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ABSTRACT 

DESIGNING ION-CONTAINING POLYMERS WITH CONTROLLED STRUCTURE 
AND DYNAMICS 

 
SEPTEMBER 2019 

 
JOSHUA S. ENOKIDA, B.S., VIRGINIA POLYTECHNIC INSTITUE AND STATE 

AND UNIVERSITY 
 

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 
 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 
 

Directed by: Professor E. Bryan Coughlin 
 
 

Ion-containing polymers are a unique class of materials for which strong 

electrostatic interactions dictate physical properties. By altering molecular parameters, 

such as the backbone chemical structure, the ion content, and the ion-pair identity, the 

structure and dynamics of these polymers can be altered. Further investigation of the 

molecular parameters that govern their structure-property relationships is critical for the 

future development of these polymeric materials. Particularly, the incorporation of 

ammonium-based counterions into these polymers offers a facile method to tune their 

electrostatic interactions and hydrophobicity. Applying this concept, a bulky 

dimethyloctylammonium (DMOA) counterion was used to modify the organic solubility 

of styrenesulfonate in order to facilitate its direct solution copolymerization with isoprene. 

With these poly(isoprene-ran-styrenesulfonate) (P(I-ran-SS)) copolymers the effect of ion 

content and the counterion identity on the structure and dynamics were evaluated. 

In the first project, poly(isoprene-ran-dimethyloctylammonium styrenesulfonate) 

(P(I-ran-DMOASS)) copolymers with high molecular weights and 

dimethyloctylammonium styrenesulfonate (DMOASS) compositions ranging between 8 
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and 40 mol% (30 - 77 wt%) were synthesized via nitroxide-mediated polymerization. 

Thermal and viscoelastic characterization revealed distinct behaviors for the low (30 - 51 

wt%) and high (56 - 77 wt%) DMOASS content copolymers. Three structural regimes were 

identified: ion clusters (30 wt% DMOASS), continuous ionic phase (56 - 77 wt% 

DMOASS), and the coexistence of the two (42 - 51 wt% DMOASS). As DMOASS content 

increased, small angle X-ray scattering revealed a gradual transition from the characteristic 

ion cluster structure to a smaller, more regular backbone-backbone structure associated 

with a continuous ionic phase.  The ion clusters acted as physical crosslinks and introduced 

additional elasticity into the low DMOASS content copolymer, while the continuous ionic 

phase showed restricted flow behavior and the disappearance of a definitive plateau 

modulus. Dynamic mechanical analysis revealed two distinct Tg’s at intermediate 

DMOASS content, indicating the coexistence of both structures. 

In the second project, the role of counterion sterics on the structure and dynamics 

of a low glass transition temperature, amorphous P(I-ran-SS) at low ion contents (7 mol%) 

was investigated using a series of symmetric, tetraalkylammonium counterions with 

methyl (TMA), ethyl (TEA), propyl (TPA), and butyl (TBA) pendent groups in addition to 

a sodium cation control. A detailed analysis of the aggregate structure was achieved by 

fitting the X-ray scattering profiles with a modified hard sphere model. Increasing the 

counterion sterics from sodium to TEA resulted in slight changes to the aggregates with 

some ionic groups present in the isoprene matrix. For the more  sterically hindered TPA 

and TBA counterions, considerable disruption of the structure occurs. Using solid-state 

NMR, dynamic mechanical analysis, and rheology, the effect of the counterion sterics on 

the copolymer dynamics was determined. The larger counterions exhibited an increase in 
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the dynamic moduli at high frequency while decreasing the dynamic moduli at lower 

frequencies in addition to possessing faster molecular dynamics. These two observations 

correspond to the incorporation of more ionic groups into the isoprene matrix and 

weakening of the dipole-dipole interactions, respectively.  

Lastly, binary mixtures of TMA and TBA ammonium counterions were employed 

in these P(I-ran-SS) copolymers. The P(I-ran-SS) ionomers with TMA:TBA weight ratios 

of 100:0, 75:25, 50:50, 25:75, and 0:100 were prepared through solution blending. The 

SAXS profiles and Kinning-Thomas fitting showed only slight structural changes between 

100:0 and 50:50, while major modification of the structure appears once the ratio reaches 

75:25 and above. The alterations of the structure also indicated a mixed counterion 

aggregate structure. The linear viscoelastic characterization of the mixed counterion 

ionomers showed an increase in the polymer dynamics at low frequencies with increasing 

TBA weight percentages. Additionally, preliminary tensile tests were collected that 

showed increased mechanical properties with the stronger electrostatic interaction 

associated with TMA counterions. Thus, the structure and properties of these low Tg, 

amorphous ionomers can be specifically tuned by using multiple counterions. 

Through these studies, the role of both ion content and counterion identity on the 

structure and dynamics of low Tg, amorphous P(I-ran-SS) copolymers have been 

elucidated. Furthermore, ammonium-based cations have been shown to offer a versatile 

means to modify both the ion aggregate structure and interaction strength of an ionomer. 

Appropriate selection of the pendent groups and mixture of different counterions allow for 

the properties of the ionomer to be freely tuned.  
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CHAPTER 1 
 

INTRODUCTION 

With the growing demand for new polymeric materials to accommodate modern 

technologies, ion-containing polymers have attracted a considerable attention due to their 

unique bulk and solution properties.1,2 These properties stem from the incorporation of 

covalently-bound ionic groups along the polymer chain. These ionic groups introduce 

strong electrostatic interactions into the polymeric materials that directly alter their 

physical properties. In the bulk, beneficial properties such as improved mechanical 

strength,3 increased polymer-polymer miscibility,4 and ability to facilitate ion transport5 

have been observed. These properties make ion-containing polymers compelling materials 

for applications such as new polymer composites,6 self-healing materials,7 actuators,8,9 

water purification membranes,10 and ion exchange membranes for fuel cells and 

batteries.5,11 A substantial literature already exists on these material, but a better 

understanding of their structure-property relationship is still necessary to further develop 

these materials for advanced applications. 

1.1. Introduction to Ion-Containing Polymers 

Ion-containing polymers encompass a broad range of polymeric materials. As the 

term implies, these polymers possess some quantity of ionic groups within their chemical 

structure, and in this dissertation, specifically refers to polymers where the ionic groups are 

covalently attached to the polymer backbone (thus polymers containing dissolved salts will 

not be considered).  This classification can be further divided into various sub-categories 

based on characteristics such as ion content (ionomer versus polyelectrolyte), ionic group 

identity (polycation, polyanion, or polyzwitterion), and ionic group placement (ionene). 
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The work presented in this chapter, and throughout the dissertation, will focus mainly on 

ionomers with pendent ionic groups and will provide a detailed overview of the structure-

property relationship of these polymers. 

1.1.1. Polyelectrolytes versus Ionomers 

 As alluded to previously, a predominant method to distinguish different ion-

containing polymers is through the quantity of ionic repeat units present in the polymer 

chain. Based on this metric, these polymers can then be classified into two categories, 

polyelectrolytes and ionomers. It important to note that while the ion content can be used 

to differentiate between these two categories, there is not a definitive ion content that 

separates these two groups. Due to this ambiguity, the corresponding physical properties 

of the polymer also need to be considered.1,12 A depiction of a polyelectrolyte and an 

ionomer is shown in Figure 1.1a and 1.1b, respectively. 

             

Figure 1.1.  Depiction of a) polyelectrolytes and b) ionomers  
(image taken from ref. 12) 

In general, polyelectrolytes are typically defined by higher quantities of ionic 

groups which dissociated when dissolved in high dielectric constant solvents. Thus, their 

properties are dictated by electrostatic interactions. These electrostatic interactions 

correlate over larger distances compared to their uncharged counterparts and produce an 

a) b) 
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extend chain configuration when no additional salt is present (Figure 1.1a).2,12,13 From a 

practical standpoint, the ionic groups in polyelectrolytes offer advantageous interactions 

that are often used to control the flow and stability of various  multi-component solution-

based products (e.g. cosmetics) and processes (e.g. flocculation agents for water 

purification).14 

Ionomers, on the other hand, possess a low fraction of ionic groups (classically < 

20 mol %) and produce mechanically robust materials. The ionic groups in these polymers 

microphase-separate into nanoscale aggregates known as “ion clusters” (Figure 1.1b).1,12,13 

These structures greatly alter the overall physical behavior of these copolymer, acting as 

thermoreversible physical crosslinks between the polymer chains. The strength and 

dynamics of these ionic structures confers upon these polymers improved mechanical 

strength, melt viscosity, and puncture/scratch resistance.1,15 As the research field has 

progressed, the definition of ionomers has been expanded to include all ionic polymers that 

contain this characteristic ion cluster structure and their resulting physical properties.12 

1.1.2. Molecular Variables for Designing Ionomers  

A broad range of polymers fall into the ionomer sub-category, and several aspects 

of the ionomer molecular structure can be altered to obtain desired properties. Specifically, 

four noteworthy molecular variables will be discussed: (1) the backbone chemical 

structure, (2) the ion content, (3) the ionic group identity, and (4) the counterion identity. 

Figure 1.2 further elaborates on these variables and shows several examples within the 

different groups.  These variations in chemical structure control the overall properties of 

the ionomer by changing the characteristics of the matrix, the structure of the ion 

aggregates, and the strength of the ionic interactions within the aggregates. 
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Figure 1.2.  Graphical representation of the molecular design variables for ionomers 

For instance, the chemical structure of the polymer backbone dictates the physical 

properties of the polymer matrix, which can be either semicrystalline or amorphous with a 

glass transition temperature above (high Tg) or below (low Tg) room temperature. These 

matrix characteristics also affect the size and shape of the ion cluster structures, which will 

be discussed in a later section. When increasing the ion content of an ionomer, by changing 

either the number of ionizable units or the degree of neutralization, an increased number 

density of ion aggregates occurs, and as long as the characteristic ion cluster structure 

remains, the copolymer is still categorized as an ionomer. The ionic group identity can be 

varied between ionic groups such as carboxylate and sulfonates or even cationic groups 

such as quaternary ammonium and phosphoniums. This parameter alters the strength of the 

dipole-dipole interactions that will in turn affect the organization of the ionic groups and 

association-dissociation lifetime of the ionic groups. Similar effects can also be achieved 

by altering the corresponding counterion in these ionomers. A full discussion of all of these 

different parameters will be presented in the context of their synthesis, structure and 

corresponding dynamics. 
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1.2. Synthetic Strategies to Afford Ionomers 

The synthesis and characterization of ionomers has proven to be challenging due to 

the contrasting polarities of the hydrophilic ionic monomer and hydrophobic comonomer. 

To overcome this chemical mismatch, alternative synthetic methods have been developed 

to obtain various ionomer structures. In this section, the conventional methods for the 

synthesis of ionomer possessing covalently-bound anionic groups, such as carboxylate and 

sulfonates, will be discussed in addition to recent synthetic advances that have expanded 

the scope of accessible ionomer chemical structures. 

1.2.1. Conventional Synthesis of Ionomers 

In the early development of ionomer synthesis, polymer chemists relied on acrylic 

acid monomers as the ionizable group.16–20  These acrylic acid monomers provide an 

uncharged precursor that can be copolymerized with a variety of hydrophobic 

comonomers. Following polymerization, neutralizing of the carboxylic acid functional 

groups with an inorganic base, in solution or the melt, converts the copolymer into the 

corresponding ionomer. This methodology has been successfully used to synthesize the 

commercially relevant metal neutralized poly(ethylene-co-acrylic acid) ionomer 

(Surlyn®). As shown in Figure 1.3, the synthesis of this ionomer proceeds through a high 

pressure, free radical copolymerization of ethylene with (meth)acrylic acid.21 Controlling 

the copolymer’s composition and degree of neutralization allows for the facile synthesis of 

ionomer with targeted thermal and mechanical properties. This synthetic methodology, 

however, is limited to carboxylic acid groups due to problematic side reactions when using 

stronger acids. 
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Figure 1.3.  Conventional synthetic routes to afford ionomers 

As the field progressed, ionomers containing stronger acidic groups such as 

sulfonates were desired. These sulfonate groups provide stronger electrostatic interactions 

compared to their carboxylate counterparts;1 however, the synthesis of these sulfonated 

polymer is more difficult due to the instability of the unionized sulfonic acid monomers. 

Thus, synthesizing these copolymers can be achieved by either 1) direct copolymerizing 

the neutralized sulfonate with the hydrophobic comonomer via an emulsion polymerization 

or 2) performing a post-polymerization sulfonation reaction to add the sulfonate group onto 

the polymer backbone. 

In the direct synthesis via an emulsion polymerization, the two phases provide a 

pathway to overcome the limitations of the contrasting monomer polarities, and 

copolymers containing low compositions of ionic monomers can be synthesized.22 This 

synthetic methodology has been used to copolymerize sodium styrenesulfonate with a 
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variety of comonomers, such as styrene,23 butadiene,24,25 and isoprene.25 Still, the emulsion 

polymerization method does not allow for the desired macromolecular precision of these 

ionomers.  For instance, Siadat found that the composition of the copolymer synthesized 

could be controlled, but styrenesulfonate conversion showed a significant dependence on 

the reaction conversion in which the percent of styrene sulfonate incorporation decreased 

with the overall monomer conversion. Additionally, previous studies show evidence of 

heterogeneous incorporation of sodium styrenesulfonate into the polymer chain that alters 

the structure,26 solubility,24 and thermal properties of the ionomer.27 

The synthetic challenges that plague the emulsion polymerization strategy can be 

overcome by employing a post-polymerization sulfonation  technique (Figure 1.3). This 

synthesis route avoids the initial problem of monomer incompatibility by incorporating 

charged functionality into the polymer backbone after polymerization.5,22 The addition of 

the sulfonate group results from an electrophilic substitution of a sulfonating reagent 

(sulfuric acid, sulfur trioxide, acetyl sulfate, etc.) onto an aromatic ring or double bond 

located along, or pendent to, the polymer backbone. This synthetic strategy has been used 

to produced sulfonated polystyrenesulfonate28–32 and incorporate ionic groups on various 

engineering polymer such as poly(aryl ether ether ketones), poly(aryl ether sulfones), and 

poly(imides).5 Additionally, post-polymerization sulfonation of ethylene-propylene-diene 

monomer rubbers to afford elastomeric ionomers. The harsh reaction conditions limits the 

sulfonation approach to select aromatic and double bond-containing polymers and also 

suffers from a lack of control over sulfonation placement.33 Furthermore, polymers with a 

high quantity of double bonds, such as polydienes, undergo various side reactions, which 



 

 8 

lead to the formation of chemical crosslinks and cyclized polymers.22,34 Thus, new 

approaches are necessary to synthesize polymer with these structures. 

1.2.2. New Approaches for Ionomer Synthesis 

With advances in both monomer and polymer synthesis, alternative synthetic routes 

have been developed that offer access to an expanded library of ionomers. Specifically, for 

sulfonated ionomers, two new methods exist that allow for the direct solution 

copolymerization of these sulfonated monomer with hydrophobic comonomers. The first 

method involves using protecting groups to convert the sulfonate into an uncharged 

precursor monomer.  The most common protected sulfonate monomers used in literature 

are styrenesulfonate esters.35–37 In these studies, the sodium styrenesulfonate is first 

converted to styrenesulfonyl chloride using a chlorinating agent such as thionyl chloride. 

The styrenesulfonyl chloride is then reacted with a primary alcohol in the presence of a 

weak base to obtain the sulfonate ester. These sulfonate ester monomers have been 

successfully polymerized using free radical,35 atom transfer radical polymerization 

(ATRP),36 and nitroxide-mediated polymerization (NMP).38 Following the 

copolymerization, treating the polymer with a base hydrolyzes the sulfonate ester and 

recovers the ionic sulfonate functionality. While this method does work, the additional 

synthetic steps to afford the nonionic sulfonated monomer leaves opportunity to develop 

simplified monomer modification chemistries. 

An alternative, less laborious synthetic approach that has recently been used is the 

counterion exchange modification, which has been recently reviewed by Cavicchi.39 The 

counterion exchange method relies on bulky ammonium counterions to improve the 

hydrophobicity of the sulfonated monomer and allow for their copolymerization with 
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nonpolar comonomers in organic solvents. Figure 1.4 shows different sulfonate monomers 

with various ionic liquid counterions that have been explored in literature.39 Various 

controlled radical polymerizations have been investigated using this synthetic method and 

has permitted access to a breadth of new polymer chemical structures and architectures as 

shown in Figure 1.4. 39–42 

 

Figure 1.4.  Overview of the various ion exchanged monomers in presented 
literature  

(image taken from ref. 39) 

1.3. Ion Aggregation in Ionomers 

As previously mentioned, the ionic groups in the ionomer assembly into a 

characteristic, nanophase-separated structure known as “ion clusters”.  The formation of 

these clusters is driven by two phenomena:  1) the strong dipole-dipole interactions 

between the ionic groups and 2) the contrasting dielectric constants of the ionic groups 

relative to the polymer backbone.43 The exact shape and size of these ionic clusters still 

remains unclear and highly debated.6  

Small angle X-ray scattering has proved to be the most useful tool for the 

observation of these structure. In these scattering profiles, these clusters typically appear 

as a broad asymmetric scattering peak in the high q region (0.04 – 0.4 Å-1), shown in Figure 
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1.2a.44 The q value of the peak maximum can be converted into a domain spacing that 

corresponds to an approximate inter-cluster distance; however, the lack of higher order 

peaks prevents a complete understanding and depiction of these clusters. In an attempt to 

elucidate this structure, researchers have proposed various models to fit the ionomer SAXS 

peak such as the hard-sphere model,44 the core-shell model,45 and the multiplet-cluster 

model.43 These conventional models all ascribe the scattering feature to spherical ion 

clusters in a liquid-like arrangement (Figure 1.2b) and use multiple adjustable parameter 

to provide the best fit.44,46 Still, none of these models have provided definitive 

representation of the ion cluster structure. In addition, experimental results have shown that 

the cluster structure depends significantly on the polymer chemical structure, the ionic 

group, and the counterion, thus an all-encompassing, one-size-fits-all ionomer model may 

not be attainable. 

         

Figure 1.5.  a) Ion cluster feature in SAXS scattering profile and b) depiction of the 
hard sphere model in liquid-like arrangement  

(image taken from ref. 44) 

With improvements in electron microscopy techniques, aggregate structures with 

length scales of a few nanometers have been directly observed; however, the structure’s 

a) b) 
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shape varies depending on the ionomer system, and the exact organization of the ionic 

groups within these structures cannot be definitively determined.6 Currently, the majority 

of the investigated ionomers have exhibited a structure with spherical ion clusters in a 

liquid-like arrangement.47,48 The dimensions and spacing of these structures depend 

heavily on factors such as the chemical structure of the polymer backbone, the 

concentration of the ionic groups, and the chemical identity of the ionic group and their 

corresponding counterions.  

A variety of ionomer systems have been investigated to elucidate the complex 

structure-property relationships within these materials. The most common ionomers 

studies consist of polystyrene- (high Tg, amorphous) and polyethylene-based (low Tg, 

semicrystalline) backbones containing either acrylic or sulfonic acid groups neutralized 

with various metal counterions. In both ionomer systems, Winey and coworkers have 

reconciled the SAXS patterns with high-angle annular dark-field scanning transmission 

electron microscopy (HAADF-STEM).49,50 In the sulfonated polystyrene (SPS) ionomers, 

spherical ion clusters with diameters of ~ 2 nm have been observed, and the size of the 

cluster appears to be independent of the degree of sulfonation, degree of neutralization, and 

counterion identity.7 Compared to SPS, neutralized poly(styrene-co-methacrylic acid) and 

neutralized poly(ethylene-co-methacrylic acid) ionomers contain slightly smaller ion 

clusters (~ 1.5 nm) and slightly larger ion clusters (~ 2.5 - 2.8 nm),47 respectively. This 

finding suggests that the chemical nature of the polymer backbone and covalently bound 

ionic group plays a more significant role in dictating the size of the ion cluster structure;51 

however, it is important to note that the presence of polar, unneutralized acid groups in 

acrylic acid-based ionomers plays a role in the structure and dynamics of these systems.  
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1.4. Thermal and Viscoelastic Properties of Ionomers 

Even with the ambiguity behind the ion cluster structure, thorough investigations 

of the relationship between ionic group incorporation and the corresponding thermal and 

viscoelastic properties have contributed to a better understanding of these materials. These 

studies have mainly focused on the effect of ionic group concentration and counterions 

identity on the glass transition and polymer melts behavior using characterization 

techniques such as differential scanning calorimetry (DSC), dynamic mechanical analysis 

(DMA), and rheology. Some of the polymers that have been investigated include:  

neutralized poly(ethyl acrylate-co-acrylic acid),16 poly(styrene-co-sodium 

methacrylate),17–20 sulfonated polystyrene,28–32 neutralized poly(ethylene-co-methacrylic 

acid),52–55 sulfonated polyesters,56 and poly(oligo(ethylene glycol) methyl ether 

methacrylate-co-styrenesulfonate).13  

The ionic groups in these ionomers have been shown to significantly alter the 

overall physical behavior compared to their uncharged analogs. In the glassy state, these 

ionic group produce an increase in the Tg of the polymer due to chain mobility restrictions 

caused by the strong electrostatic interactions.16,28  As the ionomer is heated above its Tg, 

the inhibited chain mobility results in a new plateau modulus.  This plateau is a 

consequence of the ion clusters acting as physical crosslinks between polymer chains, 

effectively increasing the polymer-polymer connectivity and prolonging their 

characteristic relaxation times.29,57 In addition, the new ionic plateau modulus exhibit an 

increase in modulus value with ion concentration. These electrostatic interactions are 

dynamic with a dissociation-association lifetime corresponding to the ion pair’s mobility 

between clusters (ion hopping). This phenomena affects the polymer’s linear viscoelastic 
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response and can be captured when the material is probed at appropriate time scales as seen 

in Figure 1.6.29–31,56,58–60 

 

Figure 1.6.  G’ and G” master curves of (---) PS, (-•-) 1.82 Na-SPS, (¾) 3.44 Na-SPS, 
and (•) 5.81 Na-SPS referenced to their Tg (image taken from ref. 29) 

 The counterion size and identity can be used to alter these interactions.  The 

majority of studies have focused on inorganic counterions such as alkali, alkaline earth, 

and transition metals. 16,28,54,61,62 For lower Tg, higher dielectric constant ionomers, such as 

neutralized poly(ethyl acrylate-co-acrylic acid), the Tg of the polymer matrix corresponds 

to the counterion charge to distance of closest approach ratio (qc/a).16 For higher Tg, lower 

dielectric constant ionomers, however, the Tg of the matrix has been shown to be 

independent of qc/a.28 The reason for this trend is still not completely understood. 

Presumably, the Tg versus qc/a dependence is influenced by both the number of ion clusters 

and their size and only appears in ionomer in which ion hopping begins to play a role in 

the segmental mobility.1 For the ionic plateau modulus, the characteristic times correlate 

with the counterion charge and size with high charge, smaller molecules extending the 

plateau to longer times.61,62  
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Some studies have also investigated organic counterions such as alkyl ammoniums. 

By incorporating these bulkier ions, these electrostatic interactions can be partially 

screened through steric hindrance, which allows for ion cluster dissociation and flow at 

lower temperatures.63 Recently, Colby investigated the dynamics of ionic liquid 

counterions in sulfonated polyesters and demonstrated improved ion conductivity and 

polymer mobility.64 Furthermore, Weiss investigated the rheological properties of styrenic 

ionomers with ammonium counterions possessing alkyl chains of varying number of 

carbons.65 With increased alky chain length, a reduction of the glass transition temperature 

(Tg) and melt viscosity was observed. Further investigation of these organic counterions 

and their effect on the structure and dynamics in ionomers would be useful and could 

extend their capabilities by offering a method to tune their interaction strength. 

1.5. Ionomers for Advanced Material Applications 

The impact of ionomers was first realized upon the commercialization of partially 

neutralized poly(ethylene-co-methacrylic acid) by DuPont under the name Surlyn®. This 

copolymer possessed superior mechanical toughness compared to its uncharged precursor, 

and could be fabricated into flexible, optically clear films for applications in packaging and 

coating.66 Other early proposed applications of these polymers include membranes, 

fertilizers, adhesives, impact resistant materials, and additives for oil drilling.1 Limited 

commercial success has been realized by these copolymers; however, renewed interest has 

developed as a result of the recent scientific trends with specific interest in ionomers for 

self-healing, shape memory, and tough elastomer applications.7,67 

A self-healing material possesses the ability to recover load bearing properties 

after damage has occurred. The appeal of ionomers for this advanced application arises due 
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to the dynamic nature of these ionic bonds and the supramolecular structure of the ion 

clusters.7 These two factors offer a self-healing mechanism in which the polymer can repair 

fracture sites as a result of the disruption and reformation of the ionic supramolecular 

structure.7,68–70 The most prevalent example of a self-healing ionomer is the previously 

discussed neutralized poly(ethylene-co-methacrylic acid). Several studies have 

investigated the self-healing properties of this ionomer when damaged using a ballistic 

projectile test.71–73 These tests have shown a need for balancing the elastic and viscoelastic 

behaviors in order for the puncture to rebound and then seal, respectively. Elastomeric 

ionomer systems are of particular interest for self-healing materials due to their low Tg and 

high polymer chain mobility. Some system that have recently been explored include:  

imidazole-modified butyl rubber (Figure 1.5),74 natural rubber-based ionomers,75 and 

functionalized poly(butadiene).76 

 
Figure 1.7.  Schematic (top) and experimental demonstration (bottom) of the ionic 
association and self-healing behavior of imidazolium-modified bromobutyl rubber 

(image taken from ref. 71) 
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On a similar note, the shape-memory materials and tough elastomers build off of 

related concepts and mechanisms.  The main distinctions of these materials compared to 

the self-healing materials are the necessity for a covalently crosslinked system.  These 

polymers depend on the permanent crosslinked network to retain its original shape while 

the non-covalent, physical crosslinks enable programming of temporary shapes or provide 

the additional interactions to increase the elastomer’s toughness and modulus.7 The added 

ionic group in the covalently crosslinked network takes advantage of the dynamic ionic 

clusters that will dissociate when sufficient stress or thermal energy is applied to the 

system. Winey recently addressed this concept of toughened elastomers using ionomers as 

a strategy to reconcile the elastomer’s toughness and modulus with its extensibility, using 

Filippidi’s earlier work on catechol-iron complexes as a framework.67,77  

An area not yet discussed but of significant interest for ionomers is their application 

as ion exchange membranes for applications in fuel cells and batteries.5,78,79 These 

membranes require high ion conductivity in addition to good mechanical and chemical 

stability. Achieving these three design criteria has proven difficult and requires the 

appropriate design of new polymers. For ionomers, the ionic portions of these polymer 

chains offer the necessary sites for ion transport, while the uncharged portion provide 

mechanical stability. A trade-off exists between the mechanical integrity of the membrane 

and the ion conductivity, thus optimization of the ion content is necessary to balance these 

two desirable properties. The current benchmark material for these applications is a 

fluoropolymer developed by DuPont under the name Nafion®, which has shown excellent 

conductivity and chemical stability. The disadvantage of this membrane is the high cost to 
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fabricate and the lower than desired operational temperature range; thus, further research 

in polymer development is needed. 

1.6. Dissertation Objectives 

Using the existing studies on ion-containing copolymers as a framework, this 

dissertation aims to further the current understanding of the structure-property relationship 

of ionomers. Specifically, the presented work focuses on the role of the ionomer chemical 

structure on both the organization of the ionic groups and the dynamics for a low Tg, 

amorphous poly(isoprene-ran-styrenesulfonate) ionomers containing bulky organic, 

ammonium-based counterions.  First, the effect of the ion content on the structure when 

transitioning from classical ionomer to polyelectrolytes will be explored in Chapter 2. 

Chapter 3 will evaluate and discuss the role of the  counterion sterics on the ion aggregate 

structure and their implications on the molecular and macroscopic dynamics of the ionomer 

system. Building from the previous chapter, Chapter 4 then focuses on counterion selection 

as a method to tailor the ionic interactions and control their bulk properties, specifically 

their structure, dynamics and mechanical properties. Finally, Chapter 5 will summarizes 

the conclusions of the presented work and detail an updated picture of the ionomer 

structure. Additionally, this chapter will outline future directions in the field of ionomers. 
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CHAPTER 2 

PROGRESSION OF THE MORPHOLOGY IN RANDOM IONOMERS 

CONTAINING BULKY AMMONIUM COUNTERIONS 

2.1. Introduction 

Until recently, emulsion polymerizations were the only direct route to synthesize 

sulfonated ionomers due to the contrasting polarities between the charged monomer and 

the hydrophobic comonomer.1,2 The versatility of this polymerization route, however, is 

limited, and copolymers of high ion content cannot be synthesized.3 Additionally, 

heterogeneous distributions of the ionic groups along the polymer chain have been 

shown.4–6 To bypass these shortcomings, post-polymerization sulfonation has been widely 

employed to incorporate the charged functionality into different polymer structures.7 The 

library of polymers that can tolerate the harsh sulfonation conditions is limited, and various 

side reactions, such as cyclization and crosslinking, can occur.8,9 An alternative synthetic 

approach using bulky quaternary ammonium counterions was recently reviewed by 

Cavicchi.10 These bulky ammonium counterions improve the hydrophobicity of the 

sulfonated monomer and allow for their copolymerization with nonpolar comonomers in 

organic solvents. This synthetic method has been employed in various controlled radical 

polymerization techniques, which has led to the synthesis of new ionomers with a breadth 

of chemical structures and polymer architectures.11–13  

In addition to the synthetic advantages, bulky ammonium counterions also provide 

the ability to alter the thermal and viscoelastic properties of an ionomer. A considerable 

amount of literature has been devoted to understanding the viscoelastic behavior of 

ionomers with inorganic counterions. As mentioned previously, the ion aggregates in these 
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polymers act as physical crosslinks, which increase the polymer-polymer interactions and 

prolonging their characteristic relaxation times.14,15 Bulkier counterions, such as alkyl 

ammoniums, provide steric hinderance that can partially screen the electrostatic 

interactions and allow for ion cluster dissociation, and consequently flow at shorter time 

scales (lower temperatures).16 In sulfonated polystyrene, these organic counterions have 

been shown to increase the mobility of the polymer, resulting in a reduction in the glass 

transition temperature and melt viscosity.17  

With the increased dynamics provided by these organic counterions, the bulk 

properties of higher ion content copolymers can be evaluated. Particularly, little is known 

about the structure of copolymers that possess ion contents between the traditional ionomer 

and polyelectrolyte classifications.18,19 Understanding the transformation from 

microphase-separated, ion aggregates to dispersed ionic groups would help guide the future 

design of new materials for various advanced applications such as actuators,20,21 shape 

memory, and self-healing materials.22 Recently, Colby investigated this transition by 

plasticizing a poly(oligo(ethylene glycol) methyl ether methacrylate-co-styrenesulfonate) 

with an oligomeric poly(ethylene glycol) oligomer.18  With sufficient quantities of the 

plasticizer, the increase in the dielectric constant resulted in dissociation of the ionic 

groups. Investigations of this transition in systems that do not contain a plasticizer would 

provide further insight into the structure-property relationships of ion-containing polymers. 

In this chapter, two aspects of ion-containing polymer will be addressed. First, 

exchange of styrenesulfonate’s counterion to a bulky ammonium will be used to facilitate 

the direct copolymerization of styrenesulfonate with isoprene.  The second aim of this work 

is to investigate the morphology of these bulky ammonium-containing copolymers when 
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increasing the ion content. Thus, a series of novel poly(isoprene-ran-

dimethyloctylammonium styrenesulfonate) (P(I-ran-DMOASS)) copolymers of varying 

dimethyloctylammonium styrenesulfonate (DMOASS) compositions (30 – 77 wt%) were 

synthesized. These copolymers possessed moderate glass transition temperatures even at 

high ionic contents, which enabled for a comprehensive study of their thermal and linear 

viscoelastic behavior over a broad range of compositions.  

2.2. Experimental 

2.2.1. Materials 

Isoprene (99%, Acros Organic) was distilled at room temperature under vacuum. 

3,7-Dioxa-4-aza-6-phosphanonanoic acid, 4,5-bis (1,1-dimethylethyl)-6-ethoxy-2,2- 

dimethyl-6-oxide (SG1) (BlocBuilder®) was kindly provided by Arkema. Sodium 

styrenesulfonate (Alfa Aesar), N,N-dimethyloctylamine (97 %, Acros Organic), 

hydrochloric acid (12 M, VWR), and anisole (99.7 %, Sigma Aldrich) were used without 

further purification. 

2.2.2. Synthesis of N,N-Dimethyloctylammonium Styrenesulfonate (DMOASS) 

The synthesis of the DMOASS monomer was based on a previously reported 

procedure.13 The N,N-dimethyloctylammonium chloride (DMOACl) was first synthesized 

by dissolving N,N-dimethyloctylamine (82.24 mL, 400 mmol) in hexanes (320 mL), 

cooling to 0 oC, and adding 12M hydrochloric acid (40 mL, 480 mmol) dropwise to the 

stirring solution. The product precipitated from solution during the addition of the 

hydrochloric acid. The reaction mixture was stored at -30 oC overnight. The precipitate was 

filtered and washed with cold hexanes (3x) to remove excess HCl. The final DMOACl 
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product was dried in a vacuum oven overnight at room temperature, producing a white 

solid (95% yield). 

  For the salt metathesis reaction, DMOACl (77.5 g, 400 mmol) was dissolved in 

dichloromethane (1 L), and sodium styrenesulfonate (99 g, 480 mmol) was dissolved in 

deionized water (0.96 L). The two solutions were added to a round bottom flask and stirred 

for 1 hour at room temperature. The reaction mixture was added to a separation funnel and 

allowed to settle overnight. The dichloromethane layer was collected, concentrated on a 

rotovap, and dried overnight at room temperature under vacuum. The dried product was 

then recrystallized from toluene by heating to 90 oC and allowed to slowly cool to room 

temperature. The recrystallized product was subsequently collected through filtration, 

washed 3 times with toluene, and dried at room temperature under vacuum for 48 hours 

(74% yield). 

2.2.3. Synthesis of Poly(Isoprene-ran-N,N-Dimethyloctylammonium 

Styrenesulfonate) P(I-ran-DMOASS) Copolymers 

A representative polymerization procedure for the P(I-ran-DMOASS) series is 

described as follows. Isoprene (10 mL, 100 mmol), DMOASS (8.540 g, 25 mmol), SG1 

(20 mg, 51.7 µm), and anisole (15.4 mL, 50 wt%) were added to a Teflon screwcap-sealed 

Schlenk flask charged with a magnetic stirrer. The reaction mixture was subjected to three 

freeze-pump-thaw cycles to remove oxygen and was backfilled with nitrogen gas following 

the third cycle. The copolymerization was performed at 125 oC for 17 hours, and 

subsequently quenched by placing the reaction flask into an ice bath. The crude product 

was dissolved in methanol and precipitated twice into excess ethyl acetate to recover the 
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copolymer as a colorless solid. The comonomer feed ratio was varied to obtain a series of 

random copolymers of different compositions. 

2.2.4. Instrumentation and Characterization 

1H NMR was performed using a Bruker Avance III HD 500 MHz spectrometer. 

Differential scanning calorimetry (DSC) was performed using a TA Instruments DSC 

Q200 equipped with a refrigerated cooling system (RCS90). Samples of approximately 3-

8 mg were loaded into hermetic aluminum pans and subjected to a heat/cool/heat cycle at 

a heating/cooling rate of 10 K/min over a temperature range of -70 to 80 oC. The Tg’s were 

determined from the second heating cycle. Dynamic mechanical analysis (DMA) was 

performed using a TA Instruments DMA Q800 in oscillatory tension mode at a frequency 

of 1 Hz and a strain amplitude of 0.1 % with a preload force of 0.001N. The samples were 

heated at a rate of 3 K/min from -70 to 80 oC. The linear viscoelastic response of the 

material was characterized using an 8-mm parallel plate fixture in a Malvern Kinexus Pro+ 

rheometer. Small amplitude oscillatory shear (SAOS) measurement were measured 

between w = 1 - 100 rad/s from 0 – 80 oC in 10K increments at a strain amplitude of 0.1%. 

In select samples possessing a high Tg, low temperature behavior was not collected due to 

the sample’s stiffness and instrument limitations. Small angle X-ray scattering (SAXS) was 

performed using a SAXS-LAB Ganesha instrument with a Cu-Ka 0.154 nm line in MAXS 

mode with scattering profiles collected for 5 minutes.  
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2.3. Results 

2.3.1. Monomer and Polymer Synthesis 

Figure 2.1 illustrates the synthesis of the DMOASS monomer and its subsequent 

nitroxide-mediated polymerization (NMP) with isoprene to obtain P(I-ran-DMOASS). 1H 

NMR spectroscopy confirmed the chemical structure of DMOASS and was used to 

determine the composition of the copolymers. An overview of the synthesized copolymer 

series is shown in Table 2.1. The composition of the copolymers was varied between 8 and 

40 mol % (30 - 77 wt%) DMOASS. Additionally, polyisoprene (PI) and 

poly(dimethyloctylammonium styrenesulfonate) (PDMOASS) homopolymers were 

synthesized to provide the lower and upper compositional bounds. 

Due to limitations of conventional molecular weight characterization techniques 

for partially charged copolymers, the DP of the copolymers was also estimated by 1H NMR 

spectroscopy. For this estimation, the DMOASS conversion was first determined by 

integrating the aromatic and the residual vinyl signals in the spectrum of the crude product. 

The moles of reacted DMOASS was then found by multiplying the initial DMOASS input 

by its conversion, which was multiplied by the mole ratio of the final copolymer 

composition to give the moles of reacted isoprene. By summing the moles of reacted 

DMOASS and isoprene and dividing by the moles of initiator, an estimation of the DP was 

determined the for the copolymers, which ranged between 670 to 1200. 
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Figure 2.1.  Salt metathesis reaction and subsequent nitroxide-mediated 
polymerization of DMOASS with isoprene 

 
Table 2.1. Overview of the Synthesis and Corresponding Properties of the P(I-ran-
DMOASS) Copolymer Series 

 
a Composition, degree of polymerization, and Mn were determined using 1H NMR. b Determined 
using THF GPC with a PS standard. c Comma separated values denote two separate Tg’s for the 
copolymer. 

2.3.2. Structural Characterization 

Small angle X-ray scattering (SAXS) was used to probe the microstructure of the 

copolymer series (Figure 2.2). In each scattering profile, a peak appeared in the high q 

region. With increasing DMOASS content, the peak shifted to higher q values, which 

corresponded to a change in d-spacing from 5.3 to 2.1 nm over the 30 to 100 wt% 
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N
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HO
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Sample Name
Feed 

DMOASS Actual DMOASSa DPa Mn
a Tg,DSC

c Tg,DMA
c d-spacing

(mol %) (mol %) (wt %) (kg/mol) (oC) (oC) (nm)

P(I) 0 0 0 610b 41.4b -60

P(I-ran-DMOASS)-8 10 8 30 1200 106.6 -53 -42 5.3

P(I-ran-DMOASS)-13 15 13 42 1120 114.8 -46 -35, 0 4.3

P(I-ran-DMOASS)-17 20 17 51 670 72.7 -43, -16 -35, 0 3.7

P(I-ran-DMOASS)-20 25 20 56 1030 126.8 3 3.1

P(I-ran-DMOASS)-28 30 28 66 760 108.9 13 2.9

P(I-ran-DMOASS)-34 35 34 72 1040 168.1 25 2.6

P(I-ran-DMOASS)-40 40 40 77 1040 183.0 27 2.5

P(DMOASS) 100 100 100 77 2.1
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DMOASS range. The decreased d-spacing indicates a smaller distance between scatterers 

as the ion content is increased. Additionally, the shape of the SAXS peak narrowed and 

became more Gaussian, signifying a more regular spacing between structures. 

 

Figure 2.2.  Offset SAXS profiles for the P(I-ran-DMOASS) copolymers with 
varying weight percent of DMOASS 

2.3.3. Thermal and Viscoelastic Characterization 

The glass transition of the P(I-ran-DMOASS) copolymer series was probed by 

DSC (Figure 2.3a). The glass transition temperatures (Tg), tabulated in Table 1, increased 

from -53 oC to 27 oC over a compositional range of 30 - 77 wt% DMOASS. This increase 

was also accompanied by a broadening of the Tg. At intermediate DMOASS content (42 

and 51wt%), two Tg’s may be present. The breadth and close proximity of the Tg’s in these 

samples make assigning values difficult; thus, two Tg’s were only ascribed for the 51 wt% 

sample using this characterization method. Additionally, the Tg values of the PI and 

PDMOASS homopolymers were found to be -60 oC and 77 oC, respectively. Figure 2.3b 

shows the inverse of the Tg as function of weight fraction of DMOASS. The red line 
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represents the predicted Tg values based on the Fox equation. Above 56 wt%, the Tg 

followed the Fox equation, while below 56 wt%, the Tg’s deviated to lower temperatures. 

 

Figure 2.3.  a) Offset DSC thermograms for the P(I-ran-DMOASS) copolymer series 
and b) Plot of the 1/Tg (determined by DSC) at varying DMOASS weight fraction 
(Fox Plot).  Red line represents the predicted values for a homogenous polymer 

system calculated from the Fox equation. 

For the low ion content copolymers, DMA (Figure 2.4) was used to further 

investigate the viscoelastic response when proceeding through the Tg. The corresponding 

Tg values are reported in Table 1. Each copolymer exhibited a glassy modulus of 

approximately 2 GPa, followed by a three orders of magnitude drop in modulus (E’) as the 

temperature was increased. The 30 wt% DMOASS copolymer exhibited a single Tg at -42 

oC marked by a peak in tan d. As the DMOASS composition was increased to 51 wt%, the 

transition through the glass extended over a wider temperature range. A slope change also 

began to appear at 42 wt% DMOASS and became more pronounced at 51 wt%. This feature 

was amplified in tan d where an additional inflection point appeared at 0 oC, indicating the 

presence of a second Tg at these intermediate DMOASS contents. 

a) b)
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Figure 2.4.  DMA single frequency (1 Hz) heating scans (3 K/min):  storage modulus 
(solid lines) and tan d (dashed lines) as a function of temperature for the low 

DMOASS content copolymers 

Rheology was used to probe the linear viscoelastic response of the copolymer series 

above their Tg and construct SAOS master curves. The storage modulus and loss modulus 

are plotted in Figure 2.5a – 2.5d. Time-temperature superposition was applied using free 

shifting with the horizontal time shift, aT, dominating over the vertical modulus shift, bT.  

It was found that the aT values followed WLF scaling. The PI homopolymer exhibited 

behavior typical of a high Mn, linear polymer melt (measured above its Tg) with an 

entanglement plateau modulus of 7.98 x 105 Pa and a terminal flow regime (G' ~ w2, G" ~ 

w1). At low DMOASS compositions (30 - 51 wt%), an extension of the plateau modulus 

and almost complete suppression of flow occurred. The ability to extend the master curves 

to lower frequencies was limited due to polyisoprene degradation. At higher compositions 

(56 – 77 wt%), the entanglement plateau modulus mostly disappeared and the material was 

able to flow; however, classical terminal flow behavior was not realized. 
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Normalized d and storage modulus are plotted in Figures 2.5e and 2.5f, 

respectively. All of the copolymers are liquids, shown by the increase in d and decrease in 

normalized G’ at low frequencies. Polyisoprene showed a minimum in d and elastically 

dominated normalized storage modulus corresponding to the entanglement plateau 

modulus at high frequency. At lower frequencies, PI exhibited terminal flow where the 

viscous component dominates. As the DMOASS content was increased to 30 wt%, an 

increase in elasticity was introduced that extended the plateau modulus to the lowest 

accessible frequencies. A second minimum in normalized d (maximum in the normalized 

storage modulus) also appeared in this regime, which became less evident when the 

DMOASS content was increased further to 42 and 51 wt%. At high DMOASS content, 

above 51 wt%, the high modulus (high frequency) regime was dominated by its proximity 

to its Tg.  As temperature was increased, the polymer began to flow with only a single d 

minimum appearing. Additionally, the material’s overall elasticity was reduced, 

represented by the downward shift in the normalized modulus curve, despite more 

electrostatic interactions being present. 
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Figure 2.5.  Linear viscoelastic response of PI and the P(I-ran-DMOASS) copolymer 
series: a) - d) storage and loss modulus as a function of frequency for the low (a, b) 

and high (c, d) DMOASS contents; e) normalized d and f) normalized storage 
modulus as a function of frequency 
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Figure 2.6 shows the calculated relaxation spectra for the P(I-ran-DMOASS) 

series.23 At short times, all of the polymers started to approach the glassy regime where 

data collection is limited due to the instrument’s compliance. At low DMOASS content 

(Figure 2.6a), each polymer began to flow; however, the full relaxation of the polymer 

chains was not reached at the highest temperatures. Also, the final relaxation mode 

indicates an additional long time relaxation process. At high DMOASS content (Figure 

2.6b), the polymers’ relaxation times were extended. An extension of the relaxation times 

results from increased interactions being realized at higher DMOASS content, which 

prevented the polymers’ from completely relaxing. 

 

Figure 2.6.  Continuous relaxation time spectra calculated from the SAOS data for 
the a) low and b) high DMOASS content copolymers plotted with the PI 

homopolymer control 
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styrenesulfonate and isoprene cannot be achieved due to their contrasting polarities, thus 

the styrenesulfonate was modified with a bulky ammonium counterion to enhance its 

solubility in organic solvents. Various ammonium counterions were screened including 

different quaternary ammoniums and aniliniums. Protonated ammoniums were found to 

undergo salt metathesis more easily than their corresponding quaternary ammoniums. This 

observation presumably stems from the reduced steric hinderance around the nitrogen 

cation, which allows for closer interaction between the ammonium and sulfonate. The 

anilinium-based cations were successfully exchanged and polymerized, but rapid 

discoloration of the monomer and copolymers occurred at ambient conditions due to 

oxidation of the counterion. The DMOA counterion provided the best results due to its 

aliphatic, surfactant-like structure, and the corresponding DMOASS possessed the 

necessary oleophilic character for it solubilization in anisole at elevated temperatures. 

The counterion exchange proved to be an efficient and facile method to tune the 

hydrophobicity of the styrenesulfonate (SS) monomer, and large quantities of DMOASS 

(~100 grams) were produced with considerable yield (~70%). The critical component for 

this salt metathesis reaction was the water/dichloromethane solvent system. These two 

immiscible phases facilitate the formation of the DMOASS and sodium chloride due to 

favorable hydrophobic-hydrophilic interactions.  After vigorous stirring, the DMOASS and 

sodium chloride separate into the organic and aqueous phase, respectively. This 

autonomous separation allowed for simple work up of the monomer after the reaction. The 

1H NMR spectrum of the recrystallized monomer showed a stoichiometric imbalance  

between the peak integrations of the vinylic SS protons and the alkyl DMOA protons, 

indicating the presence of some DMOACl impurities (~ 10 mol%). Additional 
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recrystallization steps produced no further improvement in purity possibly due to co-

crystallization of DMOACl with the monomer. Copolymerization of  DMOASS with 

isoprene was not affected by the excess DMOACl, thus the impure monomer was used and 

the stoichiometry adjusted appropriately. 

Direct copolymerization of DMOASS with isoprene via a nitroxide-mediated 

polymerization produced the desired P(I-ran-DMOASS) copolymers. The composition of 

each copolymer was determined by comparing the integrations of the aromatic DMOASS 

peaks with the vinylic isoprene peaks in the 1H NMR spectrum. The aromatic peaks were 

used as the reference and each integration was normalized by the corresponding number of 

protons. The isoprene formed three isomers during the polymerization: 1,4-addition, 1,2-

addition, and 3,4- addition. Each addition can be identified and the relative ratios of each 

isomer estimated by analyzing the vinylic proton signals between d 4.5 – 6 ppm. The 

quantities 1,2- and 1,4-additions were determined directly from the integrations while the 

3,4-addition was calculated by integrating over the entire 1,2- and 3,4-addition overlapping 

region (d 4.93 – 4.40 ppm).  The two protons corresponding to the 1,2-addition were 

subtracted out and the remainder was normalized by the two protons to give the quantity 

of 3,4-addition. For the P(I-ran-DMOASS) copolymers series, the isoprene contained 

relative ratios of 81-86% to 3-4% to 10-16% of the 1,4-, 1,2-, and 3,4- isomers, 

respectively.  The 1H NMR spectra and table with the complete composition of each 

copolymer (including each isoprene addition) are available in the Appendix. 

Based on the compositions determined from the 1H NMR spectra, controlling the 

comonomer feed ratio allowed for precise control over the copolymer’s ion content. The 

similarity between the feed ratio and copolymer’s final composition after moderate 
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monomer conversion (30 – 40%) suggests the synthesis of statistical copolymers and 

allowed for targeting of specific DMOASS compositions and DP’s. Thus, counterion 

exchange has been shown to be a versatile route to synthesize isoprene-based ionomers. 

These low Tg ionomers also provided a model system to explore the effect of the DMOA 

counterions on the physical properties of these materials with a large range of ionic 

contents. 

2.4.2. Three Structural Regimes 

The combination of the SAXS, DSC, DMA, and rheology show distinct differences 

between the copolymers depending on the DMOASS content. These differences are 

believed to stem from the organization of the ionic groups within the polymers, which is 

supported through the various characterization techniques.  In this system, three structural 

regimes were found (Figure 2.7) and ascribed as follows: ion clusters (30 wt%), a 

continuous ionic phase (≥ 56 wt%), and the coexistence of the two structures (42 – 51 

wt%). 

 

Figure 2.7.  Depiction of the three structural regime: Ion Clusters (left), Coexistence 
Phase (middle), and Continuous Ionic Phase (right) 

Dimethyloctylammonium
styrenesulfonate
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2.4.2.1. Presence of Ion Clusters at the Lowest Ionic Composition 

At the lowest DMOASS composition (30 wt%), the copolymer exhibited a broad 

asymmetric scattering peak in the high q regime (0.04 – 0.4 Å-1) of the SAXS profile 

(Figure 2.2) in addition to a upturn in scattering intensity at low q. This peak and low q 

upturn appear in all ionomers and are attributed to the presence of ion cluster structures.24 

The ionomer SAXS feature arises from the electron density contrast between the isoprene 

matrix and the DMOASS ion clusters with an average 5.3 nm spacing corresponding to the 

average inter-cluster distance. The breadth of the peak results from the random placement 

of the ionic group along the polymer backbone, which gives an irregular structure with a 

range of aggregate spacings. Furthermore, the low q upturn is believed to result from a 

heterogeneous distribution of the aggregates in the polymer matrix where some regions of 

the polymer are richer in ion aggregates than others.25 

The exact shape and size of ionic clusters remain unclear and highly debated. 

Several models have been proposed to fit the ionomer SAXS peak with the conventional 

models ascribing the scattering feature to spherical ion clusters in a liquid-like 

arrangement.24,26 These models pertain to ionomers possessing ionic groups with single 

atom counterions. In these P(I-ran-DMOASS) ionomers, the steric hindrance of the bulky, 

organic DMOA counterion may result in differences in the ion cluster shape and size, 

therefore fitting of the SAXS feature is not appropriate using these models.27 

The viscoelastic response of the low ion content copolymer provided 

complementary evidence of ion clusters formation. When compared to the PI control, the 

incorporation of low quantities of DMOASS into the polymer backbone caused a four 

orders of magnitude extension of the plateau modulus to lower frequencies (longer times) 
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and consequently shifted the onset of terminal flow outside of the accessible frequency 

range. This extension of the plateau modulus can to be attributed to the formation of ion 

clusters, which introduces more connectivity between the polymer chains. The electrostatic 

interactions of the ionic moieties within the clusters act as physical crosslinks, suppressing 

cooperative chain motion and relaxation.14 It should be noted that these polymers possess 

high molecular weights and thus entanglements are also present, as in the case of the PI 

homopolymer.  

The dynamic frequency-dependent data were converted to the time domain and 

expressed in a continuous relaxation spectrum, allowing for analysis of the polymer’s 

relaxation processes.23 As depicted by the PI homopolymer, the relaxation spectrum is 

dominated by three relaxation regimes:  approaching of the glass transition (short times), 

entanglements (intermediate times) and terminal flow (long times). With the introduction 

of ionic clusters, an additional relaxation process arises in the accessible timescales of the 

rheological experiments. The combination of these clusters and entanglements increases 

the polymer’s characteristic relaxation times as shown by the horizontal extension in the 

relaxation spectra (Figure 2.6a). These two relaxation processes are further highlighted in 

the other linear viscoelastic functions.  

Specifically, in the dynamic moduli (Figure 2.5a and 2.5b) and normalized d 

(Figure 2.5e), these two distinct relaxation processes appear as a double plateau and two 

local minima, respectively. Each plateau (or local minimum) is believed to correspond to 

the relaxation of either ion clusters or entanglements. Assigning each phenomenon to a 

specific relaxation process is difficult. Leibler et al. have proposed a theory describing 

similar dynamics for entangled, physically crosslinked systems. In their model, the 
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relaxation of the reversible crosslinks occurs prior to the relaxation of entanglements when 

the molecular weight between reversible crosslinks is less than the molecular weight 

between entanglements. The additional connectivity from the reversible crosslinks adds 

another relaxation process, which alters the time scale of the entanglement relaxation.28,29 

Therefore, based on their model, the relaxation at intermediate frequencies (shorter times) 

results from ion cluster dissociation. On the other hand, the relaxation at intermediate 

frequencies occurs on similar time scales as the relaxation of entanglement for PI, 

suggesting the entanglement relaxation process may actually compete with the cluster 

disassociation. In this case, the electrostatic interactions within a cluster result in the rise 

of an additional low frequency mode. It is possible that a portion of the polymer chains are 

not permanently connected through the ion cluster structure due to weakening of the 

electrostatic interactions with the bulky ammonium counterions. This could allow for chain 

reptation to occur prior to the complete dissociation of the ion clusters. A very similar 

phenomenon was seen in the gelation at highly entangled polybutadiene.23 Based on linear 

viscoelastic observations, both explanations are plausible, but a definitive assignment 

cannot be conclusively drawn in this polymer system. 

2.4.2.2. High Ion Compositions and Continuous Ionic Phase 

When the DMOASS composition is increased to 56 – 77 wt%, the existence of ion 

clusters becomes less apparent. A scattering peak in the high q region still appears in the 

SAXS patterns; however, the peak shifts to higher q values while the shape narrows and 

becomes more Gaussian. These differences indicate a smaller, more regular spacing in the 

structure. The peak is presumably not due to ion clusters since a similar scattering feature 

appears in the PDMOASS homopolymer. In this homopolymer, the backbone lacks the 
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nonpolar spacers (isoprene units) between ionic groups necessary for the organization of 

ion clusters. The scattering feature instead corresponds to the backbone-backbone spacing 

as a consequence of the electron density contrast between the ionic pendent groups and the 

polymer backbone. Various side chain-containing polymers, such as comb-shaped and 

bottlebrush copolymers, also exhibit a backbone-backbone spacing, with the spacing 

increased with the side chain length.30–33 Considering this behavior, the high number of 

DMOASS repeat units in copolymers results in the distribution of the bulky DMOA 

counterions in between the polymer backbones as opposed to in discrete ion clusters.    

The different polymer structure also has major consequences for the viscoelastic 

response. The first key difference is the disappearance of a definitive plateau in the storage 

modulus (Figure 2.5c), despite having high molecular weights. Above 56 wt% DMOASS, 

these copolymers showed a restricted flow behavior with no evidence of the physical 

crosslinks present in the low ion content copolymers. Instead, the viscoelastic response 

resembled more of a constrained, unentangled polymer melt, in which the dynamic moduli 

decayed but did not achieve terminal flow (G' ~ w2, G" ~ w1). The disappearance of the 

entanglement plateau possibly results from an increase in the polymer chain’s persistence 

length and corresponding decrease in the degree of entanglements with the incorporation 

of the styrenic monomer and the steric hindrance of the bulky DMOA counterions. Similar 

results have also been reported for various bottlebrush copolymers.33–36 Additionally, a 

local minimum in d at a higher d value appears in the low frequency regime, indicative of 

an additional but unknown relaxation process. The delay in terminal flow (shifted to longer, 

inaccessible times) is attributed to prolonged relaxations resulting from the persistence of 

the electrostatic interactions between polymer chains. While these electrostatic interactions 
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extend the relaxation time, they are not strong enough to result in a plateau modulus as 

seen in the ionic clusters. Terminal flow is expected to eventually be reached at longer 

times, but it was not accessible within the experimental range. 

2.4.2.3. Transition from Ion Clusters to Continuous Ionic Phase 

At a critical composition between 51 and 56 wt% DMOASS, the thermal and 

viscoelastic properties of the copolymer series diverge. The discontinuity appears clearly 

when plotting the Tg data according to the Fox equation (Figure 2.3b). The Fox equation 

asserts that the Tg of a polymer mixture or a statistical copolymer in a homogeneous state 

depends on the Tg’s of each individual component and their corresponding weight fractions 

within the system. If the criteria for the Fox equation persists across all compositions, the 

inverse of the copolymers’ Tg’s should scale with weight fraction (represented by the red 

line in Figure 2.3b). Below 51 wt% DMOASS, the isoprene content dominates the Tg of 

the copolymer as a result of the ionic groups microphase-separating from the isoprenic 

portions of the polymer chains to form the ion clusters. Above 56 wt% DMOASS, the Tg’s 

follow the Fox equation. Therefore, the transition can be attributed to a transformation from 

the phase-separated ion cluster structure into a phase-mixed continuous ionic structure 

where DMOASS and isoprene contribute proportionally to the Tg of the system. 

At 51 wt% DMOASS, DSC revealed a second Tg that was difficult to distinguish, 

thus DMA was performed on the 30, 42, and 51 wt% samples to further probe their glass 

transition. The DMA results confirmed the appearance of a second Tg at the intermediate 

ion content (42 and 51 wt% DMOASS) copolymers. This finding suggests the presence of 

macrophase separation where regions of ion clusters (Tg,1) and the continuous ionic phase 

(Tg,2) coexist at intermediate ion content. Additionally, the increase in prominence of the 
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second Tg feature in DMA indicates a rise of the continuous ionic phase over ion clusters 

with DMOASS content. Eisenberg reported similar results for poly(styrene-ran-sodium 

methacrylate) ionomers, and first proposed three morphological regimes for these 

ionomers in relation to percolation theory.37 The structural and viscoelastic 

characterization results further support our proposed evolution from ion cluster to 

coexistence and finally to a continuous ionic phase.   

In the SAXS profiles, the gradual transition of the structure peak with increased 

DMOASS content is unanticipated. The coexistence of the two structures shown by the 

thermal characterization is expected to exhibit two separate peaks. A convolution of the 

two competing structures’ form factors is believed to occur due to the similarity of their 

characteristic spacing, thus producing the continuous transformation of the SAXS feature 

from the ion cluster structure at low DMOASS content to the backbone-backbone spacing 

seen at high DMOASS content. 

Additionally, the scattering profiles at low q values (~0.01 - 0.05 Å-1) remain 

similar across the copolymer series with I(q) scaling varying between -2 and -3. Analysis 

of scaling in this regime provides information related to the interface of the copolymer’s 

microstructure and has been regularly employed in both polymer blends and block 

copolymers.38,39 According to Porod’s law, microstructures with sharp, smooth interfaces 

result in I(q) scaling with q-4. Deviation for Porod’s law occurs when phase mixing, diffuse 

phase boundaries, or rough interfaces are present.40,41 In the copolymers containing the 

coexistence of ion clusters and the continuous ionic phase, this region coincides with the 

low q upturn observed with ion clusters, and does not change significantly with the altered 

morphologies. Thus, this deviation from Porod’s law is believed to also result from the 
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heterogeneous distributions of the ionic groups in the copolymer where the continuous 

ionic phase possesses higher ionic group concentrations than the ion cluster phase.42 Due 

to the similarity between the scattering of the two phases and the fluctuations of the ionic 

groups in these random copolymers, the nature of the interface between these two phases 

cannot be definitively determined using SAXS.  

When reviewing the relaxation spectra of the 30, 42, and 51 wt% DMOASS 

copolymers, minor distinctions become apparent. In Figure 2.6a, the last relaxation mode 

trends upwards for the 30 and 42 wt% DMOASS copolymers. The combination of 

entanglements and ion clusters in these polymers adds increased elasticity even at the 

longest time and lowest temperatures accessed. Despite this, the samples are still liquids 

based on the low frequency upturn in the normalized d (Figure 2.5e). In the case of the 51 

wt% sample, the last relaxation mode trends downwards, indicating the beginning of flow. 

The appearance of flow suggests that some portions of the chains begin to adopt an 

extended chain configuration with longer persistence lengths (decreased degree of 

entanglement), however the clusters still dominate the viscoelastic response of the 

copolymer. The extension of these chains reduces, and may prevent, possible 

entanglements and allows the material to flow after ion cluster dissociation, but in a 

restricted fashion. This proposed chain structure is also reflected in the storage and loss 

modulus downward trend, which scales as G' ~ w1.15 and G"~ w0.95 opposed to G'~ w2 and 

G"~ w1 as expected for terminal flow.  

A final overview of the viscoelastic response in the context of the three structural 

regimes is highlighted in the Winter Plot (Figure 2.8). In a Winter Plot, a typical entangled 

polymer melt response portrays the polymer entanglement plateau modulus (elastically 
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dominated behavior) as a vertical line in the high frequency regime and terminal flow as a 

horizontal line in the low frequency regime, as demonstrated by the PI (grey circles) 

sample. The horizontal curvature at low frequencies (low modulus) highlights the liquid 

behavior of all samples while still showing the unique viscoelastic response of the 

copolymer series.27 The 30 wt% DMOASS copolymer exhibits elastic behavior with 

modulus values exceeding that of the neat PI and a less evident flow regime. At 

intermediate ionic content (42 and 51 wt% DMOASS), the ion cluster structure still dictates 

the viscoelastic response but the characteristics of the continuous ionic phase begin to 

appear and introduce a slight slope to the plateau regime. At high ion contents (> 51 wt% 

DMOASS), the high modulus regime is dominated by its proximity to its Tg, and the 

copolymers flow as a result of the extend chain configuration but do not fully relax (become 

horizontal) due to the presence of the electrostatic interactions. 

 

Figure 2.8.  Winter Plot of the P(I-ran-DMOASS) copolymers series 
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2.5. Conclusion 

 High molecular weight, random ionomers with controlled ion content were 

synthesized through direct nitroxide-mediated copolymerization of DMOASS with 

isoprene. Through a combination of thermal, viscoelastic, and X-ray scattering 

experiments, three structural regimes were identified within the copolymer series:  ion 

clusters, continuous ionic phase, and the coexistence of both structures. With the ion cluster 

structure, the copolymer’s Tg was dominated by the isoprene matrix, and the viscoelastic 

properties showed increased connectivity between the polymer chains due to physical 

crosslinking reinforcement provided by the clusters. For the continuous ionic phase, the 

elasticity of the system was reduced and the copolymers behaved as unentangled polymer 

melts with restricted flow characteristics as a result of the electrostatic interactions. At 

intermediate DMOASS content, a coexistence of both structures was evident with the 

appearance of two Tg in the DMA in addition to the minor distinctions in the viscoelastic 

response. Considering these three structural regimes, further variation of the polymer 

structure and counterion will allow for tailoring of the ionomer morphologies and dynamics 

for improved transport membranes, self-healing materials, or soft actuators. 
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CHAPTER 3 

MODIFYING THE STRUCTURE AND DYNAMICS OF ELASTOMERIC 

IONOMERS THROUGH COUNTERION STERICS 

3.1. Introduction 

Developing a fundamental understanding of ionomers has been a goal since the 

inception of ionomers, and countless studies have been performed to uncover the factors 

that drive their unique structure and physical properties.1,2 Two general concepts that 

emerged from these investigations are: 1) ionomers possess a microphase-separated 

morphology consisting of nanometer-sized ion aggregates within a nonpolar, polymer 

matrix, and 2) the ion aggregates act as physical crosslinks that hold the polymer chains 

together. Based on these conclusions, controlling the structure and the corresponding 

interaction dynamics is critical for the future development of these polymeric materials.  

In the majority of these studies, the counterion identity has been a critical molecular 

parameter of interest due to its ability to tune the ionomer’s properties without altering any 

of the polymer’s covalent bonds. In other words, different counterions can be ionically 

attached to polymers with identical chemical structures and ion compositions with relative 

ease. Depending on the neutralizing reagent, a variety of counterions can be employed, the 

majority being either alkali or alkaline earth metal ions. Based on X-ray scattering and 

electron microscopy, the majority of these metal neutralized ionomers exhibit a structure 

comprised of spherical ion clusters in a liquid-like arrangement.3–5 These spherical ion 

clusters range in diameter from 1.5 to 2.8 nm, and a minimal change in cluster size was 

shown with varying ion content, degree of neutralization, and counterion identity.6–8 While 

the structure of the ionomers does not significantly change with counterion identity, the 
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dynamics depends on the size, valency, and interaction strength of the ionic 

group/counterion pair. In general, it has been shown that as the counterion radius is 

decreased, improved interactions between the ionic groups are realized, and the polymers 

become less dynamic.9,10   

With advancement of the field, recent works have explored ionomer systems 

containing alternative counterions, such as organic, multi-atom quaternary ammoniums 

and phosphoniums.11–14 These counterions offer great diversity in chemical structure as a 

result of the various pendent group that can be attached. With bulkier groups, the 

electrostatic interactions can be tuned through steric screening that allows for ion cluster 

dissociation and the onset of flow at shorter time scales (lower temperatures).15 Thus, these 

organic counterions have been employed in several ionomer and polyelectrolyte systems 

in order to increase their dynamics.12,13 For ionomers, the majority of these studies have 

looked at the effect of the counterion on perfluorosulfonate polymers11,16–18 and sulfonated 

polystyrene,12 and increased counterion sterics resulted in a depression of the Tg. Thus, the 

bulky counterions acted as a plasticizer, which resulted in increased mobility of the 

polymer chains. 

While the dynamics of ionomers with bulky counterions have been investigated, 

effects of these counterion on the structure of ion aggregates have generally been 

overlooked.  Employing these counterions in a more dynamic, high mobility polymer 

would deconvolute the glass transition from the steric effects of the counterion. Thus, in 

this work, a low glass transition temperature, amorphous poly(isoprene-ran-

styrenesulfonate) copolymer was synthesized, and the counterions were exchanged to 

different organic, tetraalkylammonium counterions. The sterics of the ammonium 
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counterions was systematically altered by increasing the length of the counterions’ pendent 

alkyl chains, and the copolymer’s structure and dynamics were evaluated. 

3.2. Experimental 

3.2.1. Materials 

Isoprene (99%, Acros Organic) was distilled at room temperature under vacuum. 

3,7-Dioxa-4-aza-6-phosphanonanoic acid, 4,5-bis (1,1-dimethylethyl)-6-ethoxy-2,2- 

dimethyl-6-oxide (SG1) (BlocBuilder®) was kindly provided by Arkema. Sodium 

styrenesulfonate (Alfa Aesar), N,N-dimethyloctylamine (97 %, Acros Organic), 

hydrochloric acid (12 M, VWR), anisole (99.7 %, Sigma Aldrich), tetramethylammonium 

hydroxide (25 % w/w in methanol, Alfa Aesar), tetraethylammonium hydroxide (25 % w/w 

in methanol, Alfa Aesar), tetra-n-propylammonium hydroxide (40 % w/w in water, 

Beantown Chemical), and tetrabutylammonium hydroxide (1M in methanol, Alfa Aesar) 

were used without further purification. 

3.2.2. Synthesis of Poly(Isoprene-ran-Tetraalkylammonium Styrenesulfonate) 

Copolymers 

Dimethyloctylammonium styrenesulfonate (DMOASS) and poly(isoprene-ran-

dimethyloctylammonium styrenesulfonate) containing 7 mol % DMOASS (P(I-ran-

DMOASS)-7) were synthesized following our previously reported procedure.19 After the 

synthesis of the P(I-ran-DMOASS)-7 copolymer, exchange of the DMOA counterion to 

the tetraalkylammonium was achieved by treating the copolymer with the corresponding 

tetraalkylammonium hydroxide. A representative counterion exchange procedure is 

described as follows. The P(I-ran-DMOASS)-7 copolymer (200 mg, 0.165 mmol 
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DMOASS) was dissolved into a solution of tetrahydrofuran and methanol (6 mL, 2:1, v/v). 

Tetraethylammonium hydroxide (25% w/w in methanol, 0.22 mL, 0.33 mmol) was added 

dropwise to the stirring polymer solution and allowed to react for 1 hour at room 

temperature. The P(I-ran-SS)-7-TEA copolymer was isolated from the reaction solution 

by precipitating into 300 mL of ethyl acetate and decanting off the liquid phase. The 

polymer was then collected and dried overnight under vacuum. For the more hydrophilic 

tetramethylammonium and sodium counterions, the amount and ratio of the 

tetrahydrofuran:methanol solvent was adjusted (9 mL, 1:5, v/v) to prevent precipitation of 

the hydroxide, and the removal of excess base was achieved through membrane dialysis 

(Spectra/Pro® 4, MWCO: 12k – 14kDa) in methanol. Films of the copolymers were then 

obtained by dissolving the copolymer into chloroform:methanol (7:3, v/v) at a 

concentration of 100 mg/mL and casting into a Teflon® dish. The cast polymer solutions 

were then covered with a glass dish and allowed to dry in a fume hood overnight. For the 

sodium cation-containing copolymer a chloroform:N,N-dimethylformamide (1:1, v/v) 

solvent system was used, which required a longer drying time (~7 days).  

3.2.3. Characterization 

Solution 1H NMR and solid-state NMR experiments were performed using Bruker 

Avance III HD 500 MHz  and 600 MHz spectrometers, respectively. For T1r relaxation 

measurements, a pulse sequence with a variable-length spin-lock pulse followed by a 1H-

13C cross polarization (CP) was used, with 10 to 16 spin-lock data points for each 

experiment. The spin-lock field strength was 79 kHz, and a temperature window of 263K 

– 283K was probed. Most experiments used a short CP time of 0.3 ms to optimally retain 

the component with short T1r times, except for T1r measurement of the TMA moiety in 
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P(I-ran-SS)-7-TMA, in which a CP time of 1.5 ms was used due to the fast dynamics of 

the TMA cation. For the polyisoprene homopolymer, the pulse sequence was simply a 1H 

90° excitation followed by a variable-length spin-lock pulse followed by 1H detection. 

For X-ray scattering, copolymer films were melt pressed into metal washers at 80 

oC and fixed in place using Kapton® tape. X-ray scattering experiments were performed 

using a SAXS-LAB Ganesha instrument with a Cu-Ka 0.154 nm line in MAXS mode with 

scattering profiles collected over a 5 minute time interval. The scattering from an empty 

washer covered in Kapton® tape was subtracted from the scattering data prior to fitting 

with the Kinning-Thomas (K-T) modified hard sphere model.20 

Differential scanning calorimetry (DSC) was performed on a TA Instruments DSC 

Q200 equipped with a refrigerated cooling system (RCS90). Samples of approximately 3-

5 mg were loaded into hermetic aluminum pans and subjected to a heat/cool/heat cycle at 

a heating/cooling rate of 10 K/min over a temperature range of -70 to 80 oC. The Tg’s were 

determined from the second heating cycle. Dynamic mechanical analysis (DMA) was 

performed on a TA Instruments DMA Q800 in oscillatory tension mode at a frequency of 

10 Hz and a strain amplitude of 0.3 % with a preload force of 0.01N. The samples were 

heated at a rate of 3 K/min from -80 to 80 oC. For rheology, the copolymers were molded 

into disk shapes by melt pressing into metal washers (I.D. = 8 mm, t = 1.6) at 80 oC. The 

linear viscoelastic response of the material was characterized using an 8-mm parallel plate 

fixture in a Malvern Kinexus Pro+ rheometer. Small amplitude oscillatory shear (SAOS) 

measurement were measured between 1 rad/s < w < 100 rad/s from -20 to 80 oC in 10K 

increments at a strain amplitude of 0.1%.  



 

 56 

3.3. Results and Discussion 

3.3.1. Polymer Synthesis and Counterion Exchange 

As previously reported, P(I-ran-DMOASS) copolymers can be directly synthesized 

through a nitroxide-mediated copolymerization of isoprene and DMOASS in anisole.19  For 

this study, a P(I-ran-DMOASS) copolymer containing 7 mol% DMOASS was synthesized. 

The copolymer’s DMOASS mol% was kept low to ensure the formation of ion aggregate 

structures. The degree of polymerization can be estimated from 1H NMR spectroscopy as 

discussed in Chapter 2, and was found to be approximately 1260. Following the 

polymerization, the initial copolymer was divided into separate batches, and the DMOA 

counter was exchanged. Five different counterion of varying bulkiness were selected to 

evaluate their effect on the structure and dynamics of the low Tg, amorphous P(I-ran-SS)-

7 ionomer. The counterions in this series include: sodium (Na+), tetramethylammonium 

(TMA), tetraethylammonium (TEA), tetrapropylammonium (TPA), and 

tetrabutylammonium (TBA). The sodium cation offered a control alkali metal counterion 

that possessed minimal steric hinderance while the tetraalkylammonium series provided a 

platform to vary the counterion sterics systematically by increasing the length of the 

pendent alkyl chains attached to the ammonium counterion.11,16 Exchange of the counterion 

was performed by treating the P(I-ran-SS)-7-DMOA copolymer with the sodium or 

tetraalkylammonium hydroxide as shown in Figure 3.1. This synthetic methodology 

deprotonated the DMOA, consequently removing its charge and depositing the 

tetraalkylammonium onto the polymer backbone.  
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Figure 3.1. Counterion exchange via deprotonation of DMOA 

The counterion exchange of the copolymers was monitored using 1H NMR 

spectroscopy (Figure 3.2). In the spectra, the protons on the carbon alpha to the nitrogen 

appeared between d 2.5 – 3.5 ppm for all of the counterions. Signals appearing at d 3.00 

and d 2.80 ppm for the DMOA counterion correspond to the 2 methylene protons and the 

6 methyl protons, respectively. After counterion exchange, these signals disappeared and 

were replaced by one signal between d 3.10 and d 3.30 ppm corresponding to 12 methyl 

protons for the TMA-containing copolymer or 8 methylene protons for the TEA, TPA, and 

TBA-containing copolymers. For the Na-containing copolymer, no peak appears in the d 

2.5 – 3.5 ppm range due to a lack of protons. 
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Figure 3.2.  Comparison of the 1H NMR spectrum for the P(I-ran-SS)-7-x copolymer 
series (x = Na+, TMA, TEA, TPA, and TBA). The asterisk marks the counterion 

methyl(ene) protons adjacent to the nitrogen. 

3.3.2. Effect of Counterion Sterics on the Ion Aggregates 

The structure of the copolymers with the different counterions was probed using 

SAXS. Figure 3.3 shows the X-ray scattering profiles of the copolymer with the various 

counterions. The peak in the high q regime indicates the presence of ion aggregate 

structures in all of the samples.21 For each copolymer, the q value at the peak maximum 

was converted to a domain spacing (d-spacing) that corresponds to the average distance 

between neighboring ion aggregates. These d-spacing values, which are reported in Table 

1, gradually increase from 5.1 nm to 7.3 nm with the size of the counterion.  
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Figure 3.3.  Offset SAXS profiles for the P(I-ran-SS)-7-x copolymers with different 
counterions (x = Na+, TMA, TEA, TPA, and TBA). The peak at 0.4 Å-1 in all of the 

spectra  corresponds to Kapton®. 

To extract additional structural information from the SAXS profiles, the Kinning-

Thomas (K-T) model was used to fit the scattering peaks.  From this model, the ion 

aggregates are assumed to be spherical structures in a liquid-like arrangement. The 

scattering intensity (I(q)) is defined by the hard-sphere form factor (F(x)) and a Percus-

Yevick function that accounts for inter-cluster scattering interference.20 The equation is 

shown below. 

𝑰(𝒒) = 𝑨𝚽𝟐(𝒙) * 𝟏

𝟏,𝟐𝟒𝜼/𝑮(𝑩)𝑩 2
3          (3.1) 

where 

Φ(𝑥) = 3 789(:);:<=>(:)
:?

,       (3.2) 

𝑥 = 𝑞𝑅B,        (3.3) 

𝜂 = D
E
𝜋𝑅<GE H

B
IJ
K,               (3.4) 

𝐵 = 2𝑞𝑅<G ,          (3.5) 
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and 

𝐺(𝐵) = (B,OP)Q

RQ(B;P)S
(𝑠𝑖𝑛𝐵 − 𝐵𝑐𝑜𝑠𝐵) −

ZP/B,[Q2
Q

R?(B;P)S
[2𝐵𝑠𝑖𝑛𝐵 + (2 − 𝐵O)𝑐𝑜𝑠𝐵 − 2] +

P(B,OP)Q

OR_(B;P)S
{−𝐵D𝑐𝑜𝑠𝐵 + 4[(3𝐵O − 6)𝑐𝑜𝑠𝐵 + (𝐵E − 6𝐵)𝑠𝑖𝑛𝐵 + 6]}     (3.6) 

Four parameters are adjusted to obtain the best fit. These parameters are A, R1, Rca, 

and Vp; where A is a scaling factor, R1 is the radius of the ion aggregate, Rca is the radius 

of closest approach, and Vp is the sample volume per ion aggregate. As shown in the 

equation, R1 is associated with the radius of the hard sphere form factor, while Rca and Vp 

are determined from the inter-clustering scattering interference. Figure 3.4a and 3.4b show 

the SAXS profiles fitted with the K-T model and the plot of the fitting parameters as a 

function of the counterion radius, respectively. The corresponding parameter values are 

displayed in Table 3.1. It is important to note that the information obtained from scattering 

models is limited when direct visualization of the aggregate structures is not available.22 

However, the K-T scattering model still provided a useful framework to begin to explore 

these ion aggregate structures. 

 

Figure 3.4.  a) Kinning-Thomas fitting of the SAXS profiles for P(I-ran-SS)-7-x 
copolymers and b) the plot of the R1, Rca, and 1/Vp as a function of the counterion 
radius (lines are plotted to guide the eye) 

a) b)
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Table 3.1.  Summary of the Kinning-Thomas Fitting Parameters and Calculated Ion 
Aggregate Compositions 

 

Additionally, the number of ionic groups per aggregate were calculated using two 

different methods previously reported in the literature.8 Both methods assume that all of 

the ionic groups reside within an aggregate. The first method divides the spherical 

aggregate volume, determined from R1, by the volume of the sulfonate-cation pair (Vacid-

ion) to give the number of ion-pairs per aggregate. The second method uses Vp, the volume 

fraction of the styrenesulfonate-cation (fSS), and the number of styrenesulfonate-cation 

pairs per volume (hSS). The equations associated with these calculations are shown below: 

𝑁Gee(𝑅B) =
S
?fgh

?

Iijklmkno
             (1) 

𝑁Geep𝑉rs = 	𝜙vv𝑉r𝜂vv             (2) 

 For the Vacid-ion for each sulfonate-counterion pair, the volume of the corresponding 

tetraalkylammonium chloride was calculated from their respective molecular weights and 

densities. To account for the difference in volume of a chloride and sulfonate ion, a volume 

0.018 nm3 was added to each of these values. This volumetric difference was calculated 

using a model system involving the corresponding sodium salts (sodium chloride and 

sodium sulfonate), in which the volume of a sodium sulfonate was approximated by 

multiplying the volume of a sodium sulfate by a factor of 5/7 to account for the additional 

Sample D-spacing 
(nm)

R1
(nm)

Rca
(nm)

Vp
(nm3) Nagg(R1) Nagg(Vp) Nagg(Vp)/Nagg(R1)

Na 5.4 1.5 2.5 254 ± 1 224 119 0.53

TMA 5.9 1.8 2.7 383 ± 4 141 188 1.33

TEA 6.1 2 2.9 385 ± 6 123 182 1.48

TPA 6.8 1.8 3 656 ± 12 65 298 4.57

TBA 7.4 2 3.4 902 ± 18 73 394 5.39



 

 62 

oxygen and sodium.5,8 These values are available in the appendix. For the determination of 

the number of styrenesulfonate groups per volume, assuming the density of the 

styrenesulfonate unit does not change significantly between the different counterions, the 

density of styrenesulfonate-counterion should scale with the molecular weight increase due 

to the counterion. Further explanation of the calculations is available in the supporting 

information. 

 From these calculations, the values of Nagg(R1), Nagg(Vp), and Nagg(Vp)/Nagg(R1) are 

reported in the Table 1 and plotted in Figure 3.5. The Nagg(Vp)/Nagg(R1) is the occupancy 

ratio, which estimates the composition of the ion aggregates. An occupancy ratio of 1 

indicates that the ion aggregates contain only ionic groups, while an occupancy ratio less 

than 1 suggests that there are not sufficient ionic groups to completely occupy the spherical 

aggregate volume. Thus, other portions of the polymer chain exist within the electron-

dense aggregate structure. On the other hand, when the occupancy ratio is greater than 1, 

not all ionic groups are present within the ion cluster, and some of the ionic groups must 

reside in the polymer matrix.8 

 

Figure 3.5.  Comparison of the estimated number of ion pairs per aggregate 
(Nagg(R1),  Nagg(Vp)) calculated from the K-T fitting parameters (left y-axis) and the 

occupancy ratio (Nagg(Vp)/ Nagg(R1), right y-axis) 
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From both the parameters obtained from the K-T fitting and the aggregate 

composition calculations, a comprehensive depiction of the ion aggregates arises. First, the 

sodium counterion, which offers the smallest cation radius of the series, exhibited an ion 

aggregate radius of approximately 1.5 nm. This large aggregate radius results from both 

the strong ionic interaction of the sulfonate moieties and the flexible, low Tg isoprene 

matrix, and further confirms the role of the polymer backbone and ionic group on the 

structure of the ion aggregates.1,23 Based on the Nagg(R1) value for the P(I-ran-SS)-7-Na, 

the ion aggregates consist of a high number of ionic groups (~220). Additionally, the 

occupancy ratio of 0.53 indicates a fraction of nonionic material present within the ion 

aggregates, which has also been seen in other ionomer systems.6,8 

Increasing the counterion bulkiness from sodium to TMA or TEA, both R1 and Rca 

increase, and the aggregates appear to swell with the presence of the larger counterions. As 

shown by 1/Vp, a decrease in the number density of the aggregates also results. 

Furthermore, the occupancy ratio of 1.36 and 1.46 for the P(I-ran-SS)-7-TMA and P(I-

ran-SS)-7-TEA, respectively, suggests that not all of the ionic group are present in the ion 

cluster, thus some fraction of the ionic groups are distributed into the isoprene matrix. 

When increasing the counterion sterics further to TPA or TBA, R1 initially 

decreases followed by an increase back to approximately 2 nm. In addition, Rca continues 

to increase along with a large decrease in 1/Vp. Upon further inspection, a large increase in 

the occupancy ratio occurs that greatly exceeds 1, and it appears that a significant structural 

change results once sufficient steric hinderance is achieved. 

Two important details to consider when understanding the structure in these 

copolymers are: (1) the steric screening provided by the pendent alkyl chains effectively 
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decreases the dipole-dipole interactions between neighboring ion pairs and (2) less efficient 

packing of the ion pairs into electron-dense aggregates occurs due to the additional volume. 

The combination of these two phenomena are believed to limit the number of ionic groups 

in the scattering structure that results in some ion pairs being excluded to region 

surrounding the ion cluster. These regions would then correspond with the increase in Rca. 

Additionally, the ionic groups become more oleophilic as the counterion’s alkyl chain 

lengths increases, favoring additional mixing with the isoprenic portions of the polymer 

chains.  Thus, these surrounding regions are expected to consist of a combination of ionic 

groups and isoprenic polymer chain segments. 

3.3.3. Molecular Dynamics of P(I-ran-SS)-7-TMA and P(I-ran-SS)-7-TBA 

To further understand the morphology and molecular dynamics in the copolymer 

samples, 1H T1r relaxation behaviors of P(I-ran-SS)-7-TMA and P(I-ran-SS)-7-TPA were 

studied by solid-state NMR. Two example spectra of P(I-ran-SS)-7-TPA at different spin-

lock times are shown in Figure 3.6. The T1r relaxation is sensitive to molecular dynamics 

in the 104 – 105 s-1 range, and based on the temperature dependence of the T1r, the 

segmental motion can be determined relative to the spin-lock field strength of 79 kHz.  

 
Figure 3.6.  13C CP spectra of P(I-ran-SS)-7-TPA with spin lock times of 0.01 ms 

(blue) and 1 ms (red) 
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The decay of the isoprene signal at d 28ppm was tracked for T1r measurements of 

the isoprene moiety. For all the temperatures probed, a bi-exponential model provided the 

best fit for both P(I-ran-SS)-7-TMA and P(I-ran-SS)-7-TPA (Table 3.2). The decay 

constants of the two components differed by a factor of approximately 3 and 10 for P(I-

ran-SS)-7-TPA and P(I-ran-SS)-7-TMA, respectively. Such large difference suggests that 

the two components belong to separate domains with differing molecular dynamics. The 

relatively large error values partially reflect the relatively broad signals, which produce 

low signal-to-noise ratios. To verify the reliability of the curve fitting, T1r relaxations of 

the isoprene backbone signals at d 17 and d 41 ppm for the P(I-ran-SS)-7-TMA copolymer 

were also calculated. The results, shown in Table S1, are consistent with those of the d 28 

ppm peak. 

 
Table 3.2. Fitting results for T1r relaxation experiments for P(I-ran-SS)-7-TPA and 
P(I-ran-SS)-7-TMA (contact time = 0.3 ms). The superscripts s and l stand for short 
and long, respectively. The d 28 ppm peak is from the isoprene backbone, and the d 

11 ppm peak is from the methyl group of the TPA cation.  

 

T1r of the methyl group in the TPA counterion moiety at d 11 ppm was calculated 

from the same experimental data as those for the d 28 ppm peak. For the temperature range 

probed, T1r relaxation curves could be fit with a single exponential model. Aided by the 

T (K)

P(I-ran-SS)-7-TPA P(I-ran-SS)-7-TMA

T1rs
(28ppm)

T1rl
(28ppm)

T1r
(11ppm)

T1rs
(28ppm)

T1rl
(28ppm)

263K 0.28 ± 0.03 1.1 ± 0.1 1.20 ± 0.02 0.64 ± 0.09 6.7 ± 0.7

273K 0.35 ± 0.08 0.9 ± 0.1 0.87 ± 0.02 0.63 ± 0.04 6.5 ± 0.3

283K 0.48 ± 0.09 1.5 ± 0.4 0.69 ± 0.02 0.71 ± 0.04 6.1 ± 0.3
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intensity and sharpness of its peak, small fitting errors of its T1r results were obtained, as 

seen in Table 3.2. As temperature increases from 263K to 283K, its T1r decreased from 

1.20 s to 0.69 s. The temperature dependence of the TPA methyl group indicates that its 

dynamics are in the slow motion regime, with average segmental motion slower than the 

spin-lock field strength of 79 kHz. On the other hand, T1r of the short-T1r component of 

the isoprene moiety exhibits the opposite temperature dependence, and its dynamics are in 

the fast motion regime throughout the 263K – 283K window. These results suggest that 

the counterions reside in lower-mobility domains while the short-T1r component of the 

isoprene moiety resides in higher-mobility domains. The long-T1r component of P(I-ran-

SS)-7-TPA, as well as both components of P(I-ran-SS)-7-TMA, in columns 3, 5, and 6 of 

Table 1, have larger fitting errors and their temperature dependence is not clear.  

T1r of the N-methyl moiety in P(I-ran-SS)-7-TMA was measured in a separate 

series of experiments. The high signal strength of the N-methyl group requires longer 

contact time due to its low CP efficiency, likely as a result of the rotational freedom of the 

TMA cation. Therefore, 1.5 ms of contact time was used to track its T1r relaxation behavior. 

Similar to the TPA methyl signal of the P(I-ran-SS)-7-TPA sample, the relaxation curves 

of N-methyl in P(I-ran-SS)-7-TMA at d 55 ppm are best fit by a single-exponential model 

for the entire temperature window studied (Table 3.3). To eliminate the possibility of the 

long contact time concealing a possible short-T1r component, T1r of the isoprene signal at 

d 28 ppm signal was calculated from the same experiment. The peak decay could only be 

well fitted by a bi-exponential model, thus confirming that the T1r of the N-methyl group 

signal is indeed single-exponential. Additionally, the fitting results for the d 28 ppm peak 
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differ slightly between the two contact times used, resulting from somewhat different 

selection of the population contributing to the signals. 

Table 3.3.  Fitting results for T1r relaxation experiments for P(I-ran-SS)-7-TMA 
(contact time = 1.5 ms). The superscripts s and l stand for short and long, 

respectively. The d 28 ppm peak is from the isoprene backbone, and the d 55 ppm 
peak is from the methyl group of the TPA cation. 

 

T1r relaxation of the polyisoprene homopolymer synthesized by the same method 

was measured for comparison. The T1r of the homopolymer increased sharply with 

temperature, indicative of the fast motion regime. A number of different behaviors arise 

between the homopolymer and the isoprene matrix in the copolymers. First, at 263 – 283K, 

cross polarization yields little signal intensity for the homopolymer while generating strong 

signal intensity for the copolymers. This indicates that the homopolymer has much faster 

and more isotropic segmental mobility than the isoprene matrix phase in the copolymers, 

resulting in low CP efficiency. Second, T1r of the homopolymer exhibits much stronger 

temperature dependence, increasing almost four-fold from 263K to 283K, than that of the 

isoprene matrix in copolymers (the short T1r component), which increases by less than 60% 

in the same temperature window for both P(I-ran-SS)-7-TPA and P(I-ran-SS)-7-TMA. 

This is a result of the different widths of segmental rotation correlation time distribution. 

The homopolymer has a narrow distribution of correlation time, while that of the 

T (K) T1rs
(28ppm)

T1rl
(28ppm)

T1r
(55ppm)

263 0.8 ± 0.2 7.5 ± 0.4 6.1 ± 0.4

273 1.2 ± 0.3 9.4 ± 1.6 6.2 ± 0.3

283 1.3 ± 0.3 8.5  ± 2.7 4.9 ± 0.4
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copolymers is much broader due to the spatial constraints exerted by adjacent ion aggregate 

domains. 

The copolymers discussed in this report have an isoprene-based, non-polar matrix, 

in which polar interactions between the ionic groups must be minimized. Thus, the ionic 

groups should reside within the same domain and spatially arrange in such a way that the 

Coulombic as well as the higher-order multipole interactions are appropriately minimized. 

Based on the Eisenberg-Hird-Moore model, the isoprene units that are adjacent to the 

styrene units reside in the regions of restricted mobility and are expected to have lower 

segmental mobility due to their proximity to the high-Tg styrenesulfonic units, as compared 

to longer sequences of isoprene units that form the matrix.24 

It follows that two types of domains exist: higher-mobility, lower-Tg domains 

formed by longer-sequence isoprene units, and lower-mobility, higher-Tg domains formed 

by the styrenesulfonate units, counterions, and adjacent isoprene units. The two T1r 

components in both P(I-ran-SS)-7-TPA and P(I-ran-SS)-7-TMA support this picture. The 

higher-mobility isoprene matrix has short T1r while the lower-mobility ionic clusters have 

long T1r. In P(I-ran-SS)-7-TPA, the values of the TPA methyl groups are similar to those 

of the long-T1r component of isoprene, which is a result of both “communicative” 

averaging due to spin diffusion and physical averaging due to close contact within the same 

domain. In Table 3, it is clear that in P(I-ran-SS)-7-TMA, across all the temperatures 

probed, T1r of the N-methyl group is much closer to the long-T1r component of the isoprene 

than to the short-T1r component. This supports the assignment of the long-T1r component 

to the domains with styrenesulfonate groups, isoprene units adjacent to them, and 

counterions. T1r of the N-methyl signal decreases with increasing temperature, indicative 
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of being in the slow-motion regime. The assignments of the two relaxation components to 

the two types of domains in P(I-ran-SS)-7-TPA and P(I-ran-SS)-7-TMA are consistent 

with each other.  

The relaxation behaviors of P(I-ran-SS)-7-TPA and P(I-ran-SS)-7-TMA are 

qualitatively similar, both having two components for the isoprene population. On the other 

hand, the T1r of the ionic clusters in P(I-ran-SS)-7-TMA (ca. 6 ms) is much longer than 

that in P(I-ran-SS)-7-TPA (ca. 1 ms). Since they are both in the slow motion regime, the 

segmental mobility in the ionic clusters of P(I-ran-SS)-7-TMA is much lower than in P(I-

ran-SS)-7-TPA. This is consistent with the prediction based on the different ion size and 

ionic strength between TMA and TPA.  

Additionally, the different T1r relaxation behaviors between the rigid ion clusters 

and the mobile matrix offers a possibility to conduct spin diffusion experiments with a 

gradient created by a T1r filter. A plot of the spin diffusion spectra for the P(I-ran-SS)-7-

TPA is available in the Appendix. By monitoring the intensity of both the counterion peaks 

and the isoprene signals, the diffusion of the magnetization between the two domains can 

be observed.  The counterion signals (d 11, 16, and 60 ppm) decrease in intensity at 

increasing diffusion time, as their magnetization diffuse away to surrounding domains. In 

the meantime, the isoprene signals at d 28 and d 41 ppm gain strengths by receiving 

magnetization from the counterions and the long-T1r isoprene units. The equilibrium is 

reached between 3 and 10 ms. Based on the information, estimate of separation between 

the counterion cluster and the matrix is likely in the order of 3 – 5 nm. 
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3.3.4. Effect of Counterion Sterics on the Polymer Dynamics 

The glass transition temperature (Tg) of the copolymer, determined via DSC, was -

53 oC for all of the copolymer samples, while the PI homopolymer possessed a Tg at -60 

oC. The difference between the Tg of the copolymers and the homopolymer is attributed to 

decreased polymer chain mobility from a combination of the incorporation of the styrenic 

copolymer and their ionic groups.  As previously reported, the microphase separation of 

the ionic groups into discrete aggregates causes only a moderate increase in Tg relative to 

the PI homopolymer and a deviation from the Fox equation prediction due to the 

heterogeneous distribution of the ionic groups.19 In these samples, the isoprene matrix 

dominates the Tg of the copolymer with the ion clusters providing some restrictions in the 

polymer chain segmental mobility. 

To elucidate the thermal transitions of the copolymers further, DMA was performed 

on each sample. Figure 3.7a and 3.7b shows the storage modulus (E’) and tan d as a 

function of temperature, respectively. For all of the copolymers, a thermal transition 

appears between -30 and -25 oC marked by a drop in the E’ and a peak in tan d. This 

transition corresponds with the Tg of the isoprene matrix, which was also observed in the 

DSC thermograms. At temperatures above 0 oC, E’ decreased at a more rapid rate as the 

counterion steric hindrance increased, and a second peak appeared in the plot of tan d. 

Additionally, a plateau modulus was present in the thermograms for all samples. Thus, as 

temperature increases, the copolymers first undergoes the glass transition of the isoprene 

matrix followed by the mobility associated with the ion aggregates.25,26 
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Figure 3.7.  DMA single frequency (10 Hz) heating scans (3 K/min):  a) storage 
modulus and b) tan d as a function of temperature for the P(I-ran-SS)-7-x 

copolymers 

For the least sterically hindered sodium and TMA counterions, the stronger dipole-

dipole interactions produce static ion aggregate structures as indicated by the persistence 

of the plateau modulus to 80 oC. Surprisingly, P(I-ran-SS)-7-TMA exhibited a plateau 

modulus that was an order of magnitude higher than the sodium-containing copolymer. 

This increase in plateau moduli was unexpected since the sodium counterion possesses a 

higher number density of cluster (1/Vp), which decreases the molecular weight between the 

ionic physical crosslinks and should increase the plateau modulus. This discrepancy is 

believed to be caused by the presence of ionic groups within the isoprene matrix in the 

TMA copolymer (as indicated by the occupancy ratio > 1) that can still interact with other 

nearby ionic groups outside of the ion aggregates.  

For TEA, the effect of the counterion sterics begins to appear, as shown by the 

decrease in the plateau modulus and the onset of long-range segmental mobility at high 

temperatures. For the TPA and TBA, the large counterion sterics results in weak dipole-

dipole interactions, and the ionic groups gain mobility at temperatures above 0 oC. As 

a) b)
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shown by the T1r relaxation experiments, the larger counterions possess faster molecular 

dynamics, thus the mobility of the ionic groups in the aggregate structures occurs at lower 

temperatures. Based on the presence of the plateau, it appears that not all of the TPA and 

TBA become mobile, and some fraction of the ionic groups remain associated within a 

cluster. With this understanding of the polymer dynamics, a clearer picture of the aggregate 

structures observed through SAXS arises. 

By rheology, SAOS master curves were constructed and the linear viscoelastic 

behavior of the copolymers was evaluated. Figure 3.8a and 3.8b show the storage modulus 

(G’) and loss modulus (G”) as a function of frequency, respectively. A PI homopolymer, 

shown in black, represents a typical entangled polymer melt, containing both a plateau 

modulus and a terminal regime. With the incorporation of the ionic groups, an extension 

of the plateau modulus was realized for all of the copolymers. This extension to lower 

frequencies results from the increased polymer connectivity due to the physical bonds 

provided by the ion aggregates.9 At high frequencies, the G’ and G” both increased with 

the counterion size. This correlation agrees with the results from the DMA where further 

restriction of the copolymer’s dynamics at temperature near the polymer matrix glass 

transition occurred. Based on the SAXS results, this restriction is believed to result from 

ionic groups that reside in the areas surrounding the ion aggregate.  
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Figure 3.8.  a) Storage and b) loss modulus as a function of frequency for PI and the 
P(I-ran-SS)-7-x copolymer series (Tref = 50 oC) 

At intermediate frequencies, the storage modulus decreased for the TEA, TPA, and 

TBA copolymers and gradually reached plateau moduli of similar magnitude. For the TMA 

copolymer, the plateau modulus began at higher frequencies with a larger modulus value 

than the other samples. This higher plateau modulus results from the higher number density 

of ion aggregates and the stronger electrostatic interactions of the smaller TMA counterion, 

which persist over a wider frequency range. At low frequencies, the storage modulus 

decreased with the counterions size. In this frequency regime, the steric screening effect of 

the larger counterions arises. The steric hinderance of the counterion reduced the ability of 

the dipole-dipole interactions to approach each other, thus weakening electrostatic 

interactions and causing the copolymer to have a more viscous response at elevated 

temperatures. 

Similar tends are observed with additional viscoelastic functions. Figure 3.9 shows 

the  plot of the normalized d as a function of the frequency. In this plot, normalized d 

generally increases with the counterion sterics throughout the frequency range. Thus, the 

linear viscoelastic behavior of the ionomers exhibits a larger contribution of the viscous 

a) b)
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component as a result of the weakened dipole-dipole interactions with the more sterically 

hindered counterions. Additionally, as noted in the dynamic moduli, the onset of the 

terminal regime at the lowest frequencies becomes more prevalent as the counterion size 

is increased. Specifically, all of the copolymers, except for the TMA-containing sample, 

are liquids as shown by the upturn in d at the lowest frequencies. The TMA-containing 

copolymer shows more elastic behavior throughout the entire frequency window as a 

consequence of the strong electrostatic interactions; however, the copolymer is expected 

to exhibit a terminal regime at lower frequencies due to the presence of only physical 

crosslinks. 

  

Figure 3.9.  Normalized d as a function of frequency in for PI and the P(I-ran-SS)-7-
x copolymer series (Tref = 50 oC) 

Figure 3.10 shows the continuous relaxation spectra of the copolymer series, which 

were calculated for the TTS master curves using a method developed Baumgaertel and 

Winter.27 For the copolymers, an increase in the relaxation modes at the shortest times 

results from approach of the glass transition. For the less sterically hindered TMA and TEA 

counterions, minimal changes occur in H(t) throughout the relaxation spectra indicating 

c)
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only slight relaxations of the polymer chains. Compared to the TMA or TEA, the larger 

TPA or TBA counterions cause an increase in the relaxation modes at short times. At longer 

times, the relaxation modes of the TPA or TBA counterions decrease and eventually 

plateau at long times. In these ionomers, the more sterically hindered counterions introduce 

a new relaxation process. This relaxation process result from the larger, disrupted ion 

aggregate structures, which allow for the polymer chains to relax. This observation further 

confirms the increased molecular dynamics and polymer chain mobility that was identified 

in the solid-state NMR and DMA, respectively. For the smaller counterions, following the 

relaxation of the isoprene matrix, the stronger electrostatic interactions prevent further 

relaxation of the polymer chains. Additionally, the relaxation modes at the longest times 

increase, indicating additional relaxation process at long times. 

  

Figure 3.10.  Continuous relaxation time spectra calculated from the SAOS data for 
PI and the P(I-ran-SS)-7-x copolymer series 

3.4. Conclusion 

Counterion sterics were evaluated on the structure and dynamics of low Tg, 

amorphous P(I-ran-SS)-7 copolymers. When collectively reviewing the structural and 

d)
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dynamic characterization results of the entire P(I-ran-SS)-7 series, the role of counterion 

sterics becomes apparent. The sodium counterion provides minimal steric hinderance, and 

forms large ion aggregates (radius of ~1.5 nm) due to the strong sulfonate ionic moieties 

and the flexible, low Tg isoprene polymer backbone. These aggregates possess a high 

number of ionic groups (~220) with a small fraction of nonionic material also present. 

The TMA and TEA counterions appear to swell the ion aggregates in addition to 

decreasing the number density of the aggregates. The occupancy ratio greater than unity 

suggests that not all of the ionic group are present in the ion cluster, thus some fraction of 

the ionic groups are distributed into the isoprene matrix. This slight change in the structure 

causes the plateau modulus to increase an order of magnitude higher than the sodium ion-

containing copolymer, presumably due to interactions between neighboring ionic groups 

outside of the discrete ion aggregates.  

When increasing the counterion sterics further to TPA or TBA, the K-T fitting 

parameters suggest a lower number density of ion aggregates with larger regions of 

restricted mobility. In addition, the occupancy ratio greatly exceeds unity. It appears that a 

significant structural change results once sufficient steric hinderance is achieved. The high 

steric hinderance of these counterions most likely impede the formation of typical ion 

aggregate structures and a large fraction of the ionic groups may reside in the isoprene 

matrix due to the increased oleophilic nature of the counterion. 

In the dynamics of these copolymer, increased counterion sterics resulted in 

weakening of the ionic physical crosslinks and a more rapid decrease in the dynamic 

moduli at elevated temperatures. At lower temperatures, the dynamic moduli increased 

with the counterion sterics, further indicating the modification of the copolymer structure. 
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CHAPTER 4 

MIXED COUNTERION IONOMERS WITH CONTROLLED DYNAMICS AND 

MECHANICAL PROPERTIES 

4.1. Introduction 

Ionomers containing mixtures of two counterions have been employed for some 

industrial applications such as golf ball covers.1 These mixed counterions allow for easy 

modification of the ionomer’s stiffness, yield strength, and water absorption. The majority 

of the studies have investigated poly(ethylene-co-methacrylic acid) ionomers with binary 

blends of metal counterions.2–4 Based on these studies, it was found that ion aggregate 

structures consisting of both counterions formed, resulting in altered interactions between 

ionic groups within the aggregates.  

As presented in Chapter 3, bulky counterions can greatly affect both the structure 

and dynamics of an ionomer. However, there has been minimal work focused on mixed 

ammonium counterion systems. Moore and coworkers investigated the thermal and 

transport properties of Nafion® possessing a mixture of sodium  and tetrabutylammonium 

(TBA) counterions.5 In this high Tg, semicrystalline perfluorosulfonate copolymer, a 

gradual transition of the thermomechanical properties between the 100% sodium ion and 

100% TBA samples occurred, where both the a- and b-relaxations decreased to lower 

temperatures as more TBA counterions were incorporated into the polymer structure. Thus, 

the TBA counterions contributed to both the plasticization of the polymer chains (b-

relaxation) and the ionic network structures (a-relaxation). Additionally, in this system the 

23Na NMR and SAXS data suggested ion aggregates consisting of both sodium ions  and 

TBA. Analysis of these mixed counterion systems, however, are complicated by complex 
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branched chemical structure of Nafion® in addition to the presence of crystalline domains. 

A more in-depth investigation of the effect of mixed counterion systems in a model system 

would provide more information regarding their structure and interactions at different 

ratios. 

Specifically, the poly(isoprene-ran-styrenesulfonate) (P(I-ran-SS)) copolymer 

offers a model polymer system to further investigate these mixed counterion systems due 

to its low Tg amorphous structure. In this chapter, binary mixtures of 

tetramethylammonium (TMA) and tetrabutylammonium (TBA) P(I-ran-SS) copolymers 

were synthesized and a detailed characterization of the resulting ionomer structure, 

polymer dynamics, and corresponding mechanical properties was performed. 

4.2. Experimental 

4.2.1. Materials 

Isoprene (99%, Acros Organic) was distilled at room temperature under vacuum. 

3,7-Dioxa-4-aza-6-phosphanonanoic acid, 4,5-bis (1,1-dimethylethyl)-6-ethoxy-2,2- 

dimethyl-6-oxide (SG1) (BlocBuilder®) was kindly provided by Arkema. Sodium 

styrenesulfonate (Alfa Aesar), N,N-dimethyloctylamine (97 %, Acros Organic), 

hydrochloric acid (12 M, VWR), anisole (99.7 %, Sigma Aldrich), tetramethylammonium 

hydroxide (25 % w/w in methanol, Alfa Aesar), and tetrabutylammonium hydroxide (1M 

in methanol, Alfa Aesar) were used without further purification. 

4.2.2. Scaled-Up Synthesis of P(I-ran-DMOASS) 

The synthesis DMOASS and P(I-ran-DMOASS)-8.3 was based on our previously 

reported procedure.6 The copolymerization was further modified to accommodate a larger 
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scale reaction.  This modified synthetic procedure used a bench top Parr 4560 Mini reactor 

with a 600 mL stainless steel pressure vessel. DMOASS (57.88 g, 150 mmol, weight 

adjusted for 11.5 wt% impurity), isoprene (165 mL, 1350 mmol, volume adjusted with 30 

mL excess), anisole (150 mL), and SG1 (240 mg, 0.62 mmol) were added to the pressure 

vessel. The reaction mixture was degassed at 0 oC for 45 minutes with a nitrogen gas flow 

of 0.5 L/min. The polymerization was then performed at 125 oC for 17 hours and 

subsequently quenched by placing the pressure vessel in to an ice bath. Methanol was 

added to the crude reaction mixture to obtain a homogenous solution, which was then 

precipitated twice into ethyl acetate (2x, 7 L each). The copolymer was collected by 

dissolving in a mixture of chloroform and methanol, concentrating on a rotovap, and drying 

in a vacuum oven overnight at room temperature. Approximately 20 g of clear, rubbery 

polymer were recovered. 

4.2.3. Counterion Exchange of P(I-ran-DMOASS) 

Exchange of the DMOA counterion to the tetraalkylammonium was achieved by 

treating the copolymer with the corresponding tetraalkylammonium hydroxide. A 

representative counterion exchange procedure is described as follows. The P(I-ran-

DMOASS)-8.3 copolymer (6 g, 5.48 mmol DMOASS) was dissolved into a solution of 

tetrahydrofuran and methanol (225 mL, 2:1, v/v). Tetrabutylammonium hydroxide (11 mL, 

2 equiv., 1M in methanol) was added dropwise to the stirring polymer solution at 0 oC and 

allowed to react for 3 hours. The polymer solution was then concentrated on the rotovap 

and precipitated twice into 1 L of ethyl acetate. For the more hydrophilic 

tetramethylammonium (TMA), the amount and ratio of the tetrahydrofuran:methanol 

solvent was adjusted (360 mL, 1:4, v/v) to prevent precipitation of the 
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tetramethylammonium hydroxide. The removal of excess TMA hydroxide was achieved 

through membrane dialysis (Spectra/Pro® 4, MWCO: 12k – 14kDa) in methanol. 

4.2.4. Solution Blending to Afford Mixed TMA:TBA P(I-ran-SS) Copolymers 

The mixed counterion systems were obtained through a solution blending 

procedure. Different weight percentages of the TMA- and TBA-containing copolymers 

(TMA:TBA; 100:0, 75:25, 50:50, 25:75, and 0:100) were blended to give a total of 1 gram 

of sample. The samples were dissolved into 10 mL of chloroform:methanol (7:3 , v/v) 

solution by mixing the polymer and solvent in a vortex until a homogenous, clear solution 

was obtained. The solutions were then cast into 7 cm diameter Teflon dishes, placed into a 

fume hood, and covered with a petri dish. The solvent was allowed to evaporate overnight. 

The polymer films were them placed into a vacuum oven at room temperature for 24 hours. 

4.2.5. Characterization 

1H NMR spectroscopy was performed on a Bruker Avance III HD 500 MHz 

spectrometer with the samples dissolved in a mixture of deuterated chloroform and 

deuterated methanol (0.6 mL, 2:1, v/v). Thermogravimetric analysis (TGA) was performed 

on a TA Instruments TGA Q500, and the samples were heated at a rate of 10 K/min from 

25 – 700 oC under a nitrogen atmosphere. X-ray scattering experiments were performed 

using a SAXS-LAB Ganesha instrument with a Cu-Ka 0.154 nm line in MAXS mode with 

scattering profiles collected over a 5 minute time interval. The X-ray scattering samples 

were melt pressed into metal washers at 80 oC and fixed in place by Kapton® tape. The 

scattering from an empty washer covered in Kapton® tape was subtracted from the 

scattering data prior to fitting with the Kinning-Thomas (K-T) modified hard sphere 

model.7 Dynamic mechanical analysis (DMA) was performed on a TA Instruments DMA 
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Q800 in oscillatory tension mode at a frequency of 10 Hz and a strain amplitude of 0.3 % 

with a preload force of 0.01N. The samples were heated at a rate of 3 K/min from -80 to 

80 oC. For rheology, the copolymers were molded into disks by melt pressing into metal 

washers (I.D. = 8 mm, t = 1.6) at 80 oC for approximately 30 minutes. The linear 

viscoelastic response of the material was characterized using an 8-mm parallel plate fixture 

in a Malvern Kinexus Pro+ rheometer. Small amplitude oscillatory shear (SAOS) 

measurement were measured between w = 1 - 100 rad/s from -20 – 80 oC in 10K increments 

at a strain amplitude of 0.1%. For tensile testing, dogbone test samples (length: 22 mm, 

width: 5 mm) were punched from the copolymer films (thickness: 0.22 – 0.12 mm) and 

tested using Instron 4468 with a 50 N load cell. Samples were tested at a rate of 100 

mm/min until failure. 

4.3. Results and Discussion 

4.3.1. Polymer Synthesis and Counterion Exchange 

In this study the P(I-ran-DMOASS)-8.3 copolymer was synthesized in a single 

batch to prevent variations in the chemical structure. Thus, the scaled-up polymerization 

was performed in a 600 mL metal pressure reactor. With the metal container, degassing of 

the reaction mixture could not be performed via the typical freeze-pump-thaw cycle. 

Instead, the solution was purged with nitrogen gas for 45 minutes. The high volatility of 

the isoprene results in isoprene loss during the purging process, thus a 30 mL excess of 

isoprene was used. Addition of the excess isoprene proved sufficient, and targeted 

composition were consistently obtained. Using this synthetic procedure, P(I-ran-

DMOASS) copolymer containing 8.3 mol% DMOASS and an estimated degree of 

polymerization of 1170 (determined from 1H NMR) was synthesized. 
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After the scaled-up synthesis, the base P(I-ran-DMOASS)-8.3 was divided into two 

different batches for counterion exchange. Using the counterion exchange synthetic 

methodology, the DMOA was exchanged with TMA or TBA as previously outlined in 

Chapter 3. Figure 4.1 shows the 1H NMR spectra of the two unmixed copolymers with the 

peaks associated with the counterion protons labeled. In both copolymer spectra, the 

vinylic isoprene and the aromatic styrene signals appear in the d 4.5 - 6.0 pmm and d 7.0 – 

8.0 ppm range, respectively. For P(I-ran-SS)-8.3-TMA, a single peak appeared at 3.20 ppm 

corresponding to the 12 methyl protons. The NMR spectrum of P(I-ran-SS)-8.3-TBA, on 

the other hand, possessed 4 separate peaks corresponding to the protons on the 3 methylene 

carbons and the 1 methyl carbon. Additionally, the 1:1 ratio between the normalized 

integrations of the aromatic styrene peaks and alkyl counterion peaks was found. With the 

TMA- and TBA-containing copolymers, solution blending allowed for the generation of 

mixed counterion ionomers. 

 

Figure 4.1.  1H NMR spectra for P(I-ran-SS)-8.3-TMA (top) and P(I-ran-SS)-8.3-
TBA (bottom) 

Solution blending allowed for easy control of the counterion compositions. The 

counterion composition of the blended copolymers was monitored using both 1H NMR 
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spectroscopy and TGA. The 1H NMR spectra of the solution blended copolymers are 

shown in Figure 4.2. In the mixed counterion systems, the protons on the carbon alpha to 

the nitrogen appeared at similar ppm for both counterions, thus overlapping of the peaks 

occurred. Confirmation of the counterion compositions was achieved by first setting the 

TBA methyl groups as a reference since no other peaks overlapped in this ppm range. With 

the TBA methyl signal set to 12 protons, the 8 methylene protons of TBA were subtracted 

from the total integration of signals between d 3.1 and 3.3 ppm to give the TMA 

contribution, and the TMA:TBA ratio was determined. As shown in Table 4.1, the mole 

percentage of each counterion, calculated from the weight percent of each copolymer 

blend, and the actual composition determined through NMR were in excellent agreement. 

 

Figure 4.2.  Superimposed 1H NMR spectra of the mixed TMA:TBA  P(I-ran-SS)-
8.3 copolymers 
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Table 4.1.  Comparison of the Calculated and Measured Counterion Compositions 

 

The degradation of the two counterions was monitored by TGA. Figure 4.3a and 

4.3b show the percent weight loss and first derivative of the percent weight loss as a 

function of temperature, respectively. The corresponding temperature at 5% weight loss 

(Td,5%) is reported in Table 4.2. For all of the copolymers, the degradation of the polymer 

backbone occurred at ~ 425 oC. Additionally, the TMA counterion clearly exhibited better 

thermal stability than the TBA counterion, and a 70 K difference between their 

corresponding Td,5% appeared. The decreased thermal stability of the TBA counterion 

resulted from the presence of beta protons. These beta protons provided an additional 

Hoffman elimination degradation pathways, with extraction of a beta proton leading to 

cleaving of the nitrogen-carbon bond and forming of a tertiary amine and an alpha-olefin. 

Since the TMA does not possess these beta protons, the only degradation pathway that 

could lead to the production of volatile organic molecules is through substitution.8 Due to 

their difference in degradation pathways, the degradation of each counterion can be 

distinguished, and a gradual transition between the two counterion degradation profiles 

occurred as the weight ratios were altered. 

Sample Weight Percent 
(TMA:TBA)

Expected Composition (mol%) Actual Composition 
(mol%)

TMA TBA TMA TBA 
100:0 100 0 100 0
75:25 78 22 77 23
50:50 54 46 54 46
25:75 28 72 30 70
0:100 0 100 0 100
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Figure 4.3.  a) Weight percent loss and b) its first derivative as a function of 
temperature of mixed TMA:TBA P(I-ran-SS)-8.3  copolymers 

Table 4.2.  Summary of TGA and SAXS Results 

 

4.3.2. SAXS Analysis of the Ion Aggregate Structure 

The ion aggregate structure was probed by SAXS. As detailed in Chapter 3, 

structural changes occur when more sterically hindered counterions are present in the 

ionomer chemical structure. Figure 4.4 shows the scattering profiles for the copolymer with 

different ratios of TMA and TBA. With the incorporation of more TBA counterion, the ion 

aggregate d-spacing increased from 5.8 to 7.1 nm (Table 4.2). The d-spacing, however, did 

a) b)

Sample 
(TMA:TBA)

Td,5%
(oC)

d-spacing
(nm)

R1

(nm)
Rca

(nm)
Vp

(nm3)

100:0 325 5.8 2.1 2.8 300 ± 6

75:25 304 5.8 2.0 2.7 298 ± 6

50:50 274 6.1 1.8 2.7 389 ± 8

25:75 264 6.8 1.8 3.0 616 ± 9

0:100 256 7.1 1.8 3.3 1000 ± 32
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not directly correlate with the TMA:TBA ratio. A considerable increase in d-spacing only 

occurred when TBA became the majority counterion, suggesting an alteration to the ion 

aggregate structure at these counterion compositions. 

 

Figure 4.4.  Offset SAXS profiles of the mixed TMA:TBA P(I-ran-SS)-8.3 
copolymers 

The scattering profiles of the different copolymers were fitted by the Kinning-

Thomas model to further understand the effect of the different weight ratios of the 

counterions.7 Figure 4.5a and 4.5b shows the scattering data with the K-T fitting and a plot 

of the R1, Rca, and 1/Vp as a function of TBA weight percent, respectively. The K-T fitting 

parameters are also displayed in Table 4.2. Several parameter trends persist throughout the 

mixed counterion series. First, minimal changes in the parameters appear between the 

100:0 and 50:50 copolymers, which agrees with the trend observed in the d-spacing, and 

further suggests a similar structure for these mixed counterion ionomers. A slight decrease 

in R1 occurred with increasing TBA counterion weight ratios. Thus, the formation of 

smaller electron-dense, ion aggregates occurs. With the increase in the volume of the ionic 
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species, the observation of smaller ion aggregates is unexpected and suggest that some of 

the ion pairs may be excluded from the ion aggregate structure. The exclusion of the bulkier 

TBA-associated ionic groups is presumably due to the increased aliphatic nature of the 

ionic group. In addition, the 50:50 TMA:TBA copolymer shows a slight increase in Vp, 

indicating a decrease in the number density of the ion aggregates. Upon further 

incorporation of the TBA counterion (25:75 and 0:100), major structural changes occur as 

shown by the increase in both Rca and Vp. At these counterion compositions, R1 remains 

constant. With these two results combined with findings from Chapter 3, the steric 

hindrance imposed by the bulky TBA counterions leads to a disruption of the ion aggregate 

structure. Additionally, these results suggest the formation of mixed counterion aggregates 

in which the majority counterion dictates the structure. 

 

Figure 4.5.  a) Kinning-Thomas fits for the scattering profiles of the mixed 
TMA:TBA P(I-ran-SS)-8.3 copolymer series and b) the R1, Rca, and 1/Vp plotted as a 

function of TBA wt% 

4.3.3. Thermal and Viscoelastic Behavior of the Mixed Counterion Copolymers 

As discussed in the previous chapter, the identity of the ammonium counterion does 

not alter the Tg of these P(I-ran-SS) ionomers. Thus, DMA was used to probe the thermal 

a) b)
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transitions above the copolymers’ Tg’s. Figure 4.6a and 4.6b shows the E’ and tan d as a 

function of temperature, respectively.  

 

Figure 4.6.  a) Storage modulus and b) tan d as a function of temperature for the 
mixed TMA:TBA P(I-ran-SS)-8.3 copolymer series (10 Hz, 3K/min) 

For all of the ionomers in the series, a rapid decrease in E’ occurs followed by a 

plateau at higher temperatures. This initial drop in E’ and the associated peak in tan d 

corresponds to the Tg of the isoprenic matrix, and the polymer segments within this domain 

gain mobility. Due to the ion aggregates, the three order magnitude decrease in E’ 

(typically seen when proceeding through the Tg in entangled polymers) does not occur. 

Instead, a plateau in E’ results due to the ion aggregates acting as physical crosslinks, which 

impedes further motion of the polymer chains.  The value of the plateau modulus and the 

temperature range in which it persists depends heavily on the counterion composition.  

For the 100:0 copolymer, the plateau modulus continues throughout the 

temperature ranged probed due to the strong dipole-dipole interactions of the TMA 

counterion. When increasing the ratio from 100:0 to 50:50, the plateau modulus increases 

in the 0 – 50 oC temperature range, indicating increased restriction of the polymer with the 

a) b)
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incorporation of more bulky TBA counterions. Additionally, the presence of some TBA 

counterions results in a second drop in E’ appears at temperatures above 50 oC, and the 

onset shifts to lower temperatures with the incorporation of more TBA counterions. From 

these observations, two phenomena appear. First, the restriction in mobility between 0 – 

50 oC is believed to be caused by a fraction of the ion pairs residing in the matrix, which 

can interact with other ion pairs not associated to a specific ion aggregate. At higher 

temperatures, these “free” ion pairs can facilitate increased dynamics of the aggregated 

ionic groups, thus weakening the ionic physical crosslinks and allowing for longer-range 

rearrangement of the polymer chains.9 Above the 50:50 TMA:TBA ratio, considerable 

mobility of the polymer results, and the plateau modulus decreases and becomes less 

distinct. Additionally, a peak arises in tan d. These features in the DMA data indicated 

further weakening of the ionic physical crosslinks. In these copolymers, the sterically 

hindered TBA counterion prevent the close interaction of the ion pairs from interacting, 

and the copolymer moduli becomes more temperature dependent.  

Master curves were constructed through rheology, and the linear viscoelastic 

behavior of the mixed counterion copolymers was evaluated. Figure 4.7a - 4.7c show the 

storage moduli, loss moduli, and normalized d of the master curves plotted as a function of 

frequency. Free shifting was used in time-temperature superposition, with the horizontal 

shift factor aT dominating over the vertical shift factor bT. Additionally, a polyisoprene 

homopolymer is plotted for comparison. As seen in the plot of the viscoelastic functions, 

the polyisoprene control exhibits a plateau in the dynamic moduli and a minimum in the 

normalized d, corresponding to entanglements. Following this plateau at lower frequencies, 

the terminal regime appears as shown by G’ ~ w2, G” ~ w1, and normalized d = 1. With the 
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incorporation of the ionic moieties, the dynamic moduli increases, and the terminal regime 

shifts to lower frequencies. For all of the counterion ratios, the terminal regime was not 

reached at 80 oC.  

 

 

Figure 4.7.  Linear viscoelastic response of PI and the mixed TMA:TBA P(I-ran-
SS)-8.3 copolymer series (Tref = 50 oC): a) storage and b) loss modulus as a function 
of frequency; c) normalized d and d) continuous relaxation time spectra calculated 

from the SAOS data.  

For the 100% TMA copolymer, the dynamic moduli changes the least throughout 

the frequency range, and elastic behavior dominates. This elasticity originates from the 

strong dipole-dipole interactions that holds the ion aggregates together, providing more 

a) b)

c) d)
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polymer-polymer connectivity. With the presences of the TBA counterion, the copolymers 

exhibited an increase in the dynamic moduli at high frequencies (low temperatures), and 

the polymer chains become more restricted due to the larger aggregates. At lower 

frequencies (high temperatures), the opposite trend is observed, and the dynamics increase 

with the TBA counterion incorporation. Additionally, the extent of these changes became 

more pronounced with the presence of more TBA counterions, and the copolymers exhibit 

more viscous behavior as shown by the increase in normalized d. These trends are 

consistent with the DMA data, and the role of the bulky TBA counterion on both the 

structure and dynamics becomes apparent. 

Figure 4.7d shows the continuous relaxation spectra for the mixed counterion 

copolymer series. These relaxation spectra were calculated from the dynamic data using a 

method developed by Baumgaertel and Winter.10 All of the copolymers exhibit a single 

relaxation process. The number of relaxation events at short time scales increases with the 

incorporation of the bulky TBA counterions as shown by the increase in H. These 

relaxation events are believed to correspond with the relaxation of regions possessing both 

the isoprene and ionic groups. The relaxation becomes more rapid with increasing TBA 

counterion incorporation. Additionally, the relaxation process extends to longer times 

when more TMA counterions are present in the ion aggregate structures. The final 

relaxation mode indicates additional relaxation processes at long times. 

4.3.4. Mechanical Properties of the Mixed Counterion Copolymer Series 

The mechanical properties of the copolymer series was evaluated by performing 

tensile tests. Figure 4.8 shows stress-strain curves for the 100:0 to 25:75 TMA:TBA 

copolymers, and the reported Young’s modulus, tensile stress, and tensile strain are 
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reported in Table 4.3. Tensile tests could not be performed on the 100% TBA copolymer 

due to its more viscous character, which made preparation of the dogbone tensile samples 

difficult. 

 

Figure 4.8.  Stress-strain curves of the mixed TMA:TBA P(I-ran-SS)-8.3 copolymers 
(crosshead speed = 100 mm/min) 

Table 4.3.  Summary of the Young’s Modulus, Tensile Stress and Tensile Strain of 
the mixed TMA:TBA P(I-ran-SS)-8.3 copolymers 

 

 During the tensile tests, the copolymers deformed homogeneously, with strain 

whitening at high strain. As shown by the stress-strain curves, all of the copolymers exhibit 

Sample 
(TMA:TBA)

Young’s Modulus
(MPa)

Tensile Strength
(MPa)

Elongation at 
Break
(%)

100:0 61 21 700

75:25 57 16 680

50:50 62 12 680

25:75 11 9 1180
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plastic-like behavior where, after the elastic deformation at low strain, the polymer yielded. 

With further strain, strain hardening was observed until failure occurred. The tensile 

strength and the stress required for yielding increased with the presence of more TMA 

counterions. Thus, the strong electrostatic interactions of the TMA counterion produced a 

more robust physically crosslinked network that required higher stress for plastic 

deformation and failure. These values were obtained from one sample, and more testing is 

required to obtain statistically relevant values. Subsequent experiments were performed; 

however, increased relative humidity in the laboratory prevented the collection of 

repeatable data.  

Figure 4.9a and 4.9b show multiple stress strain curves for the 100:0 and 50:50 P(I-

ran-SS)-8.3 samples, respectively.  The different colors signify when the tests were 

performed, and the legend indicates the thickness of each sample. The red data set were 

performed at higher relative humidity due to conditions of the testing facility. This increase 

in the humidity caused a plasticization of the ion aggregates, resulting in a decrease in the 

sample’s mechanical properties. The degree of plasticization was found to correlate with 

the thickness of the sample, and thinner samples were able to absorb moisture at a more 

rapid rate. With these findings, subsequent tensile test should be performed under dry 

testing conditions in order to obtain reproducible data. 
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Figure 4.9.  Stress-strain curves of a) 100:0 and b) 50:50 mixed TMA:TBA P(I-ran-
SS)-8.3 copolymers (crosshead speed = 100 mm/min). The legend displays the 

thickness of each sample. The black and red colors correspond to different days of 
testing. 

4.3.5. Correlating the Structure, Dynamics, and Mechanical Properties 

From the SAXS, DMA, rheology, and tensile tests, insight into the role of 

counterion steric on the structure-property relation of these mixed counterion P(I-ran-SS)-

8.3 copolymers emerges. From SAXS profiles and K-T fitting of the copolymer with 

counterion ratios between 100:0 – 50:50, the TMA counterions provides sufficient dipole-

dipole interactions to maintain the ion aggregates structures at room temperature. 

Additionally, the increased moduli at low temperatures (DMA) and high frequency 

(rheology) with increasing TBA incorporation indicates further restriction of the segment 

dynamics associated with the isoprene matrix. This result suggests that some fraction of 

the ion pairs are excluded from the ion clusters and reside in the isoprene matrix. In 

addition, the thermograms from DMA show minimal change in the thermal transition 

corresponding to the Tg of the isoprene matrix. Thus, these “free” ion pairs are believed to 

preferentially arrange in the area surrounding the ion aggregates, and regions containing 

pure isoprene matrix with no counterion pairs are still present within the copolymers. 

a) b)
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At high temperatures and low frequencies, the dynamic moduli decreases due to 

less connectivity between the polymer chain, and the relaxation of the polymer chains 

occurs over a smaller time interval. Additionally, the onset of the terminal regime shifts to 

higher frequencies as shown by the upturn in the normalized d. These observations are 

believed to result from two separate phenomena within these copolymers. The decrease in 

dynamic moduli results from the increased dynamics with the TBA counterion that relax 

on shorter time scales; however, the interactions provided by the TMA counterions persist 

and a long time-scale relaxation process becomes more distinct as the TBA counterion 

content is decreased. Thus, it is believed that the TBA counterions relax first and dipole-

dipole interactions between the sulfonate-TMA ion pairs are still present. The shift of the 

onset of terminal flow to higher frequencies indicates that while the sulfonate-TMA ion 

pairs provide increased connectivity, the presence of the TBA counterions still affect the 

dynamics of the dipole-dipole interactions and introduces some mobility to the ion 

aggregates. Once the TBA becomes the majority counterion, disruption of the ion 

aggregates is achieved and the dynamic behavior of the 25:75 and 0:100 become similar. 

4.4. Conclusions 

In this chapter, P(I-ran-SS)-8.3 containing binary mixtures of TMA and TBA 

counterions were produced through solution blending. These two quaternary ammonium 

counterions offered differing degrees of steric hinderance, and the TMA:TBA weight ratios 

investigated in this study included 100:0, 75:25, 50:50, 25:75, and 0:100. By 1H NMR 

spectroscopy, integrations of the protons located on the pendent alkyl chains confirmed the 

TMA:TBA ratios of the solution blended ionomers. The SAXS profiles and K-T fitting 

showed only slight structural changes between 100:0 and 50:50, while major modification 



 

 98 

of the structure appears once the ratio reaches 75:25 and above. The linear viscoelastic 

properties of the mixed counterion ionomers further confirmed this observation. Therefore, 

a heterogeneous distribution of the TBA counterion is suggested at low TBA content where 

some of the sulfonate-TBA ion pairs reside in regions outside of the ion aggregates when 

sufficient temperatures are reached (> 0 oC). At equivalent ratios of the two counterions, 

ion aggregates possessing both counterions appear. Thus, the structure and properties of 

these low Tg, amorphous ionomers can be specifically tuned by mixing counterions. The 

conclusions from this investigation offer insight into the role of the counterion, and by 

applying this knowledge, more complex ionomer systems can be developed for advance 

applications such as soft actuators and shape memory materials.  
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CHAPTER 5 

CONCLUSIONS AND PERSPECTIVE 

5.1. Introduction 

In this final dissertation chapter the conclusions from the three projects presented 

in this dissertation will be summarized, and the impact of these findings will be integrated 

into the current understanding of these complex systems. Based on these results, future 

directions will be proposed to expand upon this work to further the understanding of the 

structure-property relationship of ionomers, specifically ionomer that utilize these 

unconventional, bulky ammonium counterions. 

5.2. Summary of Conclusions 

In Chapter 2, the first reported direct solution copolymerization of isoprene with 

styrenesulfonate was presented.1 The solution copolymerization of these two incompatible 

monomers relied on modification of the styrenesulfonate monomer by exchanging the 

sodium counterion to DMOA. The DMOA counterion provided styrenesulfonate with 

sufficient hydrophobicity to dissolve in anisole at elevated temperatures (125 oC), allowing 

for its nitroxide mediated copolymerization with isoprene. This synthetic strategy allowed 

for facile control over the copolymer’s ion content by adjusting the feed ratio of the two 

comonomers. Additionally, the correlation between the feed ratio and the final composition 

suggested a random arrangement of the two comonomers along the polymer chains. Thus, 

modification of styrenesulfonate with more hydrophobic, bulky ammonium counterions 

was shown to be powerful synthetic strategy to directly synthesize sulfonated ionomers.  

In addition to developing this synthetic methodology, Chapter 2 also provided a 

comprehensive evaluation of the morphology as a function of ion content for these P(I-ran-
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DMOASS) copolymers. Using a combination of SAXS, thermal, and viscoelastic 

characterization, a transition from ion cluster structures to a continuous ionic phase was 

observed as the ion content increased. A coexistence of both ion clusters and the continuous 

ionic phase was also found at intermediate ion contents. This critical assessment of the 

structure provides great insight into the role of ion content on the organization of the ionic 

groups particularly at ion content in between traditional ionomers and polyelectrolytes. 

This work found a correlation between the copolymer’s Tg and the Fox equation at high 

ion contents, indicating a phase-mixed morphology. 

Additionally, the SAXS profiles showed a high q scattering feature at all ion 

contents, including the PDMOASS homopolymer, which is often attributed to an ion 

cluster structure. For the homopolymer, this scattering feature instead corresponded to a 

backbone-backbone spacing. The similarity between the ion cluster structure and 

backbone-backbone spacing in the scattering profiles demonstrates the limitation of SAXS 

characterization for these copolymers. Thus, consideration of the ion content and the ionic 

group chemical structure is necessary to prevent misinterpretation of the data, especially 

when pendent groups are attached to the ionic moiety. Furthermore, other characterization 

methods should be used in combination with SAXS to confirm the structure of an ionomer. 

In Chapter 3, the role of counterion sterics on the structure and dynamics of P(I-

ran-SS)-7 copolymer at a fixed ion content was explored. This study provided the first 

comprehensive investigation of counterion sterics in a low Tg, amorphous ionomers. A 

systematic investigation of the counterion sterics was achieved by using a series of 

symmetric tetraalkylammonium with the pendent alkyl group varying from methyl to butyl. 

The characterization of this ionomer system focused on correlating the aggregate structure 
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to the dynamics on both the molecular and macroscopic scale.  From the K-T fitting of the 

SAXS profiles, an increase in the steric hinderance from sodium to TEA resulted in a fewer 

number of larger aggregates with some ionic group residing in the isoprene matrix. With 

the TPA and TBA counterions, the large steric hinderance caused major structure 

modifications. These changes were reflected in the viscoelastic behavior of the copolymers 

in which both the changes in structure and dipole-dipole interaction strength appeared at 

high and low frequencies, respectively. The results from this detailed investigation provide 

a fundamental understanding of the effect of counterion steric that will help guide future 

design of ionomers. Specifically, TMA and TEA offer slightly sterically hindered 

structures that can increase the dynamics of the ion aggregates without excessively 

weakening the physically crosslinked ion aggregate network. 

In Chapter 4, P(I-ran-SS)-8 copolymers containing binary mixtures of TMA and 

TBA counterions were explored. These counterions were selected to investigate the 

structure and dynamics of ionomers containing multiple counterions of differing steric 

hinderance. In these P(I-ran-SS)-8 ionomers,  TMA:TBA ratios of 100:0, 75:25, 50:50, 

25:75, and 0:100 were prepared by solution blending. Correlation of the SAXS and linear 

viscoelastic behavior indicated the formation of mixed counterion systems in which the 

majority counterion dictates the dynamics of the ionomer. The main finding from this work 

was the ability to effectively modify the dynamics at both long and short time scales 

through the appropriate selection of counterions. Specifically, the TBA counterion 

controlled the short time scale relaxations of the ionomer while the TMA counterion 

introduced a longer time scale relaxation process due to the stronger dipole-dipole 

interactions. 
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5.3. Future Perspective 

The work presented in this dissertation provides detailed insight on the role of ion 

content, counterion sterics, and mixed counterion ionomer with various ammonium 

counterions and their effect on the structure and dynamics of ionomers. Building off of 

these results, several future investigations can be performed. These proposed directions 

involve chemical modification of the P(I-ran-SS) ionomers through hydrogenation and 

chemical crosslinking in addition to further exploration of other ammonium counterions. 

5.3.1. Chemical Modification of Polyisoprene-Based Ionomers 

The P(I-ran-SS) copolymer developed in this dissertation offers several 

opportunities for further synthetic modification. One major limitation of the current 

isoprene-based ionomers is their lack of thermal and chemical stability. This instability 

results from the carbon-carbon double bond present in the polymer backbone, which are 

prone to thermal oxidation and reactions with strong electrophiles. Hydrogenation of the 

polyisoprene ionomer would mitigate these issues while maintaining the low Tg, 

amorphous polymer structure. Several studies have shown that noncatalytic hydrogenation 

of isoprenic polymers can be achieved using dimide.2–4 In these reactions, the dimide 

molecules are typically generated in situ through the thermolysis of p-toluenesulfonyl 

hydrazinedimide at elevated temperatures (~135 - 145 oC). Using this method, the isoprenic 

portions of the P(I-ran-SS) copolymers can be selectively hydrogenated to afford improved 

thermal stability. With these thermally stable, low Tg ionomers, the linear viscoelastic 

behavior can be investigated at temperatures above 80 oC. Access to a higher temperature 

range would allow for the complete characterization of the ionomers’ dynamics and the 

associated relaxation processes arising from the strong dipole-dipole interactions of the 
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ionic groups. Additionally, the melt processability of these ionomers and the effects of the 

counterion sterics could be evaluated at elevated temperatures. 

Another useful synthetic modification offered by these P(I-ran-SS) ionomers is 

crosslinking. With the available double bonds in the polyisoprene backbone, these 

polymers can be crosslinked by either controlled thermal oxidation5 or UV-initiated thiol-

ene click chemistry.6 This crosslinked polymer systems would then possess both a 

covalently crosslinked network in addition to a physically crosslinked network provided 

by the ion aggregates. With the presence of both a chemical and physical network, these 

polymer offer the possibility to develop tough elastomers.7 Through the appropriate 

selection of the counterion, the association of the physical ionic network can be tuned to 

obtain dynamic structures that can increase the strength of the elastomer without sacrificing 

its extensibility. In addition, as demonstrated in previous studies, these features allow for 

the development of shape-memory materials.8 For these materials, the covalent crosslinks 

provide the permanent network while the ionic crosslinks allow for “programming” of 

different shapes at elevated temperatures. With the strong ionic bonds, these temporary 

shape will persist until sufficient temperature is reached that would allow for the 

reorganization of the ionic groups.  

5.3.2. Additional Studies on Ammonium Counterions 

As shown throughout this dissertation, the molecular structure of quaternary 

ammonium counterions plays an important role in dictating the structure and properties of 

their corresponding ionomers. Specifically, Chapter 3 showed that increasing the alkyl 

chain length of the tetraalkylammonium counterion from methyl to butyl weakened the 

electrostatic interactions and altered the organization of the ionic groups in the aggregate 
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structures. Asymmetric quaternary ammoniums are an alternative series of counterions to 

explore. Figure 5.1 shows several asymmetric quaternary ammonium counterions of 

interest. By increasing the length of only one of the alkyl chain, these counterions offer 

less steric hinderance that may provide some disruption of the ion cluster structure without 

diminishing the dipole-dipole interactions to the extent of the symmetric counterions. Thus, 

improved thermomechanical behavior are anticipated at both low and high temperatures. 

Additionally, the cyclic and adamantylammonium counterions offer more rigid counterions 

that offer better thermal and chemical stability in addition to different polymer dynamics.  

 

Figure 5.1.  Proposed asymmetric quaternary ammonium counterions 

As shown in Chapter 4, the mixed counterion systems offer great benefits that 

cannot be obtained through single counterion systems. With the bulky 

tetrabutylammonium counterion, significant steric hinderance decreased the thermal and 

mechanical properties of the copolymers. Blends of TMA with counterions of less steric 

hinderance such as the TEA should provide better mechanical properties and help decrease 

the melt viscosity. Thus, these TMA:TEA counterion mixtures would best be investigated 

in the proposed hydrogenated P(I-ran-SS) ionomer system in which their viscoelastic 

behavior at elevated temperatures can be evaluated. 

N NNN N N N N
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5.4. Outlook 

With the wealth of knowledge available for these ionomers systems, much work 

can still done in this field. Particularly, this work should be extended and developed for 

different advanced applications. Much of the current work on these applications are limited 

by the availability of the polymer. With the development of these sulfonated, low Tg 

elastomers, these polymers can have a significant impact in various fields. Some possible 

applications to explore include membranes, self-healing materials, and actuators.  
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APPENDIX 

 

Figure 6.1.  1H NMR spectrum of the DMOASS monomer in chloroform-d 

 

Figure 6.2.  Synthesis of polyisoprene (PI) homopolymer 
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Figure 6.3.  1H NMR spectrum of PI homopolymer in chloroform-d 

 

Figure 6.4.  Synthesis of poly(N,N-dimethyloctylammonium styrenesulfonate) 
(PDMOASS) 
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Figure 6.5.  1H NMR spectrum of PDMOASS homopolymer 

 

Figure 6.6.  Representative 1H NMR spectrum of the P(I-ran-DMOASS)-20 
copolymer 
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Table 6.1.  Overview of the P(I-ran-DMOASS) Synthesis 

 

 

Figure 6.7.  Horizontal (aT, open) and vertical (bT, closed) shift factors for the P(I-
ran-DMOASS) master curves along with WLF fits 

Sample
DMOASS 

Conversion
Feed 

DMOASS
Actual DMOASSa Isoprene Composition (mol %)

(%) (mol %) (mol %) (wt %) 1,4 1,2 3,4 Total
P(I-ran-DMOASS)-8 38 10 8 30 79.8 3.5 9.8 92
P(I-ran-DMOASS)-13 39 15 13 42 71.7 3.5 13.9 87
P(I-ran-DMOASS)-17 29 20 17 51 71.5 3.7 7.7 83
P(I-ran-DMOASS)-20 34 25 20 56 66.5 3.3 10.0 80
P(I-ran-DMOASS)-34 42 35 34 72 55.5 2.0 8.4 66
P(I-ran-DMOASS)-40 42 40 40 77 48.9 2.0 9.5 60
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Figure 6.8.  Linear viscoelastic responses of the P(I-ran-DMOASS) copolymers 
based on the three structural regimes:  ion clusters (30 wt%), continuous ionic phase 

(56 wt%), and the coexistence of both structures (51 wt%). a) Storage (open) and 
loss (closed) modulus; b) d as a function of frequency. 
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Figure 6.9.  Fox Plot with Tg values determined from both DSC (black squares) and 
DMA (blue triangles). The red line represents the prediction for the Fox equation. 

 
 
 
Table 6.2.  Volumes of the Tetraalkylammonium Chloride and Adjusted Values for 

Tetraalkylammonium Sulfonate Estimations 

Sample MW 
(g/mol) 

r  
(g/cm3) 

𝑽𝒄𝒂𝒕𝒊𝒐𝒏;𝑪𝒍  
(nm3) 

𝑽𝒄𝒂𝒕𝒊𝒐𝒏;𝑺𝑶𝟑 
(nm3) 

Na2SO4 142.04 2.664 0.089  

NaCl 58.44 2.16 0.045  

TMACl 109.06 1.17 0.155 0.173 

TEACl 165.71 1.08 0.255 0.273 

TPACl 221.81 1.033 0.357 0.375 

TBACl 277.92 1.05 0.440 0.458 
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Table 6.3.  Values Used for the Calculation of Nagg(Vp)  

Sample fSS hSS Vp Nagg(Vp) 

PSSS 0.157 3.24 234 119 

PTMASS 0.189 2.60 383 188 

PTEASS 0.221 2.13 385 182 

PTPASS 0.251 1.81 656 298 

PTBASS 0.278 1.57 902 394 

 
 
 

 

Figure 6.10.  Spin diffusion experiments of P(I-ran-SS)-7-TPA with a 2 ms T1r filter. 
Experiments were conducted at 263K. Diffusion time: 0.01 (blue), 1 (red), 3 (green), 

and 10 (purple) ms. The equilibrium spectrum (yellow) is plotted for reference. 
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Figure 6.11.  DSC thermograms for the P(I-ran-SS)-7-x copolymer series.
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