as

∆〈EB〉 ≥ kBT ln(2)

∑
j

qj

(
IR0S − IR0S′

j

)
+
∑
i

pi(H({π(n−1)
k|i })−

∑
(j)

qjH({π(n)
k′|(i,j)}))


(B.13)

where kB is the Boltzmann constant, T is the environment temperature, and IR0S −

IR0S′
j is, for a state transition induced by input x̂R1

j , the reduction in quantum mutual

information between the state of the register system S and the sequence of all past

inputs physically instantiated in referent system R0. H({π(n−1)
k|i }) is the Shannon

entropy of {π(n−1)
k|i }, the probability that the i-th input maps to the k-th state of

the FSA before the (n − 1)-th transition. H({π(n)
k|(i,j)}) is Shannon entropy of the

distribution {π(n)
k|(i,j)}, the probability that the (i, j)-th inputs maps to the k′ state

after the state transition.

Proof: Since von Neumann entropy S(ρ̂) is invariant under unitary similarity

transformations, and since R1SB evolves unitarily on each step, we have:

S(ρ̂R1SB) = S(ρ̂R1SB′). (B.14)

From (4.11) and the additivity of von Neumann entropy for separable (tensor product)

states, the initial state entropy is

S(ρ̂R1SB) = S(ρ̂R1) + S(ρ̂S) + S(ρ̂Bth).

From (4.12) and the joint entropy theorem, the entropy of the final state ρ̂R1SB′ =

TrR0 [ρ̂RSB
′
] is

S(ρ̂R1SB′) = S(ρ̂R1) +
∑
j

qjS(ρ̂SB
′

j )
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where,

ρ̂SB
′

j ≡
∑
i

piρ̂
SB′
ij .

Substitution of these initial and final entropies into (B.8) yields

S(ρ̂S) + S(ρ̂Bth) =
∑
j

qjS(ρ̂SB
′

j ). (B.15)

The sum on the right-hand side is upper bounded as∑
j

qjS(ρ̂SB
′

j ) ≤
∑
j

qjS(ρ̂S
′

j ) + S

(∑
j

qj ρ̂
B′
j

)
by the subadditivity and concavity of the von Neumann entropy, so

S(ρ̂S) + S(ρ̂Bth) ≤
∑
j

qjS(ρ̂S
′

j ) + S(ρ̂B
′
)

where

ρ̂B
′ ≡

∑
j

qj ρ̂
B′
j .

Rearranging terms, we obtain the lower bound

∆SB ≥ S(ρ̂S)−
∑
j

qjS(ρ̂S
′

j ) (B.16)

on the entropy change ∆SB = S(ρ̂B
′
)− S(ρ̂Bth) of the bath for the state transition.

Since the states of R1S and B are initially separable, the dynamical evolution

of R1SB is unitary, and B is initially in a thermal equilibrium state, the expected

increase in the energy of the bath on each step is lower bounded by Partovi’s inequality

[52] as

∆〈EB〉 ≥ kBT ln(2)∆SB. (B.17)

With (B.16), this is

∆〈EB〉 ≥ kBT ln(2)

(
S(ρ̂S)−

∑
j

qjS(ρ̂S
′

j )

)
. (B.18)

In terms of the mutual information quantities
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IR0S = S(ρ̂S)−
∑
i

piS(ρ̂Si ), IR0S′
j = S(ρ̂S

′

j )−
∑
i

piS(ρ̂S
′

ij )

this can again be rewritten as

∆〈EB〉 ≥ kBT ln(2)

(
IR0S +

∑
i

piS(ρ̂Si )−
∑
j

qj

[
IR0S′
j +

∑
i

piS(ρ̂S
′

ij )

])
. (B.19)

Noting that since

ρ̂Si =
∑
k

π
(n−1)
k|i σ̂Sk , ρ̂Sij =

∑
k′

π
(n)
k|(i,j)σ̂

S′
k′

where π
(n−1)
k|i and π

(n)
k|(i,j) are the probabilities that the initial state of the FSA maps

onto the k-th and k′-th distinguishable state for the i-th and (i, j)-th inputs before

the (n− 1) and n-th transitions respectively. We thus get

S(ρ̂Si ) = H({π(n−1)
k|i }) +

∑
k

π
(n−1)
k|i S(σ̂Sk )

S(ρ̂S
′

ij ) = H({π(n)
k′|(i,j)}) +

∑
k′

π
(n)
k′|(i,j)S(σ̂S

′

k′ )

In steady state we have that π(n−1) = π(n) and∑
k

π(n−1)S(σ̂Sk ) =
∑
k′

π(n)S(σ̂S
′

k′ )

This can be rewritten as∑
i

pi
∑
k

π
(n−1)
k|i S(σ̂Sk ) =

∑
(i,j)

piqj
∑
k′

π
(n)
k|(i,j)S(σ̂S

′

k′ )

Thus we get

∑
i

pi

[
S(ρ̂Si )−

∑
j

qjS(ρ̂S
′

ij )

]
=
∑
i

pi

H({π(n−1)
k|i })−

∑
(j)

qjH({π(n)
k′|(i,j)})


Substituting the above equality into (B.19) to give us the lower bound on dissi-

pation for a probabilistic FSA in steady state.

∆〈EB〉 ≥ kBT ln(2)

∑
j

qj

(
IR0S − IR0S′

j

)
+
∑
i

pi(H({π(n−1)
k|i })−

∑
(j)

qjH({π(n)
k′|(i,j)}))
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B.4 Dissipation in FSA with Correlated Inputs

Theorem: For physical FSA FP =
{
S,R, {ρ̂S}, {x̂R}, {L̃}

}
and input pmf {q},

the input-averaged amount of energy dissipated to a thermal environment B on each

state transition is lower bounded as

∆〈EB〉 ≥ kBT ln(2)

(∑
j

qj[S(ρ̂Sj )− S(ρ̂S
′

j )]

)
(B.20)

where kB is the Boltzmann constant and T is the environment temperature. For a

state transition induced by input x̂R1
j , ρ̂Sj and ρ̂S

′
j are the density operators associated

with the j-th input before and after the state transition. This can be rewritten in

information theoretic terms as

∆〈EB〉 ≥ kBT ln(2)
[
−∆SS + ∆IR1S

]
(B.21)

where −∆SS is the reduction in von Neumann entropy of the system S over the

transition, and ∆IR1S = IR1S′ −IR1S is the change in quantum mutual information

between the system S and the latest input R1. The quantum mutual information

between S and R1 before the state transition IR1S , can be seen as a measure of

prediction of the next input R1 by the system S. In the next few sections, we will

describe a simple machine trying to learn the external input pixel values and calculate

the lower bound on dissipation for both temporally correlated and independent inputs.

Proof: The statistical state of the composite RSB is given by the density operator

ρ̂RSB = ρ̂R0R1S ⊗ ρ̂Bth

where ρ̂R0R1S =
∑
i

pi

(
ρ̂R0
i ⊗ ρ̂Si ⊗

∑
j

qj|iρ̂
R1
j

)
. {qj|i} is the conditional probability

distribution of the j-th input of R1, given the i-th input string of R0.
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Since von Neumann entropy S(ρ̂) is invariant under unitary similarity transfor-

mations and R1SB evolves unitarily on each step, we have:

S(ρ̂R1SB) = S(ρ̂R1SB′). (B.22)

And using the joint entropy theorem we have the initial entropy of ρ̂R1SB to be

S(ρ̂R1SB) = S(ρ̂R1) + S(ρ̂Sj ) + S(ρ̂Bth).

Using the entropy theorem again, the entropy of the final state ρ̂R1SB′ = TrR0 [ρ̂RSB
′
]

is

S(ρ̂R1SB′) = S(ρ̂R1) +
∑
j

qjS(ρ̂SB
′

j )

Substitution of these initial and final entropies into Eq.(B.22) yields

∑
j

qjS(ρ̂Sj ) + S(ρ̂Bth) =
∑
j

qjS(ρ̂SB
′

j ). (B.23)

The sum on the right-hand side is upper bounded as

∑
j

qjS(ρ̂SB
′

j ) ≤
∑
j

qjS(ρ̂S
′

j ) + S

(∑
j

qj ρ̂
B′
j

)

Using the subadditivity and concavity of the von Neumann entropy, so

S(ρ̂S) + S(ρ̂Bth) ≤
∑
j

qjS(ρ̂S
′

j ) + S(ρ̂B
′
)

where we have

ρ̂B
′ ≡

∑
j

qj ρ̂
B′
j .
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Rearranging terms, we obtain the lower bound

∆SB ≥
∑
j

qj

(
S(ρ̂Sj )− S(ρ̂S

′

j )
)

(B.24)

on the entropy change ∆SB = S(ρ̂B
′
)− S(ρ̂Bth) of the bath for the state transition.

The states of R1S and B are initially separable, the dynamical evolution of R1SB

is unitary, and B is initially in a thermal equilibrium state. Thus the expected increase

in the energy of the bath on each step is lower bounded by Partovi’s inequality [52]

as

∆〈EB〉 ≥ kBT ln(2)∆SB. (B.25)

With Eq.(B.24), this is

∆〈EB〉 ≥ kBT ln(2)

(∑
j

qj[S(ρ̂Sj )− S(ρ̂S
′

j )]

)
. (B.26)

In terms of the mutual information quantities

IR1S = S(ρ̂S)−
∑
j

qjS(ρ̂Sj ), IR1S′ = S(ρ̂S
′
)−

∑
j

qjS(ρ̂S
′

j )

where IR1S and IR1S′ is the quantum mutual infomation between the system S and

incoming input R1 before and after the state distribution himself. By substituting

Eq.(B.24), this can again be rewritten as

∆〈EB〉 ≥ kBT ln(2)
[
−∆SS + ∆IR1S

]
.

where ∆IR1S = IR1S′ − IR1S as is the change in the correlations between R1 and S.

Of course in steady state, we have ∆SS = 0 and the bound reduces to

∆〈EB〉 ≥ kBT ln(2)∆IR1S .
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The lower bounds on dissipation for a FSA with correlated inputs have been derived

in this section. It is clear from the lower bound that IR1S is similar to a predictive

component in the dissipation bound. This is extremely relevant especially given the

increase in interesting of learning topics. In the next section, we will introduce a

simple learning machine that learns the correlated data inputs, and calculate the

lower bound on it’s dissipation.
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