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ABSTRACT

MODEL-FORM UNCERTAINTY QUANTIFICATION FOR

PREDICTIVE PROBABILISTIC GRAPHICAL MODELS

SEPTEMBER 2019

JINCHAO FENG,

B.S., UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Markos Katsoulakis and Professor Luc Rey-Bellet

In this thesis, we focus on Uncertainty Quantification and Sensitivity Analysis,

which can provide performance guarantees for predictive models built with both

aleatoric and epistemic uncertainties, as well as data, and identify which compo-

nents in a model have the most influence on predictions of our quantities of interest.

In the first part (Chapter 2), we propose non-parametric methods for both local

and global sensitivity analysis of chemical reaction models with correlated param-

eter dependencies. The developed mathematical and statistical tools are applied

to a benchmark Langmuir competitive adsorption model on a close packed plat-

inum surface, whose parameters, estimated from quantum-scale computations, are

correlated and are limited in size (small data). The proposed mathematical method-

ology employs gradient-based methods to compute sensitivity indices. We observe

vi



that ranking influential parameters depends critically on whether or not correla-

tions between parameters are taken into account. The impact of uncertainty in

the correlation and the necessity of the proposed non-parametric perspective are

demonstrated.

In the second part (Chapter 3-4), we develop new information-based uncertainty

quantification and sensitivity analysis methods for Probabilistic Graphical Models.

Probabilistic graphical models are an important class of methods for probabilistic

modeling and inference, probabilistic machine learning, and probabilistic artificial

intelligence. Its hierarchical structure allows us to bring together in a systematic

way statistical and multi-scale physical modeling, different types of data, incor-

porating expert knowledge, correlations, and causal relationships. However, due

to multi-scale modeling, learning from sparse data, and mechanisms without full

knowledge, many predictive models will necessarily have diverse sources of uncer-

tainty at different scales. The new model-form uncertainty quantification indices

we developed can handle both parametric and non-parametric probabilistic graph-

ical models, as well as small and large model/parameter perturbations in a single,

unified mathematical framework and provide an envelope of model predictions for

our quantities of interest. Moreover, we propose a model-form Sensitivity Index,

which allows us to rank the impact of each component of the probabilistic graphical

model, and provide a systematic methodology to close the experiment - model -

simulation - prediction loop and improve the computational model iteratively based

on our new uncertainty quantification and sensitivity analysis methods. To illus-

trate our ideas, we explore a physicochemical application on the Oxygen Reduction

Reaction (ORR) in Chapter 4, whose optimization was identified as a key to the

performance of fuel cells.

In the last part (Chapter 5), we complete our discussion for the uncertainty quan-
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tification and sensitivity analysis methods on probabilistic graphical models by

introducing a new sensitivity analysis method for the case where we know the real

model sits in a certain parametric family. Note that the uncertainty indices above

may be too pessimistic (as they are inherently non-parametric) when studying un-

certainty/sensitivity questions for models confined within a given parametric fam-

ily. Therefore, we develop a method using likelihood ratio and fisher information

matrix, which can capture correlations and causal dependencies in the graphical

models, and we show it can provide us more accurate results for the parametric

probabilistic graphical models.
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C H A P T E R 1

INTRODUCTION

Uncertainty quantification (UQ) is a key mathematical and computational tool

to assess the predictive ability of a model. This information can be used to map

the envelope of model predictions, to improve a model via error reduction meth-

ods, and to inform control and optimization strategies in system tasks [45, 65,

79, 92, 95, 106, 110, 119, 128]. Sensitivity analysis (SA) is one of the most ef-

fective tools for identifying influential model parameters [2, 97, 109, 119]. The

SA approaches are typically classified as local or global methods. Local sensi-

tivity analysis (LSA) computes variability in model predictions due to infinitesi-

mal perturbations in the model parameters [119]. The resulting local sensitivity

indices (LSIs) include gradient [119] and information-based methods [28]. LSIs

have also been applied to system optimization and model calibration problems

[55, 137]. Global sensitivity analysis (GSA) determines variability in model pre-

dictions over a range of parameters due to uncertainty in those parameters. GSA

techniques include analytical, regression, screening and variance-based methods

[22, 74, 82, 86, 94, 119, 116, 125, 126, 139, 140, 141, 142].

While significant progress has been achieved in UQ and SA methods over the

years, physical systems often exhibit correlated parameters. In recent work, we

introduced such a mathematical framework and demonstrated the impact of cor-

1



relations on a model predictive ability for a complex reaction network [125]. Our

ability to understand and improve methods relies on developing simple but physi-

cally sound models that we can analyze mathematically.

In Chapter 2, we propose non-parametric methods for the GSA of chemical

reaction models with correlated parameter dependencies. A Langmuir bimolecu-

lar hydrogen/oxygen competitive adsorption model is employed as a benchmark to

motivate and concretely illustrate the derivation and algorithmic aspects of the pro-

posed method. This system describes the competitive adsorption of hydrogen and

oxygen on a Pt(111) surface. Such systems are encountered in catalytic oxidation,

such as emissions abatement, small scale power generation, fuel cells and batteries.

Here, parameter correlations stem from correlated quantum-scale computational

data calculated using Density Functional Theory (DFT). These correlations are

assimilated into the model as an informed prior distribution for the model’s pa-

rameters. The use of non-parametric methods in modeling parameter uncertainty

and understanding global sensitivity is necessitated by the limited availability of

quantum-scale data. The proposed mathematical methodology employs gradient-

based methods to compute correlative local/global sensitivity indices (LSI/GSI) to

illustrate the relative effects of parameter perturbations, errors and uncertainties

in model parameters. We show that the ranking of influential parameters depends

critically on whether or not correlations between parameters are taken into account.

The impact of uncertainty in the correlation on the LSI/GSI is also demonstrated.

Finally, we show the necessity of the proposed non-parametric perspective by com-

paring with a parametric approach.

Moreover, in contrast to uncertainty due to the inherent randomness of prob-

abilistic models and their parameters as shown in above, it is common that there

is significant uncertainty regarding the probabilistic model itself. For instance,
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model uncertainty can stem from the fact that a model (or components of it) may

have been learned from available data which could be sparse, incomplete or imper-

fect, as is typically the case in physical-chemical and engineering applications, so

we could not determine its probability distribution or the probabilistic structure

(conditional dependency/causality) of the components in the model. Similarly, for

the inference/prediction tasks we typically will use approximate inference methods,

which create additional model uncertainty. Lastly, some physical mechanisms may

be too complex to be fully incorporated in a model and an approximation or sur-

rogate model. In these classes of model error two challenges emerge: (a) the “real”

probabilistic model is a model Q (partly unknown or computationally intractable)

but instead we have to use a baseline, surrogate or approximate model P , and

(b) in applications we are interested in predicting correctly Quantities of Interest

(QoIs), given by expected values with respect to our models, and not necessarily

the entire model Q.

On the other hand traditional UQ methods which mostly consider parametric

approaches, e.g., by perturbing, tuning, or inferring the model parameters with a

known probability distribution [134] which are not suitable for the aforementioned

models. And most classical sensitivity indices like gradient-based (derivative-based)

sensitivity indices, the Sobol index, and its variants, etc. [73], are restricted on

parametric models with independent parameters. Although there are some other

new sensitivity analysis methods for correlated parameters or (Gaussian) Bayesian

networks, e.g., using divergence measures (especially KL divergence) to compare

different model structure (especially for Gaussian Bayesian networks) [47, 48, 46],

analyzing the sensitivity of components by conditioning with f(X)-divergence [108],

extended gradient based sensitivity indices for correlated parameters [33] (intro-

duced in Chapter 2), using the gradient-based or variance-based (ANOVA-based)
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sensitivity analysis for Bayesian networks with deterministic structures (known

distribution) and non-deterministic structures (KDE) [138, 129, 16], and using mu-

tual information and conditional mutual information [85, 49], they cannot handle

model-form UQ, and it is not obvious how they will take advantage of the inher-

ent graphical structure in PGMs, such as conditional independence, or restricted

with Gaussian Bayesian networks. Therefore, in Chapter 3, we developed tight,

information-theoretic and computable bounds for QoIs that provide such predictive

guarantees [29, 50, 64, 56] .

To accomplish the goal, we use Probabilistic Graphical Models (PGM), an im-

portant class of methods for probabilistic modeling and inference, and constitutes

the mathematical foundation of modeling uncertainty in Artificial Intelligence (AI).

PGMs can bring together in a systematic way modeling, data and experiments at

different scales, and expert knowledge from scientific groups. They are widely used

in many real-world applications, like medical diagnostics, natural language process-

ing, computer vision, robotics, computational biology, and cognitive science, e.g.,

[37], [60, 6], [81], [78], [38]. Their general mathematical formulation was developed

in the seminal work (over 25K citations) of J. Pearl [100, 102], that revolutionized

AI.

Many problems in machine learning involve classification, analysis and predic-

tions, using data sets of points which are independent of each other. For instance,

given images of handwritten characters to predict correctly the digit between 0-

9. However, this is not the case in many applications involving physicochemical

systems, where dependencies and correlations in space/time and between model el-

ements (molecules, parameters, mechanisms), causal relationships between inputs

and outputs, couplings between scales and physics (from quantum to meso/macro-

scale) are the norm rather than the exception. Therefore, we consider using PGM

4



to provide the proper mathematical and computational framework for physico-

chemical problems, which allows us to represent expert knowledge, and learn the

models from available data.

A PGM is defined as a probability model P with density

p(x) =
n∏
i=1

p(xi|xπi) (1.1)

where x = (x1, . . . , xn) are the values of random variables X = (X1, . . . , Xn),

xπi = {xi1 , . . . , xim} ⊂ {x1, . . . , xn} is the values of parents of each random variable

Xi, and

p(xi|xπi) . (1.2)

is the Conditional Probability Density (CPD) for the conditional distribution Pi|πi

with given parents Xπi = xπi . For example, for an inhomogeneous markov chains,

we have p(x) =
∏n

i=1 p(xi|xi−1), where p(x1|x0) := p(x1), and πi = {i− 1}.

This concept proved to be the key to constructing complex probability models with

many parameters and nodes, allowed to incorporate data and expert knowledge,

and organize distributed probability computations by “divide and conquer” using

graph-theoretic model representations. PGMs can also represent causal relation-

ships between random variables through Directed Acyclical Graphs (DAG), [100],

[66].

Then for a QoI f(X) with a given nominal model or baseline model P , which is

computationally tractable and believed to be a good approximation for the physical

model of X, and an alternative or perturbed model Q ∈ Q, which can be considered

as the true unknown model for X and belongs to a family of distributions Q, we

want to quantify the influence of uncertainty about the model when we try to use

the easier computed quantity EP [f(X)] to approximate the exact value EQ [f(X)]
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by looking at the bias

EQ [f(X)]− EP [f(X)] (1.3)

Thus, we can define the predictive uncertainty of baseline model P for the

QoI f(X) as the biases on the worst case scenario with given family of alternative

models Q,

I±(f(X), P ;Q) := sup/inf
Q∈Q

EQ [f(X)]− EP [f(X)] (1.4)

Note that the predictive uncertainty represents the robustness of the model P

w.r.t. Q, i.e. all the biases between the predictions of f(X) with Q ∈ Q and P are

bounded by the predictive uncertainty and the bounds are tight.

In Chapter 3, we will investigate three ambiguity sets: one for model-form

uncertainty quantification in Section 3.2.1, defined in (3.1), where we consider all

the possible alternative model Q (graph structure/parents and CPDs might varied)

around the PGM P with the conditionR(Q||P ) ≤ η for some model misspecification

η; and two for model-form sensitivity analysis in Section 3.2.3, where we consider

the sensitivity of node Xl in the PGM by perturbing the graph structure/parents

and CPD of the node under the constraint R(Ql|πQl
||Pl|πPl ) ≤ ηl for some model

misspecification ηl, defined in (3.52), or only perturbing the CPD of the node

under the constraint R(Ql|πl ||Pl|πl) ≤ ηl and fixed the graph structure/parents πl,

defined in (3.59).

An application of the model-form UQ and SA for PGMs is shown in Chapter

4 with a chemical example on oxygen reduction reaction (ORR), which occurs at

the cathode of the fuel cell and its kinetic losses comprise more than half of all

voltage losses at peak power density [115]. Therefore, we use the PGMs (especially

a Gaussian Bayesian network(GBN) in our case [66]) to adopt and mathematically

formulate a System of Systems (SoS) perspective in our predictive modeling, i.e.,
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bring together in a systematic way statistical and multi-scale physical modeling

(both thermodynamics and kinetic models), different types of data (from DFT or

experiments), incorporating in expert knowledge, correlations and causal relation-

ships, then try to optimize ORR catalysts to improve fuel cell performance using

the predictive model.

However, since our data is limited in size and we do not have full knowledge

for all the nodes on the PGM, we must consider the model-form uncertainty in

our model as we discuss above. Therefore we apply the methods we proposed in

Chapter 3 and we show in Chapter 4 that the model-form sensitivity index we

proposed on PGM can allow us to isolate errors in specific parts of the model, rank

them and study their individual impact on predictions for our QoIs. Therefore

it can give us a methodology on how to modify the model towards improving its

predictive capability for specific QoIs.

In the end, we close our discussion by introducing another sensitivity analysis

method for parametric PGMs in Chapter 5. The proposed UQ and SA tools above

are non-parametric in nature since our challenges can involve uncertainty in the

probabilistic model itself. And since the uncertainty and sensitivity indices are

based on KL divergence, they are inherently non-parametric and thus the resulting

family of distributions allows for densities that may not be attainable within a par-

ticular parametric family. However, if we already know the probabilistic models we

need to consider lie exclusively within a fixed parametric family, our non-parametric

bounds can be too wide since the family includes many other distributions outside

the parametric family at hand. For instance, like many PGMs with discrete random

variables, we know it must follow a Bernoulli or categorical distribution, therefore

we do not need to consider the model-form uncertainty but only the uncertainty

on parameters. Thus, in Chapter 5, we propose a UQ and SA method, which can
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work on the cases where the parametric families of the true models are known,

using likelihood ratio (LR) estimator [44] and fisher information matrix (FIM). We

show that our method can take advantages of the structure of PGM and reduce

the computational complexity, and present its connection with the non-parametric

methods we introduced in Chapter 3.
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C H A P T E R 2

NON-PARAMETRIC CORRELATIVE UNCERTAINTY

QUANTIFICATION AND SENSITIVITY ANALYSIS

2.1 Background on Sensitivity Analysis

2.1.1 Predictive models

In this section an appropriate mathematical framework is discussed for sensi-

tivity analysis. First, we consider an ensemble of models of the general form

Π(x|λ) p(λ), (2.1)

where Π(x|λ) denotes the predictive forward mathematical models, i.e. the prob-

ability distribution function (PDF) of state X = x for fixed K dimensional model

parameters λ = [λ1 λ2 · · · λK ]T ∈ Λ, and Λ presents the parameter space.

The term p(λ) denotes the PDF of λ which contains knowledge of uncertainty in

the model, i.e. once we have p(λ) we can generate ensembles of X’s for each λ.

Note that X may represent a static random variable, a snapshot of the system at

some fixed time, or an entire time-series for dynamics and λ may denote the model

parameters or indexing of different models.

In our specific model, λ corresponds to the binding energy of atomic oxygen and

hydrogen on a given metal surface. We look at the uncertainty in coverage (Π) given
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the binding energy and its associated uncertainties and correlations. Coverage can

also depend on other quantities that could be represented by λ, such as binding

site, inert species, surface defects, surface impurities, and surface temperature [25,

32, 111]. The formalism is though general and beyond the binding energy and the

isotherm. Other physical systems that follow the Π(x|λ)p(λ) relationship include

the dependency of molecular frequency (Π) on coverage (λ) [10] and forecasted

temperature changes (Π), with CO2, methane, and other greenhouse gases (λ)

[84, 120, 127].

The system observable can be defined over all possible realizations of the state

f(λ) =

∫
h(x) Π(x|λ) dx, (2.2)

where h(x) denotes a desired quantity. The correlations in the parameter vector λ

are also included in p(λ) and are propagated into the state X through the predictive

forward model of Π(x|λ). Finally, the averaged observable for the model can be

defined by

f̄ =

∫
f(λ) p(λ) dλ =

∫ ∫
h(x) Π(x|λ) p(λ) dx dλ. (2.3)

2.1.2 Derivative-based sensitivity indices

Consider a general class of nonlinear models of the form

f = f(λ), (2.4)

where f is an arbitrary scalar function. The (relative) LSI of f with respect to λ

of (2.4) at the nominal value of λ∗ is

Sfλ(λ∗) =
∇λf(λ)

f(λ)

∣∣∣
λ=λ∗

= ∇λ ln f(λ)
∣∣∣
λ=λ∗

, (2.5)

where

∇λf(λ) =

[
∂f(λ)

∂λ1

∂f(λ)

∂λ2
· · · ∂f(λ)

∂λK

]T
. (2.6)
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The LSI of (2.5) supplies useful sensitivity information in the case of almost certain

parameters, i.e. for a relatively tight range of parameter values. To incorporate the

knowledge of uncertain parameter distributions and provide sensitivity information

over the entire range, we determine the relevant GSI by employing the partial

derivative of the LSI as a basic building block to integrate the local sensitivities

over the total range of parameter changes

ξfλ =

∫
λ

|∇λ ln f(λ)|qp(λ) dλ, (2.7)

where q denotes the type of required index (q = 1: improved Morris index, q = 2:

asymptotic limit of the standard Morris index).

Note that the PDF, which incorporates knowledge of the λ distribution in the

GSI of (2.7), must be identified subject to available experimental and/or simulation-

based data. The possible correlations between the system parameters, which may

be discovered during regression of the data in statistical models, must be encoded

in p(λ). Such correlations play a deciding role in sensitivity analysis and their

effects are quantified in the following sections.

2.2 Parameter Correlation Effects

Previously, LSA and GSA were treated for the case of independent parameters.

To extend sensitivity analysis to models with correlated parameters, we partition

the vector of parameters into two,

λ1 = [λ1 λ2 · · · λm]T ∈ Λ1,

λ2 = [λm+1 λm+2 · · · λK ]T ∈ Λ2, (2.8)

where λ = [λ1 λ2]T , Λ = Λ1 ⊕ Λ2, λ1 contains all independent parameters, and

λ2 contains all dependent parameters. Parameters can be classified through their
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correlations, which are identified using experiments and/or computational tools

for specific case studies, and by applying causality statistical methods. When λ1

and λ2 are correlated, perturbations in one parameter affect the other. Proper

mathematical tools are needed to quantify parameter correlations and their impact

on model reliability.

The correlation between λ1 and λ2 can be described by their joint probability

distribution,

p(λ1, λ2) = p(λ2|λ1)p(λ1). (2.9)

For the marginal distribution of λ1,

p(λ1) =

∫
Λ2

p(λ1, λ2) dλ2. (2.10)

Identifying p(λ1) and p(λ2|λ1) in a systematic way is an essential step in our CGSA.

The joint probability distribution of p(λ1, λ2) can either be built directly, with

a sufficiently large ensemble of experimental and/or simulation-based data [125], or

computed sequentially by marginalization according to (2.9). The latter approach

requires building PDFs with data for both p(λ2|λ1) and p(λ1), followed by Monte

Carlo sampling to calculate correlative indices. There are various linear regression

(LR) methods that can identify the conditional PDF of p(λ2|λ1); including deter-

ministic (DLR), stochastic (SLR), and Bayesian (BLR) [107, 130]. DLR yields a

deterministic linear model whose LCSIs can be computed exactly, while its GSIs

depend on the choice of p(λ1). SLR uses a least squares model for p(λ2|λ1), typ-

ically in a Gaussian form [130]. Usually, there is not enough data for adequate

fitting of a least squares model. BLR can can bypass this shortcoming by putting

a prior on the parameters in the linear fit [107].

Hierarchical or empirical Bayesian methods can identify the marginal PDF of

p(λ1) via deterministic linear or stochastic nonlinear fitting to the data. Boot-
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strapping does not require fitting but instead relies on simulation [130], which is

particularly appropriate for problems with little data, by creating synthetic new

samples using random re-sampling according to the actual distribution of the data

[130]. In this way we can enrich the histogram with more data points and obtain a

Gaussian distribution [130]. If histograms are too sparse, smoothed bootstrapping

can be used. This method applies a kernel to data from a standard histogram. A

Bayesian approach can be used to fit data to a well known distribution that ”looks

like” the histogram. ”Looks like” means that we pick a family of well known distri-

butions and match the first few moments with the corresponding moments of the

data’s histogram, i.e. mean, variance, skewness, etc. [40, 130].

We perform the correlative sensitivity analysis by focusing on λ1, while still

accounting for the correlations with λ2

F (λ1) =

∫
Λ2

f(λ1, λ2) p(λ2|λ1) dλ2. (2.11)

The correlative local sensitivity index (CLSI) at the nominal point λ1∗ is obtained

similarly to (2.5) by direct differentiation,

Sfλ1, corr(λ1∗) =
∇λ1F (λ1)

F (λ1)

∣∣∣
λ=λ1∗

= ∇λ1 lnF (λ1)
∣∣∣
λ=λ1∗

. (2.12)

The CGSI can then be formulated

ξfλ1, corr =

∫
Λ1

|∇λ1 lnF (λ1)|qp(λ1) dλ1, (2.13)

by employing the CLSI of (2.12) as building blocks where q = 1 or q = 2.

For deterministic correlation where λ2 = g(λ1), we can simplify the λ1-marginal

PDF of (2.10) by considering p(λ2|λ1) = δ(g(λ1)− λ2),

p(λ1, λ2) = p(λ1) δ(g(λ1)− λ2), (2.14)
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where δ(·) denotes the standard Dirac function. Therefore, from (2.11), we have

F (λ1) =

∫
Λ2

f(λ1, λ2) p(λ2|λ1) dλ2

=

∫
Λ2

f(λ1, λ2) δ(g(λ1)− λ2) dλ2

= f(λ1, g(λ1)), (2.15)

and the CLSI can be simplified to the following form

Sfλ1, corr
(λ1∗) = ∇λ1

ln f(λ1, g(λ1))

=
(∇λ1f(λ1, g(λ1))

f(λ1, g(λ1))

)∣∣∣
λ1=λ1∗

=

(
1

f(λ1, λ2)

∂f(λ1, λ2)

∂λ1

+
1

f(λ1, λ2)

∂f(λ1, λ2)

∂λ2

∂g(λ1)

∂λ1

)∣∣∣∣∣
λ1=λ1∗, λ2=g(λ1∗)

. (2.16)

The additional second term in the CLSI differs from uncorrelative LSI in that the

derivative with respect to the parameter λ2 comes directly into play. The CGSI

formulation for such a simplified case is

ξfλ1, corr =

∫
Λ1

∣∣∣∇λ1 ln

∫
Λ2

f(λ1, λ2) p(λ2|λ1) dλ2

∣∣∣qp(λ1) dλ1

=

∫
Λ1

∣∣∣∇λ1 ln f(λ1, g(λ1))
∣∣∣qp(λ1) dλ1.

(2.17)

The implementation of the sampling algorithm used to compute the correlative

local/global sensitivity index (CLSI/CGSI) is described in the Appendix A.5.

2.3 A Langmuir Bimolecular Adsorption Model

We consider a Langmuir bimolecular adsorption model which describes com-

petitive dissociative adsorption of hydrogen (H2) and oxygen (O2) on a catalyst

surface,

H2 + 2∗ 
 2H∗,

O2 + 2∗ 
 2O∗,

(2.18)
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where H2 and O2 denote the hydrogen and oxygen molecules in the gas phase,

2∗ are two active sites on the metal surface, and H∗ and O∗ represent the ad-

sorbed hydrogen and oxygen atoms on the surface, respectively. A schematic of

this adsorption process is illustrated in Figure 1. The physical system is related to

hydrogen oxidation in fuel cells and batteries [7, 54, 80, 83, 93].

Figure 1. Competitive dissociative adsorption of hydrogen and oxygen
on a catalyst surface.

The coverages dynamics can be formulated by the following set of ordinary differ-

ential equations

dθ̂H∗

dt
= kadsH2

PH2(1− θ̂H∗ − θ̂O∗)2 − kdesH2
θ̂2
H∗ , θ0

H∗ = θ̂H∗(0),

dθ̂O∗

dt
= kadsO2

PO2(1− θ̂H∗ − θ̂O∗)2 − kdesO2
θ̂2
O∗ , θ0

O∗ = θ̂O∗(0),

(2.19)

where θ0
H∗ and θ0

O∗ represent the initial hydrogen and oxygen coverages, respec-

tively. PH2 and PO2 are the partial pressures of the gas phase species [18], and we

set PH2 = 1.01325× 10−10 N/m2, PO2 = 1.01325× 10−50 N/m2 in this chapter.

The hydrogen and oxygen coverages at equilibrium are

θ̂H∗ =
(KH2PH2)

1
2

1 + (KH2PH2)
1
2 + (KO2PO2)

1
2

,

θ̂O∗ =
(KO2PO2)

1
2

1 + (KH2PH2)
1
2 + (KO2PO2)

1
2

, (2.20)
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where P is partial pressure and K =
kads

kdes
is the equilibrium constant [24, 87]. K

is determined from DFT calculations.

By focusing on variations of binding energies and fixing the other parameters,

the coverages are

θ̂H∗ = θ̂H∗(∆EH ,∆EO), θ̂O∗ = θ̂O∗(∆EH ,∆EO). (2.21)

where ∆EH and ∆EO are the binding energies of atomic hydrogen and oxygen to

the surface. It is the effect that uncertainty and correlations in the binding energies

have on the coverages that we explore below. The detailed formulas of θ̂H∗ and θ̂O∗

is derived in the Appendix A.1.

The Langmuir adsorption isotherm is strictly valid at low coverage with adsorp-

tion at a single site, which is our system of interest. For dissociative adsorption,

which we study here, the Langmuir model requires adjacent empty sites on the

catalyst surface. An ab-initio molecular dynamics (AIMD) study of hydrogen on

Pd(100) showed that regardless of coverage, only two adjacent catalyst sites are

necessary to dissociate hydrogen[53]. Although applications of AIMD to heteroge-

neous catalysis are rapidly advancing, the computational cost is still prohibitive for

it to be used in generating adsorption isotherms[52]. Less computational intensive

methods, such as Monte Carlo[118] and molecular dynamics with force fields[14],

are used instead to generate an isotherm.

Seller et al. have shown that, when combined with the Bragg-Williams cov-

erage model, the Langmuir adsorption isotherm accurately recreates experimental

isotherms for several systems[118]. Furthermore, the same study found that the

Langmuir adsorption isotherm with mean field treatment compares favorably with

coverages predicted from lattice based grand canonical Monte Carlo (GCMC) simu-

lations under certain conditions. A force field based molecular dynamics simulation
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of dimethyl methylphosphonate (DMMP) also supports the validity of the Lang-

muir model[14].

2.4 Data and Correlations

2.4.1 Methods

Electronic contributions to adsorption enthalpies are calculated with DFT, us-

ing the Vienna ab initio Simulation Package (VASP), version 5.3.2 [70, 71, 68, 69],

with the plane wave basis set, PAW pseudopotentials[11, 72], and periodic boundary

conditions. Simulation parameters are similar to those used in our previous work

[90]. All VASP input files are created using the Atomistic Simulation Environment,

an open-source python-based software program [8]. We employ the PBE exchange-

correlation functional with D3 dispersion corrections [104, 51]. Spin-polarized cal-

culations are performed for molecules in a vacuum and systems containing Ni and

Co. The first Brillouin zone is sampled using the Monkhurst-Pack (3x3x1) mesh

[91]. For the purposes of this work, the level of accuracy achieved using this mesh

size was sufficient. Ionic force cut-off for all calculations is set to 0.05 eV/. In slab

calculations, we use the (4x4) supercell containing four layers of atoms, with the

positions of the bottom two layers fixed. We use an adsorbate coverage of 1/16

monolayers in all calculations.

The DFT dissociative adsorption energy for molecular oxygen on a metal surface

is defined in Equation 2.22. A similar relation holds for dissociative adsorption of

molecular hydrogen.

∆EO2→2O∗ = −
(

2EO∗ − (EO2 + 2E∗)
)

(2.22)
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such that

∆EO =
1

2
(∆EO2→2O∗ +D0). (2.23)

In Equation 2.22, EO2 is the DFT energy of an O2 molecule in a vacuum, E∗

is the DFT energy of the pristine metal slab, EO∗ is the energy of the adsorbate-

metal system, D0 is the gas-phase bond dissociation energy at 0 K, and EO is DFT

adsorption energy of an oxygen atom. The calculated energies for a variety of metal

surfaces and the resulting scaling relationship between electronic contributions of

H and O dissociative adsorption energies are shown in Figure 2. We obtain a linear

correlation between hydrogen and oxygen adsorption energies with a R2 value of

0.87, i.e.

∆EO = a∆EH + b (2.24)

where a = 2.51, b = −2.46 (eV ).

Figure 2. Correlation between oxygen and hydrogen adsorption energies
on close-packed metal surfaces as defined in (2.24). Adsorbed
atomic species are assumed to occupy fcc hollow sites.

Vibrational contributions and other temperature effects to adsorption enthalpy

and entropy are accounted for in calculations of adsorption equilibrium constants

(see Appendix A.1 for details). Zero point energy (ZPE) corrections for gas phase

H2 and O2 are calculated using their experimental vibrational frequencies [34, 132].
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Kinetic energy loss upon adsorption is accounted for by using the ideal gas value

of 3
2
RT . Harmonic and rigid rotor approximations were utilized to account for

vibrational and rotational degrees of freedom, respectively [88]. Hessian matrices

are constructed using 0.015 displacements in x, y, and z directions from adsorbate

equilibrium positions.

2.4.2 First principles adsorption data and errors

In order to validate our computational setup and provide an error estimate,

we compare the calculated and experimental adsorption enthalpies of oxygen and

hydrogen on platinum in Table 1 [63, 17, 23, 57]. The DFT calculations reproduce

the experimental data well.

Table 1. Experimental and DFT-calculated enthalpies of adsorption
for atomic oxygen and hydrogen on Pt(111).
Adsorbate Experimental enthalpy DFT computed enthalpy ‡

O 3.71 ±0.07∗eV 3.68 eV
H 2.63† eV 2.69 eV

2.4.3 Correlations and prediction

Figure 3 highlights the differences in our model, defined in (2.1) for (θ̂H∗ , θ̂O∗),

resulting from correlations between ∆EH and ∆EO. Consider

p(θ̂H∗ , θ̂O∗)

=

∫
Π(θ̂H∗ , θ̂O∗ |∆EH ,∆EO) p(∆EH ,∆EO) d(∆EH ,∆EO),

(2.25)

where Π(θ̂H∗ , θ̂O∗ |∆EH ,∆EO) = δ(θ̂H∗(∆EH ,∆EO), θ̂O∗(∆EH ,∆EO)), δ is the

standard Dirac function and both θ̂H∗(∆EH ,∆EO) and θ̂O∗(∆EH ,∆EO) are given
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by (2.21).

Then, for the uncorrelated case (subscript uc), we can assume that

p(∆EH ,∆EO) = puc(∆EH ,∆EO) = p(∆EH)p(∆EO), (2.26)

where p(∆EH) and p(∆EO) are defined as density functions of Gamma distribu-

tions, given by (2.30) and (2.31) in next section.

In the correlated case (subscript c), we assume that

p(∆EH ,∆EO) = pc(∆EH ,∆EO) = p(∆EH)p(∆EO|∆EH), (2.27)

where p(∆EH) is still given by a Gamma distribution but p(∆EO|∆EH) comes from

a normal distribution with mean a∆EH +b and variance determined by the data in

Section 2.6.2, which gives pc(∆EH ,∆EO) a lower variance than puc(∆EH ,∆EO).

We can use changing of variables such that

p(θ̂H∗ , θ̂O∗) = p(∆EH ,∆EO)|det(J)|, (2.28)

where J is the Jacobian of the inverse of coverage function θ̂(∆EH ,∆EO) from (2.8),

evaluated at (θ̂H∗ , θ̂O∗). Figure 3 shows the density function contours p(θ̂H∗ , θ̂O∗),

in the uncorrelated case using (2.26), and correlated case using (2.27). Note that

the correlation of ∆EH and ∆EO reduces the variance of our model.

2.5 Uncorrelated Sensitivity Index

In this section, we compute the uncorrelated local and global sensitivity index

defined in Section 2.1.2 for the coverages θ̂H∗ and θ̂O∗ with respect to ∆EH , and will

turn to the correlated cases in the next three sections. In section 2.5.1, we compute

the LSIs according to (2.21); and in section 2.5.2, we construct an uncorrelated

prior distribution for ∆EH and ∆EO, and then use this distribution and LSIs to

compute GSIs.
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Figure 3. Contour plot of p(θ̂H∗ , θ̂O∗) in log-scale where warmer colors rep-
resents higher densities. The upper contour plot with cooler
colors corresponds to the uncorrelated case, which suggests
that the density function in this case is flatter; the lower con-
tour plot with warmer colors corresponds to the correlated
case which suggests the density function has a higher mode lo-
cated close to the bottom and the left of the figure. The model
with correlations has significantly lower variance than the un-
correlated one, yielding an overall more predictive model.

2.5.1 Uncorrelated local sensitivity index (LSI)

Using the binding energies of adsorbed hydrogen and oxygen from Figure 2, we

can analyze the relative LSIs for θ̂H∗ and θ̂O∗ with respect to ∆EH . SHH and SOH

are identified using (2.5) and the model given in (2.21) (detailed calculations are

presented in Appendix A.2). For Pt, ∆EH = 2.6581(eV ), ∆EO = 3.6604(eV ),and

the sensitivity of H and O coverages with respect to the H binding energy are

SHH = 38.9080 and SOH = −0.0138. As expected, the H binding energy has a

large effect on its coverage and a slight effect on the O coverage (some coupling is

expected due to the competitive nature of adsorption).
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2.5.2 Uncorrelated global sensitivity index (GSI)

To compute the corresponding GSIs on Pt by (2.7), we need to construct the

distribution of our parameters, p(∆EH ,∆EO). In the uncorrelated case, we have

p(∆EH ,∆EO) = p(∆EH)p(∆EO|∆EH), (2.29)

where p(∆EH) is the prior information for ∆EH on Pt, and p(∆EO|∆EH) =

p(∆EO) since ∆EH and ∆EO are independent, assuming no correlation.

Using the experimental and DFT data shown in Table 1, we construct an informa-

tive prior for ∆EH ∈ EH . Let xH = 2.63 (eV ), xO = 3.71 (eV ), yH = 2.69 (eV ) and

yO = 3.68 (eV ), where xi are the values given by experiment and yi are given by

DFT, i = H,O. To quantify uncertainty from DFT error, we assume that ∆EH on

Pt follows a gamma distribution with mean xH and the standard deviation given

by the difference between experiment and DFT, (xi − yi). We can construct the

distribution for ∆EO ∈ EO in the same way under the uncorrelated assumption.

The explicit density functions are shown below,

EH ∼ Gamma(aH , bH),

p(∆EH) =
1

baHH Γ(aH)
∆E aH−1

H exp(−∆EH
bH

) for x > 0,

(2.30)

p(∆EO) =
1

baOO Γ(aO)
∆E aO−1

O exp(−∆EO
bO

) for x > 0,

(2.31)

where ai = x2
i /(xi − yi)2 and bi = (xi − yi)2/xi, i = H,O.

The GSIs, ξHH and ξOH , are formulated by (2.7) with q = 2 and

p(λ) = p(∆EH)p(∆EO).
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Computing the integral in (2.7) numerically gives ξHH = 1509.8865 and ξOH = 0.2194.

Again, the H binding energy has a major effect only on the H coverage and a slight

effect on the O coverage.

2.6 Correlated Local Sensitivity Index (CLSI)

The following sections cover the CLSI. In section 2.6.1, we consider the simplest

correlation model, both deterministic and linear, to compute the CLSIs defined in

Section 2.2. In section 2.6.2, we construct parametric models for p(∆EO|∆EH)

using the data shown in Figure 2, and compute the corresponding CLSIs. Section

2.7 covers non-parametric models.

2.6.1 CLSI with linear, deterministic correlations

To calculate the CLSI for θ̂H∗ and θ̂O∗ with respect to ∆EH , with the for-

mula defined in (2.12), we use the conditional probability p(∆EO|∆EH). In the

deterministic case, we can assume the conditional distribution of EO has a mean

of g(∆EH) and zero variance whose PDF can be described by the standard Dirac

function

p(∆EO|∆EH) = δ(g(∆EH)−∆EO), (2.32)

as presented in Section 2.2. Then, using the data from Figure 2, one can determine

the function g(∆EH) with different fitting models, like polynomials and smoothing

splines. In this chapter, we use the linear function and set g(∆EH) = a∆EH + b,

as shown in Figure 2. Then, the conditional distribution can be written as

p(∆EO|∆EH) = δ(a∆EH + b−∆EO). (2.33)
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For brevity, we only consider the CLSI formulation, as defined in (2.12) for the

hydrogen coverage θ̂H∗ , with respect to adsorbed hydrogen binding energy on the

surface. The rest of CLSIs can be formulated by following the same procedure.

The CLSI for θ̂H∗ with respect to ∆EH at the nominal hydrogen binding energy

of ∆̂EH according to (2.12) takes the following form

SHH, corr =

[
∂(ln θ̂H∗)

∂(∆EH)

]
corr

=
2

θ̂H∗

[
∂θ̂H∗

∂KH2

∂KH2

∂(∆GH2→2H∗)
+

a
∂θ̂H∗

∂KO2

∂KO2

∂(∆GO2→2O∗)

]∣∣∣∣∣
∆EH=∆̂EH ,∆EO=a ∆̂EH+b

, (2.34)

where

∂θ̂H∗

∂KH2

=
PH2

(
1 + (KO2PO2)

1
2

)
2(KH2PH2)

1
2

(
1 + (KH2PH2)

1
2 + (KO2PO2)

1
2

)2 ,

∂θ̂H∗

∂KO2

= − PO2(KH2PH2)
1
2

2(KO2PO2)
1
2

(
1 + (KH2PH2)

1
2 + (KO2PO2)

1
2

)2 ,

∂KH2

∂(∆GH2→2H∗)
= − 1

RT
exp

(
− ∆GH2→2H∗

RT

)
,

∂KO2

∂(∆GO2→2O∗)
= − 1

RT
exp

(
− ∆GO2→2O∗

RT

)
.

(2.35)

The CLSI derivations in the presence of deterministic linear correlation are briefly

described in Appendix A.2 and the results of SHH, corr and SOH, corr are shown in

FIG. 1. The numerical results for Pt are SHH, corr = 38.9021 and SOH, corr = 97.7442.

The corresponding uncorrelated LSI indices from (2.5) are SHH = 38.9080, and

SOH = −0.0138; hence the correlation between ∆EH and ∆EO does not affect the

sensitivity of θ̂H∗ with respect to ∆EH , but does impact the sensitivity of θ̂O∗ with

respect to ∆EH . The LSI changes from slightly negative to highly positive. This

is rationalized from the slope of the correlation depicted in Figure 2. Specifically,

an increase in the binding energy of H leads a much higher increase in the binding

energy of O and thus to an increase of the O coverage.
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2.6.2 CLSI with stochastic correlations: parametric probabilistic mod-

els

The above is a perfect linear model (deterministic) and ignores the variation

around the linear fit of the binding energies. To capture correlations from the linear

model, we set up a linear probabilistic model for ∆EH and ∆EO by introducing a

random variable, ω, in the correlation [62],

∆EO = a∆EH + b+ ω, ω ∈ Ω. (2.36)

To determine the distribution of ω, we can fit the data or adjusted data (to match

the required domain of some distribution) using parametric models, like normal

or gamma. Here we choose the normal distribution and fit the parameters using

MATLAB by the Maximum Likelihood Estimation (MLE) method [62]. The result

is shown in Figure 4.

Figure 4. Model fitting for the random variable ω in (2.36) using a nor-
mal distribution; here we compare the best fit to the data’s
histogram. The normal distribution is not a good approxima-
tion for the data since it does not properly capture the outlier
values between −1 and −0.5, depicted in the histogram. Other
parametric models give similar results.
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Using (2.12) to compute the CLSI of θ̂H∗ with respect to ∆EH , we consider

FHH (∆EH) =

∫
∆EO

θ̂H∗(∆EH ,∆EO) p(∆EO|∆EH) d∆EO

=

∫
ω
θ̂H∗

(
∆EH , a∆EH + b+ ω

)
p(ω) dω, (2.37)

where p(ω) is the PDF for ω in (2.36). Instead of using the Monte Carlo method

(discussed in Appendix A.5), we can also use numerical integration to approximate

the integral in (2.37).

The CLSI at the nominal point ∆EH∗ can then be obtained by direct differentiation

SHH, corr(∆EH∗) =

(
FH
H (∆EH)

)′
FH
H (∆EH)

∣∣∣
∆EH=∆EH∗

=
(

lnFH
H (∆EH)

)′∣∣∣
∆EH=∆EH∗

(2.38)

The gradient of lnFH
H (∆EH) is commonly estimated, such that(

lnFH
H (∆EH)

)′ ≈ lnFH
H (∆EH + ε)− lnFH

H (∆EH − ε)
2ε

. (2.39)

The CLSI for θ̂O∗ , S
O
H, corr(∆EH∗), is computed similarly. The numerical results

for Pt are SHH, corr = 35.9874 and SOH, corr = 9.4965. Compared to the deterministic

model results in the previous subsection, we find that uncertainty significantly

impacts SOH, corr. This is a rather interesting result because the correlation in the

data (linear) results in the H binding energy having a significant effect on the O

coverage but uncertainty significantly diminishes this effect. We give results from

other parametric models in the Appendix A.3.

2.7 Correlative Local Sensitivity Index (CLSI) with Stochas-

tic Correlations: Non-parametric Models

For small data sets, such as ours, parametric models are not usually adequate.

Instead, we consider non-parametric methods [131]. A possible non-parametric
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method is the empirical distribution function,

P̂ (ω) =
1

11

11∑
i=1

I(Xi ≤ ω), (2.40)

where I is the identity function. With this method, EP̂ [f ] for some function f can

be approximated via bootstrapping [131].

For categorical distributions, the bootstrap distribution is close to the posterior

distribution with a non-informative symmetric Dirichlet prior according to Bayes

method. It also has the same support, mean, and nearly the same covariance

matrix as the data in the histogram. The bootstrap distribution is obtained without

specifying either the prior or sampling from the posterior distribution [36].

We can also use curve estimation for our model [131]. A simple density estimator

is a histogram, which is a piece-wise constant function where the height of the

function is proportional to number of observations in each bin

p̂n(ω) =
n∑
i=1

νi
nh
I(ω ∈ Bi), (2.41)

where B1, . . . , Bn are the histogram bins, h = 1/n is the bin-width, and νi is the

number of observations in Bi, as shown in Figure 4.

Smoother estimators, called kernel density estimators [131], converge faster to the

true density than fitting from histograms because histograms are discontinuous

p̂n(ω) =
1

11

11∑
i=1

1

h
K(

ω −Xi

h
), (2.42)

where h > 0 is the bandwidth andK is the kernel, defined to be any smooth function

satisfying K(x) ≥ 0,
∫
K(x)dx = 1,

∫
xK(x)dx = 0 and σ2

K =
∫
x2K(x)dx > 0.

In the main text of this work we use the histogram to approximate the distribution

of ω, and use

FH
H (∆EH) =

∫
ω

θ̂H∗(∆EH , a∆EH + b+ ω) p̂n(ω) dω, (2.43)
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to compute SHH, corr(∆EH∗) and SOH, corr(∆EH∗) using Equation 2.38. The numer-

ical results for adsorption on Pt are SHH, corr = 35.2196 and SOH, corr = 12.4873.

Results from the kernel density estimators with uniform and standard normal ker-

nel, N (0, 1), are given in the Appendix A.4.

Figure 5 summarizes all local sensitivity analysis results (the mangitude is plotted

so a semi-log scale can be used). Correlations play a significant role as demontsrated

in our earlier work [125]. Clearly, the uncertainty in the correlations must prop-

erly by accounted for and, given the limited number of data we have for physical

models, non-parametric models of the uncertainty are essential. For a large sample

size, both (parametric and non-parametric) models should converge to the real dis-

tribution [130, 131]. Because we only have a few samples here, the non-parametric

models approximate the noise term better, as shown in Figure 4.

Figure 5. Results of SHH , SOH and SHH, corr, S
O
H, corr for Pt. The bandwidth of

histogram is 0.1. The sensitivities of θ̂H∗ with respect to ∆EH
are almost identical for uncorrelated and correlated models.
However, the correlation between ∆EH and ∆EO significantly
impacts the sensitivity of θ̂O∗ on ∆EH , and changes the cor-
relation from being slightly negative to highly positive. The
overall shift in correlation is three orders of magnitude. Fur-
thermore, the uncertainty ω in (2.36) also has a significant effect
on SOH, corr: using a stochastic (parametric or non-parametric)
model yields a sensitivity index smaller than the value from
the deterministic model by an order of magnitude.
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2.8 Correlated Global Sensitivity Index (CGSI)

In this section we compute the CGSIs for the correlation model previously used

to determine the CLSIs. According to (2.13), the CGSIs are

ξHH, corr =

∫
|SHH, corr(∆EH)|2p(∆EH) d(∆EH), (2.44)

ξOH, corr =

∫
|SOH, corr(∆EH)|2p(∆EH) d(∆EH). (2.45)

As discussed in Section 7, we assume the prior distribution of ∆EH on Pt satisfies

∆EH ∈ EH , EH ∼ Gamma(aH , bH) (2.46)

with a PDF of

p(∆EH) =
1

baHH Γ(aH)
∆E aH−1

H exp(−∆EH
bH

) for x > 0, (2.47)

using the data in Table 1 according to (2.30). Then, from SHH, corr and SOH, corr, we

numerically calculate the CGSIs according to (2.44) and (2.45). The results are

shown in Figure 6. Correlations have only a slight effect on the H coverage as we

consider the H binding energy as an independent variable and the O binding energy

as the dependent parameter.

2.9 Remarks on Non-parametric Correlated GSIs using Gen-

eralized Polynomial Chaos

In Section 2.2 and the Appendix A.5 we discuss the computation of the proposed

correlated sensitivity indices using either direct numerical integration or Monte

Carlo methods. Here, we briefly discuss the use of the Polynomial Chaos Expansion

(PCE) method as an alternative to numerical integration (which is limited by the
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Figure 6. Uncorrelated and correlated GSI results, ξHH , ξOH and ξHH, coor,

ξOH, coor of Pt, computed by (2.7), (2.44) and (2.45). The corre-
lation between ∆EH and ∆EO does not influence the sensitivity
of θ̂H∗ with respect to ∆EH . Correlations do, however, impact
the sensitivity of θ̂O∗ with respect to ∆EH . For ξOH, coor, we find
that the CGSI from the purely data-driven non-parametric
model are significantly higher than the that from the para-
metric (normal distribution) model.

dimensions of the parameter space)[42, 135]. Polynomial Chaos methods rely on

expanding the model f(λ), defined in (2.2) in a series expansion, resulting in an

approximation of the type

f(λ) ≈
d∑
i=1

ciP
(i)(λ), (2.48)

where d is the order of expansion approximation, ci are the expansion coefficients

and P (i)(λ) are the polynomials forming the basis {P (0), . . . , P (d)}. The chosen

polynomials are orthogonal with respect to the probability measure of λ, i.e.∫
Λ

P (k)(λ)P (l)(λ)p(λ) dλ = δkl, ∀k, l = 0, . . . , d (2.49)

where δkl is the Kronecker delta function, p(λ) is the PDF of model parameters λ

and Λ denotes the parameter space. Usually, λ = (λ1, . . . , λn) is assumed to be

independent. Carefully selecting the distribution (Gaussian, Gamma, etc) allows

the corresponding basis to be given through the Askey scheme [136] and can be

implemented using the software DAKOTA [1]. Using a previous approximation

(2.48) allows calculation of the variance-based global sensitivity index (Sobol’s in-
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dices) directly and without extra cost [21]; see also the implementations in [1]. For

instance, in the context of the applications discussed here, and in [26], the authors

use PCE to analyze the problem of global sensitivity analysis for chemical pro-

cesses, assuming uniformly distributed, uncorrelated parameters.

PCE can also be generalized to arbitrary distributions with the non-parametric

models considered here. Such models include the use of histograms or kernel-based

distributions. Indeed, in [98], the authors introduce a PCE with arbitrary proba-

bility measures, which can be either discrete, continuous, or discretized continuous.

This form of PCE can also be specified either analytically (as probability den-

sity/cumulative distribution functions) or numerically (as various histograms or as

raw data sets, like the ones arising in non-parametric methods). Only a few mo-

ments of the underlying distribution, and not on the specific functional form of

the probability distribution functions, are required for these methods. Therefore,

these methods do not apply to distributions which are not characterized by their

moments, such as the lognormal.

We also carry out PCE for parameters λ which have correlated components. In-

deed, in [96], Navarro et al. give us a way to instruct PCE for general multivariate

distributions with correlated variables. In our case, the Sobols indices are not nec-

essarily positive, and the contribution due to correlation can completely cancel the

contribution from the variable itself, resulting in a small Sobol’s value even though

such a variable can have a large impact on the outcome [96]. It should be possible

to apply the derivative-based sensitivity, as defined in section 2.1.2, by replacing

f(λ) with the approximate PCE of the model. And it is also possible to combine

the methods of [98] for the non-parametric aspects of the problem, and use [96] to

address the correlations in the parameters. We expect to return to this implemen-

tation of PCE for non-parametric correlative sensitivity analysis in future work.
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2.10 Conclusions

In this chapter we proposed a non-parametric method for the local and global

sensitivity analysis of models with correlated parameter dependencies. The result-

ing mathematical tools are applied on a benchmark Langmuir competitive adsorp-

tion model. Such systems are encountered in catalytic oxidation, such as emissions

abatement, small scale power generation, fuel cells and batteries. In the system

considered here, parameter correlations stem from correlated quantum-scale com-

putational data. The necessity of using non-parametric methods arose from the

limited amount of available quantum-scale data. In our methodology, we employed

gradient-based methods to compute correlative local and global sensitivity indices

to illustrate the relative effects of parameter perturbations (or errors and uncertain-

ties) in the hydrogen and oxygen binding energies on the coverages. We observed

that identification of influential parameters depends critically on whether or not

correlations between parameters are taken into account. Furthermore, the impact

of uncertainty in the correlation and the necessity of non-parametric approaches

on the sensitivity indices are demonstrated. Finally, we briefly discussed the ap-

plicability of Polynomial Chaos expansion methods for the efficient simulation of

sensitivity indices.
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C H A P T E R 3

MODEL-FORM UNCERTAINTY QUANTIFICATION

FOR PROBABILISTIC GRAPHICAL MODELS

In this Chapter, we develop UQ and SA methods for PGMs, along with rig-

orous, robust and computable prediction guarantees. Key UQ challenges in the

PGMs include: (a) model-form and parametric uncertainties due to sparse, hetero-

geneous data used to learn the PGM; (b) multiple sources of uncertainty from the

learning of each one of PGM nodes; (c) uncertainty in the learned graph structures.

Therefore, our goal is to build an Uncertainty Quantification (UQ) framework for

PGMs which, takes advantage of the graphical structure of the PGM, is able to

quantify and distinguish the multiple sources of uncertainties in the model as well

as assess and/or discover correlations and causal relationships between components

of the model. Our mathematical tools to address such issues are based in part on

information theory, precisely due to the scalability of the Kullback-Leibler (KL)

divergence on graphs.
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3.1 Background

3.1.1 Model-form UQ for general probabilistic models

Uncertainties arising from the fluctuations of the QoI’s associated to a given base-

line model P are of referred to as aleatoric and occur when sampling the model.

They are handled by standard tools (e.g. central limit theorems, concentrations

inequalities, bayesian posteriors). By contrast model-form uncertainties are asso-

ciated to an incomplete knowledge of the model itself (i.e. model misspecification)

and the main goal is to understand the resulting biases for QoI’s. This type of

uncertainty (also known as epistemic) arises, for example, from lack of data and/or

limited knowledge as well as when the real model is too complex to be handled

computationally (model approximation or model reduction).

In general, to apply the “model-form UQ” around a baseline (approximate, surro-

gate, etc.) model P , we consider all possible models Q of X which is “close to” P

in KL-divergence, i.e., consider the ambiguity set Q defined by

Q := Dη := {all PGM Q : R(Q||P ) ≤ η} (3.1)

with model misspecification η. Then in this case, the predictive uncertainty for

the QoI f(X), as defined in (1.4), would be

I±(f(X), P ;Dη) = sup/inf
Q∈Dη

EQ [f(X)]− EP [f(X)] (3.2)

A key point is that the parameter η is not necessarily small! Furthermore, η can

be either calculated as the KL distance of the baseline model P from the available

data–see Fig. 7(R), or η can take arbitrary fixed values that correspond to model

perturbations associated with local or global sensitivity analysis, see Section 3.3 for

a more complete discussion.
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Figure 7. Left: [∞-dimensional, non-parametric] neighborhood of model
P in KL divergence; the blue line represents a parametric fam-
ily; P± is where we achieve the UQ indices/bounds I± on the
space w.r.t QoI f(X) (i.e., tightness of the bounds, see Lemma
B.4). Right: Example of a source for model-form uncertainty:
different probabilistic models/CPDs for sparse data of a PGM
node. The red curve is used to build a baseline Gaussian
model, P , the gray curve is another parametric model (Gener-
alized Extreme Value (GEV) distribution) which fits the data
better, and the yellow curve is a non-parametric model (Kernel
Density Estimation (KDE) with normal kernel).

We remark that the domain Dη is an infinite dimensional space with respect

to model parameters, as it includes not only parametric models but also non-

parametric models. However, the predictive uncertainty shown in (3.2) is com-

putable by a one dimensional optimization problem, and it is tight with only the

baseline model P due to the properties of KL divergence. More specifically:

Theorem 3.1 Let P be a probability measure with X, and f(X) be a QoI depends

on X. If f(X) has finite moment generating function (MGF), EP
[
e±cf̄(X)

]
, in

a neighborhood of the origin, then for the predictive uncertainty defined in (3.2),

there exist 0 < η± ≤ ∞, such that for any η ≤ η±,

I±(f(X), P ;Dη) = sup/inf
Q∈Dη

EQ [f(X)]− EP [f(X)]

= ± inf
c>0

[1

c
logEP

[
±ecf̄(X)

]
+
η

c

]
= EQ± [f(X)]− EP [f(X)] (3.3)
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where f̄(X) is the centered QoI, f̄(X) := f(X)− EP [f(X)], and Q± = Q±(η) are

probability measures given by the elements Q± = P±c± where

dP±c± =
e±c±f(x)

EP [e±c±f(X)]
dP (3.4)

and c± are the unique solutions of

R(P±c±||P ) = η . (3.5)

To prove the theorem, we first show Lemma B.3 and Lemma B.4 which are

presented in [29, 50], and we include the proof for the lemmas and the theorem in

Appendix B for completeness.

Example: Consider a random variable X, for which we have samples shown in

Figure 7 (Right) as a histogram. Using the data, we build a baseline Gaussian

model P with density p(x) ∼ N (µP , σ
2
P ) (for instance, using MLE). Then for the

QoI f(X) = X, and any other alternative model Q̃ satisfying Q̃ ∈ Dη in (3.1)

(which may include other possible models like generalized extreme value (GEV)

distribution or kernel density estimation (KDE) shown in Figure 7 (Right), or the

unknown real model). By Theorem 3.1 (a), we have

EQ̃ [f ]− EP [f ] ≤ sup
Dη

EQ [f ]− EP [f ] = I+(f(X), P ;Dη)

= inf
c>0

[1

c
log

∫
ec(x−µP )P (dx) +

η

c

]
= inf

c>0

[1

2
σ2
P c+

η

c

]
= σP

√
2η (3.6)

where we use the Gaussian property that the MGF of P , EP
[
ecX
]

= eµP c+σ
2
P c/2.

Similarly we obtain the lower bound,

EQ̃ [f ]− EP [f ] ≥ inf
Dη

EQ [f ]− EP [f ] = I−(f(X), P ;Dη) = −σP
√

2η (3.7)

therefore, we can quantify the model-form uncertainty of P for the prediction of f

by the indices I±(f(X), P ;Dη) in the set Dη.
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Furthermore, by Theorem 3.1 (b), we can find the optimizer Q± ∈ Dη which achieve

the equality, i.e.

q±(x) ∝ e±c±xp(x) ⇒ q±(x) ∼ N (µP ± c±σ2
P , σ

2
P ) (3.8)

and

R(P±c±||P ) = η ⇒ c± =

√
2η

σ2
P

(3.9)

thus, q±(x) ∼ N (µP ±
√

2σ2
Pη, σ

2
P ), and it satisfies

EQ± [f ]− EP [f ] = I±(f(X), P ;Dη) = ±σP
√

2η (3.10)

Note that Q± still follow the Gaussian distribution in this case.

3.2 Main Results

3.2.1 Model-form UQ indices for PGMs

Here we want to extend the model-form UQ methods for the PGMs, along

with rigorous, robust and computable prediction guarantees: (a) model-form and

parametric uncertainties due to sparse, heterogeneous data used to learn the PGM;

(b) multiple sources of uncertainty from the learning of each one of PGM nodes;

(c) uncertainty in the learned graph structures. Therefore, for a PGM p(x) =∏n
i=1 p(xi|xπi), we want to look at the predictive uncertainty (3.2), for a QoI which

is a function of one node in the PGM, i.e.,

for f(Xk), 1 ≤ k ≤ n (3.11)

with the model misspecification η,

sup/inf
Q∈Dη

EQ [f(Xk)]− EP [f(Xk)] (3.12)
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where Dη is the ambiguity set defined in (3.1), i.e., when we perturb the baseline

model P to an alternative model Q, altering both the structure and the CPDs,

under model misspecification η. Then we obtain the following theorem which is a

PGM analogue of Theorem 3.1:

Theorem 3.2 Let P be a PGM defined as (1.1), and f(Xk) be a QoI only depends

on Xk. If f(Xk) has finite moment generating function (MGF), EP
[
ecf̄(Xk)

]
, in

a neighborhood of the origin, then for the predictive uncertainty defined in (3.12),

there exist 0 < η± ≤ ∞, such that for any η ≤ η±,

I±(f(Xk), P ;Dη) = sup/inf
Q∈Dη

EQ [f(Xk)]− EP [f(Xk)]

= ± inf
c>0

[1

c
logEP{k}

[
±ecf̄(Xk)

]
+
η

c

]
= EQ± [f(Xk)]− EP [f(Xk)] (3.13)

where f̄(Xk) is the centered QoI, f̄(Xk) := f(Xk)−EP [f(Xk)], P{k} is the marginal

distribution of Xk with respect to P , and Q± = Q±(η) ∈ Dη are probability measures

given by the elements Q± = P±c± where

dP±c±

dP
=

e±c±f(xk)

EP [e±c±f(Xk)]
(3.14)

and c± are the unique solutions of

R(P±c±||P ) = η (3.15)

More specifically, without loss of generality, if we assume j < i for all j ∈ πPi , then

Q± is given by

q±(xi|xπQ±i ) ≡ p(xi|xπPi ) for all i > k and πQ
±

i ≡ πPi (3.16)

q±(xk|xπQ±k ) =
e±c±f(xk)

EP
k|πP

k

[e±c±f(Xk)]
·p(xk|xπPk ) for all x

πQ
±

k

and πQ
±

k = πPk (3.17)
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and

q±(xi|xπQ±i ) =
EP

i+1|πP
i+1

[
· · ·EP

k|πP
k

[
e±c±f(Xk)

]]
EP

i|πP
i

[
EP

i+1|πP
i+1

[
· · ·EP

k|πP
k

[e±c±f(Xk)]
]]p(xi|xπPi ) (3.18)

for all i = 1, 2, . . . , k − 1 and πPi ⊂ πQ
±

i ⊂ {1, . . . , i− 1}.

Proof: The proof of Theorem 3.2 relies in part on Theorem 3.1, however a new

important element is the role of the structure of the graph of the PGM, as is

described precisely in (3.16)-(3.18). For part (a), consider f(X) = f(Xk) and

p(x) =
∏n

i=1 p(xi|xπi), by (3.3), we have

sup/inf
Q∈Dη

EQ [f(Xk)]− EP [f(Xk)]

= ± inf
c>0

[1

c
logEP

[
e±cf̄(Xk)

]
+
η

c

]
= ± inf

c>0

[1

c
log

∫
· · ·
∫

x1,...,xn

e±cf̄(xk)

n∏
i=1

P (dxi|xPπi) +
η

c

]
= ± inf

c>0

[1

c
logEP{k}

[
e±cf̄(Xk)

]
+
η

c

]
(3.19)

Then for part (b), if P satisfies j < i for all j ∈ πPi , by (3.4) we have

n∏
i=1

q±(xi|xπQ±i )

=
e±c±f(xk)

EP [e±c±f(Xk)]

n∏
i=1

p(xi|xπPi )

=
1

EP [e±c±f(Xk)]

n∏
i=k+1

p(xi|xπPi ) · e±c±f(xk)p(xk|xπPk ) ·
k−1∏
i=1

p(xi|xπPi )

(3.20)

where ±c± are the unique solutions of R(P±c±||P ) = η. Therefore, we can define

Q± as

q±(xi|xπQ±i ) ≡ p±(xi|xπPi ) for all i > k and πQ
±

i ≡ πPi (3.21)

39



q±(xk|xπQ±k ) =
e±c±f(xk)

EP
k|πP

k

[e±c±f(Xk)]
·p(xk|xπPk ) for all x

πQ
±

k

and πQ
±

k = πPk (3.22)

and

q±(xi|xπQ±i ) =
EP

i+1|πP
i+1

[
· · ·EP

k|πP
k

[
e±c±f(Xk)

]]
EP

i|πP
i

[
EP

i+1|πP
i+1

[
· · ·EP

k|πP
k

[e±c±f(Xk)]
]]p(xi|xπPi ) (3.23)

for all i = k − 1, . . . , 1, where the denominators are the normalization factors

for CPDs when i ≤ k, and since the factors may depend on some values of the

ancestors of Xk, xρk , π
Q±

i may differ from πPi as shown in Figure 10, and we have

πPi ⊂ πQ
±

i ⊂ {1, . . . , i− 1}. �

Example (Inhomogeneous Markov chains): Consider the Markov chain mod-

els as a special case for the PGMs (1.1), i.e., let P with p(x) =
∏n

i=1 p(xi|xi−1)

(where p(x1|x0) := p(x1), πi = {i − 1}) to be a probability measure defined on a

Markov chain as shown in the following Figure:

Figure 8. An inhomogeneous Markov chain consists of X = {X1, X2, . . . ,
Xn} with p(x) =

∏n
i=1 p(xi|xi−1).

then consider the QoI f(Xk), if we perturb P with the constraint R(Q||P ) ≤ η, i.e.

consider Q ∈ Dη, then by Theorem 3.2, we have

I±(f(Xk), P ;Dη) = ± inf
c>0

[1

c
logEP{k}

[
e±cf̄(Xk)

]
+
η

c

]
(3.24)

where p{k}(xk) =
∫ ∏k

i=1 p(xk|xk−1)dx{1,...,k−1} and using (3.16)-(3.18), the opti-

mizer Q± in Theorem 3.2 is obtained when

q±(xj|xj−1) ≡ p(xj|xj−1) for j = k + 1, . . . , n (3.25)

q±(xk|xk−1) =
e±c±f(xk)

EP [e±c±f(Xk)|xk−1]
p(xk|xk−1) (3.26)
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q±(xj|xj−1) =
EP
[
e±c±f(xk)|xj

]
EP [e±c±f(Xk)|xj−1]

p(xj|xj−1) for j = 1, . . . , k − 1 (3.27)

where c± are the unique solutions of

R(P±c±||P ) = η (3.28)

for P±c± defined in (3.4) and EP
[
e±c±f(Xk)|x0

]
:= EP

[
e±c±f(Xk)

]
. Note that Q± is

still a inhomogeneous Markov chain in this case.

Example (Gaussian Bayesian Networks): Gaussian Bayesian Networks (GBN),

[66], is a special class of Probabilistic Graphical Models commonly used in natu-

ral and social sciences and where the CPDs (1.2) are linear and Gaussian. More

specifically, for a GBN consisting of variables X, every node Xi is a linear Gaussian

of its parents, i.e.,

p(xi|xπi) = N (βi0 + βTi xπi , σ
2
i ) (3.29)

with some β0, β, and σi, or

Xi = βi0 + βTi Xπi + εi (3.30)

where εi ∼ N (0, σ2
i ). By the conjugacy properties of Gaussians, the joint distribu-

tion P becomes p(x) = N (µ, C), i.e. it is also a Gaussian with parameters µ, C,

which can be calculated from βi0, βi, and σi [9].

For concreteness, we consider the GBN p(x) = N (µ, C) in Figure 9:

Then for the QoI f(X4) = X4, if we perturb P with the constraint R(Q||P ) ≤ η,

i.e. consider Q ∈ Dη, by Theorem 3.2 (3.13), we conclude that

I±(f(X4), P ;Dη) = ±
√

2C44η = ±
√

2(σ2
4 + β2

43σ
2
3 + β2

42σ
2
2)η (3.31)

and by (3.16) - (3.18), the optimizer in Theorem 3.2 is obtained when

q±(x5|xπQ±5

) ≡ p(x5|x4, x1) = N (β50 + β54x4 + β51x1, σ
2
5) (3.32)
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Figure 9. A GBN consists of X = {X1, X2, . . . , X5} with p(x) =
p(x5|x4, x1)p(x4|x3, x2) p(x3)p(x2)p(x1) where p(x5|x4, x1) = N (β50 +
β54x4 + β51x1, σ

2
5), p(x4|x3, x2) = N (β40 + β43x3 + β42x2, σ

2
4), p(x3) =

N (β30, σ
2
3), p(x2) = N (β20, σ

2
2), and p(x1) = N (β10, σ

2
1).

where πQ
±

5 ≡ πP5 = {4, 1},

q±(x4|xπQ±4

) =
e±c±x4

EP
4|πP4

[e±c±X4 ]
· p(x4|xπP4 )

=
e±c±x4e

− (x4−β40−β43x3−β42x2)
2

2σ24∫
x4
e±c±x4e

− (x4−β40−β43x3−β42x2)2

2σ24 dx4

=
e
− (x4−β40−β43x3−β42x2∓c±σ

2
4)

2

2σ24 e±c±(β43x3+β42x2)∫
x4
e
−

(x4−β40−β43x3−β42x2∓c±σ24)
2

2σ24 dx4 e±c±(β43x3+β42x2)

= N
(
β40 + β43x3 + β42x2 ± c±σ2

4, σ
2
4

)
(3.33)

where πQ
±

4 ≡ πP4 = {3, 2}, and

q±(x3|xπQ±3

) =
EP

4|πP4

[
e±c±X4

]
EP3

[
EP

4|πP4
[e±c±X4 ]

]p(x3)

=
e±c±(β43x3+β42x2)e

− (x3−β30)
2

2σ23∫
x3
e±c±(β43x3+β42x2)e

− (x3−β30)2

2σ23 dx3

=
e
− (x3−β30∓c±β43σ

2
3)

2

2σ23 e±c±(β42x2)∫
x3
e
−

(x3−β30∓c±β43σ23)
2

2σ23 dx3 e±c±(β42x2)

= N
(
x3 − β30 ∓ c±β43σ

2
3, σ

2
3

)
(3.34)
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q±(x2|xπQ±2

) =
EP3

[
EP

4|πP4

[
e±c±X4

]]
EP2

[
EP3

[
EP

4|πP4
[e±c±X4 ]

]]p(x2)

=
e±c±(β42x2)e

− (x2−β20)
2

2σ22∫
x2
e±c±(β42x2)e

− (x2−β20)2

2σ22 dx2

=
e
− (x3−β20∓c±β42σ

2
2)

2

2σ22∫
x2
e
−

(x2−β20∓c±β42σ22)
2

2σ22 dx2

= N
(
x2 − β20 ∓ c±β42σ

2
2, σ

2
2

)
(3.35)

q±(x1|xπQ±1

) =
EP2

[
EP3

[
EP

4|πP4

[
e±c±X4

]]]
EP1

[
EP2

[
EP3

[
EP

4|πP4
[e±c±X4 ]

]]]p(x1)

= p(x1) = N (β10, σ
2
1) (3.36)

where πQ
±

3 = πQ
±

2 = πQ
±

1 = ∅. Then by (3.15), we have

±c±EQ± [x4]− logEP
[
e±c±x4

]
= η

⇒ ±c± = ±
√

2η

C44

= ±

√
2η

σ2
4 + β2

43σ
2
3 + β2

42σ
2
2

(3.37)

thus,

q±(x4|x3, x2) = N

(
β40 + β43x3 + β42x2 ± σ2

4

√
2η

σ2
4 + β2

43σ
2
3 + β2

42σ
2
2

, σ2
4

)
(3.38)

q±(x3) = N

(
β30 ± σ2

3

√
2η

σ2
4 + β2

43σ
2
3 + β2

42σ
2
2

, σ2
3

)
(3.39)

q±(x2) = N

(
β20 ± σ2

2

√
2η

σ2
4 + β2

43σ
2
3 + β2

42σ
2
2

, σ2
2

)
(3.40)

Note that for q±(x3|xπQ±3

), x2 show up in the normalization factors based on (3.18),

however, since f(X4) = X4 is linear and all the random variables are linearly depend

on their parents in GBN as shown in (3.30), the terms with x2 are canceled out

from numerator and denominator, i.e. 2 /∈ πQ
±

3 and πQ
±

3 = πP3 . In general, we can

conclude the result by the following Corollary for this special case in GBN:
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Corollary 3.3 Let P be a GBN satisfies (3.29), and f(Xk) = aXk + b be a QoI

only depends on Xk linearly. Then for the predictive uncertainty defined in (3.12),

we have

I±(f(Xk), P ;Dη) = ±
√

2a2Ckkη (3.41)

where Ckk is the variance for the marginal distribution of Xk. Furthermore, the

optimizer Q± = Q±(η) ∈ Dη given by Theorem 3.2 (3.16)-(3.18) are also GBNs

with same graph structure as P .

Example (General PGM): Consider a general PGM as shown in the left of

Figure 10, and given by

p(x) = p(x1)p(x2)p(x3|x2, x1)p(x4)p(x5|x3)p(x6|x4, x3)p(x7|x6, x5) (3.42)

Figure 10. Left: An example of the structure of baseline PGM P ; Right:
The structure of optimizer Q± in Theorem 3.2 with QoI f(X6)
based on (3.16) - (3.18). Note that since the normalization

factor for q±(x6|x
πQ
±

6

) depends on X3 and X4, i.e. πQ
±

6 = {3, 4},

it propagates to q±(x4|x
πQ
±

4

) by (3.18), so πQ
±

4 = {3} ∪ πP4 = {3},
which create a new connection from X3 to X4 in Q±. Same
for the new connection from X1 to X2.

Then for a QoI f(X6), by Theorem 3.2, we have

I±(f(X6), P ;Dη)

= ± inf
c>0

[1

c
logEP{k}

[
±ecf̄(Xk)

]
+
η

c

]
= ± inf

c>0

[1

c
log

∫
±ecf̄(x6)P (dx6|x4, x3)P (dx4)P (dx3|x2, x1)P (dx2)P (dx1) +

η

c

]
(3.43)
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and by (3.16) - (3.18), the optimizer in Theorem 3.2 is obtained when

q±(x7|xπQ±7

) ≡ p(x7|x6, x5) (3.44)

where πQ
±

7 ≡ πP7 = {6, 5},

q±(x6|xπQ±6

) =
e±c±x6

EP6|{4,3} [e±c±X6 ]
· p(x6|x4, x3) (3.45)

where πQ
±

6 ≡ πP6 = {4, 3}, and

q±(x5|xπQ±5

) =
EP6|{4,3}

[
e±c±X6

]
EP5|{3}

[
EP6|{4,3} [e±c±X6 ]

]p(x5|x3)

= p(x5|x3) (3.46)

since X5 and X6 are conditional independent given X3, EP5|{3}

[
EP6|{4,3}

[
e±c±X6

]]
=

EP6|{4,3}

[
e±c±X6

]
given X3 = x3, so πQ

±

5 ≡ πP5 = {3}. Note that, in general, we can

conclude that only Xρk may have different parents set in Q± with QoI f(Xk), and

q±(x4|xπQ±4

) =
EP5|{3}

[
EP6|{4,3}

[
e±c±X6

]]
EP4

[
EP5|{3}

[
EP6|{4,3} [e±c±X6 ]

]]p(x4) (3.47)

since both normalization factors on the numerator and denominator depend on

Xπ6 ∪Xπ5 = {X4, X3}, so in general, we have πQ
±

4 = πP4 ∪ {3} = {3}, i.e., there is

a new connection X3 → X4 in Q±, and

q±(x3|xπQ±3

) =
EP4

[
EP5|{3}

[
EP6|{4,3}

[
e±c±X6

]]]
EP3|{2,1}

[
EP4

[
EP5|{3}

[
EP6|{4,3} [e±c±X6 ]

]]]p(x3|x2, x1) (3.48)

where πQ
±

3 ≡ πP3 = {2, 1} since the normalization factors do not contain other

variables. And we can do the same for X2 and X1 to get the entire structure of Q±

which has another new connection X1 → X2, and the results are shown in Figure

10 (Right).
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3.2.2 Chain rule and interpreting the model misspecification parameter

in PGMs

For the model misspecification parameter η in the uncertainty domain Dη =

{Q : R(Q||P ) ≤ η}, it describes our confidence to the baseline model P and thus

we refer to η as “model misspecification”. For instance if η is small, Dη includes

only small perturbations of the baseline P . however, a key point in our formulation

is that the parameter η is not necessarily small in general. As we discuss in detail

the Section 3.3, η can be calculated as the KL distance of the baseline model P from

the available data–see Fig 7 (R); this η value would be a surrogate for the distance

of the baseline model from the “real” model. Alternatively, η can take arbitrary

fixed values that correspond to model perturbations associated with local (small η)

or global sensitivity analysis (larger η) in the same mathematical framework.

Moreover, based on the PGM structure, we can apply the chain rule of KL diver-

gence [20], which gives us

Lemma 3.1 [Chain Rule of Relative Entropy for PGMs] For any two

PGMs P and Q with densities p(x) =
∏n

i=1 p(xi|xπPi ) and q(x) =
∏n

i=1 q(xi|xπQi ),

we have

R(Q||P ) =
n∑
i=1

EQ
π
Q
i
∪πP
i

[
R(Qi|πQi

||Pi|πPi )
]

=
n∑
i=1

EQ
π
Q
i
∪πP
i

[
η
πQi ∪π

P
i

i

]
(3.49)

where η
πQi ∪π

P
i

i := R(Qi|πQi
||Pi|πPi ) are the conditional relative entropy between Qi|πQi

and Pi|πPi with given XπQi ∪πPi
= xπQi ∪πPi

, i.e.

R(Qi|πQi
||Pi|πPi ) =

∫
log

Q(dxi|xπQi )

P (dxi|xπPi )
Q(dxi|xπQi ) (3.50)
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Proof.

R(Q||P ) =

∫
log

∏n
i=1 Q(dxi|xπQi )∏n
i=1 P (dxi|xπPi )

n∏
j=1

Q(dxj|xπQj )

=

∫ n∑
i=1

log
Q(dxi|xπQi )

P (dxi|xπPi )

n∏
j=1

Q(dxj|xπQj )

=
n∑
i=1

∫
log

Q(dxi|xπQi )

P (dxi|xπPi )
Q(dxi|xπQi ) ·

∏
j∈{ρQi ∪ρPi }

Q(dxj|xπQj )

=
n∑
i=1

EQ
π
Q
i
∪πP
i

[
R(Qi|πQi

||Pi|πPi )
]

=
n∑
i=1

EQ
π
Q
i
∪πP
i

[
η
πQi ∪π

P
i

i

]
(3.51)

where η
πQi ∪π

P
i

i is the KL divergence between CPDs Qi|πQi
and Pi|πPi with given par-

ents xπQi
∪ xπPi . �

Therefore, we can break down the calculation of the aforementioned model misspec-

ification R(Q||P ) in Theorem 3.2 into separate PGM components, which reduces

the calculation of model misspecification η to individual node and CPD calcu-

lations. Furthermore, this decomposition localizes the uncertainty from multiple

sources corresponding to different PGM components, and we will use this prop-

erty to defines specific ambiguity sets which allow us to do model-form sensitivity

analysis for each component on the PGM as shown in next subsection.

3.2.3 Model-form sensitivity indices for PGMs

Since the existing sensitivity analysis methods, e.g., gradient and ANOVA-based

methods, (a) cannot handle UQ tasks with model uncertainty (not just parametric),

e.g., Fig. 7(R), and (b) it is not obvious how they will take advantage of the inherent

graphical structure in PGMs, such as conditional independence, here we use concept

of predictive uncertainty in (1.4) with suitable ambiguity sets to discuss different
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kinds of model-form sensitivity analysis methods for PGM, where all make sense in

different contexts/perturbations, and could be useful for different application/under

different constraints. In all cases, we isolate a single node l on the PGM for a

“stress test”, and we keep all the other PGM nodes fixed; then we can vary a

combination of parents and CPDs for the node l; the CPDs vary in a non-parametric

neighborhood of a baseline CPD p(xl|xπl) of the baseline PGM P with model

misspecification ηl. The results give us a rank of sensitivities for each node which

can provide a strategy to “close the data-model-predictions loop” and design better

models by targeting the most under-performing components of our PGMs and

address trade-offs between model complexity, data & predictive guarantees. Here

we distinguish two cases, although various combinations can be considered with

the same mathematical tools:

1. In Part 1 we keep all the nodes on PGM fixed except l, for which the par-

ents and the CPDs can vary in a non-parametric ambiguity set Dηll , see the

definition of (3.52).

2. In Part 2 we keep all the nodes on the PGM and their parents fixed, i.e., we

keep the graph structure of the PGM, and allow non-parametric variability

in the CPD of node l, see the definition of (3.59).

3.2.4 Model-form Sensitivity Indices, Part 1 – vary graph structure

and CPD

To isolate and rank the impact uncertainties of each node, based on the re-

sults we find in previous subsection for the model misspecification η, we consider
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the specific domain that only has a perturbation on Pl|πl from P , and define the

ambiguity set Q by

Q := Dηll

 all PGM Q : R(Ql|πQl
||Pl|πPl ) ≤ ηl for all xπPi ∪ xπQi ,

Qj|πj ≡ Pj|πj for all j 6= l

 (3.52)

where πQl is indices of the parents set of Xl in Q which may be different from πPl ,

i.e., we can change the graph structure that directed to Xl.

By (3.49), we have R(Q||P ) ≤ ηl for all Q ∈ Dηll , then we can consider the predictive

uncertainty on Dηll which measure and rank the impact of each part of the model

in the PGM, Pl|πl , as

I±(f(Xk), P ;Dηll ) = sup/inf
Q∈Dηll

EQ [f(Xk)]− EP [f(Xk)] (3.53)

Moreover, similarly to Theorem 1, we can show that the predictive uncertainty

in this case is also computable with only the baseline model P by the following

Theorem:

Theorem 3.4 Let P be a PGM defined as (1.1), and f(Xk) be a QoI that only de-

pends on Xk. If f(Xk) has finite moment generating function (MGF), EP
[
ecf̄(Xk)

]
,

in a neighborhood of the origin, then for the predictive uncertainty mentioned in

(3.53), there exist 0 < η± ≤ ∞, such that for any η ≤ η±,

I±(f(Xk), P ;Dηll )

= sup/inf
Q∈Dηll

EQ [f(Xk)]− EP [f(Xk)]

=


±EP

ρP
l

[
infc>0

[
1
c

logEP
l|πP
l

[
e
±cF̄ (Xl,XρP

l
)
]

+ ηl
c

]]
l ∈ ρPk ∪ {k}

0 l /∈ ρPk ∪ {k}

= EQ± [f(Xk)]− EP [f(Xk)] (3.54)
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where ρPi is the index set of ancestors for Xi in P ,

F (Xl, XρPl
) = EP{k}|ρP

l
∪{l}

[f(Xk)] (3.55)

F̄ (Xl, XρPl
) = F (Xl, XρPl

)−EP
ρP
l
∪{l}

[
F (Xl, XρPl

)
]

= F (Xl, XρPl
)−EP [f(Xk)], and

for l ∈ ρPk ∪ {k}, the probability measures Q± are given by

q±(xi|xπQ±i ) ≡ p(xi|xπPi ) for all i 6= l and πQ
±

i ≡ πPi (3.56)

and

q±(xl|xπQ±l ) =
e
±c±(x

ρP
l

)F (xl,xρP
l

)

EP
l|πP
l

[
e
±c±(x

ρP
l

)F (Xl,xρP
l

)
]p(xl|xπPl ) for all x

πQ
±

l

. (3.57)

where πPl ⊂ πQ
±

l ⊂ ρPl and c±(xρPl ) are the unique solutions of

R(P
c±
l|πPl
||Pl|πPl ) = ηl (3.58)

for all xρPl .

Proof of the theorem is shown in Appendix B.

3.2.5 Model-form Sensitivity Analysis, Part 2 – only vary CPD

Furthermore, if we are confident about the causality/connection between all

the nodes on the PGM P , we could also consider the domain where the graph

structure of alternative models are fixed to be the same as P , i.e., πQl ≡ πPl = πl,

and investigate the ambiguity set Q defined by

Q := Dηll,P =

 all PGM Q : R(Ql|πl ||Pl|πl) ≤ ηl for all xπl ,

Qj|πj ≡ Pj|πj for all j 6= l

 (3.59)
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Then the predictive uncertainty on Dηll,P , i.e.

I±(f(Xk), P ;Dηll,P ) = sup/inf
Q∈Dηll,P

EQ [f(Xk)]− EP [f(Xk)] (3.60)

can indicate the multiple model/data uncertainties that enter during the learning

of the baseline model with given graph structure at each component CPD, and

similar to the previous case, it satisfies the following Theorem:

Theorem 3.5 (a) [Uncertainty Bounds] Let P be a PGM defined as (1.1), and

f(Xk) be a QoI that only depends on Xk. If f(Xk) has finite moment generating

function (MGF), EP
[
ecf̄(Xk)

]
, in a neighborhood of the origin, then for the pre-

dictive uncertainty defined in (3.60), there exist 0 < η± ≤ ∞, such that for any

η ≤ η± and any Q ∈ Dηll,P , we have

EQ [f(Xk)]− EP [f(Xk)] ≡ 0 for any l /∈ ρk ∪ {k} (3.61)

and

I+(f(Xk), P ;Dηll,P ) = sup
Q∈Dηll,P

EQ [f(Xk)]− EP [f(Xk)]

≤ EPρl

[
inf
c>0

[1

c
logEPl|πl

[
ecF̄ (Xl,Xρl )

]
+
ηl
c

]]
I−(f(Xk), P ;Dηll,P ) = inf

Q∈Dηll,P
EQ [f(Xk)]− EP [f(Xk)]

≥ −EPρl

[
inf
c>0

[1

c
logEPl|πl

[
e−cF̄ (Xl,Xρl )

]
+
ηl
c

]]
(3.62)

for any l ∈ ρk ∪ {k}, where

F (Xl, Xρl) = EP{k}|ρl∪{l} [f(Xk)] (3.63)

and F̄ (Xl, Xρl) = F (Xl, Xρl)− EPρl∪{l} [F ((Xl, Xρl))] = F (Xl, Xρl)− EP [f(Xk)].

(b) [Tightness] If the assumption

F (xl, xρl) = F (xl, xπl) (3.64)
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holds, then there exist probability measures Q± = Q±(η) ∈ Dηll,P such that

EQ± [f(Xk)]− EP [f(Xk)] = sup/inf
Q∈Dηll,P

EQ [f(Xk)]− EP [f(Xk)] (3.65)

Furthermore, for l ∈ ρPk ∪ {k}, the probability measures Q± are given by (3.56) -

(3.58).

Proof of the theorem is shown in Appendix B.

Remark: The assumption in Step 2 (F (xl, xρl) = F (xl, πl)) can be satisfied when

p(xk|xl, xρl) ≡ p(xk|xl, xπl), or when ρl ∩ ρi ⊂ πl for all i ∈ ρk ∪ {k} \ ρl ∪ {l}.

Especially, for all Markov chains, tree structure model, etc... all the nodes in Xρl

are connected with Xk only through Xl, therefore, given Xl, Xρl are independent

of Xk, i.e. p(xk|xl, xρl) ≡ p(xk|xl), so F (xl, xρl) = F (xl, xπl). Two simple examples

where the assumption is satisfied or violated are shown below.

Figure 11. Two examples of the structure of PGM where one (left)
could achieve the equality in (3.62) for I±(X7, P ;Dη66,P ), while
the other one (right) could not. For the left PGM, we have
F = F (x6, x3), while F = F (x6, x1) for the right PGM, there-
fore, for the optimizer Q+

l , πQ6 = {3, 4} = π6 for the left one,

while πQ6 = {3, 4, 1} 6= π6 for the right one.

Example (Inhomogeneous Markov chains): Again we consider the Markov

chain models shown in Figure 8, and the QoI f(Xk), then if we only perturb Pl|l−1,

l ≤ k, with the constraint R(Ql|πQl
||Pl|l−1) ≤ ηl, i.e. for Q ∈ Dηll , where l ∈ ρk∪{k},

by Theorem 3.4, we have

I±(f(Xk), P ;Dηll ) = ±EP{l−1}

[
inf
c>0

[1

c
logEPl|l−1

[
e±cF̄ (Xl,Xρl )

]
+
ηl
c

]]
. (3.66)
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where F (xl, xρl) = F (xl) =
∫
f(xk)

∏k
i=l+1 P (dxi|xi−1). Note that F (xl, xρl) =

F (xl) satisfies the assumption on Theorem 3.5, so we have I±(f(Xk), P ;Dηll,P ) =

I±(f(Xk), P ;Dηll ), and using (3.56)-(3.58), the optimizer in both Theorem 3.4 and

3.5 is obtained when

q±(xi|xi−1) ≡ p(xi|xi−1) for all i 6= l (3.67)

and

q±(xl|xl−1) =
e±c±(xl−1)F (xl)

EP [e±c±(xl−1)F (Xl)|xl−1]
p(xl|xl−1) (3.68)

where c±(xl−1) are the unique solutions of

R(P
c±
l|l−1||Pl|l−1) = ηl (3.69)

for all xl−1. Moreover, if we only perturb Pl|l−1, l > k, with the constraint

R(Ql|πQl
||Pl|l−1) ≤ ηl or R(Ql|l−1||Pl|l−1) ≤ ηl, then by Theorem 3.4 and 3.5, we

have I±(f(Xk), P ;Dηll ) = I±(f(Xk), P ;Dηll,P ) = 0.

Example (Gaussian Bayesian Networks): Here we consider GBN shown in

Figure 9, for the QoI f(X4) = X4, using Theorem 3.4, 3.5, we conclude that

1. If we only perturb P3 with the constraint R(Q3|πQ3
||P3) ≤ η3 or R(Q3||P3) ≤

η3, i.e. consider Q ∈ Dη33 or Dη33,P , then by Theorem 3.4 and 3.5, since the

function F in (3.55) satisfies

F (x3, xρ3) =

∫
f(x4)P (dx4|x3, x2)P (dx2)

= β43x3 + β40 + β42β20

= F (x3) (3.70)

apply (3.54), we have

I±(f(X4), P ;Dη33 ) = I±(f(X4), P ;Dη33,P ) = ±|β43|
√

2σ2
3η3 (3.71)
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And by (3.56)- (3.58), the optimizer in both Theorem 3.4 and 3.5 is obtained

when

q±(x3|xπQ±l ) =
e±c±F (x3)

EP3 [e±c±F (X3)]
p(x3)

=
e±c±(β43x3+β40++β42β20)e

− (x3−β30)
2

2σ23∫
x3
e±c±(β43x3+β40++β42β20)e

− (x3−β30)2

2σ23 dx3

=
e
− (x3−β30∓c±β43σ

2
3)

2

2σ23∫
x3
e
−

(x3−β30∓c±β43σ23)
2

2σ23 dx3

= N
(
β30 ± c±β43σ

2
3, σ

2
3

)
(3.72)

and

R(P
c±
l|πPl
||Pl|πPl ) = ηl ⇒ ±c± = ±

√
2ηl
β2

43σ
2
3

(3.73)

so q±(x3) = N
(
β30 ± β43

|β43|

√
2η3σ2

3, σ
2
3

)
, and all other components are kept

the same, i.e., q±(xi|xπi) ≡ p(xi|xπi) for all i 6= 2.

2. if we only perturb P1 with the constraint R(Q1|πQ1
||P1) ≤ η1 or R(Q1||P1) ≤

η1, i.e. consider Q ∈ Dη11 or Dη11,P , then by Theorem 3.4 and 3.5, we have

I±(f(X4), P ;Dη11 ) = I±(f(X4), P ;Dη11,P ) = 0 (3.74)

since 1 /∈ ρ4

Now let us add some connections to the GBN in Figure 9, and consider a more

complicated GBN as shown in the left of the Figure 12.

Then for the QoI f(X4) = X4, if we consider same ambiguity sets as above, i.e.,

only perturb P3 with the constraint R(Q3|πQ3
||P3) ≤ η3 or R(Q3||P3) ≤ η3, i.e.

consider Q ∈ Dη33 or Dη33,P , then by Theorem 3.4 and 3.5, since the function F in
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Figure 12. Left: A GBN consists of X = {X1, X2, . . . , X5} with
p(x) = p(x5|x4, x1) p(x4|x3, x2, x1) p(x3|x2)p(x2|x1)p(x1) where
p(x5|x4, x1) = N (β50 + β54x4 + β51x1, σ

2
5), p(x4|x3, x2, x1) = N (β40 +

β43x3 + β42x2 + β41x1, σ
2
4), p(x3|x2) = N (β30 + β32x2, σ

2
3), p(x2|x1) =

N (β20 + β21x1, σ
2
2), and p(x1) = N (β10, σ

2
1); Right: The struc-

ture of optimizer Q± in Theorem 3.4 with QoI f(X4) and
perturbing X3 based on (3.56) - (3.58). Note that since the
function F (X3, XρP3

) in (3.55) may depend on XρP3
, so the fac-

tor for q±(x3|x
πQ
±

3

) depends on X2 and X1, i.e. πQ
±

3 = {1, 2} by

(3.57), which creates a new connection from X1 to X3 in Q±.
However, for some special cases like GBN with linear QoI,
the graph structure will keep the same, see Corollary 3.6.

(3.55) now is

F (x3, x
P
ρ3

) =

∫
f(x4)P (dx4|x3, x2, x1)

= β43x3 + β42x2 + β41x1 + β40

= F (x3, x2, x1) . (3.75)

Thus, for the ambiguity set Dη33 , the optimizer Q± would have an extra connection

X1 → X3 in general by (3.57) as shown in Figure 12 (Right). However, in this case,
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we have

q±(x3|xπQ±l ) =
e
±c±(x

ρP3
)F (x3,xρP3

)

EP
3|πP3

[
e
±c±(x

ρP3
)F (X3,xρP3

)
]p(x3|xπP3 )

=
e±c±(x2,x1)F (x3,x2,x1)

EP3|{2} [e±c±(x2,x1)F (X3,x2,x1)]
p(x3|x2)

=
e±c±(x2,x1)(β43x3+β42x2+β41x1+β40)e

− (x3−β30−β32x2)
2

2σ23∫
x3
e±c±(x2,x1)(β43x3+β42x2+β41x1+β40)e

− (x3−β30−β32x2)2

2σ23 dx3

=
e
− (x3−β30−β32x2∓c±(x2,x1)β43σ

2
3)

2

2σ23∫
x3
e
−

(x3−β30−β32x2∓c±(x2,x1)β43σ
2
3)

2

2σ23 dx3

= N
(
β30 + β32x2 ± c±(x2, x1)β43σ

2
3, σ

2
3

)
(3.76)

then by (3.58),

R(P
c±
l|πPl
||Pl|πPl ) = ηl ⇒ ±c±(x2, x1) = ±

√
2ηl
β2

43σ
2
3

(3.77)

so c±(x2, x1) does not depend on X1, X2, and we have x
πQ
±

l

≡ xπPl = {2}, Q± have

same graph structure as P . And apply (3.54), we still have

I±(f(X4), P ;Dη33 ) = I±(f(X4), P ;Dη33,P ) = ±|β43|
√

2σ2
3η3 (3.78)

In general, we can conclude the result by the following Corollary for this special

case in GBN:

Corollary 3.6 Let P be a GBN satisfies (3.29), and f(Xk) = aXk + b be a QoI

only depends on Xk linearly. Then for the predictive uncertainties defined in (3.53)

and (3.60), we have

I±(f(Xk), P ;Dηll ) ≡ I±(f(Xk), P ;Dηll,P ) (3.79)

and the optimizer Q± = Q±(η) ∈ Dηll,P ⊂ D
ηl
l given by (3.56) - (3.58) are also GBNs

with same graph structure as P . Furthermore, for l ∈ πPk and l /∈ ρPπj for all j ∈ πk,
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j 6= l, we have

I±(f(Xk), P ;Dηll ) = ±|βkl|
√

2σ2
l ηl (3.80)

Moreover, for any l ∈ ρPk , we also have

I±(f(Xk), P ;Dηll ) = ±|β̃kl|
√

2σ2
l ηl (3.81)

for some constant β̃kl. For example, if we perturb P1 in Figure 12 with the constraint

R(Q1|πQ1
||P1) ≤ η1 or R(Q1||P1) ≤ η1, i.e. consider Q ∈ Dη11 or Dη11,P , since the

function F in (3.55) now is

F (x1) =

∫
f(x4)P (dx4|x3, x2, x1)P (dx3|x2)P (dx2|x1)

= (β43β32β21 + β42β21 + β41)x1 + β40 + β43β30 + β43β32β20 + β42β20(3.82)

then by Theorem 3.4, 3.5 and (3.54), we can conclude that

I±(f(X4), P ;Dη11 ) = I±(f(X4), P ;Dη11,P ) = ±|β43β32β21 + β42β21 + β41|
√

2σ2
1η1

(3.83)

3.2.6 Model-form UQ and SA indices

Here we summarize all the results above and define the corresponding indices

for model-form UQ and SA as following:

• model-form UQ indices

we define the model-form UQ indices of the PGM P for the QoI f(Xk),

1 ≤ k ≤ n, by I±(f(Xk), P ;Dη), i.e., we consider the the worst case scenar-

ios in the ambiguity set Dη which contains all possible models Q with the

aforementioned model misspecification η, then based on Theorem 3.2,

I±(f(Xk), P ;Dη) = ± inf
c>0

[1

c
logEP{k}

[
e±cf̄(Xk)

]
+
η

c

]
(3.84)
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where f̄(Xk) is the centered QoI, f̄(Xk) := f(Xk)− EP [f(Xk)].

Remark: we can also use the UQ indices I± to define the relative predic-

tive uncertainty, i.e., the relative error

I+(f(Xk), P ;Dη)
|EP [f(Xk)] |

(3.85)

which captures the uncertainty of the nominal model P within the family of

models Q ∈ Dη for QoI f(Xk).

• model-form sensitivity indices 1

we define the model-form sensitivity indices, which measure and rank the

impact of each part of the model in the PGM, Pl|πl , by I±(f(Xk), P ;Dηll ) as

discussed in Section 3.2.3, i.e., we consider the worst case scenarios in the

ambiguity set Dηll where we perturb the CPD and parents of node Xl with

model misspecification ηl, then based on the results shown on Theorem 3.4,

I±(f(Xk), P ;Dηll )

=


±EP

ρP
l

[
infc>0

[
1
c

logEP
l|πP
l

[
e
±cF̄ (Xl,XρP

l
)
]

+ ηl
c

]]
l ∈ ρPk ∪ {k}

0 l /∈ ρPk ∪ {k}
(3.86)

where

F (Xl, XρPl
) = EP{k}|ρP

l
∪{l}

[f(Xk)] (3.87)

and F̄ (Xl, XρPl
) = F (Xl, XρPl

) − EP
ρP
l
∪{l}

[
F ((Xl, XρPl

))
]

= F (Xl, XρPl
) −

EP [f(Xk)].

• model-form sensitivity indices 2

we can also define the an alternative model-form sensitivity indices by

I±(f(Xk), P ;Dηll,P ) for which we consider the worst case scenarios in the am-

biguity set Dηll,P , i.e., we still perturb the CPD of node Xl with model mis-

specification ηl but with the constraint that the parent set πl is fixed, so is
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the graph structure of the PGM, then by Theorem 3.5, when P satisfies the

assumption F (xl, xρl) = F (xl, xπl) where

F (Xl, Xρl) = EP{k}|ρl∪{l} [f(Xk)] (3.88)

we have

I±(f(Xk), P ;Dηll,P )

=


±EPρl

[
infc>0

[
1
c

logEPl|πl
[
e±cF̄ (Xl,Xρl )

]
+ ηl

c

]]
l ∈ ρk ∪ {k}

0 l /∈ ρk ∪ {k}
(3.89)

where

F̄ (Xl, Xρl) = F (Xl, Xρl)−EPρl∪{l} [F ((Xl, Xρl))] = F (Xl, Xρl)−EP [f(Xk)] .

Furthermore, note that I±(f(Xk), P ;Dηll,P ) = I±(f(Xk), P ;Dηll ) when P sat-

isfies the assumption in Theorem 3.5 (b).

Note that all the indices we defined are bounds for the PGMs in infinite dimensional

spaces, but they are computable (with some conditions) by a one dimensional

optimization problem based on the Theorems we list above.

Remark [On the choice of KL divergence]: Given the abundance of different

distances and pseudo-distances for probability models besides the Kullback-Leibler

divergence, it is reasonable to wonder if any other such metrics or divergences (e.g.

Wasserstein, χ2, total variation, Hellinger, etc) can be used in place of Kullback-

Leibler (KL) in the definition of the non-parametric family (3.52), (3.59), and the

sensitivity index (3.86). It turns out that the choice of the KL divergence in the

present work is crucial in obtaining computable sensitivity index (3.86). Indeed,

in Section 3.2.2, we demonstrate that the derivation of (3.86) relies on taking

advantage of the chain rule for the KL divergence, [20]. More specifically, we break
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down the calculation of any KL distance between different PGM models, in terms

of conditional KL divergences between separate PGM nodes, i.e. CPDs p(xi|xπi) in

(1.1), see (B3-38). It is also this property of the Kullback-Leibler divergence that

allows us to isolate the uncertainty impact on QoIs from multiple PGM components

and data sources. The lack of such a decomposition property in other probabilistic

metrics and divergences and its significance for UQ calculations is demonstrated

in special cases of PGMs such as Markov Chains and Markov Random Fields (e.g.

Boltzmann/Gibbs distributions), in [64].

3.3 How To Pick The Misspecification Parameters in PGMs?

Here we consider two perspectives in setting up the model misspecification pa-

rameters η/ ηj in the indices I±(f(Xk), P ;Dη) or I±(f(Xk), P ;Dηjj ): (a) a fixed

constant η > 0: for the UQ indices (as in Theorem 3.2) or the sensitivity indices

(as in Theorem 3.4 and 3.5), we can consider perturbing the whole model P or

each part of model, Pi|πi , with the same amount of “distance” η, as “stress test”,

then comparing the indices I(f(Xk), P ;Dηjj ) will give us a ranking of the impact of

each component on the model. (b) Computed from data: we can also consider the

η by the “distance” between data and the PGM P , where data is represented by a

histogram or a KDE approximation of the histogram, or any given particular model

Q from data or expert knowledge. In this case, we can estimate ηj values constitute

surrogates for the distance of the baseline model from the unknown “real” model.

And it may be different for different components or different given conditions.
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By the chain rule of KL divergence [20], η := R(Q||P ) can be computed by

η =

∫
log

dQ

dP
dQ =

n∑
i=1

EQ
[
R(Qi|πi ||Pi|πi

]
dxi

=
n∑
i=1

EQ [ηπii ] (3.90)

where

ηπii =

∫
log

Qi|πi

Pi|πi
Qi|πidxi (3.91)

with given xπi .

Examples: For a Gaussian Bayesian network where p(xi|xπi) satisfies p(xi|xπi) =

N (βi0 + βTi xπi , σ
2
i ) for some βi0, βi, and σ2

i , i.e.,

Pi|πi : Xi = βi0 + βTi Xπi + εi (3.92)

where εi is a random variable with density pεi(x) = N (0, σ2
i ) which comes from

fitting data with Maximum-Likelihood-Estimation. Then we consider alternative

models to P such as

Qi|πi : Xi = βi0 + βTi Xπi + ε̃i (3.93)

where ε̃i follows another approximate distribution of the data with density qε̃i(x),

for instance any histogram or KDE. Therefore, for given xπi , we have

ηπii =

∫
log

q(xi|xπi)
p(xi|xπi)

q(xi|xπi)dxi

=

∫
log

q(xi − βi0 − βTi xπi |xπi)
p(xi − βi0 − βTi xπi |xπi)

q(xi − βi0 − βTi xπi |xπi)dxi

=

∫
log

qε̃i(x)

pεi(x)
qε̃i(x)dx , (3.94)

thus, we have that ηπii is independent of πi; in fact, we have

ηπii ≡ ηi =

∫
log

qε̃i(x)

pεi(x)
qε̃i(x)dx , (3.95)
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Therefore we can consider the estimation of model misspecification based on (3.95)

with Qε̃i as the histogram, i.e.,

qhistε̃i
(x) =

m∑
k=1

νk
nh
I(x ∈ Bk) , (3.96)

where B1, . . . , Bm are the histogram bins, h is the bin width, n is the number of

observations and νk is the number of observations in Bk. Alternatively, we can

consider the model Qε̃i given by a kernel density estimator (KDE) viewed here as

a high resolution but smooth approximation of the histogram, namely

qKDEε̃i
(x) =

n∑
k=1

1

nh
K(

x− xi
h

) , (3.97)

where K(·) is the normal kernel smoothing function with bin width h, (x1, . . . , xn)

are the samples of εi. Similarly, we can consider other KDE kernels, [131], or any

other probabilistic representations of the data in the histogram. It can be shown

using the weak continuity properties of the KL divergence, [27], that R(Qε̃i ||Pεi)

will converge to R(Qεi ||Pεi) in the large data limit, where Qεi is the real distribution

of εi, for more general results we also refer to [105].

3.4 Model Selection and Correctability

3.4.1 Model selection based on model-form UQ indices

Based on the predictive uncertainty indices (3.84), we intend to develop a new

class of Information Criteria (IC) for model selection & evaluation that include in

the selection process specific QoIs of engineering interest. In the existing AI litera-

ture, IC such as Akaike IC and Bayesian IC, are deployed for model selection tasks,

[66], but do not take into consideration QoIs. Therefore, we propose to: (a) use the

predictive uncertainty indices (3.84) to evaluate the predictive ability of different
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models; (b) compare and optimize model selection by minimizing the predictive

uncertainty indices (3.84), where η is calculated as in typical AIC/BIC methods,

[66, 9] as the distance between model and available data .

In order to explain the key idea and the main difference between existing IC meth-

ods that do not take into account QoIs f(Xk), let us consider the linearization of

the predictive uncertainty indices (3.84), [29],

I±(f(Xk), P ;Dη) = ±
√

2V arP (f(Xk))η
1/2 +O(η) (3.98)

where P is the baseline PGM model, and when P is a Gaussian network, the above

expansion is exact, [50]. It is evident that (3.98) has both information-theoretic

aspects as in standard IC via the KL term η, and also includes the engineering QoI

f(X) via the variance term.

3.4.2 Model improvement based on model-form sensitivity indices

We could also consider the uncertainty of each component on the PGM sepa-

rately by the model-form sensitivity indices (3.86), then with a desired tolerance

TOL ∈ (0, 1) for predictive uncertainty, i.e. selecting a model P such that

I+(f(Xk), P ;Dηll )

EP [f(Xk)]
≤ TOL for all PGM nodes l . (3.99)

we can improve the selection of a baseline model P as follows.

Step 1: Find data-based surrogates ηl’s using for instance the approach in (3.91),

or more generally:

ηl = sup
xπl

R(Ql|πl ||Pl|πl)

where Q is the surrogate model given by KDE/histogram.

Step 2: Calculate the model-form sensitivity indices (3.86):

I±(f(Xk), P ;Dηll ) for all l
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with given QoI f(Xk), and find the most uncertain component,

l∗ = argmax
l

I+(f(Xk), P ;Dηll )

Step 3: Determine whether the relative predictive uncertainty of Pl∗ is within a

given tolerance level TOL ∈ (0, 1), i.e. satisfying (3.99) and thus

I+(f(Xk), P ;Dηl∗l∗ )

EP [f(Xk)]
≤ TOL . (3.100)

Step 4: If (3.100) is not true, reduce I+(f(Xk), P ;Dηl∗l∗ ) based on (3.86) and

(3.98), i.e., we could consider decreasing VarPl∗|πl∗ (F (Xl, Xρl)) or ηl∗ by acquiring

more data for l∗ or updating the CPD.

Note that, based on (3.86), the indices depend on all the CPDs on PGM (in general,

for node l, the EPρl [·] part in the sensitivity indices may depend on all the CPDs of

l’s ancestors, and F (Xl, Xρl) part may depend on the CPDs of all the other nodes),

so if we decrease the uncertainty of l∗ component by updating the CPD Pl∗|πl∗ , the

indices for other components may increase. However, if the mean model of f(Xk)

does not change, i.e. F̄ (Xl, Xρl) is fixed for all l when we improve the model, then

updating Pl∗|πl∗ would only affect the descendant components of l∗, therefore, we

could make all the components satisfied (3.100) via the loop shown above.

Example: Consider a GBN defined as (3.29), where

Xi = βi0 + βTi Xπi + εi (3.101)

with εi ∼ N (0, σ2
i ), if we only update the CPD p(xi|xπi) by changing the distri-

bution of εi from Gaussian to other mean zero distribution, then for f(Xk) = Xk,

1 ≤ k ≤ n, we have

F (Xl, Xρl) ≡ β̃Tkl(Xl, Xρl)
T + β̃k0 (3.102)
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for some constants β̃kl, β̃k0, i.e., F̄ (Xl, Xρl) is fixed for all l. In fact, since we know

I+(f(Xk), P ;Dηll ) = |βkl|
√

2σ2
l ηl (3.103)

by (B3-51), updating the CPD of any component l would only change the value of

I+(f(Xk), P ;Dηll ) if we fix the correlation between all the nodes (i.e., all the βl’s).

Moreover, since we have

I+(f(Xk), P ;Dη) =
√

2Ckkη =

√√√√2(
∑
i∈ρk

β̃2
kiσ

2
i )(

n∑
j=1

ηj) (3.104)

see (3.41) and (3.31) for example, so the model-form UQ index for the whole model

will also be decreased when we decrease the model-form sensitivity index for com-

ponent l either by decreasing σ2
l or ηl.
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C H A P T E R 4

PGMS IN CHEMISTRY: AN APPLICATION ON

OXYGEN REDUCTION REACTION

4.1 Towards AI Chemistry: Causality, PGMs & Multi-

scale Modeling

4.1.1 From the computational chemistry towards the AI chemistry

Computational Chemistry powered by groundbreaking developments in scien-

tific computing and sophisticated multi-scale modeling from the quantum scale

and up, has provided in the last years unprecedented new insights in areas ranging

from chemical sciences, to materials and biology. However, in order to become

truly predictive, reliable and robust enough to perform design and optimization

tasks, these models still need to incorporate heterogeneous and multiscale data,

e.g. electronic structure calculations, experimental data from the mesoscale or the

device/engineering scale, highly correlated time series data, and so on. Further-

more, this statistical learning process needs to account for varying degrees of expert

knowledge, e.g. some parts of a physico-chemical model may be less well-accepted

or understood than others; data that are not easily collected manually and need to

be retrieved from the literature; physical constraints, correlations and intrinsically
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causal relationships between model components such as parameters, mechanisms,

input/output relationships and different quantities of interest. To this end, exist-

ing and potential new developments in Data Science methods such as approximate

inference, probabilistic & causal networks, reinforcement learning, information re-

trieval, and UQ, need to be fused with Applied Mathematics and Computational

Chemistry methods for multi-scale/-physics models, in order to advance the field

towards full, predictive Artificial Intelligence (AI) for Chemistry, capable to first

learn efficiently networks of multi-scale models based on imperfect and heteroge-

neous data and expert knowledge, and second, to close the experiment/data/model

loop, i.e. continuously improve data and model selection towards enhancing pre-

dictive and robust design & optimization capabilities under uncertainty.

4.1.2 Probabilistic graphical modeling for chemistry

We started working in some of these directions in our recent work [125]; there

we identified the importance of correlations in model parameters/reactions towards

building more predictive chemical kinetics models; we also developed the necessary

new UQ and non-parametric statistics methods to assess predictive capability in

the presence of strong correlations, [33]. However here we want to move beyond

correlations and build full causal models from available heterogeneous data and

expert knowledge, and importantly, along with predictive guarantees. Finally we

seek strategies to improve such models, i.e. their predictive guarantees as quantified

here, by targeting with more data or improved modeling any under-performing

components of our model. Our mathematical formulations rely on Probabilistic

Graphical Models and new associated Uncertainty Quantification methods suitable

for graphical models build on sparse and heterogeneous data.

In this chapter, we apply PGMs as models that can provide the mathematical
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foundation for AI in Computational Chemistry : here, correlations in space/time

and between model elements (molecules, parameters, mechanisms), causal rela-

tionships between inputs and outputs/QoIs, couplings between scales and physics

(from quantum to meso/macro-scale) are typically poresent and thus necessary in

building complete, predictive models. In this direction, we intend to build PGM-

based AI models for both modeling and design in physico-chemical systems. This

class of proposed Chemistry PGMs, and in particular the proposed class of Chem-

ical Bayesian Networks, allows us to combine expert knowledge (e.g. from multi-

scale/multi-physics modeling), computational and experimental data, along with

Uncertainty Quantification, Machine Learning and Information Theory to obtain

mathematical and computational models with predictive guarantees. Finally the

proposed Uncertainty Quantification (UQ) methods for Chemical PGMs allow for

systematic strategies for model evaluation and adaptive model improvement.

4.1.3 Modeling and uncertainties in Oxygen Reduction Reaction

Due to the 100-fold higher energy density of fuels fuel cells are superior to bat-

teries; they provide more power at lower weights, smaller volumes, and do not suffer

from recharging challenges [99]. The hydrogen fuel cell is a mature technology that

produces electricity via the Hydrogen Oxidation Reaction (HOR) at the anode and

the Oxygen Reduction Reaction (ORR) at the cathode, see Figure 13(b). Poly-

mer electrolyte membrane fuel cells are commercially available [39]. Due to the

high cost of platinum (Pt) catalysts and stability problems of other materials in an

acidic electrolyte, recent focus has been on developing alkaline electrolytes. This

technology (see Figure 13(b)), while extremely promising, results in slower reaction

rates (by ∼ 2 orders of magnitude compared to Pt/acidic electrolyte) and thus for

a need for bigger devices for the same performance, [117, 30]. Overcoming this
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slower-rate challenge requires discovery of new, multicomponent, e.g., core-shell

alloy, catalysts.

Our objective is to demonstrate our new modeling paradigm via the use of

probabilistic AI and PGMs on this important problem. The physical model we

consider here is simple in order to enable mathematical analysis while obeying real

constraints such as thermodynamics, real reactions, reaction stoichiometry, mass

conservation, etc. The ORR reaction depends on the formation of surface hydroper-

oxyl (OOH∗) from molecular oxygen (O2), and water (H2O) from surface hydroxide

(OH∗) [124]. The complete mechanism [13, 4, 61] involves four electron steps, see

Figure 13(a). Among these, reactions R1 and R4 are slow [13]. Acceleration of

ORR then translates into discovering materials that speed up the slower of R1 and

R4. An approach to discovering new materials entails use of models to generate

activity plots, see Figure 13(c), as a function of descriptor(s) whose properties can

be generated quickly from quantum mechanical calculations, [113].

We compute the rate using a thermodynamic model based on the minimum free

energy of reactions R1 and R4, i.e., rate = exp(−max[∆G1,∆G4]/kBT ), where kB

is the Boltzmann constant and T is the temperature. The Gibbs free energy ∆Gf

of a species is estimated from the electronic energy (EDFT) obtained using density

functional theory (DFT), and corrected for both solvation (Esolv) in water and for

temperature effects. Upon computing the formation free energies of O∗, OOH∗,

and OH∗ on different monometallic catalysts, the free energies ∆G1 and ∆G4 are

computed as linear combinations of free energies of species and are regressed vs.

∆Gf
O∗ (the descriptor); see data in Figure 13(c). The intersection of the two lines

(see Figure 13(c)) determines the max of the volcano curve and provides optimal

material properties, i.e., the ∆Gf
O∗ , which can then be matched to those of multi-

component materials to maximize the rate. This approach was originally introduced
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Figure 13. (a) Key reaction steps (R1-R4) in alkaline fuel cells. R1: sol-
vated O2 forms adsorbed OOH∗; R2: OOH∗ forms adsorbed
surface oxygen O∗ and solvated H2O; R3: O∗ forms adsorbed
OH∗; R4: H2O forms and regenerates the free catalyst site.
∗ represents an unoccupied metal site and next to a species,
e.g., OOH∗, an adsorbed species; H+ and e− refer to pro-
ton and electron. (b) Schematic of an alkaline fuel cell. (c)
Negative changes in Gibbs energies for reactions R1 and R4:
OOH adsorption (blue) and OH desorption (red). The op-

timal ∆GfO∗ is the intersection of the two lines. Shown are
both DFT data on various metals (circles) and lines from
linear regressions. The function given by min(−∆G1,−∆G4),
corresponding to the rate, is indicated by the solid lines and
is referred to in the literature as a “volcano curve”

to discover a highly active Ni-Pt bimetallic for decomposition of ammonia, [58].

However, due to incomplete available data, expensive to compute quantities

with quantum mechanical simulations, sparse data, lack of a full expert-knowledge

library, and lack of quantified errors, the prediction of model accuracy and iden-

tifying under-performing components are impossible under a deterministic model.

Therefore, we generate DFT data to estimate free energies (see Figure 13(c)), esti-

mate error distributions, account for expert knowledge. Overall, we develop a work-

flow to account for errors, and build the first corresponding PGM (see Figure 16)

that opens up the door for Probabilistic AI in Chemistry. More specifically, errors

(see Figure 16 and Table 3) exist in experiments (ωei), DFT (ωdi), solvation ener-
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gies (ωsi), and regressions (correlations) are used to determine the optimum ∆Gf
O∗

(ωci), a problem accentuated by the relatively sparse data available. Experimen-

tal errors (ωei) in ∆Gf
O∗ and ∆Gf

OH∗ arise from repeated measurements in (1) the

same and (2) different labs. Repeated calorimetry and temperature-programmed

desorption measurements for the dissociative adsorption enthalpy of O2 will pro-

vide a distribution of errors for ∆Gf
O∗ . The distribution of DFT errors (ωdi) will

be computed by comparing experimental and calculated (DFT) data across various

metals. The ωsi distribution is estimated by simulating several hundred explicit

water molecules using ab initio molecular dynamics. Multiple modeling choices are

dictated by expert knowledge: for example, we choose O∗ as a descriptor because

it has the fewest local minima on a potential energy surface for faster quantum

calculations. Because errors are independent, we will add their contributions in a

linear manner. Furthermore, because the correlation of ∆G1 and ∆G4 with ∆Gf
O∗

captures the majority of the correlation of ∆G1 and ∆G4 with each other, it is safe

to assume conditional independence for their respective probability distributions.

4.1.4 Structure and model parameter learning for the ORR PGM.

For structure (graph) learning of the ORR PGM, we use a constraint-based

method [123] taking advantage of expert knowledge, in this case, multi-scale, micro-

kinetic modeling and related causal relations.

Using the DFT computed data shown in Figure 14, through the statistical de-

pendency test [130], we know both y1 and y2 depend on x and they are conditionally

independent given x; x, y1, and y2 are shown in Figure 16. Therefore, we build

part of the network structure with x, y1, y2 using a constraint-based method [123],

which selects a desired structure based on constraints of dependency among vari-

ables. Subsequently, we add other nodes, ωi’s which represent different types of
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errors associated with statistical modeling, experiment, solvation, etc, using also

any dependencies known from expert knowledge. Finally, we add the QoIs, x∗O

and r∗O, whose evaluations depend on the values of yi for each x0 due to physics

knowledge, see Figure 19. Overall, we combine available data and expert ”physic-

ochemical” knowledge to build the structure, see Figure 15.

Therefore, based on the discussion above, for the random variables X1:n taking

values X1:n = x1:n where

x1:n = {x, y1, y2, ωe0, ωd0, ωs0, ωe1, ωd1, ωs1, ωc1, ωe2, ωd2, ωs2, ωc2} ,

and where the entries are defined in Table 3, the PGM corresponds to a Directed

Acyclical Graph (DAG) and is defined as

p(x, y1, y2, ωe0, ωd0, ωs0, ωe1, ωd1, ωs1, ωc1, ωe2, ωd2, ωs2, ωc2|x0)

=
∏
i=1,2

p(yi|x, ωei, ωdi, ωsi, ωci) · p(x|ωe0, ωd0, ωs0, x0) ·
∏

j=ek,dk,sk,c1,c2
k=0,1,2

p(ωj)(4.1)

where

yi = βyi,0 + βyi,xx+ ωei + ωdi + ωsi + ωci (4.2)

for i = 1, 2 and

x = x0 + ωe0 + ωd0 + ωs0 (4.3)

Once we have obtained the structure of the graph from the previous step, we

then learn the model

p(x|θ) =
∏
i

x(xi|xπi , θi|πi)

in the following steps:

(a) First, we select a parametric family for models p(xi|xπi , θi|πi). For the ORR ex-

ample, we select as our parametric family of PGMs, a family of Gaussian Bayesian

Networks (GBN).
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Figure 14. (L): DFT-computed data for reaction energies with respect
to different metals/oxygen binding energies, which is used for
structure learning with respect to x and yi as shown in Fig-
ure 16. (R): Data representing the error in correlation/linear
regression, used for parameter learning of ωc1 in Figure 16 by
means of Maximum Likelihood, see (4.8).

Gaussian Bayesian Networks (GBN), [66], is a special class of Probabilistic Graph-

ical Models commonly used in natural and social sciences and where the CPDs

(1.2) are linear and Gaussian. More specifically, for a GBN consisting of variables

X = X1:n, every node Xi is a linear Gaussian of its parents, i.e.,

p(xi|xπi , θi|πi) = N (βi0 + βTi xπi , σ
2
i ) , (4.4)

where θi|πi = (βi0, βi, σi)
T for some constants βi0, βi = (βi,i1 , . . . , βi,im), and variance

σi which does not depend on Xπi . Then by the conjugacy properties of Gaussians,

the joint distribution in (1.1) becomes p(x|θ) = N (µ, C), i.e. it is also a Gaussian

with parameters µ, C, which can be calculated from βi0, βi, and σi (for more details

and derivations see Appendix B).

So for the ORR example, the corresponding CPDs can be defined as,

p(yi|x, ωei, ωdi, ωsi, ωci) = N (βyi,0 + βyi,xx+ ωei + ωdi + ωsi + ωci, 0) (4.5)

for i = 1, 2, and

p(x|ωe0, ωd0, ωs0, x0) = N (x0 + ωe0 + ωd0 + ωs0, 0) (4.6)
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Figure 15. PGMs allow us to combine heterogeneous data, expert knowledge
and physical models: ORR PGM, where as (primary) output and
QoI we construct the volcano curve between x0 (oxygen binding
energy) and yi (reaction energies). We build the PGM via the fol-
lowing steps: (a) we construct a random variable x from the DFT
data (using quantum calculations) for the oxygen binding energy
given the real unknown value x0; (b) we include statistical cor-
relations between the DFT (quantum calculation) data x and yi;
(c) model the residual as an random error in correlation (random
variable ωci); (d) we model as random variables and incorporate
in the PGM different kinds of errors in x and y given by expert
knowledge (see Section 4.1.3) from different sources (random vari-
ables ωei: error in experimental data, ωdi: error between quantum
and experimental values, ωsi: error due to solvation effects which
is calculated via DFT, i.e., we add these random variables into the
PGM and build the connection/arrows with corresponded random
variable x or yi. Here we combine data from DFT computations (x,
yi, ωci, ωdi, ωsi, depicted in blue), with experimental data (ωei, ωdi,
depicted in green); we fuse these heterogeneous experimental and
computational data by taking advantage of the PGM formulation in
Figure 16. Once the volcano curve between x and yi is constructed,
we obtain a prediction for the optimal oxygen binding energy x∗O
and optimal reaction rate r∗O using physical modeling, i.e. that the
optimal oxygen binding energy is identified when the two reaction
energies are equal and the optimal reaction rate is proportional to
exp{max[min[y1, y2]]/(kBT )}.
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p(ωj) = N (βj0, σ
2
j ) (4.7)

for all j = e0, d0, s0, e1, d1, s1, c1, e2, d2, s2, c2.

(b) Once the graph is learned, we can select a parametric or semi-parametric family

of PGMs (1.1), (1.2) and subsequently focus on parameter learning. Here we opt to

use the global likelihood decomposition method, [66]. This approach is essentially

a Maximum Likelihood Estimation (MLE) on PGMs, that exploits a fundamental

scalability property that allows us to “divide and conquer” the parameter inference

problem on the graph; Of course we can also employ a Bayesian approach instead

of MLE, see for instance [66] for the case of PGMs.

In the MLE step, we take advantage of the Global Likelihood Decomposition [66],

L(θ;D) =
∏
i

Li(θi|πi |D) =
∏
i

∏
m

P (xi[m]|xπi [m]; θi|πi) (4.8)

where L(θ;D) is the likelihood given data D = {ξ[1], . . . , ξ[M ]} see Figure 14;

noting that

logL(θ;D) =
∑
i

logLi(θi|πi |D) , (4.9)

we observe that if we assume that θi|πi are disjoint, i.e. that each conditional

probability density, p(xi|xπi , θi|πi), is parametrized by a separate set of parameters

that do not overlap (this is a general assumption especially in our case, although

we could extend all the results for shared parameters), we can pick the parameters

θ̂i|πi by solving

θ̂i|πi = argmax
θi|πi

[
logLi(θi|πi |D)

]
. (4.10)

The formulas, (4.9) and (4.10), imply that we can “divide and conquer” our

overall learning problem by learning the parameters θi|πi for p(xi|xπi , θi|πi) sepa-

rately for each network node Xi using the corresponding parts of the data set D

and (4.10).
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Therefore, using MLE for the GBN (4.4) with given data to estimate the param-

eters as we describe above in (4.8)-(4.10), and the outcomes are shown in following

table.

Table 2. Outcomes of MLE

βy1,0 = 0.0595 βe0,0, βei,0 = 0

σ2
e0 = 0.0329 σ2

ei = 0.0065

βy2,0 = 1.8231 βd0,0 = -0.0754

βdi,0 = -0.0222 σ2
di = 0.0354

βy1,x0 = 0.5111 σ2
d0 = 0.1032

βs1,0 = -0.2967 σ2
s1 = 0.0046

βy2,x0 = -0.5564 βs0,0 = 0.0067

βs2,0 = -0.1209 σ2
s2 = 0.0054

βci,0 = 0 σ2
s0 = 0.0010

σ2
c1 = 0.0347 σ2

c2 = 0.0204

Software: In the ORR PGM case, since we only have a fairly small network, we

can build the PGM component by component, essentially by hand. However, for

more complex networks such as in medical or social science applications, there are

numerous software which allow us to learn the structure and the parametric model

from data or expert knowledge, for instance, BayesiaLab [19], Hugin [12, 89], Netica

[133], Tetrad [59, 121] etc.

Although both the aforementioned learning tasks are well-studied in the PGM

and AI literature, to our knowledge they have not been explored in physico-chemical

applications. In such problems we are faced with a unique combination of chal-

lenges, such as multi-scale and multi-physics models, and the relatively sparse and

heterogeneous data; some of the data can be expensive and coming from different

sources and scales, such as experimental data and quantum, electronic structure
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computations. The overall ORR PGM combines data, multi-scale modeling and

causal relationships, see Figure 15.

x0

x0

e0

d0

s0

x

c1

c2

y1

y2

e1s1 d1

e2s2 d2

xO

rO

Figure 16. PGM for ORR where the QoI is a volcano curve, see Fig-
ure 13(c). The construction of the PGM is based on expert
knowledge, physicochemical modeling and statistical analy-
sis of data, see Table 3 for notation and Figure 15 for full
details. In particular, here we consider a special class of
PGMs, namely a Gaussian Bayesian Network, i.e., all CPDs
are Gaussians (4.4) which are fitted to available data using
Maximum Likelihood Estimation. Note the conditional inde-
pendence between the y-variables, assumed based on expert
knowledge.

Table 3. Notations used on the PGM in Figure 16

Notation Meaning Notation Meaning

x0 real oxygen binding en-
ergy ∆Gf

O∗

x ∆Gf
O∗ by electronic calcu-

lation

y1 −∆G4 := ∆Gf
OH∗ y2 −∆G1 := −∆Gf

OOH∗ +
∆Gf

O2

x∗O optimal ∆Gf
O∗ r∗O optimal rate

ωci error in correlation ωei error in experimental
data

ωdi error between electronic
calculated values and ex-
perimental values

ωsi error carried by solvation
effect in water

In the next Sections we will assess the predictive capabilities of the PGM for

ORR we built in Figure 16.
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4.2 Post-Hoc Analysis of P : Uncertainty Quantification

and Predictive Guarantees for PGMs

Once a baseline PGM model has been constructed as in Figure 16, we intend to

use the resulting model for predictions of our Quantities of Interest (QoI). However,

we first need to be convinced about the reliability and predictive capabilities of the

model, given the uncertainties stemming from the sparse data and from multiple

sources, all used in the construction of the model, as depicted in Figure 15.

In this direction, a proper Uncertainty Quantification (UQ) framework should

provide quantitative insights into the reliability of our probabilistic model, for in-

stance how much predictions can change by varying model parameters or more

generally model features; specialized UQ methods such as Sensitivity Analysis

(SA) should be capable to identify which parameters in a model have the most

influence on predictions. In principle, one hopes to employ such UQ methods not

only to assess the predictions of a model, but also to improve it by reducing its

predictive uncertainty by reducing the uncertainty/error in the most influential

parameters/mechanisms or by selecting more informative data, e.g. in Figure 15.

With such considerations in mind, we need to extend existing UQ methods to

PGMs in order to handle the uncertainties caused by multiple sources of error,

e.g. sparse data, lack of knowledge, incomplete modeling, and take advantage of

the graph structure of the PGM, in particular correlations and causal relationships

between model components and QoIs. To this end, when assessing the reliability

of our predictions for our QoIs, there are two kinds of uncertainties arising with

respect to the baseline PGM P we just built in Figure 16; we discuss them next.

A. Aleatoric Uncertainty for a given probabilistic model P : This type

of model uncertainty is also known as statistical uncertainty and simply stems
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from the probabilistic nature of random variables described by a known probability

distribution P . This type of UQ addresses questions of the following type: the QoI

is a random variable (hence unknown from a deterministic perspective), however

its’ probabilistic model is known. For example, consider the QoI y in the volcano

curve in Figure 15, given by

y|x0 := min(−∆G1(∆Gf
O∗),−∆G4(∆Gf

O∗)) = min(y1|x0, y2|x0) (4.11)

for each x0. Then, if we have a known baseline GBN model, see Section 4.1,

y1|x0 ∼ N (α1x0 + β1, σ
2
1) (4.12)

y2|x0 ∼ N (α2x0 + β2, σ
2
2) (4.13)

with some known constants αi, βi and σi, we obtain the probabilistic model P for

the QoI (4.11):

P : y|x0 ∼ min(N (α1x0 + β1, σ
2
1),N (α2x0 + β2, σ

2
2)) , (4.14)

which in turns provides the distribution of the QoI y for any fixed x0, see Figure

18(L). In other words, we do not know the exact value of y, but we know the

uncertainty it has with the baseline PGM P constructed in Figure 16; therefore we

can calculate the mean value of the QoI (blue curve in Figure 18 (L),

EP [y|x0] = µ1Φ(
µ2 − µ1

θ
) + µ2Φ(

µ1 − µ2

θ
)− θφ(

µ2 − µ1

θ
) (4.15)

where µ1 = α1x0 +β1, µ2 = α2x0 +β2, θ =
√
σ2

1 + σ2
2, and φ(·), Φ(·) are the pdf and

cdf of the standard normal distribution respectively. Similarly we may consider any

other statistics besides the mean, see also the full probability distribution function

of the QoI random variable y in Figure 18.

B. Model-form Uncertainty around a “baseline” model P : This type of

uncertainty quantification is also known as epistemic or systematic or structural

79



uncertainty. Typically it stems from limited data and/or knowledge (e.g. the

real model is too complex) available when building a baseline model P . Therefore

model-form uncertainty can be characterized by the existence of many (or infinitely

many!) alternative probabilistic models to P , see for instance Figure 17. In fact,

the model P we initially construct based on the available data/expert knowledge

is referred to as a “baseline” precisely because there many are alternative, possibly

more predictive models to P for the QoIs we are interested in.

In this case, besides the aleatoric uncertainty of the QoI considered previously,

model-form uncertainty is an additional uncertainty source for the probabilistic

model P itself, here given by the PGM in Figure 16 and the corresponding GBN

(4.4). For instance, in the example above, we consider the mean value of y (4.15)

as our QoI, see also the blue curve in Figure 18 (Left)). Then for each x0, (4.15) is

deterministic for a given PGM P . However, the baseline model P is not the exact

real model, i.e. there are “model-form uncertainties” around the baseline model P

itself due to lack of data and/or knowledge regarding the probability distribution

(see Figure 17). These additional uncertainties enter in a combined fashion from

multiple sources in the PGM model P , see Figure 15, and propagate eventually

to the QoI EP [y|x0]; we refer to Figure 18 (R) for an initial demonstration and

comparison to aleatoric uncertainties.

In this chapter, model form uncertainties are significant due to the limited

amount of data available to build the PGM (4.4) in Figure 16, see for instance

Figure 15. In fact, the second primary goal of this chapter–in addition to the

introduction of PGMs in chemistry models–is to model, quantify and rank the

impact of such model uncertainties, and provide predictive guarantees for the QoIs

80



Figure 17. Example of single-source model-form uncertainty emanating
from the CPD model (1.2) for the PGM node ωd0 (see Fig-
ure 16 and Table 3). The model-form uncertainty stems from
the different possible CPD models that can fit the depicted
sparse data (histogram). Specifically, the dark blue curve is
a Gaussian CPD and is part of the baseline model P for the
predictive uncertainty analysis in (4.26) and in Figure 22; the
red curve is a generalized extreme value (GEV) distribution
(also parametric), which fits the data better than the Gaus-
sian; the brown curve is a normal Kernel Density Estimator
(KDE) of the histogram (non-parametric model) which fits
the data better than both parametric models. Therefore the
KDE can reduce model misspecification and eventually pre-
dictive uncertainty of QoIs (see Section 4.4). Depicted sparse
data are due to the limited number of metals for catalysts
in the periodic table and a small number of quantum calcu-
lations we can afford to perform; thus, sparsity of available
data induces model-form uncertainty. This uncertainty from
the PGM node ωd0 propagates through the graph to the QoIs
x∗, r∗ in Figure 16. Finally, each node in Figure 16 provides
an additional source of model-form uncertainty. We rank the
impact of all such uncertainties on the QoI in Section 4.3.3.

in their presence. One such example of a QoI is x∗O in Figure 16, i.e.,

x∗O := argmax
x0

[min{EP [y1|x0] ,EP [y2|x0]}] (4.16)

see also Figure 19 for a demonstration. We discuss these points in full detail in the
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next Sections and provide all mathematical details in the Appendix B.

Figure 18. (L) Aleatoric Uncertainty: Contour plot of the probability
distribution of y = min(y1, y2) (where y1 : −∆G4, y2 : −∆G1)

as a function of x0 = ∆GfO∗, capturing the randomness of the
QoI y; the blue curve is the mean (expected) value E [y|x0]
for the ORR PGM P in Figure 16. (R) Model-form Uncer-
tainty: The predictive guarantees (dotted lines) for the QoI
EP [min(y1|x0, y2|x0)] if the alternative PGM model Q satisfies
R(Q||P ) ≤ 0.1 or ≤ 0.2. The definition and details on R(·||·)
and predictive guarantees will be presented in subsequent
Sections and the Appendices.

4.3 Model-form UQ & Sensitivity Analysis

The primary goal of this Section is using the concept of the model-form sensitiv-

ity index shown in Section 3.2 to quantify and rank the impact of model uncertain-

ties from each component of the PGM–the components described mathematically

by CPDs p(xl|xπl) in (1.1), (1.2)–to the QoIs f .

4.3.1 Model misspecification on ORR PGM

For PGMs such as (1.1) are special because they are built based on individ-

ual CPDs (1.2), therefore each CPD p(xl|xπl) needs to be associated with its’ own
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Figure 19. (L) Aleatoric Uncertainty: QoIs of the ORR model
shown in Figure 15, where the optimal oxygen bind-
ing energy x∗O is identified when the two reaction ener-
gies are equal by physical modeling: we set it to be
argminx0(EP [y1|x0] ,EP [y2|x0]); then the optimal reaction rate
r∗O is given by exp{max[min[y1, y2]]/(kBT )}×K. (R) Model-form
Uncertainty: The predictive guarantees for the average of
the QoI x∗O given by model P in Figure 15 are calculated in
terms of guaranteed confidence bounds Ji, see Section 4.3.2.
The predictive guarantees are depicted by the green dotted
lines around the baseline prediction corresponding to EP [x∗O]
calculated first on the Left panel. Note that not all QoIs are
impacted (but not all the same!) from model-form uncertain-
ties: compare blue, red and green confidence intervals in the
Right panel, as well as in Figure 23.

model misspecification parameter ηl: Figure 15 depicts the multiple model/data

uncertainties that enter during the building of the baseline model at each compo-

nent CPD of the PGM P . To this end, and in order to isolate and rank the impact

of each individual model misspecisfication ηl, we consider the domain of all PGMs

Dηll,P which are identical to the entire PGM P except at the l-th component CPD

and can be ηl away in KL from the baseline CPD p(xl|xπl), while maintaining the

same parents xπl :

Dηll,P =

 Q : R(Ql|πl ||Pl|πl) ≤ ηl for all xπlof model P ,

q(xj|xπj) ≡ p(xj|xπj) for all j 6= l

 . (4.17)
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As we discuss in Section 3.2.3, this is an infinite dimensional set containing all

possible models (non-parametric) which are ηl-“close” to P at the l-th component

CPD of the PGM in KL divergence. Furthermore, ηl will be either calculated as

the KL distance of the baseline model Pl from the available data, or ηl can take

arbitrary fixed values that correspond to model P perturbations associated with

sensitivity analysis; we will be discuss this latter point in Section 4.3.3.

4.3.2 Model-form sensitivity indices for ORR PGM

Here we quantify and rank the impact on the QoI f of model misspecisfication

ηl for each CPD. This is a form of non-parametric sensitivity analysis for PGMs

which will allow us to re-evaluate and improve our baseline models by comparing

the contributions of each CPD to the overall predictive uncertainty in Section 4.4.

Based on the definition of model-form sensitivity indices shown in Section 3.2.3,

i.e.,

I±(f(X), P ;Dηll,P ) := sup/inf
Q∈Dηll,P

EQ [f ]− EP [f ] , (4.18)

it captures the impact of model-form uncertainties entering in any baseline CPD

p(xl|xπl), e.g. see Figure 17, to the QoIs of interest, as uncertainty propagates

through the graph and the PGM; for instance, we refer to the QoIs f = x∗ or

f = r∗ in Figure 16. In addition, we can also consider the corresponding relative

bias

I+(f(X), P ;Dηll,P )

|EP [f ] |
, (4.19)

as a percentage relative to the baseline value of the QoI.

Moreover, based on Theorem 3.5 and Corollary 3.6, the indices I±(f(X), P ;Dηll,P )

can be computed exactly using a variational formula for the KL divergence for our

ORR example. In particular, we have

84



Theorem 4.1 Let P = N (µ, C) be the joint distribution of ORR PGM defined on

(4.1) with given x0 and QoI f(X) = yi. Then:

(a) The model-form sensitivity indices (4.18) for the node ωl with some ηl > 0 are

given by

I±(f(X), P ;Dηll,P ) = ±|β̃yi,ωl |
√

2σ2
l ηl , (4.20)

where σl is given in (4.7) and β̃yi,ωl is given in Table 7 in Appendix B.

(b) Furthermore, if we perturb each component with same η for any given parents,

i.e., ηj ≡ η for each j with any given Xπj = xπj , then we can rank all PGM

components by the relative magnitude of the sensitivity indices

I+(f(X), P ;Dηll,P )∑
j I

+(f(X), P ;Dηjj,P )
=
|β̃yi,ωl |

√
2σ2

l∑
j |β̃yi,ωj |

√
2σ2

j

(4.21)

(c) More generally, let P be any joint distribution (not necessarily a GBN) for ORR

PGM defined on (4.1). For f(X) = yi, the model-form sensitivity indices defined

in (4.18) for the node ωl with some ηl > 0 are given by

I+(f(X), P ;Dηll,P ) = inf
c>0

[1

c
log

∫
ecF̄lPl(dxl) +

ηl
c

]
(4.22)

where F̄l(X) = Fl(X)− EP [Fl(X)] = Fl(X)− EP [f(X)] and

Fl(x) =

∫
yi

∏
Xi∈{ωl}c

P (dxi|xπi) = β̃yi,0 + β̃yi,ωlωl . (4.23)

Remark [On the choice of a non-parametric setting]: The proposed UQ

tools in this Section are non-parametric in nature since our challenges can involve

uncertainty in the probabilistic model itself, as depicted in Figure 17 and for the

entire model in Figure 15. On the other hand, we need to also remark that the

proposed indices (4.18) and (3.86) can be too pessimistic when considering un-

certainty/sensitivity questions for models confined within a particular parametric
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family. Indeed, since the uncertainty and sensitivity indices proposed above are

based on KL divergence, they are inherently non-parametric and thus the resulting

family of distributions (4.17) allows for densities that may not be attainable within

a particular parametric family. For example, if we already know the probabilistic

models we need to consider lie exclusively within a fixed parametric family, e.g.

Gaussians such as (4.4), our non-parametric bounds (4.18) can be too wide since

the family (4.17) includes many other distributions outside the parametric family

at hand, namely Gaussians.

However for the physico-chemical problems considered here and due to the spar-

sity of available experimental and electronic-structure computational data–see for

instance Figure 17 and Figure 15–our resulting family of probabilistic models is

intrinsically non-parametric and is built as a “neighborhood” around a baseline

model P . For instance, here the baseline model P is selected to be a Gaussian fit

to the histogram of the CPD in Figure 17. Furthermore, many alternative densi-

ties to P are possible, e.g. given by various choices of kernel density estimators of

the histogram in Figure 17 or other parametric families. Therefore considering the

non-parametric family of models (4.17) and the resulting sensitivity index (4.18) is

a natural and in fact necessary choice.

4.3.3 Model misspecification parameter ηl and PGM components rank-

ing

The model misspecification parameters ηl are necessary in the calculation of the

model-form sensitivity indices (4.20), see also Figure 21. As we show in Section 3.3

they can be practically selected or estimated in at least two different ways:

1. First, ηl can be calculated as the KL distance of the CPD p(xl|xπl) in the
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baseline PGM P in (1.1) from the available data in the form of a histogram

or a KDE, see Figure 17 and Figure 15; we refer to Section 3.3 for full details.

The resulting estimated ηl values constitute surrogates for the distance of the

baseline model from the unknown “real” model.

2. Alternatively, ηl can take arbitrary fixed values that correspond to model

perturbations associated with local sensitivity analysis (small ηl’s) or global

sensitivity analysis (larger ηl’s). Both types of sensitivity analysis are con-

ducted in the same mathematical framework, therefore we have the flexibility

to explore combinations of small and large model perturbations at different

nodes of the PGM.

Once we have selected ηl values for the baseline PGM, the model-form sensitivity

indices defined in Section 4.3.2 are defined as the expected bias when we perturb

only one part of the model in the PGM within ηl > 0; therefore, they measure the

impact of uncertainty in one specific component in the PGM on the QoI f . We

use the model-form sensitivity indices to rank PGM components according to the

percentages of sensitivity indices,

I+(f(X), P ;Dηll,P )∑
j I

+(f(X), P ;Dηjj,P )
(4.24)

For any QoI f(X) = Xi, as discussed above, we consider the second perspective in

setting identical model misspecification values ηl in the indices I±(f(X), P ;Dηll,P )

in (4.24) similarly to parametric sensitivity analysis. Thus we perturb each part of

model, p(xl|xπl), by the same amount of model disspecification ηl in the sensitivity

indices (4.18). Then, the indices I±(f(X), P ;Dηll,P ) in (3.86) will yield a ranking of

the impact of each component on the model,

I+(f(X), P ;Dηll,P )∑
j I

+(f(X), P ;Dηjj,P )
=
|β̃il|

√
2σ2

l∑
j |β̃ij|

√
2σ2

j

. (4.25)
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Here σ2
j is the variance ofXj under the conditional probability distribution p(xj|xπj)

as we defined in (4.4), β̃ij depends on the linear Gaussian coefficients of X1, . . . , Xi,

which illustrate the linear dependency between Xi and Xj given the ancestors of

Xj, and β̃ij = 0 for j /∈ ρi. For more details we refer to Appendix B. We can

show that the ratio of indices will only depend on Gaussian coefficients and the

covariance matrix, while the value of ηl will not affect the result in this case. A

demonstration of the rankings (4.25) for the ORR PGM is shown in Figure 22(L).

We can also estimate ηl as the “distance” between data and our PGM P (1.1),

where data is represented by a histogram or a KDE approximation of the histogram,

or any given particular model Q from data or expert knowledge. In this case, ηl

may be different for different PGM components l and thus we have from (4.20):

I+(f(X), P ;Dηll,P )∑
j I

+(f(X), P ;Dηjj,P )
=

|β̃il|
√

2σ2
l ηl∑

j |β̃ij|
√

2σ2
j ηj

, (4.26)

We refer to Figure 22(R) for a demonstration, while more details and derivations

are included in Appendix B.

Figure 20. Schematic description of our proposed methodology: Predic-
tive uncertainties of the QoI for each component on PGM
(for the pie chart, see Figure 22) are calculated and are due
to model-form uncertainties; inputs to our methodology are
(sparse) DFT and experimental data and of course the base-
line model P from Figure 16.
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4.3.4 Model-form sensitivity indices for QoIs x∗O and r∗O in the ORR

PGM

Here we demonstrate the model-form sensitivity indices and ranking of PGM

components for our QoIs, namely the optimal oxygen binding energy ∆Gf
O∗ and

the optimal reaction rate, x∗O and r∗O in Figure 16. In this case,

I±(x∗O, P ;Dηll,P ) := sup/inf
Q∈Dηll,P

{argmax
x0

[min{EQ[y1|x0],EQ[y2|x0]}]−

argmax
x0

[min{EP [y1|x0],EP [y2|x0]}]} .(4.27)

Indeed, by solving the optimization problem for xO = x∗O, we have:

• if l = ei, di, si, ci (various types of errors which affect yi, see Table 3), i = 1, 2

I±(x∗O, P ;Dηll,P ) =
I±(yi, P ;Dηll,P )

βy1,x − βy2,x
=
±
√

2σ2
l ηl

βy1,x − βy2,x
. (4.28)

• if l = e0, d0, s0 (various types of errors which affect x, see Table 3)

I±(x∗O, P ;Dηll,P ) =

I±(y2, P ;Dηll,P )− I∓(y1, P ;Dηll,P )

βy1,x − βy2,x
=
±(|βy1,x|+ |βy2,x|)

√
2σ2

l ηl
βy1,x − βy2,x

.

(4.29)

Here σ2
l is the variance ofXl under the conditional probability distribution p(xl|xπl),

defined in (4.4), and βyi,x are the coefficients given by p(yi|x), see Section 4.1.4.

Similarly, we can compute the model-form sensitivity indices for r∗O.

Remark [Propagation/Non-Propagation of Uncertainties to the QoIs]:

We note the discrepancies in the propagation of model misspecification to the QoI

between different PGM components, as demonstrated in Figure 22. In particular,

in Figure 22(L) the same uncertainty (described by model misspecification ηl) is
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Figure 21. Predictive Uncertainty bounds Ji , i = 1, 2 for the QoI x∗O
(see Figure 19(R)) for model misspecification ηl in P (ωl): (a)

for l = e1, d1, s1, c1, J1 = I+(y1, P ;Dηll,P ) =
√

2σ2
l ηl; (b) for l =

e2, d2, s2, c2, J2 = I+(y2, P ;Dηll,P ) =
√

2σ2
l ηl; (c) for l = e0, d0, s0,

Ji = I+(yi, P ;Dηll,P ) = |βyi,x|
√

2σ2
l ηl, i = 1, 2.

Figure 22. Relative percentage sizes of predictive uncertainty of x∗O in
each ORR PGM mechanism in Figure 16 using (4.26). (L):
Here ηl has a fixed value for all l; the particular value does not
matter since it is canceled out by the ratio, see (4.25). (R): In
this case we select ηl = R(data||Pl) as a distance of each CPD
from the available data; for details and derivations we refer
to the Section 3.3. The analysis brings together knowledge
from data, physical models from different scales/mechanisms,
including mechanisms and data from different expert groups.

applied on all ORR PGM nodes, however not all propagate and affect the same the

QoI: see Figure 23 for examples of propagation (22%) and non-propagation (5%

and 0%) of model misspecification to the QoI.

90



Figure 23. Propagation vs. Non-propagation of model misspecification
of the PGM nodes ωd0 and ωe1 respectively, to the predictions
of the QoI x∗O; misspecification is set to η = 1 for both PGM
nodes. First, note that I+(y2, P ;Dηωe1) = 0 i.e., the model mis-
specification of ωe1 only affects the prediction of y1, but not
y2, see Figure 21; therefore the uncertainty of ωe1 only prop-
agates to x∗O through y1, while I+(y1, P ;Dηωe1) is small since ωe1
has a lower variance which is associated with more informa-
tive available data. Thus, it results in a small corresponding
uncertainty in x∗O. Meanwhile, the uncertainty of ωd0 propa-
gates to x∗O through both y1 and y2, (i.e., the model misspec-
ification of ωd0 affects both the predictions of y1 and y2), and
I+(yi, P ;Dηωd0) is larger since ωd0 has a higher variance (due to
insufficient informative data available). Therefore we have a
larger corresponding uncertainty in x∗O predictions, as shown
in the Figure.

4.4 Improving Models via Predictive Uncertainty Reduc-

tion: Model Complexity vs. Data Acquisition

Given the already constructed baseline model P (see Section 4.1) and the sparse

data set for each model component sampled from an unknown model Q (e.g. as

shown in Fig 14), we can build an improved baseline model P for our ORR model

through the procedure presented in Section 3.4 in Steps 1-3 below.
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Step 1: Find suitable data-based ηl’s:

ηl = max
xπl

R(Q(Xl|xπl)||p(xl|xπl))

where Q is the surrogate model given by KDE/histogram, using (3.94),(3.95).

Step 2: Calculate the model-form sensitivity indices (4.20):

I±(f(X), P ;Dηll,P ) for all PGM nodes l ,

for a given QoI f using (4.20).

Step 3: We target any l∗- component Xl∗ on the PGM; usually we select the

l’s with the highest I+(f(X), P ;Dηll,P ) values (we handle I−(f(X), P ;Dηl∗l∗ ) in a

similar fashion), see also Section 3.4. Then, we reduce I+(f(X), P ;Dηl∗l∗ ) based on

the result in (4.20), i.e., for f(X) = Xi we have that

I±(f(X), P ;Dηl∗l∗ ) = ±
√

2|βil∗ |
√
σ2
l∗
√
ηl∗ (4.30)

Two detailed methods of reducing I+(f(X), P ;Dηl∗l∗ ) are shown below, and we can

use either one (or both) of the methods, depending on which is easier to implement

first.

4.4.1 Identifying additional “high quality data” – variance reduction

Based on Steps 1-3 above as starting point, we develop the following strategy

for identifying and acquiring additional, useful data:

1. Using Steps 1-3 we target the l∗-components of the PGM with (some of) the

higher values of predictive uncertainty determined by I±(f(X), P ;Dηl∗l∗ ).

2. For the l∗ components of the PGM we seek the most useful additional data,

namely the data that reduce the predictive uncertainty (4.30), i.e. reduce the
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combination of the variance σ2
l∗ and the model misspecification ηl∗ , where the

latter is estimated from data Section 4.3.3.

In fact, this perspective relying on (4.30), identifies what is the right type of data

and how to prioritize our focus on data retrieval on the nodes of PGM (pick the

best l∗) as far as predictions for the QoI f are concerned. Specifically, we seek data

that lead to the reduction of the variance σ2
l∗ , while the model misspecification ηl∗

does not increase or the increment is much smaller than the reduction of σ2
l∗ . Notice

that in this case the model remains a Gaussian Network.

For the ORR PGM it turns out that we can add more data using DFT cal-

culations for Bimetallics to reduce the variance of the correlation errors ωci, σ
2
ci.

Then the predictive uncertainty of yi on ωci, J
±
ωci

(yi, P ; ηωci), is reduced according

to (4.30), while the model misspecification ηωci is also reduced in this case. Same

for the predictive uncertainty of QoI xO∗ , see (4.28). All results are collected in

Figure 24.

Figure 24. (L): DFT-computed data for reaction energies with respect
to different metals/oxygen binding energies. Here we also
include Bimetallics data in addition to the single metals in
Figure 14. (R): Reduction of predictive uncertainty (4.20) of
x∗O by reducing the model uncertainties of ωci where here we
set ηc1 = R(data||Pc1), see also Section 4.3.3.
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4.4.2 Improving the baseline model P – model misspecification reduc-

tion

Based on (4.30), an alternative route is to reduce the model misspecification

ηl∗ by picking a better model, P̃l∗ , than the baseline model Pl∗ ; the new model

should represents the (fixed) available data more accurately by using a kernel-

based method; in this case the new model is a “hybrid” Bayesian Network, i.e. it is

a mixture model of Gaussian and kernel-based networks. For example, if we replace

the linear, Gaussian model for ωc1 in Figure 16 with a linear, kernel-based model

as shown in Figure 25 (Left), we can reduce the predictive uncertainty by reducing

the model misspecification ηi.

Moreover, we can combine the approaches above to reduce the predictive un-

certainty, e.g., after adding more bimetallics data, we can further reduce the un-

certainty by replacing the corresponding component of the baseline model for ωc1

(Gaussian model) by normal kernel density estimator as shown in Figure 25. We

can compute the model-form sensitivity indices J±l for the updated hybrid model,

where Pl could be KDE or another distribution, using Theorem 3.5 and in particular

(4.22).
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Figure 25. (L): Baseline model (Gaussian) of ωc1 (red curve) and the up-
dated model (normal-kernel density estimation, blue curve)
and additional Bimetallics data from Figure 24. (R): Different
relative predictive uncertainties (4.19) when we: only perturb
the model of ωc1 by ηc1 = R(data||Pc1) when Pc1 is Gaussian
with the original single-metal data; or using a KDE with the
original data (updated model 1); or using a Gaussian with
the additional Bimetallics data (updated model 2); or using
both KDE and Bimetallics data (updated model 3).
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C H A P T E R 5

SENSITIVITY ANALYSIS FOR PARAMETRIC

PROBABILISTIC GRAPHICAL MODELS

In this chapter, we provide a new sensitivity analysis method for parametric

PGMs. In the cases where we are confident about the parametric family that

our model should follow, there is no need to consider the model-from uncertainty

and the uncertainty indices we introduced above may be too pessimistic (as they

are inherently non-parametric) when studying uncertainty/sensitivity questions for

models confined within a given parametric family; e.g. if we have confidence in the

“physics” involved, e.g. PGMs in medical diagnostics with binomial CPDs, since a

test can be only positive/negative, [76]. . Therefore, once the parametric structure

of the PGM is already established, we need a set of UQ and SA tools suitable for

parametric PGMs. Existing UQ and SA methods, such as gradient or ANOVA

methods, [122, 114, 31] are not clearly taking advantage of the graphical, causal

structure in PGMs. In this direction, we will explore SA methods for parametric

sensitivity analysis for PGM using Likelihood Ratio and Fisher Information Matrix,

and compare it with the model-form sensitivity indices we introduce above.
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5.1 Likelihood Ratio Method and Score Function

Considering a parametric distribution P θ embedded on a PGM which could be

written as

pθ(x) =
n∏
i=1

pθi(xi|xπi) (5.1)

where Xπi is the parents of node Xi, and θ = (θ1, . . . , θn) with θi are the parameters

of conditional distribution Pi|πi (θi can be a vector and may depend on Xπi), and

we assume they satisfy the following assumptions:

Assumption 1 For any l ∈ πi, we have l < i, i.e., Xπi ⊂ {X1, . . . , Xi−1} for all

i.

Assumption 2 for any i 6= j, θi are disjoint with θj, i.e. each conditional proba-

bility density, pθi(xi|xπi), is parameterized by a separate set of parameters that do

not overlap.

Note that these are general assumptions, we could always get Assumption 1 by

reordering (X1, . . . , Xn), and extend all the results for the models which have shared

parameters, i.e. do not satisfy Assumption 2 ([66] Theorem 7.5). Then for a

parametric PGM, we give the following definition:

Definition 5.1 For a parametric PGM, P θ, as defined in (5.1), we define the

score function of the PGM by

W θ(x) := ∇θ log pθ(x) = ∇θ

n∑
i=1

log pθi(xi|xπi) (5.2)

Furthermore, we have

W θ(x) = ∇θ

n∑
i=1

log pθi(xi|xπi)

= (∇θ1 log pθ1(x1|xπ1), . . . ,∇θn log pθn(xn|xπn))T

= (W θ1(x1), . . . ,W θn(xn))T (5.3)
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where

W θi(xi) = ∇θi log pθi(xi|xπi) (5.4)

is the score function of conditional distribution Pi|πi with CPD pθi(xi|xπi) in (5.1)

and given parents xπi for Xi [131]. And it satisfies

E
P
θi
i|πi

[
W θi(X)

]
= E

P
θi
iπi

[
∇θi log pθi(xi|xπi)

]
= E

P
θi
i|πi

[
∇θip

θi(xi|xπi)
pθi(xi|xπi)

]
=

∫
∇θip

θi(xi|xπi)dxi

= ∇θi

∫
pθi(xi|xπi)dxi = 0 (5.5)

Then for any QoI f(X) = f(X1, . . . , Xn), the gradient based sensitivity index

∇θEP θ [f(X)] can be represented using the score function:

∇θEP θ [f(X)] = ∇θ

∫
f(x)pθ(x)dx

=

∫
f(x)∇θp

θ(x)dx

=

∫
f(x)∇θ log pθ(x)pθ(x)dx

= EP θ
[
f(X)W θ(X)

]
= (EP θ

[
f(X)W θ1(X1)

]
, . . . ,EP θ

[
f(X)W θn(Xn)

]
)T (5.6)

and we call EP θ
[
f(X)W θ(X)

]
the Likelihood Ratio (LR) estimator for the gradient

based sensitivity index ∇θEP θ [f(X)] since it can be evaluated exactly with Monte

Carlo sampling [44, 5].

Moreover, for the special case that f(X) = f(Xl), for some 1 ≤ l ≤ n, we have

EP θ
[
f(Xl)W

θi(Xi)
]

= EP θπi

[
E
P
θi
i|πi

[
f(Xl)W

θi(Xi)
]]

= EP θπi

[
f(Xl)EP θi

i|πi

[
W θi(X)

]]
= 0 (5.7)
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for any i > l, where P θi
i|πi is the conditional probability with density function

pθi (xi|xπi , ) with given Xπi = xπi , P
θ
πi

is the marginal distribution of P θ for Xπi .

Therefore,

∇θEP θ [f(Xl)] = (EP θ1:l
[
f(Xl)W

θ1(X1)
]
, . . . ,EP θ1:l

[
f(Xl)W

θl(Xl)
]
, 0, . . . , 0)T

(5.8)

where P θ
1:l is the marginal distribution for (X1, . . . , Xl). More specifically, we have

EP θ
[
f(Xl)W

θi(Xi)
]

= 0 if Xi is not an ancestor of Xl.

We summarize all the results above in the following Theorem that allows to describe

local sensitivities of PGMs in terms of the score function of PGMs:

Theorem 5.2 (a) For any PGM p(x|θ) =
∏n

i=1 p
θi(xi|xπi) that satisfies Assump-

tion 1 and 2, and a given QoI f(X), the gradient based sensitivity index ∇θEP θ [f(X)]

can be estimated by the Likelihood Ratio (LR) estimator, i.e.

∇θEP θ [f(X)] = (EP θ
[
f(X)W θ1(X1)

]
, . . . ,EP θ

[
f(X)W θn(Xn)

]
)T (5.9)

(b) In the special case when f(X) = Xl for some 1 ≤ l ≤ n, we have

∇θEP θ [f(Xl)] = (EP θ1:l
[
f(Xl)W

θ1(X1)
]
, . . . ,EP θ1:l

[
f(Xl)W

θl(Xl)
]
, 0, . . . , 0)T

(5.10)

where P θ
1:l is the marginal distribution for (X1, . . . , Xl), i.e . EP θ

[
f(Xl)W

θi(Xi)
]

=

0 for all Xi not an ancestor of Xl, i /∈ ρl, where W is the score function defined in

(5.2) and (5.4).
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5.2 Fisher Information Matrices and Cramer-Rao Type Bounds

for PGMs

Definition 5.3 For a parametric PGM, P θ, as defined in (5.1), we define the

Fisher information matrix (FIM) of the PGM by

I(P θ) = EP θ
[
W θ(W θ)T

]
(5.11)

Furthermore, the FIM satisfies the property given by the following Lemma:

Lemma 5.1 For any PGM p(x|θ) =
∏n

i=1 p
θi(xi|xπi) that satisfies Assumption 2,

and the FIM of P θ defined in (5.11), we have

I(P θ) = diag(EP θπ1
[
I(P θ1

1|π1)
]
,EP θπ2

[
I(P θ2

2|π2)
]
, · · · ,EP θπn

[
I(P θn

n|πn)
]
) (5.12)

where I(P θi
i|πi) = EP θ

i|πi

[
W θi(W θi)T

]
is the FIM of pθi(xi|xπi) with given Xπi = xπi,

and P θ
πi

is the marginal distribution of P θ for Xπi.

Proof of Lemma 5.1: For the FIM of P θ, which defined by
∏n

k=1 p
θk(xk|xπk),

I(P θ) = EP θ
[
W θ(W θ)T

]
, we have

Iii(P θ) = EP θ

[
∇θi(

n∑
k=1

log pθk(xk|xπk))∇θi(
n∑
i=k

log pθk(xk|xπk))T
]

= EP θ
[
∇θi log pθi(xi|xπi)∇θi log pθi(xi|xπi)T

]
= EP θπi

[
E
P
θi
i|πi

[
∇θi log pθi(xi|xπi)∇θi log pθi(xi|xπj)T

]]
= EP θπi

[
I(P θi

i|πi)
]

(5.13)

where Iij(P θ) is a sub-matrix on I(P θ) that corresponding to θi, θj, I(P θi
i|πi) is the

FIM of pθi(xi|xπi) with fixed xπi , and for i 6= j, since EP θ
[
W θi

]
= 0, without loss
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of generality, assume i < j, we have

Iij(P θ)

= EP θ
[
∇θi log pθi(xi|xπi)∇θj log pθj(xj|xπj)T

]
= EP θ1:i−1

[
E
P
θi
i|πi

[
∇θi log pθi(xi|xπi)EP θi+1:j−1

[
EP θj |xπj

[
∇θj log pθj(xj|xπj)T

]]]]
= EP θ1:i−1

[
E
P
θi
i|πi

[
∇θi log pθi(xi|xπi)EP θi+1:j−1

[0]
]]

= 0 (5.14)

therefore

I(P θ) =



EP θπ1
[
I(P θ1

1|π1)
]

EP θπ2
[
I(P θ2

2|π2)
]

∅

∅ . . .

EP θπn
[
I(P θn

n|πn)
]


(5.15)

Example:

Figure 26. An example of simple Gaussian Bayesian Network with
its parameters and corresponding block-diagonal struc-
ture of FIM.

Especially, for some models with parameters differ by orders of magnitude, a rea-

sonable option for carrying out sensitivity analysis is to perform perturbations

which are proportional to the parameter magnitude. This can be carried out by

perturbing the logarithm of the model parameters instead of the parameters itself.
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Using the chain rule ∇log θf(θ) = ∇θf(θ) · ∇log θθ = θ · ∇θf(θ) where ‘·’ is defined

as the element by element multiplication, then we obtain the logarithmically-scaled

FIM:

Iii(P log θ) = θiIii(P θ)θTi (5.16)

Moreover, based on the FIM we defined on PGMs, we can have Cramer-Rao type

bounds for PGMs, and the results are concluded in the following Theorem:

Theorem 5.4 (a) For any PGM p(x|θ) =
∏n

i=1 p
θi(xi|xπi) with a given QoI f(X),

the gradient based sensitivity index ∇θEP θ [f ] satisfies

|vT∇θEP θ [f ] | ≤
√
V arP θ(f)

√
vTI(P θ)v (5.17)

where v ∈ Rn, and I(P θ) is the Fisher information matrix for the PGM, P θ, defined

in (5.11).

(b) If P θ satisfies the Assumption 1 and f(X) = f(Xl), then

|vT∇θEP θ [f(Xl)] | ≤
√
V arP θl (f)

√
vTI1:l(P θ)v (5.18)

where P θ
l is the marginal distribution of Xl and

I1:l(P
θ) =



EP θπ1
[
I(P θ1

1|π1)
]

∅
. . .

EP θπl
[
I(P θl

l|πl)
]

0

∅ . . .

0


(5.19)

The proof of Theorem 5.4 (a) is given in [29] (Theorem 2.13) and Theorem 5.4 (b)

is a direct derivation with Lemma 5.1.

102



5.3 Connection with The Model-form UQ Indices

If we consider the ambiguity set Q defined by

Q := {all PGMs Q : q(x) = p(x|θ + εv) with v ∈ Rk and ε ∈ R} (5.20)

where p(x|θ) is the density of a parametric PGM P θ as defined in (5.1), then in the

case that ε → 0, we have the following Theorem that recover FIM as the Hessian

of KL divergence R(P θ+v||P θ):

Theorem 5.5 (a) Let P θ be a parametric family of probability measures, where

θ ∈ Rk, and let v ∈ Rk, then

η = R(P θ+v||P θ) =
1

2
vTI(P θ)v +O(|v|3) (5.21)

where I(P θ) is the Fisher Information Matrix (FIM) given by

I(P θ) =

∫
∇θ log pθ(ω)(∇θ log pθ(ω))TP θ(dω) . (5.22)

(b) Therefore, we have

I±(f(X), P ;DR(P θ+εv ||P θ)) = ±
√
V arP (f)

√
vTI(P θ)v ε+O(|ε|3/2) (5.23)

The proof of Theorem 5.5 (a) is stated in [29] (Lemma 2.21), and Theorem 5.5 (b)

can be easily derived using the linearization form of our UQ index when η → 0+

which is proved in [29, 75], i.e.

Theorem 5.6 (Linearization of UQ indices) Let P be a probability measure

and let f(X) be such that its MGF is finite in a neighborhood of the original.

Considering any Q in the family of probability measures Dη = {Q : R(Q||P ) ≤ η},

then when η → 0+, the UQ indices defined as (3.84) or equivalently (3.3) satisfy

I±(f, P ; η) = ±
√

2V arP (f)η1/2 +
1

3

κ3(f)

V arP (f)
η +O(η3/2) (5.24)
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Remark: Based on Lemma 5.1, we can write all the eigenvalues and eigenvectors

of I(P θ) as λil and eil = (0, . . . , eTil , . . . , 0)T , where λil and eil are the corresponding

eigenvalue and eigenvector of Iii(P θ). Then by Theorem 5.5, we have

R(P θ+v||P θ) =
n∑
i=1

EP θπi
[
R(P θi+vi

i|πi ||P
θi
i|πi)
]

=
1

2
vTI(P θ)v +O(|v|3) (5.25)

thus, for vi = (0, . . . , vi, . . . , 0), we have

R(P θ+vi||P θ) = EP θπi
[
R(P θi+vi

i|πi ||P
θi
i|πi)
]

=
1

2
vTi Iii(P θ)vi +O(|vi|3)

= EP θπi

[
1

2
vTi I(P θi

i|πi)vi

]
+O(|vi|3) (5.26)

Especially, when vi = eil, an eigenvector of Iii(P θ) in (5.15), we have

R(P θ+eil||P θ) =
λij
2

(eil)T eil +O(|eil|3) (5.27)

and the eigenvetor with the largest eigenvalue is corresponded to the most influen-

tial direction/components for P θ.

5.4 Chest Clinic Example

Here we apply the sensitivity analysis methods proposed above to a parametric

PGM, which Lauritzen and Spiegelhalter proposed in [77] by fictitious qualitative

medical ’knowledge’:

”Shortness-of-breath (dyspnoea) may be due to tuberculosis, lung cancer or bron-

chitis, or none of them, or more than one of them. A recent visit to some geometric

region X may increase the chances of tuberculosis, while smoking is known to be

a risk factor for both lung cancer and bronchitis. The results of a single chest

X-ray do not discriminate between lung cancer and tuberculosis, as neither does
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Figure 27. Chest clinic example.

the presence or absence of dyspnoea.” From the causal network, we could get the

joint distribution of our model P , with density

p(ξ, ε, τ, λ, α, σ) = p(ξ|ε)p(ε|τ, λ)p(τ |α)p(α)p(λ|σ)p(σ)

where each random variable following a Bernoulli distribution given by the table

below, and assume for the node α ’visit region X?’, let p(a) = pα to stand for

Pr(α = a) with parameter pα, similarly, t stands for the presence of ’tuberculosis’

with parameters pτ1 , pτ0 , which are corresponded with the cases α = a and α =

ā; s, ’smoker’, with parameter pσ; 1, ’lung cancer’, with parameters pλ1 , pλ0 ; b,

’bronchitis’; e, ’lung cancer or bronchitis’; x, ’positive X-ray’; and d, ’dyspnoea’,

with parameters pξ1 , pξ0 .

Table 4. Conditional probability table given in [77]

α : pα = 0.01 σ : pσ = 0.5

τ : pτ0 = 0.01 λ : pλ0 = 0.01

pτ1 = 0.05 pλ1 = 0.1

ξ : pξ0 = 0.05

pξ1 = 0.98

Note that the CPDs of all the nodes are fixed to be Bernoulli distributed in nature,

therefore, we can do sensitivity analysis for the model by looking at the FIM for the
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parameters in P with normal and logarithmically scale, then by (5.13) and (5.16),

we can compute the results as shown in Figure 28.

Figure 28. normal/logarithmically-scaled FIM.

Moreover, if we are interested in f(X), which is define by

f =


1 if ξ = x

0 if ξ = x̄

(5.28)

then we have

EP [f(X)] =
∑

(ε,τ,λ,α,σ)

p(ξ = x|ε)p(ε|τ, λ)p(τ |α)p(α)p(λ|σ)p(σ) = 0.1103 (5.29)

VarP (f) = EP [f(X)] (1− EP [f(X)]) = 0.0981 (5.30)

and by (5.6), we could compute the LR estimators for the gradient based sensitivity

index ∇θEP θ [f ], which can be bounded by the Cramer-Rao type bounds based on

Theorem 5.4 as shown in Figure 29.

Similarly, we can also consider the logarithmically-scaled sensitivity index

∇log θEP θ [f ] = θ · ∇θEP θ [f ] as shown in Figure 30.
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Figure 29. Likelihood Ratio (LR) estimators (5.6) and Cramer-Rao
type bounds (5.18) for the gradient based sensitivity index
∇θEP θ [f ]. The results are consistent with our finding in
Theorem 5.4.

Figure 30. LR estimators and Cramer-Rao type bounds for the
logarithmically-scaled gradient based sensitivity index in
∇log θEP θ [f ] (where FIMlog is the logarithmically-scaled
FIM given by (5.16)).
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A P P E N D I X A

SUPPORTING INFORMATION FOR CHAPTER 1

A.1 Derivation of the Langmuir bimolecular adsorption model

By considering competitive adsorption of hydrogen and oxygen on a catalyst

surface in the form of (18), the net rates of adsorption can be obtained

rH2 = radsH2
− rdesH2

= kadsH2
PH2C

2
∗ − kdesH2

C2
H∗,

rO2 = radsO2
− rdesO2

= kadsO2
PO2C

2
∗ − kdesO2

C2
O∗,

(A1-1)

where

KH2 =
kadsH2

kdesH2

, KO2 =
kadsO2

kdesO2

, (A1-2)

and kads and kdes are the adsorption and desorption rate constants, rads and rdes

represent the adsorption and desorption rate, P is the partial pressure and the H

and O denote hydrogen and oxygen, respectively. The site balance gives

Ct = C∗ + CH∗ + CO∗ , (A1-3)

where Ct, C∗, CH∗ and CO∗ are the concentrations of total active sites, vacant sites

and occupied sites by hydrogen and oxygen, respectively [35]. For simplicity, the

chemical reaction between hydrogen and oxygen atoms is not accounted for here.
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By defining the hydrogen and oxygen coverages

θ̂H∗ =
CH∗

Ct
, θ̂O∗ =

CO∗

Ct
, (A1-4)

and considering the site balance of (A1-3), the set of governing ordinary differential

equations are formulated by

dθ̂H∗

dt
= kadsH∗ PH2

(1− θ̂H∗ − θ̂O∗)2 − kdesH2
θ̂2
H∗ , θ0

H∗ = θ̂H∗(0),

dθ̂O∗

dt
= kadsO2

PO2
(1− θ̂H∗ − θ̂O∗)2 − kdesO2

θ̂2
O∗ , θ0

O∗ = θ̂O∗(0),

(A1-5)

where θ0
H∗ and θ0

O∗ represent the initial hydrogen and oxygen coverages, respec-

tively.

Equilibrium hydrogen and oxygen coverages can be calculated as

θ̂H∗ =
(KH2PH2)

1
2

1 + (KH2PH2)
1
2 + (KO2PO2)

1
2

,

θ̂O∗ =
(KO2PO2)

1
2

1 + (KH2PH2)
1
2 + (KO2PO2)

1
2

,

(A1-6)

where the equilibrium constants can be described as follows,

KH2 = exp
(
− ∆GH2→2H∗

kBT

)
P−1
o ,

KO2 = exp
(
− ∆GO2→2O∗

kBT

)
P−1
o ,

(A1-7)

and kB = 1.38065 J/K is the Boltzmann constant, T is temperature at which

the adsorption occurs, and we set it to be 298.15 K in this chapter. ∆GH2→2H∗

and ∆GO2→2O∗ denote the hydrogen and oxygen Gibbs free energies of adsorption,

respectively. Po is the standard state pressure. In this system the standard state

pressure is taken to be the total pressure. The Gibbs free energies of adsorption

are

∆GH2→2H∗ = ∆HH2→2H∗ − T∆SH2→2H∗ ,

∆GO2→2O∗ = ∆HO2→2O∗ − T∆SO2→2O∗ ,

(A1-8)

109



where ∆HH2→2H∗ and ∆HO2→2O∗ denote enthalpies of adsorption, and ∆SH2→2H∗

and ∆SO2→2O∗ are the entropies of adsorption.

The enthalpy of adsorption can also be obtained as

∆HH2→2H∗ = 2HH∗ −HH2 − 2Eslab,

HO2→2O∗ = 2HO∗ −HO2 − 2Eslab,

(A1-9)

where HH2 and HO2 are the enthalpies of H2 and O2 in the gas phase, and HH∗ and

HO∗ denote the enthalpies of H∗ and O∗ metal-adsorbate complexes, respectively.

The energy of the metal slab (Eslab) is the same as its enthalpy as there are no

pressure-volume effects. The enthalpies of H∗ and O∗ on the surface in (A1-7) can

be computed by

HH∗ = EDFT
H∗ +

3∑
i=1

(
hνiH∗

2
+

hνiH∗

exp
(hνiH∗
kBT

)
− 1

)
,

HO∗ = EDFT
O∗ +

3∑
i=1

(
hνiO∗

2
+

hνiO∗

exp
(hνiO∗
kBT

)
− 1

)
,

.

(A1-10)

In above equation EDFT
H∗ and EDFT

O∗ denote the electronic energies of the hydrogen

and oxygen adsorbate-metal complex, as calculated by density functional theory

(DFT). For i = 1, . . . , 3 νiH∗ and νiO∗ represent the harmonic vibrational frequencies

of adsorbed species on Pt(111) in the hollow site and h = 6.626×10−34J.s is Planck’s

constant.

The enthalpies of the molecular gas species are calculated with the following
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thermodynamic equations

HH2 =
7

2
kBT + EDFT

H2
+

(
hνH2

2
+

hνH2

exp
(hνH2

kBT

)
− 1

)
,

HO2 =
7

2
kBT + EDFT

O2
+

(
hνO2

2
+

hνO2

exp
(hνO2

kBT

)
− 1

)
,

.

(A1-11)

where EDFT
H2

and EDFT
O2

are the DFT electronic energies, and νH2 and νO2 are the

respective diatomic fundamental frequencies.

The entropies of adsorption in (A1-8) can then be calculated by

∆SH2→2H∗ = ∆SvibH2→2H∗ −
7

2
kB − kB ln

[(2πmH2kBT

h2

) 3
2 kBT

P

]
−kB ln( T

2ΘR,H2
)− kB ln(ωe1,H2),

∆SO2→2O∗ = ∆SvibO2→2O∗ −
7

2
kB − kB ln

[(2πmO2kBT

h2

) 3
2 kBT

P

]
−kB ln( T

2ΘR,O2
)− kB ln(ωe1,O2),

(A1-12)

where m is the molecular mass, and ∆Svib is the change in vibrational contribution

to entropy. The rotational temperatures, denoted by ΘR, are 85.3K and and 2.07K

for H2 and O2 respectively [88]. The degeneracy of their first electronic energy

levels, denoted by ωe1, are 1 and 3.

Finally from (A1-8)-(A1-12) we conclude

∆GH2→2H∗ = ∆HDFT
H2→2H∗ + ∆Hvib

H2→2PtH −
7

2
kBT−

T

(
∆SvibH2→2PtH − kB ln

[(2πmH2kBT

h2

) 3
2 kBT

P

]
− 7

2
kB − kB ln

[
T

2ΘR,H2

])
,

∆GO2→2O∗ = ∆HDFT
O2→2O∗ + ∆Hvib

O2→2PtO −
7

2
kBT − T

(
∆SvibO2→2PtO−

kB ln

[(2πmO2kBT

h2

) 3
2 kBT

P

]
− 7

2
kB − kB ln

[
T

2ΘR,O2

]
− kB ln[3]

)
,

(A1-13)
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then by grouping terms into those that are involved in the scaling relations, ∆EH

and ∆EO, and those that are not a function of metal surface, we obtain

∆GH2→2H∗ = −2∆EH +

[
D0,H + ∆Gvib

H2→2PtH+

kBT

(
ln

[(2πmH2kBT

h2

) 3
2 kBT

P

]
+ ln

[
T

2ΘR,H2

])]
,

∆GO2→2O∗ = −2∆EO +

[
D0,O + ∆Gvib

O2→2PtO+

kBT

(
ln

[(2πmO2kBT

h2

) 3
2 kBT

P

]
+ ln

[
T

2ΘR,O2

]
+ ln[3]

)]
.

(A1-14)

In Equations (A1-13)-(A1-14) the vibrational contributions to ∆G are assumed to

be independent of the metal substrate. Frequencies calculated for atomic hydrogen

and oxygen on platinum are used in calculating vibrational contributions to Gibbs

Energy for all adsorbate-metal systems.

A.2 Derivations of the LSIs

The LSIs can be derived by direct differentiation of coverages with respect to

the electronic part of the binding energies using the chain rule and recognizing that

∆Ei = −1
2
(∆HDFT

i2→2i∗ +D0),

∂θ̂H∗

∂(∆EH)
=

∂θ̂H∗

∂KH2

∂KH2

∂(∆GH2→2H∗)

∂(∆GH2→2H∗)

∂(∆EH)
,

∂θ̂H∗

∂(∆EO)
=
∂θ̂H∗

∂KO2

∂KO2

∂(∆GO2→2O∗)

∂(∆GO2→2O∗)

∂(∆EO)
,

∂θ̂O∗

∂(∆EH)
=

∂θ̂O∗

∂KH2

∂KH2

∂(∆GH2→2H∗)

∂(∆GH2→2H∗)

∂(∆EH)
,

∂θ̂O∗

∂(∆EO)
=

∂θ̂O∗

∂KO2

∂KO2

∂(∆GO2→2O∗)

∂(∆GO2→2O∗)

∂(∆EO)
,

(A2-1)
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where

∂θ̂H∗

∂KH2

=
PH2

(
1 + (KO2PO2)

1
2

)
2(KH2PH2)

1
2

(
1 + (KH2PH2)

1
2 + (KO2PO2)

1
2

)2 ,

∂θ̂H∗

∂KO2

= − PO2(KH2PH2)
1
2

2(KO2PO2)
1
2

(
1 + (KH2PH2)

1
2 + (KO2PO2)

1
2

)2 ,

∂θ̂O∗

∂KH2

= − PH2(KO2PO2)
1
2

2(KH2PH2)
1
2

(
1 + (KH2PH2)

1
2 + (KO2PO2)

1
2

)2 ,

∂θ̂O∗

∂KO2

=
PO2

(
1 + (KH2PH2)

1
2

)
2(KO2PO2)

1
2

(
1 + (KH2PH2)

1
2 + (KO2PO2)

1
2

)2 ,

(A2-2)

and
∂KH2

∂(∆GH2→2H∗)
= − 1

RT
exp

(
− ∆GH2→2H∗

RT

)
,

∂KO2

∂(∆GO2→2O∗)
= − 1

RT
exp

(
− ∆GO2→2O∗

RT

)
,

(A2-3)

and

∂(∆GH2→2H∗)

∂(∆EH)
=
∂(∆GO2→2O∗)

∂(∆EO)
= −2. (A2-4)

Then the LSIs with respect to ∆EH are formulated accordingly

SHH (∆EH ,∆EO)

=
∂(ln θ̂H∗)

∂(∆EH)
=

1

θ̂H∗

∂θ̂H∗

∂KH2

∂KH2

∂(∆GH2→2H∗)

∂(∆GH2→2H∗)

∂(∆EH)

=
2

θ̂H∗

PH2

(
1 + (KO2PO2)

1
2

)
2(KH2PH2)

1
2

(
1 + (KH2PH2)

1
2 + (KO2PO2)

1
2

)2

1

kBTPo
exp

(
− ∆GH2→2H∗

kBT

)

=
1 + (PO2KO2)

1
2

kBT
(

1 + (KH2PH2)
1
2 + (KO2PO2)

1
2

)

=
P

1
2
o + P

1
2
O2

exp
(∆EO − CO2

kBT

)
kBT

(
P

1
2
o + P

1
2
H2

exp
(∆EH − CH2

kBT

)
+ P

1
2
O2

exp
(∆EO − CO2

kBT

)) (A2-5)
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SOH(∆EH ,∆EO)

=
∂(ln θ̂O∗)

∂(∆EH)
=

1

θ̂O∗

∂θ̂O∗

∂KH2

∂KH2

∂(∆GH2→2H∗)

∂(∆GH2→2H∗)

∂(∆EH)

= − 2

θ̂O∗

PH2(KO2PO2)
1
2

2(KH2PH2)
1
2

(
1 + (KH2PH2)

1
2 + (KO2PO2)

1
2

)2

1

kBTPo
exp

(
− ∆GH2→2H∗

kBT

)

= − (PH2KH2)
1
2

kBT
(

1 + (KH2PH2)
1
2 + (KO2PO2)

1
2

)

= −
P

1
2
H2

exp
(∆EH − CH2

kBT

)
kBT

(
Po + P

1
2
H2

exp
(∆EH − CH2

kBT

)
+ P

1
2
O2

exp
(∆EO − CO2

kBT

)) (A2-6)

where

CH2 =
1

2
∆GH2→2H∗ + ∆EH ,

CO2 =
1

2
∆GO2→2O∗ + ∆EO, (A2-7)

are both constants.

And the relevant LSIs with respect to ∆EO can also be computed similarly using

the following equations,

SHO =
∂(ln θ̂H∗)

∂(∆EO)
=

1

θ̂H∗

∂θ̂H∗

∂KO2

∂KO2

∂(∆GO2→2O∗)

∂(∆GO2→2O∗)

∂(∆EO)
,

SOO =
∂(ln θ̂O∗)

∂(∆EO)
=

1

θ̂O∗

∂θ̂O∗

∂KO2

∂KO2

∂(∆GO2→2O∗)

∂(∆GO2→2O∗)

∂(∆EO)
,

(A2-8)

For the CLSIs in the deterministic case, we have

∂(∆EO)

∂(∆EH)
=

1

∂(∆EH)

∂(∆EO)

= a,
(A2-9)

by the correlation of (24). Then the relevant CLSIs with respect to ∆EH can be
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obtained considering the parameter correlation in the chain rule,

SHH, corr(∆EH)

=

[
∂(ln θ̂H∗)

∂(∆EH)

]
corr

=
1

θ̂H∗

[
∂θ̂H∗

∂(∆EH)
+

∂θ̂H∗

∂(∆EO)

∂(∆EO)

∂(∆EH)

]

=
2

θ̂H∗

[PH2(KH2PH2)−
1
2

(
1 + (KO2PO2)

1
2

)
2
(

1 + (KH2PH2)
1
2 + (KO2PO2)

1
2

)2

1

kBTPo
exp

(
− ∆GH2→2H∗

kBT

)

−a PO2(KO2PO2)−
1
2 (KH2PH2)

1
2

2
(

1 + (KH2PH2)
1
2 + (KO2PO2)

1
2

)2

1

kBTPo
exp

(
− ∆GO2→2O∗

kBT

)]

=
1 + (PO2KO2)

1
2

kBT
(

1 + (KH2PH2)
1
2 + (KO2PO2)

1
2

) − a(PO2KO2)
1
2

kBT
(

1 + (KH2PH2)
1
2 + (KO2PO2)

1
2

)

=

1− a
kBT

P
1
2
O2
exp
(a∆EH + b− CO2

kBT

)
+

P
1
2
o

kBT(
P

1
2
o + P

1
2
H2

exp
(∆EH − CH2

kBT

)
+ P

1
2
O2

exp
(a∆EH + b− CO2

kBT

)) (A2-10)

SOH, corr(∆EH)

=

[
∂(ln θ̂O∗)

∂(∆EH)

]
corr

=
1

θ̂O∗

[
∂θ̂O∗

∂(∆EH)
+

∂θ̂O∗

∂(∆EO)

∂(∆EO)

∂(∆EH)

]
= − 2

θ̂O∗

[
PH2(KH2PH2)−

1
2 (KO2PO2)

1
2

2
(

1 + (KH2PH2)
1
2 + (KO2PO2)

1
2

)2

1

kBTPo
exp

(
− ∆GH2→2H∗

KBT

)

−a PO2(KO2PO2)−
1
2 (1 +KH2PH2)

1
2

2
(

1 + (KH2PH2)
1
2 + (KO2PO2)

1
2

)2

1

kBTPo
exp

(
− ∆GO2→2O∗

kBT

)]

= − (PH2KH2)
1
2

kBT
(

1 + (KH2PH2)
1
2 + (KO2PO2)

1
2

) +
a
(
1 + (PH2KH2)

1
2

)
kBT

(
1 + (KH2PH2)

1
2 + (KO2PO2)

1
2

)

=

a− 1

kBT
P

1
2
H2
exp
(∆EH − CH2

kBT

)
+
aP

1
2
o

KBT(
P

1
2
o + P

1
2
H2

exp
(∆EH − CH2

kBT

)
+ P

1
2
O2

exp
(a∆EH + b− CO2

kBT

)) (A2-11)

From (A2-10) and (A2-11), we can conclude that when ∆EH small, SHH, corr goes

to 1/(kBT ), SOH, corr goes to a/(kBT ), and when ∆EH large, SHH, corr goes to (1 −

a)/(kBT ), SOH, corr goes to 0. The plot of SHH, corr and SOH, corr, shown in Figure 31, is
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consistent with this result.

The CLSIs with respect to ∆EO can also be computed similarly using the following

Figure 31. Correlated LSI of SHH, corr and SOH, corr respected to ∆EH (eV )
in the deterministic case, according to (A2-10) and (A2-11).
When ∆EH is small, less than -2.1, SHH, corr goes to 1/(kBT ) =

38.9218, SOH, corr goes to a/(kBT ) = 97.7639, and when ∆EH is

large, greater than 2.8, SHH, corr goes to (1−a)/(kBT ) = −58.8421,

SOH, corr goes to 0. And for Pt, ∆EH = 2.6581(eV ), SHH, corr =

38.9021 and SOH, corr = 97.7442.

equations,

SHO, corr =

[
∂(ln θ̂H∗)

∂(∆EO)

]
corr

=
1

θ̂H∗

[
∂θ̂H∗

∂(∆EO)
+

∂θ̂H∗

∂(∆EH)

∂(∆EH)

∂(∆EO)

]
,

SOO, corr =

[
∂(ln θ̂O∗)

∂(∆EO)

]
corr

=
1

θ̂O∗

[
∂θ̂O∗

∂(∆EO)
+

∂θ̂O∗

∂(∆EH)

∂(∆EH)

∂(∆EO)

]
.

(A2-12)

A.3 Correlated parametric models

As we said in Section VII B, besides normal distribution, we can fit the data

or the adjusted data using some other parametric models to determine the distri-

bution of ω. In Table 5, we consider the data ω + 1 and give the fitting results
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of four different parametric distributions by MLE, we can see the Extreme Value

distribution is the best fit model according to the goodness of fit Log-likelihood

value, shown in Figure 32.

These results are given in MLE sense, we can also try Moment Matching Es-

Table 5. Fit results by different parametric models

Data set Model of fitting ∗ Log-likelihood value
ω + 1 Normal distribution -3.32336

Gamma distribution -5.02882
t Location-Scale distribution -2.76145
Extreme Value distribution -1.60086

Figure 32. Fits of ω + 1 using Normal, Gamma, t Location-Scale and
Extreme Value distributions, where Extreme Value distribu-
tion is the best approximation of them using the maximum
likelihood method.

timation method (MME) or other methods [15]. Moreover, following the steps in

Section VII B, we can compute the CLSIs for the corresponding parametric models.

The results are shown in Figure 33.
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Figure 33. The correlated LSI results, SHH, corr and SOH, corr, for different
parametric models, computed by (37) and (38). Although
the results of SHH, corr are almost the same for different mod-

els, the results of SOH, corr using uncertain models are much
smaller than the deterministic model. Moreover, we can find
the order of CLSI values is matched with the order of log-
likelihood values for parametric models.

A.4 Correlated non-parametric models

In Figure 34, we show the histogram and some kernel density estimators for

our data, ω, using different kernel or bandwidth. The Log-likelihood values of each

model are presented in Table 6. Comparing values in Table 5, we find all the Log-

likelihood values of non-parametric models to be much higher than the parametric

models because they capture the second mode of the data on the left, between -1

and -0.5, while the parametric ones do not. The normal kernel density distribution

with small bandwidth is the best fit of those three.

Table 6. Non-parametric models with different kernel or bandwidth

Kernel function bandwidth Log-likelihood value
uniform distribution 0.1 1.64177699
normal distribution 0.1 1.168341941
normal distribution 0.05 3.078962095
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Figure 34. Fit of ω using non-parametric distributions with different ker-
nels or bandwidth described in Table 6.

The results of SHH, corr and SOH, corr for Pt using histogram, uniform and normal kernel

density function with different bandwidths are shown in Figure 35.

Figure 35. The correlated LSI results, SHH, corr and SHO, corr, of Pt for differ-
ent non-parametric models, computed by (43) and (38). The
bandwidth of the histogram, uniform and normal1 is 0.1 and
the bandwidth of the normal2 is 0.05. As with the uncer-
tain parametric models, the results of SHH, corr are almost the

same for these different models, but the results of SOH, corr us-
ing uncertain non-parametric models are much smaller than
the deterministic model.
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A.5 Computational implementation

To compute the proposed CGSI of (13) we employ a standard Monte Carlo

sampling method. By applying this method we can bypass the direct integration

of (13) by sampling independent and identically distributed random vectors of

λ
(1)
1 , λ

(2)
1 , . . . , λ

(n)
1 from the PDF of p(λ1) where n denotes the sufficiently large

number of samples required for convergence.

Following such an approach requires two Monte Carlo sampling loops; (i) an

internal loop to calculate the integration of (11) and (ii) an external loop to compute

the CGSA index of (13). The algorithmic implementation of the proposed approach

can be summarized as follows:

1. Draw a sample for λ1 from the marginal probability distribution of

p(λ1) described in (10).

The required marginal distribution (uniform, normal, ...) is dictated by how

the parameter varies over its entire range. For many physico-chemical systems

a normal distribution may apply whose mean and standard deviation are

computed.

2. Draw many samples for λ2 from the conditional probability distri-

bution of p(λ2|λ1) for each λ1.

By sampling from such conditional probability distribution we account for

parameter correlation in GSI calculation.

3. Calculate lnF (λ1) from (11), then estimate the gradient ∇λ1 lnF (λ1)

using centered finite difference approximation considering a suffi-

ciently small perturbation ε [43],

∇λ1 lnF (λ1) ≈ lnF (λ1 + ε)− lnF (λ1 − ε)
2ε

(A5-1)
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all by Monte Carlo integration, and then compute |∇λ1 lnF (λ1)|q.

4. Repeat the previous steps until convergence of the estimator (13).

This step computes the CGSI.

We give an elementary example below to pin down the notation.

Example: By sampling λ1 from a normal marginal distribution with mean of

µλ1 and standard deviation of σλ1 ,

λ1 ∈ Λ1, Λ1 ∼ N (µΛ1 , σ
2
Λ1

), (A5-2)

with the PDF of

p(λ1) =
1

σΛ1

√
2π

e
−

(λ1 − µΛ1)
2

2σ2
Λ1 ,

we can draw samples directly from conditional distribution of p(λ2|λ1) by sampling

λ2 from a normal distribution

λ2 ∈ Λ2, Λ2 ∼ N (µ, σ2), (A5-3)

with the conditional PDF of p(λ2|λ1) for the given λ1

p(λ2|λ1) =
1

σ
√

2π
e
−

(λ2 − µ)2

2σ2 ,

where

µ = µΛ2 +
σΛ2

σΛ1

ρ(λ1 − µΛ1), σ2 = (1− ρ2)σ2
Λ2
, (A5-4)

and ρ is the correlation coefficient, and µΛ2 and σΛ2 are the mean and standard

deviation of the normal distribution of Λ2, respectively [40, 130].
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A P P E N D I X B

SUPPORTING INFORMATION FOR CHAPTER 2 & 3

B.1 Properties of Gaussian Bayesian Networks

Notations:

• X1:k: vector of random variables XX1:k = (X1, . . . , Xk), and

• x1:k: vector of values of the corresponding random variables X1:k.

• P (·), Q(·): probability measure for random variables X.

• p(·), q(·): denote the probability density function (PDF) corresponding to P ,

Q.

• µ1:k: mean vector of X1:k where we use the notations µ1:k = (µ1, . . . , µk).

• C1:k, C: C1:k is the covariance matrix of X = X1:k for any k ≤ n, and C = C1:n.

Furthermore, C1:k is also the sub matrix that consists of first k rows and k

columns of matrix C

In order to simplify the proofs and notations, we assume that for any l ∈ πi, we

have that l < i, i.e.,

Xπi ⊂ {X1, . . . , Xi−1} , for all i ≤ n .
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Note that this is a general assumption which can be satisfied by reordering (X1, . . . ,

Xn), see [66][Theorem 7.5]. The ORR PGM shown in Fig 16 automatically satisfies

this assumption. Then we can rewrite p(xi|xπi) as

p(xi|xπi) = p(xi|x1:i−1) = N (βi0 + βTi x1:i−1, σ
2
i ) , for i ≤ n , (B1-1)

with βi = (βi1, . . . , βi,i−1) and where βij = 0 if j /∈ πi. Given the parameters in

(4.4) for each Xi, we can compute the joint distribution for X iteratively by the

following:

Lemma B.1 For any Xi in the GBN (B1-1), X1:i = (X1, . . . , Xi) are jointly

Gaussian with distribution N (µ1:i, C1:i) where µ1:i, C1:i can be computed iteratively

through µ1:i−1, C1:i−1 by

µ1:i = (µ1:i−1, µi)
T (B1-2)

C1:i =



C1i

C1:i−1
...

Ci−1,i

C1i . . . Ci−1,i Cii


(B1-3)

where µi, Cii are the mean and variance of the marginal Gaussian distribution of

Xi, denoted by Pi, given iteratively by

µi = βi0 + βTi µ1:i−1 (B1-4)

Cii = σ2
i + βTi C1:i−1βi (B1-5)

and

Cji =
i−1∑
k=1

βikCjk for j = 1, . . . , i− 1,

where Cjk = Cov(Xj, Xk) = E [(Xj − µj)(Xk − µk)] are the elements in C1:i−1.

Finally, p(x1) follows N (µ1, C11) with µ1 = β10, C11 = σ2
1.
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Proof. This is a general result for multivariate Gaussian distribution, see [66]

Theorem 7.3. �

Conversely to Lemma 1, if we are given a joint distribution of a GBN, we can

readily obtain the conditional distribution of Xi given any X1:l for any l < i by the

following:

Lemma B.2 Consider the GBN (B1-1) with joint distribution p(x) = N (µ, C).

Then for any Xi,

p(xi|x1:l) = N (β̃i0 + β̃ix1:l, σ̃
2
i ) , for any l < i ,

where

β̃i0 = µi − Ci,1:lC−1
1:l µ1:l (B1-6)

β̃i = Ci,1:lC−1
1:l (B1-7)

σ̃2
i = Cii − Ci,1:lC−1

1:l C1:l,i (B1-8)

and Ci,1:l = CT1:l,i = (Ci1, . . . , Cil), Cii is the variance of Xi, C1:l is the covariance

matrix of X1:l. All these variances and covariances are included as sub matrices in

C. Note that β̃ij = βij if j ∈ πi and Xj is not an ancestor of other variables in Xπi;

β̃ij = 0 if Xj is not an ancestor of Xi.

Proof. Given that p(x) = N (µ, C), then by the properties of multivariate Gaussians,

[130], we know the density of marginal distribution for (X1, . . . , Xl, Xi), l < i, is

p(x1:l, xi) = N


µ1:l

µi

 ,

 C1:l C1:l,i

Ci,1:l Cii


 (B1-9)

where µ1:l = (µ1, . . . , µl)
T , C1:l is the sub matrix of C consisting of the first l rows

and columns; furthermore, Ci,1:l = CT1:l,i = (Ci1, . . . , Cil). Therefore, by the Gaussian
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properties of conditional distribution, [130], we have

p(xi|x1:l) := p(xi|x1, . . . , xl) = N (µi|1:l, Ci|1:l) (B1-10)

where

µi|1:l = µi + Ci,1:lC−1
1:l (x1:l − µ1:l) = µi − Ci,1:lC−1

1:l µ1:l + Ci,1:lC−1
1:l x1:l (B1-11)

and

Ci|1:l = Cii − Ci,1:lC−1
1:l C1:l,i (B1-12)

Thus, we obtain p(xi|x1:l) = N (β̃i0 + β̃ix1:l, σ̃
2
i ), where β̃i0 + β̃ix1:l = µi|1:l yields

(B1-6), (B1-7), and σ̃2
i = Ci|1:l yields (B1-8), for all i ≤ n. �

Therefore, for the ORR PGM, applying Lemma B.2, we can compute β̃yi,ωj in

p(yi|ωj, x0) for all j. Indeed, based on the model shown in Section 4.1.4 in Main

Text, for j = e1, d1, s1, c1 we have the following CPDs that model different errors

which affect y1 (see Table 3 and Figure 16 in Main Text), and

p(y1|ωj, x0)

=

∫
p(y1|x, ωe1, ωd1, ωs1, ωc1)p(x|ωe0, ωd0, ωs0, x0)

∏
all {ωk}\ωj

p(ωk)dωkdx

= N (β̃y1,0 + β̃y1,ωjωj, σ̃
2
y1

) = N (β̃y1,0 + ωj, σ̃
2
y1

) , (B1-13)

where

β̃y1,0 = βy1,0 + βy1,x(βe0,0 + βd0,0 + βs0,0) +
∑

ωk∈{ωe1,ωd1,ωs1,ωc1}\ωj

βk0 (B1-14)

σ̃2
y1

= β2
y1,x

(σ2
e0 + σ2

d0 + σ2
s0) +

∑
ωk∈{ωe1,ωd1,ωs1,ωc1}\ωj

σ2
k (B1-15)

and β̃y1,ωj = 1. We recall that all β values are already calculated from MLE, see

Table 2.
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Similarly for j = e2, d2, s2, c2, which only affect y2, see Table 3 in Main Text,

we have

p(y1|ωj, x0) = N (β̃y1,0 + β̃y1,ωjωj, σ̃
2
y1

) = N (β̃y1,0, σ̃
2
y1

) , (B1-16)

where

β̃y1,0 = βyi,0 + βy1,x(βe0,0 + βd0,0 + βs0,0) +
∑

ωk∈{ωe1,ωd1,ωs1,ωc1}

βk0 (B1-17)

σ̃2
y1

= β2
y1,x

(σ2
e0 + σ2

d0 + σ2
s0) +

∑
ωk∈{ωe1,ωd1,ωs1,ωc1}

σ2
k (B1-18)

and β̃y1,ωj = 0.

Finally, for j = e0, d0, s0 which affect x, see Table 3 in Main Text, we have

p(y1|ωj, x0) = N (β̃y1,0 + β̃y1,ωjωj, σ̃
2
y1

) = N (β̃y1,0 + βy1,ωjωj, σ̃
2
y1

) (B1-19)

where where

β̃y1,0 = βy1,0 + βy1,x(
∑

ωk∈{ωe0,ωd0,ωs0}\ωj

βk0) + βe1,0 + βd1,0 + βs1,0 + βc1,0 (B1-20)

σ̃2
y1

= β2
y1,x

(
∑

ωk∈{ωe0,ωd0,ωs0}\ωj

σ2
k) + σ2

e1 + σ2
d1 + σ2

s1 + ω2
c1 (B1-21)

and β̃y1,ωj = βy1,x. Similar constructions are carried out for the conditionals of y2.

We summarize all our results for β̃yi,ωj in the following table:

Table 7. Different β̃yi,ωj in p(yi|ωj, x0) = N (β̃yi,0 + β̃yi,ωjωj, σ̃
2
yi

)

ωj = ωe0, ωd0, ωs0 ωj = ωe1, ωd1, ωs1, ωc1 ωj = ωe2, ωd2, ωs2, ωc2
f = y1 β̃y1,ωj = βy1,x β̃y1,ωj = 1 β̃y1,ωj = 0

f = y2 β̃y2,ωj = βy2,x β̃y2,ωj = 0 β̃y2,ωj = 1

Remark: We recall that β’s were calculated in Table 2. The values of β̃yi,ωj ’s

have a physical meaning for the ORR PGM since they capture dependence via

the DAG structure: β̃yi,ωj = 0 implies ωj does not affect the prediction of yi, and

β̃yi,ωj = βy1,x shows how much the uncertainty of ωj propagates to yi through the

linear regression in Figure 14.
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B.2 Predictive Uncertainty Indices

B.2.1 Proof of Theorem 3.1

To prove the theorem, we first show two lemmas which are presented in [29, 50],

and we present the proof here for completeness.

Lemma B.3 Let P be a probability measure and let f(X) be such that its MGF is

finite in a neighborhood of the origin. Then for any Q with R(Q||P ) <∞, we have

− inf
c>0

[1

c
logEP

[
e−cf̄(X)

]
+
η

c

]
≤ EQ [f(X)]−EP [f(X)] ≤ inf

c>0

[1

c
logEP

[
ecf̄(X)

]
+
η

c

]
(B2-1)

Proof of Lemma B.3: For any general QoI f(X) which has finite moment generating

function (MGF), EP
[
e±cf̄(X)

]
:= EP

[
ec(f(X)−EP [f(X)])

]
, in a neighborhood of the

origin, there is a known fact in statistics and large deviation theory [27, 29] that

logEP
[
ef(X)

]
= sup

Q�P
{EQ [f(X)]−R(Q||P )} . (B2-2)

Changing f(X) to cf̄(X) = c(f(X)− EP [f(X)]), we get

EP
[
e±cf̄(X)

]
= sup

Q�P
{c(EQ [f(X)]− EP [f(X)])−R(Q||P )} (B2-3)

which gives us the following upper and lower bounds with c > 0,

− inf
c>0

[1

c
logEP

[
e−cf̄(X)

]
+
η

c

]
≤ EQ [f(X)]−EP [f(X)] ≤ inf

c>0

[1

c
logEP

[
ecf̄(X)

]
+
η

c

]
(B2-4)

where η = R(Q||P ).

Lemma B.4 Let P be a probability measure and f(X) to be a non-constant func-

tion such that its moment generating function EP
[
e±cf̄(X)

]
is finite in a neighbor-

hood of 0. Let Q be such that R(Q||P ) = η.
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(a) For any η ≥ 0 the optimization problems

± inf
c>0

[1

c
logEP

[
e±cf̄(X)

]
+
η

c

]
(B2-5)

have unique minimizers c± ∈ [0,+∞]. Moreover there exists 0 < η± ≤ ∞ such that

the minimizers c± = c±(η) are finite for η ≤ η± and c±(η) = +∞ if η > η±.

(b) If c± = c±(η) is finite

± inf
c>0

[1

c
logEP

[
e±cf̄(X)

]
+
η

c

]
= ±(EP±c± [f(X)]− EP [f(X)]) , (B2-6)

where P±c± is defined by

dP±c±

dP
=

e±c±f(x)

EP [e±c±f(X)]
(B2-7)

and c±(η) is strictly increasing in η and is determined by the equation

R(P±c±||P ) = η . (B2-8)

(c) If η± < ∞ then f(X) is necessarily P almost surely bounded above/bounded

below respectively with upper/lower bound f±. For η > η± we have that c±(η) = +∞

and

± inf
c>0

[1

c
logEP

[
e±cf̄(X)

]
+
η

c

]
= ±(f±(X)− EP [f(X)]) . (B2-9)

Proof of the Lemma B.4: For notational ease, in the proof, let us set H(c) =

logEP
[
e±cf̄(X)

]
and note that since f̄ is centered we have H(0) = H ′(0) = 0. We

have H ′(c) = EP c [f ] − EP [f(X)] and H ′′(c) = VarP c(f) > 0 since f(X) is not

constant P almost surely.

If d+ < ∞ then we have limc→d+ H(c) = ∞ and limc→d+ H
′(c) = ∞. If d+ = ∞

then

lim
c→∞

H ′(c) =

 f+ − EP [f(X)] if f is bounded

+∞ otherwise
. (B2-10)
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Since c−1H(c) = c−1
∫ c

0
H ′(t)dt and H ′(c) is strictly increasing c−1H(c) is a strictly

increasing function and we have limc→∞ c
−1H(c) = limc→∞H

′(c) which is finite if

only if f(X) is bounded. Let us set

B(c; η) =
EP
[
e±cf̄(X)

]
+ η

c
=
H(c) + η

c

and then distinguish two cases:

(a) If d+ ≤ ∞ or if d+ =∞ and f(X) is unbounded then we have limc→0B(c; η) =

limc→d+ B(c; η) = +∞ and thus B(c; η) has at least one minimum for some 0 <

c < d+. By calculus the minimum must be a solution of

0 =
∂

∂c
B(c; η) =

cH ′(c)−H(c)− η
c2

that is me must have cH ′(c)−H(c) = η. Since ∂
∂c

(cH ′(c)−H(c)) = cH ′′(c) > 0 the

function cH ′(c) −H(c) is strictly increasing and thus there is a unique minimizer

c+ for B(c; η).

(b) If d+ = ∞ but f(X) is bounded, since cH ′(c) −H(c) is strictly increasing we

have limc→∞ cH
′(c) − H(c) = M+ which may or may not be finite depending on

P . If η ≤ η+ we can proceed as in (a) to find a unique minimizer for a finite c+,

while if η > Mη+, B(c; η) is strictly decreasing and thus the minimizer is attained

at c+ =∞.

To conclude the proof we note that if c+ <∞ then c+H
′(c+)−H(c+) = η and thus

B(c+, η) = H ′(c+)

which proves (B2-6). On the other hand a simple computation shows that for any

c

R(P c||P ) = cH ′(c)−H(c)
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and this establishes (B2-8). Finally if c+ =∞ the infimum is equal to limc→∞
H(c)
c

and this establishes (B2-9).

The proof of Theorem 3.1 follows immediately from the two lemmas, since by

Lemma B.3,

sup/inf
Q∈Dη

EQ [f(X)]− EP [f(X)]

is bounded by

± inf
c>0

[1

c
logEP

[
e±cf̄(X)

]
+
η

c

]
then by Lemma B.4, we can find Q± ∈ Dη which achieves the equality of the bounds

by setting Q± := P±c± defined by

dP±c±

dP
=

e±c±f(x)

EP [e±c±f(X)]
(B2-11)

where c± is determined by the equation

R(P±c±||P ) = η (B2-12)

B.3 Model-Form Sensitivity Indices for PGMs

B.3.1 Proof of Theorem 3.4 & 3.5

Proof of Theorem 3.4: Step 1: Bounds for the predictive uncertainty: Since

for any Q ∈ Dηll , we have πQj ≡ πPj = πj and Qj|πj ≡ Pj|πj for all j 6= l, therefore,
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we can rewrite the bias as

EQ [f(Xk)]− EP [f(Xk)]

=

∫
X

f(xk)
n∏
i=1

Q(dxi|xπQi )−
∫
X

f(xk)
n∏
i=1

P (dxi|xπPi )

=

∫
X

f(xk)
∏

Xi∈{Xk∪ρQk )}

Q(dxi|xπQi )−
∫
X

f(xk)
∏

Xi∈{ρPk ∪{k})}

P (dxi|xπPi )

= EQ{k} [f(Xk)]− EP{k} [f(Xk)] (B3-1)

If l /∈ ρPk ∪ {k}, we have πQi ≡ πPi =: πi and Q(dxi|xπi) ≡ P (dxi|xπi) for all

i ∈ ρk ∪ {k}, therefore Q{k} ≡ P{k}, and thus EQ [f(Xk)]− EP [f(Xk)] = 0. Based

on this calculation for Q ∈ Dηll , notice that our indices capture the graph structure

correctly, e.g. perturbations on disconnected nodes do not affect the QoI f =

f(Xk).

On the other hand, for l ∈ ρPk ∪ {k}, consider πl := πQl ∪ πPl , and ρi := ρQi ∪ ρPi for

all i, and define

Q(dxl|xπl) := Q(dxl|xπQl ) for all xπl (B3-2)

P (dxl|xπl) := P (dxl|xπPl ) for all xπl (B3-3)
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Since Q(dxj|xπj) ≡ P (dxj|xπj) for all j 6= l, we have

EQ [f(Xk)]− EP [f(Xk)]

=

∫
X

f(xk)
∏

i∈ρk∪{k}\ρl∪{l}

Q(dxi|xQπi) ·Q(dxl|xQπl) ·
∏
i∈ρl

Q(dxi|xQπi)

−
∫
X

f(xk)
∏

i∈ρk∪{k}\ρl∪{l}

P (dxi|xPπi) · P (dxl|xPπl) ·
∏
i∈ρl

P (dxi|xPπi)

=

∫
X

f(xk)
∏

i∈ρk∪{k}\ρl∪{l}

P (dxi|xπi) ·Q(dxl|xπl) ·
∏
i∈ρl

P (dxi|xπi)

−
∫
X

f(xk)
∏

i∈ρk∪{k}\ρl∪{l}

P (dxi|xπi) · P (dxl|xπl) ·
∏
i∈ρl

P (dxi|xπi)

=

∫ [∫
F (xl, xρl)Q(dxl|xπl)−

∫
F (xl, xρl)P (dxl|xπl)

]∏
i∈ρl

P (dxi|xπi)

= EPρl
[
EQl|πl [F (Xl, Xρl)]− EPl|πl [F (Xl, Xρl)]

]
(B3-4)

where

F (xl, xρl) =

∫
f(xk)

∏
i∈ρk∪{k}\ρl∪{l}

P (dxi|xπi) = EP{k}|ρP
l
∪{l}

[f(Xk)] (B3-5)

therefore

sup
Q∈Dηll

EPρl
[
EQl|πl [F (Xl, Xρl)]− EPl|πl [F (Xl, Xρl)]

]
≤ EPρl

[
sup
Q∈Dηll

EQl|πl [F (Xl, Xρl)]− EPl|πl [F (Xl, Xρl)]

]

= EPρl

[
sup
Ql∈E

ηl
l

EQl|πl [F (Xl, Xρl)]− EPl|πl [F (Xl, Xρl)]

]
(B3-6)

where we define the ambiguity set for CPDs at l, namely

Eηll := {all CPD Ql|πl = Ql(·|xπl) : R(Ql|πl ||Pl|πl) ≤ ηl for all xπl = xPπl ∪ x
Q
πl
}

(B3-7)
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Using Lemma B.3, for any given Xρl = xρl , we have

sup
Ql∈E

ηl
l

EQl|πl [F (Xl, Xρl)]− EPl|πl [F (Xl, Xρl)] ≤ inf
c>0

[1

c
logEPl|πl

[
ecF̄ (Xl,Xρl )

]
+
ηl
c

]
(B3-8)

thus (B3-6) implies

sup
Q∈Dηll

EQ [f(Xk)]− EP [f(Xk)] ≤ EPρl

[
inf
c>0

[1

c
logEPl|πl

[
ecF̄ (Xl,Xρl )

]
+
ηl
c

]]
(B3-9)

Step 2: Tightness of the bounds: As in Theorem 3.2, for any given xρPl , we

can consider the conditional measure P
c+
l|ρPl

defined by

dP
c+
l|ρPl

dPl|πPl
=

e
c+(x

ρP
l

)F (xl,xρP
l

)

EP
l|πP
l

[
e
c+(x

ρP
l

)F (Xl,xρP
l

)
] (B3-10)

where c+(xρPl ) is a function of xρPl which is determined by R(P
c+
l|πPl
||Pl|πPl ) = ηl, i.e.,

∫
c+(xρPl )F (xl, xρPl )

e
c+(x

ρP
l

)F (xl,xρP
l

)

EP
l|πP
l

[
e
c+(x

ρP
l

)F (Xl,xρP
l

)
]P (dxl|xπPl )− logEP

l|πP
l

[
e
c+(x

ρP
l

)F (Xl,xρP
l

)
]

= ηl

(B3-11)

for any xρPl . Using Lemma B.4, define

q+
l (xl|xπQ+

l

) := P
c+
l|ρPl
∝ e

c+(x
ρP
l

)F (xl,xρP
l

)
p(xl|xπPl ) for all x

πQ
+

l

. (B3-12)

Note that πQ
+

l depends on πPl and F (xl, xρPl ), hence πPl ⊂ πQ
+

l ⊂ ρPl , and ρQ
+

l = ρPl .

Therefore, using the same notation as in Step 1, for πl = πQ
+

l , ρl = ρQ
+

l , we have

EQ+
l|πl

[F (Xl, Xρl)]− EPl|πl [F (Xl, Xρl)] = inf
c>0

[1

c
logEPl|πl

[
F̄ (Xl, Xρl)

]
+
ηl
c

]
.

(B3-13)

Furthermore,

R(Q+
l|πl ||Pl|πl) ≤ ηl for all xπl implies that Q+

l ∈ E
ηl
l . (B3-14)

Thus, let q+(x) = q+
l (xl|xπl)

∏
i 6=l p(xi|xπi), we have Q+ ∈ Dηll , and

EQ+ [f(Xk)]− EP [f(Xk)] = EPρl

[
inf
c>0

[1

c
logEPl|πl

[
ecF̄ (Xl,Xρl )

]
+
ηl
c

]]
(B3-15)
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so we can conclude that

sup
Q∈Dηll

EQ [f(Xk)]−EP [f(Xk)] = EPρl

[
inf
c>0

[1

c
logEPl|πl

[
ecF̄ (Xl,Xρl )

]
+
ηl
c

]]
(B3-16)

The calculations are similar for inf
Q∈Dηll

EQ [f(Xk)]− EP [f(Xk)]. �

Proof of Theorem 3.5: Step 1: Bounds for the predictive uncertainty: The

proof is the same as the proof in Theorem 3.4, noting that Dηll,P ⊂ D
ηl
l . Therefore,

we have

sup
Q∈Dηll,P

EQ [f(Xk)]− EP [f(Xk)] ≤ EPρl

[
inf
c>0

[1

c
logEPl|πl

[
ecF̄ (Xl,Xρl )

]
+
ηl
c

]]
(B3-17)

Step 2: Tightness of the bounds: If F (xl, xρl) = F (xl, xπl), it is the same as

the proof in Theorem 3.4 (b). Indeed, let

q+
l (xl|xπQl ) := P

c+
l|ρl ∝ ec+(xπl )F (xl,xπl )p(xl|xπl) for all xπQl

. (B3-18)

where c+ only depends on xπl since F only depends on xl and xπl , and we have

πQl = πl, therefore, Q+
l ∈ Q

ηl
l,P , and let q+(x) = q+

l (xl|xπl)
∏

i 6=l p(xi|xπi), we have

Q+ ∈ Dηll,P , and

EQ+ [f(Xk)]− EP [f(Xk)] = EPρl

[
inf
c>0

[1

c
logEPl|πl

[
ecF̄ (Xl,Xρl )

]
+
ηl
c

]]
. (B3-19)

Therefore we can conclude that

sup
Q∈Dηll,P

EQ [f(Xk)]− EP [f(Xk)] = EPρl

[
inf
c>0

[1

c
logEPl|πl

[
ecF̄ (Xl,Xρl )

]
+
ηl
c

]]
(B3-20)

same for inf
Q∈Dηll,P

EQ [f(Xk)]− EP [f(Xk)]. �

B.3.2 Proof of Theorem 4.1

Note that this theorem can be directly derive from Theorem 3.5 with the com-

putation (B3-36), but here we still give a complete proof.

134



Proof: First, we proved parts (a) & (c) of the Theorem:

Step 1: Bounds for I±: We first consider (4.18) for any general QoI f = f(X)

which has finite moment generating function (MGF), EP
[
ecf̄
]

in a neighborhood

of the origin. Then, for Q ∈ Dηll,P , and since by definition Qj ≡ Pj for all j 6= l for

Q ∈ Dηll,P , we have:

I±(f(X), P ;Dηll,P ) = sup/inf
Q∈Dηll,P

EQ [f ]− EP [f ]

= sup/inf
Q∈Dηll,P

EQρl
[
EQl

[
EQ{l∪ρl}c [f ]

]]
− EPρl

[
EPl
[
EP{l∪ρl}c [f ]

]]
= sup/inf

Q∈Dηll,P

EPρl
[
EQl|πl [Fl]

]
− EPρl

[
EPl|πl [Fl]

]
(B3-21)

where

Fl(x) = Fl(xl, xρl) = EP{l∪ρl}c [f ] = EP [f |Xl = xl, Xρl = xρl ] . (B3-22)

We use the notation ρl to denote the set of indices of ancestors for Xl, xρl are

the corresponded values for these random variables Xρl , and Pρl is the marginal

distribution of Xρl with respect to P ; similarly we define Qρl . Finally, we use the

notation {·}c to denote all the indices of random variables on the PGM except the

ones inside the curly bracket {·}. Thus,

I±(f(X), P ;Dηll,P ) = sup/inf
Q∈Dηll,P

EPρl
[
EQl|πl [Fl]− EPl|πl [Fl]

]
. (B3-23)

Now let Eηll be defined as

Eηll := {Ql|πl = Ql(·|xπl) : R(Ql|πl ||Pl|πl) ≤ ηl for all xπl} (B3-24)

which contains all alternative modelsQl with density ql(·|xπl) for the l-th component

Pl|πl of the PGM (1.1) within KL tolerance ηl and with same structure, i.e. the

135



same parents πl. Considering the maximization of the first term in (B3-23), since

the second term is independent of Ql), we have

sup
Ql∈E

ηl
l

EPρl
[
EQl|πl [Fl]

]
≤ EPρl

[
sup
Ql∈E

ηl
l

EQl|πl [Fl]

]
. (B3-25)

Therefore,

I+(f(X), P ;Dηll,P ) ≤ EP

[
sup/inf
Ql∈E

ηl
l

EQl|πl [Fl]− EPl|πl [Fl]

]
. (B3-26)

By applying Theoremn 3.1 to the right hand side of (B3-26), we have for any

Ql ∈ Eηll ,

EQl|πl [Fl]− EPl|πl [Fl] ≤ inf
c>0

[1

c
log

∫
ecF̄l(x)P (dxl|xπl) +

ηl
c

]
, (B3-27)

hence,

I+(f(X), P ;Dηll,P ) ≤ EP
[
inf
c>0

[1

c
log

∫
ecF̄l(x)P (dxl|xπl) +

ηl
c

]]
, (B3-28)

where F̄l(X) = Fl(X)− EP [Fl(X)] = Fl(X)− EP [f(X)].

We note that for our ORR PGM, and due to the results shown in Table 7 and since

ρωl = ∅ (see Figure 15), we have for f(X) = yi,

Fl(x) =

∫
yi

∏
Xi∈{ωl}c

P (dxi|xπi) = β̃yi,0 + β̃yi,ωlωl (B3-29)

and

I+(f(X), P ;Dηll,P ) = max
Ql∈E

ηl
l

EQl [Fl]− EPl [Fl] (B3-30)

where Pl is the distribution of ωl in (4.7), and

Eηll := {Ql = Ql(·) : R(Ql(·)||Pl(·)) ≤ ηl} . (B3-31)

Step 2: Tightness of the bounds: Consider the probability measure P
c+
l defined

as the tilted measure with respect to Pl:

dP
c+
l

dPl
=

ec+Fl

EPl [ec+Fl ]
, (B3-32)
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where c+ is selected as the solution of R(P
c+
l ||Pl) = ηl and σl is given in (4.7).

Then, we have

EP c+l [Fl]− EPl [Fl] =
1

c+

log

∫
ec+F̄lPl(dx) +

R(P
c+
l ||Pl)
c+

(B3-33)

where

F̄l(x) = Fl(x)− EP [Fl(x)] = β̃yi,ωl(xl − βl0) for ωl = xl , (B3-34)

and βl0 is the mean of ωl, given in (4.7). Thus, letting Q+ = P
c+
l and since Fl only

depends on xl we obtain that Q+ has the same parents as Pl. Therefore, Q+ ∈ Eηll ,

and allows us to reach equality in (B3-26). We can now conclude that

I+(f(X), P ;Dηll,P ) = inf
c>0

[1

c
log

∫
ecF̄lPl(dxl) +

ηl
c

]
(B3-35)

We carry out the same proof for I−(f(X), P ;Dηll,P ).

Step 3: Computation of the bounds: For P = N (µ, C), we have

I±(f(X), P ;Dηll,P ) = ± inf
c>0

[1

c
log

∫
e±cF̄l(xl)Pl(dxl) +

ηl
c

]
= ± inf

c>0

[1

c
log

∫
e±c(β̃yi,ωl (xl−βl0))Pl(dxl) +

ηl
c

]
= ± inf

c>0

[1

c
log e±cβ̃yi,ωl (βl0−βl0)+ 1

2
β̃2
yi,ωl

σ2
l c

2

+
ηl
c

]
= ± inf

c>0

[1

2
β̃2
yi,ωl

σ2
l c+

ηl
c

]
= ±|β̃yi,ωl |

√
2σ2

l ηl (B3-36)

(b) The result follows immediately from (a). �

Remark: In our case, for the ORR PGM constructed in Section 4.1.4 in Main

Text, the optimizing probabilities Q± for I±(f(X), P ;Dηll,P ), are given by

Q±(ωl) ∼ N (βl0 ±
√

2σ2
l ηl, σ

2
l ) . (B3-37)
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Remark: Theorem 4.1 is a special case of a more general Theorem (Theorem 3.5),

which shows that model-form sensitivity indices (4.18) are computable under some

constraints on the graph of the PGM, here we show the result only for our specific

ORR PGM example.

B.4 Complexity of the Model-Form Indices

Here we discuss briefly the complexity of the proposed model-form indices. Note

that we focus on the complexity with respect to the structure of PGMs, and ignore

the complexity of computing the expectation [66]. For the model misspecification

between two PGMs, i.e. η = R(Q||P ), by (3.49), we have

R(Q||P ) =
n∑
i=1

Eπi
[
R(Qi|πi ||Pi|πi)

]
=

n∑
i=1

∫ ∫
log

Q(dxi|xπi)
P (dxi|xπi)

Q(dxi|xπi)
∏
k∈ρi

Q(dxk|xπk) (B3-38)

therefore, the complexity of the calculation of η depends on the complexity of the

model misspecification on each component, i.e., ηi = Eπi
[
R(Qi|πi ||Pi|πi)

]
. First,

we note that if we have an explicit formula for ηl, which has complexity O(1) (see

the GBN example below (B3-47)), then the complexity of η is O(n). In general, if

we know the density functions of P and Q, we can compute/estimate ηi by Monte

Carlo method with samples or given data set S, i.e.,

ηi ≈
1

|S|
∑

(xρi ,xi)∈S

log
q(xi|xπi)
p(xi|xπi)

q(xi|xπi)
∏
k∈ρi

q(xk|xπk) (B3-39)

which has complexity O(|ρi|) (|ρi| is the number of indices in set ρi), so in all, the

complexity of η is O(
∑n

i=1 |ρi|). Moreover, with given baseline model P , we can

also estimate the model misspecification η between the unknown exact/real model
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Q∗ and P (as shown in previous subsection) by the given data [105], e.g. if πi = ∅,

considering the empirical distribution

Qi(x) =
1

|S|
∑
xi∈S

U(x− xi) (B3-40)

where U(x) is the unit-step function with U(0) = 0.5, we can estimate ηi by

ηi =
1

m

m∑
k=1

log
(Qi(xi,k)−Qi(xi,k−1))/(xi,k − xi,k−1)

p(xi)
(B3-41)

where {xi,k}mk=1 is the samples of Xi sorted in increasing order.

Then for the model-form UQ indices defined in (3.84),

I±(f(Xk), P ;Dη) = ± inf
c>0

[1

c
logEP{k}

[
e±cf̄(Xk)

]
+
η

c

]
(B3-42)

the complexity of the calculation of the indices (with given η) depends on the

complexity of the moment generating function (MGF) EP{k}
[
e±cf̄(Xk)

]
. Therefore,

if there is an explicit form for the MGF (e.g. (B3-48)), then we can solve the

minimization problem for the indices explicitly, and the complexity is O(1). In

general, we can evaluate the MGF by Monte Carlo methods as we discuss above,

which has complexity O(|ρk|), then the complexity of the calculation for the model-

form UQ indices is O(|ρk|).

Similarly, for the model-form sensitivity indices,

I±(f(Xk), P ;Dηll ) = ±EPρl

[
inf
c>0

[1

c
logEPl|πl

[
e±cF̄ (Xl,Xρl )

]
+
ηl
c

]]
(B3-43)

then the complexity of the calculation with a given explicit MGF of F (Xl, Xρl)

could be O(|ρl|), or O(1) if it is independent of xρk (see the GBN example below

(B3-50)). In general, since

F (Xl, Xρl) = EP{k}|ρl∪{l} [f(Xk)] (B3-44)
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the complexity of evaluation for F (Xl, Xρl) could be O(|ρk|−|ρl|), and the comlexity

of the model-form sensitivity indices would be O(|ρl|(|ρk| − |ρl|)).

Example (Gaussian Bayesian Network): Consider two GBNs P , Q defined as

in (3.29), where

p(xi|xπi) = N (βi0 + βTi xπi , σ
2
i ) (B3-45)

and

q(xi|xπi) = N (βi0 + βTi xπi , σ̃
2
i ) . (B3-46)

Then

ηi = Eπi
[
R(Qi|πi ||Pi|πi)

]
= Eπi

[
log(

σi
σ̃i

) +
σ̃2
i

2σ2
i

− 1

2

]
= log(

σi
σ̃i

) +
σ̃2
i

2σ2
i

− 1

2
(B3-47)

which has complexity O(1), so the complexity of η is O(n) by (B3-38). Furthermore

for f(Xk) = Xk, we have

EP{k}
[
e±cf̄(Xk)

]
= e

1
2
c2Ckk (B3-48)

where Ckk is the variance of the marginal distribution P{k} for Xk. Then for the

model-form UQ indices, we can solve the minimization problem explicitly,

I±(f(Xk), P ;Dη) = ± inf
c>0

[1

c
log(e

1
2
c2Ckk) +

η

c

]
= ±

√
2Ckkη (B3-49)

so the complexity isO(1). Moreover, for the model-form sensitivity indices, consider

the case F (Xl, Xρl) = βklXl+β̃k0 for some constants βkl, β̃k0, as shown in a previous

example (3.71). Then we have

EPl|πl
[
e±cF̄ (Xl,Xρl )

]
= e

1
2
β2
klc

2σ2
l (B3-50)

which has an explicit form and independent of xρk , therefore, we can also solve the

minimization problem explicitly,

I±(f(Xk), P ;Dηll ) = ±EPρl

[
inf
c>0

[1

c
log(e

1
2
β2
klc

2σ2
l ) +

ηl
c

]]
= ±|βkl|

√
2σ2

l ηl (B3-51)

and the complexity of the calculation is O(1).
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