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ABSTRACT 

SELF-EXFOLIATING AND REACTIVE POLYMER (SERP) AS A 

PROTECTION AGAINST CHEMICAL WARFARE AGENTS (CWAs) 

SEPTEMBER 2019 

SOEUN KIM, B.S., CHONBUK NATIONAL UNIVERSITY 

M.S., CHOUNBUK NATIONAL UNIVERSITY 

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

PH.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Kenneth R. Carter 

According to the US army report, there are still significant numbers of stockpiles of 

chemical warfare agents (CWAs) produced during the Second World War. CWAs 

production and stockpiling were officially outlawed by the Chemical Weapons 

Convention of 1993. Nevertheless, some fanatics around the world use CWA as a 

weapon of mass destruction, such as the Sarin gas attack in Syria in 2013. Since the 

discovery that toxic pentavalent organophosphorus (OP) compounds has facilitated the 

development of CWAs as well as insecticides, research on developing protective 

materials against those toxins have become a priority. Simply, those poisonous 

molecules are referred to as a “nerve agent” because it prevents nervous system from 

transferring messages by forming a covalent bond with nerve enzyme, referred to as 

acetylcholinesterase. As a result of this chemical interference, organs are tightly 

constricted and muscles cannot relax displying noticeable physical symptoms: 
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contraction of the pupils, excessive mucus, tears and sweat, nausea, vomiting, chest 

tightness, loss of bowel control like urinating and defecating, and eventually coma or 

death. Remarkably, even trivial amount of toxins (LD50: ~10 µg/kg) is enough to cause 

those severe results. Those OP-based compounds can be facilely hydrolyzed by strong 

base, such as sodium hydroxide and converted to non-toxic compounds. However, this 

chemical reaction is highly vigorous, generating excess heat. Therefore, it is important 

to develop a mild catalyst, which can be employed in fabrics or mask for protective 

garment applications. This can be achieved by selecting organo-based, nucleophiles 

such as amines, or pyridine-aldoxime. With these organo-based nucleophilic materials, 

it may be possible to fabricate personal protective equipment to prepare for sudden 

CWA attacks.  

The ultimate goal of this project is the fabrication of a protective polymer which can 

be easily coated on fabric, essentially creating a “second skin”. Protection can be 

achieved by blocking permeation of toxins through layer and simultaneously 

detoxifying molecules through chemical modification Furthermore, we challenge 

ourselves to regenerate fresh reactive layers by physically destructing contaminated 

area, referred to as a self-exfoliation. Chapter 1 briefly describes the concept of self-

exfoliating and reactive polymer (SERP) layer as a protection against CWAs and how 

to experimentally accomplish and evaluate. Chapter 2 introduces a stimuli-responsive, 

self-exfoliating polymer with promising acid-sensitive, acetal/ketal-based crosslinkers 

that exhibit self-exfoliation at room temperature. Synthesis of acid-sensitive crosslinker 

and their acid-hydrolysis kinetics were studied. Chapter 3 focuses on developing a 
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nucleophilic polymer as a CWA reactant to decontaminate organophosphate-based 

nerve agents. Chapter 4 evaluates a reactive polymer layer by investigating moisture-

vapor transmission rate (MVTR), permeation of nerve agents through polymer films by 

using Surface-Enhanced Raman Spectroscopy (SERS). Chapter 5 describes 

conclusions and future work.  
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CHAPTER 1 
SELF-EXFOLIATING AND REACTIVE POLYMER (SERP) AS A 

PROTECTION AGAINST CHEMICAL WARFARE AGENTS (CWAs) 
 

Up-to-date chemical protection garments can reduce the risk of chemical exposure 

by using smaller pore size than toxins in fabric structures, where toxins cannot penetrate 

through the barrier materials or are based on heavyweight full-barrier protection or 

permeable adsorptive protective over-garments that cannot meet the critical demand of 

simultaneous high comfort and protection, and provide a passive rather than 

active/dynamic response to the environmental threat. However, toxins can eventually 

permeate through the barrier materials via absorption, diffusion, or desorption at the 

molecular level, rendering them to single or limited-use protective clothing.1 To 

overcome this limitation, and enhance the comfort and protection of warfighters in the 

battlefield and during operations in diverse climates, new technologies and material 

assemblies are required for the fabrication of advanced multifunctional garments that 

allow high water vapor transport rates (MVTR) while blocking toxic chemicals and 

bio-threats. There is a continuing need for technological advancements to ameliorate 

the dangers presented by weaponized biological and chemical agents and their use by 

either identified forces or terrorist organizations. The nature and severity of these 

threats is well-known and is an active area of research with the majority of work being 

in the area of threat detection rather than threat reduction. 3 

We are developing new approaches for in-the-field protection from 

organophosphate-based nerve chemical warfare agents (CWAs), exploring the use of 

reactive nucleophilic compounds embedded in a thin protective layer. Upon CWA 
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challenge, the latter actively reacts with the toxin, neutralizes the threat and then self-

exfoliates, removing the compromised layer and exposing fresh protective under-layers. 

This process mimics the function of natural living skin where blistering and peeling 

occurs when overcome by dangerous external factors. The artificial exfoliation requires 

specially designed stimuli responsive materials. The stimuli in this case are the highly 

acidic byproducts formed during the neutralization of highly nucleophilic CWAs. We 

are developing layers that when exposed to CWAs, first neutralize the threat as it 

diffuses into the layer and concurrently the acidic byproducts of the neutralization 

initiate reactions that destabilize the contaminated regions of the matrix leading to 

exfoliation of the compromised areas and re-exposing fresh uncontaminated protective 

layers. 

 

Figure 1.1. Current military garment for protecting against chemical warfare agent 
threat (http://www.militarysystems-tech.com/) 



3 
 

 

Figure 1.2. Schematic illustration of Self-Exfoliation and Reactive Polymer (SERP) 
as a protection against CWAs (above) and its multi-responsive mechanism (below) 

Self-exfoliating and reactive polymer (SERP) as a protection against CWAs is 

composed of nucleophilic reactants or catalyst for decontaminating organophosphate-

based nerve agents (Figure 1.2), and acid-sensitive crosslinkers to induce self-

exfoliation by using a transition from insoluble network to soluble linear polymer. Here, 

we are specifically targeting organophosphate-based nerve agents which can be simply 

hydrolyzed to non-toxic OP compounds by nucleophiles. This reaction also produces 

an acidic byproduct such as HF or HCl. This harmful acid can trigger hydrolysis 

reaction on the acid-sensitive crosslink junction. From this hydrolysis reaction of 

crosslinker, we can reveal self-exfoliate of contaminated area while also consuming the 

harmful acid. 
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Figure 1.3 Chemical structures of nerve agents and nerve agent simulants 
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CHAPTER 2 

ACID-STIMULI RESPONSIVE POLYMER FOR SELF-EXFOLIATION 

2.1 Introduction: Acid-sensitive Polymers and Hydrolysis Kinetic Study 

pH-sensitive polymers and gels have been intensively studied among the stimuli-

responsive systems that can show spontaneous physical or chemical changes in 

response to external stimuli such as temperature, mechanical stress, and ionic strength. 

These pH-sensitive polymer systems can be used in bio-related areas such as in drug-

delivery systems (DDS), as well as diagnostic and sensing applications because of the 

various pH ranges found in human organs and pH differences between normal tissue 

and tumor tissue.4-8 For example, using changes in pH as the external stimuli can drive 

reversible changes in volume by tuning the ionization states of polyelectrolytes or even 

irreversibly change solubility via cleavage of acid-degradable crosslinked positions in 

the crosslinked or linear polymer.9 Polymers containing acid-degradable linkages have 

also been exploited in lithographic patterning where high temperature or strong acids 

are often required to strip resist after patterning.10-12 The use of these acid-sensitive 

materials not only provide protection of the silicon substrates from undesired damage 

but also leads to milder condition for post-process substrate cleaning, thus lowering 

production costs.  

There are a variety of acid-degradable systems based on chemistries including 

tertiary esters, orthoesters, acetal/ketals, imines, hydrazones, and cis-aconityls – many 



6 
 

of these are also frequently used as protective groups in organic synthesis.9 For example, 

polystyrene based nanogels crosslinked by tertiary ester dimethacrylates have been 

reported and their degradation was demonstrated by treating the samples at 90 ºC for 

24 hr leading to their conversion from spherical gel particles to soluble linear 

polymers.13 Acid-sensitive brush polymers were grown from silicon substrates utilizing 

a tertiary ester-based tethering group. Layers with different brush thickness were 

demonstrated and these brushes could be easily removed by treatment with aqueous 

media.14 Among the many acid-sensitive functional groups, acetal based crosslinkers 

have various advantages including ease of synthesis, easy hydrolysis at room 

temperature that occurs within reasonable time at various acidic pH ranges, stability at 

neutral or mildly alkaline conditions, and versatile tuning of degradation rate by 

changing the substituent group at the acetal position. 

The degradation rates of hydrogels or polymers which are covalently bonded with 

acid-degradable monomers have been studied using a variety of methods. Hydrophilic 

water-soluble materials can be easily characterized in water-based pH buffer solutions 

without any complications due to diffusion. These measurements can be made using 1H 

NMR by observing the disappearance of proton signal corresponding to acid-sensitive 

functional groups,15 or by tracking molecular weight changes using gel permeation 

chromatography (GPC).16 Acid-degradable linear polymers have been synthesized via 

step-polymerization involving the Michael addition reaction with acetal containing 

monomers, direct acetal forming polymerization using diols with divinyl ether17, or 

acyclic diene metathesis (ADMAT) from divinyl monomers with Grubbs’ catalyst.5 All 
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these procedures require long reaction times, high monomer purity, and precise control 

of stoichiometry for high molecular weight. Most linear step-growth polymers will not 

retain their shape after degradation because the resulting products consist of smaller 

molecules which can be easily washed away after hydrolysis. In the case of materials 

crosslinked by simple radical polymerization, the monomers themselves can be selected 

from those having more than one polymerizable group. After hydrolysis, only the 

crosslinker units will be severed while the linear portion of the polymer remains mainly 

intact. This can lead to partial shape retention and lends utility of these types of 

materials to be used in molding operations where the networks can be formed by 

thermal or UV-initiated polymerization. For these reasons and others, acid-degradable 

crosslinked films are ideal candidates for the development of self-exfoliating garments, 

which can facilitate the selective removal of contaminated areas by acidic stimuli but 

maintain its overall original integrity. The pH range which triggers this degradation 

could be specifically varied depending on external stimuli.  

While networks that controllably degrade in the presence of external stimuli have 

many potential applications, there has been little activity in studying the acid-catalyzed 

hydrolysis kinetics of ketal and acetal functional groups present in network films. It is 

challenging to quantitatively measure how quickly acid-sensitive groups can be 

hydrolyzed in crosslinked systems, mainly due to the slow diffusion of aqueous buffer 

solutions and the relatively small mass loss during the decomposition of the crosslinker 

units. In the case of acid-sensitive nano- or micro-gel particles, the degradation rate can 

be indirectly examined by observing particle size changes, for example by using 
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dynamic light scattering (DLS) while taking into account any swelling effect.18 The 

hydrolysis of acid-degradable crosslinked polymer films can be discontinuously 

measured by monitoring fractional mass loss by repeatedly incubating gels in buffer 

solution and drying.19 However, if the mass loss during hydrolysis is too small, it can 

be very difficult to measure the mass change after each degradation cycle.  

2.2 Project Goal 

In this project, various acid sensitive dimethacrylate-functionalized acetal/ketal-

based crosslinker monomers were synthesized. Acetal and ketal were chosen due to 

their acid sensitivity at ambient temperature at which self-exfoliation under CWA 

attack happens. 1H NMR and UV-Vis spectroscopy were employed for hydrolysis 

kinetic study under different acidic environments. Acid-degradable network films 

simply composed of hydrophilic or hydrophobic commercially available monomers 

with the synthesized crosslinkers will be prepared and their degradation kinetics will 

be investigated by using Gas Chromatography-Mass Spectroscopy (GC-MS). Overall, 

hydrolysis rate of crosslinked system will be controlled with hydrophilicity of 

comonomers and crosslinking density (mol % of crosslinkers). Eventually, we can 

understand how fast acid-sensitive groups can be hydrolyzed at certain conditions and 

this information will be employed in combination with reactive polymers for 

decontaminating OP compounds. 
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2.3 Experimental 

2.3.1 Methacrylate-functionalized Acetal/Ketal-based Crosslinker 

Vinyl-terminated acetal/ketal-based, acid-sensitive crosslinkers can be prepared by 

reaction of alcohol with acetone or aldehyde in acatalytic amount of acid. By tuning 

substituent group and hydrophilicity, hydrolysis rate is expected to be controlled. 

 

 

Figure 2.1 Synthetic scheme: divinyl-functionalized acetal/ketal-based 
crosslinkers20 

Materials used for synthesis are Hydroxyethylmethacrylate (HEMA, Acros Organics, 

97%), methyl methacrylate (MMA, Acros Organics, 99%), poly(ethylene glycol) 

methacrylate (PEG-MA, average Mn: 360 g/mol, Aldrich), 2,2-dimethoxypropane 

(DMP, Acros Organics, 98%), p-toluenesulfonic acid monohydrate (pTSA, Aldrich, 

98.5%), molecular sieves (4Å) (Alfa Aesar), p-methoxybenzaldehyde (pMBA, Alfa 

Aesar, 98%), m-methoxybenzaldehyde (mMBA, Alfa Aesar, 98%), 5-hexen-1-ol (TCI, 

95%), triethylamine (TEA, Acros Organics, 99%), anhydrous tetrahydrofuran (THF) 

(EMD chemicals, 99.9%), cyclohexane (Fisher Scientific, 99%), pentaerythritol 
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tetrakis(3-mercaptopropionate) (PTMPA, Aldrich, 95%), pH buffer solution (pH1~5, 

Fluka) were used without further purification. Azobisisobutyrontitrile (AIBN, Aldrich, 

98%) was recrystallized before use. 

Instruments used for characterizing are 1H and 13C NMR spectra were recorded on a 

Bruker Avance 400 (400 MHz) spectrometer. Chemical shifts were referenced relative 

to residual solvent peaks in deuterated solvents, chloroform (CDCl3) and deuterium 

oxide (D2O). UV-Vis spectroscopy was performed on a Cary 50 UV-Vis absorption 

spectrometer with 1 cm path length quartz cuvettes at room temperature. GC-MS was 

performed using a HP 5890 GC-MS (Agilent DB-5ms column consisting of a fused 

silica capillary, 30 m length, 0.2 mm inner diameter and 0.325 µm film thickness) 

injecting 2 µL of dilute solution and ramping from room temperature to 350 °C. 

Synthesis of crosslinkers are described as follow. CL2: Synthesis based on a literature 

procedure was followed and optimized.7 In a 250 mL round bottom flask, 0.55 g of 

pTSA (2.91 mmol, 0.07 equiv.) were dissolved in THF and molecular sieves were then 

added to the solution. After 15 min, 13.53 g HEMA (104 mmol, 2.5 equiv.) and 4.3 g 

2,2-DMP (41.6 mmol, 1 equiv.) were added and the mixture was stirred for 6 hours at 

room temperature. The reaction was quenched by adding ~3 mL TEA (pH > 7), the 

molecular sieves were removed by filtration and solvent was evaporated in vacuum. 

After removing solvent, the transparent liquid residue was purified by column 

chromatography with silica gel (ethyl acetate:hexane:TEA=10:90:1, v/v). The resulting 

product was obtained as a slightly yellow viscous oil (40% yield). 1H NMR of CL2 

(400 MHz, CDCl3, TMS standard, r.t.): δ=6.10 (m; 2H), 5.55 (m; 2H), 4.26 (t; 4H), 3.69 
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(t; 4H), 1.93 (s; 6H), 1.37 (s; 6H). 

 

Figure 2.2 1H NMR of CL2 

We utilized a similar procedure to synthesize CL3 as described above for CL2 except 

substituting 5 g PEG-MA (13.89 mmol, 2.3 equiv.) in place of HEMA. The reaction 

was quenched by adding with ~0.5 mL TEA (pH > 7) and the molecular sieves were 

removed by filtration and solvent was evaporated in vacuum. Product was obtained as 

a viscous yellow liquid. By comparing the integration ratio in 1H NMR (CDCl3) spectra 

it was confirmed that it is mixture of unreacted PEG-MA and CL3 (3.38:1). CL3, with 

the un-functionalized PEG-MA impurity was used without further purification 
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Figure 2.3 1H NMR of CL3 as prepared (a mixture of desired crosslinker CL3 and 
unreacted PEG-MA with 1 to 3.38 molar ratio) 

 pMBA or mMBA 5 g (36.7 mmol, 1 equiv.) and 19.1 g HEMA (146.8 mmol, 4 

equiv.) were charged in a 100 mL round bottom flask and placed in an ice-bath in the 

presence of 0.49 g pTSA (2.57 mmol, 0.07 equiv.) and stirred over 4 Å molecular sieves 

for 6 hours. The reaction was quenched by adding ~1 mL TEA and the solution was 

diluted with tetrahydrofuran (THF) and molecular sieves were filtered. The crude 

product was purified by column chromatography with silica gel using a solvent mixture 

(hexane: dichloromethane: TEA = 85:5:10, v/v) as the eluent. The compounds CL4p 

and CL4m were both obtained as colorless transparent viscous liquid in approximately 

35 % yield. 1H NMR of CL4p (400 MHz, CDCl3, TMS standard, r.t.): δ=7.4 (d; 2H), 

6.9 (d; 2H), 6.12 (m; 2H), 5.65 (s; 1H), 5.57 (m; 2H), 4.33 (t; 4H), 3.81 (s; 3H), 3.75 (t; 

4H), 1.95 (s; 6H), 13C NMR of CL4p (100 MHz, CDCl3): δ=167.25, 159.77, 136.15, 

129.87, 127.94, 125.71, 113.58, 100.97, 63.70, 62.68, 55.24, 18.30, 1H NMR of CL4m 
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(CDCl3): δ=7.29 (d; 1H), 7.04 (t; 2H), 6.87 (d; 1H), 6.12 (m; 2H), 5.65(s; 1H), 5.57 (m; 

2H), 4.35 (t; 4H), 3.80 (s; 3H), 3.75 (t; 4H), 1.95 (s; 6H), 13C NMR of CL4m (100 MHz, 

CDCl3): δ=167.20, 159.67, 139.23, 136.14, 129.31, 125.69, 118.98, 114.18, 112.14, 

100.89, 63.64, 62.85, 55.17, 18.27. 

 

Figure 2.4 1H NMR of CL4m 
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Figure 2.5 13C NMR of CL4m 

 

Figure 2.6. 1H NMR of CL4p 
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Figure 2.7. 13C NMR of CL4p 

A 40 mL round bottom flask fitted with a Dean-Stark trap filled with 25 mL of 

cyclohexane was charged with 3 g 5-hexen-1-ol (0.03 mol, 3 equiv.), 1.36 g mMBA 

(0.01 mol, 1 equiv.) and 0.02g pTSA (0.1 mmol, 0.01 equiv.), and 40 mL cyclohexane. 

The solution was refluxed at 100 °C for 18 hr and distilled water was periodically 

removed from the trap. After cooling to room temperature, the reaction was quenched 

by adding ~ 1mL TEA. The crude product was purified by column chromatography 

with silica gel using mixture of hexane: dichloromethane: TEA (85:5:10, v/v). as the 

eluent. V-CL4 was obtained as colorless transparent liquid (Yield: 80 %). 1H NMR of 

V-CL4m (400 MHz, CDCl3, TMS standard, r.t.): δ=7.3 (t; 1H), 7.07 (d; 2H), 6.89 (d; 

1H), 5.84 (m; 2H), 5.50 (s; 1H), 5.0 (m; 2H), 3.84 (s; 3H), 3.58 (t; 4H), 2.09 (m; 4H), 

1.64 (m; 4H), 1.51 (m; 4H) 
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Figure 2.8 1H NMR of V-CL4m 

2.3.2 Hydrolysis Kinetic Study by 1H NMR: Water-soluble Crosslinker 

If the molecule is water-soluble, hydrolysis kinetics will be straightforwardly 

achieved by observing 1H NMR spectra with different time intervals. The phosphate 

buffer solution with specific pH in deuterium oxide (D2O) can be prepared by mixing 

with a known volume of the primary salt solution and diluted with D2O. Samples will 

be kept at room temperature in between measurements. The ratio of hydrolyzed 

molecule and intact molecule at time t will be determined by comparing the 

disappearance of the protons on acetal/ketal group, or appearance of protons of acetone 

or aldehyde from 1H NMR spectra. The half-life of hydrolysis can be determined as 

(ln2)/kd, where kd is a negative value of the slope obtained by plotting ln([M]t/[M]0) vs 

incubation time t where [M]t and [M]0 are the relative peak integrations at time t and 
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initial time.  

A stock solution of deuterium phosphate buffer solutions was prepared by mixing 

adjusters (see Table below) with a known volume of the primary salt solution and 

diluted to a total volume of 2 mL with D2O. (KCl: potassium chloride, KHP: potassium 

hydrogen phthalate, DCl: deuterium chloride, NaOH: sodium chloride) 

Table 1. Preparation of D2O buffer solutions20 

pH1 2.5 ml of 0.2 M KCl + 6.7 ml of 0.2 M DCl 

pH2 2.5 ml of 0.2 M KCl + 0.65 ml of 0.2 M DCl 

pH3 5 ml of 0.1 M KHP + 2.23 ml of 0.1 M DCl 

pH4 5 ml of 0.1 M KHP + 0.01 ml of 0.1 M DCl 

pH5 5 ml of 0.1 M KHP + 2.26 ml of 0.1M NaOH 

 

2.3.3 Hydrolysis Kinetic Study by UV-Vis Spectroscopy 

The pH-dependent hydrolysis can be studied by observing the increase of absorbance 

in the UV-Vis spectra corresponding to the generation and extraction of the aromatic 

aldehydes, mMBA or pMBA which are the product of hydrolysis. Absorbance can be 

measured at different time intervals for each of the pH buffered solutions and used to 

construct the kinetic plot and calculate the half-life (t1/2) of hydrolysis. The kinetic plot 

was obtained by using following equation, where At, A0, A∞ are absorbance at time t, 

initial, and theoretical 100% hydrolysis, respectively. 

− ln �
[𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶]𝑡𝑡
[𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶]0

� = = −𝐶𝐶𝐶𝐶 �
(𝐴𝐴∞ − 𝐴𝐴𝑡𝑡)
(𝐴𝐴∞−𝐴𝐴0)

� 
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2.3.4 Hydrolysis Kinetic Study by GC-MS: Insoluble Crosslinked film 

 
Figure 2.9 (a) Hydrolysis of CL4m-based networks and (b) schematic representation 

of network degradation experiment for the GC-MS study20 

Crosslinked films can be prepared in 20 mL scintillation vials by thermally initiated 

polymerization of monomers and acid sensitive crosslinkers. In a typical 

polymerization, a vial is loaded with monomer, crosslinker and AIBN as an initiator 

which can be dissolved in a small amount of organic solvent. Polymerization can be 

accomplished by heating the vial to 60 ~ 90 °C for 20 min under N2. After 

polymerization the crosslinked polymer formed a film in the bottom of the vial. The 

films are rinsed with hexane several times to extract unreacted monomers and any 

mMBA that may have formed during the reaction. The films are dried under vacuum at 

room temperature to remove residual ether. To study network hydrolysis, each vial was 

filled with pH buffer solution to trigger acidic hydrolysis and hexane to which 1 mg/mL 

of hexadecane (as an internal standard) will be added. Released mMBA from hydrolysis 

of network will be only molecule that diffuses into hexane layer. At prescribed times, 2 

µL of the hexane phase will be taken by syringe and analyzed by GC-MS. In the case 

of thiol-ene crosslinked films between V-CL4m and pentaerythritol tetrakis(3-
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mercaptopropionate) (2:1 molar ratio), the polymerization was conducted under N2 

using UV irradiation (365 nm) without initiator for 15 min. The exact film compositions 

are shown in the Table 2. 

Table 2. Acid-degradable film compositions (molar ratio), hydrolysis solution pH, and 
t1/2 of crosslinker. 

Monomer Crosslinker pH t1/2
 (hr) 

HEMA CL4m   

30 1 (3.2 mol%) 

5 Non-measurable 

4 533 hr 

3 160 hr 

2 33 hr 

1 

25 hr 

10 1 (9 mol%) 125 hr 

1 1 (50 mol%) 521 hr 

0.5 1 (66 mol%) 713 hr 

MMA CL4m   

30 1 (3.2 mol%) 1 ~5 No degradation observed 

4-thiol V-CL4m   

1 2 (66 mol%) 

5 837 hr 

4 460 hr 

3 106 hr 

2 45 hr 

1 25 hr 

 To study network hydrolysis each vial was filled with pH buffer solution (2 mL) 

and 2 mL of hexane to which 1 mg/mL of hexadecane (as an internal standard) had been 

added. At prescribed times 2 µL of the hexane phase were taken by syringe and analyzed 

by GC-MS. For quantitative study, calibration curve of releasing molecule with internal 
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standard was constructed. 

 

Figure 2.10. GC-MS from mixture of mMBA and hexadecane (internal standard) in 
hexane (a) and calibration curve (b): To construct calibration curve, each solution 
contains different concentration of mMBA with same concentration of internal standard 
(hexadecane). From the GC-MS, calibration curve can be built from response ratio 
between two molecules vs amount ratio from concentration ratio20 

2.4 Results and Discussion 

2.4.1 Acid-sensitive crosslinkers 

The ketal crosslinkers were synthesized by reacting 2,2-dimethoxypropane (DMP) 

with either HEMA (yielding CL2) or PEG-MA (average Mn: 360 g/mol) (yielding CL3) 

in the presence of a catalytic amount of pTSA with or without solvent. The acetal 

crosslinkers were made by condensing HEMA with either pMBA (yielding CL4p), or 

mMBA (yielding CL4m) with acid catalysis. In the case of V-CL4m, 5-hexen-1-ol was 

condensed with mMBA. In all cases care was taken to remove either the methanol or 

water formed during the reaction thereby favoring the formation of product and 

reducing the back reaction. Water removal was accomplished by performing the 

reaction over dried molecular sieves or through in situ distillation of water or methanol 

and removal using a Dean-Stark trap to increase yield. In the case of distillation, we 
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note that raising the reaction temperature to the boiling point of methanol or water 

sometimes led to an undesirable polymerization of the monomers, especially in the case 

of the methacrylates, giving a low yield of product. During purification by column 

chromatography, the slightly acidic silica gel led to undesirable hydrolysis, but this 

could be avoided by adding small amount of TEA to the eluent. For similar reasons, 

after column purification, it is very important to avoid evaporating the solvent at high 

temperature as this also leads to decomposition of the product. The monomers were 

kept at 0 ºC to prevent degradation or polymerization before use.  

CL3 is so sensitive to hydrolysis and hydrophilic due to the PEG content that no 

purification was attempted after quenching the reaction with TEA and the only post-

reaction processes were removal of salts and molecular sieves by filtration. 1H NMR 

analysis reveals that the ratio of PEG-MA and CL3 was 1: 3.38. This ratio was 

determined by comparing integration ratio of methacrylate CH3 (δ=1.9) and acetal CH3 . 

The methacrylate-based crosslinkers (CL2, CL4m, CL4p, and CL3) were all isolated in 

low yields (20 ~ 40 %) which is inevitable due to insufficient removal of water or 

methanol during the reaction. However, the starting materials are not very expensive. 

Work continues to find ways of increasing the yields which would be especially useful 

when using more expensive or less available starting materials. It was also challenging 

to isolate the acetal products from residual mMBA or pMBA by column 

chromatography due to the very close Rf values of each material. The exception was V-

CL4m which was synthesized in the same manner as the other monomers except we 

were able to employ a Dean-Stark and run these reactions at a higher temperature to 
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remove water instead of using molecular sieves. This effective water elimination gives 

higher yield (80%) compared to low temperature reaction in the presence of molecular 

sieves. The resistance of 5-hexen-1-ol and V-CL4m to undergo undesired thermal 

polymerization at elevated temperatures was important. V-CL4m was used for 

crosslinked films with multi-functional thiol monomers using the thiol-ene reaction and 

their degradation kinetics were compared to the other methacrylate-based crosslinked 

films. 

2.4.2 Kinetics of hydrolysis of CL3 by 1H NMR 

We wish to gain an understanding of the kinetics of acid hydrolysis of the acetal-

based crosslinkers in the water-based buffer solutions at certain pH ranges. Our interest 

stem from reports of the use of similar network materials under physiological 

conditions, a similar temperature range needed for garment applications. The hydrolysis 

of the HEMA-based CL2 monomer was difficult to study in aqueous buffer solutions 

due to its water-insolubility. To improve water solubility of the crosslinker, PEG-MA 

(360 g/mol) was used to prepare the acetal CL3, using 2,2-DMP instead of HEMA 

during the condensation. Both CL2 and CL3 share the same acetal linking group 

structure.  
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Figure 2.11 Acid catalyzed degradation of CL3: (a) 1H NMR spectra before and after 
degradation, and (b) the corresponding hydrolysis kinetics at pH 4 and 5 versus time20 

The 1H NMR degradation study of the water soluble crosslinker CL3 was conducted 

using a phosphate buffer solution made using deuterium oxide (D2O) with a range of 

pH from 1 to 5 and confirmed using a pH meter. Although a 1H NMR kinetic study of 

CL2 wasn’t conducted because of its low solubility, it can be expected that CL2 and 

CL3 would have different degradation profiles because the polarity of overall structure 
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will affect the hydrolysis rate, and given that more hydrophilic backbones will have a 

higher hydrolysis rate compared to a more hydrophobic one due to solvation effects. 

As an initial state (t=0), 1H NMR was conducted by using pure D2O at room 

temperature. [M]t and [M]0 are the molar concentration of ketal function at time t and 

initial time, respectively, which were obtained using the integration of value of CH3, 

δ=1.31 (s; 6H) (Figure 2.11). The size of 1H NMR peaks were monitored over time and 

hydrolysis rates generally increased with decreasing pH. As shown in Figure 2.11b, 

CL3 completely decomposed in 80 minutes (t1/2 < 14 min) at pH 5 and 10 min (t1/2 < 2 

min) at pH 4. At pH 1~3, the hydrolysis was too rapid to measure by NMR as there 

were no observable acetal peaks to be found in the spectra. Given the time required to 

prepare the samples and start the NMR experiment, it is assumed that hydrolysis in 

these strongly acid solutions takes place in under 1 ~ 2 min. Lowering the pH results in 

an acceleration of the hydrolysis kinetics as the rate of acetal hydrolysis is proportional 

to the hydronium ion concentration. For some applications this rate at low pH may be 

too rapid, therefore, to reduce the hydrolysis rate, acetals based on benzaldehyde, CL4m 

and CL4p, were synthesized and their degradation kinetics were also investigated. 

2.4.3 Degradation study of CL4m and CL4p by UV-Vis spectroscopy 

Unlike CL3, the benzaldehyde-based acetals CL4m and CL4p are non-polar and 

insoluble in the water-based buffer solution, however, both crosslinkers generate m- or 

p-methoxybenzaldehyde as a result of acetal hydrolysis, which show strong UV 

absorbance around 300 nm. Even using a low concentration of crosslinker (0.016 

µL/mL), it was possible to detect small amounts of mMBA or pMBA released into 
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buffer solutions. Samples were prepared in quartz UV cuvettes and studied in real-time 

by observing changes in absorption between 280 to 320 nm (the maximum peak values 

varied slightly based on the buffer pH). All the UV-Vis spectra taken are provided in 

Figure 2.12. and Figure 2.13. For each experiment absorbance was measured at 

different time intervals. It was expected that using a substituted aromatic ring with an 

electron donating methoxy group in the acetal position would reduce the hydrolysis rate 

compared to CL3. Depending on the methoxy substituent position, meta or para, 

hydrolysis rates were also different. The kinetic plots corresponding to CL4m (a) and 

CL4p (b) are shown in Figure 2.14 and both show accelerated hydrolysis at lower pH. 

Using initial slope at each pH, the half-life of hydrolysis for samples was calculated 

and both CL4 derivatives show a much slower rate of hydrolysis compared to CL3 

across all pH ranges. At pH 1, there is no discernable difference measured between 

CL4m and CL4p (~4 min), while at pH 2~4, CL4m has a slightly longer half-life. This 

tendency is well matched with the observed trend that acetals (structures based on 

aldehydes) undergo slower hydrolysis than ketals (based on ketones) due to the absence 

of the second electron-donating methyl group to stabilize the carbocation intermediate 

during the hydrolysis.  
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Figure 2.12 UV-Vis spectrum: Generation of mMBA during hydrolysis of CL4m (a) 
pH 1; (b) pH 2; (c) pH 3; (d) pH 4 

 
Figure 2.13 UV-Vis spectrum: Generation of mMBA during hydrolysis of CL4p (a) 
pH 1; (b) pH 2; (c) pH 3; (d) pH 4 
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Figure 2.14 Acid catalyzed degradation of (a) CL4m and (b) CL4p at pH1, 2, 3 and 4. 
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2.4.4 GC-MS degradation study of network films crosslinked by 

acetals 

For the desired application of a reactive, self-exfoliating film, reasonable degradation 

rates are desired, and it is important to investigate the hydrolysis rate of the network 

films and solve for variables such as pH, co-monomer compositions, and crosslinking 

densities. In order to perform continuous measurement of network degradation we 

chose to look for small molecule fragments released upon hydrolysis of the acetal 

functionality. Crosslinked films were prepared by thermally initiated radical 

polymerization of methacrylate-based monomers and crosslinker CL4m. In the case of 

thiol-ene crosslinked films synthesized by the reaction of V-CL4m and pentaerythritol 

tetrakis(3-mercaptopropionate), polymerization was conducted under N2 without 

initiator under UV irradiation for 15 min. Based on the determined degradation kinetic 

of the five crosslinkers synthesized, CL4m looked the most promising due to its 

reasonable hydrolysis rate below pH 4. When using the same crosslinker to make bulk 

network films, degradation rates were dictated by a combination of pH, hydrophilicity 

of co-monomers, and the total crosslinking density. Due to the need to detect small 

amounts of degradation product when monitoring network degradation, we chose GC-

MS analysis. To accomplish this, we carried out hydrolysis in aqueous media and 

extracted the resulting mMBA into hexane. A known amount of hexadecane was added 

to the hexane solution as an internal standard. The overall experiment is outlined in 

Figure 2.9. These experiments make some assumptions that lead to a degree of error in 

the measurement, such as the assumption that all mMBA generated from the hydrolysis 
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of the acetal group would be quantitatively extracted into the hexane layer. We also 

assume that the CL4m monomer was completely incorporated during the network 

polymerization and is quantitatively present in the crosslinked films. The calculated 

mass fraction of mMBA is 36 wt% in the CL4m network or 42 wt% in the V-CL4m 

networks. A calibration curve was made using standard solutions of mMBA by plotting 

response ratio versus amount ratio (Figure 2.10). The response ratio is defined as ratio 

of area of the mMBA peak and area of the hexadecane (an internal standard) peak. 

Amount ratio is defined as ratio of amount of mMBA and amount of hexadecane. 

 

Figure 2.15 GC-MS of degradation of HEMA crosslinked films (3.2 mol% of CL4m): 
(a) pH 1; (b) pH 2; (c) pH 3; (d) combined results after 144 hr. Scanning time means 
retention time. 
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In the case of crosslinked films composed of HEMA and CL4m (30:1 molar ratio - 

3.2 mol% of CL4m), ln([M]t/[M]0) in different pH buffers was plotted as a function of 

exposure time and the half-lives were determined (Figure 2.16). The rates of hydrolysis 

were slow, mMBA was not detected for the first 21hr when reacted at pH1 and pH2. A 

small amount of hydrolysis may have started before this time but detectable amounts 

of mMBA extracted into hexane were detected by GC-MS only after 21hr. Still, the 

plots show an increase of mMBA over time.  As the acidity of the solutions was 

reduced, the hydrolysis dropped precipitously and even after 8 days, we were unable to 

detect any mMBA at pH5. This indicates that these crosslinked films have much slower 

degradation rate at pH 5 compared to pH 1-4. The first order reaction plots were 

constructed (Figure 2.16) and corresponding half-life time at each pH was obtained 

using initial slope. The calculated half-lives were 25 hr, 33 hr, 160 hr and 533 hr at pH1, 

2, 3 and 4 respectively. These results make it clear that the hydrolysis rates of the acetal 

groups are much slower after incorporation into networks.  
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Figure 2.16 (a) Plot of ln([M]t/[M]0) in different buffer solutions versus incubation time 
and (b) plot of the half-life of crosslinkers (CL4m) in the network as a function of pH 
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Figure 2.17 (a) Plot of ln([M]t/[M]0) for networks with different crosslinker 
concentration versus incubation time and (b) plot of the half-life of crosslinkers (CL4m) 
in the network as a function of crosslinker concentration. 

Interestingly, if the same CL4m crosslinker concentration is used, but the commoner 

is MMA rather than HEMA, the resulting networks fail to show any measurable 

hydrolysis (Figure 2.18). This is because MMA imparts a much more hydrophobic 

nature to the network slowing diffusion of aqueous buffer and hence lowering the 

observed rate of hydrolysis. Control of rate of hydrolysis should be selectable by 
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controlling the relative amounts of hydrophilic or hydrophobic comonomers in the 

network. 

 

Figure 2.18 Acid degradation study of hydrophobic crosslinked MMA films by CL4m 
at different pHs 

Another variable that can be adjusted to control hydrolysis rate is crosslinking 

density (Figure 2.17). The crosslinking density can be increased or decreased by 

varying the concentration of CL4m used in the polymerization. The rate of hydrolysis 

as a function of crosslinking density was examined in pH1 buffer solution. The half-

life of hydrolysis for each film was 25 hr, 125 hr, 521 hr and 713 hr at 3.2 mol%, 9 

mol%, 50 mol% and 66 mol%, respectively. As expected, the more densely crosslinked 

films show much slower hydrolysis rate. The buffer solution penetrates, swells, and 

diffuses much more slowly in the more densely crosslinked films. The half-life of acetal 

hydrolysis was found to be linearly proportional to the mol% of CL4m in the films.  
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Figure 2.19 Thiol-ene networks: (a) hydrolysis of thiol-ene based networks, (b) plot of 
ln([M]t/[M]0) in different buffer solutions versus incubation time and (c) plot of the 
half-life of crosslinkers in the network as a function of pH. 

All the networks described to this point were made through free radical chain 

polymerization processes. We wished to explore step-growth polymerized crosslinked 

films where the thiol-ene bond formation proceeds via the radical addition reaction 

between the divinyl monomer (V-CL4m) and a tetra-functional thiol crosslinker 

(PTMPA). To maximize molecular weight, thiol-ene step-growth polymerization 

mechanism requires exact stoichiometry between available ene groups and thiol groups. 

In the case of V-CL2m, 66 mol% is required (33 mol% PTMPA). The crosslinked 

reaction was facilitated using UV curing (365 nm) without initiator under N2 at room 

temperature. After initiation, the reaction proceeds quickly yielding solid, network 

films. Subsequent acid catalyzed hydrolysis of this resin results in depolymerization 

and the formation of mMBA (transparent liquid) and a four-armed, star alcohol, 
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pentaerythritol tetrakis(3-(6-hydroxyhexylthio) propanoate) (888.42 g/mol) (Figure 

2.19). Unlike methacrylate-based crosslinked films which retain their shapes during the 

hydrolysis, we could observe a transition to a viscous flowing material during the 

hydrolysis of the thiol-ene network. The presence of mMBA in the hexane phase was 

confirmed by GC-MS, which was used to examine hydrolysis kinetics.  

The degradation kinetics of the thiol-ene crosslinked films were examined at 

different pH ranges. Compared to HEMA-based networks, the thiol-ene crosslinked 

films are more hydrophobic due to absence of free hydroxyl groups, or PEG-like 

segments in the network and a relatively larger portion of alkyl chains. The thiol-enes 

are also densely crosslinked, hindering swelling and diffusion of buffer solution. At pH 

1 and 2, physical decomposition of the films was visually observed, and parts of the 

region began to flow after 96 hr in buffer. The half-life at each pH was obtained (Figure 

2.19 c). The half-life of the acetal group at pH 1, 2, 3, 4 and 5 is 25 hr, 45 hr, 106 hr, 

460 hr and 837 hr, respectively. The thiol-ene networks had a much shorter t1/2 as 

compared to the HEMA/CL4m films at pH1 (t1/2 = 713 hr) even they have same mol% 

of crosslinker. Essentially all decomposition during hydrolysis of the thiol-ene 

polymers converts high molecular weight polymer chains directly to low molecular 

weight residues, a tetra-functioned molecule and mMBA (Figure 2.19 a). This results 

in increased diffusion and permeation of buffer solution, which in turn, continues to 

increase the rate of depolymerization. Conversely, the HEMA/CL4m films still have 

partially crosslinked or entangled linear polymer during the hydrolysis because the 

polymer interconnected structure that was formed via chain-growth polymerization 
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contains a broad range of number of repeat units between crosslink junctions. We 

propose that this difference results in the faster hydrolysis observed in the hydrophobic 

thiol-ene crosslinked films with at the same crosslinker mol%. The vinyl terminated 

monomer V-CL4m has merits since it can be synthesized in high yield, however, it 

cannot be utilized in conventional free radical polymerizations due to the low reactivity 

of the vinyl group. Therefore, its use in network formation is limited to reactions such 

thiol-ene step polymerization. Hence, selection of appropriate thiol comonomers 

becomes important and in this study only one was used. This leaves room for 

improvement in this area and is currently under investigation.  

2.5 Conclusion 

Through various acid-sensitive acetal and ketal-based groups with different 

substituents and adjusting the degree of hydrophilicity of the crosslinker unit, we 

demonstrate chemically tuned molecules that show different room temperature 

hydrolysis rates at different pH ranges. In the case of 2,2’-DMP-based acetal groups, 

CL3 revealed the highest acid-sensitivity (t1/2 < 14 min at pH 5 and t1/2 < 2 min at pH 

4). Acetal functional groups based on meta or para methoxybenzaldehydes (CL4m or 

CL4p) gave crosslinkers with a reduced hydrolysis. By polymerizing CL4m various 

comonomers (HEMA or MMA), networks were synthesized, and their hydrolysis rates 

were measured as a function of pH, network hydrophobicity, and crosslinking density. 

When the vinyl-terminated crosslinker (V-CL4m) was reacted with a tetrathiol, thiol-

ene networks were prepared. This densely crosslinked, hydrophobic polymer exhibited 
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a much faster hydrolysis rate than HEMA/CL3 based networks with a comparable 

crosslinking density. These materials are being studied as coatings for protective 

garments resistant to chemical warfare agents. This basic study of hydrolysis and 

degradation kinetics of acid-sensitive monomers and networks provides parameters 

needed to use these materials as stimuli responsive materials. A companion study 

currently underway in collaboration with the US Army Natick Soldier RD&E Center is 

examining the kinetics of neutralization of chemical warfare agents within these 

networks and the moisture vapor transport properties of thin network films. These 

materials may have additional utility in controlled release applications, advanced 

patternable resists and several other areas where such control of network stability is 

desired. 
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CHAPTER 3  

CCREACTIVE POLYMERS WITH NUCLEOPHILIES FOR 

NEUTRALIZING ORGANOPHOSPHATE-BASED NERVE AGETNS 

3.1 Introduction 

Since the discovery of severe toxicity in pentavalent organophosphorus (OP) 

compounds led to development of insecticide as well as weapon of mass destruction 

(nerve agents), studying the detoxifying of OP-based nerve agents at ambient 

conditions have been priority.21,22 Both nerve agents and insecticides act as 

phosphorylating agents, reacting with the serine moiety of the enzyme, known as 

acetylcholinesterase.23 They irreversibly inhibit regulation of the in vivo concentration 

of neurotransmitter acetylcholine resulting in major effects on the nervous system.24,22 

There are various ways to destruct or demilitarize OP-based toxins such as photolysis, 

oxidation, combustion and microbial degradation.21-45 The mildest way to detoxify 

toxic OP-based compounds at ambient condition is nucleophile-assisted hydrolysis 

reaction which can chemically convert toxins to non-toxic compounds.24,45 Various 

nucleophilic functional groups such as oximates, hydroxamates, peroxyanions, and 

iodosylcarboxylates have been employed to demonstrate their catalytic effect on 

neutralizing OP-based compounds using real agents or their simulants by incorporating 

polymers, colloids, micelles or NPs. 21,23,26,27,30–33,35,36 When detoxifying reaction 

happens in the aqueous medium, the nucleophilic reactivity can be enhanced by forming 
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a micelle which is capable of increasing the rate of bimolecular reactions by 

incorporating and concentrating both reactants and solvent in the interfacial region of 

the colloidal species, which is treated as a reaction region distinct from water, i.e., a 

pseudo-phase.40 To produce a protective clothing, we may consider blending 

nucleophilic-based catalysts with polymer by dispersing them in the polymer coating 

or forming a covalent bond with polymer. 21,23,26,32,33,35,36,43 There are other nucleophiles 

(or Lewis acid) such as metal complexes and metallomicelles which is based on 

transition or lanthanide-metal cations and their complexes.34,37 Even though their 

catalytic reactivity is much stronger than organo-based nucleophiles, it is challenging 

to retain their outstanding reactivity driven from unique surface chemistry and porosity 

when embedding them in polymer coating.34,37 

Regarding the choosing of nucleophilic functional groups for protective garment 

applications, several requirements are necessary. First, nucleophilic catalyst retains 

strong reactivity to decontaminate OP compounds in several minutes at ambient 

conditions. Second, the nucleophile should not be corrosive as peroxides, which is 

capable of damaging organic-based fabrics or human’s skin. Also, it should be stable 

until exposed to targeting toxins. For example, peroxide or alkoxide reveals strong 

nucleophilic reactivity but are very unstable in atmosphere.22,38 Given the incorporation 

of organo-based nucleophilic functional groups within the polymeric system, we may 

consider some reaction conditions. The nucleophilic hydrolytic reaction needs aqueous 

medium or humidified state because water eventually triggers neutralization of OP-

based compounds. This suggests developing hydrogel type of polymers which can 
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preserve enough moisture for hydrolytic reaction.26,36 The moisture can be provided 

from human’s sweat and atmosphere. Since reactive nucleophilic polymers will be 

coated on or functionalized from fabrics, moisture vapor transmission rate (MVTR) of 

fabric may decrease resulting from blocking pores in fabric. This problem may be 

resolved by controlling coating thickness, chemistry (hydrophilicity) and morphology 

of polymer layers. OP-based nerve agents containing halogens (F or Cl) generate an 

acid as a byproduct after nucleophilic hydrolysis reaction. This acid can slow down 

detoxifying reaction by decreasing overall pH since organo-nucleophiles can enhance 

reactivity through deprotonation in basic buffer solution (pH>8). For protective 

clothing applications, this acid should be consumed to promote or maintain OP-

neutralization reaction rate 

3.2 Project Goal 

 Perform neutralization kinetic studies using OP-based nerve agent simulants to 

determine the most effective organo-based nucleophile. 

 Design a self-exfoliating layer composed of hydrophilic polymers and 

nucleophilic functional groups and acetal/ketal-based acid-sensitive 

crosslinkers. 

 Evaluate decontamination of OP-based nerve agents using nucleophilic 

polymers in nucleophilic and linear form, targeting half-life < 30 min and layer 

thinkness <10 µm at room temperature, ambient conditions. 
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3.3 Preliminary Approaches 

3.3.1 Bulk Hydrogel Films Crosslinked by Acid-sensitive Crosslinkers 

Containing Quaternary Ammonium Halides (Cl or F) as a Nucleophile 

3.3.1.1. Preparation of QAC or QAF-based catalyst containing films 

Protective layer polymer films from CWA are composed of three parts. First, a water 

like hydrogel assists in hydrolysis reactions. Second, a CWA catalyst acts as an 

organobase or organonucleophile. Third, acid-degradable crosslinkers which can 

consume byproducts like HCl or HF from CWA neutralization reaction, physically 

remove the contaminated part. In order to investigate pure CWA neutralization kinetics, 

polymer films with different compositions (Table 3) were prepared without acid-

degradable crosslinkers. Monomer solutions in DMF (~55 wt%) with photoinitiator 

(0.5 mol%) were spread on 3M duct tape as a substrate and cured under N2 and UV 

(365 nm) for 15 min. After cooling, free-standing films were obtained by detaching 

films from the substrate. 

 

Figure 3.1 Chemical structure of monomers and CWA catalysts 
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Table 3 Composition of each monomer solution 

 

3.3.1.2. 31P MAS NMR study 

Polymer films (7 ~10 mg) were cut as a small piece and were added to a disposable 

insert kit. Without capping, the whole thing was placed in the humidity chamber (99% 

r.h. and 100% r.h.). The mass at each dry and humidified state was recorded to know 

the exact amount of water absorbed in the polymer film. After 1 day (99 % r.h.) or 3 

days (100 % r.h.), insert kit packed with polymer film was taken out and ready for 

starting measurement. Right before running the NMR, 1 µL of DFP was applied via 

micro-syringe to the center of the sample. This insert kit was sealed with a cap and then 

moved to the 0.4 cm ZrO2 rotor and this rotor was also sealed with a fitted Kel-F cap 

(Figure 2). 31P MAS NMR spectra were measured periodically to determine remaining 

starting material and identify degradation products. After finishing measurement, 

disposable insert kit was taken out and placed in the 1M aqueous NaOH solution to 

fully neutralize.  

31P MAS NMR spectra were obtained at 202.46 MHz (Bruker Avance 500) 

Sample # Composition 

  HEMA 
(equiv.) PEG-DMA (equiv.) A-QAC (equiv.) PI (mol%) 

SE003 20 1 5 (23.7 mol%) (19.62 wt%) 0.5 

  HEMA 
(equiv.) PEG-DMA (equiv.) S-QAC (equiv.) PI (mol%) 

SE006 20 1 5 (23.7 mol%) (38.7 wt%) 0.5 

  HEMA 
(equiv.) PEG-DMA (equiv.) Amberlite-F PI (mol%) 

SE007 20 1 1 wt% 0.5 

  A-QAC (equiv.) PI (mol%) 

SE014 1 0.5 

  HEMA 
(equiv.) PEG-DMA (equiv.) 2-vinyl pyridine (equiv.) PI (mol%) 

SE015 20 1 10 (32.3 mol%) 0.5 
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spectrometer. The HRMAS spectra were recorded with a 5-mm Brucker 31P gradient 

probe at 30 °C with the magic-angle spinning rate of 5000 Hz. Between measurement, 

samples were kept at 30 °C oven. 

 
Figure 3.2 Disposable insert kit (left) and 0.4 cm ZrO2 rotor 

The chemical shifts corresponding to pure DFP were shown at -7.12 ppm and -13.88 

ppm. The hydrolyzed byproduct, DIIP was shown at 0 ppm 

 
Figure 3.3 31P MAS NMR spectra showing DFP and hydrolyzed product DIIP, and their 
structures 

3.3.1.3. Preliminary Results 

All three samples were placed at 99% r.h. chamber for one day. The exact amount of 

water is unknown. There was no additional water insertion. As time elapsed, decreasing 

peaks for DFP and increasing peak for DIIP were observed. By constructing the first-

order plot with time, half-life time of DFP was obtained from the slope. Among three 

samples, SE003 shows the fastest neutralization rate. In the case of SE007, polystyrene-
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supporting quaternary ammonium fluoride resin has visible particle size. Depending on 

the cutting spot of film, the loading amount of catalyst resin can be different. In the case 

of SE003, DFP remains around 20% after 6 days. SE006 shows 94 % remaining of DFP 

after 3 days. SE007 shows 48% remaining of DFP after 6 days. The half-life time of 

DFP is 73 hr, 999 hr and 138 hr for SE003, SE006 and SE007, respectively.  

 
Figure 3.4 DFP neutralization kinetic plots and % DFP remaining vs time for SE003, 
SE006 and SE007 

Acrylate-based QAC containing SE003 film (12 mg) packed in the disposable kit 

was placed at 100 % r. h. chamber for 3 days. The amount of absorbed water in the film 

was determined by weighing sample before and after placing in the humidity chamber. 

Around 8 mg of water was contained by humidity and additional insertion. At higher 

humidity condition, samples show much faster neutralization. Initial degradation seems 

to occur slowly, ramping up overtime. This might be due to slow diffusion of DFP into 

polymer film. It can be both good and bad regarding protection and neutralization, 

respectively. Much slower neutralization gives us different half-life time depending on 

observation time. From the results, once DFP starts to be degraded, it seems to 

accelerate neutralization. Real half-life time from the experiment is between 10 ~ 15 hr 
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as observed from the graph, which means none of the half-life times from calculation 

are accurate values. In order to exclude diffusion effects, we might need to perform 

neutralization study using an A-QAC monomer. The difficulty of doing this experiment 

is the fact that pure A-QAC monomer is only commercially available and in an aqueous 

state (80 wt%), which is not applicable for solid-state NMR. 

3.3.1.4. Summary 

Using 31P MAS NMR, DFP neutralization kinetic study was performed. DFP is one 

of the G-agent simulants which contain P-F bond. For neutralization, quaternary 

ammonium chloride or fluoride-based containing films were used as a nucleophile. 

Depending on humidity, largely different half-life time at the same composition were 

observed. Acrylate-based QAC containing films showed the fastest neutralization rate 

(t1/2=22 hr) at 100% r.h. but this is still quite slow. In order to improve neutralization 

kinetic, first DFP molecule should diffuse quickly into the polymer matrix. 

Improvements may become by changing monomer compositions, or by using much 

stronger organic nucleophile.  
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Figure 3.5 Schematic illustration of self-exfoliating and reactive polymer (SERP) as a 
bulk film and its key results (a) and DFP neutralization kinetic plot 

 

As  Figure 3.5(a) shows, we initially developed a simple crosslinked self-

exfoliating and reactive polymer (SERP) system by mixing dimethacrylate-

functionalized acetal-based crosslinker (acid-sensitive), quaternary ammonium 

chloride (QAC)-based acrylate as a CWA catalyst, hydrophilic monomer (HEMA or 

PEG-MA), and AIBN (Azobisisobutyronitrile) as an initiator, after which the mixture 

was cured by using heat or UV irradiation.  However, Figure 3.5(b) depicts that after 

the organophosphate-based nerve agent simulant DFP (diisopropylfluorophosphate, 

LD50 Rat: i.p. 1.3 mg/kg) was catalyzed by QAC-containing 100 % humidified hydrogel 

at room temperature, it was slowly neutralized to non-toxic DIIP (diisopropyl 

phosphonic acid) (t1/2 = 22 hr). This slow hydrolysis rate can be explained by 1) the 

slow diffusion of DFP into the bulk layer of hydrogel film and 2) the weak catalytic 

reactivity of QAC. Hydrophilic monomers continued to be dewetted on hydrophobic 

ePTFE (breathable film) during s spin-coating and doctor-blade coating. Because of 

dewtting, crosslinked films appeared as a bulk thick hydrogel film with thickness of 
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150 μm. Also, it was important to explore other organo-based nucleophilic functional 

groups to enhance neutralization reaction rate. Therefore, we have proposed to make 

nanoparticle (NP)-type reactive polymer and photo-crosslinkable linear polymer 

containing stronger nucleophilic functional groups under the expectation that spray-

coating of NP solutions and spin-coating of polymer solutions reduce film thickness. 

3.3.2 Nucleophilic Polymers Functionalized from Acid-degradable NPs 

Nucleophilic nanoparticles are designed to enhance catalytic reactivity due to large 

surface area and to facilitate making a thin and uniform polymer layer. One of the well-

known ways to form a non- dissolvable polymer layer is spray coating of polymer latex. 

Usually, polymer-based NPs or latex can be easily prepared by conventional emulsion 

polymerization. As monomers, there will be hydrophilic monomers to attribute 

hydrogel properties, acetal/ketal-based crosslinkers to reveal acid-sensitivity and a 

bromoisoburylate-terminated methacrylate monomer as an ATRP (atom-transfer radical 

polymerization) initiator to polymerize nucleophile-containing monomers. 

Methacrylate-functionalized ATRP initiator: MABr was made by follows: 2-hydroxy 

methacrylate (5 g, 1 equiv.) and triethylamine (8.04 mL, 1.5 equiv.) in THF (70 mL) 

was placed in a flask under N2 and cooled to 0 °C. 2-bromoisobutyryl bromide (13.25 

g, 1.5 equiv.) was slowly added drop-wise and stirred at room temperature for 6 hr. 

After reaction, the solvent was removed in vacuum and the crude mixture was extracted 

with dichloromethane and DI-water several times and dried over MgSO4, filtered, and 

solvent removed. The product was further purified by column chromatography with 



48 
 

silica gel using eluent (Hex:EA = 6:1, v/v). The monomer was a yellow transparent 

liquid (yield = 50 %). 1H NMR (CDCl3): δ= 6.12 (m; 1H), 5.58 (m; 1H), 4.37-4.43 (t; 

4H), 1.91 (s; 6H). 

 

Figure 3.6 Methacrylate-functionalized ATRP initiator: MABr 

 

 

Figure 3.7 1H NMR of MABr 
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Figure 3.8 PS-co-DVD/MABr core-shell nanoparticles: PSBr 

xMABr-Br NPs by emulsion polymerization was performed in the 3 neck-round 

bottom flasks (25 mL) with a stir bar, divinylbenzene (DVB) (0.05 g, 0.3866 mmol) 

and potassium persulfate (25 mg, 0.0925 mmol) styrene, sodium dodecyl sulfate (SDS) 

were dissolved in DI-water (13 mL) and sparged with dry N2 for 1 hr at room 

temperature. The initiator solution, potassium persulfate (KPS) in water (3 mL) was 

also sparged for 10 min and transferred into the flask by syringe. The reaction was 

refluxed at 70 °C for 1 hr under N2. At this stage, in which many radicals are very active 

but most of monomers are consumed, 2-(2-bromo-2-methylpropanoyloxy)ethyl 

methacrylate (MABr)(1.67 g, 8.74 mmol) in acetone was added. It was refluxed at 

90 °C for 45 min or 2 hr under N2. After reaction, the solution was precipitated in 

methanol (100 mL). Resulting polymer was obtained as a white powder. The particle 

size was around 430 ~ 500 nm, observed by scanning electron microscopy (SEM). The 

overall ratio of [Styrene]:[DVD]:[MABr]:[SDS]:[KPS] = 190:1:9.67:13.9:1.11 or 

500:2:20:1:25. 
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Figure 3.9 SEM Image of PSBr NPs 

 

 

Figure 3.10 Synthesis of vinyl-functionalized nucleophilic monomers 

HisMA was synthesized by mixing N-t-Boc-Imidazole-benzyl-L-histidine (2 g, 1 

equiv.), 2-hydroxyethyl methacrylate (0.904 g, 1.2 equiv.) and N,N’- 

dicyclohexylcarbodiimide (1.192 g, 1 equiv.) in dichloromethane (40 mL) were placed 

in the flask and cooled to 0 °C. 4-Dimethylaminopyridine (0.066 g, 0.1 equiv.) was 

added and the reaction was allowed to stir overnight at room temperature. After reaction, 
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dicylclohexylurea was filtered off and the organic solution was washed with a 1M 

aqueous HCl solution (200 mL), saturated NaHCO3 solution and brine respectively. 

The organic layer was dried over MgSO4, filtered and solvent evaporated, and the 

product was obtained as a transparent viscous yellow liquid. 

 

Figure 3.11 1H NMR of HisMA 

MIA was prepared in 100 mL 1-neck round bottom flask, BrMA (2 g, 10.4 mmol, 1 

equiv.) and imidazole-2-carboxaldehyde (1 g, 10.4 mmol, 1 equiv.) were dissolved in 

anhydrous DMF (40 mL) with K2CO3 (1.37 g, 10.4 mmol, 1 equiv.). It was kept stirring 

at room temperature for 20 hr. During the reaction it was observed that yellow solution 

turns to brown. After reaction, K2CO3 was filtered and solvent was removed by 

blowing evaporation. The product was obtained as a sticky brown solid (xx g, xx % 

yield). 1H NMR of MIA (500 MHz, DMSO, TMS standard, r.t.): δ=9.70 (s; 1H), 7.69 

(s; 1H), 7.30 (s; 1H), 5.94 (s; 1H), 5.66 (s; 1H), 4.71 (t; 2H), 4.41 (t; 2H), 1.81 (s; 3H). 
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Figure 3.12 1H NMR of MIA 

MIAD was prepared in 100 mL 1 neck round bottom flask, NH2OH·HCl (1.08 g, 

15.6 mmol, 1.5 equiv.) was dissolved in 50 mL DI-water and neutralized by adding 

Na2CO3 (1.65 g, 15.6 mmol, 1.5 equiv.). MAI (2.16 g, 10.4 mmol, 1 equiv.) was 

dissolved in 10 mL DMF and dropped into aqueous solution. It was kept stirring at 

room temperature for 5 hr. The brown precipitate was collected by gravity filtration and 

dried in vacuum oven (xx g, xx % yield). 1H NMR of MIAD (500 MHz, DMSO, TMS 

standard, r.t.): δ=11.48 (s; 1H), 8.05 (s; 1H), 7.33 (s; 1H), 7.01 (s; 1H), 5.98 (s; 1H), 

5.67 (s; 1H), 4.58 (t; 2H), 4.35 (t; 2H), 1.82 (s; 3H). 
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Figure 3.13 1H NMR of MIAD 

1-(4-vinylbenzyl)-1H-imidazole-2-carbaldehyde (SIA) was prepared by making a 

solution of 4-(chloromethyl)styrene (6.2 mmol), imidazole-2-carboxaldehyde (5.2 

mmol) and K2CO3 in DMF (20 mL) was stirred overnight at RT under N2. After this 

reaction, SIA was obtained as transparent yellow liquid after evaporation of the solvent 

1-(4-vinylbenzyl)-1H-imidazole-2-carbaldehyde oxime (SIAD) was prepared by 

dissolving hydroxyamine hydrochloride (1.5 equiv.) in water and neutralizing with 

Na2CO3 (1.5 equiv.). SIA (1.1 g, 1 equiv.) was added to the solution. The reaction 

mixture was stirred at room temperature for 1 hr. The oxime product precipitated and 

was collected by filtration, rinsed with water. It was isolated as a yellow powder 
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Figure 3.14 1H NMR of SIA 

 

 

Figure 3.15 1H NMR of SIAD 

Synthesis of SPP was followed via literature (organic letters, 2003, 5, 2445-2447). 

Briefly, in 100 mL of 1-neck round bottom flask equipped with reflux condenser, N-(4-

pyridyl) piperazine (4 g, 24.5 mmol, 2 equiv.) were dissolved in 40 mL methanol and 
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4-vinylbenzyl chloride (1.87 g, 12.25 mmol, 1 equiv.) was added forming white 

precipitate. The solution was heated up at 70 °C for 18 hr. After reaction, it was cooled 

to room temperature. In the solution, 80 mL of aqueous 6N HCl solution was added and 

washed with ether (80 mL) 3 times. The ether layer was discarded and aqueous 25 M 

NaOH solution (80 mL) was drop-wised to aqueous layer. Yellow precipitate was 

collected by vacuum filtration. This solid was dissolved in dichloromethane and 

purified by column chromatography with silica gel. For packing and adsorption, ~150 

mL and ~50 mL of silica gel was used. As an eluent, mixture of ethyl acetate and 

trimethylamine as 95:5, v/v (Rf~0.3) was used. Resulting product was white powder 

(2.23 g, 65.3 % yield). 1H NMR of SPP (500 MHz, CDCl3, TMS standard, r.t.): δ=8.25 

(d; 2H), 7.37 (d; 2H), 7.31 (d; 2H), 6.72 (m; 1H), 6.63 (d; 2H), 5.73 (d; 2H), 5.25 (d; 

2H), 3.54 (s; 2H), 3.32 (t; 4H), 2.56 (t; 4H). 

 

 

Figure 3.16 1H NMR of SPP 
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Figure 3.17 Synthesis scheme: nucleophilic polymer functionalized NPs by 

performing ATRP reaction 

HisMA (vinyl-functionalized nucleophilic monomer) in dimethylformamide was 

sparged with N2 for 1.5 hr. PSBr particles and Cu wire were charged into a round bottom 

flask fitted with a stir bar and the flask was flushed with N2 for 1 hr. The HisMA 

solution was transferred into the flask by syringe, and the ligand, 0.1 M tris[2-

(dimethylamino)ethyl]amine (Me6TREN) solution in dimethyl sulfoxide (DMSO), was 

added into the flask. The reaction was heated to 70 °C for 2 hr under N2. After reaction, 

solution was poured into methanol and the larger pieces of residual Cu wire were 

manually removed. The slight green polymer was obtained by filtration. 

Polymerization of amine-based vinyl monomers initiated from Br-terminated NPs 

was not successfully performed which can be confirmed by observing low mass yield 

(< 3%) showing most monomers were not reacted. There are probable issues which 

impede reactions such as poor dispersion of NPs macro-initiator during polymerization 

reaction, amines in monomers binding with copper complex or improper selection of 

ligand, solvent and copper source. Once NPs synthesized from emulsion 

polymerization dried out during filtration, they strongly tend to aggregate rendering re-

dispersion challenging. Also, purification of NPs after ATRP needs to be scrutinized to 
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remove impurities such as copper complex, catalyst and unreacted monomers. 

3.4 Experimental: Photo-cross linkable and Nucleophilic Linear Polymer 

 

Figure 3.18 Kinetic plot of DFP neutralization catalyzed by 23 mM AMBD buffer, 4-
pyridine aldoxime (PAM) with D2O and PAM with 23 mM AMPD buffer (left) and 
half-life of DFP at each condition (right) 

The PAM is a well-known antidote for immediate injection to combat 

organophosphate-based nerve agents to reactivate acetocholinesterase. We could see 

PAM is a promising candidate as a nucleophilic OP-destructive reactant by doing 

simple experiment and literature search.26,36 DFP catalyzed by PAM in 23 mM AMPD 

(2-amino-2-methyl-1,3-propanediol) buffered in D2O showed even faster 

decontamination (t1/2 of DFP: 0.06 hr) at room temperature. It was investigated by 31P 

solution NMR. 

Materials used for synthesis are 4-hydroxybenzophenone (Alfa Aesar, 98%), 4-

vinylbenzyl chloride (Aldrich, 90%), potassium carbonate anhydrous (K2CO3, Fishier 

Scientific), potassium iodide (KI, Fishier Scientific), acetonitrile (anhydrous, Alfa 

Aesar), pyridine-4-aldoxime (PAM, 98%, Alfa Aesar), diisopropyl fluorophosphate 

(DFP, Sigma-Aldrich), polyethyleneimine (ca. 30% in Water, TCI) toluene (anhydrous, 
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VWR), N-isopropyl acrylamide (NIP, TCI) was recrystallized in hexane and 

azobisisobutyrontitrile (AIBN, Aldrich, 98%) was recrystallized in methanol before use. 

1H and 31P NMR spectra were investigated by a Bruker DPX 500 spectrometer. 

Synthesis of 4-(4-vinylbenzyloxy) benzophenone (VBBP) was performed in a 3-

neck round bottom flask (500 mL) with a magnetic stir bar, 4-hydroxy benzophenone 

(5.95 g, 0.03 mol), K2CO3 (8.28 g, 0.06 mol) and KI (6.64 g, 0.04 mol) were dissolved 

in acetonitrile (150 mL). This solution was refluxed at 50 ºC for 4 hr and solution of 4-

vinylbenzyl chloride (VBCl) (6.10 g, 0.04 mol) in acetonitrile (80 mL) was added into 

the flask. Reaction was stopped by cooling turbid yellow solution to room temperature 

after heating at 50 ºC for 36 hr. The inorganic salts were filtered out by gravimetric 

filtration and a yellow chunk was obtained after removing solvent by vacuum rotary 

evaporation. It was washed with ethyl ether (~100 ml) and filtered out several times. 

The yellow solid separated from solution was dissolved in acetone (~100 ml) and 

further purified by column chromatography with silica gel and mixture of acetone and 

hexane (3:7, v/v) as an eluent. The resulting product was obtained as a slightly yellow 

powder (5.86 g, yield: 62%). 1H NMR of VBBP (500 MHz, DMSO-d6, TMS standard, 

r.t.): δ=7.76 (d; 2H), 7.70-7.64 (3H), 7.57-7.45 (6H), 7.18 (d; 2H), 6.76 (m; 1H), 5.88 

(d; 1H), 5.30 (d; 1H), 5.22 (s; 2H). 
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Figure 3.19 1H NMR of VBBP 

Synthesis of photo-crosslinkable terpolymer, p(NIP-VBBP-VBCl) was performed in 

a 2-neck round bottom flask (50 mL) with a magnetic stir bar, N-isopropylacrylamide 

(NIP) (3.96 g, 0.035 mol, 170 equiv.), VBBP (0.647 g, 2.0588 mmol, 10 equiv.), 4-

vinylbenzyl chloride (VBCl) (0.628 g, 4.1147 mmol, 20 equiv.), and AIBN (0.033 g, 

0.20588 mmol, 1 equiv.) were dissolved in 25 mL of toluene (20 wt/vol %). This 

solution was refluxed at 70 ºC for 20 hr under N2 atmosphere after it was treated with 

N2 bubbling for 30 min to remove dissolved oxygen. After cooling to room temperature, 

this polymer solution was precipitated out in ethyl ether (1L). If polymer solution is too 

viscous, methanol was slightly added to dilute solution before precipitation. The white 

product was collected by vacuum filtration with 70% yield (3.7 g). 1H NMR of VBBP 

(500 MHz, DMSO-d6, TMS standard, r.t.): δ=7.76 (d; 2H) 
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Figure 3.20 1H NMR: p(NIP-VBBP-VBCl) 

 

Synthesis of p(NIP-VBBP-VBI) was performed in a 1-neck round bottom flask (50 

mL) with a magnetic stir bar, p(NIP-VBBP-VBCl) (3.7 g) was dissolved in acetone (40 

mL). From 1H NMR spectrum, wt % of VBCl was calculated as 11 wt%. KI (1.33 g, 8 

mmol) was added as 3 equiv. of VBCl. This solution was stirred at room temperature 

for overnight. The polymer solution was diluted with more acetone and inorganic salt 

was removed by filtration. The solvent of the filtrate was removed by vacuum 

evaporation. Resulting polymer was obtained as yellow powder.  
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Figure 3.211H NMR: p(NIP-VBBP-VBI) 

Synthesis of p(NIP-VBBP-VBIPAM) was performed by PAM-functionalization 

reacting p(NIP-VBBP-VBI) (25 g) with PAM (4.88 g, 0.04 mol) in DMF (360 mL) at 

room temperature for 24 hr. The resulting final polymer was obtained by vacuum 

filtration after precipitating in diethyl ether. 1H NMR spectrum showed the 

disappearance of peak at 4.56 ppm and appearance of peak at 5.74 ppm because of 

PAM-functionalization. 
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Figure 3.22 1H NMR: p(NIP-VBBP-VBIPAM) 

 
Figure 3.23 Schematic illustration: preparation of a breathable thin film combining 

terpolymer, crosslinker and PEI 

Breathable and protective film was prepared as follow. Polyethyleneimine (PEI) 

solution (6 wt%) in MeOH was spin-coated on ePTFE. A terpolymer solution with 

crosslinker in ethanol (terpolymer:crosslinker:ethanol = 0.35 g: 0.007 g: 2.1 g) was then 

spin-coated on the PEI layer. Subsequently, the sample was UV-cured (365 nm) or 

allowed to sit for 30 min at room temperature under N2 purging. The thickness of 
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polymer (~ 10-20 μm) on the ePTFE was measured via profilometry. Overall, the film 

is nucleophilic, hydrophilic, alkaline, acid-sensitive and breathable.  

 
Figure 3.24 DFP neutralization study by the reactive film: experimental set up and 31P 

NMR spectrum after 30 min exposure to DFP 

To test CWA neutralization, a small piece of film was immersed in D2O (0.9 mL) in 

a 20mL vial. Two (2) μL of DFP in 0.1 mL of D2O was introduced into the vial. After 

30 min, solution was transferred into a NMR tube for 31P NMR measurement. The 

spectrum shows that 50 % of DFP was neutralized to DIIP, indicating that half-life of 

DFP by neutralized solid film is 30 min. 

3.5 Results and Discussion 

Terpolymer consisting of hydrophilic chains, photo-crosslinkable moiety and 

nucleophilic CWA catalysts are designed and synthesized. This linear photo-

crosslinkable polymer was mixed with previously synthesized acetal-based acid-

sensitive crosslinkers in organic solvent. Subsequently, it was spin-coated on substrate 

and UV-assisted cured resulting in multi-responsiveness including swelling due to 
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hydrophilic polymer chains, acid-sensitivity from acetal-based crosslinker and OP-

compound destructiveness from nucleophilic moiety. Film thickness can be 

straightforwardly controlled by varying concentration of polymer solution and spin-

coating rate. 

 
Figure 3.25 Synthetic pathways used to make the PAM-containing terpolymer. The 
iodization of the benzyl group was found to be necessary to allow reaction of PAM 
while at the same time avoiding hydrolysis of NIP to AAc in resulting PAM-
functionalized terpolymer. 

It was necessary to convert chloride group to iodine in order to perform PAM-

functionalization reaction at room temperature. We found that there was undesirable 

hydrolysis of amide group to acetic acid when the reaction was accomplished at high 

temperature (~70°C) converting alkyl chloride to pyridine-aldoxime chloride. 
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Figure 3.26 1H NMR: effect of room temperature on hydrolysis of NIP and PAM 
functionalization to vinylbenzyl chloride 

By conducting simple 1H NMR experiments, we could confirm that NIP can be stable 

in the presence of PAM at room temperature for 24 hrs by observing the peak at 3.83 

ppm which corresponds to a proton on isopropyl next to the amine. However, 4-

vinylbenzyl chloride monomer could not be functionalized with PAM at room 

temperature for 24 hrs. Based on this result, we decide to find different conditions to 

facilitate the functionalization of PAM at room temperature. This was accomplished by 

incorporating a better leaving group, iodine (I), rather than chloride (Cl).  
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Figure 3.27 Determination of reaction order 

At first attempts were made to prepare and polymerize a vinylbenzyl iodide (VBI) 

monomer or a PAM-functionalized vinylbenzyl iodide (VBIPAM) monomer. 

Unfortunately, neither approach was successful due to radical inhibitor character of the 

benzyl iodide or alpha-nucleophile, PAM. Therefore, the post-polymerization 

functionalization route was used. Also, we confirmed that vinylbenzyl iodide (VBI) can 

be functionalized with PAM at room temperature for 24 hr by observing the peaks 

corresponding to oxime (12.90, s) and proton next to quaternary amomum iodine (5.86, 

s) from 1H NMR shown in Figure 3.28. 
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Figure 3.28 1H NMR: mixture of PAM-functionalized 4-vinylbenzyl iodide and PAM 

The main reason why we pay attention to the hydrolysis of amide group to acrylic 

acid was that the presence of acrylic acid can lower the reaction pH, resulting in a 

decrease in DFP neutralization rate. 

 
Figure 3.29 Reaction mechanism and rate constants defined for the hydrolysis of DFP 
catalyzed by PAM (left), equations for defining half-life for DFP hydrolysis from 
pseudo-first order kinetic (right)23 

To demonstrate the catalytic effect of nucleophilic terpolymers, diisopropyl 

fluorophosphates (DFP) was used as an organophosphorus-based nerve agent simulant 

and its destruction was observed by tracing 31P NMR spectra. The peaks of pure DFP 

are shown at -8.2860 ppm and -13.0916 ppm. Integration of those two peaks decreases 
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and new peak (-0.8207 ppm) corresponding to non-toxic product, diisopropyl 

phosphoric acid (DIIP) starts to increase as a result of neutralization.  

 
Figure 3.30 Schematic illustration: neutralization of DFP catalyzed by nucleophiles 
and 31P NMR spectra. 

Reaction kinetics of DFP hydrolysis follows a second-order (bimolecular) rate law. 

To determine the rate constant for DFP hydrolysis, the data will be simply fitted with 

pseudo-first order kinetics by adjusting the concentration of one of two reactants 

remains almost constant under the reaction conditions given its much higher 

concentration ([VBClPAM]>>[DFP]) and considering its catalytic nature. By 

calculating % DFP remaining from integration of each peak, first-order kinetic plot can 

be constructed based on following equation: ln[[DFP]t/[DFP]0] = -Kobst, where 

[DFP]t/[DFP]0 corresponds to % DFP remaining at time t, Kobs is the rate constant 

attained from the slope of plot. Due to experimental limitation, the requirement for 

pseudo-first order kinetic could not be fully achieved given small molar ratio, 

[VBClPAM]/[DFP] ≈ 6. This limitation arose because the smallest volume of DFP for 

clear 31P NMR spectra is 1~2 µL and the highest concentration of polymer solution is 
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100 mg/mL in 0.5 mL of NMR solvent. To maintain pH higher than 8, 2-amino-2-

methyl-1,3-propanediol (AMPD) buffer solution was prepared in D2O (5 mM or 23 

mM). 

 

Figure 3.31 Kinetic plots of DFP neutralization catalyzed by terpolymer with 49 mol% 
of VBClPAM (a) and terpolymer with 22 mol% of VBClPAM in different solvent 
mediums 

DFP neutralization by nucleophilic terpolymer with hydrolyzed acrylic acid was 

studied. Neutralization of DFP catalyzed by terpolymer with different composition 

showed distinctive results based on PAM compositions and solvents. Shortly, water-

soluble polymer with lower mol% of VBClPAM shows the fastest reaction rate in sole 

water medium compared to polymer solution with higher mol% of VBClPAM in the 

mixture of organic solvent such as MeOD or DMSO-d6. To clarify what reaction 

conditions (solvent, concentration and pH) can increase the DFP neutralization rate, 

additional experiments were performed. First, we only focused on water-soluble 

polymer to exclude solvent effect. Also, molar ratio between DFP and VBClPAM was 

controlled by adjusting concentration of polymer solution or synthesizing terpolymer 

with different mol% of each moiety. Furthermore, effects of buffer solution (pH) was 

also investigated by using 5 mM and 23 mM AMPD buffer solution in D2O. 
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Table 4 Summary of DFP neutralization kinetic study: nucleophilic polymer with mol% 
of each component, molar equivalent of DFP (target): VBClPAM (nucleophilic 
moiety):AMPD (buffer), concentration of polymer in AMPD-buffered in D2O 

 

 

 

Figure 3.32 DFP neutralization kinetic plots for comparing polymer solution 
concentration using same polymer (a) and mol% of VBClPAM in terpolymer using two 
different polymer (b) in two different 2-amino-2-methyl-1,3-propanediol (AMPD)-
based buffer solution (5 mM and 23 mM) in D2O 

In the beginning of DFP neutralization (<0.5 hr), concentration of DFP linearly 

decrease with fast reaction rate (pseudo-first order kinetic). Higher concentration of 

AMPD buffer solution (23 mM) results in much faster initial neutralization rate than 

lower concentration of AMPD buffer solution (5 mM) regardless of mol% of 

VBClPAM or concentration of polymer. Higher concentration of polymer in either 23 

mM or 5 mM AMPD buffer solution in D2O contains larger amount of acrylic acid with 
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PAM saturates low % DFP destruction. The polymer with higher PAM mol% contains 

higher acrylic acid mol% at the same time which lowers overall pH of polymer solution. 

Buffer solution can deprotonate not only pyridine-aldoxime (nucleophile) but also 

acrylic acid. From this reason, polymer with higher mol% VBClPAM (47 mol%) shows 

slower initial neutralization and lower % destruction given that only 20% DFP was 

destructed. It hinders our assumption that polymer with higher PAM mol% will show 

faster nucleophilic hydrolysis.  

 
Figure 3.33 DFP neutralization kinetic: catalyzed by p(NIP-VBBP-VBIPAM) with 

assistance ot PEI (left) and 23 mM AMPD (right) 

DFP neutralization by nucleophilic terpolymer without hydrolyzed acrylic acid was 

studied. To activate the reactivity of PAM, deprotonation of the terminal hydroxyl 

proton by a base is required. A solution of 2-amino-2-methyl-1,3-propanediol (AMPD 

- 23 mM) in D2O (t1/2: 1.5 hr) was used as the basic buffer, which effectively activated 

the reactive polymer resulting in faster neutralization rates. However, the use of AMPD 

buffer solution is limited since in the final application, a solid polymer film, AMPD can 

be easily washed away. We sought a low vapor pressure base as a replacement of 

AMPD base-buffer. We chose the viscous liquid polyethyleneimine (PEI), which was 

mixed with the polymer and in this system, fast DFP neutralization kinetics (t1/2: 0.2 hr) 
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were observed. We have prepared crosslinked films with PEI covalently incorporated 

within the reactive terpolymer network. 

DFP neutralization kinetic study was performed to see effect of polymer 

concentration and buffer using water-soluble p(NIP-co-VBIPAM) with different 

compositions. 

 

 

Figure 3.34 Water-soluble poly(NIP-co-VBIPAM) with different compositions (O 

means water-soluble, Δ means poorly water-soluble) 

 

 
Figure 3.35 DFP neutralization kinetic study: effect of polymer (p(NIP-co-VBIPAM) 
with 90:10) concentration and buffer solutions 

The rate of DFP neutralization was affected by polymer solution concentrations 

indicating that 4-pyridine aldoxime was involved non-catalytically in the hydrolysis of 

DFP. The water-soluble polymer, p(NIP-co-VBIPAM) with ratio of NIP:VBIPAM = 

90:10 shows that higher polymer solution concentration in 23 mM AMPD buffer results 

in faster DFP neutralization. However, there was no large difference between 10 
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mg/mL and 20 mg/mL compared to 6 mg/mL. In the case of neutralization performed 

in the presence of PEI, lower polymer concentration results in faster DFP neutralization. 

From this data, we can conclude that 4-PAM is not catalytic in the neutralization of 

DFP. Also, the threshold polymer concentration (minimum polymer solution 

concentration showing fastest DFP neutralization) would be around 10 mg/mL in 

AMPD buffer solution. 

 

Figure 3.36 DFP neutralization kinetic study: effect of polymer with different 
compositions and buffer solutions 

Above DFP neutralization plots are obtained from the fastest DFP neutralization 

result of each polymer concentration. NIP:VBIPAM = 90:10 (20 mg/mL in AMPD or 

6 mg/mL in PEI), 80:20 (20 mg/mL), 70:30 (12 mg/mL-highest concentration). 

Depending on the polymers, the highest concentrations to be obtained were different. 

From the comparison among polymers with different compositions, polymer with 

higher PAM mol% as well as better water solubility results in fastest DFP neutralization 

in both AMPD and PEI buffered solutions. The fastest DFP neutralization was obtained 

from 20 mg/ml of p(NIP-co-VBIPAM) with 80:20 ratio in 0.6 wt% of PEI buffer 

solution. Based on this result, we have chosen the water-soluble p(NIP-VBBP-

VBIPAM) sample with 20 mol% of VBIPAM for further optimization. 
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3.6 Conclusion 

Due to the presence of AAc in polymer chains affecting overall pH, DFP 

neutralization catalyzed by the terpolymer could not be clearly concluded in that 

neutralization reaction saturated at low % of DFP destruction giving a non-linear curve. 

Neutralization of DFP by terpolymer containing AAc from hydrolyzed NIP was not 

suitable to conduct pseudo-first kinetic order. Ultimately, AMPD should assist PAM to 

enhance nucleophilic reactivity. However, AMPD will be easily washed away because 

of small molecular weight. For protective garment applications, we should find the 

replacement of AMPD rendering pH of polymer basic. 

From 1H NMR study of mixtures of PAM and NIP or vinylbenzyl chloride and PAM, 

we found the right synthesis route to avoid undesired NIP hydrolysis. NIP can be stable 

at room temperature and vinylbenzyl iodide can be functionalized with PAM at room 

temperature. DFP neutralization kinetic rate had been studied in various conditions 

controlling concentration of polymer solutions, buffer solutions (AMPD or PEI), and 

solubility of terpolymer in water or organic solvent. Up to now, the best result was 

water-soluble, terpolymer, p(NIP-VBBP-VBIPAM) with 20 mol% of VBIPAM with 

assistance of PEI activation reaching to half-life ~ 10 min and high % of DFP 

denomination.  

Develop water-soluble terpolymers with maximized amount of VBIPAM and 

minimized hydrophobic VBBP. To achieve this, we can choose other hydrophilic 

monomers like HEMA or PEG-DMA instead of NIP. Also, we need to investigate the 

minimum mol % of VBBP in terpolymer in order to perform as photo-initiator and 
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reducing hydrophobicity. PEI was found as a good organo-base to activate PAM as a 

strong organo-nucleophile. We need to more care about molar ratio between amine from 

PEI and oxime from PAM. Build up more systematic DFP neutralization kinetic study 

based on solubility of terpolymer, mol% of VBBP in terpolymer and molar ratio 

between PEI and PAM. 
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CHAPTER 4  

EVALUATION: MOISTURE VAPOR TRANSMISSION RATE (MVTR), 

CWA PERMEATION STUDY AND SELF-EXFOLIATION STUDY 

4.1 Introduction 

Protective clothing against toxic chemicals or biological hazards have been 

engineered to reduce the potential for the direct skin contact by resisting permeation, 

penetration or degradation. Before commercializing those materials, various standard 

and reliable tests are performed by quantitatively measuring the permeation of liquids 

and gases through protective clothing materials under continuous contact of the test 

chemical or examining undesirable physical changes.1–3,46–52 With that, the 

breakthrough detection time, standardized breakthrough time, permeation rate, and 

cumulative permeation can be determined to evaluate the effectiveness of a clothing 

material as a barrier to the test chemical. ASTM (American Society for Testing and 

Materials) documents numbers of typical test methods for protecting garments. For 

example, F1407 suggests the permeation of liquids through protective clothing 

materials can be determined by using a permeation cup.1 Basically, it measures weight 

loss from the cup resulting from chemical diffusion to and evaporation from the surface 

of the clothing specimen that faces the air. Regardless of its simplicity, there are several 

experimental limitations. If the weight loss occurs slowly due to the low volatility of 

the chemical, it will be difficult to trace the weight changes with time. Also, if the target 
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chemical is too toxic, then it is dangerous to test in open system. Especially, our system 

(SERP) targets significantly toxic OP-based nerve agents which can give us deleterious 

effects even with trivial amounts (LD50 of DFP: 1.3 mg/kg) requiring test methods to 

encompass small detection limits and a close system. Furthermore, SERP provides a 

protection against toxins by chemically neutralizing to non-toxic compounds as well as 

physically impeding permeation through. Therefore, it is necessary to quantitatively 

analyze a collection of permeants at given time by using detecting techniques including 

flame ionization, photo ionization, electro-chemical, ultraviolet and infrared 

spectrophotometry, gas and liquid chromatography, calorimetry, length-of-stain 

detector tubes, and radionuclide tagging/detection counting.  

 
Figure 4.1 Permeation cell: F739 (a) and Franz cell (www.permeagear.com) 

With those reasons, design of permeation test cells such as F739 and Franz cell53 is 

a good candidate in that a sample material separates donor chamber for chemicals and 

receptor chamber for collecting permeants. The receptor chamber can be directly 

connected to the adequate detector which can provide the chemical identity and the 

relative amount if permeants consist of multi-components in real time. The permeation 

http://www.permeagear.com/
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test should be proceeding multi-times to obtain reliable values considering many factors 

such as film thickness, humidity, and detection limit. 

4.2 Project Goal 

 Understand SERP barrier abilities by examining resistance to permeation, % 

permeation through membrane, physical degradation or erosion rate and 

identifying permeants. 

 Develop breathable layers with good moisture vapor transmission rate (MVTR), 

not limiting barrier ability.  

 Control film thickness, crosslinking density, hydrophilicity of polymer and 

relative humidity. 

4.3 Experimental, and Results and Discussion 

4.3.1 Moisture Vapor Transmission Rate (MVTR) 

 
Figure 4.2 Dynamic Moisture Permeation Cell (DMPC), image provided from Natick 

The moisture vapor transmission rate (MVTR) of polymer coated films on ePTFE is 

measured in Natick. ePTFE is used due to its high breathability. The measurement 

condition is top cell with 95 % and bottom cell with 5 % relative humidity at 30 °C. 
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The flow rate is 2,000 cm3/min. Polyethyleneimine (PEI) solution (6 wt%) in MeOH 

was spin-coated on ePTFE. MVTR was measured by Pearl Yip at Army Natick and 

shown to have excellent moisture permeability, 8399 g/m2∙day. MVTR data for various 

substrates is shown in Figure 4.3. 

 

Figure 4.3 Surface and cross-section image of breathable thin film on ePTFE and 
MVTR values. 

4.3.2 Permeation test using Franz Cell and GC-MS 

Ideally, OP-based toxins diffusing into the polymer films are neutralized before 

penetrating out of the layer. Therefore, the neutralization rate should be much faster 

than permeation rate. Even if permeation rate is fast, we can induce a long journey for 

toxins by increasing a film thickness. However, this physical hindrance will be an 

obstacle to achieve high breathability. To attain brief ideas, we’ve tried simple 

permeation experiments using Franz Cell. The hydrophilic polymers with an acid-
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sensitive crosslinker cured on ePTFE was placed between donor chamber and receptor 

chamber. The receptor chamber was filled with organic solvent (hexane or 

dichloromethane) with internal standard (3mL). One of CWA simulants, diethyl 

chlorophosphate (DCP) (100 µL, 120 mg) was placed in the donor chamber. After each 

time interval, 1~2 µL of solution from receptor chamber was sampled and inserted into 

a gas chromatography-mass spectroscopy (GC-MS). However, we could not detect any 

from receptor chamber during observation time. It maybe because the concentration of 

DCP in receptor chamber is much more dilute than detection limit of GC-MS. We need 

to optimize the detection limit and concentration in receptor chamber. For quantitative 

investigation, a calibration curve was constructed using 5 different solutions with 

known concentration of DCP and constant concentration of hexadecane. Based on the 

response ratio between DCP and the internal standard (hexadecane) from the GC-MS 

data, we can obtain a product to standard ratio and hence quantify the measurements. 

The limit of detection was 1~3 µg which was calculated from injection volume and 

concentration. This stagnant and simple test will provide information on chemical 

identity of permeants. 
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Figure 4.4 Calibration curve for GC-MS measurement of permeated DCP 

4.3.3 CWA Permeation By Surface-enhanced Raman Spectroscopy (SERS) 

 
Figure 4.5 Schematic illustration of Surface-enhanced Raman Spectroscopy; target 
CWA simulant (paraoxon) 

We have explored a new surface-enhanced Raman spectroscopy (SERS) technique 

that was developed in collaboration with Professor L. He (UMass, Food Science). This 

technique can be used to spatially monitor the diffusion of a CWA analogue, paraoxon 
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– (POX), through a polymer thin film. POX shows a weak Raman signal at 1350 cm-1, 

which is greatly enhanced in the presence of 60 nm gold nanoparticles. To perform 

these analyses, an aqueous gold nanoparticle (AuNP) solution (0.5 mg/mL) was drop-

cast on top of the film to be studied. After letting the AuNP diffuse into the film for 1 

hr, 5 or15 μL of POX solution (6 mM in acetonitrile) was dropped on the surface of the 

film. We have continued to optimize the conditions to maximize detection. By 

combining AuNPs and adjusting concentration of AuNPs solution, we could 

successfully collect spectra to determine where each component (POX, terpolymer and 

mixture of two) show clear Raman signal peaks.  

We prepared a polymer solution and prepared crosslinked films on ePTFE supports. 

We measured depth-mapping of SERS every 5 min after changing the surface with a 5 

μL droplet of POX solution (20 mM in MeCN). Using a Raman microscope, depth 

mapping was performed by collecting spatially resolved spectra at depth intervals of 

every 3 μm. These slices are combined to give a plot of POX concentration as a function 

of area and depth. Results from a typical series of scans is shown in Figure 4.6. We 

observed that the diffusion of POX appeared to start at the top of the film and proceeds 

into the depth of the film over time. Position of the sample, flatness of the sample, and 

drop size have a strong impact on the quality of the results. While we do not yet fully 

understand this behavior, we believe that the highly humidified state of the sample may 

lead to isotropic diffusion like that found in the diffusion of ink in a liquid. At 30 min 

of exposure to POX, we could see evidence of neutralized POX by the appearance of a 

peak due to 4-nitrophenol at 1345 cm-1. From these measurements we still do not know % 
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POX neutralization quantitatively. 31P NMR measurement will complement these 

experiments to provide quantitative POX neutralization data. The experiments do 

confirm that a 30-um film of our material is not saturated or permeated by a highly 

concentrated drop of POX, even after 30 minutes. 

 
Figure 4.6 Visually shown depth-mapping of SERS exhibiting CWA permeation 
through crosslinked terpolymer 

4.4 Conclusion 

We have improved the breathability of the self-exfoliating and reactive polymer 

(SERP) by changing the system from bulk-hydrogel type of polymer films to thin 

polymer layer obtained from spin-coating of polymer solution and subsequent photo-

irradiated crosslinking. The biggest change from the previous system to current linear 

polymer system is we have reduced film thickness significantly (150 μm to 10 μm). 

However, the control of film thickness is not exact in the lab. Therefore, we need more 

studies to achieve firmly controlled film thickness and MVTR.  
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For the study of CWA permeation through SERP layer, we used on in situ permeation 

cell connected to FID (Flame ionization detector). By doing so, we quantitatively 

observed the small amount of CWA, that permeated through the film in the closed 

system. Currently, our collaborator to Prof. Tim Swager (MIT), prepared this 

equipment.54 In the future, we can go there to measure our samples. As a different 

approach, we use Surface-enhanced Raman Spectroscopy (SERS) to observe the 

permeation of CWA and decontaminated CWA. Also, by utilizing depth-mapping, we 

can see the concentration variation with different time intervals in the depth and width. 

Therefore, we could visually observe the CWA diffusion through films.   
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CHAPTER 5 

CONCLUSION 

As a protection against chemical warfare agents (CWAs), we’ve proposed self-

exfoliating and reactive polymer (SERP). Our main targeting toxins are 

organophosphate (OP)-based nerve agents, which can be easily hydrolyzed by strong 

bases or nucleophiles. SERP materials would be coated on personal or soldier’s 

garments so that the neutralization reaction of OP can occur at mild conditions without 

generating excess heat at ambient temperature. To achieve self-exfoliation, we’ve 

developed acetal/ketal-based acid-sensitive crosslinkers and studied their hydrolysis 

kinetic rate in solution and film states at different pH, hydrophilicity, and crosslinking 

density using 1H NMR, UV-Vis spectroscopy and GC-MS. 

To demonstrate neutralization of toxic OP compounds, we used DFP as Sarin or VX 

simulants. In early stages of this research, we had focused on finding better organo-

nucleophiles. We have been exploring quaternary halides, histidine, aldoxime and 

pyridine-aldoxime (PAM) as a candidate of nucleophilic reactant. Among all candidates 

we chose PAM as a promising reactant for neutralizing DFP. We believed that PAM is 

a catalytic reactant, but we demonstrated reaction rate can be affected by concentration 

of PAM so we decideded to call PAM as a nucleophilic reactant. We designed and 

synthesized nucleophilic, photo-crosslinkable and hydrophilic terpolymer by 

conventional free radical polymerization. We investigated this terpolymer can 

neutralize DFP even faster with assistance of PEI as a base by deprotonating hydrogen 
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on the oxime rendering a lone pair electron on the oxime very reactive. It was realized 

that concentration of polymer solutions, hydrophilicity of polymer (water-solubility) 

and mol% of PAM-containing moiety, VBIPAM and base buffer can significantly affect 

DFP neutralization rate. So far, we have achieved the fastest DFP neutralization rate 

with half-life ~10 min. Also, we confirmed that SERP layer coated on ePTFE can also 

neutralize DFP with half-life ~30 min. 

Also, we investigated breathability of SERP films coated on ePTFE. By changing 

system from a bulk-hydrogel film to a thin film layer spin-coated on ePTFE and 

subsequent photo-irradiated crosslinking, we have achieved high breathability with ~10 

μm thickness. As a protection, it is important to observe how fast the CWA can permeate 

through films. Ideally, neutralization of DFP should be much faster than CWA 

permeation. Using Surface-enhanced Raman Spectroscopy (SERS), we observed CWA 

diffusion in the film by depth mapping with concentration variations and neutralized 

CWA (non-toxic) in the different depth. Unfortunately, we could not quantitatively 

investigate the permeation rate utilizing SERS, we could only obtain brief idea on how 

fast they can permeate.  
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CHAPTER 6 

FUTURE WORK 

As a future work, we will perform quantitative study of CWA permeation through 

SERP films using a diffusion cell equipped with the GC-MS which is set up in MIT. By 

doing so, we can expect that we will understand how fast CWA can permeate through 

our film quantitatively. Also, we can collaborate with the national lab where it can use 

real agents for testing with permission. 

Also, we are working on making cellulose-based film containing nucleophilic PAM 

units which can be used as a CWA-agent decontaminating material. We are currently 

optimizing the amount of PAM in the cellulose-based film, the thickness of films and 

corresponding breathability by measuring moisture-vapor transmission rate (MVTR) 

collaborate with Natick Army Research Lab. This material can be spray coated, so 

uniform and thin layer can be made.   
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