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ABSTRACT

THE IMPACT OF PROTOSTELLAR FEEDBACK ON
ASTROCHEMISTRY

SEPTEMBER 2019

BRANDT A. L. GACHES

B.S., UNIVERSITY OF ARIZONA

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Ron Snell

Star formation is the process by which gas within a galaxy is converted into stars.

In the Milky Way, star formation occurs in molecular clouds, regions of the interstel-

lar medium in which hydrogen exists in its molecular form, H2. However, molecular

hydrogen is a perfectly symmetric molecule, rendering it largely invisible at the tem-

peratures of molecular clouds. Therefore, studies of star formation rely on tracers of

the gas mass. Molecular line emission at sub-millimeter and millimeter wavelengths

from rotational transitions provides crucial information into the dynamical state of

the gas through Doppler shifts in the line. There are currently over 200 molecules

which have been detected in the interstellar medium, ranging from simple diatomic

molecules, such as cyanide (CN) and carbon monoxide (CO), to complex organic

molecules, such as methyl acetate (CH3COOCH3). Carbon monoxide is among the

most important molecules for astronomers: it is the most abundant molecule after

H2 making it ubiquitous in molecular clouds. Emission from CO is used to study
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the dynamics of molecular clouds, and thus star formation, from locally star forming

regions in the Milky Way to galaxies in the early universe. As such, understanding

the chemistry of the molecular phase of the interstellar medium is vital to interpreting

physics form molecular line emission.

In the first part of the dissertation, we present a statistical study quantifying how

emission from different molecules changes the inferred properties of turbulence. We

post-process a simulation of a molecular cloud with an astrochemical code providing

the spatial distribution of over 200 molecules. We perform synthetic observations

for a subset of these molecules, those of particular importance, to generate predic-

tions for the molecular line emission. Having synthetic observations of many different

molecules for the same simulated molecular cloud allows us to directly quantify how

the appearance of turbulence changes with the tracer used. We find three differ-

ent groupings of molecules which trace similar density regimes: diffuse, intermediate

and dense densities. We show that the turbulence traced by neutral carbon emis-

sion is statistically consistent with that traced by carbon monoxide. We conclude

that turbulence appears quite different when traced by a variety of molecules. The

physics derived through molecular emission is thus observed through a chemical lens.

Understanding this lens allows a proper inference of physics through the chemistry.

In the second part, we present our methodology for generating synthetic pro-

toclusters using semi-analytic accretion models. We calculate the bolometric, far

ultraviolet and ionizing luminosities of protoclusters using different accretion models.

We find that the Tapered Turbulent Core model best explains the observed bolomet-

ric luminosities of clusters in Milky Way star forming regions. We generate synthetic

protoclusters using the Tapered Turbulent Core model for clusters with a wide range

of constituent numbers, from 102 to 106 protostars and a range of star formation

efficiencies. We use the average far ultraviolet luminosities of these clusters as input

into astrochemical models of molecular clouds. We conclude that far ultraviolet radi-
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ation has a small effect on the total emission from carbon monoxide, but significantly

changes thermo-chemistry of dense gas and the emission from optically thin species.

The third part of the thesis focuses on the possibility of cosmic ray acceleration in

protostellar accretion shocks. We use semi-analytic accretion models to calculate the

acceleration of cosmic rays in accretion shocks on the surface of protostars. We find

that protostars can accelerate cosmic ray protons to energies of 10 - 20 GeV in their

accretion shocks. Our protostellar cosmic ray models explain the increased ionization

found in the protocluster OMC-2 FIR 4. We calculate the attenuation of protostellar

cosmic rays through their natal cores and the resulting ionization rate gradient. We

generate synthetic protoclusters and conclude that the cosmic rays accelerated by

embedded protostars can exceed that of external sources for clusters hosting more

than a few hundred protostars.

We extend a photo-dissociation region astrochemistry code to include cosmic ray

attenuation in-situ. We use the modified code to quantify the impact of cosmic ray

attenuation, different external spectra, and the inclusion of embedded sources on

molecular cloud chemistry. We find that embedded sources significantly alter the

chemistry of molecular clouds, although the H2 is left unaltered. Molecular ions, such

as HCO+ are enhanced while neutral species, such as carbon monoxide and ammonia,

are reduced by orders of magnitude. Furthermore, the abundance of atomic carbon

within dense gas is increased by several orders of magnitude, providing a reservoir

of atomic carbon in dense well-shielded gas. The astrochemical-cosmic ray models

are consistent with the inferred cosmic ray ionization rates observed in diffuse and

intermediate column density sight-lines.

We finish the dissertation by presenting simulations of a giant molecular cloud with

far ultraviolet radiation transfer. We implement a novel adaptive six-ray algorithm to

calculate the background radiation field yielding a better numerical scaling than the

typical method. The simulations include the far ultraviolet radiation from protostars.
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We examine the distribution of far ultraviolet radiation within the molecular cloud

and the impact of internal sources. We show that there is only a weak correlation

between the integrated line-of-sight column density and the background far ultraviolet

radiation.
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CHAPTER 1

OVERVIEW OF STAR FORMATION, PROTOSTELLAR
FEEDBACK AND ASTROCHEMISTRY

1.1 The Molecular Phase of the Interstellar Medium

Ever since the first detection of diatomic molecules in the 1930’s and 1940’s

through ultraviolet absorption [2, 3, 4], it has become increasingly clear that we

live in a universe with a significant molecular reservoir. The first molecules were

detected via their electronic transitions, when the electrons are excited to higher

energies, in absorption at optical and ultraviolet wavelengths. Optical and ultravi-

olet molecular spectroscopy primarily detects diatomic molecules and probes diffuse

gas with UV/optical bright background sources, the most popular of which is the

high-mass star ζ Oph [5]. Molecules can also be detected via their vibrational exci-

tations in the infrared [6, 7, 8] although this is quite difficult to do from the ground

since the atmosphere blocks the infrared light. Predominately, molecules are found

using their rotational excitations at radio wavelengths. In fact, roughly 80% of new

molecule detections are found using radio techniques from submillimeter to centimeter

wavelengths [9]. Since the first detection of diatomic molecules, astronomers have dis-

covered over 200 unique molecule, plus isomers (where the constituents are the same

but the structure different, e.g. HCN and HNC) and isotopes (where one or more

element in the molecule has an extra neutron) [9]. There are two public databases of

molecules detected in the interstellar medium: the Astrochymst’s Hyper-bibliography

1



of Known Astromolecules1 and the Cologne Database for Molecular Spectroscopy’s

List of Molecules in Space2.

Molecular clouds are regions where hydrogen exists almost entirely in molecular

form, H2. However, H2 is very difficult to observe: it is a perfectly symmetric molecule

with no permanent dipole moment, thus at the cold temperatures of the molecular

gas (around 10 - 30 Kelvin), it does not emit radiation. In regions where there are

sources of radiation nearby, the gas can get warm enough for H2 to emit radiation

from vibrational and rotational excitations in the infrared [i.e. 10]. H2 can also be

observed via absorption in ultraviolet wavelengths [e.g. 11], although this necessitates

an ultraviolet-bright background source. Due to the lack of a dipole moment and

sparsity of regions where H2 can be observed in the infrared or ultraviolet, studies

of molecular gas largely rely on tracer molecules. The most important of these is

the molecular carbon monoxide (CO). CO has a low excitation temperature and

has relatively high abundance, typically the second most abundance molecule with

[CO]/[H2] ≈ 10−4, where [X] denotes the amount of molecule X with respect to

hydrogen. Since CO was first detected in 1970 in the Orion Nebula [12], it has been

the workhorse in the study of the molecular universe.

Figure 1.1 shows a map of the Milky Way in CO emission from the J=1-0 transition

at 115 GHz. The disk of the Milky Way is quite evident in the CO emission. The

molecular gas in the Milky Way accounts for 22% of the gas mass, making it a

significant phase of the interstellar medium [13]. The molecular phase condenses when

gas becomes dense enough for H2 to form on dust grains. The gas cools through H2

and C+ line emission until it is cold enough to form further molecules. CO radiation

constitutes a major coolant allowing the inner regions of molecular clouds to reach

temperatures as low as 10 Kelvin.

1http://astrochymist.org/astrochymist_mole.html

2https://www.astro.uni-koeln.de/cdms/molecules
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Figure 1.1. Integrated 12CO (J = 1-0) 115 GHz emission from the Milky Way survey
of Dame et al. [1]. The white areas indicate regions not sampled in the survey. Data
from the Harvard Dataverse Repository4

Most importantly, astronomers now understand that effectively all star formation

in the Milky Way and Local Galaxies occurs in complexes known as Giant Molecular

Clouds (GMCs). Giant Molecular Clouds are complexes (not necessarily bound)

of gas composed predominately of, and in order of the mass fraction, H2, Helium,

cold dust, and molecules. GMCs have structures dominated by the interplay between

gravity, turbulence and magnetic fields. Since the physics of star formation is directly

tied to the dynamics of molecular clouds, understanding their chemical is crucial to

interpreting physics from molecular line observations.

1.2 Astrochemistry of Photo-dissociation Regions

Astrochemistry, also known as Molecular Astrophysics, is the study of molecular

chemistry in astrophysical environments, the influence of chemistry on the dynamics

of gas in these environments, and the emission from molecules across all wavelength

regimes. An astronomical environment of particular interest is so called “photo-

dissociation regions,” or photon-dominated regions (PDRs). These are regions of

mainly neutral gas, in that the hydrogen is neutral, where the chemistry is primarily

influenced by ultraviolet light with energies between 6 eV and 13.6 eV, labeled the

Far Ultraviolet (FUV). In terms of mass budget, the majority of the gas in a galaxy
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Figure 1.2. Structure of a Photo-dissociation Region indicating important chemical
transitions and the driving energy sources, ultra-violet radiation and cosmic rays.

exists in a PDR, underscoring how important it is to understand the chemistry of

PDRs. An important example of a PDR is the boundary of a GMC: here, the gas has

too low of a column density to remove all the FUV radiation. FUV radiation that

is impinging on the surface of molecular clouds comes from high-mass stars nearby

in the galaxy. PDRs can also exist inside molecular clouds where star formation

has occurred. Some of these internal PDRs are the most well studied, such as the

Horsehead Nebula and the Orion Bar. Radiation with higher energies than FUV is

called “ionizing” radiation, since it provides enough energy to ionize atomic hydrogen.

The canonical PDR model comes from Hollenbach and Tielens [14], in which the gas

is treated as a one-dimensional slab of gas which is irradiated on one side. Figure

1.2 shows a schematic of this canonical model. The diffuse gas is the regime where

the hydrogen is mostly ionized (carbon and oxygen will be further ionized also). The

transition between the diffuse gas and PDR is the ionization front. Further into

the cloud, the UV field and temperature have decreased enough to enable molecular

hydrogen, H2, to form on the surface of grains. Where hydrogen suddenly becomes

molecular is the dissociation front and in most PDR models is a sharp transition.
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The lack of a permanent dipole greatly inhibits the formation of H2. However, the

symmetry of the molecule also means that it cannot dissociate immediately from the

ground level. Instead, the molecule must be put into an increased ionization state,

and during recombination there is a chance it recombines into an unbound ground

level state. This quirk is called “self-shielding”: only specific wavelengths of light are

able to ionize H2, photons with energies between 11.2 and 13.6 eV, called the Lyman-

Werner bands. As H2 begins to build up, gas on the surface layers of the PDR begin to

shield the gas deeper in from the UV radiation. This model also produces a “layered-

cake” interpretation of carbon chemistry. Towards the surface, the radiation field

is sufficient to singly ionize carbon. Carbon becomes neutral as the radiation field

decreases. However, quickly after that, the majority of the carbon gets processed into

carbon monoxide (CO) resulting in a thin layer of neutral carbon. It is now widely

thought that this model is incomplete: neutral carbon is found to be much more

prevalent than if it were confined to just a thin layer. Real molecular clouds have

complex porous structures brought on by turbulence allowing radiation to penetrate

much further into the cloud. PDRs are also permeated by high-energy relativistic

ions, called cosmic rays. The canonical model assumes that the flux of cosmic rays

through the cloud is constant, meaning the ionization rate is also constant. However,

it is known that this is not the case [15], but only until recently has it been numerically

feasible to include any physics of cosmic ray propagation in astrochemical codes [16].

These cosmic rays drive the chemistry beyond the C-CO transition region.

The chemistry of a PDR is dominated by ion-neutral reactions. Many neutral-

neutral reactions have a barrier: they require a small amount of input energy to occur.

Ion-neutral reactions, however, occur freely. The most important reaction in starting

the complex chemistry in PDRs, after the formation of H2, is the formation of the

ion H+
3 through

CR + H2 → H+
2 + e− + CR′
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H+
2 + H2 → H+

3 + H,

where e− is an electron, CR represents a cosmic ray particle, almost always assumed

to be a proton, and CR’ is the same cosmic ray as CR with less energy. The electron

in the production of H+
2 can lead to secondary ionizations depending on its energy.

Once H+
3 forms, a much more complex chemistry can rapidly follow through pathways

such as

X + H+
3 → [XH]+ + H2.

This reaction leads to the formation of molecules such as N2H+ and HCO+ through

reactions with N2 and CO, respectively. Since CO is a molecule of particular im-

portance, it is worthwhile to review the chemistry of CO formation. CO has several

ion-neutral reaction channels through C+ via

OH + C+ → CO + H+

OH + C+ → CO+ + H

followed by the ion-neutral reaction

CO+ + H→ CO + H+

and through dissociations of the molecular ion HCO+

HCO+ + e− → CO + H

HCO+ + γ → CO+ + H

where γ represents a photon. In more dense regimes, CO can also be efficiently formed

through neutral-neutral reactions with simple carbon or oxygen molecules,

C[X] + O→ CO + X
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where X can be H, H2 or N.

C + OH→ CO + H

C + O2 → CO + O

On the surface of molecular clouds, CO can be efficiently destroyed through photo-

dissociation,

CO + γ → C + O

however, CO photo-dissociation is also affected by self-shielding and H2. The primary

destruction mechanism for CO follows after the ionization of Helium by a cosmic ray

He+ + CO→ He + O + C+.

These reactions are encoded for through reaction networks. Figure 1.3 shows the

carbon subset of a reduced network to model CO. These networks are compiled from

hundreds to thousands of reactions. Two examples of such networks which are pub-

licly available are the UMIST network [18] and the Kinetic Database for Astrochem-

istry (KIDA) gas-phase network [19]. These networks have been expanded to include

grain chemistry, deuterium and isotope chemistry, and spin chemistry, as well as many

other more specialized uses [i.e. 20, 21, 22, 23, 24]. There are two different sizes of

networks typically discussed. Reduced networks have on order tens of species and a

hundred reactions typically selected to model CO, such as the Nelson-Langer net-

work [25] or the updated Glover2010 network [26]. These networks are used mainly

in hydro-dynamic codes or in three-dimensional astrochemical models due to numer-

ical constrains. Full networks contain hundreds of species and thousands of reactions

and result in higher accuracy models and knowledge of formation pathways. Due to
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the high numerical cost, use of these networks is constrained to 0D or 1D models.

Astrochemical codes solve the following network of equations to evolve the chemistry:

dni
dt

=

(∑

j

∑

k

njnkRjki +
∑

l

nlζli

)
− ni

(∑

l

ζil +
∑

l

∑

j

njRijl

)
(1.1)

where ni is the number density of molecule, i, Rijk is the reaction rate of equation

Xi + Xj → Xk + ..., and ζij is the reaction rate for interactions involving radiation or

cosmic rays (e.g. CO + γ → C + O). Numerical codes to model PDRs sometimes

make one of two different approximations to solve the network of equations: steady-

state (dni
dt

= 0) (e.g. Meudon PDR code) or equilibrium (t → ∞) (e.g. 3d-pdr).

Within a network, there is a large range of timescales resulting in a stiff system

of differential equations. Furthermore, there is a super-linear relation between the

number of species and the number of reactions. This numerical constraint greatly

limits the number of spatial dimensions or complexity of the physics included in

astrochemistry codes.

There are two main types of astrochemical codes. PDR codes5, such as uclpdr

[27, 28, 29], 3d-pdr [30], Meudon PDR [31], Kosma-τ [32] and Cloudy [33,

34], include mainly gas-phase only chemistry along with detailed calculations for the

thermal balance and radiation transfer of FUV radiation. Astrochemistry (or gas-

grain) codes5, such as uclchem [24] and Nautilus[22], contain large networks with

gas-phase and gas-grain chemistry, with Nautilus extending this further to reactions

in ice mantles. While these codes solve very large networks of equations, they typically

make assumptions on the physical nature of the gas, with the temperature and FUV

radiation as inputs. Of these astrochemical codes, only 3d-pdr is extendable to 3D.

The chemistry of a region is a sensitive probe of the density, temperature, FUV

radiation and cosmic rays of the constituent gas. Therefore, surveys of different

5Codes referenced here are public or easily accessible online
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molecules, or their line transitions, provide useful diagnostics for physics. Optically

thin molecular emission, such as from hydrogen cyanide (HCN), ammonia (NH3) or

methanol (CH3OH) provide the total column density of that molecule. The temper-

ature can be modeled if numerous lines are detected of the same molecule, however

this requires significant observational time. With this information, non-local thermo-

dynamic equilibrium models using codes such as Radex[35] can be used to constrain

the density and temperature. Furthermore, astrochemical modeling can be done to

constrain the density and temperature structure if multiple molecules are observed

for the same region. Emission from optically thick CO is observed and converted into

the total gas mass or molecular hydrogen column density using conversion factors,

αCO and XCO, respectively [36].

Nearly all the dynamical information we have about GMCs comes through line

emission. The shape of the emission line, through the Doppler effect, provides the

line-of-sight velocity profile. This information can be used to constrain bulk veloci-

ties, turbulence, and regions of quiescence. Surveys of molecular line emission, such

as the “Milky Way CO Survey” [1], the “COordinated Molecular Probe Line Extinc-

tion Thermal Emission Survey of Star Forming Regions” (COMPLETE) [37] or the

more recent “Green Bank Ammonia Survey” (GAS) [38], provide line-of-sight veloc-

ity information across a multitude of scales. The physics being interpreted from the

line emission is observed through a chemical lens. Understanding this lens requires

constraining the chemistry as best as possible, especially quantifying the impact of

different physics on the chemistry.

1.3 Star Formation and Protostellar Evolution

Stars are the building blocks of galaxies, intrinsically tying the evolution of galaxies

to that of stars. The star formation process is the cycling of gas into stars then back

into gas [39]. The formation and deaths of stars leads to metal enrichment of the gas
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with important atomic species, such as carbon and oxygen, in the universe. High-

mass stars, in particular, are incredibly important for the evolution of galaxies since

their high temperatures ionize large regions of the galaxy and their deaths lead to

spectacular energetic events, such as supernova and the creation of black holes and

neutron stars [40].

The process of star formation acts as initial conditions for planet formation. Plan-

ets form in the disks which rotate around the central forming star. The chemical

composition of the gas in the disk is tied to the chemistry of star forming regions

leading to an enrichment of organic molecules throughout the disk.

Stars are nearly perfectly spheres of gas in which the main form of energy gen-

eration is provided by the fusion of atoms. The energy generated through nuclear

fusion balances the compressive force of gravity. The stage of a stars lifetime in which

hydrogen fusion is the dominant source of energy is called the Main Sequence. One

of the great triumphs of theoretical astrophysics was the description of the lifetime

of a star on the main sequence. In fact, there are now incredibly powerful predictive

theories of main sequence star evolution, in which the radius, luminosity (brightness),

temperature and even lifespan can be predicted quite accurately solely by the mass.

Theoretical and observational studies have greatly constrained the life-time and the

deaths of stars. However, there is still much which is uncertain in the formation of

stars and the earliest stages of their evolution.

The qualitative story of the formation of low mass stars is fairly well understood

[41, 42]. Molecular cloud complexes are highly turbulent, with supersonic shocks

traveling through the gas [43]. Regions which are more dense, particularly where

shocks collide, begin to gravitationally contract [41]. The contraction leads the fil-

amentary structures and hierarchical structure [44]. These regions can form dense

cores, starting the earliest phase of the star formation process [45]. These dense cores

are tenths of a parsec across and have densities over a hundred thousand particles
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per cubic centimeter. The core continues to collapse slowly heating up the gas in

the central regions until it becomes opaque to radiation leading to the formation of

the first hydrostatic core. As gas continues to accrete onto the central object, the

gas temperature rises until it is sufficient to dissociate molecules. The dissociation

of molecules leads to a second collapse, ending in a hot confined object, a protostar.

Any rotation from the natal cloud (and thus the core) leads to the formation of a

disk. Disk rotation and the gas collapse pull magnetic fields, observed to be threaded

through the molecular gas [i.e. 46], and creates jets and winds (discussed below). The

protostar continues to accrete mass, from the envelope, at early times, and through

the disk, at later times, although the exact mechanisms are not known. During this

process, the disk undergoes evolution starting the formation of planets.

The formation of high mass stars is significantly more complicated [40], partic-

ularly since high-mass star formation is almost ubiquitously tied to the formation

of groups of protostars, called a cluster (or protocluster). The closest region with

ongoing high-mass star formation is the Orion Molecular Cloud, at a distance of 414

parsecs [47], and hosts the Orion Nebula Cluster and over a thousand protostellar

objects[48]. High mass stars form from significantly denser regions and in regions

with stronger turbulence. Their formation is much more violent and energetic than

low-mass star formation, as will be shown below. High mass stars are also formed

primarily in multiples [49], leading the collapse of their companion cores to become

co-eval.

Protostars are categorized into four categories based on their spectrum [42]. Class

0 sources are protostellar objects which have tightly collimated jets with a surrounding

envelope that is more massive than the protostar. Class 1 sources have a reduced

envelope exposing the central embedded protostar and disk. Class II sources are

totally exposed leaving the protostar and protostellar disk exposed. Finally Class III

sources have little to no disk left and signal the end of the star formation process. The
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majority of the work presented in this dissertation is confined to Class 0/I sources

when the protostar is actively accreting from the surrounding envelope.

There are several important problems of interest to solve in star formation. The

first of which is the luminosity problem: protostars are observed to be fainter than

theoretical predictions [42, 50]. One way to solve this problem is to invoke episodic

or tapered accretion [i.e. 50], which will be showed with respect to protoclusters in

Chapter 4. Second, main-sequence stars are found to have nearly the same distribu-

tion in mass, called the Initial Mass Function [51, 52]. It is not clear exactly why this

should be the case, or how it occurs that the star formation should lead to an identical

mass distribution. Finally, many stars are found to exist in multiples [49, 53, 54]. The

formation mechanisms which lead to different separations between stars is still de-

bated [55], although there are two leading theories: turbulent fragmentation [56, 57]

and disk instabilities [58].

Solving the problem of star formation is intrinsically difficult in both observations

and theory due to the wide range of scales involved. The density range is between

103 cm−3, the average molecular cloud density, and 1023 cm−3, the bulk density of a

Sun-like star. The length scale range is also significant, from the GMC scales of tens

of parsecs to the radius of a protostar, 10−8 parsecs. The dynamic ranges mean that

the puzzle of star formation has to be looked at in pieces through the physics and

chemistry at each step and stitched together to form a cohesive picture.

1.4 Protostellar Feedback

Star formation is hardly a quiescent process: gas falls onto the surface of the

protostar, and in the process gets heated from tens of degrees Kelvin in the envelope

to millions of degrees near the surface of the protostar. Star formation is also quite

inefficient[39, 41]: observations show that typically only a few percent of the gas mass

in a GMC is turned into protostars [59]. Theoretically explaining this is quite difficult
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Figure 1.4. Schematic of protostellar feedback processes.

without envoking feedback from the protostars onto the natal gas. However, if pro-

tostars couple to the gas through feedback mechanisms, the star formation efficiency

can be substantially decreased. Feedback can be separated into three different cat-

egories, following Krumholz et al. [60]: momentum, explosive and thermal. Cosmic

ray feedback is introduced at the end as a separate subsection, although it can lead

to feedback in each of the previously mentioned categories. Momentum feedback al-

ters the the dynamical state of the gas by imparting momentum rather than energy.

These mechanisms act either over long enough periods or with low enough energy

such that the gas can radiate away the energy on timescales similar to that of the

injection. Explosive feedback, conversely, imparts enough energy rapidly enough that

the gas cannot radiate it away. Thus, the gas heats to high temperatures resulting

in a pressure gradient. Finally, thermal feedback will increase the temperature but

not directly affect the dynamical state of the gas. This is particularly important for
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theories of fragmentation and the thermo-chemical evolution of the gas. Figure 1.4

shows a general schematic of protostellar feedback processes and different components

of the system. The following sections will give a cursory introduction to feedback, a

topic which could fill many theses.

Momentum Feedback

Momentum feedback consists of mechanisms in which the protostar can directly

inject momentum into the surrounding natal gas even on parsec scales.

Protostars radiate at wavelengths across the electromagnetic spectrum. Photons

with energies under 13.6 eV, the ionization potential of hydrogen, heat the dust within

molecular clouds. The dust couple to the gas through the photoelectric effect or, at

high enough densities, collisionally. The impact of radiation pressure is particularly

enhanced for protostars with masses above Solar. The light-to-mass ratio increases

rapidly as a function of mass, L/M ∝ M2.5, where L is the luminosity and M is the

mass. For the highest mass stars, L/M approaches 1000. However, for such stars,

much of the radiation is at ionizing wavelengths. Even for low mass stars, the gas

can become dense enough to be optically thick, changing the gas into an adiabatic

state. Optically thick gas traps the radiation and impacts more momentum from the

radiation due to increased scatterings [61]. In intermediate and high mass protostars,

the radiation pressure can drive Rayleigh-Taylor instabilities in the boundary between

the outflow cavity and the surrounding dense gas leading to enhanced accretion [62].

Protostars are observed to drive large scale outflows, coupling the physics of ac-

cretion to the dynamical evolution of molecular clouds [63, 64]. While the exact

physical mechanism that drives outflows is not known, the general properties of such

a mechanism are known. The gas in the accretion disk is funneled onto the protostar

through columns along magnetic field lines. The protostellar, and thus accretion,

disk is rotating, such that as the gas is funneled onto the protostar, it must remove
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angular momentum. This naturally leads to a collimated outflow ejecting a fraction

of the mass being accreted onto the protostar [64]. There are numerous different

theoretical models for outflows which have different launching radii and velocities.

Outflows, including jets and winds, stir up the gas on large scales helping to drive

turbulence [65, 66, 67, 68]. The outflows from clustered star formation can dominate

the dynamics of entire GMCs molecular clouds hosting low-mass star formation [69].

Magnetic fields enhance this impact since the outflows drag magnetic field lines and

drive Alfvén waves faster than the sound speed [70].

Explosive Feedback

High mass protostars, those which will form O and B stars, are bright in ioniz-

ing radiation. The ionizing radiation dissociates any molecular gas and ionizes the

hydrogen leaving a bubble of hot gas, an HII region [71]. Classically, ionizing ra-

diation results in a Strömgren sphere [72], a bubble of ionized gas with a radius,

Rstr =
(

3
4π

Q
n2
eα2

)1/3

where Q is the emission rate of ionizing radiation, ne is the elec-

tron density and α1 is the recombination rate to the n = 2 excitation level. The hot

gas leads to the pressurized expansion of the bubble. The shock propagates through

the ambient medium piling up gas [13, 73], potentially enough to trigger star for-

mation in the surrounding gas [see 60, and citations within]. However, the classical

picture makes a crucial assumption: that the surrounding medium is uniform in den-

sity and infinite in size. These assumptions lead to perfectly spherically symmetric

expansion of the shell. However, the gas in molecular clouds is highly turbulent re-

sulting in a non-uniform density distribution. These deviations will lead significant

deviations from spherical collapse, although this can expose larger regions of the cloud

to ionizing radiation [74, 75]

High mass protostars, with surface temperatures above ≈ 2 × 104 Kelvin, pro-

duce incredibly strong winds. When these winds collide with the surrounding dense

16



ISM, the temperature can exceed 105 - 107 Kelvin, depending on the shock physics

considered. Radiative cooling is no longer efficient at these temperatures. The hot

gas acts as a strong pressure against the cooler surrounding gas resulting in rapidly

moving shock waves. The heated gas also becomes X-ray bright, providing a useful

diagnostic to measure the temperature and density of the gas. The X-ray bright gas

provides substantial pressure, especially since it is almost always coupled to photoion-

izing pressure [76, 77, 78]. For lower mass protostars, or for clusters which will not

form such high mass protostars, this form of feedback will only ever act to enhance

radiation pressure.

Lastly, the highest mass stars may form and die while embedded in, or near, their

natal molecular cloud complex. When these stars die, the result is a spectacular Type

II supernova, injecting approximately 1051 erg of energy (equivalent to the entirety

of the Sun’s total energy output through its lifespan). On galactic scales, supernova

feedback from star cluster formation helps drive turbulence throughout the galaxy,

enrich the gas, and expel gas from the galaxy [79].

Thermal Feedback

Thermal feedback enhances the temperature, but does not directly impart momen-

tum. There are different sources of thermal feedback throughout the star formation

process. During the initial collapse, gravitational energy is converted into thermal

energy [41]. Eventually, the gas heats to temperatures where radiative cooling is no

longer efficient. The collapse of the core is then adiabatic until the temperature is high

enough to dissociate the molecular hydrogen. As described above, after this phase, the

core collapses into a protostellar object. Once a protostar forms, there are two main

luminosity sources. The accretion luminosity of protostars, Lacc = GMṁ
R

, dominates

for low mass protostars; for intermediate mass protostars the accretion luminosity

competes with the protostellar luminosity; for high mass protostars the radiation is
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dominated by the protostellar component. When the gas is optically thin, it will raise

the temperature but impart little momentum. These feedback mechanisms can heat

the gas in the core to 100 Kelvin, inhibiting fragmentation, evaporating ice on dust

grains and driving a complex organic chemistry.

Cosmic Rays

Cosmic rays are relativistic charged particles with energies from keV to TeV in

molecular clouds. The exact sources of cosmic rays are still debated, although super-

nova appears to be the best candidate to accelerate cosmic rays to TeV energies [15].

The sources for accelerating the lowest energy cosmic rays is still currently unknown,

although one candidate are protostars [80, 81], which will be discussed in detail in

Chapter 5. Cosmic rays with energies from keV to MeV directly heat the gas through

ionizations [13]. Cosmic rays, particularly lower energy cosmic rays, easily couple to

magnetic field. The coupling leads to Alfvén waves, potentially driving turbulence

in the surface layers of GMCs [82]. The cosmic rays which penetrate into molecu-

lar clouds are the primary drivers of chemistry, as discussed above [83]. In galactic

regions of enhanced star formation, accelerated cosmic rays heat the gas to tens to

hundreds degrees Kelvin.

There is growing evidence that protostars can accelerate cosmic rays, producing

relativistic protons and electrons into deeply embedded dense gas. Radio spectrum

of protostellar jets shows synchrotron emission [84, 85], a signature of accelerated

electrons. Furthermore, several astrochemical studies have shown ionization rates

that can only be explained by an embedded source of ionzation [86, 87, 88, 89].

Protostellar cosmic rays will heat the gas in the core substantially and increase the

impact of outflows by coupling to the magnetic field.
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CHAPTER 2

ASTROCHEMICAL CORRELATIONS IN MOLECULAR
CLOUDS

This chapter1 focuses on investigating how turbulence appears when observed with

different molecular line tracers.

2.1 Abstract

We investigate the spectral correlations between different species used to observe

molecular clouds. We use hydrodynamic simulations and a full chemical network to

study the abundances of over 150 species in typical Milky Way molecular clouds. We

perform synthetic observations in order to produce emission maps of a subset of these

tracers. We study the effects of different lines of sight and spatial resolution on the

emission distribution and perform a robust quantitative comparison of the species

to each other. We use the Spectral Correlation Function (SCF), which quantifies

the root mean squared difference between spectra separated by some length scale, to

characterize the structure of the simulated cloud in position-position-velocity (PPV)

space. We predict the observed SCF for a broad range of observational tracers, and

thus, identify homologous species. In particular, we show that the pairs C and CO,

C+ and CN, NH3 and H2CS have very similar SCFs. We measure the SCF slope

variation as a function of beam size for all species and demonstrate that the beam

size has a distinct effect on different species emission. However, for beams of up to

1These results are based on research published by Gaches et al. [90] and is reproduced with
permission from the AAS.
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10”, placing the cloud at 1 kpc, the change is not large enough to move the SCF

slopes into different regions of parameter space. The results from this study provide

observational guidance for choosing the best tracer to probe various cloud length

scales.

2.2 Introduction

In molecular clouds, the largest component of the mass is in the form of molecular

hydrogen. However, the lowest transition of H2 is excited at temperatures greater

than 500 K, an order of magnitude hotter than typical molecular clouds (10-100 K).

Therefore, observational studies of molecular cloud properties and dynamics must use

low-abundance tracer species, the most important being CO [see 28, 91, 92]. Despite

its utility, CO is an imperfect gas tracer in a variety of regimes. It is photo-dissociated

at cloud boundaries and near stellar sources. It also becomes optically thick quickly

in high density regions. Furthermore, CO suffers greatly from depletion onto dust

grains at gas densities greater than ∼ 104 cm−3, further reducing its ability to probe

high density environments [93, 94, 95]. In contrast, high-density tracers such as N2H+

provide a better means to study the dense gas where CO depletion becomes severe.

Consequently, in order to construct a complete picture of molecular clouds, it is

necessary to piece together information from a variety of different tracers and line

transitions, each of which is sensitive to different densities, temperatures, and size

scales [e.g. 96]. For diffuse gas, species such as OH+ [97] and C+ are used. Shock

dominated regions are traced by molecules such as SiO [98]. Observers also use a

wide array of species, including HCN, NH3, H2CO, H2CS, CS, HCO+ and N2H+

to study dense environments [99, 100, 101, 102, 103]. However, astrochemistry is

highly nonlinear and is sensitive to the gas density, temperature and radiation field.

Detailed modeling is necessary to understand the distribution of species and how they

are correlated with each other.

20



Observationally, new instruments make studying many different chemical species

much more feasible. In particular, the wide spectral bandwidth of Atacama Large

Millimeter Array (ALMA) allows many different molecular species to be be mapped

simultaneously. For example, the ALMA Band 3 contains CN (N=1=0, J=1
2
-1

2
),

12CO (J=1-0), 13CO (J=1-0), HCN (J=1-0), HCO+ (J=1-0), HNC (J=1-0), and

N2H+ (J=1-0). These species alone span environments ranging from diffuse, large

scale structure (12CO) to dense cores (N2H+). Altogether, these lines provide a rich

and detailed view of star forming gas.

However, interpreting this data is not always straight forward. Astrochemistry is

a highly nonlinear function of the underlying gas density and temperature. Numer-

ical modeling of the underlying structure and astrochemistry is essential to provide

an interpretive framework. There have been numerous recent advancements in astro-

chemistry codes [see 104]. Reducing the dimensionality can be helpful for modeling

disk or outflow cavities [e.g. 105, 106], where the underlying density structure is

symmetric is some manner. However, observations show that molecular clouds con-

tain complex density and velocity structure. To account for this, some studies have

adopted analytic prescriptions for clumpiness [107, 108]. Such approaches have been

able to model the correlation between 13CO and C, CO emission (the “X-factor”)

and reproduce observed line profiles [e.g. 36, 109], however, they underestimate the

influence of cloud morphology in the abundances of species such as C [110, 111, 112].

A fully three dimensional method for modeling photo-dissociation regions (PDRs) is

necessary to represent the complex geometries of molecular clouds. However, a three

dimensional time dependent astrochemistry simulation coupled to the hydrodynamics

with an extended network is still computationally infeasible.

Many astrochemical studies have focused only on the formation of H2 and CO.

These species represent most of the molecular cloud gas and can be modeled with a

simple chemical network [see 113]. This can reduce the problem of solving thousands
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of coupled equations to merely dozens. However, as more elements are added to the

network, the number of species increases drastically, sometimes with significant effects

[14]. For instance, the inclusion of Sulfur chemistry leads to the addition of CS, which

in turn impacts the abundance of CO. Since CO and CS have similar formation rates

in diffuse environments from their atomic constituents, CS will reduce some of the

atomic carbon available for the formation of CO. Likewise, CH3 is a reactant with both

H2CS and H2CO. Without the inclusion of Sulfur chemistry, the abundance of H2CO

cannot be properly modeled. When studying many species simultaneously, reducing

the number of reactions while maintaining accuracy is nearly impossible, requiring

a very large network to properly account for the gas phase chemistry alone [104].

Including grain surface chemistry, which requires also modeling the dust distribution

and gas-dust surface reactions, further complicates astrochemical studies.

The goal of this paper is to study the distribution of a large variety of species and

understand the correlations between them. We model a Milky Way-like molecular

cloud using the magnetohydrodynamic code, orion. We then post processes these

results with the 3D astrochemistry code, 3d-pdr [30], using an extended chemical

network to obtain the abundances of over 200 different species. For a subset of this

network, we calculate synthetic emission maps of their lowest transition with the

radiative transfer code radmc-3d. We compare the spectral structure of all the

species to determine the similarity of different species. This is the first study to

quantitatively compare the underlying structure of many species. In §2.3 , we discuss

the models and the methodology we use to generate the emission maps, as well as

the way we quantify their spectral structure. In §2.4 we investigate how the following

factors affect the spectral structure: viewing angle, species and spatial resolution.

Finally, in §2.5 we discuss how the results are relevant to observational studies and

general implications.
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2.3 Methods

2.3.1 Hydrodynamic Simulation

We use a turbulent hydrodynamic simulation to model a typical Milky Way cloud.

The simulation was performed using the Adaptive Mesh Refinement (AMR) code

orion [114, 115]. It was previously discussed in Offner et al. [116] and Offner et al.

[112] as simulation Rm6, so we only briefly summarize its properties here.

The simulation represents a piece of a typical local molecular cloud. The domain

is 2 pc on a side and contains 600 M�. The gas temperature is 10 K and the 1D

gas velocity dispersion is 0.72 km s−1 such that the cloud satisfies the linewidth-size

relation (e.g., McKee and Ostriker 41). The gas turbulence is initialized by adding

random velocity perturbations with wave numbers k = 1..2 for two box crossing times

without self-gravity.

Once self-gravity is turned on collapse proceeds. The base grid is 2563 but four

additional AMR levels are inserted to ensure that the gas obeys the Jeans criterion

with a Jeans number of 0.125 [117]. On the highest level (∆xmin=0.001 pc), sink

particles (“stars”) are added when the gas exceeds the maximum density [118]. The

output we analyze in this study is at 1 global free fall time at which point ∼ 18% of

the gas resides in stars.

2.3.2 Astrochemistry

The chemical abundances were computed using 3d-pdr2, a three-dimensional

photodissociation code coupled with a full chemical network [30]. Offner et al. [112]

presented an analysis of the line emission based upon the abundances of molecular

hydrogen, atomic carbon, and carbon monoxide (run Rm6 1.0 12 1f a). In this study,

we perform an additional analysis of the most common astrochemical species in the

2https://uclchem.github.io/3dpdr.html
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chemical network. Here, we describe the astrochemistry calculation procedure and

refer the reader to Bisbas et al. [30] and Offner et al. [112] for additional details.

We irradiated the simulated cloud by an isotropic 1 Draine FUV field, where

“1 Draine” is the standard interstellar radiation field [119]. 3d-pdr uses the hy-

drodynamic densities and assumed external field to compute the temperature and

abundance distribution for points in the cloud with densities 200 ≤ n ≤ 105 cm−3.

Below n = 200 cm−3 we consider the gas as ionized, using limiting conditions on

abundances and gas temperature, whereas above n = 105 cm−3 we assume it is fully

molecular. We do not calculate the chemistry in those two regimes. 3d-pdr com-

putes the radiation field using a resolution of 12 healpix rays [120], emanating from

each grid point. The input grid is the density field of the hydrodynamic calculation

resampled to a resolution of 2563/12, i.e. a new grid comprised of every 12th data

point. (See Offner et al. [116] for a discussion of spatial resolution convergence.)

3d-pdr employs the UMIST2012 chemical database [18], which includes 215

species and approximately 3000 reactions. The calculation includes the formation

of H2 on dust grains following Cazaux and Tielens [121, 122], photodissociation of H2

and CO and self-shielding. The initial elemental abundances are [He] = 1.0 × 10−1,

[C] = 1.41 × 10−4, [O] = 3.16 × 10−4, [Mg] = 5.1 × 10−6, [S] = 1.4 × 10−6, and [Fe]

= 3.6 × 10−7 [123], which are similar to values estimated for local molecular clouds.

We adopt a cosmic ionization rate of 5× 10−17 s−1, which is the average value found

in the Milky Way. 3d-pdr solves the chemical network in equilibrium, with the final

time parameter representing the time allowed for the chemistry to come to equilib-

rium.We analyze the calculation after advancing the chemistry to equilibrium at 10

Myr.

The 3d-pdr calculation does not consider shock chemistry or dust-grain chem-

istry, which includes the freeze-out of species such as CO onto dust grains, surface

reactions (with the exception of H2 formation), or release of grain mantle species
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into the gas phase by means of evaporation, photodesorption or desorption [e.g. 124].

While these processes may impact abundances under certain conditions, we expect

them to have a minimal impact on our results. For example, turbulent intermittency

in the form of strong, thin shocks within the diffuse gas may enhance the emission

and abundance of tracers such as CH+, H2 and CO [125, 126]. However, excitation

by FUV photons likely dominates the populations of the lowest energy states, which

are what we study here. Dust grain freeze-out primarily affects gas with densities

≥ 104 cm−3; here, only 1% of the volume of our model cloud has nH2 ≥ 104 cm−3

(see further discussion of the impact of molecular freeze-out in the Appendix). Other

grain processes, such as photodesorption, may impact the species abundances over

a larger range of densities. Namely, [127] find that photodesorption is needed to re-

produce the measured enhanced abundance of H2CO in the Horsehead PDR region.

In contrast, they find that grain-chemistry is not required to model the H2CO abun-

dance within a UV-shielded dense core, which is instead well-fit by a pure gas-phase

model. This suggests that the higher UV radiated outer regions of our cloud may

require consideration of additional processes, at least with respect to H2CO. However,

we note that grain chemistry involves a high-degree of uncertainty and is sensitive

to the local UV field, grain properties, and cosmic-ray flux, which make it difficult

to apply conclusions from case-studies in the literature to our particular conditions.

We quantitatively examine the impact of potential effects of dust-grain chemistry and

shock chemistry in the Appendix.

In this study, we essentially assume a “one-way” coupling between the hydrody-

namics and chemistry. Performing the chemistry by post-processing the simulations

allows us to consider much larger chemical networks that would otherwise be compu-

tationally impossible when evolving the chemistry in parallel. However, the chemistry

is not coupled to the hydrodynamics, so, although 3d-pdr calculates the gas tem-

perature due to UV heating and cooling, it does not influence the gas evolution, and
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consequently the hydrodynamics and chemistry are not fully consistent. However,

even for the warmer ( ≈ 100 K) gas, motions are dominated by turbulence rather

than thermal broadening, so we do not expect large differences. For further discus-

sion of the chemistry modeling, see Offner et al. [116]. Even though the chemistry

considered here is not time-dependent, the approach exhibits good agreement with

Glover and Clark [128]. While their chemistry network is considerably simpler than

ours, the equilibrium time scales they find are the same order of magnitude of the

times at which we evolve the chemistry to in this study, and are the same order of

magnitude of the free fall timescale of the modeled cloud.

2.3.3 Synthetic Emission Maps

We carry out synthetic observations for the 16 difference species in Table 2.1

and compare our theoretical results to observations. We study these species because

they are commonly used tracers. We use the Leiden Atomic and Molecular Database

(LAMBDA) 3 for the reaction rates and cross sections for the different molecules.

When performing these calculations, we use the collisional partners defined in the

LAMBDA database files, mainly H2, H and He, assuming most of the H2 is para-H2.

To compute the emission, we use the radiative transfer code radmc-3d 4 with

the Large Velocity Gradient (LVG) approach [92], a radiative transfer method that

does not assume local thermodynamic equilibrium (LTE). This method computes the

molecular level populations given the density, velocity and temperature fields. We

use the velocity information from the orion calculation, while 3d-pdr calculates the

temperature and abundance information. Before performing the radiative transfer,

we interpolate all data to a 2563 resolution. We calculate the synthetic spectra for

velocities within ± 3 km s−1 of the line center. While 3d-pdr computes the level

3http://home.strw.leidenuniv.nl/ moldata/

4http://www.ita.uni-heidelberg.de/dullemond/software/radmc-3d/
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populations for all levels in the LAMBDA data, we only analyze the emission from

ground level transitions.

We use a constant microturbulence value of 0.1 km s−1 to account for unresolved

turbulence. We adopt a “Doppler catching” parameter dc = 0.025, which forces an

interpolation of the velocity field between cells if there is a jump greater than 0.025

times the local linewidth. We use collisional excitation and line data from the Leiden

atomic database for all 16 species [129].

Since the main goal is to study the structure of the tracer species, we do not

include the dust continuum in the emission calculation. We neglect heating and UV

feedback due to embedded protostellar sources. However, since the cloud is forming

low-mass stars, radiative feedback likely has a small impact on the emission. We

convert the line emission into a brightness temperature Tb using the Rayleigh-Jeans

approximation:

Tb =
c2Iν

2ν2
i kb

(2.1)

where Iν is the specific intensity and νi is the frequency of the line transition.

2.3.4 Statistical Analysis: Spectral Correlation Function

In this study, we use the Spectral Correlation Function (hereafter denoted as

SCF), first introduced by Rosolowsky et al. [130] to study the spectral structure of

the emission cubes. We define a position-position-velocity (PPV) cube as spectral

line data consisting of two spatial dimensions and one velocity dimension. Likewise,

a position-position-position (PPP) cube is data consisting of the density information

in all 3 spatial dimensions. The SCF is sensitive to the temperature and sonic Mach

numbers and weakly sensitive to the the magnetic field strength [131, 132]. Previous

studies have only focused on the SCF of 13CO emission, in both simulated and ob-

served molecular clouds. We calculate the SCF for all 16 species emission and density
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cubes to study how the SCF changes for the same cloud but different observational

tracers.

There are several different functional forms for the SCF. We use the form given

in Padoan et al. [131], where the SCF is a function of length scale, l and denoted by

S(l):

S(l) =

〈
1−

〈√ ∑
v |O(r, v)−O(r + l, v)|2∑

v |O(r, v)|2 +
∑

v |O(r+l, v)|2

〉

r

〉

|l|=l

(2.2)

Here r is a two dimensional position on the image plane, l is the offset vector with

length l, and O(r, v) is any PPV spectral data set. By definition S(0) ≡ 1. The

SCF is defined to be bounded between 0 and 1, with 0 indicating no correlation.

Padoan et al. [131] found that in driven turbulence simulations, the SCF can be

analytically fit by a power law on small scales. They fit the SCF for 13CO (1-0)

maps of several observed and simulated molecular clouds and demonstrated that the

parameter correlations can be used as theoretical model tests. Likewise, we fit the

SCF on small length scales using a power law:

S(l) = S0l
α (2.3)

where S0 is the value of the SCF at l = 1 pc. We fit the power laws in log space

for length scales between 3× lmin, where lmin corresponds to either the simulation

resolution, or the beam size, and l =1 pc corresponding to half the maximum length

scale. This was to remove beam size effects from the SCF power law fit. Figure

2.1 shows the SCF for four different tracers. The tracers follow a tight power law

behavior for small values of l, as illustrated by the black lines fits. However, Figure

2.1 also shows that at some length scale, the SCF function appears to flatten and

become noisy.

When comparing SCFs for different spectral maps, it is useful to define a quanti-

tative scalar value that describes how similar two SCFs are to one another. We use
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the distance metric between two SCFs as defined by Yeremi et al. [132]:

dSCF =

√∑

l

[S1(l)− S2(l)]2 (2.4)

Using this distance metric provides a quantitative measure of how similar the spectral

structures are between different species, resolutions, and sight lines. Yeremi et al. [132]

showed that this metric is sensitive to global hydrodynamic parameters, although not

to the magnetic field strength. Since the distance metric is a 1D statistic we can’t

compute a chi-squared value, i.e. a probability measure of uncertainty. In §2.4.2 we

will describe an example of using the distance metric to quantitatively comparing

SCFs.

2.4 Results

2.4.1 Power Law Range

Figure 2.1 shows that the SCFs of species which trace dense gas transition away

from power law behavior at larger scales and shows that the power law description

holds only up to some scale l� L where L is the cloud size. At larger length scales,

the SCFs start to flatten for all species. For example, the CO SCF is a continuous

power-law up to nearly 2 pc, while the SCF for NH3 starts to flatten around 0.4

pc. This flattening indicates where the gas is not dense enough to thermally emit.

CO remains correlated at large scales throughout the cloud, with a high surface

filling fraction of fs = 0.82, and samples both diffuse and dense structures. CO has

an low volume filling fraction, fv = 0.07 since it is still contained mostly in dense

environments with emission coming from diffuse regions because of its substantially

smaller critical density. The emission from high density regions is constrained by its

high optical depth. In our study, the surface filling fraction, fs, is the fraction of the

area containing the brightest 95% of the emission. The volume filling fraction, fv,
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Figure 2.1. Spectral correlation functions for four different species. The black lines
indicate a power-law fit.

is defined from the 3D abundances, being the fraction of the volume containing the

top 95% of the mass. However, NH3 becomes quickly uncorrelated, because it traces

only compact emission, i.e. dense cores, illustrated its much smaller volume filling

fraction, fv ∼ 0.005 and small surface filling fraction fs ∼ 0.25.

Figure 2.2 displays the SCF slope as a function of offset, S0 for 16 synthetic

emission cubes, where S0 is the value of the SCF at 1 pc. While we define the SCF

in terms of a slope and an offset, we show in Figure 2.2 that these two parameters

are tightly correlated. Therefore, henceforth, we only discuss the slope of the SCF.

Padoan et al. [131] also found a strong correlation between the slope and the offset

for simulated clouds.
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2.4.2 Viewing Angle

A statistic describing cloud structure is only meaningful if it does not vary strongly

as a function of cloud viewing angle. Here we verify that this is the case.

We calculate the emission for 9 different lines of sights through the cloud in 45

degree increments about the x-axis for all 16 tracers. We find that the SCF slopes

change by only ≈ 10% over all viewing angles. This variation, though small, is

useful as a benchmark to define when two tracers are truly similar. To define an

effective uncertainty, we calculate the maximum distance between any two SCFs for

all lines of sight. Figure 2.3 shows this maximum distance for 6 different species. We

find that there is a power law relation between the average slope, < |α| >, and the

maximum distance, dmax. This relation now provides a quantitative way of identifying

homologous tracers. We define two tracers as “complementary” if their SCF distance

for a given line of sight is less than the maximum dmax of either tracer. Therefore,

species A and B are complementary if

dSCF(B ⇔ A) ≤ max(dmax(A), dmax(B)) (2.5)

Figure 2.3 also suggests that diffuse species are more likely to have complements

because they have shallower slopes. We can see this by comparing the SCFs of CO

and NH3. If we fix the CO offset and alter the slope by the maximum ± 10% error,

the total rms difference is geometrically dmax. Since the SCF slope is shallower for

CO, the magnitude of the SCF remains higher. In contrast, if the NH3 SCF is altered

in a similar manner, the magnitude of the SCF becomes smaller much faster as a

result of the steeper power law. Therefore, the rms difference between the SCFs is

much smaller than what it would be for CO. As such, there is an expectation that

dmax should decrease with increasing slope.

Figure 2.4 shows the SCF slopes for all the species in this study with their line of

sight scatter. The species are seemingly separated into three distinct groups, though
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only two of the groups show a large jump in slope. Based on these groupings, we will

refer to diffuse tracers as those with α ∼ −0.3, intermediate tracers as those with

α ∼ −0.5, and dense tracers as those with α ∼ −0.75. CO and C both have the same

SCF slope within 1 σ of each other and within 2 σ of all the other diffuse tracers

except C+, where σ is the line of sight slope error. The larger errors for C+ seem

to correspond to different diffuse structures being superimposed at different sight

lines giving somewhat different structures. Note that while the species whose SCFs

are within the line of sight error limits are homologous (meaning they trace similar

density regimes), they are only complementary if they also satisfy the distance metric

criteria (Equation 5).

The simulated molecular cloud that we study has no magnetic fields. While Yeremi

et al. [132] find that the SCF only weakly depends on the magnetic field, the presence

of a strong magnetic field could create asymmetries in the gas distribution. Large

asymmetries could in turn increase the SCF dependence on the viewing angle.

2.4.3 Chemical Species

We use 16 common astrophysical tracers to investigate how the SCF depends on

species. We generate synthetic emission maps for the lowest energy state transitions

shown in Table 2.1. Figures 2.5 and 2.6 show integrated emission maps in position-

position (PP) and position-velocity (PV) space, respectively. The various tracers

span different ranges of position and velocity space depending on their abundance

and excitation. For example, astronomers commonly use N2H+ to trace dense gas,

so it is unsurprising that N2H+ exhibits very compact emission in both figures. The

velocity plots indicate structure that may be hidden by projection. Dense cores stand

out in both maps.

We find that the filling fractions in PP and PV are similar: tracers with com-

pact spatial emission are also compact in velocity space. This is essentially Larson’s
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Table 2.1. Chemical Species and Properties

Name Transition Frequency (GHz) nc (cm−3) fs fv Notes
C J=1-0 492.160651 820 0.87 0.45

C+ J=3
2
− 1

2
1900.5369 7700 0.87 0.48

CN N=1-0, J=1
2
− 1

2
113.1686723 1.3×106 0.87 0.14

CO J=1-0 115.2712018 2180 0.82 0.07
CS J=1-0 48.9909549 5×104 0.73 0.05

HCN J=1-0 88.6316023 1×106 0.65 0.40 No hfs
HCO+ J=1-0 89.188523 1.6× 105 0.62 0.14
HNC J=1-0 90.663568 2.7×105 0.21 0.01
OH J=3

2
,F = 1,P = +/- 1.66 2.60 0.22 0.15 No hfs

OH+ N=1-0 909.15880 4270 0.63 0.36
H2CO J=1-0 72.837948 1.5×105 0.41 0.03 p-H2CO, hfs
H2CS J=1-0 34.3543 8400 0.24 0.006 p-H2CS
NH3 (J,K)=(1,1) 23.6944955 1990 0.25 0.005 p-NH3, hfs

N2H+ J=1-0 93.17370 1.4×105 0.21 0.005 No hfs
SiO J=1-0 43.42376 3.8×104 0.51 0.005
SO J=1-0,N=0-1 30.00158 7.7×104 0.28 0.005

Notes. Species name, transition, critical density, surface filling fraction and volume
filling fraction for all the species in which we do radiative transfer post processing.
We define the surface filling fraction as the fraction of the area that constitutes 95%
of the total intensity. The volume filling fraction is the fraction of the volume that
constitutes 95% of the total mass. Hyperfine splitting is denoted by hfs. Species
that have hfs defined in the LAMBDA database files but are not included in the
radiative transfer modeling are denoted by “No hfs”, while those that have hfs that is
included in the radiative transfer modeling are indicated by “hfs”. Critical densities
were calculated for gas at T = 10 K.
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relation [133], which states that small structures should have small velocity extents.

CO has a high surface filling factor (fs ∼ 0.82) and traces both high and low density

regions, with a relatively high abundance across the entire spatial region, exhibited

by its spatial emission distribution. CO is chemically connected to the high density

tracer H2CO through a number of reactions. H2CO is photodissociated to form CO

when the density becomes low enough that it is no longer shielded from the external

UV field. CO can get turned into H2CO through intermediaries, such as HCO+ in

both gas phase reactions and dust grain chemistry. As expected then, the H2CO

emission has a much smaller surface filling fraction of fs ∼ 0.41 and is resides mostly

in dense environments, requiring a relatively high density to be excited (nc ∼ 105

cm−3).

Optical depth indicates the degree of transparency. Tracers that are optically

thin, such as NH3, have emission that reflects the underlying density structure more

accurately. Figure 2.7 shows the optical depth of each line transition at the line

center calculated by radmc-3d. The figure shows that C, CO, CN and C+ all

have high optical depths. This is a result of having a lower critical density with a

relatively high abundance. The intermediate density tracers, CS, SiO, HCN, HNC

and HCO+ are similar, with the gas only being optically thick towards the highest

density regions. High density tracers, NH3, H2CO, H2CS and N2H+ remain optically

thin throughout almost all of the entire volume. NH3 is an exception because of its

fairly low critical density, allowing it to be excited down to lower densities, though still

relatively optically thin except in the densest regions of the filaments. OH+ suffers

from a very low abundance, and it is not easy to excite, so its emission appears very

diffuse.

Figure 2.8 displays two different integrated maps with spectra at two different

points. It shows that the CO emission is mostly dominated by gas motions. The red

star spectrum shows a single feature with a width of ∼ 0.7 km s−1, which is consistent
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with the characteristic turbulence velocity. The CO white star spectrum is broad in

part because it is a superposition of multiple density features along that particular

line of sight. Similarly, the NH3 white star spectrum shows a superposition of several

density features at different velocities along the line of sight. However, the NH3 red

star spectrum, which is along a rather diffuse line of sight, shows a much narrower

feature with a width of 0.3 km s−1. The average sound speed of a cold molecular

cloud is approximately 0.2 km s−1, indicating that the NH3 in the red star region is

undergoing purely thermal motion rather than dominated by turbulence.

2.4.4 Resolution

Beam resolution is one of the most important factors in observations and it im-

pacts the apparent gas structure and mean optical depth. A larger beam averages out

the emission within the beam size, lowering the overall optical depth. We convolve

the emission maps with a Gaussian beam to simulate a realistic resolution observa-

tion. We place the simulated cloud at a distance of 1 kpc to establish the angular

size. Larger beams significantly blend the dense cores and diffuse gas structure. In-

terestingly, we find that some species’ spectral structures are artificially similar at

one resolution and then deviate significantly at some lower resolution. To quantify

this, at each resolution we calculate the SCF for each species and then compare their

distance metrics. Figure 2.9 shows the evolution of the SCF slopes for all 16 species

as a function of spatial resolution. The overlapping regions indicate where tracers

at a particular spatial resolution have similar emission distributions. Note that this

only impacts the emission. Therefore, overlapping regions do not indicate similar

density distributions, unless the SCF slopes are similar at good (near simulation) res-

olutions. Thus, Figure 2.9 quantifies which tracers are statistically similar and useful

for studying particular densities and size scales.
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At the highest resolution (i.e. no smoothing), C, CO, CN and C+ are all very

similar tracers since they all trace diffuse gas. The positive correlation between C

and 12CO has been observationally studied for years [e.g. 134, 135, 136, 137, 138],

although historically C was theoretically predicted to only exist in a PDR surface layer

[14]. Papadopoulos et al. [110] predicted that C should be more prevalent in clouds

than previously predicted by 1D models due to a combination of non-equilibrium

processes and clumpy cloud morphology. Glover et al. [111] and Offner et al. [112]

both qualitatively demonstrated the similarity between the C and CO distributions

in 3D PDR calculations. Our SCF comparison demonstrates that CO and C spectral

cubes are quantitatively similar.

At higher densities, species such as SO and NH3 also appear very similar. As

expected, HCN and HNC structures appear nearly identical in spectral space. At

lower spatial resolution, several species intersect: NH3, N2H+, SO and H2CO. This

occurs as larger beams increasingly blend dense, compact emission.

We note that some species have a non-monotonic dependence on resolution where

the SCF slope decreases until ∼ 15-20” and then increases again. The decrease in

the slope is due to overlapping Gaussian structures creating artificial cores. Figure

2.10 shows the emission spectral structure evolution with beam size visually for NH3

emission in both PP and PV space. Figures 2.11 and 2.12 illustrate these trends as

a function of beam size using the distance metric. The change in the slope occurs

because species with significant compact emission (those which are generally optically

thin) have their emission smoothed on larger scales, making their emission more

extended and thus appear similar to other more optically thick species. Smoothing

also somewhat affects the more diffuse tracers C, CO, CN and C+, which experience

blending on larger scales. This can give the appearance of a more core-like structure

where these smoothed regions overlap. At lower density, the emission smooths into

am even more diffuse looking component.

36



2.4.5 Comparison of Density and Emission

In §3.3 we demonstrate that many tracers produce similar SCFs. However, simi-

larity between the SCFs of two emission maps does not guarantee that the underlying

densities are also similar. In this section, we compare the SCFs of the emission and

density data directly. We obtain a PPV cube based on the gas density (hereafter

denoted by PPVρ) by taking the simulated density and velocity cubes and construct-

ing a PPV cube where each spectral bin contains the number density (calculated as

Ni = NH · ni) within a given velocity bin. Here, “V” is the velocity vector projected

along a given line of sight. For the PPVρ cube, the (i,j,k)th voxel contains the total

mass along some line of sight through the point (xi, yi) within a particular line of sight

velocity range ∆vk. We compare the emission and density SCFs in Figure 2.12. This

figure shows the distance between the emission SCFs and PPVρ SCFs for each species.

For C, CO, CN and C+, PPVρ does not match the emission structure well. In fact,

as the spatial resolution of the PPV cube becomes coarser, agreement between den-

sity and emission worsens. High opacity tracers exhibit poor correspondence between

emission and density.

In contrast, species with optically thin emission have very similar density and

emission SCFs, as indicated by the darker cells in Figure 2.12. For example, CO has

a low critical density, nc ∼ 2000 cm−3, and a relatively high abundance. It becomes

optically thick as the gas density approaches 104 cm−3. Figure 2.7 demonstrates that

CO is very optically thick throughout most of the simulation box. High optical depth

effectively flattens the perceived distribution, i.e. as the gas becomes optically thick

the emission no longer traces higher density regions. On the other hand, N2H+ is

optically thin throughout the domain and has a small distance (d < 0.1) between its

emission and density SCF. N2H+ has a high critical density of 105 cm−3 and has a

much lower abundance than CO.
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Differences between the true density and the emission arises from a combination

of chemistry, which changes the abundance, and excitation, which impacts the line

shape. For example, OH+ has a low critical density of ∼ 4000 cm−3 but its emission

remains optically thin due to its very low abundance. However, HCN is optically

thin because it is only excited at gas densities above 106 cm−3 despite its modest

abundance: [HCN]/[H2] ∼ 10−7.
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Figure 2.2. Slope, α, versus offset, S0, for the SCFs calculated for 16 PPV emission
maps. The same trend holds for the density data, so we only show the emission
parameters.
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Figure 2.3. Maximum SCF distance, dmax, as a function of the average of the SCF
slope magnitude, < |α| >, for different tracers. The blue line indicates a power law
fit to the points with a slope of -3.2. The shaded region shows ± 1 σ from the fit.

2.5 Discussion

2.5.1 Comparisons with Observations

We now compare our results to observations of two local molecular clouds (MCs),

Perseus and Ophiuchus. We use the 12CO data from the COMPLETE survey [37],

which were taken using the Five College Radio Astronomy Observatory (FCRAO).

The 12CO observations have an angular resolution of 46′′. Since the Perseus and

Ophiuchus clouds are approximately 250 pc and 150 pc away [37] corresponding to

physical scales of 0.06 pc and 0.03 pc, respectively, we can compare at the to length

scales represented in our simulation. We calculate the 12CO SCF for the full extent

of both clouds. We also divide Perseus into two parts and compute the SCF of each
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half. Table 2.2 displays the resulting SCF slopes and power law fit errors. We plot

the full SCFs in Figure 2.13.
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Figure 2.5. Integrated intensity maps for 16 different species, in units of K km s−1.
The species OH+, H2CS, N2H+ and H2CO have their emissions multiplied by the
value shown shown to see their structures.

In order to properly compare the model to the observations, we perform several

procedures on the observational data. First, we smooth the data with a Gaussian

beam corresponding to the FCRAO 46′′ beam resolution. Then, we regrid the data

so that each pixel has the same spatial pixel scale of the two different clouds. Third,

we apply a detection limit where we remove pixels with emission less than 0.01× <

Tb >. Finally, we add noise corresponding to Gaussian thermal noise with a standard

deviation of σT ∼ 0.3 K to model the noise in the Perseus COMPLETE data. We did

not perform biased sampling, which may affect the longest length scales of the SCF

due to the irregular observational stencil.
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Figure 2.6. Integrated emission maps of velocity versus position, in units of K pc.
The velocity on the vertical axis is scaled by 3 kms−1. We multiply the emission of
OH+, H2CS, N2H+ and H2CO emission by the value shown to increase contrast.

Table 2.2 gives the values of the slopes and the associated error of the power law

fit. The model cloud SCF initially has a slope of -0.29. However, after matching to

the observational resolution the SCF slope changes by quite a bit to -0.13 and -0.19

for the Ophiuchus and Perseus resolutions, respectively. Furthermore, the fit error

indicated in the table shows that the power law fits are all well constrained. Figure

2.13 shows that the model cloud and the Perseus cloud have similar SCFs when

taking into account observational biases, such as beam size and pixel resolution.

This is indicated by the similar power law fits shown in the bottom of the figure.

The Ophiuchus SCF is steeper than the mode SCF at the Ophiuchus pixel and beam
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Figure 2.7. Line center optical depths calculated by radmc-3d. The HCN and
CO density profiles in this plot are treated with a crude dust treatment described in
the Appendix. The HCN optical depth is divided by a factor of three to approximate
the addition of the fine structure component to the transition.

resolution, though it is similar to both the Perseus SCF and the model SCF at Perseus

resolution. The flattening of the SCF at small scales is due to the beam resolution.

While the emission is still correlated, the turbulence has been resolved out within the

beam area. There is still some difference between the simulation and observations

which may be due to other biases. However the model and observations match within

the 10% error mentioned in §2.4.2.

In Figure 2.1, the SCFs for all of the tracers appear to flatten out at some large

scale, with the exact scale seemingly changing depending on the tracer. Padoan et al.
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Figure 2.8. Integrated emission maps (left) and line-of-sight velocity spectra (right)
for CO (top) and NH3 (bottom). The white and red star locations represent emission
from compact regions and diffuse regions, respectively.

[131] also found that their SCFs from simulated clouds traced by 13CO flatten, but

the SCFs for local clouds, also traced by 13CO, steepen. We were not able to replicate

this discrepancy with our simulations, though we conclude that the steepening effect

is most likely due to some observational bias at large length scales.
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Figure 2.9. SCF slope, α, versus beam resolution. We calculate the angular beam
size by placing the model cloud at a distance of 1 kpc. The clouds are then convolved
with a Gaussian of the given beam size.

2.5.2 Understanding Chemistry from the SCF

A fundamental question of this work is: what does the SCF reveal about the

chemistry of various tracers? Using Figures 2.9 and 2.4 we group the SCF slopes

into three emission categories: diffuse, intermediate, and compact. C is an example

diffuse tracer which is excited down to lower densities of ∼ 800 cm−3 and is abundant

throughout the entire volume. HCN is excited at fairly high densities and it becomes

quite abundant once it is shielded from the UV field, so it traces up to intermedi-

ate scales. A common dense core tracer is N2H+ which also gets excited at higher

densities, where it is also shielded from photodissociation. Commonly studied trac-

ers such as CO, C+, HCN, NH3 and N2H+ confirm that the SCF slope reflects the
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Figure 2.10. NH3 integrated emission maps for PP (top) and PV (bottom) at
different spatial resolutions for a distance of 1 kpc. The beam size appears in the top
right.

expected optical depth, filling fraction, and critical density of the emission. While it

is impossible to compute the true density distribution from the SCF alone, the slope

does indicate the scale the species traces. For instance, shallower slopes, such as that

of CO, show that the gas remains correlated on larger scales.

CO is a species of particular astrophysical importance. Over the past several

decades, CO has become the most prominently utilized cloud mass tracer and has

received significant theoretical attention. Our results show that the SCF of CO traces

diffuse regions, as indicated by its shallow slope. Our results also show that CO traces

the gas up to high densities, although proper treatment of dust grain depletion could

change this. Since CO has a low critical density (see Table 2.1), the lowest level

transition is easily excited throughout most of the cloud. This allows the cloud to

produce emission in both the lower density environments and the dense cores (where
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Figure 2.11. Distant metrics for all 16 species, where darker colors indicate more
similar SCFs. We calculate the resolution by setting the cloud at a distance of 1 kpc
for the beam size shown in the bottom right.

the emission saturates due to optical depth). For this reason, CO also has a high

volume and surface filling fraction. Figure 2.7 confirms that CO has the highest

average optical depth, which is due to its low critical density and higher abundance.

However, the SCF analysis identifies several tracers that exhibit similar emission.

We find that C and CN are homologous to CO. The correlations between these species

makes chemical sense since all three depend upon the abundance of neutral carbon.

The UMIST chemical network shows that both CO and CN form rapidly in the orig-

inal diffuse environment. Their behavior at higher densities though is quite different.
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Figure 2.12. Distance between the density PPV cube SCF (vertical) and the
intensity PPV cube SCF (horizontal) for each species pair. The beam resolution for
the intensity PPV cube as placed at a distance of 1 kpc, appears at the bottom right.
The PPVρ cube is not blurred with the beam.

CN is photodissociated much more rapidly towards lower densities than CO because it

cannot self shield. CN is depleted through reactions forming more complex molecules

faster than CO. This results in a factor of several orders of magnitude difference be-

tween the abundances of the two molecules. Therefore, it is reasonable to expect CO

and CN to be very similar in low density environments. In regions of high mass star
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Table 2.2. Comparison between Model and Observed Clouds

Cloud α σfit

Model -0.29 0.01
Model (Oph Res) -0.13 0.01
Model (Per Res) -0.19 0.006

Ophiuchus -0.22 0.01
Perseus -0.21 0.007

Notes. Comparison of 12CO SCF power law fit values, α. Per Res indicates the
model cloud at the spatial resolution of the Perseus cloud, and likewise for Oph Res.
σfit is the error of the power law fit in log space.

formation, CN could be used as a proxy for CO, which is optically thick, or of the

surrounding diffuse gas.

Another common molecular gas tracer is HCN, which is frequently used to trace

gas with densities above 106 cm−3. The SCF slope implies it also traces intermediate

density regions in filaments, i.e. n ∼ 103 to 104 cm−3, although, the emission level

may be too low to detect. Recent work by Forbrich et al. [139] confirms that HCN

and HNC are good tracers of dense environments over a wide range of extinctions.

The optical depths we calculate for HCN are off by a factor of three since we do not

model the HCN fine structure for the ground state transition.

Finally, there are a variety of species that trace dense cores, including NH3 and

N2H+. Figure 2.6 confirms the trend that species tracing more diffuse regions have

shallower slopes than species that typically trace high density regions. Here, the

regions the species trace are clear in the velocity information. Diffuse gas tracers

have significant emission in a broad range of velocities, as illustrated by the horizontal

bands in species CO, C and CN in Figure 2.6. Species which trace higher densities

show no diffuse component. Instead, the emission is located in clumps or filaments,

which exhibit a smaller range of velocities.

While the density is important, the gas must also have a high enough temperature

to excite the transition. We define a characteristic line temperature T, where hνi =

49



kTi, where νi is the line frequency. All the species have line temperatures below 10

K except C, C+ and OH+, which have line temperatures of 23 K, 91 K and 44 K,

respectively. The average gas temperature in diffuse regions is around 100 K, so even

these species are easily excited from their ground states. However, OH+ is mostly

observed in absorption. This is due to its low abundance and higher excitation making

measurements from absorption in the dust continuum easier than trying to detect the

very small emission signal (as noted by the multiplicative factor of ∼ 106 in Figures

2.5 and 2.6).

Complex molecules, such as NH3 require higher densities to form, and photodis-

sociate rapidly at lower densities where the UV field is higher. Simple light diatomic

molecules such as CN form in diffuse regions. An exception is CS, which appears only

in intermediate density regions. It photodissociates faster than CO but slower then

CN. However, due to the much lower initial abundance of sulfur, it forms only where

the sulfur is concentrated. Most of the tracers in this study that have a shallow slope

also tend to have a very high optical depth. The only exception is OH+ which has a

very low abundance.

2.5.3 Discussion of Observational Implications

The results from Figures 2.9 and 2.11, as well as our definition of complementary

species, suggest sets of homologous species. These are groups of species whose spectral

structure is very similar in PPV space, indicating that, especially for the optically

thin tracers, they should trace similar density regimes.

Recent theoretical studies, such as Glover et al. [111] and Offner et al. [112],

found that C is a good alternative tracer to CO. C has several advantages, including

a ground state transition at 609 µm and a lower optical depth than CO. These recent

studies challenge the idea that C traces only the surface of the PDR. Our study

confirms this picture by showing that C and CO have very similar SCFs, with CO
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being complementary to C. Our study also predicts that CN is an alternative tracer

to CO and C. CN (1-0) has a similar transition frequency with an optical depth

around an order of magnitude less than CO, although its slope is slightly flatter

indicating that it traces even lower density regions, and it has a similarly high filling

fraction. The slightly flatter slope is expected; CN is destroyed faster than CO in

higher density environments due to its role as a reactant in reactions forming more

complex molecules. Since CN and CO form very quickly and depend on the relatively

high-abundance of C, they both have very high filling fractions. Their surface filling

fractions are both over 90%, and their volume filling fractions are greater than 0.3.

In fact, Table 2.1 shows that CN is both more surface filling and volume filling than

CO. The cosmic-ray induced photodissociation rates (i.e. CX + CRPHOT→ C + X)

given by the UMIST2012 network are RCN = 1.4× 10−13 s−1 and RCO = 7.5× 10−16

s−1. Cosmic rays penetrate further into the cloud than the external UV radiation,

indicating the CN will be destroyed by cosmic rays inside the cloud faster than CO.

Indeed, CO has an abundance several orders of magnitude greater. Singly ionized

carbon traces more diffuse regions but is not as abundant in higher density regions

where it combines with O to form CO. The C+ (1-0) transition is in the infrared,

which can be observed using space-based instruments, such as the Herschel Space

Observatory [e.g. 140] and the GREAT Spectrometer on Stratospheric Observatory

for Infrared Astronomy (SOFIA).

A commonly used high density tracer is N2H+, which has a ground state transition

at 93 GHz. Our study predicts several homologous tracers to N2H+ including: H2CO,

H2CS, NH3, and SO. All of these species exist in similar environments and have surface

filling fractions between 0.01 and 0.25. However, some of these tracers only form the

high density cores which such as N2H+, with a volume filling fraction of 0.21. H2CO

has a higher volume filling fraction than N2H+ (fv = 0.37) which indicates that it

traces a larger fraction of the core gas. We find that H2CO and SO have higher
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brightness temperatures indicating that they should be easier to detect than species

with fainter emission such as H2CS and N2H+. NH3 and SO show significant emission

in filaments, but N2H+ is brightest in dense “cores”. NH3 has a relatively low critical

density (nc = 1991 cm−3), so it is excited at lower densities than high densities tracers

like N2H+. However, it is not as bright as other low critical density tracers like CO

(nc ∼ 2000 cm−3) because of its low abundance outside of dense regions. Some of

these correlations could change with the inclusion of dust grain chemistry. This would

lower the abundances of the higher density tracers, such as NH3, H2CO, H2CS and

SO, and reduce their emission. However, these molecules only begin to deplete for

H2 number densities ≥ 107, greater than the maximum density in this simulation.

Detailed treatment of gas-grain chemistry is beyond the scope of this work.

2.6 Conclusions

We use numerical simulations of a Milky Way-like molecular cloud to study how

the SCF varies between different species. We post process the hydrodynamical sim-

ulation with the astrochemistry code 3d-pdr, which uses a full chemical network to

obtain abundances of over 200 different species. We produce synthetic line observa-

tions for a subset of these. We calculate the SCF for each of the species for both the

density and emission distributions and define a “distance” metric to compare them.

On the basis of this, we draw the following conclusions:

1. The SCF is sensitive to the chemistry of the tracer. Species tracing diffuse gas

tend to have shallower SCF slopes, whereas species that trace dense regions

(”cores”) have steeper slopes.

2. We confirm that the emission structure, as characterized by the SCF, poorly

traces the density structure for species with optically thick emission. The de-

coupling is due to line saturation in the highest density regions.
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Figure 2.13. SCF as a function of size for two clouds in the COMPLETE survey
and the model cloud at different resolutions. The dashed-dot red line is the SCF
for the Ophiuchus cloud, while the solid blue line is the Perseus cloud. We divide
the Perseus cloud into two components at the cloud center (dashed blue lines). The
different black line styles indicate different spatial resolutions, where the dotted line
represents the simulation resolution, the solid line represents a 46” beam at 250 pc,
and the dot-dashed line represents 46” at 125 pc to match with the line styles of the
observed clouds. The vertical lines represent the minimum length scales used for the
power law fitting, with θ representing the beam size. The power law fits are shown
below, with the line styles matching their corresponding SCF.

3. Spatial resolution has a distinct effect on the SCF slope, but even with relatively

low beam resolution the slopes remain in a similar region of parameter space.

However, for poor resolution, some species have artificially similar SCFs.

4. Velocity resolution has no effect on the SCF slope, since the SCF only measures

the rms velocity between spatial regions. This will only hold while the spectral
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features are resolved, namely that the velocity channels are smaller than the

linewidth. Noise variation also has little effect on the slope, since variations

cancel as long as the noise is Gaussian.

5. We find that C, C+, CN, CO, and OH+ are homologous diffuse gas tracers.

OH, CS, HCN, HNC and SiO are homologous intermediate gas tracers. Finally,

H2CO, H2CS, N2H+ and NH3 are homologous dense core tracers when gas phase

chemistry is dominant. The statistical similarity of the SCFs suggest that they

trace similar cloud structure and likely provide complementary information.

This study takes the first steps in exploring the 3D astrochemical correlations in

molecular clouds. In this study, we show that the SCF slope can be used as an

indicator of the density of environments where specific species form. This provides

insight into the gas chemistry of particular species. Future work can still expand

on this in several ways. We do not investigate the SCF evolution as a function of

time. Also, we do not include either dust grain chemistry or shock chemistry. Future

studies can investigate higher level transitions, such as CS (2-1) and CO (3-2), and

isotopologues such as 13CO.

2.7 Appendix

In this appendix, we discuss briefly how effects such as dust-grain chemistry and

shock chemistry could affect our results.

2.7.1 Dust-Grain Chemistry

2.7.1.1 CO and HCN

Both CO and HCN, as well as other high-density tracers, may be affected by

depletion at high-densities. CO depletion is extreme at high-densities with the mean

abundances declining by several orders of magnitude [see 93, 94, 95]. HCN also freezes

out, but at higher densities. In order to assess the impact of depletion on our CO
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and HCN results, we adopt crude treatments for dust freeze-out and recalculate the

optical depth and SCF. We set the abundance of CO to 0 where the H2 number

density exceeds 104 cm−3. For HCN we set a limit of [HCN]/[H2] = 10−8 in cells

where nH2 ≥ 104 cm−3. We compare the SCF slopes of the tracers with and without

depletion and find that the change in slope is less than 10%. Setting a maximum

HCN abundance of 10−8 relative to H2 reduced the HCN optical depths to τ < 10

across the entire cube, with the typical optical depth being ∼ 1-4. Furthermore,

since in these high densities the HCN gas will remain optically thick, it should not

drastically impact the SCF correlations. Overall, we conclude that the exclusion of

dust depletion does not significantly affect our results due to the small percentage of

the simulation volume at high-densities (1%).

2.7.1.2 N2H
+

When CO starts to freeze-out onto dust grains, several molecules, such as N2H+

will see an increase in their abundances. This occurs because H+
3 reacts with CO to

form HCO+ which is the main destruction mechanism for H+
3 . As the amount of CO

decreases there is a surplus of H+
3 . In high density environments, H+

3 can be destroyed

to form N2H+ [141, 142, 143, see] by the following mechanism:

H+
3 + N2 → N2H+ + H2 (2.6)

In order to test whether this effect has an impact, we adopt a simple approximation in

which the amount of N2H+ increases at high densities. Since CO starts to deplete at

H2 densities above n(H2) ≥ 104 cm−3, we multiply the N2H+ abundance by a factor

of 4 where the gas fits this criteria. Since the emission is mostly optically thin, this

merely scales the emission by a constant factor. Similar to the case for CO and HCN

depletion, we find that this mechanism has no statistical impact on our results. It
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is noteworthy that the enhancement of N2H+ is not universal, with studies such as

Tafalla et al. [144, 145] showing either no N2H+ increase or showing N2H+ depletion.

2.7.2 Shock Chemistry: SiO

Since our hydrodynamic simulation doesn’t resolve shock fronts to the necessary

resolution to calculate post-shock densities and temperatures, well known shock trac-

ers such as SiO will not be properly modeled. In shocks, changes in the density and

temperature can lead to a large enhancement of the abundance of SiO. Furthermore,

at higher temperatures, the abundance of SiO can be increased by sputtering from

dust grains. This mechanism is the ejection of Si and SiO from a grain surface fol-

lowing a high enough energy impact of gaseous species. At lower temperatures, the

sputtering rate is expected to be small [146]. Even though sputtering from shock

chemistry, and other shock effects, will affect the abundance, the inclusion of shock

chemistry is beyond the scope of this work. Finally, the increased brightness of the

SiO emission is an artifact of using a non-depleted Si abundance, which is over an

order of magnitude larger that observed depleted abundances [147].

56



CHAPTER 3

A MODEL FOR PROTOSTELLAR CLUSTER
LUMINOSITIES AND THE IMPACT ON THE CO-TO-H2

CONVERSION FACTOR

This chapter1 focuses on developing the formalism to generate synthetic proto-

clusters and calculating their luminosities. These methods are used to couple the

radiation from protostars to astrochemical models of molecular clouds.

3.1 Abstract

We construct a semi-analytic model to study the effect of far-ultraviolet (FUV)

radiation on gas chemistry from embedded protostars. We use the Protostellar Lu-

minosity Function (PLF) formalism to calculate the total, FUV, and ionizing cluster

luminosity for various protostellar accretion histories and cluster sizes. We compare

the model predictions with surveys of Gould Belt star-forming regions and find the

Tapered Turbulent Core model matches best the mean luminosities and the spread in

the data. We combine the cluster model with the photo-dissociation region astrochem-

istry code, 3d-pdr, to compute the impact of the FUV luminosity from embedded

protostars on the CO to H2 conversion factor, XCO, as a function of cluster size, gas

mass and star formation efficiency. We find that XCO has a weak dependence on the

FUV radiation from embedded sources for large clusters due to high cloud optical

depths. In smaller and more efficient clusters the embedded FUV increases XCO to

1These results are based on research published by Gaches and Offner [148] and is reproduced
with permission from the AAS.
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levels consistent with the average Milky Way values. The internal physical and chem-

ical structure of the cloud are significantly altered, and XCO depends strongly on the

protostellar cluster mass for small efficient clouds.

3.2 Introduction

In the local universe, star formation occurs exclusively within molecular clouds

[41]. These clouds exhibit complex structure regulated by a combination of turbu-

lence, gravity and magnetic fields [149]. The relative balance between these forces

determines the amount of dense gas where the star formation occurs. Studying the

dynamics and structure of molecular gas is paramount to understanding the star for-

mation process. Star formation acts as a clock within molecular clouds, when internal

feedback mechanisms turn on and start to impact the evolution of their natal host

cloud. During star formation, knowing the dynamics is necessitated by understanding

the feedback mechanisms.

Molecular clouds are composed primarily of molecular hydrogen, H2. However, H2

has no permanent dipole, and thus is not visible at the cold temperatures of molecular

clouds. Instead, most studies rely on the emission from carbon monoxide (CO) as a

proxy for total molecular gas mass. CO has the second highest molecular abundance

after H2, a permanent dipole and is readily excited at the temperatures and densities

of molecular clouds. In addition to CO, astronomers also use a wide array of other

molecules that span a range of physical and chemical conditions, including tracers of

denser gas like HCN and N2H+ [96, 99, 100, 103].

Because H2 is not directly observable, molecular gas mass must be determined

indirectly by assuming a fixed dust-to-gas ratio or some simple relationship between

H2 and another molecular species. The most common conversion is XCO, which is

defined as

XCO =
NH2

WCO

, (3.1)
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where NH2 is the column density of molecular hydrogen in units of cm−2 and WCO is

the integrated intensity in K km s−1. The typical Milky Way value is XCO = 2× 1020

K km s−1 cm−2 [36]. This value implicitly assumes CO is optically thick and that

molecular clouds are in rough virial equilibrium [36]. The related conversion factor

denoted αCO relates the total CO luminosity to the molecular gas mass Mgas.

However, XCO is subject to a variety of uncertainties. It varies significantly within

clouds [e.g., 150]. Distance reduces the accuracy of measured CO luminosities. Out-

side the MW, the measured XCO between clouds has a large dispersion, and multiple

clouds may occupy an observational beam [151]. It also varies with metallicity, C/O

ratio, cosmic ray ionization rate and the local Far-Ultraviolet (FUV) radiation field

[28, 92, 113, 152, 153, 154, 155]. Consequently, understanding the gas chemistry

and related thermal processes is crucial to interpret observations and derive accurate

conversion factors.

Numerical models provide an important means to predict how abundances and

gas properties vary as a function of local environment. These models range from

simple one-zone models to full chemo-hydrodynamics simulations. Simple gas models

[i.e., 107, 108] allow for the use of large chemical networks (hundreds of species) and

parameter studies spanning diverse physical environments. Often, in these models the

gas is treated as a one-dimensional, semi-infinite slab of uniform density [104]. This

assumption necessarily ignores the complex 3D physical structure of molecular clouds.

In contrast, chemo-hydrodynamic simulations are time-intensive and, thus, restricted

to smaller networks (dozens of species), but they allow for a much more accurate

treatment of cloud physical conditions [25, 79, 91, 92, 156, 157]. Both approaches treat

the gas as a photodissociation region (PDR) and solve chemical networks coupled to

the physical environment.

By convention, the FUV radiation field is assumed to be a one-dimensional,

monochromatic flux incident on the cloud boundary, which represents the interstellar
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radiation field (ISRF). This treatment implicitly assumes that only external stellar

sources influence the cloud chemistry. However, forming stars radiate their environ-

ment, producing chemical changes deep within the cloud. Protostellar radiation is

produced by both accretion and stellar processes, such that embedded sources often

have luminosities much higher than that of main sequence stars of the same mass

[60, 61, 158, 159]. The protostellar spectrum includes radiation at FUV wavelengths

and, for high-mass stars, ionizing radiation. Therefore, once molecular clouds begin

forming stars the local radiation field is set by both the ISRF and radiation from

embedded star formation.

To date, no PDR studies have directly included embedded sources. Instead, some

recent theoretical work indirectly modeled how the star formation rate (SFR) affects

XCO. Papadopoulos [160] studied the physio-chemical nature of high-density star for-

mation systems, such as ULIRGS. They derived a correlation between the supernova

rate (and hence star formation rate) and the galactic average FUV background and

cosmic ray ionization rate. They found that while the FUV radiation is quickly at-

tenuated, cosmic rays are able to penetrate and heat the entire cloud. Bisbas et al.

[154, 161] used one-zone models to study the destruction of CO by cosmic rays across

a parameter space spanning many different types of galaxies. Clark and Glover [152]

combined the Papadopoulos [160] model with hydrodynamic simulations and post-

processing to study the impact of the star formation rate on XCO. They found that

XCO increased with the star formation rate. However, none of these studies included

embedded radiation or cosmic rays from protostars.

In this paper, we formulate a simple cloud model that includes internal sources

of FUV radiation in order to study variations in CO chemistry as a function of star

formation activity. §3.3 describes the semi-analytic model we use to calculate the

cluster luminosities and our astrochemistry method. §3.4 shows the results of the

calculations for two different physical models: one where the cloud gas mass is fixed
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and a second where the cloud gas mass is varied as a function of star formation

efficiency. §3.5 discusses the implications of our study for observations and compares

the results to prior work.

3.3 Modeling the CO Emission of Star-Forming Clouds

3.3.1 Star Cluster Model

We summarize the Protostellar Luminosity Function (PLF) formalism from Offner

and McKee [50] here for completeness and discuss our extensions to the work.

The PLF is derived by adopting an accretion model, which in turn prescribes the

underlying distribution of protostellar masses assuming that the final masses of the

protostars obey a specified stellar initial mass function (IMF). In this framework,

the accretion rate of a particular protostar, ṁ, is solely a function of its current

mass, m, and its final mass, mf . The Protostellar Mass Function (PMF) describes

the distribution of current protostellar masses, i.e., the present-day protostellar mass

function. McKee and Offner [162] define the PMF as:

ψp(m) =

∫ mu

mf,`

ψp2(m,mf )d lnmf , (3.2)

where ψp2(m,mf ) is the bi-variate PMF which defines the fraction of protostars in a

star-forming region with current masses in the range dm and final masses in the range

dmf . The bi-variate PMF is related to the bi-variate number density, dN2
p , within a

cluster by:

dN2
p = Npψp2(m,mf )d lnmd lnmf , (3.3)

where Np is the number of protostars in the cluster. We denote the stellar IMF as

Ψ(mf ). For a steady star formation rate,

ψp2(m,mf ) =
mΨ(mf )

ṁ〈tf〉
, (3.4)
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where Ψ(mf ) is the stellar IMF, tf is the time it takes to form a star with mass mf

and 〈tf〉 is the average time to form a star:

〈tf〉 =

mu∫

ml

d lnmfΨ(mf )tf (mf ). (3.5)

Following McKee and Offner [162], we assume Ψ(mf ) is a Chabrier IMF [51] truncated

at some maximum mass, mu.

Offner and McKee [50] parameterize the accretion model as:

ṁ = ṁ1

(
m

mf

)j
mf

jf

[
1− δn1

(
m

mf

)1−j
]1/2

, (3.6)

where ṁ1 is a constant, j and jf are model parameters, and δn1 is a parameter

determining whether the accretion rate limits to zero at tf (“tapered”). In this study,

we consider three different accretion histories:

1. Inside out collapse of an Isothermal Sphere (IS) [163], which gives

ṁ = ṁIS = 1.54× 10−6(T/10K)3/2 M� yr−1, (3.7)

where T is the gas temperature. In this model, the accretion rate is constant

for a given temperature and is independent of stellar mass.

2. Turbulent Core (TC) model [164] in which the turbulent pressure exceeds ther-

mal pressure. The accretion rate is

ṁTC = 3.6× 10−5Σ
3/4
cl

(
m

mf

)j
mf

3/4 M� yr−1, (3.8)

�where Σcl is the surface mass density, given in units of g cm−2, and m and mf

defined above. ṁ1 = ṁTC = 3.6 × 10−5Σ
3/4
cl . Following McKee and Tan [164],

we use j = 1
2
. In this model, higher mass stars accrete at higher rates.
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3. Tapered Turbulent Core (TTC) model [50]

ṁTTC = ṁTC

[
1−

(
m

mf

)1−j
]1/2

M� yr−1 (3.9)

�where the parameters are taken to be the same as the turbulent core model

but δn1 = 1. The tapered accretion rate produces smaller luminosities in later

stages of protostellar evolution.

For accretion histories formulated in this way, the formation time of an individual

star is:

tf = tf1m
1−jf
f (1 + δn1), (3.10)

where

tf1 =
1

(1− j)ṁ1

(3.11)

and tf1 is the time to form a star of 1 M�. We discuss the impact of adopting a

different tapering model in Appendix 3.7.2.

The PLF, ψp(L), is defined such that ψp(L)d lnL is the fraction of protostars

within the luminosity range dL. Offner and McKee [50] showed that the bi-variate

PLF is related to the bi-variate PMF by

ψp2(L,mf )d lnLd lnmf = ψp2(m,mf )d lnmd lnmf , (3.12)

such that the PLF is defined

ψp(L) =

∫
d lnm · ψp2(L,m). (3.13)

Offner and McKee [50] calculate the PLF by transforming Equation 3.13 to:

ψp(L) =

mu∫

mf,l(L)

d lnmf
ψp2(m(L),mf )∣∣ ∂L

∂m

∣∣ , (3.14)
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where m(f,l)(L) = max(ml, m(L)).

To calculate the luminosities, we adopt the model in Offner et al. [61], which is

based on McKee and Tan [164]. This model represents the protostellar luminosity

as the sum of two parts, L = Lacc + Lint, where Lacc is the accretion luminosity and

Lint is the internal protostellar luminosity, including Kelvin-Helmholz contraction and

nuclear burning. The total accretion luminosity is defined by:

Lacc = facc
Gmṁ

r
, (3.15)

where facc is the efficiency at which mechanical energy is converted to radiation, G

is the gravitational constant, m is the protostar mass, ṁ is the accretion rate (given

by Equation 3.6) and r is the protostar radius calculated following Offner et al. [61].

Following Offner and McKee [50], we use facc = 0.75. The total internal luminosity

is approximated by the main sequence mass - luminosity relationship given in Tout

et al. [165]:

Lint =
αM5.5 + βM11

γ +M3 + δM5 + εM7 + ζM8 + ηM9.5
. (3.16)

Coupling this model to our PDR calculation requires some assumption about the

shape of the protostellar spectrum. We assume that each luminosity component is a

blackbody as described by the Planck function, such that the luminosity in a given

energy range is

L∆E = f∆E(Lacc)× Lacc + f∆E(Lint)× Lint, (3.17)

where fi(L) is the fraction of the Planck function within the given energy range of

interest. The blackbody temperature is derived using the Stefan-Boltzmann law with

the protostar radius and luminosity from the Offner et al. [61] model. In the limiting

case where ∆E →∞, L∆E → L.
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This model is intended to represent relatively young clusters, whose membership

is dominated by protostars. Appendix 3.7.3 discusses the results for clusters which

include a secondary population of main sequence stars.

3.3.2 Statistical Sampling

The PMF describes the likelihood that a cluster contains a protostar with a specific

instantaneous mass and final mass. Because lower mass stars are much more numerous

than higher mass stars, small clusters are statistically unlikely to include any high-

mass stars. Under the assumption of a perfectly sampled PMF, the number of stars

in a cluster, Np, can be related to final mass of the highest mass star within the

cluster, mu. McKee and Offner [162] show that the cluster size, highest mass star in

the cluster and the maximum possible stellar mass, mmax are related by:

1

Np(mu)
=

mmax∫

mu

ψp(m)d lnm. (3.18)

From an observational stand-point, the maximum mass, mmax, is highly uncertain due

to a variety of factors. Crowding in clusters and unresolved binarity make measure-

ments of individual high-mass stars challenging [40]. Furthermore, constraining mmax

requires measuring the populations of very young massive clusters, which are rare and

distant. This work focuses mainly on small to intermediate clusters (Np ∼ 10− 105),

so we adopt mmax = 100M�. The total cluster mass is then Mcl = Np × 〈m〉, where

〈m〉 =
mmax∫
ml

d lnmmΨ(m). Figure 3.1 shows Np(mu) as a function of the highest mass

star in the cluster. We adopt a minimum mass, mmin = 0.033 M�. For the TTC

model, the average mass 〈m〉 ≈ 0.2 M�.

Equation 3.14 can be numerically integrated given a protostellar model for L(m)

and r(m,mf ). This approach allows the distribution to be calculated exactly, i.e.,

direct integration produces perfect sampling of the underlying function. However, the

stellar radius undergoes several discontinuous jumps due to changes in the nuclear
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Figure 3.1. Number of stars as a function of the highest mass star in the cluster.
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state [e.g., Fig. 5 in 166] and is consequently difficult to invert. Moreover, the mass

functions of small clusters are subject to Poisson statistics and, thus, not perfectly

sampled. We therefore adopt a statistical approach to compute the PLF and cluster

properties.

We calculate the PLF and PMF of a cluster using the conditional probability

method. The first step of the method is to marginalize the bivariate PMF (3.4)

over the protostar final mass, mf . This one-dimensional distribution function is then

sampled for a protostar mass, m using the inversion method numerically. We then

calculate the conditional probability distribution for the final mass given the current

mass, ψ(mf |m) =
ψp2(m=m,mf )

ψp(m=m)
. The conditional probability is then sampled using

the inversion method again to obtain the final mass, mf . This procedure is done

for as many protostars as in each cluster. The protostellar masses drawn this way

converge to the analytic PMF with a sample of 105 protostars. Figure 3.2 shows the

convergence of the PMF distribution to the analytic result for the isothermal sphere

accretion model as a function of the number of stars included in the distribution. We

find that the distribution converges well to the analytic distribution by N∗ ≈ 105.

To calculate cluster statistics, we draw N∗ protostars for a number of mock clus-

ters, Ncl, using the procedure described above. For each mock cluster, we calculate

the bolometric, FUV and ionizing luminosities for each protostar using Equation 3.17.

The total luminosities and masses are calculated for the mock cluster. After drawing

Ncl mock clusters, we calculate the average and spread of the different total luminosi-

ties and the mass. When we compare to observations in S3.4 to achieve statistical

robustness for the mean and the spread. For the chemistry, we use the average of

the total cluster luminosities and masses. As such, we optimize the procedure by

calculating the running mean of the total bolometric luminosity and drawing clusters

until the running mean converges to 0.1% relative error. We find that the running

mean converges in Ncl ≈ 15− 20 across 4 dex of N∗.
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Figure 3.2. Protostellar Mass Function as a function of the logarithm of the
protostellar mass for the isothermal sphere accretion model. The different colored
histograms represent different distributions from the indicated number of protostars in
the legend. The black line indicates the analytic PMF calculated integrating Equation
3.2 directly.
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3.3.3 PDR Chemistry

We use the photo-dissociation region code 3d-pdr2 [30] to model the chemistry of

the molecular gas in our models. 3d-pdr obtains the gas temperature and abundance

distributions for a given input density distribution by balancing the heating and

cooling. Cooling mainly occurs due to [CI], [OI] and [CII] forbidden line emission.

3d-pdr includes four heating mechanisms: i) photoelectric heating of dust grains

due to FUV radiation, ii) de-excitation of vibrationally excited H2, iii) cosmic-ray

heating of the gas and iv) heating due to turbulent dissipation. 3d-pdr also requires

the strength of the incident radiation field, information about any embedded sources,

the cosmic ionization rate and the gas velocity dispersion. See Bisbas et al. [30]

for further technical details. We adopt the umist12 chemical reaction network [18],

which uses 215 species and follows approximately 3,000 reactions. We use the initial

atomic abundances in Table 3.1 from Sembach et al. [167]. By construction, the gas

is initially entirely atomic and neutral.

3.3.4 Cloud Model

Each molecular cloud is represented by a one-dimensional slab of constant density.

The depth of the cloud is determined by the total molecular gas mass,

Rc =

(
3Mgas

4πnµmp

)1/3

, (3.19)

where mp is the mass of a proton, n is the gas number density and µ is the mean

molecular weight, taken to be µ = 1.4 since the cloud is assumed to be initially

atomic and neutral (see below). The total gas mass is set according to two different

gas models as described below.

2https://uclchem.github.io/
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In these models, there are two FUV components: an external field, Fext = 1 Draine

[119], and an internal field Fsrc, from embedded sources as given by the average cluster

FUV luminosity from the mock clusters. We scale the latter to the Draine field by

renormalizing the units by χ0 = 1.7G0 where G0 = 1.6 × 10−3 erg s−1 cm−2 is the

Habing field [168]. We adopt the fiducial cosmic ray ionization rate from Bell et al.

[28] of ξ0 = 1.3× 10−17 s−1 per H2 molecule. Previous studies of H+
3 chemistry [169]

and HnO+ chemistry [170] towards diffuse clouds find larger cosmic ray ionization

rates on the order of 10−16. However, there is a large spread in observed values, and

the cosmic ray ionization rate appears to decrease towards clouds with higher column

density [171]. We study the implications of cosmic ray ionization rates higher than

the fiducial value in §3.4.

Figure 3.3 displays a schematic of our cloud model. The field from embedded

sources is indicated by blue arrows and the external field is represented by green

arrows. We define AV , the dust extinction through the cloud, such that the surface

has AV = 0 and the stars are located at high AV in the cloud center. We place the

cluster within an evacuated bubble to approximate the effects of feedback mechanisms.

The bubble has a size Rbubble given by

Rbubble = max(1 pc, Rs) (3.20)

where Rs is the Strömgren sphere radius for the given density and ionizing luminosity

from the cluster model

Rs =

(
3Q0

4παBn2
e

) 1
3

(3.21)

where we approximate Q0 =
LIonizing

18 eV
following Draine [13] for first-order computation,

αB is the recombination case B coefficient, and we assume ne ≈ nH .

In addition to the abundances, 3d-pdr computes the line-integrated emissivi-

ties for C, C+ and CO assuming non-local thermodynamic equilibrium (NLTE) and
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Table 3.1. Initial abundances used in model.

Species Abundance Relative to H
H 1.0
He 0.1
C 1.41×10−4

N 7.59×10−5

O 3.16×10−4

S 1.17×10−5

Si 1.51×10−5

Mg 1.45×10−5

Fe 1.62×10−5

Notes. Atomic abundances adopted from Sembach et al. [167]

accounting for optical depth via the escape probability method. We use the line-

integrated emissivities, ε, to calculate the CO (1-0) integrated line intensity following

Röllig et al. [104]:

I =
1

2π

R∫

0

ε dz (erg s−1 cm−2 sr−1), (3.22)

where

W =
1

105

c3

2kbν3
I (K km s−1) (3.23)

and c is the speed of light, kb is the Boltzmann constant and ν = 115.3 GHz is the

frequency of the CO (1-0) line. We calculate the H2 column density directly from the

3d-pdr abundances

N(H2) =

R∫

0

n(H2) dz (cm−2), (3.24)

where n(H2) = ngasX(H2) and X(H2) is the H2 abundance.

3.3.5 A Coupled Cluster and PDR Model

We use two different models for the total gas mass and cloud velocity dispersion.

The first, denoted by CM, is a constant-mass model where the total gas mass is

Mgas = 104M�. This model also assumes a constant velocity dispersion of 1 km

s−1, making it slightly sub-virial. The second model, denoted by CE, is a constant
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Figure 3.3. Schematic of the geometry assumed in our cloud models. The number
of stars in the cluster is N∗ and the radius of the cloud is calculated assuming the gas
has a constant density. The external and internal fluxes are isotropic, with only half
the arrows being shown for clarity.
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Table 3.2. Chemistry Models

Model
Name

Constant
Mass

Constant
Efficiency

Velocity
Dispersion

Density
(cm−3)

ξ Internal
Sources

CM 1000D 1kms 1ξ X 1 km/s 1000 ξ0 X
CE 1000D V 1ξ X Virial 1000 ξ0 X
CE 500D V 1ξ X Virial 500 ξ0 X

CE 1000D 1kms 1ξ X 1 km/s 1000 ξ0 X
CE 1000D V 100ξ X Virial 1000 100ξ0 X

CE 1000D V 1ξ NS X Virial 1000 ξ0

Notes. Names and parameters for the different chemical models used. Virial
denotes the velocity is calculated using Eq. 3.26.

efficiency model where the total gas mass depends on the stellar mass: Mgas = M∗
εg

,

where εg is related to the star formation efficiency:

εtot =
M∗

Mgas +M∗
=

εg
εg + 1

. (3.25)

We vary εg between 0.01 and 0.2, or εtot between 0.01 and 0.166. This produces total

gas masses from 103 M� to 108 M�. We calculate the velocity dispersion for the

constant efficiency models assuming the clouds are in virial equilibrium, such that

σv =

(
4πG

15

)1/2

Rρ1/2, (3.26)

where G is the Gravitational constant.

Table 3.2 summarizes the six models we consider. The fiducial CM model is

denoted CM 1000D 1kms 1ξ and the fiducial CE model is denoted CE 1000D V 1ξ.

We include a model with a lower number density of 500 cm−3 (500D), models that vary

and fix the velocity dispersion (V and 1 kms, respectively), one model with enhanced

cosmic ray ionization rates, and a model without internal sources. This last model

allows us to compare the influence of stellar sources relative to the external field.
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3.4 Results

3.4.1 Cluster Luminosities and Comparison with Local Milky Way Re-

gions

We compare our PLF cluster model to data from three recent surveys of molecular

clouds. Dunham et al. [59] and Kryukova et al. [48] each survey a number of well-

studied clouds located in the Gould Belt. Kryukova et al. [172] present a survey of

the Cygnus X region, which is 1.4 kpc away and is one of the most massive star-

forming complexes within 2 kpc of the Sun. Cygnus X contains multiple evolved OB

associations with dozens of O stars and hundreds of B stars. It is also the largest

cluster in our comparison with nearly 2,000 identified protostars.

The surveys adopt slightly different conventions for identifying protostars. Dun-

ham et al. [59] define protostars as point sources with at least one detection at

λ ≥ 350µm. They argue this constraint removes older, non-protostellar sources, while

including only sources that are still deeply embedded in dusty envelopes. Kryukova

et al. [48] use color magnitude diagnostics to identify protostellar sources and do not

require a sub-millimeter detection. Both surveys thus have their own biases: Dunham

et al. [59] likely underestimate the number of dim sources, since protostars embed-

ded in very low-mass cores, which fall below the sub-millimeter detection limit, are

excluded. Kryukova et al. [48] possibly over-estimates the number of low-luminosity

sources, by including older, less embedded sources that would have been filtered out

by requiring a sub-millimeter detection. In Chameleon II, however, Kryukova et al.

[48] excludes some of the objects found in Dunham et al. [59]. The net effect is

that clusters reported in Kryukova et al. [48] tend to have have larger populations

of low-luminosity sources [59]. Additional disagreement occurs because the two sur-

veys assume different distances for a few of the shared clouds (i.e., for Perseus the

former uses a distance of 230 pc and the later uses 250 pc). An order of magnitude

luminosity discrepancy is evident between the two surveys for Chameleon II because
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the selection criteria in Kryukova et al. [48] only has one of the three Chameleon II

objects in Dunham et al. [59]. Both of the surveys likely suffer from incompleteness at

low luminosities to some degree due to missing sources that are either very low-mass

(m∗ . 0.2M�, Offner and McKee 50) or very young and embedded (L ≤ 0.1L�, e.g.,

Maureira et al. 173)

Given that a significant number of dim protostars could lie below the survey de-

tection limits, we assume the reported number of sources in both cases is a lower

limit that underestimates the true number by up to a factor of 2. This conservative

completeness assumption encompasses sources that are either very low mass, e.g.,

. 0.1M�, or are undergoing a period of low accretion. Enoch et al. [174] cite a 50%

completeness limit for the Bolocam 1.1 mm survey, and we use that as an upper

limit in the error of the observed protostar number counts to account for incomplete-

ness. Furthermore, while our derived PLF luminosity value is exact, the measured

bolometric luminosities have some intrinsic uncertainties that are not reported.

Figure 3.4 shows the model predictions for the total cluster luminosity across three

orders of magnitude in cluster size. We include predictions for the three different

accretion models described above. The figure shows the mean total luminosity of the

statistically sampled clusters, where dotted lines indicate the one and two σ deviations

from the mean. These boundaries are slightly irregular since they are influenced

somewhat by the statistical sampling of the mock clusters. For smaller clusters, a

broader PMF creates a correspondingly large spread in the cluster luminosity. The

spread decreases for large clusters as the PMF becomes well-sampled. For all three

models, the total luminosity scales superlinearly with cluster size until N∗ ≈ 103 when

it approaches a linear scaling. For the TTC model, the bolometric luminosity is fit

by:

logLBol =





1.96 · logN∗ + 0.18 logN∗ < 2.78

logN∗ + 5.63 logN∗ ≥ 2.78

(3.27)
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Figure 3.4. Total cluster luminosity as a function of the number of protostars
for three different accretion histories. The black solid lines indicate the mean of the
luminosity distributions, 〈L〉. The dark and light colored bands indicate the 1 and
2 σ spread of the distribution, respectively. The magenta dotted line is the best fit
for the TTC model (Equation 3.27). The black data points indicate the sum of the
bolometric luminosities for each cluster in Dunham et al. [59]. The pink circles show
clusters from the Kryukova et al. [48] catalog and the pink square is Cygnus X from
Kryukova et al. [172]. The arrows indicate that each of the points are likely lower
limits to the actual number due to incompleteness at low luminosities.

Inspection of Figure 3.4 shows that the IS model agrees poorly with the data.

It fails to match both the mean and the spread of observed luminosities of the low-

mass clusters. However, both the tapered and non-tapered TC models are able to

reproduce the observed spread quite well. This suggests that poor statistical sampling

together with a significant range of underlying accretion rates is needed to explain

the observational data. All the models appear to significantly over-predict the total

luminosity of Cygnus X. However, the brightest sources are saturated in the MIPS 24

µm band, and their luminosities are under-estimated in the catalog (R. Gutermuth

priv. comm.).

The TC model does a good job of representing the spread as a function of cluster

size, but it over-predicts the luminosities of clusters with sizes N∗ = 10− 100, where

observed data points fall outside the 2σ statistical sampling error. The TTC model
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does exceptionally well in encapsulating the data from all the surveys. The majority

of the observed cluster bolometric luminosities are included within the 2σ spread

of the model predictions. All models over-predict the luminosities at the smallest

cluster sizes. The discrepancy may be caused by several factors, such as completeness

limits and differences in the physical parameters we assume, which we discuss in more

detail in Appendix 3.7.1. As a result of this comparison, we adopt TTC as the fiducial

accretion model for the analysis in the following sections.

While the total bolometric luminosity is an observable quantity and, thus, useful

for evaluating the accuracy of PLF predictions, our PDR calculations require the

strength of the FUV radiation field as an input. Since protostellar radiation is heavily

reprocessed by the surrounding dusty envelope, it is not possible to directly measure

the FUV component of the spectrum. Instead, our PLF models provide an approach

to calculate the fraction of short-wavelength radiation. We use the approximation

in Equation3.17 to calculate the FUV and ionizing luminosity for each protostar

in a given cluster and then compute the total by summing over all protostars, i.e.,

L∆E =
∑
i

Li∆E.

Figure 3.5 shows the PLF model predictions for the total FUV luminosity as a

function of cluster size. The TC and TTC models exhibit significant spread in the

predicted FUV for modest cluster sizes due to stochastic sampling of intermediate

and high-mass stars, which contribute most of the FUV radiation. The IS PMF is

narrower, which produces slightly better sampling. The spread is magnified in the

TC and TTC models, because they assume a broad range of accretion rates. At large

cluster masses the luminosity spread diminishes for all three models. All accretion

histories show a super-linear trend for small clusters, with the TTC model exhibiting

the steepest dependence on cluster size:
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logLFUV =





3.13 · logN∗ − 2.73 logN∗ < 2.42

logN∗ + 4.84 logN∗ ≥ 2.42

(3.28)

Figure 3.6 shows the total ionizing luminosity, which exhibits a similar trend to

the FUV component. Stochastic sampling of the highest mass protostars (future O

and B stars), which are the source of all ionizing radiation, creates larger scatter in

the models. Because O stars dominate the budget of ionizing radiation, clusters with

N∗ < 104, which do not perfectly sample the high-mass end of the PMF, continue to

exhibit a large amount of statistical variation. The steeper slope is due to the strong

dependence of accretion rate on stellar mass and the higher peak accretion rates. The

TTC model again exhibits the steepest dependence on cluster size:

logLION =





5.4 · logN∗ − 8.29 logN∗ < 2.42

logN∗ + 4.78 logN∗ ≥ 2.42

(3.29)

Overall, the models predict that once star formation commences a substantial

amount of FUV radiation permeates the natal cloud. For lower-mass clusters the

predicted amount of ionization is very small, while a substantial amount of ionizing

luminosity is expected in the highest mass clusters, such as the ONC complex or

Cygnus X. In all cases, statistical sampling introduces significant variation, which

could drive environmental differences in clouds forming clusters with similar sizes.

3.4.2 Cloud Properties and Abundances

In this section, we use Model CM 1000D 1kms 1ξ to study the effects of internal

embedded sources on the chemical distribution within a cloud. Figure 3.7 shows the

abundance of H2 and CO as a function of cloud depth and extinction (AV ), where

x/R = 0 is the surface. At low AV the models for all cluster sizes are similar since the
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tions. The dark and light colored bands indicate the 1 and 2 σ spread in the cluster
luminosity. The magenta dotted line is the best fit for the TTC model (Equation
3.28)
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chemistry is dominated by the external radiation field. The H2 abundances converge

to ∼ 0.5, which indicates that nearly all the H is in H2.

The embedded FUV sources (x/R = 1) create a shell of H2, which becomes

progressively thinner with increasing cluster size. For N∗ = 106, the H2 shell is

only ∼60% of the total cloud radius. In addition, the amount of CO is reduced

even in the region that remains molecular. This is because the column density of

material that provides self-shielding is much lower. Consequently, the embedded

sources significantly alter the CO abundance profile compared to the typical 1D PDR

model. Without embedded sources, the CO abundance asymptotically approaches a

value around 10−4 at high AV . However, the model predicts that CO is effectively

dissociated by AV ≥ 7 for all clusters. Increasing the cluster size from N∗ ∼ 100−106

causes 2 orders of magnitude difference in the CO abundance at AV = 4.

Figure 3.8 shows the temperature structure of the cloud. 3d-pdr determines

the temperature by balancing the heating and cooling as described above. Without

embedded sources, the cloud cools to a temperature of 10 K when AV ≥ 1. The

model results show that the embedded sources have a strong impact, heating the

high AV gas to hundreds of Kelvin. Comparing this temperature structure to the

abundance profiles in Figure 3.7 indicates there is a large amount of warm CO. These

temperatures lead to higher excitation, so more emission preferentially comes from

higher rotational levels.

The far right panel of Figure 3.8 displays the CO abundance as a function of gas

temperature. This phase diagram shows a tight correlation between gas hotter than

approximately 50 K and decreasing CO abundance. At cold temperatures, the phase

diagram is more complicated due to the formation and destruction of CO at various

points in the cloud.
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Figure 3.7. Left: Fractional abundance of CO versus distance into the cloud with
R = 4.1 pc for model CM 1000D 1kms 1ξ. The coordinate, x, is measured such that
x = 0 at the cloud surface. Middle: Fractional abundance of H2 as a function of
distance into the cloud. Right: Fractional abundance of CO versus AV . The color
indicates the number of stars in the cluster, where purple corresponds to 100 stars
and yellow corresponds to 106 stars.

Figure 3.8. Left: Temperature as a function of distance with R = 4.1 pc for model
CM 1000D 1kms 1ξ. The coordinate, x, is measured such that x = 0 at the cloud
surface. Middle: Temperature as a function of AV . Right: Phase plot showing the
fractional abundance of CO versus gas temperature. The color indicates the number
of stars in the cluster, where purple corresponds to 100 stars and yellow corresponds
to 106 stars.
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3.4.3 Variation of XCO

In this section we investigate how changes in chemistry due to the presence of

embedded sources impact the observed CO emission. We control for other factors in-

cluding the cluster size, star formation efficiency, turbulent linewidth and gas density.

3.4.3.1 Cluster Size with Fixed Cloud Mass

We first consider the simplest cloud model, Model CM 1000D 1kms 1ξ, which

holds the cloud mass fixed for all cluster sizes. Figure 3.9 shows the model predic-

tions for XCO as a function of the number of stars in the cluster. XCO approaches

1020 cm−2 (K km s−1)−1 for small cluster sizes but increases steeply for large clusters.

The abundance and temperature profiles in Figures 3.7 and 3.8 show the cause of the

increase. For a large number of stars, the amount of FUV radiation increases super-

linearly reducing the shell of molecular gas and the column density of H2. However,

due to the high optical depth of the CO (1-0) line the intensity is dominated by emis-

sion near the surface of the cloud. While more CO is dissociated due to the embedded

FUV radiation, the gas also exhibits higher temperatures. These competing factors

cancel, producing only a factor 2 change in XCO over four dex of N∗. This insensitivity

to cluster size is encouraging, since it seems to suggest that XCO is largely invariant.

However, our model assumptions break down for large clusters when the stellar mass

becomes much greater than the gas mass.

3.4.3.2 Cluster Size with Varying Cloud Mass

Figure 3.10 shows XCO as a function of cluster mass, M∗, and the star formation

efficiency, εg. Here, M∗ is the total protostellar mass (ΣN∗
i mi). This figure shows the

opposite trend to the constant mass model shown in Figure 3.9. For fixed values of

the efficiency, XCO drops by a factor of a few as the cluster mass increases by 4 dex.

This mainly occurs as a result of assuming the molecular cloud is virialized. The

corresponding larger linewidths increase the integrated CO intensity causing XCO to
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decline. This model is more physically motivated than the simpler constant mass

model; however, it shows that the gas-to-star conversion has a significant impact on

the relationship between the column density and CO emission.

In Figures 3.10-3.14, the solid white contour indicates the average XCO measured in

the MW, XCO = 2×1020 cm−2 (K km s−1)−1, and the dotted white contours indicate

the ± 30% error [36]. Our predicted XCO are consistent with the measured MW

values for a large fraction of the parameter space. If we further constrain to look at

the region of parameter space encompassing measured star formation efficiencies (See

below), the model is consistent for clusters between N∗ ≈ 20 - 104. The protostar

surveys, mentioned above, span that range of cluster sizes for local star forming

regions where XCO measurements are best measured.

3.4.3.3 Star Formation Efficiency

An important consideration is the relative amount of mass in stars and gas as

codified by the star formation efficiency, εg. Figure 3.10 shows XCO increases with εg

for fixed cluster mass. For large clusters, XCO(εg) a factor of two difference over 1.5

dex of star formation efficiency. These clusters have gas masses sufficient for their

optical depths to minimize the impact of the embedded feedback. Therefore, the CO

line emission is not much affected by radiation feedback from the embedded cluster.

The change for the largest clusters is due to the change in velocity dispersion. For

smallest clusters, the change in XCO with εg is a factor of four. For the smallest

clusters, the increased sensitivity to the embedded clusters is due to the reduction in

cloud optical depth. The trend here is driven by irradiation by the embedded clusters.

The white band in Figure 3.10 shows the measured star formation efficiencies from

the Dunham et al. [59] survey of Gould Belt clouds. Within the band, a significant

amount of the parameter space is consistent with the local Milky Way average XCO (in

white contours). Furthermore, XCO is nearly constant for moderate cluster sizes, so
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our model predicts the Milky Way average is representative of local molecular clouds.

The model also predicts XCO decreases by a factor of 5-10 in the largest clusters due

to the increase in turbulent linewidth.

3.4.3.4 Mean Gas Density

Molecular clouds have a range of mean densities. In this section, we explore the

impact of the mean gas density on XCO. Model CE 500D V 1ξ is the same model

as the fiducial expect with nH = 500 cm−3. Figure 3.11 shows the same parameter

space as the fiducial model shown in Figure 3.10. The lower density causes XCO to

increase over much of the parameter space. Lowering the density also reduces the col-

umn density (and thus the dust extinction) making photochemistry more important.

However, changes in the amount of molecular hydrogen and the CO (1-0) emission

compete and partially cancel. If there is a reduction in both, XCO may increase but

not by a large factor. In Figure 3.11 the overall trend remains the same as the fidu-

cial model but is amplified for moderate and smaller clusters. There is no change for

the largest clusters since they have sufficient mass such that changes in the interior

abundances occur after the line has become opaque.

XCO for small clusters is greatly amplified due to the lower dust extinction within

the cloud. These clouds have significantly less CO emission compared to their H2 col-

umn density, i.e., they have a larger fraction of “CO-dark” gas [i.e. 113]. Typically,

CO-dark clouds are assumed to have faint CO emission due to their low densities, but

the gas here is CO deficient due to dissociation caused by the embedded sources. Con-

sequently, the MW average values occupy only a narrow band across the parameter

space. Within the range of typical star formation efficiencies, XCO is only consistent

for clusters with masses between 103 - 104 M�.

Prior work has also found that XCO is sensitive to the gas density [28, 92]. Den-

sities higher than 103 cm−3 make dust extinction more efficient, while lower densities
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enhance the effect of embedded clusters since more of the cloud is influenced by pho-

tochemistry. Our models predict XCO is most sensitive to density for clouds forming

small clusters with high star formation efficiencies. However, this trend may not be

evident in observations since diffuse clouds are less likely to form stars with high

efficiencies.

3.4.3.5 Turbulent Velocity Dispersion

The turbulent velocity dispersion is an important factor in the calculated CO

emission due to its influence on the line width and, hence, the optical depth. The

line optical depth for a given line of sight is inversely proportional to the velocity

dispersion. There is ample evidence that higher mass clouds have greater velocity

dispersions and that many clouds are close to virial equilibrium [149]. Although a

constant linewidth model is unphysical, it is useful to examine the importance of

velocity information. In this section, we study the effects of the turbulent velocity

dispersion by comparing model CE 1000D V 1ξ to model CE 1000D 1kms 1ξ.

Figure 3.12 shows XCO across the parameter space assuming a constant turbulent

linewidth of 1 km/s. XCO exhibits a similar trend to that of the constant mass model

shown in Figure 3.9. A smaller turbulent velocity dispersion increases the line optical

depth, which decreases the overall integrated line flux. The decline in flux, for the

same H2 distribution, increases XCO. This completely reverses the trend illustrated

in Figure 3.10. Thus, increasing velocity dispersion accounts for much of the decline

in XCO with increasing cloud mass, and the local velocity dispersion is essential to

understanding trends in XCO.

3.4.3.6 Cosmic Ray Ionization Rate

We investigate the effect of the cosmic ionization rate, ξ, which prior work indi-

cates strongly influences XCO [e.g., 154]. XCO increases with ξ due to the increased

destruction of CO and overall decline in the emission. Higher cosmic ray fluxes also

87



102 103 104 105

Stellar Mass (M ∗ )

10-2

10-1

S
ta

r 
Fo

rm
a
ti

o
n
 E

ff
ic

ie
n
cy

 (
ε g

)

-0.50

-0.25

0
.0

0

0
.2

5

0
.5

0

0
.7

5
1
.0

0

1
.2

5
1
.5

0
1
.7

52
.0

02
.2

52
.5

0
2.75

3.00

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.2

lo
g( X

C
O
/1

0
20
)

Figure 3.11. Same as Figure 3.10 but for model CE 500D V 1ξ.
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Figure 3.12. Same as Figure 3.10 for Model CE 1000D 1kms 1ξ.
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lead to higher gas temperatures, which in principle could cause XCO to decline. How-

ever, a value of ξ = 100 is not high enough to make cosmic ray heating the dominant

heating mechanism throughout the whole cloud [28]. Model CE 1000D V 100ξ adopts

a cosmic ionization rate enhanced by a factor of 100 compared to the other models.

An increase in the cosmic ray ionization rate is observed in environments with more

star formation, such as those in ULIRGS [160] and towards the central molecular zone

of the Milky Way [175].

Figure 3.13 shows XCO for the enhanced cosmic ray ionization rate. The higher

rate increases XCO by a nearly constant value for all stellar masses. However, the

overall trend remains, and the total spread is similar. Since XCO increases, the fraction

of the parameter space consistent with the measured Milky Way values declines.

3.4.3.7 Impact of Internal Sources

To constrain the impact of embedded sources, specifically, onXCO, model CE 1000D V 1ξ NS

excludes the star cluster FUV. Figure 3.14 shows Model CE 1000D V 1ξ NS with an

external field only. Clusters with a mass greater than a few thousand solar masses

show almost no difference in XCO compared to the fiducial model with the inclusion

on internal fields. Towards smaller clusters, the model without internal radiation

shows an opposite trend. Without the internal FUV radiation, XCO decreases to-

wards small efficient clusters. Furthermore, XCO decreases enough that the average

MW value is no longer represented in the parameter space. The model values of XCO

within the local star formation efficiency band are only consistent with the lowest

measured values.

The inclusion of internal FUV radiation increases XCO for clusters within the sizes

indicated in Figure 3.4 towards MW average values. Large clusters are relatively un-

affected because the turbulent linewidth dominates over chemical effects. Embedded
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Figure 3.13. Same as Figure 3.10 for Model CE 1000D V 100ξ.
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photochemistry only affects the smaller clusters since CO emission is dominated by

flux emitted closer to the surface.

Figure 3.15 shows the linear ratio of XCO with embedded sources and without

them. For most the parameter space, the embedded sources increase XCO by 30-50%.

For small efficient clusters, the change is up to a factor of 8, increasing rapidly towards

clouds with smaller gas mass. For these clouds, XCO would likely be time-dependent,

evolving with the protostellar population.

3.5 Discussion

3.5.1 Implications for Unresolved Star-Formation in Extragalactic Sources

Measuring molecular gas mass in extragalactic sources relies on two dominant

methods: dust observations in the infrared and sub-millimeter and CO emission. In

the later case, the common procedure is to use some approximate conversion factor

to calculate the total molecular gas mass within a galaxy. Molecular gas measure-

ments for local galaxies have resolutions of tens to hundreds of parsecs [e.g. 176, 177].

Furthermore, many of the galaxies targeted are actively star-forming. Since the mea-

sured CO integrated flux is an average over the spatially larger star-forming regions,

our results suggest embedded star formation must be taken into account.

Our model results show that for the largest clusters, there is little impact from

the embedded FUV radiation and the conversion factor is instead dominated by the

turbulent line width. However, for smaller clusters in the range of hundreds to thou-

sands of stars, the embedded radiation has a clear effect. These smaller clusters

have XCO values factors of 3-10 larger than otherwise assumed without the embedded

clusters. Furthermore, excluding embedded FUV sources will bias chemical models

towards either lower densities, higher external radiation or higher cosmic ray fluxes.

Our XCO factors presented here are lower limits since our models are one-dimensional

constant density slabs. Real clouds have significant structure and porosity, and the
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Figure 3.14. Same as Figure 3.10 except the internal FUV flux is not included in
the chemistry modeling.
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embedded protostars are not tightly grouped into a central cluster but distributed

throughout the cloud. Both of these effects would serve to increase the embedded

FUV throughout the cloud, amplifying these trends.

Carbon monoxide has been measured in galaxies out to high redshifts using large

single-dish integrated line measurements [e.g., 178]. At these redshifts, the star for-

mation rate densities are typically much greater than present-day values [179]. These

measurements are dominated by the brightest CO regions, which we predict inher-

ently correspond to lower values of XCO.

3.5.2 Implications for Dense Gas Tracers of Star Formation

Many molecular gas surveys use dense gas tracers to more directly measure the

molecular gas undergoing star formation. Tracers such as HCN and HCO+ are the

most common alternatives to CO due to their relatively high abundances [e.g. 180,

181]. Ammonia (NH3) is also readily observed in local galaxies [e.g. 182], even though

it is associated with dense gas and has a low abundance, because it has a low critical

density. Optically thin isotopologues of CO such as 13CO and C18O are often used for

line ratio diagnostics [36]. Because they are optically thin, emission from these tracers

is sensitive to the conditions of the high AV gas, especially molecules such as NH3 and

HCN. Strong FUV radiation from embedded forming star clusters not only dissociates

the molecules but heats the gas in the vicinity to hundreds of degrees. Therefore, our

work underscores the importance of considering the embedded FUV when modeling

optically thin emission from regions expected to have accreting protostars.

In some ways, this is not a novel conclusion. A variety of prior observational work

has studied the evolution of gas chemistry near protostars XX, and observations

of high-mass protostars, in particular show significant chemical time variation with

protostellar evolution [i.e., 60, 183]. Our results build on the previously acknowledged

importance of protostellar feedback to provide a framework for quantifying the impact
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of feedback on chemistry at cloud scales in addition to the well-studied smaller scales

of individual protostars.

3.5.3 XCO Variation within Galaxies

A large number of surveys have studied XCO variation within the MW. For exam-

ple, Sodroski et al. [184] and Strong et al. [185] investigate the radial dependencies

of XCO. Both results, although using different methods, conclude that XCO increases

with radius. There are various possible explanations for this trend, Of particular

import is the role of the turbulent linewidth and the mass surface density of clouds.

In the center of the galaxy molecular clouds not only have larger masses on average

but also larger column densities compared to clouds in the outer regions of the galaxy

[186]. Furthermore, the overall galactic mass surface density decreases with radius in

the MW except for a slight increase around 4 kpc. The star formation rate (SFR)

surface density also generally decreases except for the same bump at 4 kpc [39]. So-

droski et al. [184] measure XCO in the center of the MW to be log XCO

1020
≈ −0.5. Our

work produces this value for large inefficient star-forming molecular clouds, especially

those subject to a strong cosmic ray flux. The outer galactic values in Sodroski et al.

[184] are between XCO

1020
≈ 0.6− 1.0, which are represented in our parameter space by

small to intermediate molecular clouds for a mean density of 103 cm−3 or smaller

star-forming clouds with a mean density of 500 cm−3.

Similar trends are observed in other nearby galaxies. Sandstrom et al. [187] mea-

sured XCO using high resolution Herschel maps of 26 nearby disk galaxies. The survey

showed that nearly all galaxies exhibit a decrease in XCO in their inner regions. For

example, NGC 6946 is a nearby disk galaxy around 7 Mpc away and one of the galax-

ies included in Sandstrom et al. [187]. NGC 6946 has also been shown to have a

radially decreasing molecular gas and SFR surface density [39]. The model parame-

ter space used in this work has a mass surface density that increases from the upper
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left corner to the lower right corner. Furthermore, Sandstrom et al. [187] finds the

average central log XCO

1020
≈ −0.5 − 0.2 consistent with large star-forming molecular

clouds in this work. We find that when embedded sources are included we replicate

the trends between molecular gas surface density and XCO in NGC 6947. We stress,

however, that this trend does not appear without the FUV radiation from embedded

star formation.

3.5.4 Comparison to Other Astrochemistry Studies

Bell et al. [28] used the ucl-pdr code3 [27] to perform a parameter study of XCO

as a function of AV . This cannot be directly related to a cloud integrated XCO, but

rather to the cloud average AV , but the trends are similar. Bell et al. [28] show that

in high-density environments XCO is only weakly affected by the impinging UV field

with XCO decreasing slightly over 5 orders of magnitude of increasing field. The trend

reverses at low AV where slight increases in the FUV field significantly increase XCO.

In our study, the external field is fixed while the internal field is increased, and we

find low AV gas is relatively unaffected by the embedded sources.

Narayanan et al. [151] studied the effect of galaxy mergers on XCO. They compared

simulations of quiescent star forming discs with merging starburst systems and found

that the local variation within the galaxy is a smooth function of metallicity. However,

starburst systems, which have much higher SFRs, exhibit a lower XCO factor. They

attributed the lower value to an increase in temperature caused by heating from

young high-mass stars and larger gas velocity dispersions. This is in good agreement

with our model, where the inclusion of FUV radiation from embedded star formation

systematically increases the temperature locally, while more massive, turbulent clouds

have lower XCO.

33d-pdr extends ucl-pdr to 3D, so the underlying approaches are very similar.
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Recently, Clark and Glover [152] performed simulations to study how XCO varied

with SFR. They fixed bulk properties such as the total mass and initial turbulent

field and varied environmental factors that are thought to correlate with star forma-

tion rate. They linearly increased the external FUV field and cosmic ray ionization

rate with the assumed star formation [160]. They found XCO increases with star

formation rate, contrary to other studies. In fact, their models are similar to our

constant mass model, CM 1000D 1kms 1ξ, (Figure 3.9) and constant velocity model

CE 1000D 1ks 1ξ (Figure 3.12), in which XCO also increases with cluster mass. Here,

this is due to the rapid photodissociation of CO, such that the clouds become CO-

deficient or rather “CO-faint”. The constant mass model is also represented in our

constant efficiency models by using a fixed cluster mass and increasing the efficiency.

XCO increases as a function of star formation efficiency in all of our CE models. Our

results show the same qualitative trends as Clark and Glover [152] when considering

models that keep bulk hydrodynamic properties fixed. Keeping the velocity disper-

sion constant as the star formation activity increases leads to an increasing XCO as a

function of star formation activity.

Previous theoretical studies probed the star formation rate by changing the ex-

ternal environment. Higher SFR clouds are bathed in stronger FUV fields and in

some cases [152, 153] experience higher cosmic ray ionization. The cosmic-ray ion-

ization rate also correlates with the supernova rate and thus the SFR. The result

of the scaling between the supernova rate and the SFR creates the linear scalings,

χ ∼ χ0 × SFR and ξ ∼ ξ0 × SFR, where χ0 and ξ0 are the MW ISRF and cosmic

ray ionization rate. The scalings of the impinging FUV radiation and cosmic ray flux

with the SFR apply for galactic-wide studies where a galaxy-averaged SFR is used.

On smaller scales these correlations do not hold due to the star formation activity

becoming more stochastic.
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3.6 Summary and Conclusions

This paper presents an approach coupling a semi-analytic protostellar cluster

model with a PDR code to study of the effects of FUV stellar feedback on the natal

physical and chemical environment of molecular clouds. We create a semi-analytic

model to calculate cluster luminosities as a function of the number of protostars. We

calculate the total, far-ultraviolet and ionizing luminosities for three different accre-

tion models: Isothermal Sphere (IS), Turbulent Core (TC) and Tapered Turbulent

Core (TTC) using the Protostellar Luminosity Function (PLF) formalism. We com-

pare the model predictions against observations of three different surveys [48, 59, 172]

and find our results for the TTC model fit the observations well. We present fits to

the model predictions for the different luminosities as a function of cluster size sum-

marized below for the TTC model:

logLBol = 1.96 · logN∗ + 0.18 if logN∗ < 2.78 (3.30a)

logLFUV = 3.13 · logN∗ − 2.73 if logN∗ < 2.42 (3.30b)

logLION = 5.4 · logN∗ − 8.29 if logN∗ < 2.42 (3.30c)

with the equations becoming linear after the indicated break.

We use the photodissociation region (PDR) code 3d-pdr to model the chemistry

of molecular clouds hosting forming embedded star clusters assuming two different

physical models: a constant mass model, where the cloud contains a fixed 104 M� of

gas, and a constant efficiency model where the total gas mass scales with the cluster

mass and the star formation efficiency parameter. Using the constant mass model,

we study the chemical and physical effects of the embedded FUV radiation in detail.

We find that the embedded FUV flux significantly increases the temperature of the
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high AV gas, raising the temperature to hundreds to thousands of degrees Kelvin

deep within the cloud. Furthermore, we find that increasing the cluster mass creates

a thinner shell of H2 and CO, reducing the amount of CO by orders of magnitude,

even at the AV = 1 surface.

We calculate XCO as a function of cluster mass for both physical models. The

constant mass model, which also assumes a constant velocity dispersion, has an XCO

that increases with cluster mass. However, the increase is small: only a factor of

2 increase over four orders of magnitude in cluster mass. In contrast, the constant

efficiency models show the opposite trend. In these models, the velocity dispersion

is calculated assuming the cloud is in virial equilibrium. We find that XCO decreases

with higher cluster masses, although there is a slight increase for higher efficiencies due

to their lower column densities. Altogether, the trends over four orders of magnitude

in cluster mass and two orders of magnitude in star formation efficiency amount to a

1.5 dex variation in XCO. Most of the parameter space is consistent with the measured

MW values, and we find that including feedback from embedded clusters improves

the agreement with observations.

We also investigate the effect of three different parameters on XCO for the constant

efficiency model. We calculate XCO using mean gas densities of nH = 500 cm−3 and nH

= 1000 cm−3. We find that the qualitative trend remains the same, although for the

lower density cloud the dispersion is over three dex over the whole parameter space.

Reducing the density increases the typical XCO, decreasing the agreement with the

average MW value. We also fix the velocity dispersion at 1 km s−1. In this case, the

trend reverses. The reversal indicates that a main contributor to XCO variation is the

velocity dispersion typical of clouds with large clusters, which has the largest impact

on the line optical depth. Finally, as shown by prior studies changing the cosmic ray

ionization rate has a large impact on XCO. Increasing the cosmic ray ionization rate
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by a factor of 100 increases XCO, but the overall trend with efficiency and cluster

mass does not change.

Finally, we show that the internal physical and chemical structure of the PDR is

altered by the presence of FUV radiation from embedded forming star clusters, with

XCO increasing by a factor of a nearly ten for smaller clusters. High-optical depth

in the CO(1-0) line reduces – but does not eliminate – the dependence of XCO on

the embedded (or impinging) FUV flux. We expect the change in internal physical

structure has a more significant impact on optically thin tracers. The embedded flux

causes an order of magnitude increase in the internal gas temperature and significantly

reduces the total molecular gas column density. Other factors not considered in this

work, including cloud sub-structure and a more distributed stellar population, will

likely have a large impact – both on XCO and the cloud temperature distribution.

We will explore these factors in future work using hydrodynamic simulations.

3.7 Appendix

3.7.1 Model Variations

In this appendix, we revisit Figure 3.10 and discuss the impact of our accretion

model assumptions. Our fiducial model, TTC, agrees well with observations of larger

clusters, but it over-predicts the luminosities of some of the smaller clusters. This

disagreement mainly applies to cluster data from Kryukova et al. [48], since these

include a larger number of low-luminosity sources.

There are several possible explanations for this discrepancy. First, our luminosity

formalism could be inaccurate. The model includes several tunable factors, includ-

ing the accretion coefficient, ṁ0 and the fraction of accretion energy radiated away,

facc. The former parameter depends on local physical parameters such as the column

density or temperature, which vary from region to region. The latter parameter is

uncertain since it depends on pre-main sequence model assumptions and the out-
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flow/wind launching mechanism [188, 189]. However, facc is estimated to be between

0.5 and 1, which is a relatively narrow range of uncertainty. A more significant uncer-

tainty is the choice of protostellar radii. These are debated to factors of two, although

some authors have argued that the initial radii are largely independent of stellar mass

[188, 190] and the evolution is insensitive to the accretion history [188].

A more comprehensive concern is the form of the accretion model, which may

be incorrect. The TC model was formulated for massive stars (M & 10 M�) and

may simply not represent smaller clusters, which are dominated by lower mass stars.

To address this, Offner and McKee [50] proposed the two-component turbulent core

model (2CTC), which allows for lower mass cores in which turbulent pressure is

comparable to or smaller than the thermal pressure. However, this hybrid formalism

shifts the peak of the PMF and PLF to slightly higher masses and luminosities,

respectively; adopting tapered 2CTC in lieu of TTC would increase disagreement

between the models and observations of small clusters. Alternatively, the competitive

accretion (CA) model, as adapted by Offner and McKee [50], predicts lower typical

luminosities. In fact, Kryukova et al. [48] found that the CA model exhibited the

best agreement with their data. However, this model would produce an overall shift

to lower luminosities, potentially reducing the agreement between the models and

higher mass clusters.

A final possibility is that accretion may be variable or episodic [191, and references

therein]. One way to account for episodic accretion is by modifying facc. If fepi is the

fraction of mass accreted during episodic events, then the effective facc can be written

[50]:

facc,eff = facc (1− fepi) (3.31)

Note that this formulation implicitly assumes that accretion bursts are rare and short-

lived. In this case, episodic events are likely absent in small statistical samples,

such as those representative of Gould Belt clouds. Through comparisons with mean
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Figure 3.16. Total cluster luminosity versus the number of protostars in the galaxy
for three different accretion histories assuming facc = 0.5. The black solid lines
indicate the mean of the luminosity distributions. The dark and light colored bands
indicate the 1 and 2 σ spread of the distribution. The black data points indicate
the sum of the bolometric luminosities for each cluster in Dunham et al. [59]. The
pink circles show clusters from the Kryukova et al. [48] catalog and the pink square is
Cygnus X from the Kryukova et al. [172]. The best fit to the mean total luminosity
is annotated on each plot.

protostellar luminosities in local regions Offner and McKee [50] suggested an effective

value of facc = 0.56. Figure 3.16 shows the bolometric luminosity predictions for our

three accretion models with facc,eff = 0.5. This value corresponds to fepi = 1
3
. The

total luminosities are lower, and more moderately sized clusters fall within the 2σ

bounds. In fact, some degree of episodic accretion could explain why discrepancies

appear with smaller clusters but not more massive ones: more massive clusters are

sufficiently well-sampled to include some bursts.

In conclusion a great deal of uncertainty underlies protostellar accretion. Different

models may produce degenerate results as noted by Dunham et al. [42], and additional

constraints are needed to converge on the most accurate model.

3.7.2 Tapering Parameter

McKee and Offner [162] adopts tapered accretion histories with a general form of
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Figure 3.17. Cluster luminosity as a function of the number of protostars in the
cluster for the n = 1 and n = 4 tapering models. The left panel is the bolometric
luminosity, the center is the FUV luminosity and the right is the ionizing luminosity.

ṁ = ṁ1

(
m

mf

)j
mf

jf

[
1−

(
t

tf

)n]
, (3.32)

where n defines how steeply the accretion tapers. In this work, we use n = 1,

such that the formation time of stars is twice that of stars with untapered accretion.

Recent magneto-hydrodyamic simulations of isolated star-forming cores by Offner and

Chaban [68] indicate n = 4. Figure 3.17 shows the cluster luminosities as a function

of the number of protostars for both the n = 1 and n = 4 tapering cases. For smaller

clusters the luminosities are similar within the spread. For larger clusters the n = 4

clusters are brighter by a factor of few. The exact form of the accretion history is

poorly constrained by observations [42], although there is some support for steeper

tapering for protostars in Orion [192]. Given the spread of bolometric luminosities,

a much larger statistical sample of clusters would be needed to better constrain the

tapering parameter, n.

3.7.3 Time Dependence and Main Sequence Stars

Star formation within a cloud is not instantaneous and is likely spread over a few

million years [193]. Thus, for a given cloud the first forming stars will be on the

main sequence (MS) by the time the last generation of protostars appears. Here, we
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assume that star formation occurs at a steady state and that all the stellar objects

contributing to the total luminosity are still protostars. However, this is an approx-

imation, which is most accurate for young clusters less than ∼ 1 Myr old. In this

appendix we investigate the impact of an additional population of MS stars on the

total bolometric luminosity.

Fletcher and Stahler [194] modeled evolving star clusters assuming an IS accretion

model and followed the populations of both protostars and MS stars. This naturally

produces a time dependent cluster luminosity. For our work, this suggests an ad-

ditional degree of freedom for XCO: the cluster age. Since stars with different star

masses have different formation times, this implies that not only the number but the

mass distribution of MS stars is a strong function of age and the accretion model.

At early times, however, most of the cluster members are still protostars. To assess

the impact of MS stars on the cluster luminosities, we generate mock clusters where

instead of sampling from the bivariate PMF we draw the populations from the IMF,

i.e., we assume all the stars are on the MS. The luminosities and radii of the MS

stars are from Tout et al. [165]. Such clusters represent an idealized case where star

formation has recently ended. For comparison, we also generate mock clusters with

twice as many stars but where half of the population are protostars sampled from

the bivariate PMF and the other half are MS stars. This approximates clusters at an

intermediate time of their formation.

Figure 3.18 shows the mean cluster bolometric luminosity as a function of the

number of cluster members. Clusters composed entirely of MS stars have lower lu-

minosities compared to their protostar counterparts. This is especially true for small

clusters, where accretion luminosity dominates. Larger clusters composed of N∗ pro-

tostars and N∗ MS stars have luminosities that are higher by a factor of two. This

difference is driven by the dominance of higher mass stars, whose internal luminosity

exceeds their accretion luminosity. Therefore, assuming the clusters we model are
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relatively young, we expect a secondary MS population to have minimal impact on

our conclusions for small clusters. In contrast, our models may underestimate the

true luminosities of large clusters that are somewhat advanced in star formation by

a factor of ∼2.
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Figure 3.18. Total cluster luminosity as a function of the number of members
in the cluster. The blue dashed line is the mean luminosity for the TTC model, the
orange dashed-dot line for the IMF model and the solid purple line for the IMF+TTC
combined model.
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CHAPTER 4

EXPLORATION OF COSMIC-RAY ACCELERATION IN
PROTOSTELLAR ACCRETION SHOCKS AND A

MODEL FOR IONIZATION RATES IN EMBEDDED
PROTOCLUSTERS

This chapter1 focuses on investigating the potential for protostars to accelerate

cosmic rays in their accretion shocks. The cosmic ray models presented in this chapter

will be used in astrochemical models in later chapters.

4.1 Abstract

We construct a model for cosmic ray acceleration from protostellar accretion

shocks and calculate the resulting cosmic ray ionization rate within star-forming

molecular clouds. We couple a protostar cluster model with an analytic accretion

shock model to calculate the cosmic ray acceleration from protostellar surfaces. We

present the cosmic ray flux spectrum from keV to GeV energies for a typical low-

mass protostar. We find that at the shock surface the spectrum follows a power-law

trend across 6 orders of magnitude in energy. After attenuation, the spectrum at

high energies steepens, while at low energies it is relatively flat. We calculate the

cosmic ray pressure and cosmic ray ionization rate from relativistic protons at the

protostellar surface and at the edge of the core. We present the cosmic ray ioniza-

tion rate for individual protostars as a function of their instantaneous mass and final

mass. The protostellar cosmic ray ionization rate is ζ ≈ 0.01− 1 s−1 at the accretion

1These results are based on research published by Gaches and Offner [81] and is reproduced with
permission from the AAS.
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shock surface. However, at the edge of the core, the cosmic ray ionization rate drops

substantially to between ζ ≈ 10−20 to 10−17 s−1. There is a large spatial gradient

in the cosmic ray ionization rate, such that inner regions may experience cosmic ray

ionization rates larger than the often assumed fiducial rate, ζ = 3×10−17 s−1. Finally,

we calculate the cosmic ray ionization rate for protostellar clusters over 5 orders of

magnitude of cluster size. We find that clusters with more than approximately 200

protostars produce a higher cosmic ray ionization rate within their natal cloud than

the fiducial galactic value.

4.2 Introduction

Cosmic rays (CRs) are one of the fundamental constituents of interstellar matter,

along with ordinary matter, radiation and magnetic fields. Within molecular clouds,

CRs are a primary driver of the complex chemistry in dense molecular gas [195].

CRs, mostly relativistic protons, are the dominant source of ionization in molecular

gas where ultraviolet radiation cannot penetrate. At the temperatures and densities of

molecular clouds, ion-neutral reactions make up the most efficient pathways [83, 196].

Within molecular clouds, CR chemistry follows largely from the rapid formation of

H+
3 :

CR + H2 → H+
2 + e− + CR′

H+
2 + H2 → H+

3 + H,

where the CR’ is the initial CR after the interaction. Following the formation of H+
3 ,

more complex molecules form via the generic reaction

X + H+
3 → HX+ + H2

Observationally important molecules such as N2H+ and HCO+ are created through

this pathway.
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CRs are introduced into the chemistry through the CR ionization rate (CRIR), ζ,

which gives the rate of ionization per H (ζ(H)) or per H2 (ζ(H2)). In this work, we

focus on ζ(H2), which we hereafter refer to as ζ. Observations of diffuse clouds find

ζ ≈ 10−16 s−1 from measurements of both H+
3 and H3O+ [169, 170], and measurements

near supernova remnants show even higher ζ [197]. Nearby supernova and winds

from higher mass star are typically used to explain the CRIR in diffuse clouds [198].

Molecular clouds are expected to have a lower CRIR from energy losses due to gas

interactions, and various screening mechanics are expected to reduce ζ with increasing

gas column density [171].

Recent observational evidence has shown indirect evidence that the CRIR within

protoplanetary disks (PPDs) and envelopes may be significantly greater than what

would be expected with only Galactic CRs [80, 199]. It is not possible to detect

CRs directly from embedded sources. Instead, the CRIR is inferred using various

chemical signatures, often HCO+ and N2H+. Ceccarelli et al. [86] used measurements

of N2H+ and HCO+ towards OMC-2 FIR 4, an intermediate mass protocluster and

found ζ ≈ 10−14 s−1. Podio et al. [87] measured similar molecular ions towards the

L1157-B1 shock, near the low-mass protostar L1157-mm, and found ζ = 3 × 10−16

s−1, which is inconsistent with the fiducial value from galactic sources if the CR

flux is attenuated while penetrating into the cloud [171]. The inferred spread and

uncertainties in measured ζ are quite large [88].

In this work, we focus on the early stages of star formation when the protostar is

still accreting much of its mass. Padovani et al. [200, 201] show that the magnetic

fields in dense cores can screen externally produced CRs. Furthermore, Cleeves et al.

[202] studied 2D models of Class II PPDs and found that the T-Tauri wind was able

to diminish the external CR flux by orders of magnitude. If CRs are screened in

such a way, the higher values mentioned in the studies above indicate that locally

accelerated CR may be important in star-forming regions.
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Within the solar system, there is also ample evidence that the young Sun produced

high energy (≥ 10 MeV) CRs. Measurements of short lived radio nuclei such as 10Be

and 26Al indicate an over abundance in the early solar system [203]. One possible

explanation requires the interaction of dust particles with highly energetic CRs –

whether from galactic sources [204] or from the proto-Sun [205, 206]. If we consider

the Sun a typical stellar object, it is likely many early stellar systems are bathed in

highly energetic particles. In low-mass star-forming regions, like the Taurus Molecular

Cloud, protostellar sources may be more important since there is a lack of supernova

from the local star formation.

Theoretical studies of CR acceleration in protostars show that CR particles can

be accelerated to MeV and GeV energies, both in their accretion shocks at the pro-

tostellar surface and within the jet shocks [80, 199]. For typical protostars, however,

the unattenuated protostellar surface CR flux is a factor of 104 greater than the unat-

tenuated flux produced by shocks associated with jets [80]. Given that T Tauri stars

exhibit enhanced stellar activity, Rab et al. [207] and Rodgers-Lee et al. [208] adopted

a scaled-up version of the solar spectrum and predicted a substantial increase in CR

ionizations in protoplanetary disks.

A self-consistent treatment of the shock properties, which fully determine the CR

spectrum and CRIR, and the CR physics is currently lacking. In the prior theory

work, somewhat arbitrary assumptions are made about either the CR spectrum or

the properties of the shock. In this work, we couple analytic models for protostar

accretion histories and accretion shocks to produce self-consistent CR flux spectra for

individual protostars and proto-clusters from high-energy protons accelerated at the

protostellar surface.

We organize the paper as follows. In §4.3 we describe the analytic formalism of the

protostars, the method for generating mock protostar clusters, and the CR physics.

In §4.4 we show the results of the model calculations and present CR spectra, pres-
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sures and ionization rates for individual protostars and the CRIR from protostellar

clusters. In §4.5 we discuss parameter variations and comparisons to observations.

We summarize our results in §4.6.

4.3 Methods

4.3.1 Protostar Cluster Model

In this section we briefly summarize the Protostellar Mass Function (PMF) for-

malism of McKee and Offner [162] that we adopt. The PMF describes the underlying

distribution of protostellar masses with the assumption of an accretion history, ṁ,

and a final initial mass function (IMF), Ψ. We assume a truncated Chabrier IMF

[51], where we denote the upper truncation mass mu. The bi-variate number density

of protostars within a cluster is

d2Np = Npψp2(m,mf )d lnmd lnmf , (4.1)

where Np is the number of protostars in the cluster, ψp2 is the bi-variate PMF, m is a

protostar’s current mass and mf is the expected final mass. McKee and Offner [162]

showed that for a steady star formation rate

ψp2(m,mf ) =
mΨ(mf )

ṁ〈tf〉
, (4.2)

where tf is the time it takes to form a star with mass mf and

〈tf〉 =

mu∫

m`

d lnmfΨ(mf )tf (mf ). (4.3)

Following Gaches and Offner [148], we adopt the Tapered Turbulent Core (TTC)

accretion history [50, 164]:
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ṁTTC = ṁTC

(
m

mf

)1/2

mf
3/4

[
1−

(
m

mf

)1/2
]1/2

M� yr−1, (4.4)

This model produces higher accretion rates for higher mass stars and smaller accretion

rates as protostars approach their final mass. McKee and Tan [164] adopt

ṁTC = 3.6× 10−5Σ
3/4
cl M� yr−1 (4.5)

where Σcl is the surface density given in units of g cm−2 for a star-forming clump.

The formation time tf is

tf =
4

ṁTC

mf
1/4. (4.6)

4.3.2 Cluster Generation and Statistical Sampling

We model clusters with different sizes and star formation efficiencies following

Gaches and Offner [148]. Given a cluster with N∗ protostars, the total mass is well-

approximated by M∗ ≈ 〈m〉N∗. We denote the efficiency, εg = M∗
Mgas

. We approximate

a cloud as a uniform density sphere with radius, R =
(

3Mgas

4πρ

)1/3

, where ρ = µMmHn,

n is the gas number density, and µM is the mean molecular weight for cold molecular

gas. The gas surface density is Σcl = Mg

πR2 , which sets ṁTTC for the cluster.

We generate mock clusters following the method in Gaches and Offner [148]. We

directly draw N∗ (m, mf ) pairs from the bi-variate PMF using the conditional prob-

ability method. First, we marginalize ψp2 over the final mass, mf , yielding Ψ(m).

The one-dimensional distribution is sampled using the inversion method. We use

the m samples to calculate the one-dimensional conditional probability: Ψ(mf |m) =

ψp2(m=m,mf )

Ψ(m=m)
. In this work, we generate Ncl, mock clusters when calculating cluster-

wide statistics (such as the total cluster CRIR) to reduce statistical noise.
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4.3.3 Accretion Shock Model

The protostellar accretion shock occurs at the protostellar surface, r∗. The shock

front is assumed to be stationary, and the shock velocity is taken to be near free-fall

vs =

√
2Gm

r∗
= 309

(
m

0.5M�

)0.5(
r∗

2R�

)−0.5

km s−1 (4.7)

where r∗ is the protostellar radius calculated using the model presented in Offner and

McKee [50]. In the strong shock regime, the shock temperature is

Ts =
3

16

µImH

k
v2
s = 1.302× 106

( µI

0.6

)( vs
309 km s−1

)2

K (4.8)

where µI is the mean molecular weight for ionized gas. The accretion onto the pro-

tostar is thought to occur in columns following the magnetic field lines [209]. Within

these flows, the shock can be treated as planar and vertical, such that the shock front

normal is parallel to the field lines. The density of the accreted material is given by

the accretion rate and the filling fraction of the accretion columns on the surface of

the protostar. The shock density is then

ρs =
ṁ

Avs
= 8.387× 10−10

(
ṁ

10−5 M� yr−1

)(
f

0.1

)−1

×
(

r∗
2 R�

)−2 ( vs
309 km s−1

)−1

g cm−3 (4.9)

where A is the area of the accretion columns, A = 4πfr2
∗, and f is the filling fraction.

We adopt a constant value of f = 0.1, which reflects the high accretion rates typical

of protostars. However, we note that the filling fraction likely depends on accretion

rate and time, and thus, f > 0.1 for very young protostars and declines during the

protostellar phase [209]. The number density of the shock is ns = ρs
µImH

, where we

assume the gas is fully ionized fully [209], and we use µI = 0.6 for a fully ionized gas.
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4.3.4 Cosmic Ray Model

4.3.4.1 Cosmic Ray Spectrum

The physics of CR acceleration has been relatively well understood for decades [i.e.,

210, 211]. First-order Fermi acceleration, also known as Diffusive Shock Acceleration

(DSA), can work in jet shocks and protostellar accretion shocks to produce high-

energy CRs [80]. Under this mechanism, CR protons gain energy every time they pass

across the shock. If the flow is turbulent, magnetic field fluctuations scatter these

protons back and forth across the shock many times allowing them to continuously

gain energy. However, several important conditions must be met for DSA to occur.

The flow must be supersonic and super-Alfvénic for there to be sufficient magnetic

fluctuations. The acceleration rate must be greater than the collisional loss rate, the

wave dampening rate, and the rate of diffusion in the transverse direction of the shock.

Finally, the acceleration time must be shorter than the timescale of the shock. Each

of these timescale conditions limits the energy at which the CRs can be accelerated

(as discussed below and in Appendix 4.7.1). We verify that all of these conditions are

met throughout our parameter space [see also 80].

We describe in detail the relevant physics for accretion shocks in Appendix 4.7.1

following Padovani et al. [80]. Here we give a brief summary of the model. First-order

Fermi acceleration leads to a power-law momentum distribution, f(p), where

f(p) ∝ p−q. (4.10)

The physical quantity of most interest in this work is the CR flux spectrum, j(E).

The flux spectrum is related to the accelerated number density spectrum, N (E) by:

j(E) =
v(E)N (E)

4π
(particles GeV−1 cm−2 s−1 sr−1) (4.11)
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where v(E) is the velocity as a function of energy in the the relativistic limit. The

number density spectrum is related to the more fundamental momentum distribution

N (E) = 4πp2f(p)
dp

dE
(particles GeV−1 cm−3), (4.12)

where the momentum distribution power-law index, q, depends on the underlying

shock properties. The flux spectrum is defined between an energy range, Einj <

E < Emax, where Einj is the injection energy scale of thermal CR particles and Emax

is the maximum energy possible for acceleration to be efficient. Einj depends on the

strength of the shock and the hydrodynamic properties, such that stronger shocks and

stiffer equations of state lead to an injection energy increase. Emax is determined by a

combination of the magnetic field, the ionization fraction, and the shock acceleration

efficiency. It is important to note that as long as Emax > 1 GeV, any additional

increases only weakly affects our results below. We are mainly interested in the

effects of ionization produced by CRs, which is dominated by CRs with energies

between 100 MeV and 1 GeV [197]. Higher energy CRs are important to understand

and characterize gamma rays or similar high-energy phenomena.

Neutral gas is not only ionized by the primary CRs. Electrons produced by CR

ionization can have sufficient energy to cause additional ionizations. We account for

secondary electron ionizations following Ivlev et al. [212], which we discuss in detail

in Appendix 4.7.2. We ignore the effects of primary electron acceleration. Electrons

couple more strongly to the magnetic field and have a significantly lower mass than

protons resulting in a maximum energy orders of magnitude below that of protons

[80].

The most uncertain parameters are the magnetic field, B, and the shock efficiency

parameter, η. The latter represents the fraction of particles accelerated from the

thermal population. Before selecting the fiducial values, we explore the impact of

each on the results. The magnetic field at the surface of a protostar has not been
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Table 4.1. Model Parameters.

Parameter Fiducial Value Range
µI 0.6 (ionized)
µM 2.8 (neutral molecular)

ρ (§4.3.2) 103µmH cm−3

Σcl 1.0 g cm−2

f 0.1 0.1 - 0.9
B 10 G 10 G - 1 kG
η 10−5 10−5 - 10−3

Notes. Values for the parameters we assume in the model, and the ranges we
discuss in §4.5

accurately measured. Theoretical studies of Class II/T-Tauri stars predict a surface

magnetic field of a few Gauss to 1 kG [213]. We vary η between 10−5 and 10−3

and find that the CRIR scales linearly with η and changes Emax by factors of a few.

However, a value of η = 10−3 is an extreme case. We fix B = 10 G and η = 10−5

following Padovani et al. [80]. Table 4.1 summarizes our fiducial physical parameters.

We discuss the effects of varying these parameters in §4.5.

4.3.4.2 Cosmic Ray Interactions and Ionization Rate

The CRIR from protons and secondary electrons as a function of gas column

density is

ζ(N) = 2π

∫ [
j(E,N)σion

p (E) + jsec
e (E,N)σion

e (E)
]
dE, (4.13)

where j(E,N) is the CR flux at energy E after traveling through the column den-

sity, N , and σion
k is the ionization cross section [171]. Krause et al. [214] proposed

relativistic corrections to the p−H2 ionization cross sections, applicable when E > 1

GeV. We confirmed that the correction factor to the cross section has no impact on

our results due to the small population of GeV CRs. Therefore, we use the non-

relativistic cross section for simplicity. At the shock, the CRIR is expected to be

considerable. However, as CRs propagate away from the protostars they undergo two

different processes: energy losses due to collisions with matter and geometric dilution.
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The former directly modifies the spectrum’s shape, since the energy loss is not a grey

process (with respect to energy). The latter reduces the overall flux. We use the

formalism of Padovani et al. [171] to account for the energy losses from interactions

with matter. The loss function is defined by

L(E) = − dE

dN(H2)
. (4.14)

We can calculate the new energy, Ek, after losses as a function of the initial energy,

E0 for a specific column density, N(H2):

N(H2) = n(H2) [R(E0)−R(Ek)] (4.15)

with the range, R(E), defined as

R(E) =
1

n(H2)

∫ E

0

dE

L(E)
. (4.16)

The attenuated spectrum is calculated assuming the number of particles is conserved:

j′(Ek, N(H2)) = j(Ek, N = 0)
L(E0)

L(Ek)
(4.17)

Equation 4.17 only takes into account interactions with matter. However, the CRs

are generated by a point source, so we must also take into account the spatial dilution

of the flux. This is in contrast to Padovani et al. [171] who consider a plane parallel

slab geometry. We account for the spatial dilution by modifying the attenuated flux

as:

j(Ek, N(H2)) = j′(Ek, N(H2))

(
R∗

(R∗ + r(N))

)a
, (4.18)

where r(N(H2) is the radius at which the gas has column density N(H2), and a is the

power-law index for how fast the flux is diluted. A full solution of the CR transport
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equation is needed to properly determined a. However, we take a = 2, corresponding

to free streaming, as a lower limit for the CRIR, which is a common assumption [e.g.

207, 215]. Observations of ions in protostellar envelopes may be able to constrain the

transport further, primarily whether they undergo free streaming (a = 2) or diffusive

(a = 1) transport. We discuss the implications of different transport regimes in

§4.5.1.4.

The H2 column density, N(H2), from the embedded protostar to the edge of the

core is the final piece needed to relate the protostellar feedback to the natal cloud

environment. We use the McKee and Tan [164] model describing protostellar accretion

from a turbulent core to calculate appropriate column densities. For a dense core

embedded in a turbulent star-forming clump, the envelope column density and core

radius are given by:

Σcore = 1.22Σcl (4.19)

N(H2)core =
Σcore

µMmH

(4.20)

Rcore = 0.057Σ
− 1

2
cl

(
mf

30 M�

) 1
2

pc, (4.21)

where Σcl is the surface density of the embedding clump, which is the normalization

factor in ṁTTC, and N(H2) is the H2 column density.

Our cluster results do not depend on an assumed density profile. However, we

adopt a density profile to calculate how the CRIR changes within a protostellar

enveloped (See §4.4.2.1). We calculate the radius for a given column density by

assuming a polynomial density distribution, n(r) = ns
(
Rcore

r

)−κρ
, where ns is the

number density at the surface of the core and κρ = 3
2

is motivated by McKee and

Tan [164]. The column density as measured from the protostar follows from NH2(r) =

N(H2)core−
∫ Rcore

r
n(r)dr. Inversion results in r(N(H2)) =

(
2nsR

3
2
core

N(H2)core−2nsRcore−N(H2)

)2

.
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The total CRIR produced by a forming star cluster is calculated by:

ζ(N∗) =
N∗∑

i

∫ [
ji(E,Ni)σ

ion
p (E) + jsec

i,e (E,Ni)σ
ion
e (E)

]
dE, (4.22)

where Ni is the H2 column density from the protostar to the surface of the core.

4.4 Results

4.4.1 Dependence on Protostellar Mass

4.4.1.1 Flux Spectrum

The CR spectrum of protostars is an observational unknown. The unattenuated

spectrum is impossible to constrain because CRs quickly interact with matter, both

neutral, in the form of excitations and ionizations, and ionized, through Coulomb

interactions. Since protostars are embedded within their natal envelope, their radi-

ation is heavily re-processed by the surrounding dust. Current observations cannot

differentiate between the CRs accelerated by Galactic sources and the Sun versus pro-

tostellar sources. Previous studies of young stellar objects have therefore used scaled

versions of the local solar spectrum [207, 208]. In this section, we present predictions

for the CR flux spectrum both at the protostellar surface and at the edge of its core.

Figure 4.1 shows the CR spectrum generated by the accretion shock for a protostar

with an instantaneous mass m = 0.5 M� as a function of its final mass taking into

account both protons and secondary electrons assuming Σcl = 1.0 g cm−2. The

unattenuated spectrum shows a clear power-law behavior with an index of -1.9. In the

strong shock regime, the index in Equation 4.10 asymptotically approaches q = 4. The

energy spectrum scales as p2f(p), such that j(E) ∝ p−2 [198], which is consistent with

our result. The unattenuated spectrum is well described as a product of an efficient

strong shock at the protostellar surface. We note that the final mass dependence acts

largely to scale the spectrum through the accretion rate.
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The injection energy of 1 keV corresponds to an ionized plasma with a temperature

of roughly 1.5×106 K. The proton spectrum shows that the maximum energy weakly

scales with the final mass of the protostar (or the accretion rate). The spectrum tapers

to q = 3.0 at high energies due to the acceleration inefficiency at such relativistic

speeds. The energy corresponding to the turnover for all spectra, E ≈ 1 GeV, is

the transition where E = mpc
2. The secondary electron spectrum likewise shows

qualitatively similar behavior.

The attenuated spectrum in Figure 4.1 shows very different behavior. Interactions

with the dense core greatly alter the shape of the spectrum, and the radial distance

traveled significantly reduces the flux. Short-ward of 1 GeV, ionizations and excita-

tions effectively flatten the spectrum and shift higher energy CRs to lower energies.

Losses due to pions are minimal due to the lack of CRs above 10 GeV. From 100 MeV

to 1 GeV the proton flux spectrum exhibits a power-law index of q = 2.5.

The secondary electron spectrum shows similar features from collisional losses.

However, the interactions of higher energy CRs enhances the secondary electron spec-

trum such that there are significantly more lower energy electrons. At E = 1 keV for

every CR proton there are 104 secondary electrons due to the interactions of higher

energy CRs, which are less affected by collisional losses.

Figure 4.2 shows the maximum energy of CR protons as a function of protostellar

mass and final mass and the dominant constraint on acceleration. We find for pro-

tostars with m > 1 M�, CR protons have maximum energies greater than 10 GeV.

Only protostars with M < 0.1 M� have sub-GeV maximum energies. The maximum

energy for solar and supersolar mass protostars is a constant Emax = 17 GeV. This

behavior changes at the transition between different acceleration constraints. CR

acceleration in subsolar mass protostars is constrained by upstream diffusion. In this

process, CRs are lost by diffusion upstream at the shock, thus inhibiting the maxi-

mum possible energy. At greater masses, the constraint is set by interactions with
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neutral gas near the shock. The collisional timescale becomes less than the time to

accelerate CRs with E > 17 GeV.

The attenuated spectrum is only weakly affected by the cluster mass surface den-

sity, Σcl (Equation 4.19 and 4.5). While a drop by a factor of 10 in Σcl produces a

reduction by a similar factor in the unattenuated spectrum, the lower column results

in a decline of a factor of only a few in the attenuated spectrum. It is also impor-

tant to note that the unattenuated spectrum here is from the protostellar surface,

while previous theoretical models have calibrated their CR spectrum from terres-

trial or space-based measurements [207, 208] and correct for geometric attenuation.

However, it is difficult to correct for the effects of matter interactions.

4.4.1.2 Cosmic Ray Pressure

In order to properly model protostellar cores and to describe their dynamical state,

various pressures must be taken into account. We calculate the CR pressure, PCR,

from the energy flux spectrum:

PCR =
4π

3

∫
p(E)j(E)dE, (4.23)

where p(E) is the relativistic momentum. Figure 4.3 shows the CR pressure across the

parameter space of instantaneous mass, m, and final mass, mf , assuming Σcl = 1.0

g cm−2. The unattenuated CR pressure is of order 1 dyne cm −2 for most of the

parameter space. There is a discrete change in the pressure at 3 M� caused by the

similarly discrete radius change (itself brought on by a change in the internal structure

of the protostar [50]). The pressure, in general, increases with mass. The maximum

occurs when m ≈ 10 M� and mf = 100 M�. The attenuated spectrum shows a

significant decrease in the pressure: by 13 orders of magnitude. The gradient inverts

and the highest CR pressures occur towards the m = mf boundary and towards the

highest (m,mf ). This is due to the change in the radius of the core. For a given final
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instantaneous mass, the core is physically smallest when the final mass is smallest.

The discrete change at 3 M� is still apparent, although it is less significant.

The ratio of the CR pressure to the kinetic pressure is an important test of the

model. Figure 4.4 shows the ratio PCR/Pkin across the (m,mf ) parameter space. We

compare the unattenuated CR pressure to the ram pressure of the accreting matter,

Pkin = ρsv
2
s . Across the parameter space, PCR is approximately a millionth of the

kinetic pressure. Therefore, it is negligible compared to the accretion, as expected.

The important kinetic pressure for the attenuated CR pressure is the surrounding

molecular cloud turbulent pressure, Pkin = ΦcoreΦsGΣ2
cl with Φcore = 2 and Φs = 0.8

following McKee and Tan [164]. The maximum value of the ratio throughout the

parameter space is only PCR/Pkin ≈ 10−6. The CR pressure of CRs leaving the core

is negligible to the dynamics of the surrounding molecular cloud as expected.

4.4.2 Cosmic Ray Ionization Rates

4.4.2.1 Single Protostar

The CRIR is one of the key parameters of any astrochemical model, controlling the

ionization fraction of gas with AV > a few, where the external FUV cannot penetrate.

Figure 4.5 shows the CRIR, ζ, as a function of (m,mf ) for a single protostar. The

same discrete jump at 3� appears due to the radius discontinuity discussed in §4.4.1.2.

The unattenuated CRIR, near the protostellar surface, is incredibly high. Most of

the parameter space exhibits ζ = 0.1−1 s−1. This value serves as an initial condition

to scale the CRIR throughout the protostellar core. The attenuated CRIR, on the

right side of Figure 4.5, shows much more modest values. The attenuated CRIR at

the surface of the core varies between 10−17− 10−19 s−1. The reduction is due in part

to the radial dilution (decreasing the overall flux) and the collisional losses (moving

100 MeV - 1 GeV protons to lower energies ionize less efficiently). At the surface of

the core, the CRIR produced by an individual protostar becomes comparable to the
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Figure 4.1. Proton (solid) and secondary electron (dotted) CR flux spectrum as a
function of energy for a m = 0.5 M� protostar. The color indicates the final mass,
mf , of the protostar. The vertical grey band shows the dominant energy range for
ionization. Power-law fits to various parts of the spectra are presented as the dashed
lines and annotations. Top: Unattenuated flux at the protostellar accretion shock
surface. Bottom: Attenuated flux at the edge of the core. We set Σcl = 1.0 g cm−2.
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attenuated external CRIR [171]. Therefore, it is likely that in star-forming clouds,

gas near embedded protostars may be equally affected by external and internal CR

sources.

There is a large difference between the unattenuated and the attenuated CRIR:

17 orders of magnitude. Figure 4.6 shows the CRIR as a function of column density

for a protostar with m = 0.5 M� and mf = 1.0 M� as the solid black line. There

is a near power-law behavior showing a 6 dex decrease in ζ with a 5 dex decrease in

N(H2). The column density is a proxy for the distance from the central protostar.

As such, different molecules used to constrain ζ may suggest very different values of

ζ depending on what radial surface they trace.

Figures 4.1- 4.6 assume a fixed value of Σcl = 1 g cm−3. Σcl has a linear relationship

with the unattenuated CRIR. A decline of a factor of 10 in Σcl incurs a similar factor

of 10 decrease in the unattenuated ζ and PCR due to the decrease in the accretion rate

through ṁTC. However, there is a much weaker dependence of Σcl on the attenuated
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CRIR and CR pressure. The core radius depends on Σ
1
2
cl and the core molecular

column density N(H2) scales linearly with Σcl. Together, these factors result in only

a factor of a few decrease in ζ and PCR with an order of magnitude decrease in Σcl.

We present ζ(N) for the whole (m,mf ) space and for different values of Σcl in an

interactive online tool 2.

4.4.2.2 Protostellar Cluster Cosmic Ray Ionization Rate

We have so far presented results for individual protostars within their natal core.

However, molecular clouds form many stars simultaneously. We have shown in §4.4.2.1

that at the protostellar core surface, the CRIR can be on par with the attenuated

external CRIR. This suggests it is important to consider both CRIR components in

order to understand cloud chemistry in forming clusters.

Figure 4.7 shows the attenuated CRIR due to all the embedded protostars in a

cluster. The size of the points indicates the number of protostars and the color of

the points indicates the assumed star formation efficiency, which impacts the result

through Σcl. Figure 4.7 represents 400 mock clusters covering a large range of (N∗, εg).

The error bars indicate the 1σ spread due to sampling the bi-variate PMF. For N∗ >

500, the error bars are smaller than the data points due to more complete sampling

of the bi-variate PMF.

The two parameters, εg and N∗, produce opposite trends in the CRIR. A reduction

in εg leads to a higher Σ, thus causing a greater CRIR. However, this effect is sublinear

- a dex change in εg leads to less than a dex change in the cluster CRIR. The CRIR

depends more strongly on N∗ than εg. Increasing N∗ leads to a slightly super-linear

increase in ζ due to the inclusion of more high-mass protostars.

We fit ζ(N∗, εg) with a two-dimensional linear function in log space, which repre-

sents the model results well:

2http://protostarcrs.brandt-gaches.space
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Figure 4.5. Log cosmic ray ionization rate as a function of protostellar mass
and final mass. Left: Cosmic ray ionization rate at the accretion shock. Right:
Attenuated cosmic ray ionization rate at the edge of the protostellar core including
matter interactions and geometric dilution. We set Σcl = 1.0 g cm−2.

log ζ = −0.24 log εg + 1.24 logN∗ − 19.56. (4.24)

We plot this function on Figure 4.7 as the dashed lines, and we add lines of constant

N∗ for reference. For clusters with N∗ > few hundred protostars, the CRIR due

to embedded protostars is greater than the typically assumed fiducial rate of ζ0 =

3× 10−17 s−1, which is shown as the gray solid line.

4.5 Discussion

4.5.1 Variations of Physical Parameters

There are 3 key unknowns in our model: the protostellar magnetic field, B, the

accretion flow filling fraction, f and the shock efficiency parameter, η. We discuss

the uncertainties and impact of each below.
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Figure 4.7. Attenuated cosmic ray ionization rate as a function of number of
protostars in the cluster, star formation efficiency and gas mass. Error bars indicate
the ±1σ spread. Point size and color indicate N∗ and εg, respectively. The gray
horizontal line indicates the fiducial value ζ0 = 3 × 10−17 (s−1). Dotted black lines
show lines of constant N∗. A two-dimensional fit of log ζ(N∗, εg) is annotated in the
top left corner.
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4.5.1.1 Magnetic Field Strength

The magnetic field strength at the protostellar surface is not well constrained.

Typically, it is thought to range between a few Gauss and 1 kG. In our fiducial

model, we assume B = 10G. However, this is on the smaller end of the possible

range. The magnetic field plays a dominant role in setting the maximum energy due

to wave dampening. Wave dampening is very sensitive to the magnetic field. A small

increase in the magnetic field leads to significantly more dampening of self-produced

Alfvén waves by the CRs, described in detail in Appendix 4.7.1. The dampening

criterion in Equation 4.34 depends on B−4; a factor of hundred difference in magnetic

field strength yields a substantial change in this criterion.

We recalculated the CR spectrum and CRIR for the (m,mf ) parameter space with

B = 1 kG. Figure 4.8 shows the maximum energy and acceleration constraints as a

function of (m,mf ). We find that there are swaths of the parameter space where the

shock density, temperature and velocity are such that wave dampening becomes the

dominant constraint in acceleration. Figure 4.8 shows that in these regions Emax is

reduced to 50-100 MeV significantly below the GeV energy scale in our fiducial model.

This has relatively little effect on the unattenuated CRIR. However, for high column

densities, the collisional losses are sufficient to significantly reduce the high CR flux.

Therefore, there are regions within the (m,mf ) parameter space where the attenuated

CRIR will be negligible due to wave dampening. These regions only account for a few

percent of the parameter space ,i.e. mainly low-mass protostars, so that our cluster

results are largely independent of the assumed magnetic field strength.

4.5.1.2 Accretion Flow Filling Fraction

The accretion flow filling fraction, f , directly influences the shock density as n ∝

f−1. Our fiducial model assumes f = 0.1. However, Class 0 sources, which likely

have higher accretion rates, may undergo more spherical accretion. We investigate the
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effect of increasing the shock filling fraction to f = 0.9. Figure 4.9 shows the maximum

energy and acceleration constraint mechanisms for f = 0.9. The behavior is very

similar to the fiducial values in Figure 4.2, although the region where the acceleration

is constrained by matter interactions is smaller and pushed towards higher masses.

We find that a factor of 9 increase in f leads to a factor of 3-4 decrease in Emax

for protostars with masses below 3 M�. The maximum energy for the rest of the

parameter space remains above 10 GeV. For this higher filling fraction, we find a

factor of 9 decrease in the unattenuated and attenuated CRIR due to a change in the

normalization of f(p) ( see Equation 4.10).

While variation in the filling fraction leads to a respectively linear change in the

CRIR, in a cluster environment higher f values for young sources may cancel with

lower values exhibited by older sources, whose accretion has declined.

4.5.1.3 Shock Efficiency Parameter

The shock efficiency parameter, η, which describes the fraction of thermalized pro-

tons that are accelerated to relativistic speeds, is also poorly constrained. We assume

η = 10−5 for the fiducial model following Padovani et al. [80]. The normalized CR

pressure, P̃CR = PCR

ρsv2s
, depends linearly on η (see Appendix 4.7.1 for details). Stronger

CR pressure, in relation to the shock ram pressure, decreases the effectiveness of wave

dampening. As such, the maximum energy is constrained mainly by interactions with

neutral gas. Figure 4.10 shows the maximum energy and acceleration constraints for

η = 10−3. We find that the maximum energy for the whole parameter space is approx-

imately 17 GeV. A 2 dex increase in η leads to a 2 dex increase in the unattenuated

and attenuated CRIR, i.e., ζ depends linearly on η. Consequently, uncertainties in

η lead to large uncertainties in the expected CRIR. However, evidence for CRs with

energies greater than 10 GeV would be an indication of a higher η.
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Figure 4.8. Same as Figure 4.2 but with B = 1 kG.
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Figure 4.9. Same as Figure 4.2 but with facc = 0.9.
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Figure 4.10. Same as Figure 4.2 but with η = 10−3.

4.5.1.4 Transport Parameter

How CRs are transported through a protostellar core from its central protostar

has not been modeled in detail. Transport of CRs is determined by factors relating

to the gas density, magnetic field configuration, diffusion coefficients and cosmic ray

energy [200, 208]. Figure 4.11 shows a comparison between the two limiting cases of

transport through the core for a subsolar Class 0 protostar. The CRIR is five orders of

magnitude higher in the diffusive regime than the free streaming. At the edge of the

core, the CRIR is ζ = 10−11 s−1. Balancing cosmic ray heating, Γcr, with atomic and

molecular line cooling, given by Goldsmith [216], predicts temperatures of T > 103

K for densities of n = 103 cm−3 and a CRIR ζ = 10−11 s−1. Such temperatures at

the core edge are inconsistent with observations. However, ζ = 10−17 s−1, the case

of free-streaming, produces temperatures of T ≈ 10 K. Observations of molecular

ions can measure the CRIR in the outer regions of cores, constraining the transport

mechanism. We discuss this in §4.5.2

The case of transport in protostellar disks is much more complicated. The trans-

port through the disk strongly depends on assumptions about the magnetic field mor-
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phology [217]. In contrast, protostellar core magnetic fields are thought to exhibit

an hour glass morphology [218, 219]. Such a morphology will allow free streaming,

although not fully isotropically.

4.5.2 Comparison with Observations

Directly measuring the CR flux from embedded protostars is not possible. How-

ever, the CRIR can be constrained through modeling the radio and sub-millimeter

emission from molecular ions. There have been several recent observations towards

embedded protostars, which have attempted to constrain the CRIR.

Ceccarelli et al. [86] measured HCO+, H13CO+ and N2H+ emission towards OMC-

2 FIR 4. OMC-2 FIR 4 is a protocluster within the Orion Molecular Cloud (OMC)

at a distance of 420 pc which contains a few low- and intermediate-mass protostars,

a total mass of 30 M� and luminosity of 103 L� [220, 221, 222]. They modeled the

chemistry using a two zone model: a warm inner region and a cold envelope. The

inner region, at a radius of 1,600 AU, is well fit by a CRIR of ζ = 6 × 10−12 s−1,

while the outer envelope, at a distance of 3,700 AU, has a CRIR of ζ = 4 × 10−14

s−1. They use a power-law CR flux spectrum, f(E) ∝ Ep, with p between -4 and -2.5.

The central compact source in OMC-2 FIR 4 is thought to be an early stage Class

0 protostar, with a mass around 10 M� [222, 223]. To compare with their results,

we assume that this source dominates the CR flux and bolometric luminosity. Figure

4.5 shows that for a 10 M� protostar, the CRIR is fairly insensitive to the final mass.

Figure 4.6 shows the inferred CRIR with a protostar of (m,mf ) = (10, 20) M� and

Σcl ≈ 8.0 g cm−2 following the column density measurements of López-Sepulcre et al.

[222]. We show ζ ≈ 10−12−10−14 between column densities of 2×1021−2×1023 cm−2.

Therefore, our model is consistent with the enhanced CRIR measured towards OMC-

2 FIR 4 from CRs accelerated by the central protostar’s accretion shock. Under these

assumptions, ζ > 10−14 at column densities N(H2) < 3 × 1023 cm−2. The elevated

135



1018 1019 1020 1021 1022 1023

N(H2) (cm 2)

10 16

10 14

10 12

10 10

10 8

10 6

 (s
1 )

a = 2
a = 1
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CRIR in OMC-2 FIR 4 has been similarly inferred from HC3N and HC5N [224] and

c-C3H2 [89]. The observed CRIR towards OMC-2 FIR 4 is consistent with the free

streaming approximation in §4.3.4.2.

Favre et al. [88] expanded the work of Ceccarelli et al. [86] with a survey of

Class 0 protostars spanning low to intermediate masses. They use high J transitions

of HCO+ and N2H+ to measure the ratio HCO+/N2H+ to infer the CRIR. They

assume a fixed temperature of 40 K and density of 2.5 × 105 cm−3. They could

not confirm a systematically higher CRIR in embedded Class 0 sources due to large

errors in converting the molecular emission to an abundance. For many sources, the

full Spectral Line Energy Distribution (SLED) of HCO+ and N2H+ are not observed,

and some sources are not detected in N2H+. However, Favre et al. [88] show that

the ratio does not depend strongly on the luminosity of the protostar. In our results,

we find that the parameter space for protostars between 0.1 M� and 3 M� exhibits

a relatively flat ζ dependence. One caveat is that not all sources have all molecular

lines detected so the emission may trace different column density surfaces. We show

in Figure 4.6 that this could result in orders of magnitude difference in ζ. This makes

it difficult to constrain the absolute value of ζ without constraining the radial surfaces

and temperatures, as done in Ceccarelli et al. [86].

Cleeves et al. [225] measured the total ionization rate towards TW Hya, which

is an evolved Class II protostar. They found ζCR < 10−19 s−1, which is discrepant

with our results. However, TW Hya has ṁ ≈ 10−9 M� yr−1 [226]. Our results

focus on Class 0 and Class I protostars, which are still accreting from their envelope.

Therefore, we would not expect CR acceleration to be efficient in this system.

4.6 Summary

We present self-consistently derived CR spectra and CRIRs for protostars and

protoclusters from accretion shocks at the protostellar surfaces. We combine a CR
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model [80] with analytic accretion history models. We find that protostars are effi-

cient accelerators of protons from energies between keV to GeV scales. The energy

losses due to diffusion escape and collisional losses inhibit acceleration of CRs to

TeV scales, indicating that gamma radiation would not be present. Furthermore,

the CR flux spectrum is consistent with an ideal supersonic, super-Alfvénic shock

with j(E) ∝ E−2. Collisional losses due to envelope gas interactions and geometric

dilution substantially decrease the CR flux at the edge of the envelope such that the

spectrum at lower energies flattens.

We quantify the CR pressure and the importance of this pressure to the kinetic

pressure and find that the CR pressure is minimal, confirming that it need not be

included in a virial analysis of cores.

We present the CRIR for protostars for a broad range of instantaneous and final

protostellar masses. Protostellar accretion shocks are efficient accelerators of CRs,

producing ζ > 10−12 s−1 in the inner region of their envelopes and disks. Towards

the edge of the envelope, ζ drops to 10−17 s−1. However, within the natal molecular

cloud, this rate is still greater than that due to external CR sources if collisional

losses are accounted for [171]. We present the results from this paper over an extended

parameter space in an online interactive tool (See Footnote 1). We conclude individual

protostars may dominate the high extinction gas ionization in their natal cloud.

We calculate ζ for protoclusters as a function of the number of constituent pro-

tostars, N∗, and star formation efficiency, εg. We find that protoclusters with N∗ &

a few hundred exhibit ζ greater than the often assumed value of ζ0 = 3 × 10−17.

Large protoclusters, such as those within the OMC, will accelerate CRs and provide

ζ > 10−16 within their natal cloud. We fit the protocluster results with a two di-

mensional linear function, Equation 4.24, showing a sub-linear trend with εg and a

superlinear trend with N∗:

ζ ∝ ε−0.24
g N1.24

∗ (4.25)
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The dispersion in this relation is incredibly small due to the flatness of ζ(m,mf ). This

elevated CR flux should be considered in models of protoclusters. We will explore

the impact of protostellar CRs on cloud chemistry in future work.

4.7 Appendix

4.7.1 Cosmic Ray Spectrum Physics

CRs can be accelerated to near relativistic speeds in strong shocks. We use the

CR model from Padovani et al. [80] and couple it to the protostellar accretion shock

model described in §4.3. Throughout this section, β and γ are used as proxies of

energies, with E = γmpc
2 and γ = 1√

1−β2
. The CRs are assumed to be accelerated

in a Bohm-type diffusion shock. The momentum distribution of the CRs from first

order Fermi acceleration is

f(p) = f0

(
p

pinj

)−q
, (4.26)

where f0 is a normalization constant, p is the momentum of the CR, pinj is the

injection momentum and q is the power-law index. The power-law index is related

to the shock compression factor, r, by q = 3r
r−1

. The distribution is defined between

momenta pinj < p < pmax, where pmax is the maximum CR momentum. The energy

distribution of the shock-accelerated CRs is

N (E) = 4πp2f(p)
dp

dE
(particles GeV−1 cm−3) (4.27)

and the CR flux emerging from the shock surface is

j(E) =
v(E)N (E)

4π
(particles GeV−1 cm−2 s−1 sr−1). (4.28)

The values for pinj, pmax and r come from the underlying shock properties. For

the compression factor, r, we use the hydrodynamic strong shock result
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r =
(γad + 1)M2

s

(γad − 1)M2
s + 2

, (4.29)

where γad is the adiabatic index andMs = vs
cs

is the sonic Mach number for the shock

flow. Ms ≈ 2 at the protostellar accretion shock due to the high temperatures of the

gas. The injection momentum, pinj is related to the thermal pressure by

pinj = λpth = λmpcs,d, (4.30)

where cs,d = vs
r

√
γad(r − 1) is the downstream sound speed, mp is the proton mass,

and the parameter λ depends on the shock efficiency η:

η =
4

3
√
π

(r − 1)λ3e−λ
2

. (4.31)

Protostellar accretion is thought to proceed via flow along the magnetic field lines

in columns connecting the disk and protostar [209]. Therefore, we assume the shock

front normal is parallel to the magnetic field lines. The coefficients for upstream

and downstream diffusion, ku and kd respectively, under a parallel shock are equal,

ku = kd. The upstream diffusion coefficient is calculated in Padovani et al. [80]:,

ku =
2

P̃CR

VA
vs

= 4× 10−2
( vs

102 km s−1

)−1

×

( nH
106 cm−3

)−0.5
(

B

10 µG

)(
P̃CR
10−2

)−1

.

(4.32)

Berezhko and Ellison [227] calculates P̃CR as a function of the injection and maximum

momentum. Under the approximation that pmax >> pinj (which is reasonable, since

Emax ∝ GeV and Einj ∝ keV), P̃CR = ηr
(
c
U

)2
p̃ainj

(
1−p̃binj
2r−5

)
, where p̃ = p/(mpc),

a = 3
r−1

, and b = 2r−5
r−1

. The maximum energy is derived by considering different

limits of the CR propagation.
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As CRs propagate through neutral gas, they undergo various kinds of interaction.

CRs can excite electronic excitations and cause ionizations, with CRs with energies

between 100 MeV and 1 GeV dominating the H2 ionization. Furthermore, at GeV

and higher energies, they can lose energy by pion production, resulting in gamma

radiation. These losses are encoded in the loss function, L(E). The maximum energy

possible due to collisional losses is found when the acceleration rate equals the loss

rate:

β

[
L(E)

10−25 GeV cm2

]
= 3.4

kαu (r − 1)

r[1 + r(kd/ku)α]
×

( vs
102 km s−1

)2 ( ns
106 cm−3

)−1
(

B

10 µG

)
,

(4.33)

where β (and γ) are relativistic proxies for the energy. We use the loss function

L(E) from Padovani et al. [171]. When neutral and ionized media are mixed, the

self-generated CR wave fluctuations can be damped, decreasing the efficacy of their

acceleration. The energy upper limit due to this wave damping is found by requiring

that the acceleration rate is shorter than the dampening loss rate:

γβ2 = 8.8× 10−5µ̃−1Ξ(1− x)−1
( vs

102 km s−1

)3

×
(

Ts
104 K

)−0.4 ( ns
106 cm−3

)−0.5
(

B

10 µG

)−4
(
P̃CR
10−2

)
,

(4.34)

where

Ξ =

(
B

10 µG

)4

+ 1.4× 1012µ̃2γ2β2x2

(
T

104 K

)0.8 ( ns
106 cm−3

)3

and P̃CR = PCR
nsmHU2 is the fraction of the shock ram pressure that goes into the

CR acceleration. CRs will diffuse out in the transverse direction of the shock. If

the accretion is purely spherical, this diffusion could not happen. However, if the

accretion flows along columns of gas, then this loss mechanism is taken into account.
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The maximum energy due to upstream escape, Eesc,u, is set by requiring that the

escape rate is slower than the acceleration rate:

γβ2 = 4.8M kαu µ̃
−1
( vs

102 km s−1

)( B

10 µG

)
, (4.35)

where M = εr∗
102AU

and ε = 0.1 [228]. The maximum CR energy, Emax

Emax = min(Eloss, Edamp, Eesc,u) (4.36)

and the maximum momentum, pmax

pmaxc =
√
E2

max − (mpc2)2 (4.37)

4.7.2 Secondary Electron Ionizations

Secondary electron ionizations can occur when the left over electron due to H2

ionization has an energy greater than the H2 ionization potential. We follow the

prescription by Ivlev et al. [212] to calculate the secondary electron flux and ionization

rate. The secondary electron flux is given by:

jsec
e (E) =

E

L(E)

∞∫

E+I(H2)

j(E ′)
dσion

p

dE
(E,E ′)dE ′, (4.38)

where I(H2) = 15.6 eV, L(E) is the collisional loss function and
dσion
p

dE
is the proton-

H2 ionization differential cross section. We use the differential cross section from

Glassgold and Langer [229]:

dσion
p

dE
(E,E ′) =

σ0(E ′)

1 +
(
E′

J

)2 , (4.39)
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where σ0(E) =
σion
p (E)

J

[
tan−1 E−I(H2)

J

]−1

is the total proton-H2 ionization cross section,

and J = 7 eV [229]. The total proton-H2 ionization cross section is

σion
p = (σ−1

l + σ−1
h )−1

σl(E) = 4πa2
0Cx

D

σh(E) = 4πa2
0[A ln(1 + x) +B]x−1,

where x = meEp/mpI(H), I(H) = 13.598 eV, A = 0.71, B = 1.63, C = 0.51, and D =

1.24 [171, 230]. When calculating the H2 ionization rate due to secondary electrons,

we use the electron-H2 ionization cross section:

σion
e = 8πa2

0

(
I(H)

I(H2)

)2

F (t)G(t)

F (t) =
1− t1−d
d− 1

[(
2

1 + t

)d/2
1− t1−d/2
d− 2

]

G(t) =
1

t

(
A1 ln t+ A2 +

A3

t

)
,

where t = Ee/I(H2) and we adopt d = 2.4, A1 = 0.72, A2 = 0.87 and A3 = −0.6

[171, 231].

In principle, this process can be repeated as a cascade. However, such higher order

effects will not significantly affect our results compared to other model assumptions.

143



CHAPTER 5

THE ASTROCHEMICAL IMPACT OF COSMIC RAYS IN
PROTOCLUSTERS I: MOLECULAR CLOUD

CHEMISTRY

This chapter1 introduces an extended astrochemical code which includes cosmic

ray attenuation in-situ. This astrochemical code utilizes user-defined cosmic ray spec-

tra and computes the cosmic ray ionization rate locally rather than a globally con-

stant rate. We use this code to quantify the impact of different cosmic ray models on

molecular cloud chemistry.

5.1 Abstract

We present astrochemical photo-dissociation region models in which cosmic ray

attenuation has been fully coupled to the chemical evolution of the gas. We model

the astrochemical impact of cosmic rays, including those accelerated by protostellar

accretion shocks, on molecular clouds hosting protoclusters. Our models with embed-

ded protostars reproduce observed ionization rates. We study the imprint of cosmic

ray attenuation on ions for models with different surface cosmic ray spectra and dif-

ferent star formation efficiencies. We find that abundances, particularly ions, are

sensitive to the treatment of cosmic rays. We show the column densities of ions are

under predicted by the “classic” treatment of cosmic rays by an order of magnitude.

We also test two common chemistry approximations used to infer ionization rates.

1These results are based on research published in Gaches et al. [232] and is reproduced with
permission from the AAS.
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We conclude that the approximation based on the H+
3 abundance under predicts the

ionization rate except in regions where the cosmic rays dominate the chemistry. Our

models suggest the chemistry in dense gas will be significantly impacted by the in-

creased ionization rates, leading to a reduction in molecules such as NH3 and causing

H2-rich gas to become [C II] bright.

5.2 Introduction

Molecular cloud dynamics and chemistry are sensitive to the ionization fraction.

The chemistry of molecular clouds is dominated by ion-neutral reactions [196] and

thus controlled by the ionization fraction. The gas (kinetic) temperature of a typical

molecular cloud with an average H-nucleus number density of n ≈ 103 cm−3 is approx-

imately 10 K for cosmic-ray ionization rates ζ . 10−16 s−1 [154, 161], thus rendering

neutral-neutral reactions inefficient. Ionization in molecular clouds is produced in

three difference ways: UV radiation, cosmic rays (CRs), and X-Ray radiation. Ultra-

violet radiation, from external O- and B-type stars and internal protostars, does not

penetrate very far into the cloud due to absorption by dust. However, cosmic rays,

which are relativistic charged particles, travel much further into molecular clouds and

dominate the ionization fraction when AV ≥ 5 mag [195, 233, 234]. CR-driven chem-

istry is initiated by ionized molecular hydrogen, H+
2 [83]. The ion-neutral chemistry

rapidly follows:

CR + H2 → H+
2 + e− + CR′

H+
2 + H2 → H+

3 + H,

where CR′ is the same particle as CR but with a lower energy. The ejected electron

from the first reaction can have an energy greater than the ionization potential of H2

and thus cause further ionization. Once H+
3 forms, more complex chemistry follows,

thereby creating a large array of hydrogenated ions:
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X + H+
3 → [XH]+ + H2.

Both HCO+ and N2H+, important molecules used to map the dense gas in molec-

ular clouds, form this way with X being CO and N2, respectively. These species are

also used to constrain the cosmic ray ionization rate (CRIR) [i.e., 86, 235]. OH+ and

HnO+ are also formed this way through H+
3 and H+ [236]. In addition, at low column

densities (AV < 1 mag), which is typical of the boundaries of molecular clouds), the

non-thermal motions between ions and neutrals may overcome the energy barrier of

the reaction

C+ + H2 → CH+ + H,

leading to an enhancement of the CO column density [237, 238] and a shift of the

Hi-to-H2 transition to higher AV [239].

The ionization fraction controls the coupling of the magnetic fields to the gas, in-

fluencing non-ideal magnetohydrodynamic (MHD) effects such as ambipolar diffusion

[41]. These non-ideal effects can play a significant role in the evolution in the cores

and disks of protostars. On galactic scales, numerical simulations have shown that

CRs can help drive large outflows and winds out of the galaxy [e.g., 240]. Our study

focuses on the impact of CRs on Giant Molecular Cloud scales which is typically not

resolved fully in such simulations.

There have been a plethora of studies modeling the impact of CRs on chemistry

and thermal balance [i.e., 28, 154, 235, 241, 242, 243]. However, in these studies, and

the vast majority of astrochemical models, the CRIR is held constant throughout the

cloud, despite the recognition that CRs are attenuated and modulated while traveling

through molecular gas [15, 82, 171, 217]. Galactic-CRs, thought to be accelerated in

supernova remnants or active galactic nuclei, are affected by hadronic and Coulombic

energy losses and screening mechanisms that reduce the flux with increasing column

density [244, 245, 246]. The modulation of CRs has not previously been included
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within astrochemical models of molecular clouds due to the difficulty in calculating

the attenuation and subsequent decrease in the CRIR [16, 247].

Given that CRs are thought to be attenuated, it is expected that the ionization

rate should decline within molecular clouds. However, recent observations do not

universally show a lower ionization rate. Favre et al. [88] inferred the CRIR towards

9 protostars and found a CRIR consistent with the rate inferred for galactic CRs. The

OMC-2 FIR 4 protocluster, hosting a bright protostar, is observed to have a CRIR

1000 higher than the expected rate from galactic CRs [86, 89, 224]. Gaches and Offner

[81] show that this system can be modeled assuming the central source is accelerating

protons and electrons within the accretion shocks on the protostar’s surface. In

general, accreting, embedded protostars may accelerate enough CRs to cancel the

effect of the attenuation of external CRs at high column densities, producing a nearly

constant ionization rate throughout the cloud [80, 81].

Typical accretion shocks and shocks generated by protostellar jets satisfy the

physical conditions necessary to accelerate protons and electrons [80, 81]. Accretion

shocks in particular are a promising source of CRs since they are strong, with velocities

exceeding 100 km/s and temperatures of millions of degrees Kelvin [209]. Gaches and

Offner [81] calculated the spectrum of accelerated protons in protostellar accretion

shocks and the attenuation through the natal core assuming that the CRs free-stream

outwards. These models suggest that clusters of a few hundred protostars accelerate

enough CRs into the surrounding cloud to exceed the ionization rate from Galactic

CRs.

In this study, we explore the effects of protostellar CRs on molecular cloud chem-

istry by employing the model of Gaches and Offner [81]. We implement an approxi-

mation for CR attenuation into the astrochemistry code 3d-pdr [30] to account for

CR ionization rate gradients. We investigate the signatures of a spatially varying

147



ionization rate. We further explore the impact of protostellar CR sources and their

observable signatures.

The layout of the paper is as follows. In §5.3 we present the CR and protostellar

models and describe the implementation of CR attenuation into 3d-pdr. We discuss

our results in §5.4. Finally, in §5.5 we create observational predictions and compare

them to observations.

5.3 Methods

5.3.1 Protocluster Model

We generate protoclusters following the method of Gaches and Offner [148], where

the model cluster is parameterized by the number of stars and gas surface density, N∗

and Σcl, respectively. These parameters are connected to the star formation efficiency

εg = M∗/Mgas, where Mgas is related to Σcl following McKee and Tan [164] Σcl = Mgas

πR2 ,

where the cloud radius, R, is determined from the density distribution (See §5.3.3).

We model protoclusters with surface densities in the range 0.1 ≤ Σcl ≤ 10 g cm−2

and with a number of stars in the range 102 ≤ N∗ ≤ 104. In this parameter space,

we always consider εg ≤ 25%.

We generate Ncl = 20 protoclusters for each point in the parameter space and

adopt the average CR spectrum for the chemistry modeling. We use the Tapered

Turbulent Core (TTC) accretion history model [50, 164], where the protostellar core is

supported by turbulent pressure and accretion is tapered to produce smaller accretion

rates as the protostellar mass, m, approaches the final mass, mf . Gaches and Offner

[148] showed the TTC model is able to reproduce the bolometric luminosities of

observed local protoclusters.
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5.3.2 Cosmic Ray Model

We brielfy summarize the CR acceleration and propagation model in Gaches and

Offner [81] and refer the reader to that paper for more details. We assume CRs

are accelerated in the accretion shock near the protostellar surface. Accreting gas

is thought to flow along magnetic field lines in collimated flows with the shock at

the termination of the flow. We assume the shock velocities are comparable to the

free-fall velocity at the stellar surface. Following Hartmann et al. [209], we assume

fully ionized strong shocks with the shock front perpendicular to the magnetic field

lines. We adopt a mean molecular weight µI = 0.6 and a filling fraction of accretion

columns on the surface, f = 0.1.

We calculate the CR spectrum under the Diffusive Shock Acceleration (DSA)

limit, also known as first-order Fermi acceleration [e.g., reviewed in 248, 249, 250].

Under DSA, the CR momentum distribution is a power-law, f(p) ∝ p−q, where

q is related to the shock properties. We attenuate the CR spectrum through the

protostellar core following Padovani et al. [171]. Padovani et al. [217] presented

updated attenuation models for surface densities up to 3000 g cm−2, but the results

remain unchanged for the surface of concern in this work. The core surface density

and radius for a turbulence-supported core are [164]:

Σcore = 1.22Σcl = 0.122 g cm−2

(
Σcl

0.1 g cm−2

)
(5.1a)

N(H2)core =
Σcore

µMmH

(5.1b)

= 3× 1022 cm−2

(
Σcore

0.122 g cm−2

)(
2.4

µ

)

Rcore = 0.057Σ
− 1

2
cl

(
mf

30 M�

) 1
2

pc (5.1c)

= 0.104 pc

(
Σcl

0.1 g cm−2

)− 1
2
(

mf

10 M�

) 1
2

,
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where µM = 2.4 is the mean molecular weight for a molecular gas. We calculate the

total protocluster CRIR by summing over the N∗ attenuated CR spectra.

5.3.3 Density Structure

We assume the molecular cloud density is described by an inverse power law

n(r) = n0

(
R

r

)2

, (5.2)

where R is the cloud radius and n0 is the number density with an inner radius of 0.1

pc. The r−2 dependence matches the solution for isothermal collapse [163]. We take

n0 = 100 cm−3, corresponding to a gas regime in which the cloud is expected to be

mostly molecular under typical conditions. The radius is set by constraining the total

surface density by Σcl as defined:

∫ R

Rc

n(r)dr =
Σcl

µMmH

, (5.3)

where Rc is the inner radius delineating the transition between the molecular cloud

and protostellar core. The turbulent-linewidth, σ, of a cloud with density profile

n(r) ∝ r−2 and a virial α parameter is [251]:

σ =

(
GM2α

3µMmH n̄V R

) 1
2

, (5.4)

where n̄ is the volume-averaged density from n(r), G is the gravitational constant,

and V = 4
3
πR3 is the volume of the molecular cloud. We take α = 2 for our fiducial

model [149].
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Table 5.1. Atomic Abundances

Species Abundance Relative to H
H 1.0
He 0.1
C 1.41×10−4

N 7.59×10−5

O 3.16×10−4

S 1.17×10−5

Si 1.51×10−5

Mg 1.45×10−5

Fe 1.62×10−5

Notes. Atomic abundances adopted from Sembach et al. [167].

5.3.4 Chemistry with Cosmic Ray Attenuation

We use a modified version of the 3d-pdr astrochemistry code2 introduced in

Bisbas et al. [30]. 3d-pdr solves the chemical abundance and thermal balance in one-,

two- and three-dimensions for arbitrary gas distributions. The code can be applied

to arbitrary three dimensional gas distributions, such as post-processing simulations

[112, 116, 252]. Here, we use the code in one dimension to model a large parameter

space. We adopt the McElroy et al. [18] umist12 chemical network containing 215

species and approximately 3,000 reactions. We assume the gas is initially composed

of molecular H2 with the rest being atomic with abundances from Sembach et al.

[167] shown in Table 5.1. Cooling is included from line emission, which is mainly due

to carbon monoxide at low temperatures and forbidden lines of [OI],[CI] and [CII]

at higher temperatures. Heating is due to dissipation of turbulence, photoelectric

heating of dust from far-ultraviolet emission, H2 fluorescence and CR heating of gas.

We use a temperature floor of 10 K. Previously, 3d-pdr included CRs via a single

global CRIR parameter. See Bisbas et al. [30] for more technical details.

2The code can be downloaded from https://uclchem.github.io, including the new modifica-
tions presented in this paper.
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We modify 3d-pdr to account for CR attenuation through the cloud. Currently,

our implementation is restricted to one-dimensional models where we assume spherical

symmetry. 3d-pdr calculates the CRIR from NSRC CR sources. The user provides

a CR spectrum for any number of sources and whether it is external (incident at the

surface) or internal (originating at the cloud center). In 1D, the fluxes are defined on

either surface of the domain. The flux due to external sources is attenuated while the

point sources are assumed to radiate isotropically; both are attenuated and spatially

diluted. The spectra are attenuated after every update of the molecular abundances

to keep the amount of H2 for interaction losses self-consistent. 3d-pdr stores the

initial CR flux in Nene bins and self-consistently calculates ζ from all sources across

the domain. Point sources require a user-set radial scaling factor, rs, and a transport

parameter, a. For our model results, we set rs = RC to represent the core radius.

Point source CR spectra, j(E, r), are attenuated by the H2 column density [171] and

diluted by the radial distance following

j(r) ∝
(

rs
r + rs

)a
, (5.5)

to approximate the effects of transport. Solving the transport equations for Galactic

transport problems has been done with specialized codes, such as Galprop [253] and

Dragon2 [246]. Fully solving the steady-state transport equations are beyond the

scope of this work but will be investigated in the future.

In our study, we include two CR flux sources. First, we include the internal proto-

stellar clusters discussed above. We set the radial scaling rs = RC = 0.1 pc, which is

approximately the size of a protostellar core. Second, we include an external isotropic

CR flux to model interstellar CRs. We follow Ivlev et al. [212] and parameterize the

external flux as

jext = C
Eα

(E + E0)β
(particles eV−1 cm−2 s−1 sr−1). (5.6)
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We use their “low” model (L), with C = 2.4 × 1015, E0 = 650 MeV, α = 0.1 and

β = 2.8 and their “high” model (H), with C = 2.4× 1015, E0 = 650 MeV, α = −0.8

and β = 1.9. The L model is a direct extrapolation of the Voyager-1 data [254], while

the H is a maximal model to correct for any possible effects of the solar magnetic

field. The CRIR is calculated by integrating the spectrum multiplied by the H2 cross

section:

ζp = 2π

∫
j(E)σi(E)dE, (5.7)

where the factor of 2π accounts for irradiating the 1-D surface on one side and σi(E)

is the H2 ionization cross section with relativistic corrections [214]. The code allows

for an arbitrary number of energy bins, Nbins, for input CR spectrum. We compared

the CRIR for bin sizes ranging from Nbin = 4 to 1000 and found that Nbins > 40 only

produces changes in the CRIR at the 1% level. We do not fully solve for primary or

secondary electrons. Therefore, we multiply the proton CRIR by 5
3

to account for the

electron population [255, 256].

Our fiducial parameters for the study are shown in Table 5.2. Table 5.3 shows

the full suite of models we adopt. The model names describe the included physics:

L/H denotes using the L/H (Low/High) external spectrum, NI denotes no internal

sources, DI denotes internal sources with a = 1 (diffusive transport), RI denotes

internal sources with a = 2 (rectilinear transport) and NA denotes no internal sources

or CR attenuation. We study the impact of these parameters in §5.4.

5.4 Results

5.4.1 Cosmic Ray Spectrum

Our modified 3d-pdr code requires as an input the flux of CR protons for any

number of sources. As a result, the CR proton flux and CRIR throughout the spa-

tial domain become outputs rather than inputs. Figure 5.1 shows an example CR

spectrum for a molecular cloud with Σcl = 0.75 g cm−2 and N∗ = 750 using the
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Table 5.2. Model Parameters

Parameter Definition Fiducial Value
µI Reduced gas mass 0.6 (ionized)
µM Reduced gas mass 2.4 (neutral molecular)
n0 Density at edge of cloud 102 cm−3

Nsrc Number of CR Sources 2
Nbins Number of CR spectrum bins 40

a CR transport parameter 1
rs Scaling radius for CR flux 0.1 pc
α Cloud virial parameter 2

Table 5.3. Models examined. L/H denotes Low/High external spectrum, NI denotes
no internal sources, DI denotes internal sources with a = 1 (diffusive transport), RI
denotes internal sources with a = 2 (rectilinear transport) and NA denotes no internal
sources or CR attenuation.

Name Source Transport Internal External Field Attenuation
LDI r−1 X L X
LRI r−2 X L X
LNI ... ... L X
LNA ... ... L ...
HNI ... ... H X
HDI r−1 X H X
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LDI model. The CR proton flux increases inside the cloud because of the embedded

sources. The double peaked shape of the spectrum is due to peaks in the loss function

from ionization and Coulomb losses. The inset shows the CRIR as a function of the

position within the cloud. In this model, the ionization rate climbs nearly two or-

ders of magnitude throughout the cloud with increasing proximity to the protostellar

cluster.

5.4.2 Cosmic Ray Ionization Rate Models

A number of prescriptions have been used to calculate the CRIR from observed

column densities of various tracer species [235, 257]. The inclusion of CR attenuation

allows us to directly test the accuracy of these approximations. Our astrochemical

models provide the abundances throughout the cloud and the local CRIR in-situ.

We test two different prescriptions that are typically used for diffuse and dense gas,

respectively, from Indriolo and McCall [257]. The first, and simplest, denoted as

“Simple Electron Balance” (SEB), estimates the CRIR using only the abundance of

H+
3 and e−:

ζ = ken(e−)
n(H2)

n(H+
3 )
, (5.8)

where ke is the H+
3 electron-recombination rate and n(e−), n(H2) and n(H+

3 ) are

the densities of electrons, molecular hydrogen and H+
3 , respectively. The second

approximation includes the destruction of H+
3 with CO and O, which we denote the

“Reduced Analytic” (RA) model:

ζ =
x(H+

3 )

x(H2)
nH
[
kex(e−) + kCOx(CO) + kOx(O)

]
×
[
1 +

2k3x(e−)

k2f(H2)
+

2k4

k2

(
1

f(H2)
− 1

)]
,

(5.9)

where ki are the reaction rate coefficients for the reactions in Table from Indriolo

and McCall [257] (repeated in Table 5.4 below), xi is the abundance of species i with

respect to total hydrogen nuclei and f(H2) = 2n(H2)/nH is the molecular hydrogen

fraction.
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Table 5.4. Reactions for Reduced Analytic H+
3 Chemistry

Reaction Rate Coefficient (cm3 s−1) Reference
H+

2 + H2 → H+
3 + H k2 = 2.09× 10−9 [258]

H+
2 + e− → H + H k3 = 1.6× 10−8(T/300)−0.43 [259]

H+
2 + H → H2 + H+ k4 = 6.4× 10−10 [260]

H+
3 + e− → products k5 = ke = −1.3× 10−8 + 1.27× 10−6T−0.48

e [261]
H+

3 + CO → H2 + HCO+ k6 = 1.36× 10−9(T/300)−0.142 exp 3.41/T [262]
H+

3 + CO → H2 + HCO+ k7 = 8.49× 10−10(T/300)0.0661 exp−5.21/T [262]
H+

3 + O → H2 + OH+ k8 = kO = 1.14−9(T/300)−0.156 exp−1.41/T [262]
Notes. Equations 5.8 and 5.9 reactino rates where kCO = k6 + k7 in Equation 5.9.
We omit the Nitrogen reaction from [257] Table 3 since it is not in use by either

approximation.

Figure 5.2 shows the calculated CRIR using the full model and the approximations

in Equations 5.8 and 5.9 as a function of the H+
3 abundance. We show the cases of

four different CR models: LNA, LNI, LDI and HDI. The first model, LNA, is of

particular importance since it represents the simplest one-dimensional PDR model.

Observations typically assume 0D distribution, such that the ratio of column densities

is equal to the ratio of the abundances. This makes a tacit assumption that the

ionization rate is the same throughout the domain. We find that both approximations

produce a large range of CRIRs – even when the input CRIR is fixed due to other

effects impacting the chemistry, notably the influence of the external FUV radiation.

The SEB and RA approximation models systematically underestimate the CRIR and

produce an artificial spread in the inferred CRIR. When internal sources are included,

we find that both approximations infer the CRIR reasonably well. When there are

no internal sources, both approximations underestimate the CRIR by up to an order

of magnitude and in general do not represent any real spread in the CRIR accurately.

5.4.3 Impact of Cosmic Ray Sources on Cloud Chemistry

We examine in detail two different CR models: the traditional LNA and the

LDI model. Figure 5.3 shows the column densities of different species and density
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Figure 5.1. Proton cosmic ray spectrum with line color indicating position within
the cloud for Σcl = 0.75 g cm−2 and N∗ = 750 using the LDI CR model. Inset: Cosmic
ray ionization rate versus position, x, into the cloud, where x = 0 is the cloud surface.
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Figure 5.2. Left: Cosmic ray ionization rate as a function of H+
3 abundance

using the full astrochemical model results. Middle: Relative logarithmic error in
ζ, ∆ log ζ, calculated using electron-balance approximation (Equation 5.8) and full
astrochemical model. Right: Same as middle row but using the reduced analytic
approximation (Equation 5.9). Color: Gas surface density, Σcl in g cm−2. Models in
descending order from the top are: LNA, LNI, LDI, HDI.
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averaged temperature and CRIR for the LNA model as a function of Σcl and N∗. The

total column density of each species increases with the gas surface density, Σcl, and

hence the total gas mass. Furthermore, we find across the whole parameter space that

N(CO) > N(C) > N(C+). This qualitative behavior is to be expected with no internal

sources. Figure 5.4 shows the abundance profiles for the LNA model as a function of

AV into the cloud, Σcl and N∗. Since there are no embedded sources in this model,

there is no difference between models of different N∗. The abundance profiles for C+,

C and CO exhibit the expected “layered” behavior [13]: C+ is confined to the surface,

C exists in a thin, warm layer and CO asymptotically approaches an abundance of

[CO/H2] ≈ 10−4. Similarly the abundance of NH3 steadily increases into the cloud.

The abundance ratio [HCO+/N2H+] is sometimes used to infer the CRIR under

the assumption the two molecules are co-spatial [i.e., 86]. We find that, while they

share some local maxima, they are not completely co-spatial in agreement with the

turbulent cloud study of Gaches et al. [90].Moreover, observations show that while

they are not entirely co-spatial, there is overlap in the emission regions [i.e., 86, 88,

263, 264, 265, 266]. In particular, we show HCO+ can exist at much lower AV than

N2H+. Due to similar critical densities however, the two molecules thermalize at

nearly the same densities.

Figure 5.5 shows the column densities across the parameter space for the LDI

model. Here we find a very different behavior compared to the LNA model shown

in Figure 5.3, where the differences are especially pronounced for the more diffuse

gas tracers. The column densities are no longer strictly functions of Σcl but depend

on N∗. For large, massive star-forming regions (upper right corner in each panel),

the gas becomes CO deficient and C rich while the bulk of gas remains molecular.

Similarly, there is a slight increase in the column density of HCO+ and N2H+ due to

the increase in ionization. The qualitative trends exhibited by C+, C, and marginally

by HCO+ and N2H+, follow that of the density-averaged CRIR, 〈ζρ〉.
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The effect of an embedded protocluster is also visible in the abundance profiles.

Figure 5.6 shows the abundance profiles for the LDI model. We find that CO only

approaches abundances of 10−4 for clusters with little embedded star formation.For

smaller mass clouds (i.e., smaller Σcl), the C+, C and CO abundance remains fairly

unchanged compared to the LNA model. In the most massive clouds, the amount

of CO at AV ≤ 1 is enhanced by an order of magnitude and reduced by an order

of magnitude at AV ≥ 5. We further see a reduction in N2H+ at mid-AV with an

enhancement of HCO+. Likewise the gas temperature exceeds T > 30 K for most

of the clouds with Σcl > 0.25 g cm−2. As AV → 103, the differences between the

molecular ion abundances is much less due to the greatly increased density compared

to the surface of the cloud. The abundance of H2 in the dense gas is unaffected by

the increased CRIR.

We now statistically quantify the impact of different CR models on the six different

molecules: C+, C, CO, N2H+, HCO+ and H+
3 . We investigate the H+

3 column density

because it is the simplest molecule that can be used to constrain the CRIR [83]. We

calculate the column density logarithmic difference:

∆s = log
Ns,i

Ns,LNA

, (5.10)

with s representing the different species, and i the different CR models excluding the

LNA model. Figure 5.7 shows violin plots representing the probability distribution

of ∆s using all clouds in the (Σcl−N∗) space. In all cases, CO is never enhanced but

rather depleted. This is because the maximum abundance [CO] = 10−4 is set by the

C/O ratio. Our models generally increase the local CRIR, thereby dissociating the CO

and reducing its abundance. We find very little difference between the LNI and LNA

for all molecules except for N2H+ and HCO+, which exhibit a 25% linear dispersion.

This is caused by the impact of higher ionization rates towards the surface of the

clouds. The HNI model,which has the highest overall CRIR at the surface, shows a
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clear offset for the atomic and ionic species and a slight deficit for CO. In models LRI,

LDI and HDI there is a significant dispersion in the column density difference, ∆s,

in all species. Figure 5.7 demonstrates that considerable care must be taken when

modeling observed column densities of atomic or ionic species: the possible error, ∆s,

in the modeled column densities may be off by an order of magnitude depending on the

transport of the cosmic rays and the amount of ongoing embedded star formation.

The CRIR is not the only factor that leads to the creation of molecular ions, as

typically assumed in observational studies. The abundances are influenced by the

FUV flux, which is also enhanced by a central protocluster [148].

5.4.4 Abundance Ratio Diagnostics for the Cosmic Ray Ionization Rate

Line and abundance ratios of various tracers are often used to constrain the CRIR

in dense gas. The species are typically assumed to be co-spatial (although as demon-

strated in §5.4.3 that is not typically the case). We examine two different ratio

diagnostics: global diagnostics using column densities and local diagnostics using the

local abundance ratios and CRIRs.

Figure 5.8 shows three different column density ratios for the LNA, LNI and HNI

models: [HCO+/N2H+], [CO/C+] and [C/C+]. We find that the column density ratios

in these cases increase monotonically with Σcl. The ratio of [HCO+/N2H+] is nearly

constant, changing by less than a factor of two across two dex of Σcl. The HNI case

shows a slightly different behavior with a slight local minimum in [HCO+/N2H+] at

Σcl = 6 g cm−2. The trends in these models are not due to changes in the CRIR

but rather in the total amount of gas column. The [CO/C+] ratio shows a buildup of

CO compared to C+. This is to be expected in an externally irradiated model: C+

remains consistently on the surface, while the amount of CO continues to build with

Σcl with a proportional increase in the amount of dense gas. Similarly, the [C/C+]

remains fairly constant since these species exist only in limited areas of AV .
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Figure 5.3. Column density of different molecular species as a function of the number
of stars in the protocluster, N∗ and the mass surface density, Σcl for the LNA model.
The last 3 panels on the far right show the density averaged temperature, CRIR and
the total gas column density.
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Figure 5.4. ,

for various molecular species, as a function of the visual extinction into the cloud,
AV , for the LNA model.] The abundances, [X], for various molecular species, as a
function of the visual extinction into the cloud, AV , for the LNA model. The top
two panels on the right column show the temperature and CRIR as a function of the
AV . The colorbar indicates the gas surface density, Σcl. The line width indicates
the number of protostars in the cluster with “Small” = 102, “Medium” = 103 and
“Large” = 104 protostars.
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Figure 5.5. Same as Figure 5.3 but for model LDI.
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Figure 5.6. Same as Figure 5.4 but for model LDI.
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Figure 5.9 shows the same column density ratios for three models including the

embedded protoclusters: LRI, LDI and HDI. Here the trends are significantly more

complicated. The [HCO+/N2H+] ratio still only varies by a factor of two throughout

the parameter space, but it exhibits more complex behavior. The ratio decreases

with Σcl and rises with N∗ up to some maximum, with an additional increase in

[HCO+/N2H+] for N∗ ≈ 104 for the LDI and HDI model. To understand this, we can

look at the abundance profiles of the LDI model in detail in Figure 5.6. The abundance

of HCO+ increases with both with Σcl and N∗ with the abundance profile flattening

as a function of AV for Σcl > 1 g cm−2. For N2H+ the trends are separated by an AV

threshold at AV = 1. At AV < 1, the abundance of N2H+ increases like HCO+, with

Σcl and N∗. For 1 < AV < 100, the abundance of N2H+ is sensitive primarily to N∗.

In high ionization environments, CO will be destroyed in the creation of HCO+ due

to interactions with H+
3 . These environments will also produce N2H+ which destroys

CO to create HCO+. This is likely the main driving cause in the abundance profiles:

there is a reduction of CO and N2H+ in the dense more ionized gas, and an systematic

increase in HCO+. The [CO/C+] ratio increases monotonically across two orders of

magnitude towards high Σcl and low N∗: cold gas is less ionized (lower right corner),

so the amount of CO increases with respect to C+. [C/C+] shows a different trend

compared to [CO/C+]. High ionization rates, in both the LDI and HDI models, have

an increased [C/C+] in lower mass clouds hosting smaller clusters and a decreased

[C/C+] at high Σcl compared to the LRI model. The [C/C+] ratio is nearly flat across

the Σcl − N∗ parameter space in the HDI model. Clouds with fewer CRs and more

gas shielding to the incident the FUV radiation have more C compared to C+.

Observational measurements of ζ in dense gas typically use astrochemical model-

ing and local abundance ratios (See §5.5.2). Figure 5.10 plots the CRIR for models

with 5% ≤ ε ≤ 25% as a function of different abundance ratios. A good CRIR indi-

cator should exhibit a monotonic trend in response to changes in the CR flux. The
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LNI model does not exhibit much change in the CRIR, so the local trends depend on

density and radiative effects. In the HNI model, only the [HCO+/CO] ratio exhibits

a monotonic trend.

The models with sources show completely different abundance ratios because the

dense gas is warmer and the ionization rates are higher. In all of these cases, the

ratios are monotonic for Σcl & 1 g cm−2. For Σcl . 1 g cm−2 each exhibits a similar

trend as in the NI model subsets. This demonstrates that these diagnostics only

constrain regimes where the CRIR influences the chemistry more than radiative or

other heating processes.

5.5 Discussion

5.5.1 Model Assumptions and Caveats

Our models require a variety of assumptions. First and most importantly, the

models are one-dimensional and we assume protostars are clustered in the center.

In reality, protostars are distributed throughout molecular clouds. Furthermore, the

density distribution of molecular clouds is set by turbulence and is not a purely radial

distribution. However, our results will hold qualitatively for the molecular gas around

young, dense embedded clusters in molecular clouds, such as the central cluster in

ρ Oph. Second, our chemical network does not include any gas-grain chemistry or

freeze-out [see 18]. Therefore, we over-predict the CO abundance in regions where

n > 104 cm−3 and T / 30 K [267]. Comparing this criteria to the temperature profiles

in Figure 5.6 shows the models with Σcl < 0.5 g cm−2 and where 1 ≤ AV ≤ 10

are below the freeze-out temperature. When embedded sources are included, the

densest gas heats to temperatures> 50 K. These temperatures lead to desorption from

the grains, producing gas-phase CO: any CO-ice that formed before star formation

occured would be evaporated back into the gas phase [268, 269].
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Figure 5.8. Abundance ratios versus Σcl and N∗. White contours and labels show
the star formation efficiency ε = M∗/Mgas. Far left: [HCO+]/[N2H+]. Middle left:
[CO/C+]. Middle right: [C/C+]. Far right: Density-weighted average cosmic ray
ionization rate, < ζρ >. The models are in descending order from top: LNA, LNI,
HNI. We use the same scales for the individual ratios in Figures 5.8 and 5.9 to facilitate
comparison between models.
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Figure 5.9. Abundance ratios versus Σcl and N∗. White contours and labels show
the star formation efficiency ε = M∗/Mgas. Far left: [HCO+]/[N2H+]. Middle left:
[CO/C+]. Middle right: [C/C+]. Far right: Density-weighted average cosmic ray
ionization rate, < ζρ >. Models in descending order from top: LDI, LRI, HDI
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Figure 5.10. Cosmic ray ionization rate as a function of different abundance ratios.
Left: C/C+, middle: HCO+/CO and right: HCO+/N2H+. Models in descending
order from top: LNI, LDI, HNI, HDI.
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We do not fully solve the cosmic ray transport equations or the acceleration dy-

namics of protons in protostellar accretion shocks. We use analytic approximations

to describe the acceleration of CRs at the protostellar shock and the transport out of

both the parent core and cloud. Gaches and Offner [81] explore the changes in the

CRIR for different transport regimes, shock efficiencies and magnetic fields. Differ-

ences in the protostellar magnetic field changes the maximum energy of the acceler-

ated CRs but has little effect on the CRIR. However, the CRIR scales nearly linearly

with the shock efficiency. Our results assume CR transport in the rectilinear regime

through the core. More diffusive transport would produce higher temperatures at the

surface of the core than observed. The details of the transport depend both on the

magnetic field morphology and on the coupling between the particles and the field. In

molecular clouds, turbulence is much stronger than in the cores allowing CRs to dif-

fuse across magnetic field lines rather than streaming along them [15]. Conversely, if

the particles are well-coupled their trajectories would follow the field lines, potentially

producing asymmetries in the CR flux. The directionality imposed by the protostellar

outflow could cause CR beaming in the outflow direction or simply advect the par-

ticles along with the outflow gas [208]. We assume CRs transport from their parent

cores through the clouds by parameterizing the radial scaling by either diffusive (1/r)

or free-streaming (1/r2). We do not fully solve the transport equations, which has

yet to be done for CRs propagating out of molecular clouds from internal sources.

5.5.2 Comparison to Observed CRIRs

Figure 5.11 shows the results from the different PDR models in Table 5.3 com-

pared to four different observational surveys covering a range of 1 ≤ AV ≤ 103.

The CRIR is one of the trickier astrochemical parameters to constrain from obser-

vations. Unfortunately, no universal method is applicable to all clouds conditions.

Historically, there have been two main methods: absorption measurements of simple
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Figure 5.11. Cosmic ray ionization rate, ζ, versus AV for the six different models in
Table 5.3. The filled curves represent the 1σ spread from the models covering the (Σcl

- N∗) parameter space. Squares represent diffuse gas measurements from Indriolo and
McCall [257] and Indriolo et al. [170]. Diamonds represent dense gas measurements
from Caselli et al. [235]. Crosses represent observations towards high-mass protostars
from de Boisanger et al. [270], van der Tak and van Dishoeck [271].
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ions, such as H+
3 or OH+, in the infrared or molecular line observations using key

molecules in neutral-ion pathways along with astrochemical modeling. H+
3 is typi-

cally thought to be among the best tracers of the CRIR due to its simple chemistry.

However, H+
3 is only observed in infrared absorption, limiting its use to sight lines

with bright background sources. Indriolo and McCall [257] and Indriolo et al. [170]

used H+
3 , H2O+ and OH+ absorption to trace the CRIR in diffuse gas with AV < 1

and found the CRIR in low AV gas varies between 10−16 -10−14 s−1. The gas at

low AV is particularly sensitive to external influences, motivating the need to model

the chemistry with external CR spectra derived from examining the local galactic

environment. The grouping of points at low AV with high CRIR (ζ ≥ 10−14 s−1) are

clouds in sight-lines towards the galactic center and thus in environments with ex-

treme external particle irradiation. Caselli et al. [235] used a combination of HCO+,

DCO+ and CO together with analytic chemistry approximations to infer the CRIR

in 24 dense cores. Their observations exhibit a nearly bi-model distribution: some

are clustered at ζ / 10−17 s−1, while the majority are at ζ ≈ 10−16 s−1. They infer

the ionization rates using the abundance ratios of [DCO+/HCO+] and [HCO+]/[CO]

under 0D spatial assumptions and a reduced analytic chemical network. Finally, we

include the CRIRs from the van der Tak and van Dishoeck [271] survey towards single

high-mass protostars with the central protostar being massive enough to provide a

bright background source for H+
3 absorption. They find CRIRs scattered from 10−17

to 10−16 using an assumed H+
3 abundance and density distribution. They find the

observed H+
3 column density increases with cloud distance, which can be explained

by contamination from low-density clouds along the line of sight.

Our model results show good agreement with the inferred CRIRs from Indriolo

and McCall [257], Indriolo et al. [170] and Caselli et al. [235]. We find the LDI model

is able to replicate the spread in the CRIR. There are two main controlling factors for

the CRIR in the clouds: the number of embedded sources and the cloud environment.

174



Embedded sources create a natural dispersion in ζ for different molecular cloud masses

and star formation efficiencies. Without internal sources, there is no spread in our

modeled CRIR as a function of column density. In order to represent the observations,

the external CRIR must be increased instead for different regions. Local sources of

CRs, such as nearby OB associations or supernova, contribute significantly to the

CR flux at the cloud boundary. As the external CR flux is increased, the impact

of attenuation also increases due to the rapid reduction in low energy CRs. Figure

5.11 shows that the impact of attenuation is different between the HNI and LNI

models. For the LNI model, ζ changes by less than an order of magnitude across

4 orders of magnitude in AV . Conversely, the HNI model CRIR decreases by 2

orders of magnitude due to an overall reduction in MeV-scale CRs. The HNI model

over predicts the CRIRs measured in diffuse gas to CRIRs measured near high-mass

protostars, excluding the galactic center sight-lines. However, the H spectrum is the

maximal CR spectrum from Voyager-1 observations [212, 254]. The LNI and LNA

models under-predict the observed CRIR for all but a few sight-lines. Thus, Figure

5.11 demonstrates that it is essential to consider the cloud environment and properly

treat the CR physics and cloud density distributions. Models without attenuation

only represent the CRIR within narrow ranges of AV and not in the cloud interiors.

Figure 5.11 also underscores that the low energy CR spectrum, which if often adopted

in astrochemical modeling, is a poor fit to the majority of the observations.

5.5.3 Challenges for Deriving the CRIR from Chemical Diagnostics

There have been numerous attempts to find chemical diagnostics that are strong

tracers of the CRIR [169, 170, 235, 257, 272, 273, 274]. Some of these, such as

[DCO+]/[HCO+], cannot be modeled with the current 3d-pdr version due to the

lack of deuterium and isotopic chemistry. Most probes of the CRIR are based on the

local abundance, which is difficult to directly ascertain from observations. The use of
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column density ratios typically assumes the line emission observed between species is

co-spatial. Figures 5.8 and 5.9 examine effects of CR physics on the [HCO+/N2H+],

[CO/C+] and [C/C+] column density ratio diagnostics. However, we find that none

of these ratios are monotonically sensitive to the average CRIR, shown for the LDI

model in Figure 5.5. The [CO/C+] column density ratio is anti-correlated with the

density-averaged CRIR because the amount of CO declines while the amount of C+

increases in large, massive clusters.

Local abundance ratios are used for fitting observations with astrochemical models

which assume the ratio of the column densities is equal to the ratio of the abundances

[257]. These are constrained through the use of 0-D spatial models, where a single

density, temperature and extinction are evolved over time. However, this ignores the

physical structure of clouds, which have non-uniform density, temperature, FUV and,

as we show here, CRIR distributions [90, 111, 116, 275, 276]. As Figure 5.10 shows, in

models without internal sources, none of the abundance ratios are strong diagnostics.

Furthermore, the range in the CRIR is small despite some large changes in each of the

ratios. For models with internal sources, the CRs from embedded sources dominate

the chemistry throughout the cloud. Here, we find the ratios of C/C+ and HCO+/CO

are mostly monotonic with the CRIR. However, there is significant variation with Σcl

and thus with the gas mass. The results signify that more careful physical and

chemical modeling needs to be done to accurately constrain the CRIR in high-surface

density, star-forming regions. The ratios are only a good diagnostic in regions where

CRs dominate the thermo-chemistry.

Recently, Le Petit et al. [175] used H+
3 absorption to infer the CRIR and physical

conditions in the CMZ. They used a similar relation to Equation 5.8:

N(H+
3 ) = 0.96

ζL

ke

f

2xe
, (5.11)
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where ke, f , and xe have the same definition as in Equations 5.8 and 5.9 and L is

the size of the cloud. They fit observed H+
3 column densities with PDR models as a

function of the gas density, nH , and the size of the cloud, L. Most sight-lines are well

fit using their method by clouds with densities 10 ≤ nH ≤ 100 cm−3 corresponding

to 5 . L . 100 pc. Our models suggest that these length scales would incur CR

screening effects which would change the CRIR. Similarly, for the high density clouds,

the energy losses will deplete MeV CRs and reduce the CRIR. In these cases, there

is a further degeneracy in the nH − L plane resulting in an average decrease in the

CRIR. The reduction would systematically produce model fits with lower densities to

correct for the lower CRIR.

Rimmer et al. [277] used a similar hybrid approach, adopting a prescription for

ζ(N) ad-hoc with the Meudon PDR code [31] to model the Horsehead Nebula. They

found their high ζ(NH) model improved agreement over standard constant CRIR

PDR prescriptions. However, their treatment of ζ(N) is static and fixed in time.

The decoupling of CR attenuation and chemistry is only a good approximation if the

abundance of neutral Hydrogen (H, H2) does not change much in time, ensuring that

the CR spectrum is constant in time. The new approach presented here will allow

ζ(N) to be connected to the chemical time evolution.

5.5.4 Impact of Cosmic Ray Feedback on Cloud Chemistry

The Herschel Galactic Observations of Terahertz C+ (GOT C+) [278] survey

mapped [C II] 158 µm emission over the whole galactic disk, providing the best con-

straint on where [C II] emission originates. Pineda et al. [278] found that nearly half

of the [C II] emission originates from dense photon dominated regions with about

another quarter of the emission from CO-dark H2 gas. Clark et al. [279] performed

synthetic observations of young simulated molecular clouds and found the majority

of their [C II] emission originates from atomic-Hydrogen dominated gas. This dis-
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crepancy was explained by the time evolution of molecular gas due to star formation

and feedback. The results presented here provide an complementary explanation for

the [C II]-bright molecular gas. When protoclusters become active, they accelerate

CRs into the densest regions of molecular clouds. Figure 5.6 shows that high-mass

protoclusters will lead to [C II]-bright H2 dominated gas since CRs i) increase the

gas temperature to values closer to the [C II] excitation temperature of 91.2 K, ii)

increase the abundance of C+ in dense gas due to the destruction of CO and iii) do

not significantly alter the abundance of H2.

In local star-forming regions, the lowest inversion transitions of ammonia, NH3,

have been widely used to map the dense gas cores within molecular clouds [i.e., 99, 280,

281, 282]. Ammonia remains optically thin, and while it does suffer from depletion, it’s

formation is enhanced in regions where CO freezes out [283] (although this effect is not

included in our models). However, this also makes ammonia much more susceptible

to local variations in the FUV radiation field, temperature and CRIR. Recently, the

Green Bank Ammonia Survey (GAS) mapped all the Gould Belt clouds with AV >

7 mag [38]. The DR1 data show the line-of-sight averaged abundance, X(NH3) =

N(NH3)/N(H2), exhibits a spread through molecular clouds. The spread could be

caused by the porosity of molecular clouds allowing more FUV radiation into regions

of dense gas. However, our 1D models also exhibit a variation in this abundance

measurement for the models with internal sources (LRI, LDI and HDI). Figure 5.6

shows that ammonia is depleted in clusters exhibiting more embedded star formation

by a couple of orders of magnitude. The abundance within the dense gas goes from

10−8 in small clusters to 10−10 in the largest. Furthermore, the gas also heats up

leading to stronger emission in higher transitions, such as NH3(3,3). Redaelli et al.

[284] examined the NH3 GAS map of the Barnard 59 clump in more detail. They

found that the abundance appears to drop in gas around the central central 0/1

178



protostar. The dust temperature shows a clear increase around the same source with

a slight increase in the ammonia excitation temperature.

5.5.5 Impact of Cosmic Ray Feedback on Chemistry in Dense Cores

Protostars are observed to be dimmer than classic collapse models predict, i.e.,

the “Protostellar Luminosity Problem” [42]. One possible solution is that accretion is

strongly episodic [50, 285, 286]. Although our models assume steady-state accretion,

we can infer the impact of large bursts of accretion on cloud chemistry. An accretion

burst leads to a stronger accretion shock, which in turn produces higher energy CRs

and a higher CRIR. The CRIR increase in the dense gas then raises the temperature.

The higher temperatures, whether caused by radiative or CR heating, lead to several

different chemical effects. First, molecules frozen onto dust grains will evaporate,

both by thermal desorption [287] and CR-induced desorption [288], into the gas phase.

Second, the increase of the CRIR will increase the ionization fraction leading to a chain

of ion-neutral reactions following H+
3 . Finally, the elevated radiative and CR flux may

be strong enough to destroy some molecules. Jørgensen et al. [269] and Frimann et al.

[289] showed that episodic accretion can cause the sublimation of CO-ice and explain

the excess C18O emission observed near protostars. Intuitively, a burst a CRs will

lead to a reaction chain: H+
3 is created, thereby leading to the destruction of CO to

form HCO+. However, the increase in CRs will provide a large population of free

electrons which recombine with HCO+ to form CO. HCO+ also interacts with water

and other dipole neutrals (in the case of water, the reaction leads to the formation

of CO and protonated water). HCO+ is observed to be depleted near protostars

that have undergone episodic accretion [268]. Ices sublimated by an accretion burst

will cause a more active gas-phase chemistry and lead to an increase in carbon-chain

molecules in molecular clouds as well as increase gas-phase CO in the dense gas where

it would otherwise freeze-out. Overall, the addition of CRs magnifies the effect of an
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accretion burst. Temperatures increase beyond that expected from radiative heating

alone. This suggests that a smaller change in accretion rate may be needed to produce

the observed chemical changes.

5.5.6 Implications for Comparing Data and Models

Synthetic observations of hydro-dynamic simulations are a vital tool for compar-

ing theoretical predictions to observations. The synthetic observations may treat the

chemistry in different ways: from assuming a constant abundance of some molecule to

post-processing simulations with an astrochemical code or using the reduced-network

chemistry from the hydrodynamic simulation [see review by 290]. These synthetic

observations are used to gauge how well the simulations correspond to the observed

universe. As such, it is paramount to ensure that all astrochemical parameters are

as accurate as possible. Radiation-MHD simulations can provide the density and

temperature at every point [e.g., 61]. Simulations also now often include FUV radia-

tion and optical depth calculations using packages such as Fervent [291], TreeRay

[292] and Harm2 [293]. These methods can provide the FUV radiation and/or optical

depth into the cloud. Our results, here, show that the H2 optical depth into the cloud

should be considered when calculating the appropriate CRIR for post-processing.

Typically, the CRIR is held constant throughout the entire simulation domain, which

will lead to systematic differences in the simulation line emission.

5.6 Conclusions

We implement cosmic-ray attenuation in the public astrochemistry code 3d-pdr.

The implementation uses the H2 column density from the chemistry to attenuate

the CR spectra. We couple the code to the protostellar CR models from Gaches

and Offner [81], which solve for the total attenuated protocluster CR spectrum as a

function of the cloud surface density, Σcl, and number of constituent protostars, N∗.
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We present one-dimensional astrochemical models for molecular clouds with a wide

range of Σcl and N∗. We compare the abundance distributions for a low external CR

spectrum, representing an extrapolation of the Voyager-1 data, and a high external

CR spectrum, representing a maximal correction for solar influences. Our model

results show that CRs originating from the accretion shocks of protostars affect the

chemistry of the surrounding molecular cloud. We conclude the following:

• Models with no sources or attenuation cannot explain observed CRIRs. Models

with no internal sources but a higher (H) external spectrum (HNI) match the

observed CRIRs, although it may under-predict the CRIRs inferred for high-

mass protostars. We find that a model using the commonly adopted spectrum

with internal sources (LDI) matches both the low and mid AV observations of

ζ and the observed spread.

• CRs accelerated by protostellar accretion shocks significantly alter the Carbon

chemistry in star-forming clouds. The amount of neutral and ionized Carbon

increases in the dense gas as the number of protostars increases. Models with

embedded sources (LDI, LRI, HDI) increase the amount of C, HCO+ and NH3

at lower AV and decrease the abundance of CO and NH3 at higher AV . Overall,

models including internal sources (LDI, LRI and HDI) exhibit a higher abun-

dance of HCO+ and H+
3 with Σcl and N∗.

• Approximations that use H+
3 and C-based tracers to estimate the CRIR sys-

tematically under-predict the CRIR unless CRs are the dominant source of ion-

ization. The Reduced Analytic Approximation, which uses the abundances of

H+
3 , CO and O,always produces more accurate values of the CRIR, highlighting

the importance of obtaining accurate oxygen and carbon monoxide abundances

within molecular clouds.
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• Ions are systematically under produced using the canonical CRIR while CO is

over produced. Internal sources created a dispersion in the distribution of col-

umn densities by driving more active ion-neutral chemistry deep within molec-

ular clouds.

• Models using the low external CR spectrum (L) and/or no internal sources of

CRs under estimate the H+
3 column density by a order of magnitude or more.

• Internally-accelerated CRs will naturally lead to molecular gas which become

CO-deficient but [C II]-bright, particularly for high surface density molecular

clouds hosting large clusters.

• Including CR attenuation in PDR models will help break the degeneracy in

astrochemical modeling between the density, CRIR and FUV radiation.

As protoclusters grow in constituent numbers, the impact on the chemistry is am-

plified, greatly so if CRs diffuse out of molecular clouds rather than stream. Compar-

ison to observed CRIRs suggest the external CR spectrum, attenuation and internal

sources are important for modeling the chemistry of molecular clouds. However, the

current uncertainties are large due to lack of observational data that can simulta-

neously constrain the density, FUV radiation and CRIR on molecular cloud scales.

Observations to constrain the CRIR within dense gas necessitate multi-line data,

to independently determine the temperature as in e.g., [86], and multi-species data,

to act as astrochemical diagnostics as in e.g., [235]. The 3d-pdr CR attenuation

Fortran module can be included in any Fortran astrochemistry code.
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CHAPTER 6

THE ASTROCHEMICAL IMPACT OF COSMIC RAYS IN
PROTOCLUSTERS II: CO-TO-H2 CONVERSION

FACTOR

This chapter1 focuses on the CI-to-H2 and CO-to-H2 conversion factors and the

impact different cosmic ray models have on them.

6.1 Abstract

We utilize a modified astrochemistry code which includes cosmic ray attenuation

in-situ to quantify the impact of different cosmic-ray models on the CO-to-H2 and

CI-to-H2 conversion factors, XCO and XCI . We consider the impact of cosmic rays

accelerated by accretion shocks, and we show that in clouds with star formation

efficiencies greater than 2% have XCO = (2.5±1)×1020 cm−2(K km s−1)−1, consistent

with Milky Way observations. We find that changing the surface cosmic ray ionization

rate from the canonical ζ ≈ 10−17 to ζ ≈ 10−16 s−1 reduces XCO by 0.2 dex for clusters

with surface densities below 3 g cm−2. XCI has been proposed as an alternative to

XCO due to its accessibility and brightness at high redshifts. Our canonical models

exhibit XCI ≥ 4×1021 cm−2 (K km s−1)−1. However, the inclusion of internal sources

leads to 1.2 dex dispersion in XCI ranging from 2× 1020 < XCI < 4× 1021 cm−2 (K

km s−1)−1.

1These results are based on Gaches et al. (2019, sub.)
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6.2 Introduction

Studying the properties of molecular clouds is crucial to understand star forma-

tion [39]. The dominant constituent of molecular clouds is molecular hydrogen, (H2),

which is a perfectly symmetric molecule, rendering it largely invisible at the typical

temperatures of molecular clouds. While observable in ultraviolet absorption against

background sources, it can only be detected via emission in environments where the

gas is excited to temperatures above a few hundred Kelvin. The second dominant

species is neutral helium which remains inert in molecular clouds. Therefore, obser-

vational studies of molecular clouds largely rely on tracer species, namely emission

from dust and molecules. The most important of these tracers is carbon monoxide

(CO) [36]. CO has a relatively high abundance, canonically [CO/H2] ≈ 10−4 [14],

making it the most abundant molecule after H2 . The small dipole moment allows

it’s rotational transitions to be easily excited at the cold temperatures of molecular

clouds. A crucial CO observable is the J = (1-0) rotational transition at 115.27 GHz.

It is common for the emission of the lowest rotational transition of CO to be used

to measure the total molecular gas [36]. This is encoded in CO-to-H2 conversion

factor, XCO, and the related quantity αCO. XCO is defined as:

XCO =
N(H2)

WCO(J = 1− 0)
, (6.1)

where N(H2) is the H2 column density in cm−2 and WCO(J = 1 − 0) is the CO

flux in K km s−1. The fiducial Milky Way (MW) value is XCO,MW = 2 × 1020 cm−2

(K km s−1)−1 [36]. This conversion factor has been used to estimate gas mass in

local, resolved studies of MCs and the molecular gas mass in high redshift galaxies

[e.g. the COLDz survey 294]. A significant number of studies, both observational

and theoretical, have been devoted to measuring, modeling or applying XCO . Prior

work shows it varies with density, metallicity [28, 92, 153, 155, 295], cosmic ray

(CR) ionization rate (CRIR) [28, 113, 152, 154, 295, 296, 297] and the radiation field

184



[28, 92, 113, 148, 152, 153, 155, 295, 298]. Previously, Gaches and Offner [148] found

that far ultraviolet radiation feedback from forming stars can reproduce the higher

XCO values measured towards diffuse star-forming clouds in the outer galaxy.t

Traditional one-dimensional photo-dissociation region (PDR) models have long

predicted that neutral carbon will exist only in a thin transitional layer between

ionized carbon and CO [14]. However, observations show that forbidden line emission

from neutral carbon covers similar spatial extents as CO [e.g. 135, 137, 299]. It

is posited that forbidden line emission from neutral carbon is a good tracer of the

gas mass [110, 111, 112, 295]. Synthetic observations of hydrodynamic simulations

show that XCI has a smaller dispersion than XCO within a molecular cloud and is a

better tracer in low metallicity gas which tends to become CO-dark [111, 112, 295].

Observational studies using XCI as a tracer of gas mass performs as well as XCO

[299]. XCI is defined analogously to XCO :

XCI =
N(H2)

W(CI)609µm

cm−2 (K km s−1)−1 (6.2)

where W (CI)609µm is the integrated flux at 609 µ m.

Gaches et al. [232] (hereafter Paper I) presented a modified astrochemical code

which includes CR attenuation in-situ. Paper I included CRs accelerated by accreting,

embedded protostars and CR attenuation in one-dimensional astrochemical models of

molecular clouds. We used the code to study the impact of changing the CR spectrum

due to differing galactic environments and the effects of embedded CR sources for a

subset of species including CO, HCO+ and N2H+ and tested various prescriptions for

constraining the CRIR. We found that ions are enhanced and neutrals are depleted in

dense gas due to embedded CRs. Carbon chemistry is substantially altered depending

on the assumed CR model: CRs produced by embedded sources create a significant

reservoir of atomic carbon, mostly neutral, in dense gas. Embedded CRs reduce the

amount of CO in clouds and warm the gas to over 30 K. In this letter we investigate
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the impact of the above effects on XCI and XCO . In §5.3 we describe the methods

used in this paper. In §5.4 we present the results and discuss the implications for

observations.

6.3 Methods

We use the same astrochemical models from Paper I and summarize the method-

ology here. See Paper I for further details.

We generate synthetic protoclusters assuming the Tapered Turbulent Core [50]

accretion model following the method described in Gaches and Offner [148]. We

directly sample from the bi-variate protostellar mass distribution using the method of

conditional probabilities. Each molecular cloud is described by a gas surface density

and number of constituent protostars, Σcl and N∗, respectively. We only consider

models where the star formation efficiency, εg = M∗/Mgas ≤ 50%.

We calculate the accelerated proton spectrum due to accretion shocks for each

star in the protocluster. CR protons are assumed to be accelerated via Diffuse Shock

Acceleration (DSA) [reviewed by 211, 250] near the surface of the protostar. DSA

predicts a power law spectra in momentum space, j(p), with an injection momen-

tum, pinj, set by the shock gas temperature and a maximum energy constrained by

collisional energy losses and upstream diffusion [81]. The CR flux spectrum is

j(p) = j0

(
p

pinj

)−a
, (6.3)

where j0 is the normalization constant calculated from the total shock energy and

efficiency, and a is set by the shock compression factor. We find that the maximum

proton energy is typically between 1 - 10 GeV [81]. We attenuate the CRs by the

gas surface density out of each protostellar core, Σcore = 1.22Σcl, following Padovani

et al. [171]. We assume the CRs within the core free-stream outwards since shallower
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attenuation produces too much CR heating in the core (see Gaches and Offner 81).

CRs may also be attenuated by the accretion flow (Offner et al. 2019, sub.), although

we do not include this in the model. The total number of CRs escaping into a natal

molecular cloud embedding a protocluster is the sum of the CRs accelerated by the

individual protostars and then attenuated into the surrounding gas: jcluster(E) =
∑N∗

i ji(E).

We embed the protoclusters in the center of one-dimensional molecular clouds

with a density profile, n(r) = n0(R/r)2. We set the outer density to n0 = 100 cm−3,

and the radius, R is determined by the total column density, µmHN(R) = Σcl. We

utilize a modified version of the photo-dissociation region astrochemistry code 3d-pdr

described in Paper I2, which includes CR attenuation in-situ. The astrochemistry code

uses CR spectra at the surfaces of the gas model as inputs, rather than a global CRIR.

It is not known exactly how CRs transport through molecular clouds. Therefore, we

consider two different transport regimes: diffusive (1/r) and rectilinear (1/r2). We

use the two external CR spectra from Ivlev et al. [212]: a model that extrapolates the

Voyager 1 data, L, and one that attempts to account for modulation from interstellar

gas, H.

We also consider the impact of FUV radiation, and we irradiate the external

surface of the molecular cloud with the interstellar radiation field from Draine [119].

We model the chemistry with the gas-phase Umist12 network [18], which includes

215 species and several thousand reactions. The network does not include gas-grain

reactions, freeze-out or any desorption processes. We consider the six different CR

models listed in Table 3.2.

3d-pdr calculates the CO line-integrated emissivity, ε, for the J-ladder from J=0

to J=41 assuming non-local thermodynamic equilibrium and the CI 609 µm emissivity

2The code is public at https://uclchem.github.io/3dpdr.html
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Table 6.1. Models examined. L/H denotes Low/High external spectrum, NI denotes
no internal sources, DI denotes internal sources with a = 1 (diffusive transport), RI
denotes internal sources with a = 2 (rectilinear transport) and NA denotes no internal
sources or CR attenuation.

Name Source Transport Internal External Field Attenuation
LDI r−1 X L X
LRI r−2 X L X
LNI ... ... L X
LNA ... ... L ...
HNI ... ... H X
HDI r−1 X H X

using an escape probability method to account for the line opacity. We calculate the

line flux from the emissivity:

I =
1

2π

∫ R

0

ε dz (erg s−1 cm−2 sr−1), (6.4)

with

W =
1

105

c3

2kbν3
I (K km s−1), (6.5)

where c is the speed of light, kb is Boltzmann’s constant and ν is the line frequency.

We calculate the H2 column density from the astrochemical models

N(H2) =

∫ R

0

x(H2)nH dz, (6.6)

where x(H2) is the abundance of H2 and nH is the gas density. Finally, we compute

XCO using Equation 6.1.

6.4 Results and Discussion

We present the results from the astrochemical models on the CO-to-H2 and CI-to-

H2 conversion factors here. A more general discussion on the astrochemical impact

of CRs accelerated within protoclusters is presented in Paper I.
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6.4.1 Effect of Cosmic Rays on XCO

Figure 6.1 shows the CO-to-H2 conversion factor as a function of Σcl and εg for

four of the CR models in Table 3.2. We plot XCO normalized to the fiducial MW

value XMW = 2 × 1020 [36]. The behavior of XCO changes significantly with the

assumed CR model. XCO varies only as function of Σcl for models without internal

sources, LNI and HNI. There is a 0.2 dex offset in XCO between the LNI and HNI

models for Σcl < 3 g cm−2 owing to increased temperatures at low AV in model HDI.

The decline in XCO at higher Σcl is the result of a larger turbulent line width because

of two cooperating effects. First, there is a higher temperature due to the increasing

importance of turbulent heating. Second, the turbulent linewidth produces brighter

optically thick CO emission.

In models with CRs that attenuate diffusively, LDI and HDI, XCO becomes a

sensitive function of εg, losing much of the dependence on Σcl. XCO is reduced by up

to 0.5 dex due to embedded sources with the lowest values occurring for the highest

star formation efficiencies. It is important to emphasize that CRs from embedded

sources do little to reduce the overall amount of H2 [Paper I]. However, they cause

two effects which act to decrease XCO . First, while they reduce the amount of CO

in deeply embedded regions of the cloud, they cause an enhancement of CO in low

AV gas. Second, the increased CRIR leads to a higher temperature making the CO

emission brighter overall.

CR and FUV feedback from star formation external to the molecular cloud can

be modeled by scaling their intensity linearly with the star formation rate (SFR)

[160]. This is motivated by the relationship between the supernova rate and the

SFR and implicitly assumes that CRs are mainly accelerated in supernova shocks.

Clark and Glover [152] used these relations to model how the SFR affects XCO in

simulated molecular clouds. They found that XCO increases with the SFR if the

cloud properties remain fixed. The increase of XCO with SFR is very weak if the
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density of the cloud scales with the SFR. Bisbas et al. [154] modeled the effect of

enhanced CRs on the [CO/H2] ratio, emulating different environments. They show

that [CO/H2] decreases substantially with an increase in the CRIR. By construction,

these models only account for variations in the external CR flux and neglect CRs

accelerated within protoclusters due to accretion, jets or stellar winds.

6.4.2 Effect of Cosmic Rays on XCI

Forbidden line emission from neutral carbon is a possible tracer for molecular gas,

as discussed above. Figure 6.2 shows XCI as a function of Σcl and εg. XCI shows the

same qualitative trends as XCO , although it is more sensitive to the CRIR: a spread

of 1.2 dex in XCI and 0.5 dex in XCO for the LDI model.. The canonical model, LNA,

exhibits a maximum value of XCI ≥ 4 × 1021 cm−2 (K km s−1)−1. Models using the

high, H, spectrum, HNI and HDI, exhibit a 0.2-0.8 dex reduction in XCI compared

to LNI and LDI, respectively.

The increased CRIR throughout the cloud causes atomic carbon to exist out-

side a thin transition layer. Atomic carbon is formed in the dense gas through the

destruction of CO by He+:

He + CRP→ He+ + e−

He+ + CO→ He + O + C+

with neutral carbon forming from recombination of C+. Neutral carbon is also the

result of direct dissociation of neutral molecules by CR protons and CR-generated

photons. This enhancement leads to a reduced XCI . Embedded sources cause XCI

to decrease by over an order of magnitude across two orders of magnitude increase in

the star formation efficiency.

Neutral carbon emission is easily observable at high redshifts due to the line

shifting to millimeter wavelengths. Starburst galaxies have higher SFRs producing
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extreme environments and more CO-dark gas [113, 295]. Thus, at high redshifts and

in galaxies undergoing starbursts, CI may become an optimal tracer of molecular gas.
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Figure 6.1. Color shows logXCO/XMW where XMW = 2× 1020 cm−2 (K km s−1)−1

as a function of gas surface density, Σcl, and star formation efficiency, εg. White
shaded cells show regions where XCO is consistent with Milky Way observations,
−0.3 ≥ logXCO/XMW ≤ 0.3. The hatched regions indicate different cosmic-ray
environments, where we define 〈ζ〉x, the spatially-averaged CRIR, 〈ζ〉x < 10−16 as
“quiescent”, 10−16 < 〈ζ〉x < 10−15 as “star forming” and 〈ζ〉x > 10−15 as “extreme.”
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Figure 6.2. Same as Figure 6.1 but for logXCI/10−21.

6.4.3 Statistical Trends

Figure 5.7 statistically summarizes the impact of the various CR models on XCI

and XCO . The violin plots show the distribution of the logarithmic difference between

Xi as calculated with the canonical model, LNA, and each of the CR models in Table

3.2 using the clouds across the Σcl−εg space as samples. These distributions represent

the impact on XCO when CR attenuation or embedded sources are neglected. We find
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very little deviation in XCO for the LNI model compared to the LNA model. The HNI

model shows that XCO will be over-estimated by 0.15 dex in calculations using the

often-assumed CRIR of ζ ≈ 10−17 s−1. CRs from embedded sources, which propagate

via diffusion, decrease XCO for all clouds. Furthermore, there is a substantial spread

due to variation with the number of protostars, N∗. The HDI model logarithmic

difference exhibits a dispersion of 0.3 dex, similar to the spread derived from MW

observations [36]. If CRs from embedded sources transport via free-streaming there is

no impact on XCO because the CRIR is lower and dominated by the CRs originating

from external sources rather than internal.

The XCI distributions in the left panel of Figure 5.7 show much greater sensitivity

to the CR model assumptions. Models that differ from the often-assumed canonical

models show, on average, a 0.5 dex change in XCI . XCI decreases by 0.5 dex in model

HNI, for massive and inefficient star forming regions. Embedded CRs lead to more

drastic effects on XCI than on XCO . In the case of a “Quiescient” CR environment,

CRs from embedded sources have a larger impact on XCI . The inclusion of CRs

from embedded sources in extreme star-forming environments, represented by HDI,

reduces XCI by nearly a dex compared to the canonical model.

6.4.4 Comparisons to Galactic-scale Observations

The hatching in Figure 6.1 denotes different CR environments: “Quiescent” re-

gions with 〈ζ〉x < 10−16 s−1, “Star Forming” regions with 10−16 < 〈ζ〉x < 10−15 s−1

and “Extreme” regions with 〈ζ〉x > 10−15 s−1 where 〈ζ〉x is the spatially-averaged

CRIR. These labels are motivated by observational surveys which show the majority

of pointings through diffuse gas have 10−15 < ζ < 10−16 s−1. Low AV observations

where ζ > 10−15 s−1 are primarily sight-lines towards the galactic center [170, 257].

There have been numerous observational studies measuring XCO in different envi-

ronments within the MW and other galaxies [see 36, and citations within]. Remark-
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(LNI, HNI, LRI, LDI, HDI) compared to model LNA. Black line indicates the mean.
Magenta line indicates the median.

ably, in the MW and many of the Local Group galaxies, XCO is relatively constant

on kpc scales. The consistency of XCO in the MW and Local Group can be explained

by similar molecular cloud properties due to star-formation feedback [155]. There is

a general trend in star-forming galaxies of low values of XCO towards the center and

larger values in the outer disk [187]. The white shading in Figure 6.1 shows where

XCO is consistent with the MW average value and spread. Models without embedded

sources, LNI and HNI, are only consistent with the MW value for Σcl < 0.2 g cm−2

and Σcl < 0.6 g cm−2, respectively. Models with high surface density and low star

formation efficiency, similar to clouds in the galactic center, exhibit a decreased XCO

compared to clouds with Σ ≈ 1 g cm−2. The introduction of embedded sources makes

the consistency with the MW much better. Nearly all clouds in the LDI model with

ε > 2% and 85% of parameter space in the HDI model is consistent with the MW

average value.Thus, embedded CRs act in a way to regulate XCO to keep it constant.
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XCO is observed to be lower in starburst galaxies [300, 301, 302, 303]. Our models

show that XCO always decreases towards regions of more extreme CR environments.

Environmental changes, which occur in higher redshift galaxies due to enhanced su-

pernova rates, will also decrease XCO and XCI . In starburst galaxies, which have

a high star formation rate, this decrease could be compounded by embedded CR

sources.

6.4.5 Summary

We found in Paper I that the inclusion of embedded sources and CR attenuation

make the CRIR variable throughout the cloud. In this paper, we investigate the

impact of different external CR fluxes and the inclusion of embedded sources on the

CO-to-H2 and CI-to-H2 conversion factors. We find that differences in the CR flux

from changes in the external environment and embedded star formation alter XCI

and XCO significantly. External environment changes reduce XCO only by 0.2 dex,

within the measured spread of XCO in the MW [36]. The difference in XCI is more

pronounced: an order of magnitude reduction for the lowest surfaced densities. The

inclusion of embedded sources removes the strong dependence of XCO and XCI on

Σcl and reduces the conversion factors by 0.6 and 1.2 dex, respectively. Embedded

sources act in a way to regulate XCO and keep it more constant as a function of Σcl

and εg. Our models with embedded sources are consistent with the observed MW

value and deviation of XCO,MW = 2×1020±0.3 dex cm−2 (K km s−1)−1 for all models

with εg > 2%. Observations of the CRIR in diffuse gas in the MW show that the

average CRIR, 〈ζ〉 ≈ 10−16, represented by the high models. Our models with this

external CRIR and ongoing star formation, represented by HDI, are consistent with

the MW observed value and deviation for 85% of the parameter space. Our models

reproduce the trends of a decreasing XCO towards more extreme CR environments,

such as those observed in the galactic center, the high redshift universe and starburst
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galaxies. Our results motivate the inclusion of CR physics and the possibility of

cosmic-ray feedback from internal sources when modeling XCO and XCI .
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CHAPTER 7

THE THREE-DIMENSIONAL DISTRIBUTION OF FAR
ULTRAVIOLET RADIATION IN PROTOCLUSTERS

This chapter focuses on presenting the preliminary results of a simulation of the

formation of a cluster of protostars including far ultraviolet radiation transfer. The

chapter introduces the ray tracing formalism developed to calculate the attenuation

of external fields.

7.1 Introduction

Molecular clouds are the sites of star formation, tying their evolution to processes

which govern the formation of planets to galaxies [39]. The dynamics of molecular

clouds are dominated by a combination of turbulence, gravity and magnetic fields [41].

The therodynamics, however, is mediated by radiation and chemistry. Molecular line

emission acts as the primary coolant, with emission from carbon monoxide (CO) pro-

viding cooling down to tens of degrees Kelvin. Gas is heated through a combination

of processes: photoelectric heating from ultra-violet emission, cosmic ray heating,

and exothermic chemical reactions [13]. The temperature of the gas, though, controls

the chemistry through temperature-dependent rate coefficients. Modeling both the

dynamics and the thermodynamics self-consistently is paramount to understand the

long-term evolution of the molecular phase of the interstellar gas.

Molecular clouds are filled with radiation across the electromagnetic spectrum.

Radiation with energy greater than 13.6 eV is strong enough to ionize hydrogen and

renders molecular gas atomic [13, 72]. The origin of ionizing radiation is mainly high
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mass stars, particular O and B stars. Ionizing radiation sets the transition from warm

atomic gas to cold neutral gas. Molecular clouds near extreme environments, such as

galactic centers, black holes and/or supernova remnants, are also immersed in x-ray

radiation [304]. Radiation this energetic ionizes molecules and atoms. Hard radiation

sources influence the boundary between atomic and molecular gas.

In studies of photo-dissociation regions (PDRs), radiation with energies between

5 eV and 13.6 eV, the far ultraviolet (FUV), is of utmost importance. Photons

with energies from 5 - 11 eV photoionize dust grains liberating electrons, providing

photoelectric heating to the gas. Photons with energies between 11 eV and 13.6 eV are

particularly important for the dissociation of H2. It is difficult to directly dissociate

H2 since it lacks a dipole moment. However, if H2 undergoes an electron excitation,

it can decay into an unbound ground state. The excitation is a line process: only

specific energies of light can excite the electrons. As a consequence, H2 self-shields: H2

deeper embedded in a cloud is shielded by the gas closer to the surface which absorbs

the necessary wavelengths around excitation energies. The self-shielding process is

sensitive to the velocity and density distribution of the gas [305, 306].

There have been numerous numerical prescriptions to model the density distribu-

tions of molecular clouds. The simplest models are one-dimensional. These models

allow the use of large chemical networks and more sophisticated treatments of the

FUV radiation [31, 306]. One dimensional models can either be semi-infinite and

uniform in density [e.g. 154, 306] or impose a finite density structure [e.g. 232, 307].

The next step in sophistication is the use of clumpy [e.g. 107] or fractal structure

[e.g. 75, 161, 308]. These structures are meant to mimic the porosity of molecu-

lar clouds which allow FUV radiation to penetrate further in than constant-density

models allow. Finally, hydrodynamic simulations provide an accurate representation

of the density and velocity structure of molecular clouds. These simulations can be

post-processed with an astrochemical code utilizing large networks [116]. Chemistry
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can also be included in-situ, although this restricts the chemical models to smaller,

reduced networks [e.g. 26, 79, 240, 309].

There are two main algorithms for solving the radiative transfer and column den-

sities: ray tracing and monte carlo. Ray tracing utilizes rays which are propagated

through the domain and accumulate the opacity and/or column density. Background

radiation fields can be treated with simple approaches, such as the six-ray method

[309], or more sophisticated approaches utilizing the Healpix package [120], such

as TreeCol [275]. Ray tracing is also done to quickly solve the radiation from

point sources, using methods such as adaptive ray tracing [293, 310] or tree-based

solvers, such as TreeRay [292]. Monte-Carlo solvers make up the other main class

of algorithms, where photon packets are emitted from sources of radiation and utilize

Monte-Carlo sampling for the propagation and absorption of photons [e.g. 311, 312].

Once the star formation process is underway, embedded regions in molecular

clouds are illuminated by protostars. The radiation from protostars comes from

two main sources: accretion onto the protostar and internal energy. The accretion

luminosity is the result of the conversion of gravitational energy to thermal,

Lacc = facc
GMṀ

R
(7.1)

where facc is the fraction of converted gravitational energy, M and R are the mass

and radius of the protostar, respectively, and Ṁ is the accretion rate. Protostars also

have internal energy sources depending on their evolutionary stage, predominantly

Kelvin-Helholtz and Deuterium burning. For modest accretion rates, intermediate-

mass stars become bright in the FUV. These protostars will act as internal FUV

lamps creating PDRs in dense gas far from the surface of the molecular cloud. The

accretion luminosity dominates for lower mass stars while internal energy dominates

for high mass protostars [50, 60].
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In this paper, we explore the distribution of FUV radiation from an external

field and internal sources using three-dimensional hydrodynamic simulations. In §7.3,

we describe our numerical methods for the hydrodynamic simulations and radiation

computation. We introduce an adaptive six-ray approach to calculate the column

density from the external radiation field. In §7.3 we will present test problems and

preliminary results of a protocluster simulation.

7.2 Methods

We perform the hydrodynamic calculations using the Orion2 magneto-hydrodynamics

code [114, 115]. Orion2 is an adaptive mesh refinement (AMR) code which utilizes a

second order Godunov scheme [313]. The full set of magneto-hydrodynamic equations

are

∂ρ

∂t
= −∇ · (ρv) +

∑

i

Ṁw,iWw(x− xi) (7.2)

∂(ρv)

∂t
= −∇ ·

(
ρvv − 1

4π
BB

)
−∇P − ρ∇φ+

∑

i

ṗw,iWw(x− xi) (7.3)

∂ρe

∂t
= −∇ ·

[
(ρe+ P )v − 1

4π
B(v ·B)

]
− ρv · ∇φ+ Ėw,iW (x− xi) (7.4)

∂ρt
∂t

= −∇ · (ρtv) +
∑

i

Ṁw,iWw(x− xi) (7.5)

∂B

∂t
= ∇× (v ×B) (7.6)

∇2φ = 4πGρ+ 4πG
∑

i

Miδ(x− xi) (7.7)

dMi

dt
= −Ṁw,i + Ṁacc,i (7.8)

dxi
dt

=
pi
M

(7.9)

dpi
dt

= −Mw,i∇φ− pi (7.10)

Equations 7.2 - 7.4 describe the conservation of mass, momentum and energy, re-

spectively and equation 7.5 describes the evolution of the tracer field used to track
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the matter injected by protostellar outflows. Orion2 solves the Poisson equation,

equation 7.7, using a multi-grid solver [115]. We close the equations by assuming the

gas is effectively isothermal, such that the energy density is e = 1
2
v2 + P

(γ−1)ρ
, where

γ = 1.0001. Equations 7.8 - 7.10 describe the evolution of the sink mass, position

and momentum, respectively[118].

Our simulations cannot resolve the jet launching radius since this is typically a

few solar radii away from the protostar’s surface [64]. We therefore adopt the outflow

model of Matzner and McKee [314] where sink particles loose gas through bipolar

collimated jets. Mass, momentum and energy are deposited from the jet onto the

rest of the rest of the grid according to a weight function, Ww [315].

We refine our grids based on the Truelove criterion[114]

ρ < ρJ = J2 πc2
s

Gδx2
l

(7.11)

where cs is the sound speed, δxl is the grid resolution at level l and we adopt J = 0.125.

Sink particles are created when the Truelove criterion is violated in cells on the

maximum AMR level.

Orion2 has been modified to include radiation from embedded sources utilizing

a hybrid ray tracing scheme [62]. We include a modified ray tracing scheme to allow

the use of external radiation fields, discussed in detail below.

7.2.1 Source Radiation

Once star formation is underway, the molecular cloud becomes illuminated from

the embedded protostars. Radiation from protostars has two contributions: the accre-

tion luminosity and internal energy sources. We focus on radiation at FUV energies.

The protostellar mass, radius and internal luminosity evolve following models which

account for different stages, including pre-collapse and Deuterium burning phases [61].

We use equation 7.1 to calculate to accretion luminosity, where the mass and radius
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are provided by the evolution model [61]. We assume the accretion and protostellar

components emit as blackbodies, so that each have a defined radiation temperature,

i.e.,

Ltot = 4πR2
∗σ(T 4

acc + T 4
∗ ) (7.12)

where Tacc and T∗ are the radiation temperature for each component. Figure 7.1

shows the tabulated fraction of the luminosity at FUV energies as a function of

blackbody temperature. The FUV fraction becomes high in the temperature range

of 11,000 - 70,000 Kelvin. The total FUV luminosity is

LFUV = fFUV,acc(Tacc)Lacc + fFUV,∗(T∗)L∗ (7.13)

Here we briefly describe the ray tracing scheme utilized for point sources, Harm2,

and refer the reader for further details to Rosen et al. [62]. We use a single frequency

bin, between 5 eV≤ hν ≤ 13.6 eV, although the method is generalized for an arbitrary

number. Rays are emitted from the source using an angular distribution from the

Healpix package [120], with each ray subtending a solid angle Ωray and direction n.

The solid angle the ray subtends is defined by the number of pixels Npix = 4π/Ωray.

The initial luminosity of each ray is Lray,i(0) = Li/Npix and is solved along the ray

via the transfer equation

∂Lray,i

∂r
= −κiLray,i, (7.14)

where r is the distance from the point source and κi is the absorption coefficient.

The equation is solved by discretizing the ray positions at cells in the hydrodynamic

mesh. When a ray passes through a cell with number density, n, and segment length,

∆l, the luminosity is decreased by

∆Lray,i = Lray,i(1− e−τi) (7.15)
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Figure 7.1. The fraction of blackbody radiation at FUV energies versus temperature.
The blue band shows the temperature range where the FUV fraction is maximal.

where τi = τ0AV,0n∆l, τ0 = 3.02 and AV,0 = 6.29× 10−22 cm2. Furthermore, we keep

track of the gas column accumulated along the ray, Nray,i =
∑

k nk∆lk, where nk and

∆lk are the number density and segment length from cell k along the ray path.

We initially choose Npix(0) = 12 at the lowest Healpix level, with Npix(j) =

12× 4l pixels at Healpix level j. The scheme is adaptive to allow for higher resolu-

tion across the computational domain. Rays are divided into 4 child-rays when the
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condition

Ωcell

Ωray

=
Npix(j)

4π

(
∆x

r

)2

< Φc (7.16)

is violated, where ∆x is the cell size and Φc defines the minimum number of rays

required to go through a cell. When the ray splits, the luminosity of each child-ray

is Lray,i(j + 1) = Lray,i(j)/4. The total column density accumulated along each ray

is passed to the child-ray. We store the FUV flux from each ray in the cell on the

hydrodynamic mesh. The FUV flux is calculated from the ray luminosity, direction

vector and angle it enters the cell according to

Fray,i = (n · r̂)
Lray,i

∆x2
, (7.17)

where n is the vector in the direction of the ray and r̂ is the unit vector normal to

the cell face where the ray crosses. We terminate the ray when Fray,i < 0.01 Draine.

7.2.2 Background Radiation

Molecular clouds are externally irradiated by light from stars dispersed throughout

the galaxy. The FUV component of this radiation is crucial in astrochemical studies

since it controls the HI-H2 transition. We utilize a six-ray approach similar to that

adopted in Glover and Mac Low [309]. In typical six-ray approaches [e.g. 26, 309],

the total column density is calculated from each cell outward in the positive and

negative cardinal directions. This approach naturally scales with the number of cells.

We modify the Harm2 adaptive ray tracing scheme discussed above to create an

adaptive six-ray algorithm.

The adaptive six-ray algorithm uses a modified ray tracing algorithm to propagate

the external radiation field, Fbkg. Rays are emitted from the six domain faces along

their inward normal vectors, n̂face, such that the rays point to the cell centers. The

204



flux along the ray, Fray is initialized such that Fray,i(0) = Fbkg, where Fbkg is the

external FUV flux. The flux is attenuated along the ray such that

∆Fray,i = Fray,i(1− e−τ ) (7.18)

similarly to Equation 7.15. If there is no AMR, every cell will be crossed by six rays,

one from each cardinal direction. When there is AMR, the rays must be split to

ensure that every cell has the appropriate six rays crossing through it. We do not

utilize the splitting criterion from the Harm2 scheme and instead split the ray if the

ray encounters an AMR level, k, which is greater than the ray level, j. When this

condition is met, the ray is split into four child-rays and the ray level increased. The

flux of the child-rays is increased, Fray,i(j + 1) = 4 × Fray,i(j) to conserve flux and

the gas column is passed directly to the child-rays. When rays encounter lower AMR

levels their flux is similarly reduced by a factor of 4 to conserved flux. The total

gas column in each ray direction is stored in the hydrodynamic mesh. However, the

column must be weighted following

Ncol,n̂ =
∑

i

(
1

4

)(j−k)

Ncol,i. (7.19)

The weighting is necessary because without ray merging, if a cell is not on the highest

level grid, it may have more than six rays crossing through it. The column-density

weighting ensures that the amount of gas column accumulated along the cardinal

directions is correct.

The adaptive six-ray approach is very fast since it scales with O(N2/3) rays rather

than O(N). However, the speed comes at a significant disadvantage in angular res-

olution. The approach will tend to underestimate the column density (and thus

overestimate the flux) when the volume filling fraction of dense gas is small [309]. In

a highly turbulent structure, such as before the gas has had much time to collapse,
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we expect the lack of angular resolution will not lead to a significant overestimation

of the flux.

7.2.3 Simulation Setup

We set up a simulation to model the formation of a cluster of protostars. We ini-

tialize the simulation with a uniform density and perturb the gas with a randomized

velocity field for two crossing times. The random field follows a flat power spectrum

between wavenumbers k = 1...2 corresponding to physical size scales L/2 < x < L.

Perturbing the gas for two crossing times better ensures a properly developed turbu-

lent power spectrum [74]. We normalize the velocity perturbations with a velocity

dispersion following the line-width size relation [41, 149]. We use the virial parameter

to derive the total gas mass from the velocity dispersion [e.g. 251]:

αvir =
5σ2R

GM
, (7.20)

where R = L/2 and L is the size of the simulation domain. The initial magnetic field

is configured to be uniform in the +z direction with a magnitude defined from the

thermal plasma beta, βth = 8πρc2
s/B

2
0 . Our fiducial simulation has a resolution of

5123 covering a volume of (10 pc)3 with αvir = 2, Tgas = 10 K and β = 20. After

the initial driving phase, we turn on self-gravity to allow the cloud to collapse while

continuing the driving. The simulation includes protostellar feedback from outflows

and FUV radiation, as described above. The external FUV radiation field is chosen

to be the Draine field [119], F0 = 2.72× 10−3 erg cm−2 s−1.

7.3 Results

7.3.1 Test Problems

We perform three different tests to ensure the accuracy of the source and back-

ground radiation transfer: single source, single-sided external and a shadow test. For

206



all three test problems, we impose a fixed mesh refinement where the level 1 grid cov-

ers the inner 50% and the level 2 grid covers the inner 25%. We repeat the calculation

for different maximum levels of refinement to check convergence.

7.3.1.1 Single Source

The single source test problem consists of a single radiation point source in the cen-

ter of the domain with a fixed luminosity, L∗ = 2L�. The point source is surrounded

by gas with a uniform density. For this test problem we turn off attenuation, such

that the flux is exactly F (r) = L/(4πr2). The Orion2 code requires the sink particle

to be on the highest level grid available, so we center the fixed mesh refinement on

the point source.

Figure 7.2 shows the results of the test using an area factor Φc = 4 for maximum

grid levels up to two. The radiation field attenuation from the source shows good

convergence as the number of levels is increased. In all cases, the ray tracing repro-

duces the r−2 profile exactly towards large radii. There are a couple of bumps in the

profile which correspond to radii where the rays split. These artifacts are small and

a consequence of the adaptive ray-splitting.

7.3.1.2 Single-sided Background Field

The single-sided background field test is the simplest physical test of the six-ray

implementation. We irradiate a single side of a uniform density domain with an

external field equal to the Draine field [119]. We perform the test up to a maximum

grid level of 2 and include the attenuation of the FUV radiation due to dust. Figure

7.3 shows the result of the test comparing the numerical results to the analytic solution

F (x) = F0e
−τ0AV,0n0x. The numerical solution matches the analytic prediction in all

cases confirming the flux along each ray is properly solved.
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Figure 7.2. Flux from a single source as a function of radius. Solid lines show the
results with the color denoting the maximum grid level. The dotted line shows the
analytic 1/r2 solution.

7.3.1.3 Shadow Test

The density distributions of molecular clouds are not homogeneous. There struc-

ture is highly complex with many under-dense and over-dense regions. We perform

a test to check the effect of high density regions. We initialize the domain with a

uniform density of n = 100 cm−3 with a blob of density nb = 5000 cm−3 offset in
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Figure 7.3. Flux from the external radiation field as a function of distance from the
surface. Line color denotes the maximum grid level. Dotted line shows the analytic
solution.

the x- and y-direction by 0.2 pc and a radius of 0.15 pc. We irradiate the blob with

a central source with luminosity L = 2L� and a single-sided background radiation

field of 1 Draine. Figure 7.4 shows the result of the test up to a maximum level of

2, using the same fixed mesh refinement as before. In all cases, the attenuation due

to the high-density blob produces the appropriate shadowing. White regions in the
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figure are locations where the rays were terminated due to the radiation field being

attenuated below a hundredth of the Draine interstellar radiation field [119].

7.3.2 Cluster Simulation

In this section, we present preliminary results from our cluster simulation. Figure

7.5 shows the evolution of the cloud as a function of time. The initial time before

collapse, 0.01 tff , where tff =
(

3π
32Gρ

)1/2

is the free-fall time, shows a highly turbu-

lent density distribution. As gravity takes over, the distribution because much more

peaked in dense cores and filaments with most of the protostars forming in filament

hubs.

Figure 7.6 is a postage-stamp plot showing the density distribution around the

36 most massive protostars at 0.25 tff . The highest mass protostar in the simulation

is 3.35 M�. The protostars are still highly embedded in their natal cores, with peak

densities around the protostar of 106 cm−3. It is important to note that the physical

resolution of the simulation is 4000 AU. Therefore, we are not properly resolving

protostellar cores and disks. The super-solar mass protostars exhibit local structures

which are highly complex since they are forming in clustered environments. The

density distributions do not show cavities forming from the protostellar jets, so the

density immediately surrounding the protostar is higher than expected.

Orion2 enables the use of tracer fields to track feedback gas originating from

sources, in this case prototstellar jets. Figure 7.7 shows the same protostars as Figure

7.6 but shows the distribution of gas ejected in the outflows. We find that the tracer

fields largely do not exhibit the expected bipolar outflows. The low resolution is likely

the main culprit: since the accretion flow is not resolved, the net angular momentum

is changing significantly as a function of time. As such, the sink particle is spinning

around randomly injecting outflow material isotropically. This would explain why

the outflow cavities are not apparent in the density distributions in Figure 7.6. The
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FUV radiation, however, primarily escapes from cavities carved out by winds and jets.

Therefore, the majority of the source radiation is being completely absorbed within

a few cells of the protostar. At the resolution of the simulation, a ray traversing

the first cell from the protostar would encounter a column density of 6× 1022 cm−2,

already greatly attenuating the radiation. Higher resolution simulations, whether by

focusing on a smaller domain or more levels of refinement, are needed to properly

model the FUV radiation from sources. We focus the rest of our discussion on the

FUV radiation from an external field.

Before the onset of star formation, and in regions far from forming protoclusters,

the FUV radiation will be dominated by the externally-irradiated field. The middle

and left panels of Figure 7.5 show the time evolution of the line-of-sight averaged

FUV radiation and AV , respectively. As expected, the most central regions exhibit

small FUV irradiation. However, this is not necessarily correlated with the highest

density regions. There are regions with high column density near the boundary of

the cloud which, despite having a high density, are irradiated by a stronger radiation

field than similar high-rdensity regions regions in the center of the domain.

The line-of-sight averaged AV represents the three-dimensional AV from the sur-

face of the domain. However, observations do not have access to this information:

they are constrained to the column density along the line of sight. Figure 7.8 investi-

gates the correlation between the column density and the line-of-sight averaged FUV

radiation. While the majority of the points appear to be clustered in a peak along

F ∝ e−N , there is a large amount of spread. Nearly all regions with low column ex-

hibit high FUV radiation. However, towards higher column densities there is a large

dispersion: there are many regions of high column density experiencing radiation.

There is effectively no variation with time: the main effect causing the dispersion is

the turbulence structure of the molecular cloud. Our results show there is significant
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error in using column densities across the plane of the sky into an estimation of the

FUV radiation.
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Figure 7.4. Results from the shadow test. Left: Density distribution showing
the high density blob offset from center. Middle: Background radiation field from a
single-sided radiation field. Right: Radiation field from a source located in the center
of the domain. The rows are in increasing order from top to bottom of the maximum
level, with the top, middle and bottom panels representing a maximum level of 0, 1
and 2.
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Figure 7.5. Evolution of the column density, average line-of-sight FUV field, and
extinction (AV ) on the left, middle and right, respectively. The annotation denotes
how much of a free-fall time has elapsed.
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Figure 7.6. The distribution of gas, ρ, around the 36 most massive protostars in the
cluster shown as a slice along the z-direction. Annotated text shows the mass of the
protostar.
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Figure 7.7. The distribution of gas ejected from protostellar outflows, ρw, for the
36 most massive protostars in the cluster. Annotated text shows the mass of the
protostar.
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Figure 7.8. Line-of-sight averaged FUV flux versus column density. Hex-cell color
denotes the number of points in the cell. Subplots show time evolution with 1%, 5%,
10% and 25% on the top-right, top-left, bottom-right and bottom-left.
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CHAPTER 8

FUTURE WORK

8.1 Summary of the Dissertation

This dissertation focuses on quantifying the impact of various stellar feedback pro-

cesses on the chemistry of their natal molecular cloud complexes. The results from

Chapter 4 have led to two public web applications: Protostar-crs1 allows the user

to explore the protostellar cosmic ray spectrum across the entire physical range of

protostellar masses and Crgen2 allows the user to define their own protostellar pa-

rameters, accretion rate and column density profile to compute the accelerated proton

and electron spectrum and attenuation on the fly. Finally, the last part of the thesis

led to the develop of an extension to the astrochemistry code, 3d-pdr, that includes

cosmic ray attenuation in-situ, which is public on Github3. The work presented in

the dissertation has led to four papers accepted for publication4 in the Astrophysical

Journal (ApJ) with one paper submitted for publication to the Astrophysical Journal

Letters (ApJ).

In Chapter 2, we present the results of an astrostatistics study of the inferred tur-

bulence properties observed using different tracers. We use the spectral correlation

function (SCF), which is a two point correlation function for spectra, to measure the

turbulence properties of a simulated molecular cloud. We utilized a hydrodynamic

1http://protostarcrs.brandt-gaches.space/

2http://crgen.brandt-gaches.space/

3https://uclchem.github.io/3dpdr.html

4Gaches and Offner [81], Gaches et al. [90], Gaches and Offner [148], Gaches et al. [232]
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simulation which was post-processed with a three-dimensional astrochemistry code

producing the spatial distribution of over 200 molecular and atomic species. We per-

formed synthetic observations for a subset of important species for studying molecular

cloud dynamics. We found that the turbulence properties inferred through the SCF

change drastically according to the species used. Our analysis shows that applying

realistic observational noise and beam size convolution is necessary to compare sim-

ulations to observations. We concluded that species separated into three different

density tracers, according to the slope of the SCF: diffuse (C+, OH+, C, CO, and

CN), intermediate (CS, HCN, HNC, OH, HCO+ and SiO) and dense (H2CO, N2H+,

NH3, H2CS and SO).

In Chapter 3, we construct semi-analytic models to generate synthetic proto-

clusters, calculate their luminosity properties and couple their far ultraviolet (FUV)

feedback to molecular cloud chemistry. We calculate the bolometric, FUV and ion-

izing luminosity for clusters hosting between 10 and 106 protostars. We find that

the Tapered Turbulent Core (TTC) accretion model best represents the bolometric

luminosity of observed protoclusters. We couple the FUV radiation from these syn-

thetic protoclusters to one-dimensional astrochemical models covering a wide range

of molecular cloud gas surface densities and star formation efficiencies. We find that

the dense gas thermo-chemistry is significantly altered by the cluster FUV radiation,

heating the gas to a hundred degrees Kelvin. We quantify the impact of protostellar

FUV radiation on the CO-to-H2 conversion factor and conclude that it is necessary

to replicate the high conversion factors found in diffuse star-forming regions.

In Chapter 4, we model the acceleration of cosmic rays in the accretion shocks of

protostars self-consistently using semi-analytic accretion and shock models. We find

that protostars can accelerate cosmic rays protons to energies of 1-20 GeV, with the

primary constraints on their maximum energy being energy losses, diffusion losses

and magnetic field wave dampening. We calculate the cosmic ray ionization rate
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from cosmic rays which are able to escape their natal cores and show that solar-

analogue protostars will provide increased ionization throughout their cores. Our

models are able to replicate the increased ionization rate observed in the intermediate-

mass protocluster OMC-2 FIR 4. Finally, we calculate the total cosmic ray ionization

rate from clusters of protostars and show that clusters hosting more than a few

hundred protostars are able to provide enough cosmic rays to compete with external

galactic sources.

In Chapter 5, we implement a novel astrochemistry code which includes cosmic

ray attenuation in-situ to quantify the impact of different cosmic ray models on the

chemistry of molecular clouds. The new astrochemistry code allows the user to define

the cosmic ray spectrum irradiating the external surface of the cloud rather than a

globally constant cosmic ray ionization rate with the cosmic ray ionization rate now

computed within the code locally at every point. We model star-forming molecular

clouds hosting a wide range in numbers of protostars and including two different

external cosmic ray spectra. We compare the cosmic ray ionization rate computed

in our models to observational surveys and find that our models are reproduce the

observed distribution. We show that the average cosmic ray ionization rate is on

order of 10−16 s−1 rather than the canonical value of 10−17 s−1. We directly test

approximations used to infer the cosmic ray ionization rate from observations of

molecular ions and find that the approximations are only valid locally in regions

with a strong cosmic ray ionization rate and minimal irradiation by FUV radiation.

We find that none of the column density ratios that are typically used are strongly

sensitive to the cosmic ray ionization rate on molecular cloud scales.

The chemistry within molecular clouds is significantly altered due to embedded

cosmic rays. The population of atomic carbon, both neutral and singly ionized, is

greatly enhanced due to the increase in cosmic rays throughout the cloud. Neutral

carbon no longer exists in a thin transitional layer and is instead found throughout the
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cloud. The abundances of molecular ions, particularly N2H+ and HCO+ are enhanced

while neutral molecules, such as CO and NH3 are significantly depleted. We conclude

that including CR attenuation in PDR modeling using realistic cosmic ray spectra

can help break the degeneracy found in astrochemical models between the density,

cosmic ray ionization rate and FUV radiation.

In Chapter 6, we calculate the CO-to-H2 and CI-to-H2 conversion factors using

the astrochemical models presented in Chapter 5. We show that embedded cosmic

rays accelerated by protoclusters decrease both conversion factors. Models including

embedded cosmic rays are consistent with the CO-to-H2 conversion factor measured

in the Milky Way for nearly all models with star formation efficiencies greater than

a few percent. Embedded cosmic rays act to regulate the CO-to-H2 conversion fac-

tor by keeping the total CO brightness constant. Protocluster cosmic rays do not

significantly alter the amount of molecular Hydrogen, and although they dissociate

carbon monoxide, they increase the gas temperature such that the total brightness of

carbon monoxide is relatively constant. We find that the CI-to-H2 conversion factor

is incredibly sensitive to the assumed cosmic ray model. There is a large dispersion in

the CI-to-H2 conversion factor as a function of gas surface density and star formation

efficiency.

Finally, in Chapter 7, we present preliminary results of a giant molecular cloud

simulation hosting a protocluster. We introduce a novel adaptive six-ray algorithm

to calculate the column density attenuating external radiation fields. The novel ap-

proach scales faster than the traditional approach and allows for rapid calculations in

adaptive mesh refinement calculations with many levels. We show that the ray tracing

algorithm accurately replicates the inverse power-law flux scaling for point sources

and the analytic solution for one-sided irradiated models. We simulated a 16,000 M�

molecular cloud including protostellar and external FUV radiation and protostellar

outflows. We find that the resolution of the simulation is unable to properly resolve
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the outflow cavities, disallowing any FUV from escaping the local protostellar en-

vironment. Observational studies of molecular clouds rely on using the line-of-sight

column density as a proxy of the extinction from external radiation fields. We con-

clude that there is a significant dispersion in the average line-of-sight FUV radiation

as a function of the column density. The use of column density as a proxy for the

three-dimensional extinction may result in significant errors.

8.2 Orion2-Krome

Far ultra-violet radiation is of particular importance for the chemistry in molec-

ular gas. Currently, in Orion2, the FUV radiation transfer is not directly coupled

to the gas. Future developments of Orion2 will couple the hydrodynamic code to

the microphysics package Krome[17]5. Krome enables the user to define a chemical

network and includes a wide range of thermodynamic physics, of particular impor-

tance is cooling due to the molecular line emission and heating from cosmic rays and

far ultraviolet radiation. In order to properly model the chemistry, the far ultraviolet

radiation must include self-shielding from molecular Hydrogen and carbon monoxide.

We plan to implement an accurate self-shielding prescription using tabulated equiv-

alent widths as a function of Doppler broadening and molecular hydrogen column

density[316]. The ray tracing algorithm is easily expanded to include the necessary

frequency bins to accomplish this. Once self-shielding is implemented, we will couple

far ultraviolet radiation to the chemistry implemented in Orion2 through Krome.

Orion2-Krome will be used to perform simulations of protostellar cores and

molecular clouds. The results of the simulations will be post-processed to generate

predictions for the CI and CO radiation from star-forming molecular clouds. The

simulations will also provide the density, temperature, far ultraviolet radiation and

5http://www.kromepackage.org
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abundances of simple molecules throughout the domain. These will be used as in-

puts into 0-dimensional astrochemical codes that allow the inclusion of sophisticated

gas-grain chemistry. The result of the post-processed chemistry will be the three-

dimensional evolution of hundreds of molecules, from diatomic hydrides to complex

organics.

8.3 High Energy Feedback

Molecular clouds are not just irradiated by far ultraviolet and ionizing ultraviolet

radiation, but can also be immersed in high energy radiation such as x-rays and

cosmic rays. Protostars have been shown to be x-ray bright during their Class I and

II stages, and likely emit substantial x-rays at earlier times [317, 318]. Furthermore,

nearby supernova increase the x-ray radiation impinging on the surface of molecular

clouds from the hot plasma in the resulting shocks [319]. Currently, hydrodynamic

simulations and astrochemical models of star-forming molecular clouds do not include

embedded x-ray ionization sources. X-ray radiation from protostars will couple to the

gas in a similar fashion as cosmic rays. We will include protostellar x-ray radiation

and diffuse x-ray emission from supernova shocks in simulations of cluster formation

and the collapse of isolated cores.

Cosmic rays are known to traverse through molecular gas in complex ways [15].

Cosmic rays undergo significant energy losses due to Coulomb interactions, ionizing

interloping gas and pion production. Low energy cosmic rays couple to magnetic fields

leading to streaming instabilities, mirroring, focusing, and anisotropic diffusion, with

each effect being strongly dependent on the magnetic field strength. We plan to

include magnetic field coupling to the cosmic ray transport implemented in Flash

[240] to simulate protostellar cores and molecular clouds. Finally, the full cosmic

ray transport equation can be solved in one-dimension numerically. Currently, the
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expanded 3d-pdr includes cosmic ray attenuation only, which will be extended to

solve the full transport equation.

The end stages of star formation feedback is typically considered to be supernova

resulting from the deaths of high mass stars. However, the compact remnants, such

as black holes and neutron stars, are bright in high energy radiation and accelerate

cosmic rays. We will study the astrochemical impact of the feedback from compact

objects with a blind line survey using the Iram 30-meter radio telescope. We are

targeting a Bok globule at a distance of 6 kpc which is back-irradiated by x-rays from

the nearby microquasar Cygnus X-3 [320, 321]. We have been allocated 14 hours of

time to do a blind line survey between 86 - 118 GHz, encompassing lines from simple

molecules such as CO and CN, molecular ions, and a numerous complex organics and

carbon-chain molecules.
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Klessen, P. C. Clark, T. Peters, D. Derigs, and C. Baczynski. The SILCC (SIm-
ulating the LifeCycle of molecular Clouds) project - I. Chemical evolution of
the supernova-driven ISM. Monthly Notices of the Royal Astronomical Society,
454:238–268, November 2015. doi: 10.1093/mnras/stv1975.

[80] M. Padovani, A. Marcowith, P. Hennebelle, and K. Ferrière. Protostars: Forges
of cosmic rays? Astronomy & Astrophysics, 590:A8, May 2016. doi: 10.1051/
0004-6361/201628221.

[81] Brandt A. L. Gaches and Stella S. R. Offner. Exploration of Cosmic-ray Ac-
celeration in Protostellar Accretion Shocks and a Model for Ionization Rates
in Embedded Protoclusters. The Astrophysical Journal, 861:87, Jul 2018. doi:
10.3847/1538-4357/aac94d.

[82] R. Schlickeiser, M. Caglar, and A. Lazarian. Cosmic Rays and MHD Turbulence
Generation in Interstellar Giant Molecular Clouds. The Astrophysical Journal,
824(2):89, Jun 2016. doi: 10.3847/0004-637X/824/2/89.

[83] A. Dalgarno. Interstellar Chemistry Special Feature: The galactic cosmic ray
ionization rate. Proceedings of the National Academy of Science, 103:12269–
12273, August 2006. doi: 10.1073/pnas.0602117103.

[84] Rachael E. Ainsworth, Anna M. M. Scaife, Tom P. Ray, Andrew M. Taylor,
David A. Green, and Jane V. Buckle. Tentative Evidence for Relativistic Elec-
trons Generated by the Jet of the Young Sun-like Star DG Tau. The Astro-
physical Journal, 792(1):L18, Sep 2014. doi: 10.1088/2041-8205/792/1/L18.
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[86] C. Ceccarelli, C. Dominik, A. López-Sepulcre, M. Kama, M. Padovani, E. Caux,
and P. Caselli. Herschel Finds Evidence for Stellar Wind Particles in a Proto-
stellar Envelope: Is This What Happened to the Young Sun? The Astrophysical
Journal Letters, 790:L1, July 2014. doi: 10.1088/2041-8205/790/1/L1.

[87] L. Podio, B. Lefloch, C. Ceccarelli, C. Codella, and R. Bachiller. Molecular ions
in the protostellar shock L1157-B1. Astronomy & Astrophysics, 565:A64, May
2014. doi: 10.1051/0004-6361/201322928.
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[109] C. Kramer, M. Cubick, M. Röllig, K. Sun, Y. Yonekura, M. Aravena, F. Bensch,
F. Bertoldi, L. Bronfman, M. Fujishita, Y. Fukui, U. U. Graf, M. Hitschfeld,
N. Honingh, S. Ito, H. Jakob, K. Jacobs, U. Klein, B.-C. Koo, J. May, M. Miller,
Y. Miyamoto, N. Mizuno, T. Onishi, Y.-S. Park, J. L. Pineda, D. Rabanus,
H. Sasago, R. Schieder, R. Simon, J. Stutzki, N. Volgenau, and H. Yamamoto.
Clumpy photon-dominated regions in Carina. I. [C I] and mid-J CO lines in
two 4’x4’ fields. Astronomy & Astrophysics, 477:547–555, January 2008. doi:
10.1051/0004-6361:20077815.

[110] P. P. Papadopoulos, W.-F. Thi, and S. Viti. CI lines as tracers of molecular gas,
and their prospects at high redshifts. Monthly Notices of the Royal Astronomical
Society, 351:147–160, June 2004. doi: 10.1111/j.1365-2966.2004.07762.x.

[111] Simon C. O. Glover, Paul C. Clark, Milica Micic, and Faviola Molina. Modelling
[C I] emission from turbulent molecular clouds. Monthly Notices of the Royal
Astronomical Society, 448:1607–1627, Apr 2015. doi: 10.1093/mnras/stu2699.

[112] S. S. R. Offner, T. G. Bisbas, T. A. Bell, and S. Viti. An alternative accurate
tracer of molecular clouds: the ‘XCI-factor’. Monthly Notices of the Royal
Astronomical Society, feb 2014. doi: 10.1093/mnrasl/slu013.

[113] M. G. Wolfire, D. Hollenbach, and C. F. McKee. The Dark Molecular Gas. The
Astrophysical Journal, 716:1191–1207, jun 2010. doi: 10.1088/0004-637X/716/
2/1191.

[114] J. K. Truelove, R. I. Klein, C. F. McKee, J. H. Holliman, II, L. H. Howell,
J. A. Greenough, and D. T. Woods. Self-gravitational hydrodynamics with
three-dimensional adaptive mesh refinement: Methodology and applications to
molecular cloud collapse and fragmentation. The Astrophysical Journal, 495:
821–852, March 1998. doi: 10.1086/305329.

[115] R. I. Klein. Star formation with 3-D adaptive mesh refinement: the collapse
and fragmentation of molecular clouds. Journal of Computational and Applied
Mathematics, 109:123–152, sep 1999.

[116] S. S. R. Offner, T. G. Bisbas, S. Viti, and T. A. Bell. Modeling the Atomic-
to-molecular Transition and Chemical Distributions of Turbulent Star-forming
Clouds. The Astrophysical Journal, 770:49, jun 2013. doi: 10.1088/0004-637X/
770/1/49.

[117] J. K. Truelove, R. I. Klein, C. F. McKee, J. H. Holliman, II, L. H. Howell,
and J. A. Greenough. The Jeans Condition: A New Constraint on Spatial
Resolution in Simulations of Isothermal Self-gravitational Hydrodynamics. The
Astrophysical Journal Letters, 489:L179+, nov 1997. doi: 10.1086/316779.

[118] M. R. Krumholz, C. F. McKee, and R. I. Klein. Embedding Lagrangian Sink
Particles in Eulerian Grids. The Astrophysical Journal, 611:399–412, August
2004. doi: 10.1086/421935.

237



[119] B. T. Draine. Photoelectric heating of interstellar gas. The Astrophysical Jour-
nal Supplement Series, 36:595–619, apr 1978. doi: 10.1086/190513.
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and A. Sievers. The anatomy of the Orion B giant molecular cloud: A local
template for studies of nearby galaxies. Astronomy & Astrophysics, 599:A98,
January 2017. doi: 10.1051/0004-6361/201629862.

[266] M. W. Pound and F. Yusef-Zadeh. The CARMA 3 mm survey of the inner 0.7
deg x 0.4 deg of the Central Molecular Zone. Monthly Notices of the Royal As-
tronomical Society, 473:2899–2929, January 2018. doi: 10.1093/mnras/stx2490.

[267] Ewine F. van Dishoeck. Astrochemistry of dust, ice and gas: introduction and
overview. Faraday Discussions, 168:9, Jan 2014. doi: 10.1039/C4FD00140K.

[268] Jes K. Jørgensen, Ruud Visser, Nami Sakai, Edwin A. Bergin, Christian Brinch,
Daniel Harsono, Johan E. Lindberg, Ewine F. van Dishoeck, Satoshi Ya-
mamoto, Suzanne E. Bisschop, and Magnus V. Persson. A Recent Accre-
tion Burst in the Low-mass Protostar IRAS 15398-3359: ALMA Imaging of
Its Related Chemistry. The Astrophysical Journal, 779:L22, Dec 2013. doi:
10.1088/2041-8205/779/2/L22.

[269] J. K. Jørgensen, R. Visser, J. P. Williams, and E. A. Bergin. Molecule subli-
mation as a tracer of protostellar accretion. Evidence for accretion bursts from
high angular resolution C18O images. Astronomy & Astrophysics, 579:A23, Jul
2015. doi: 10.1051/0004-6361/201425317.

[270] C. de Boisanger, F. P. Helmich, and E. F. van Dishoeck. The ionization fraction
in dense clouds. Astronomy & Astrophysics, 310:315–327, June 1996.

[271] F. F. S. van der Tak and E. F. van Dishoeck. Limits on the cosmic-ray ionization
rate toward massive young stars. Astronomy & Astrophysics, 358:L79–L82, June
2000.

252



[272] D. A. Neufeld, J. R. Goicoechea, P. Sonnentrucker, J. H. Black, J. Pearson,
S. Yu, T. G. Phillips, D. C. Lis, M. de Luca, E. Herbst, P. Rimmer, M. Gerin,
T. A. Bell, F. Boulanger, J. Cernicharo, A. Coutens, E. Dartois, M. Kazmier-
czak, P. Encrenaz, E. Falgarone, T. R. Geballe, T. Giesen, B. Godard, P. F.
Goldsmith, C. Gry, H. Gupta, P. Hennebelle, P. Hily-Blant, C. Joblin, R. Ko los,
J. Kre lowski, J. Mart́ın-Pintado, K. M. Menten, R. Monje, B. Mookerjea,
M. Perault, C. Persson, R. Plume, M. Salez, S. Schlemmer, M. Schmidt,
J. Stutzki, D. Teyssier, C. Vastel, A. Cros, K. Klein, A. Lorenzani, S. Philipp,
L. A. Samoska, R. Shipman, A. G. G. M. Tielens, R. Szczerba, and J. Zmuidzi-
nas. Herschel/HIFI observations of interstellar OH+ and H2O+ towards W49N:
a probe of diffuse clouds with a small molecular fraction. Astronomy & Astro-
physics, 521:L10, October 2010. doi: 10.1051/0004-6361/201015077.

[273] David A. Neufeld and Mark G. Wolfire. The Cosmic-Ray Ionization Rate in
the Galactic Disk, as Determined from Observations of Molecular Ions. The
Astrophysical Journal, 845:163, August 2017. doi: 10.3847/1538-4357/aa6d68.

[274] Tobias Albertsson, Jens Kauffmann, and Karl M. Menten. Atlas of Cosmic-Ray-
induced Astrochemistry. The Astrophysical Journal, 868:40, November 2018.
doi: 10.3847/1538-4357/aae775.

[275] Paul C. Clark, Simon C. O. Glover, Ralf S. Klessen, and Ian A. Bonnell. How
long does it take to form a molecular cloud? Monthly Notices of the Royal
Astronomical Society, 424:2599–2613, Aug 2012. doi: 10.1111/j.1365-2966.2012.
21259.x.

[276] D. Seifried, S. Walch, P. Girichidis, T. Naab, R. Wünsch, R. S. Klessen, S. C. O.
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