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ABSTRACT 

THREE ESSAYS ON UNCERTAINTY IN SOCIAL DILEMMAS 

 

SEPTEMBER 2019 

 

ABDUL H. KIDWAI, B.A., ALIGARH MUSLIM UNIVERSITY 

 

M.A., TATA INSTITUTE OF SOCIAL SCIENCES 

 

PH.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

 

Directed by: Professor Angela C.M. de Oliveira 

 

Social dilemmas are settings where the interest of the individual is at odds with those of 

society i.e. overharvesting in a fishery, not contributing to a public good. These dilemmas 

are widespread and take myriad forms with public goods and common-pool resources 

being the most prominent ones. The purpose of this dissertation is to examine how 

individual behavior is impacted by the presence of uncertainty in public goods and 

common-pool resources. These dilemmas exhibit two types of uncertainty, strategic and 

environmental. Strategic uncertainty refers to uncertainty about the actions of other 

individuals facing the dilemma i.e. will other individuals contribute to the public good or 

not. Environmental uncertainty pertains to uncertainty about the characteristics of the 

dilemma i.e. is the resource size large or small. While strategic uncertainty has been 

extensively examined, the existing research on environmental uncertainty is limited. 

Since the social dilemmas in the real-world are often marked by environmental 

uncertainty, policy-makers need to know how individual behavior in social dilemmas is 

impacted by environmental uncertainty. The dissertation utilizes laboratory experiments 

to study the issue because laboratory experiments allow us to implement different forms 

of environmental uncertainty, which would not be possible in the field.  
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CHAPTER 1 

 

INTRODUCTION 

1.1 Overview 

A number of environmental problems that society faces, from tackling climate 

change to over-harvesting in fisheries, from preserving biodiversity to reducing pollution, 

can be classified as social dilemmas (SDs). The challenge posed by SDs is that in such 

settings individual rational action may lead to a socially sub-optimal outcome1 (Kollock 

1998). All SDs are marked by strategic uncertainty, that is, uncertainty about the actions 

of other people (Rapoport & Au 2001). For instance, if I reduce my emission levels, will 

others do so as well, thereby reducing pollution? Or will others increase their emissions, 

thereby leaving pollution levels unchanged? In addition to strategic uncertainty, SDs 

might exhibit scientific uncertainty - that is, uncertainty about the characteristics of the 

SD itself including (but not limited to) - the size of the resource, the number of users, the 

regeneration rate, the costs (or benefits) of overcoming the SD, amongst others, might not 

be known with precision (Van Dijk et al. 1999). Broadly speaking, scientific uncertainty 

manifests itself in two forms2: risk (where the probabilities associated with the outcomes 

 
1 A common but very narrow definition of SDs is that the Nash equilibrium is different from the social 

optimal (Dawes 1980). Such a definition of SDs only includes the prisoners’ dilemma whereas SDs 

encompass a broader category of games such coordination and hawk-dove games (Kollock 1998). In these 

games, there are multiple Nash equilibria and the social optimal is also a Nash equilibrium. Therefore, 

individual rational action may, but not necessarily, lead to a socially sub-optimal outcome in a SD.     
2 Although risk is well-defined in the literature, there is still considerable debate about the precise definition 

of uncertainty and ambiguity (Machina & Siniscalchi 2014). We follow Etner, Jeleva & Tallon (2012; 

p.234) who distinguish between risk and ambiguity as “Uncertainty or ambiguity is then meant to represent 

‘non-probabilized’ uncertainty – situations in which the decision maker is not given a probabilistic 

information about the external events that might affect the outcome of a decision – as opposed to risk 

which is ‘probabilized’ uncertainty.”. A full discussion on this issue is beyond the scope of this 

introduction but see Trautmann & van de Kuilen (2015), Etner, Jeleva & Tallon (2012) and Camerer & 

Weber (1992) for comprehensive reviews on ambiguity. 



 

 2 

are known) and ambiguity (where the probabilities associated with the outcomes are 

unknown).  

The aim of this dissertation is to jointly examine the impact of strategic and 

scientific uncertainty in SDs on individual decision-making. This is important for several 

reasons. First, a wide-variety of environmental problems comprise of both strategic and 

scientific uncertainty. Therefore, it informs policy-makers about how uncertainty affects 

environmental problems such as over-harvesting and what kind of interventions will be 

useful in overcoming these problems. For environmental policy to be successful, it needs 

to account for how individuals cope with uncertainty (Fulton et al. 2011; Wilson 2002). 

Second, this dissertation addresses a major gap in the existing body of experimental 

economics literature on SDs3 because it has overwhelmingly focused on the impact of 

strategic uncertainty whereas scientific uncertainty has remained relatively under-

explored (Budescu, Suleiman & Rapaport 1995). 

Scientific uncertainty is of central importance in environmental economics 

(Pindyck 2007), however, a large part of scholarship on SDs (such as common-pool 

resources) has neglected this aspect (Suleiman 2004). It has analyzed individual behavior 

in deterministic settings, that is, where all the relevant elements of the environment, such 

as the number of users, size of the resource, regeneration rate, relevant pay-offs, etc. are 

all known with certainty (Apesteguia 2006). Moreover, even when scientific uncertainty 

 
3 Economics indeed has a vast literature on both SDs and decision-making under uncertainty but it has 

mostly analyzed these two issues in isolation. This trend is now changing, see Botelho, Dinar, Pinto & 

Rapaport (2015) and citations within. However, social psychologists have been working on uncertainty in 

SDs for quite some time and have produced a large body of literature on it (Van Lange et al. 2013; de 

Kwaadsteniet et al. 2007)  
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in SDs is introduced, it is done so in the form of risk4 (Botelho et al. 2014; Barrett & 

Dannenberg 2012; Dickinson 1998; Walker & Gardner 1992). Therefore, investigating 

the impact of different types of uncertainty in SDs, not only informs policy, but also 

pushes the frontiers of our scientific knowledge.  

I rely on laboratory experiments to examine uncertainty in SDs. This 

methodology is well-suited to analyze this issue because it allows me to manipulate the 

type of uncertainty and the SD in a controlled manner, thus, avoiding confounds. 

However, as with any research methodology, there are strengths and weaknesses 

associated with laboratory experiments. 5 One purported weakness is that laboratory 

experiments ‘unrealistic’ and offer very limited external validity. Siakantaris (2000) 

argues that they are uninformative about the real-world, or at the very best, useful for 

understanding market auctions. The empirical evidence refutes such an assertion. 

Laboratory experiments have contributed immensely to our understanding of 

environmental economics (Cherry, Kroll & Shogren 2007; List 2007). More specifically, 

these experiments have provided invaluable policy insights for tackling environmental 

SDs such as common-pool resources and localized public goods (Cárdenas et al. 2017; 

Ostrom 2006; Cummings, Holt & Laury 2004).  

1.2 Dissertation Outline 

This dissertation is comprised of five chapters, of which this introduction is the 

first. The second chapter is a literature review of experimental studies of SDs.  

 
4 Ambiguity or “hard uncertainty” has been examined in experiments pertaining to environmental policy, 

but mostly in non-strategic settings (Blackwell, Grijalva & Berrens 2007), however, Dannenberg et al. 

(2015) is an exception. It explores the impact of an ambiguous threshold on the provision of public goods. 
5 For a detailed review of experimental methodology in economics, including its philosophical 

underpinnings, see Guala (2005). 
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My third chapter, Uncertainty and Intentions in a Threshold Public Good, 

investigates the impact of uncertain benefits on the voluntary (or private) provisioning of 

a threshold public good such as a dyke to prevent flood-damages. It makes a novel 

contribution to the literature on uncertain benefits in threshold public goods (McCarter, 

Rockmann & Northcraft 2013; Barrett & Dannenberg 2012; Van Dijk et al. 1999) by 

examining the uncertainty emerging from various sources. For instance, the benefits from 

building a dyke to prevent flood-damages are uncertain because of the frequency and 

intensity of floods (natural or environmental source of uncertainty) and also because of 

the engineers who built it, if they did a good job, the benefits will be high and vice-versa 

(human or intentional source of uncertainty). However, the existing studies have only 

examined the environmental source of uncertainty, and have neglected the intentional 

source of uncertainty. Whereas my chapter includes both these kinds of uncertainty. We 

find that contributions to the public good are robust to various types of uncertainty on the 

return.  

The fourth chapter, Risk and Ambiguity in Threshold Common Pool Resources is 

a test of a theory developed by Aflaki (2013). To the best of my knowledge, this is the 

first experimental study of ambiguity in a threshold common-pool resource whereas 

earlier work only examined risky thresholds in common-pool (Botelho et al. 2014; 

Gustafsson, Biel & Gärling 1999; Budescu et al. 1995; Rapoport and Suleiman 1992). I 

find that contrary to the theoretical predictions, ambiguity on the threshold leads to a 

higher likelihood of the resource being destroyed relative to when the threshold.  

The fifth chapter, Common-Pool Resources under Threshold and Group Size 

Uncertainty, examines the impact of group size uncertainty on withdrawals from a 
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common-pool resource which also marked by threshold uncertainty. My experimental 

design captures a wide-range of settings, where the users of a resource face uncertainty 

on two dimensions, one is that they do not know the exact size of the resource and the 

other is that they do not know how many other users are out there. The key finding is that 

the presence of group size uncertainty reduces withdrawals from the resource, but only 

when the threshold uncertainty is low. This highlights the joint impact of threshold and 

group size uncertainty on withdrawals decisions. 

We now turn to our second chapter which reviews the relevant literature 

pertaining to SDs.  
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CHAPTER 2 

 

UNCERTAINTY IN SOCIAL DILEMMAS: LITERATURE REVIEW 

2.1 Introduction 

A social dilemma refers to any situation where the interests of the individuals are 

at odds with those of the group. A wide-variety of phenomena can be classified as social 

dilemmas, ranging from the pressing matter of tackling global climate change to the more 

mundane affair of graduate students raising money for a common coffee-maker for their 

lab. Given the importance and pervasiveness of social dilemmas, they have been a subject 

of extensive inter-disciplinary inquiry. Laboratory experiments have been used in social 

science, psychology, political science and economics to better understand social 

dilemmas. A robust finding from the research on social dilemmas is that humans 

cooperate a substantially more than predicted by economic theory (Sell & Reese 2007). 

The purely self-interested Homo-economicus as a good representative of actual human 

behavior does not stand up to empirical scrutiny. Which in turn raises the question, what 

facilitates or deters cooperation? Much of the research on social dilemmas seeks to 

answer this very question.   

Discussions on social dilemmas can be traced as far back as to Plato and Aristotle 

(as cited in Kollock, 1998) but the origin of the present scholarship on social dilemmas is 

much more recent. According to Kopelman, Weber & Messick (2002), the rigorous 

analysis of social dilemmas can be attributed to the path-breaking work, Theory of Games 

and Economic Behavior (1944) by von Neumann and Morgenstern. The theoretical 

apparatus of game theory enabled social scientists, particularly social psychologists and 

economists, to model social interdependence for both zero-sum and non-zero-sum games. 
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A large body of empirical work followed which identified a plethora of factors 

responsible for enhancing or deterring cooperation in social dilemmas such as the social 

value orientation of an individual, the ability to communicate with others, the option to 

monitor and punish participants, framing of the dilemma, priming of the subjects amongst 

others. For an overview of the literature on social dilemmas, see Van Lange, Joireman, 

Parks & Van Dijk (2013), Weber, Kopelman & Messick (2004), Kopelman et al. (2002), 

Kollock (1998), Komorita & Parks (1994), Messick & Brewer (1983) and Dawes (1980), 

while the purpose of this chapter is to focus on the research exploring uncertainty in 

social dilemmas. 

A common misconception about a social dilemma is that it is identical to the 

prisoner’s dilemma (van Lange et al. 2013). This mistaken equivalence can be partly 

attributed to the early formal definitions of social dilemmas which made ‘free-riding is 

the dominant strategy’ a defining property of a social dilemma. For instance, Dawes 

(1980), identifies two features which characterize a social dilemma – (i) an individual 

receives a higher pay-off by not cooperating, irrespective of what others do; (ii) if all 

individuals choose to not cooperate, then they all receive a lower pay-off than if they had 

all chosen to cooperate. The definition in Dawes (1980) is inadequate because it only 

describes the prisoner’s dilemma whereas social dilemmas encompass a broader class of 

dilemmas.  Social dilemmas are better understood as a setting where at least one deficient 

equilibrium exists (Kollock 1998). It is deficient because it is marked by an inefficient 

outcome and it is an equilibrium because none of the players individually have an 

incentive to change their behavior. This revised definition of social dilemmas admits a 

variety of dilemmas including the three of the most widely studied ones – the prisoner’s 
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dilemma, the assurance game and the chicken game (van Lange et al. 2013; Kollock 

1998). 

2.2 Uncertainty and Social Dilemmas 

Broadly speaking, there are two possible types of uncertainty in a social dilemma 

- strategic and environmental. Strategic (or social) uncertainty refers to uncertainty which 

is a consequence of not knowing ex ante what other players are going to do. Whereas 

environmental (or scientific) uncertainty refers to uncertainty regarding the 

characteristics of the dilemma.6 Environmental uncertainty includes (but is not limited to) 

uncertainty about the following – the size of the resource, the threshold, the returns from 

cooperation, the size of the group, the distribution and size of the endowments. Early 

discussion on strategic and environmental uncertainty can be traced to Messick, Allison 

& Samuelson (1988) and Suleiman & Rappaport (1988). 

The first type of uncertainty, that is, strategic uncertainty is always present in a 

social dilemma. The reason being that by definition a social dilemma involves interaction 

with other agents and one does not know beforehand what actions would be undertaken 

by others. The second type of uncertainty, that is, environmental uncertainty may or may 

not exist, but it is fairly common in real-world social dilemmas (Barrett & Dannenberg 

2012; de Kwaadsteniet, van Dijk, Wit & de Cremer 2006). 

Despite the vast scholarship on social dilemmas, an important empirical feature of 

social dilemmas, environmental uncertainty remains understudied (Van Dijk, Wit, Wilke 

 
6 It should be noted that in many studies the terms, risk, uncertainty and ambiguity are used inter-

changeably. For our purposes, risk and uncertainty, refer to the case where subjects are aware of the 

objective probabilities associated with the possible outcomes. While ambiguity refers to those settings 

where subjects do not know the objective probabilities associated with the possible outcomes. 
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& Budescu 2004). This gap is particularly striking because of the pervasiveness of 

uncertainty in real-world social dilemmas and the challenges it poses for policy-makers 

(Wilson 2000). My dissertation seeks to bridge this gap and to contribute to the limited 

but growing literature on environmental uncertainty in social dilemmas, particularly in 

the framework of public goods and common-pool resources. The following discussion 

briefly highlights the various dimensions on which there might be uncertainty – the pay-

offs from cooperation, the number of other players (or group size), the amount of 

contributions (the threshold) required to attain the goal, the size of the resource, and the 

regeneration rate of the resource. 

2.2.1 Uncertainty in Payoffs 

In most of the experiments, the pay-offs (or benefits) from cooperating are known 

with certainty to the subjects, but in the real-world, the benefits are rarely known with 

such precision. For instance, a city invests in improving air quality. Cleaner air can have 

several benefits. It might lead to better health outcomes for the residents, and it might 

increase property values. But the exact magnitude of these benefits would be difficult to 

assess beforehand. A number of studies examine the impact of uncertainty in the pay-offs 

in the framework of public goods. 

In a public goods setting, the uncertainty in the pay-offs has been implemented in 

two ways. First, the return from the public good, the marginal per capita return (MPCR) 

in a linear public good (VCM) or the step-return (SR) in a threshold public good (TPG) 

might be uncertain. This is akin to a setting where the agent knows that the public good is 

beneficial but the exact benefit is unknown. For instance, the benefit of contributing to 

public radio depends on if the programs produced match the interests of the contributor. 
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If programs produced match a lot, then the benefit is high and vice-versa. But of course, 

the exact choice of programs that will be produced is not known to the contributor 

beforehand. Second, the MPCR (or SR) is known with certainty but the whether the agent 

will receive the benefit from the VCM is uncertain. In this setting, the agent knows the 

exact benefit from the public good but is unsure of whether she will benefit from the 

public good. Suppose an agent contributes to building a local public library. The agent 

knows the benefit she will derive from the library. But in case she has to move to another 

location, she will not benefit from the library.  

Most of the studies examine uncertainty on the MPCR and SR. Théroude & 

Zylbersztejn (2017) compare homogeneous and heterogeneous uncertainty in MPCRs. 

Under homogeneity, all subjects will earn according to the same MPCR which is drawn 

from a distribution. The uncertainty here is perfectly correlated. Whereas under 

heterogeneity, each subject will have her MPCR drawn separately from the distribution. 

Here the uncertainty is perfectly uncorrelated. The find that contributions do not differ 

under homogeneous or heterogeneous uncertainty. Boulu-Reshef, Brott & Zylbersztejn 

(2016) also have a design where there is heterogeneous uncertainty about the MPCR. 

They too do not find any significant difference in contributions when the MPCR is 

uncertain or when it is known with certainty to the subjects. Fischbacher, Schudy & 

Teyssier (2014) find that uncertainty in the MPCR impacts subjects differentially. Those 

who are classified as ‘selfish’ do not respond to the uncertainty in the MPCR. While 

responses of ‘conditional cooperators’ vary considerably. Levati & Morone (2013) and 

Levati, Morone & Fiore (2009) find that variance of the MPCR is of critical importance. 
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If the lowest value of MPCR is such that the sum of MPCR across subjects can fall below 

1, then contributions decline significantly.  

In TPGs, uncertainty about the SR does not reduce contributions. Barrett & 

Dannenberg (2012) and van Dijk et al. (1999) find that uncertainty in SR does not reduce 

contributions. McCarter, Rockmann & Northcraft (2010) also find that uncertainty in the 

SR does not reduce contribution as long as the lowest possible return from the TPG 

exceeds the threshold. They find that subjects are sensitive to the variance in returns, if 

the lowest possible return can fall below the threshold, then contributions decline. Marks 

& Croson (1999) do not make the SR uncertain but they provide incomplete information 

to the subjects. The subjects only know their own return but not those of others. They 

find that contributions are not significantly different under complete and incomplete 

information. 

There are two papers in which the MPCR is known but there is uncertainty about 

whether the subjects will receive the return or not. Gangadharan & Nemes (2009) run 

several treatments where they introduce uncertainty on both the public and private goods. 

The main result is that when there is uncertainty on the public good then contributions to 

the public good are lower than when the uncertainty is on the private good. Dickinson 

(1998) finds that uncertainty about provision reduces contributions but only at the 

individual level, not at the group.  

Although most of the experiments implement uncertainty in the form of risk 

(known probabilities), Björk, Kocher, Martinsson & Nam Khanh (2016), Levati & 

Morone (2013) and Gangadharan & Nemes (2009) explore ambiguous MPCRs. Björk et 

al. (2016) do not find significant differences in contributions when the MPCR is certain 
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or risky or ambiguous. They use both the strategy method and a ten-period repeated game 

to disentangle the impact of strategic from environmental uncertainty, and find that 

uncertain MPCRs do not reduce contributions either in the strategy method (one-shot 

game) or the repeated game. Levati & Morone (2013) also find that ambiguous MPCRs 

do not reduce contributions relative to both risky and certain MPCRs. Whereas in 

Gangadharan & Nemes (2009), ambiguity does reduce contributions. But in their setup, 

the MPCR is not ambiguous, rather the chance of receiving the return is ambiguous.  

2.2.2 Group Size Uncertainty 

In a number of real-world settings, the relevant group size is not known with 

precision. How many other resource users are out there? How many others can contribute 

to the public good? But in most of the experimental studies, the subjects know the exact 

size of the group. 

Hillenbrand & Winter (2017) develop a theoretical model of behavior in a 

volunteer’s dilemma under group size uncertainty. The theoretical prediction is that 

cooperation will increase under group size uncertainty and their experimental evidence 

supports the prediction. In the case of public goods, group size uncertainty also increases 

cooperation. Kim (2016) finds that contributions are higher under group size uncertainty 

relative to a known group size. Similarly, in a common-pool resource (CPR), the 

destruction of the resource is lower under group size uncertainty (Au & Ngai 2003). But 

in the case of a threshold public good, group size uncertainty reduces provision (Au 

2004; Au, Chen & Komorita 1998). But Ioannou & Makris (2015) find that cooperation 

does not decline in a coordination game under group size uncertainty. de Kwaadsteniet 

(2008) find that the impact of group size uncertainty on subjects is heterogeneous. They 
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classify subjects according to their Social Value Orientation (SVO) and find that under 

group size uncertainty, those who are pro-social (more cooperative) withdraw less from a 

CPR than those who are pro-self (more competitive). But when the group size is certain, 

both these types withdraw the same amount from the CPR.  

2.2.3 Threshold Uncertainty 

Threshold uncertainty can be present in public goods or CPRs. In the case of 

public goods, the threshold represents the cost of the project. While in the case of CPR, 

the threshold refers to the size of the resource. The public good is only provided if the 

sum of the contributions are equal to the threshold. For instance, a new stadium will be 

built, only if a pre-specified amount is raised for it. But in a number of settings, the 

threshold is not known with certainty. For instance, in a dictatorship, protestors know that 

if their enough people, the dictatorship will be toppled. But what constitutes ‘enough’? 

Here the protestors face threshold uncertainty. Several experimental studies examine the 

impact of threshold uncertainty on cooperation. 

Barrett & Dannenberg (2012) compare the impact of threshold and pay-off 

uncertainty in a TPG. They find that it is threshold uncertainty that deters contributions 

but uncertainty in pay-offs does not do so. McBride (2010) also finds that uncertainty in 

the threshold reduces the contributions which runs contrary to the theoretical prediction 

of McBride (2006) that if the TPG is ‘sufficiently valuable’, then an increase in 

uncertainty will increase contributions to the TPG. Dannenberg et al. (2015) examine 

both risky and ambiguous thresholds. They find that contributions while both risky and 

ambiguous thresholds reduce contributions, ambiguous thresholds do so much more. The 

negative relationship between the threshold uncertainty and contributions is not universal. 
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Suleiman, Budescu & Rapoport (2001) find that contributions are depend not only to the 

variance of the threshold but interact with the mean value of the threshold. When the 

mean value of threshold is high, contributions are not significantly different, whether the 

uncertainty on the threshold is high or low. But when the mean value of the threshold is 

low, threshold uncertainty does not deter contributions. Instead contributions increase as 

the threshold uncertainty increases. While Wit & Wilke (1998) find that contributions 

decline the most when both threshold and strategic uncertainty increase. 

A large body of literature examines the impact of threshold uncertainty in CPRs 

(Budescu, Au & Chen 1997; Suleiman, Rapoport & Budescu 1996; Budescu, Rapoport & 

Suleiman 1995, Rapoport, Budescu, Suleiman & Weg 1992, Budescu, Rapoport & 

Suleiman 1992, Rapoport & Suleiman 1992 and Budescu, Rapoport & Suleiman 1990). 

A robust finding of all these studies is the positive relationship between the threshold 

uncertainty and withdrawals from the resource. The withdrawals often significantly 

exceed the socially-optimal level when the threshold uncertainty is high. Another robust 

finding pertains to the order of play – simultaneous or sequential. In simultaneous play all 

subjects withdraw at the same time whereas in the sequential case, subjects withdraw in a 

pre-specified order. In the sequential case, there is a strong negative relationship between 

the position of the subject and the amount withdrawn. Those who get to withdraw first, 

consume the most. There are several extensions to this set of studies. Budescu, Rapoport 

& Suleiman (1990) examine the impact of pay-off asymmetry (where some subjects earn 

more than others from the same amount of withdrawals) in a CPR with threshold 

uncertainty. They find that subjects seek to equalize earnings, so ‘high-earner’ withdraw 

less. Rapoport & Au (2001) introduce the institutions of penalty and bonuses. They find 
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that withdrawals are reduced by both penalties and bonuses, but penalties are more 

effective in reducing withdrawals. Maas et al. (2017) introduce taxes and fines to limit 

withdrawals from a CPR with threshold uncertainty. They find that taxes are more 

effective in reducing withdrawals, but fines also reduce withdrawals.  

2.2.4. Regeneration Uncertainty 

Common-pool resources are used over time. The amount consumed today impacts 

how much of the resource will be available tomorrow but this relationship is not always 

deterministic. There is considerable uncertainty about the rate at which resources 

regenerate (Wilson 2000; Hine & Gifford 1996). Few studies have incorporated 

environmental uncertainty in dynamic CPR games. In Botelho, Dinar, Pinto & Rapoport 

(2014), subjects participate in a CPR game which can continue for a maximum of ten 

periods (the resource depletes at the end of ten periods). Subjects are placed into a group 

of five and make withdrawals from the CPR. The subjects know the safe level of 

withdrawal. If the sum of withdrawals is less than or equal to the safe level, then resource 

survives with certainty, and the subjects move into the next period. They also know the 

destruction level of withdrawal. If the sum of withdrawals is greater than the destruction 

level, then resource is destroyed with certainty, and the game terminates. But if the sum 

of withdrawals falls between the safe and destruction level, then the resource depletes 

probabilistically. The closer the withdrawals are to the destruction level, the more likely 

it is that the resource will be depleted. Botelho et al. (2014) find that subjects withdraw 

amounts above the socially optimal level. They vary the values of the safe and 

destruction levels and find that withdrawals are higher when the difference between the 

safe and destruction level is greater.  
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Walker & Gardner (1992) is similar to Botelho et al. (2014) in that subjects know 

the safe level of usage of the CPR. Subjects participate in a game of 20 periods. They 

have two different safe levels. One is rather extreme where the safe level is set at zero. 

Any usage of the resource leads to the possibility of the destruction of the resource. But 

destruction of the resource is positively linked to the consumption of the resource (which 

is framed as an ‘investment’). The other safe level is a positive amount. If the 

consumption of the resource is less than or equal to the safe level, the resource survives 

with certainty and the subjects move on to the next period. Walker & Gardner (1992) find 

that sub-optimal consumption of the resource across both safe levels.  
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CHAPTER 3 

 

UNCERTAINTY IN RETURNS IN THRESHOLD PUBLIC GOODS 

3.1 Introduction 

Providing public goods through voluntary contributions has become increasingly 

important and common-place (Cadsby et al. 2008). Researchers have identified a positive 

relationship between contributions and the return from a threshold public good (TPG), a 

public good which is only provided if the sum of contributions equals or exceeds the 

threshold, usually the cost of provision (Cadsby et al. 2008; Croson and Marks 2000; 

Cadsby and Maynes 1999). In these studies, the benefit or return from the TPG is known 

with certainty. In most real-world settings, the benefit or return from the TPG is 

uncertain, with the uncertainty stemming from either nature or intentional action. For 

instance, the uncertain return from building a dyke may be affected by nature (the 

frequency and intensity of floods) or intentional action (the effort exerted by the project 

manager or construction team). For policy-makers, it is important to understand whether 

and how these types of uncertainty affect voluntary contributions.  

TPGs are particularly important because both provision and non-provision are 

Nash equilibria (Cartwright and Stepanova 2015). The Nash equilibrium concept is silent 

on equilibrium selection (Croson and Marks 2000). Feige’s (2015) theoretical model 

identifies a positive relationship between the step-return, which is the ratio of the social 

return to the threshold7, and the probability of a positive voluntary contribution (or 

cooperative-choice). The model predicts that, for risk-neutral agents, the probability of 

 
7 For example, if there is TPG with a threshold of $100 and there are 5 agents who each receive $50, 

making the social return is $250, the step-return will be 2.5 (social return / threshold). 
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making a cooperative-choice when the step-return is certain will be the same as when it is 

uncertain as long as the expected values are equal.8 Our experiment provides some 

evidence supporting these predictions.  

 More specifically, we design an experiment which tests the impact of an uncertain 

step-return, either from nature or from intentional action, on the voluntary provision of 

TPGs. Theoretical and experimental evidence suggests that uncertainty in the benefits 

from public goods can potentially increase voluntary provision (Aksoy and Krasteva 

2018; Boucher and Bramoullé 2010). To the best of our knowledge, this study is the first 

to examine step-return uncertainty arising from sources other than nature (McCarter et al. 

2010; van Dijk et al. 1999), introducing uncertainty based on intentional actions. Prior 

research suggests that the intentions of an economic agent affect how other economic 

agents respond to incentives and behavior (e.g., Charness and Levine 2007, Cox and 

Deck 2006). As the return from many TPGs may be affected by intentional action, with 

project managers or other individuals contributing costly effort, it is important to 

understand whether and how the impact of intentions extends to this setting.  

We find a strong, positive relationship between the return and contributions. We 

do not find evidence that uncertainty (caused either by nature or intentional actions) 

affects either the probability of contributing or the amount contributed. These findings 

are consistent with Feige’s model (2015). The next section of the paper reviews the 

related literature, Section 3.3 presents the theoretical framework, Section 3.4 describes 

the experimental design, Section 3.5 discusses the results and the final section is the 

conclusion. 

 
8 For risk-averse (seeking) agents, the probability of making a cooperative-choice is lower (higher) with 

uncertain step-return.  
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3.2 Related Literature 

Our study connects distinct two strands of literature: uncertainty in return from 

public goods and role of intentions in games, which we briefly review here. 

3.2.1 Uncertain Returns in Public Goods 

The impact of uncertainty in return has been primarily been examined in the case 

of linear public goods or voluntary contribution mechanism (VCM) but not so much in 

the case of TPGs (Fischbacher, Schudy & Teyssier 2014; Levati & Morone 2013; Levati, 

Morone & Fiore 2009; Gangadharan & Nemes 2009).9 Several studies analyze the impact 

of varying the return in a deterministic setting (Cadsby et al. 2008; Croson & Marks 

2000; Cadsby & Maynes 1999) and find a positive relationship between the return from 

the TPG and contributions to it. Whereas in our study we test the impact of uncertain 

return (with varying values) on contributions to the TPG.  

The closest paper to our study is McCarter, Rockmann & Northcraft (2010) where 

they examine the impact of uncertain returns across different values of the return. But 

they change the return from the TPG by varying the threshold instead of directly 

changing the return from the TPG. Manipulating the threshold to vary the return is 

problematic.10 If higher contributions are observed when the threshold is low, it is not 

necessary that the high return is increasing contributions. Whenever an agent contributes 

to a TPG, there is a possibility that the threshold is not met, leading to a loss of the 

 
9 For TPGs, both the theoretical and experimental literature has primarily focused on the uncertainty in the 

threshold (Dannenberg et al. 2015; McBride 2010; Barbieri & Malueg 2010; McBride 2006; Suleiman 

1997). 
10 But it is not a serious concern for McCarter et al. (2010) because they are interested how the variance in 

the return (while keeping the expected return constant) impacts contribution, rather than how the change in 

the return impacts contribution.  
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contribution. If the threshold is low, an agent can make a low contribution and expect the 

threshold to be met. Similarly, if the threshold is high, an agent will have to make a high 

contribution for attaining the threshold. So, in case of non-provision with a high 

threshold, the loss will be higher because the agent contributed a higher amount. A low 

threshold reduces the amount the agent might lose, thereby, making it less ‘risky’ to 

contribute (Cartwright & Stepanova 2015; Cadsby et al. 2008). Therefore, changing the 

threshold can increase contributions through two channels: i) change in return ii) change 

in the risk associated with contributing. Our experimental design avoids this pitfall, by 

directly changing the return from the TPG, rather than changing the threshold. We 

thereby are able to provide a more direct test of the impact of uncertainty in returns on 

contributions than McCarter et al. (2010).   

The main result from McCarter et al. (2010) is that contributions to the TPG are 

not lower in the presence of uncertainty as long as the lowest possible return from the 

TPG is greater than the cost (or threshold). In other words, if the lowest possible step-

return is greater than 1, then contributions are not significantly reduced. But if the 

variance in the step-returns is such that the lowest possible step-return is less than 1, then 

even if in expectation the return exceeds the cost, the contributions to the TPG are 

significantly reduced.  

van Djik et al. (1999) also find a similar result to McCarter et al. (2010) that 

uncertainty in the return does not reduce contributions to the TPG. But they only look at 

one value of the step-return, whereas in our study we are looking at various values of the 

step-return. 
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3.2.2 Role of Intentions in Games 

A number of experiments find that intentions play a role in economic decision-

making (Falk et al. 2008; Sutter 2007). For instance, low offers are more likely to be 

rejected in an Ultimatum Game if the offer was sent by another person rather than a 

computer (Zituni & Dendonfer 2013). Similarly, in a Trust Game, higher reciprocity is 

observed when the amount sent is chosen by another player, rather than being chosen by 

a computer (Cox & Deck 2006). In a stochastic Wage-Effort Game, employees respond 

to the intended wage offered by the employers, rather than the actual wage received after 

a positive or negative stochastic shock (Charness & Levine 2007). However, to the best 

of our knowledge, no study examines the impact of intentions on contributions to a TPG, 

in a setting where a third-party (such as a project-manager) can alter the returns from the 

public good. Examining the role of intentions is particularly important because the 

uncertainty in returns from a TPG occurs not only because of nature, but also because of 

actions of other humans. Apart from improving our understanding of the determinants of 

contributions to TPGs, it also contributes to our understanding about where intentions 

matter, and where they do not. 

3.3 Theoretical Framework 

The TPG game is one where the public good is provided if the sum of 

contributions are equal to or greater than the threshold (or cost) but if the sum of 

contributions is less than the threshold, the public good is not provided. A TPG can be 

defined in the following manner. There are 𝑛 agents indexed by 𝑖 = [1, …, 𝑛]. Each agent 

has an endowment, 𝑒, from which she can choose to contribute, 𝑐𝑖, to the TPG. The 

threshold of the TPG is denoted by 𝑇. If the sum of contributions by all agents,  Σ𝑖=1
𝑛 𝑐𝑖, is 
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equal to or greater than the threshold (𝑇), each agent receives a return (𝑟) from the TPG. 

Since the return from the TPG to each agent is 𝑟, the social return is 𝑛 ∗ 𝑟. The 

standardized way of assessing the efficacy of the TPG is captured by the step-return (𝑆𝑅) 

(Croson & Marks 2000). It is calculated by dividing the social return (𝑛 ∗ 𝑟) by the 

threshold (𝑇).11 If the sum of contributions is less than the threshold, then the agents 

receive nothing from the TPG. A TPG game has multiple equilibria. One inefficient 

equilibrium where all agents contribute zero and multiple possible efficient equilibria 

where the sum of all contributions is equal to the threshold (Bangoli & Lipman, 1989). 

The inefficient equilibrium of the game entails zero contribution by each agent. 

The efficient equilibria of this game consist of all contribution vectors {𝑐𝑖} which satisfy 

the following constraints: 

 Efficiency: Σ𝑖=1
𝑛 𝑐𝑖 = 𝑇 

Individual Rationality:  𝑐𝑖 ≤ 𝑟 

Limited Wealth:  𝑒 < 𝑇 

(1) 

The efficiency constraint means that the TPG is provided and the sum of all 

contributions are equal to the threshold, that is, there are no excess contributions. The 

individual rationality ensures that no agent contributes more than the amount she will 

earn from the TPG. The limited wealth constraint means that a single agent cannot 

provide the TPG. 

 
11 Alternative ways of evaluating the efficacy of the TPG exist, e.g. Net Reward, which is the difference 

between the return from the TPG and the threshold. Cadsby et al. (2008) find that SR is the best predictor 

of provision of a TPG. 
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In this experiment, there are three types of TPG. The first is the standard TPG 

with certain returns and serves as the baseline. The second is a TPG with uncertain 

returns which are determined by nature. The third TPG also has uncertain returns but the 

return in this TPG can be altered by the project manager at a cost to herself. 

The pay-off (𝜋𝑖) of each agent is as follows 

 𝜋𝑖 =  𝑒 − 𝑐𝑖 + 𝑔
𝑘 (2) 

Where 𝑔 is the pay-off from the TPG that agent 𝑖 will receive from the TPG and 

𝑘 𝜖 {𝐶, 𝑁, 𝐼} refers to the type of TPG returns – certain (𝐶), uncertain because of nature 

(𝑁) and uncertain where another human-being such as project manager can alter the 

return, hence, intentions (𝐼) are present. We now describe the three types of TPGs. 

Certain Returns TPG pay-off 

 
𝑔𝐶 = {

0,                    Σ𝑖=1
𝑛 𝑐𝑖 < 𝑇

𝑟,          Σ𝑖=1
𝑛 𝑐𝑖 ≥ 𝑇

 
(3) 

Uncertain Returns - Nature TPG pay-off 

 
𝑔𝑁 = {

0,                    Σ𝑖=1
𝑛 𝑐𝑖 < 𝑇

�̃�,           Σ𝑖=1
𝑛 𝑐𝑖 ≥ 𝑇

 
(4) 

Where �̃�~U[𝑟𝐿𝑂𝑊; 𝑟𝐻𝐼𝐺𝐻], that is, �̃�, is the realized return from the TPG and it is 

randomly drawn from a uniform distribution of 𝑟𝐿𝑂𝑊 (the low amount in the range of 

returns) and 𝑟𝐻𝐼𝐺𝐻 (the high amount in the range of returns), such that the expected 

realized return in the uncertain TPG is equal to the certain return from TPG, 𝐸(�̃�) = 𝑟.    

Uncertain Returns – Intentions –  TPG pay-off for contributors 

 
𝑔𝐼 = {

0,                          Σ𝑖=1
𝑛 𝑐𝑖 < 𝑇

�̃� + 𝑎,          Σ𝑖=1
𝑛 𝑐𝑖 ≥ 𝑇

 
(5) 
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Where 𝑎 is the amount by which the project manager alters the return to the 

contributors. The project-manager can either increase (𝑎 > 0) or decrease (𝑎 < 0) the 

returns from the TPG at a cost to herself, or leave it unaltered (𝑎 = 0) at no cost to 

herself.  

However, there is a limit to which the project manager can alter the returns. The 

most the project manager can increase the returns from the TPG is equal to the highest 

possible return from the returns range. So, the returns can be increased at most by 𝑎 =

𝑟𝐻𝐼𝐺𝐻 − �̃�. Similarly, the most that the project manager can decrease the returns from the 

TPG is equal to the lowest possible return from the returns range. So, the returns can be 

decreased at most by 𝑎 = 𝑟𝐿𝑂𝑊 − �̃�. By limiting the amount by which the project 

manager can alter the return, the range of returns is made identical to the range of returns 

in the Nature treatment, [𝑟𝐿𝑂𝑊; 𝑟𝐻𝐼𝐺𝐻]. We now turn to the earnings of the project-

manager. 

Uncertain Returns – Intentions – Project Manager Pay-off 

    𝜋𝑃𝑟𝑜𝑗𝑒𝑐𝑡−𝑀𝑎𝑛𝑎𝑔𝑒𝑟 = {
𝑍,                            Σ𝑖=1

𝑛 𝑐𝑖 < 𝑇

�̃� −  0.5|𝑎|,            Σ𝑖=1
𝑛 𝑐𝑖 ≥ 𝑇

                         (6) 

If the sum of contributions is less than the threshold, the project-manager receives 

a fixed amount, 𝑍. Whereas if the sum of contributions is less than the threshold, the 

project-manager receives �̃� which is equal to an amount randomly drawn from 

𝑈[𝑟𝐿𝑂𝑊; 𝑟𝐻𝐼𝐺𝐻]. The project-manager has the option to alter the return of the 

contributors. The cost of altering the return is half the amount of by which the amount of 

the contributors has been altered. For instance, if the project manager increases the 

earnings of each contributor by 10 Experimental Dollars (E$), it costs the project 

manager E$ 5 (= E$10 * 0.5). Similarly, if the project manager increases the earnings of 
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each contributor by 10 Experimental Dollars (E$), it will cost her E$ 5 (= E$10 * 0.5). 

The cost of altering the returns is the same irrespective of whether the project manager 

increases or decreases the returns. We now present our predictions which are based on 

the findings of prior literature. 

• Prediction 1. A TPG with a higher step-return will elicit higher 

cooperation. 

In their meta-analysis, Croson & Marks (2000) find that the step-return from the 

TPG positively and significantly increases contributions, while controlling for other 

experimental design variables such as communication, group size, refunds and rebates. 

Therefore, we expect higher contributions when the SR is higher.   

• Prediction 2. When the (expected) step-return in the Certain and Nature 

treatment is equal, cooperation in the TPG in the Certain and Nature 

treatment will be equal.  

Empirical evidence suggests that uncertainty about the step-return contributions 

does not reduce contributions to the TPG (Barrett & Dannenberg, 2012; McCarter et al. 

2010; Van Dijk et al. 1999). A similar result is found in the case of VCM where 

uncertainty about the marginal per capita return (MPCR) does not reduce contributions 

(Théroude & Zylbersztejn 2017; Fischbacher, Schudy & Teyssier 2014). 

• Prediction 3. When the (expected) step-return in the Certain and 

Intentions treatment is equal, cooperation the TPG are higher in the 

Intentions treatment.  

We anticipate higher contributions in the intention treatment through two 

behavioral channels. First, although the return to each contributing agent is identical in 
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both treatment, the social return (𝑛 ∗ 𝐸(�̃�)) is different. It is higher in the intentions 

treatment because 𝑛 = 5, with four contributors and one project-manager whereas in the 

nature treatment 𝑛 = 4, with only four contributors, and no project-manager. If agents 

value not only their own return, but also the social return, then the TPG in the intention 

treatment should also elicit higher contributions. Evidence suggests that contributors care 

about the social return, distinct from their own individual return (Andreoni 1990).  

Second, if the TPG is provided, then expected earnings of the project-manager are 

higher as compared to non-provision. Since the earnings of the project-manager are 

higher as a consequence of the actions of the contributors, then the project-manager 

might reciprocate by transferring some of her earnings to the contributors, that is, 𝑎 > 0, 

making the return from the TPG higher vis-à-vis the nature treatment case. However, it is 

possible that the project-manager does not feel obligated to reciprocate. She might 

(correctly) perceive that the contributors have a private incentive to contribute (higher 

earnings under provision from the TPG). Therefore, their contributions are not a signal of 

generosity or trust, hence, need not be reciprocated (McCabe, Rigdon & Smith 2003). 

But the project-manager might transfer a positive amount for another reason, that is, for 

improving social efficiency (Charness & Rabin 2002). For every $1 the project-manager 

transfers, each contributor receives $2, thus, increasing the social return from the TPG by 

E$8 (E$2 * 4 subjects). Social efficiency is maximized if the project-manager transfers 

the maximum amount possible, 𝑎 = 𝑟𝐻𝐼𝐺𝐻 − �̃�. 
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3.4 Experimental Design 

All subjects undertake two tasks. The first task is Certain baseline. The second 

task is the treatment where the subject faces uncertain returns from the TPG. 12 Half the 

subjects participate in the Nature treatment while the other half in the Intentions 

treatment. The experiment follows a mixed design: the certainty on the return varies 

within-subject (Certain baseline vs. uncertain returns either by Nature or Intentions) 

while the type of uncertainty, Nature vs. Intentions varies between-subjects. One decision 

from each task is randomly selected for payment. 

3.4.1 Certain Returns – Baseline – Task 1 

In the first task, each subject is allocated an endowment of 100 Experimental 

Dollars (E$)13 and is randomly assigned into a group of four. The subject chooses to 

allocate her endowment between a private account and a public account. She keeps all the 

E$ she allocates to the private account. As for the public account, if the total contribution 

to it equal to or more than E$ 240, the threshold (T), then each member of the group 

receives a return (r), irrespective of their own contribution. The return which is the same 

for each subject, changes from round to round and is stated clearly on the decision screen. 

If the total contribution to the public account is less than E$ 240, then each member 

receives nothing from the public account, irrespective of their contribution. The various 

 
12 We choose this order where subjects always face the Certainty baseline first and then participate in a 

treatment with uncertain returns, so as to test the impact of uncertainty on cooperative choices in the 

strongest manner possible. In a linear public goods game, Stoddard (2015) finds that uncertainty has a 

negative effect on average contributions when subjects first face certain returns and then uncertain returns. 

But this negative effect disappears when they first face uncertain returns and then certain returns. This 

result suggests that if uncertainty were to deter contributions, the effect would be more pronounced when 

facing the certain task first.  
13 The conversion rate for E$ into US Dollars is set at E$ 15 = USD $ 1. 
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values of the step-return (SR) and the range of values it could take in the uncertain TPG 

game are presented in Table 3.1.  

The contributions are not refunded in order to make salient the riskiness of 

contributing (Cartwright & Stepanova 2015; Spencer et al. 2009; Cadsby et al. 2008; 

Cadsby & Maynes 1999; Marks & Croson, 1998). In the presence of refunds of 

contributions if the threshold is not met, the no-contributions equilibrium (where all 

agents contribute zero) ceases to be a strict equilibrium. In case of a refund mechanism, a 

subject becomes indifferent between contributing zero or a positive amount, even if she 

expects that the sum of total contributions will be less than the threshold. Whereas in the 

case of no-refund, subjects strictly prefer not contributing when they expect that the 

threshold will not be reached. Therefore, if uncertainty deters contributions, it will be 

more difficult to observe it in the presence of a refund mechanism.  
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Table 3.1 – Step-return (SR) from TPG 

SR – Certain SR Range -Lower Bound SR Range -Upper Bound 

1.75 1.42 2.08 

2 0.75 3.25 

2.25 0.92 3.58 

2.5 1.67 3.33 

2.75 1.5 4 

3 2.67 3.33 

3.25 2.42 4.08 

3.5 3.17 3.83 

3.75 2.5 5 

4 3.17 4.83 

SR=(N*R)/T; N = no. of agents, R = return to each agent, T = threshold 

3.4.2 Uncertain Returns – Nature Treatment – Task 2 

The second task, Uncertain Return task, is identical to the Certain Return task, 

except that the returns are uncertain (�̃�). This means that subjects are informed of the 

range of possible outcomes (referred to as Returns Range on their decision screen) from 

the public account. If it is the Nature treatment, then the return is determined by the 

computer by drawing a random number from the Returns Range. Each number in the 

Returns Range is equally likely to be drawn because it is a uniform distribution.  
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3.4.3 Uncertain Returns – Intentions Treatment – Task 2 

In the Intentions treatment, the random draw is similar to the Nature treatment but 

it can be altered by another human being called the Type B player. Each group of four 

players (called Type A players) are paired with a Type B player. These roles remain 

constant throughout the treatment. Type A players remain Type A throughout the 

experiment and the same holds for Type B players. Since groups are randomly formed in 

each round, the Type B players are also randomly assigned to a group. There is no 

communication between the Type A and the Type B players.  

In each round, the Type B observes a randomly drawn value from the Returns 

Range. This is the return that the all players, both Type A and B, will earn from the TPG 

unless the Type B chooses to alter the return. The Type B player can either increase or 

decrease the return to Type A players at a cost to herself.  

For every E$ 1 she spends, it changes the return of each member of the group by E$ 2. 

Since there are four members in each group, the Type B player can alter the social return 

by E$ 8 for every E$ 1 she spends. The Type B is not informed whether Type A players 

crossed the threshold of E$ 240. If they fail to cross the threshold, the Type B player 

receives a fixed amount of E$ 100. The decision of Type B is unobservable. Type A 

players do not find out if the Type B player altered the return or left it unchanged. 

Altering the return is costly to the Type B player, and if she wants to maximize her own 

earnings, then she will not alter the return from the TPG. If that is the case, then the 

returns from the Intentions treatment become the same as the returns from the Nature 

treatment.  
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After both the tasks are completed, the subjects fill out a non-incentivized survey in 

which data on demographics and preferences is collected. 

3.4.4 Implementation 

The experiment was programmed in z-Tree (Fischbacher 2007) and conducted at 

the Clive. E. Willis Experimental Economics Lab at the University of Massachusetts 

Amherst in 2015. There were 80 subjects (40 females) recruited through ORSEE (Greiner 

2015). Sessions lasted one hour with average earnings of $23.48. 

3.5 Results 

The TPG game has two symmetric Nash equilibria, one efficient (contributions 

sump up exactly to the threshold) and the other inefficient (zero contribution). In our 

experimental design, the efficient symmetric Nash contribution is E$ 60 while the 

inefficient one is E$0. In Figure 3.1, we present the contributions made to the TPG across 

treatments. Although we allow for continuous contributions, where subjects can 

contribute any amount between E$ 0 to E$ 100, we see that the mass of contributions is 

on the symmetric Nash, E$0 and E$ 60. In Figure 3.2 to 3.4, we further disaggregate the 

contributions by the step-return for each treatment; Certain, Nature and Intentions. Notice 

that the same pattern of the mass being on either E$0 or E$ 60 holds for various values of 

the step-return across treatments. We, therefore, define a cooperative-choice as a 

contribution equal to or greater than E$60.14  

 

 
14 Our results are robust to the choice of cut-off point. Selecting E$50 or E$55 does not change our results. 
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Figure 3.1 – Contributions to TPG across Treatments 

 

Figure 3.2 – Contributions in Certain across Step-return 
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Figure 3.3 – Contributions in Nature across Step-return 

 

Figure 3.4 – Contributions in Intentions across Step-return 

0
2

5
5

0
0

2
5

5
0

0 30 60 90 0 30 60 90 0 30 60 90 0 30 60 90 0 30 60 90

1.75 2 2.25 2.5 2.75

3 3.25 3.5 3.75 4

P
e
rc

e
n
t

Contributions to TPG (E$)

By Step-return

Distribution of Contributions - Nature

0
2

5
5

0
0

2
5

5
0

0 30 60 90 0 30 60 90 0 30 60 90 0 30 60 90 0 30 60 90

1.75 2 2.25 2.5 2.75

3 3.25 3.5 3.75 4

P
e
rc

e
n
t

Contributions to TPG (E$)

By Step-return

Distribution of Contributions - Intentions



 

 34 

 

Figure 3.5 – Probability of Making a Cooperative-Choice 

We first analyze the impact of a change in the step-return on the probability of 

making a cooperative-choice. 15 We use a Probit regression to estimate the relationship 

between the step-return and the probability of making a cooperative-choice. The 

dependent variable is the probability of making cooperative-choice. In Table 3.2, we 

present the average marginal effects for the various specifications of the regression. In 

Model (1), we have the step-return and the treatment dummies as the independent 

variables. In Model (2), we introduce an interaction effect between the step-return and the 

treatment dummies. Finally, in Model (3), we include gender and survey measures of 

 
15 The focus of our experiment is the contribution decision to the TPG but in the Intentions treatment, apart 

from the contribution decisions of Type A players, the Type B players also made a decision as to alter the 

return or not from the TPG. Of the eight Type B players in the experiment, seven of them chose not to alter 

the return. 
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risk-aversion16 and willingness to trust others17. Model (3) is our preferred specification 

as it is the most comprehensive. All results are based on Model (3). 

Table 3.2 – Probit Regression – Average Marginal Effects 

Variables Model (1) Model (2) Model (3) 

Step-return 0.242*** (0.020) - - 

Certain 0.685*** (0.036) 0.686*** (0.037) 0.686*** (0.035) 

Nature 0.663*** (0.051) 0.662*** (0.051) 0.653*** (0.049) 

Intentions 0.705*** (0.054) 0.704*** (0.053) 0.716*** (0.052) 

Step-return#Certain - 0.229*** (0.023) 0.229*** (0.023) 

Step-return#Nature - 0.267*** (0.029) 0.270*** (0.028) 

Step-return#Intentions - 0.240*** (0.033) 0.233*** (0.032) 

Female - - -0.143** (0.065) 

Trust Others - - 0.116* (0.066) 

Risk-aversion - - -0.119 (0.020) 

Observations 1728 1728 1728 

Pseudo-𝑹𝟐 0.112 0.113 0.141 

*** p-value ≤ 0.01; ** p-value ≤ 0.05; * p-value ≤ 0.1; Standard errors in parentheses. Clustered at 

subject-level. 

 

In Figure 3.5, the x-axis is the step-return and the y-axis shows the estimated 

probability of making a cooperative-choice. The average marginal effect of a unit 

increase in the step-return is to increase the probability of making a cooperative-choice in 

the Certain baseline by 0.22 (p-value 0.00), in the Nature treatment by 0.27 (p-value 

 
16 The survey question is “How willing are you to take risks, in general?” Subjects respond on a scale from 

0 to 10. 
17 We measure trust through the General Social Survey question “Generally speaking, would you say that 

most people can be trusted or that you can't be too careful in dealing with people?” 
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0.00), and in the Intentions treatment by 0.23 (p-value 0.00). We find a strong positive 

relationship between the step-return and making a cooperative-choice, giving us our first 

result. We find support for our first prediction that a higher step-return elicits higher 

cooperation.  

• Result 1 – There is a positive and significant relationship between the 

step-return and the probability of making a cooperative-choice in a 

Threshold Public Goods game. 

We next assess the impact of an uncertain return on the probability of making a 

cooperative-choice. Using a Probit regression, we estimate the difference in the 

probability of making a cooperative-choice across treatments. Compared to the Certain 

baseline, being in either the Nature treatment (average marginal effect -0.03; p-value 

0.40) or the Intentions treatment (average marginal effect 0.02; p-value 0.49), does not 

significantly impact the probability of making a cooperative-choice.  

From the Probit regression, we further examine whether there is a difference 

between the baseline and treatments at different values of the step-return. Figure 3.5 

shows these 95% confidence intervals, with the x-axis showing the step-return and the y-

axis showing the estimated difference in the probability of making a cooperative-choice. 

We do not observe any significant differences in the probability of making a cooperative-

choice in either the Nature or Intentions treatment (as the 95 per cent confidence intervals 

overlap the zero-difference line). Therefore, the probability of making a cooperative-

choice is not significantly different when the step-return is uncertain, irrespective of the 

source of uncertainty. We now have our second result which finds support for our second 

prediction that cooperation will be equal under Certain and Nature treatment but does not 



 

 37 

find support for our third prediction that cooperation will be higher under the Intentions 

treatment. 

 

Figure 3.6 – Difference in Cooperative-Choices 

• Result 2 – Uncertainty in the step-return does not significantly affect the 

probability of making a cooperative-choice in a Threshold Public Goods 

game.  

 Finally, we analyze the impact of subjects’ risk-preferences and demographics on 

making a cooperative-choice. We find that risk-preferences of the subjects, as elicited by 

the Dohmen et al. (2011) survey question, do not significantly impact the probability of 

making a cooperative-choice. The average marginal effect of a unit increase on the 

willingness to take risks scale is -0.012 (p-value 0.56) in the Nature treatment and is -

0.011 (p-value 0.56) in the Intentions treatment. Those who trust others are more likely to 
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make a cooperative-choice, but the difference is only weakly significant. The average 

marginal effect of trusting others across treatments is reported in Table 3.3. 

Table 3.3 – Estimated Difference in the Probability of Making a Cooperative Choice 

Trusting vs. Non-Trusting Subjects 

 Certain  Nature Intentions 

Difference  0.118* (0.067) 0.117* (0.068) 0.112* (0.062) 

*** p-value ≤ 0.01; ** p-value ≤ 0.05; * p-value ≤ 0.1; Standard errors in parentheses. 

We find that those subjects who identify as females are less likely to make a 

cooperative-choice. On average, being female reduces the probability of making a 

cooperative-choice by 0.143 (p-value 0.027). We present the estimated difference in the 

probability of making a cooperative-choice by gender at each step-return across 

treatments in Figure 3.7. On the x-axis, we have the various values of the step-return and 

on y-axis, we present the estimated difference in cooperative-choices. The estimated 

difference are presented along with the 95 per cent confidence intervals. The solid line 

marks zero. We see that the intervals do not overlap the zero line when the step-return is 

low suggesting that the impact of gender is limited when the step-return becomes high. 
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Figure 3.7 – Difference in Cooperative-Choices by Gender 

We now have our final results pertaining to preferences and demographics. 

• Result 3a – Risk-preferences do not impact the probability of making a 

cooperative-choice 

• Result 3b – Those individuals who trust others are more likely to make a 

cooperative-choice but this difference is only weakly significant. 

• Result 3c – Females are significantly less likely to make a cooperative-

choice but this is mediated by the step-return. At high values of the step-

return the difference becomes weakly significant. 

We now turn to our conclusion. 
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3.6 Conclusion 

We design an experiment to analyze the relationship between the step-return and 

contributions to the TPG and to examine whether different types of uncertainty on the 

step-return impact contributions. We confirm prior studies, finding evidence that an 

increase in the step-return increases the probability of making a cooperative-choice. We 

also find that uncertainty in returns does not deter the probability of making a 

cooperative-choice, whether caused by nature or intentional action. Our results highlight 

the importance of step-return as a determinant of public goods provision. In choosing 

uncertain projects, policy-makers may want to focus on projects with the highest 

expected step-return, even if there is uncertainty because of either natural shocks or 

intentional actions. For future work, scholars should examine other types of uncertainty 

in the step-return, as our experiment examines only two sources of uncertainty, nature 

and intentional action of a third-party. 
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CHAPTER 4 

 

RISK AND AMBIGUITY IN THRESHOLD COMMON-POOL RESOURCES: AN 

EXPERIMENT 

4.1 Introduction 

A major challenge for policy-makers is to utilize environmental resources while 

preventing irreversible damage to them. For instance, overharvesting can lead to collapse 

of fisheries (Worm 2016; Gaines and Costello 2013), unrestrained withdrawals can cause 

groundwater depletion (Richey et al. 2015), excessive dumping of waste in water bodies 

leads to irrevocable damage to marine life (Villarrubia-Gómez, Cornell and Fabres 2018) 

and uncontrolled deforestation can bring about permanent loss of biodiversity (Nobre et 

al. 2016). A threshold effect, also referred to as tipping-point or regime shift or point of 

no return (Lamberson and Page 2012), is present in a wide range of resources. 18 Here we 

focus on Threshold Common-Pool Resources (TCPRs) which are resources that can be 

utilized sustainably up to a certain level (the threshold), but face destruction if utilization 

exceeds the threshold. In many cases, the exact value of the threshold is unknown and this 

uncertainty about the threshold leads to overharvesting in common-pool resources (Maas 

et al. 2017) and under-provision of public goods (Dannenberg and Barret 2012; McBride 

2010).  

Since a number of environmental resources are characterized by ambiguity (Heal 

and Millner 2017; Lemoine and Traeger 2016; Shaw 2016; Ascough II et al. 2008), it is 

 
18 The database of the Resilience Alliance and Santa Fe Institute (2004) has over a 100 examples of 

threshold effects observed in ecological and socio-ecological systems. Muradian (2001) lists several 

ecosystems and resources marked by uncertain thresholds. 
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important to understand individual behavior in ambiguous TCPRs. Aflaki (2013) presents 

a theoretical model which predicts that if resource users are ambiguity-averse, then an 

ambiguous TCPR is less likely to be overharvested than a risky TCPR. 19 The policy 

implication which follows is that resource users should receive less information about the 

threshold because the resource is more likely to survive if the threshold is ambiguous 

(where the probability distribution is unknown) as opposed to risky (where the 

probability distribution is unknown).  

Aflaki (2013) shows that this prediction holds whether exceeding the threshold 

leads to full or partial destruction of the resource. This theoretical prediction is 

particularly worthy of empirical verification because proper information dissemination 

and effectively communicating scientific uncertainty is seen as an important strategy for 

resource management (Rotherham et al. 2011; Sigel et al. 2010) and ambiguity-aversion 

has been documented in the population (Dimmock, Kouwenberg and Wakker 2015; Akay 

et al. 2012).  

We design a laboratory experiment to test the key predictions of the Aflaki (2013) 

model; a non-monotonic relationship between withdrawals from the resource and the 

range (the difference between the highest and lowest possible values of the threshold), an 

ambiguous TCPR reduces the probability of crossing the threshold as compared to a risky 

TCPR, and an increase in the range of the threshold increases the probability of crossing 

the threshold. A laboratory experiment is well-suited to test these claims because it 

 
19 Although risk is well-defined in the literature, there is still considerable debate about the precise 

definition of uncertainty and ambiguity (Machina and Siniscalchi 2014). We follow Etner, Jeleva and 

Tallon (2012; p.234) who distinguish between risk and ambiguity as “Uncertainty or ambiguity is then 

meant to represent ‘non-probabilized’ uncertainty – situations in which the decision maker is not given a 

probabilistic information about the external events that might affect the outcome of a decision – as opposed 

to risk which is ‘probabilized’ uncertainty.”   
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allows us to exogenously vary the range of the threshold, the type of uncertainty (risk or 

ambiguity), and the type of destruction (full or partial).  

The Aflaki (2013) model incorporates ambiguity as well as partial destruction to 

generalize the earlier theoretical work of Budescu, Rapoport and Suleiman (1995) which 

analyzes only a risky TCPR with full destruction. Budescu, Rapoport and Suleiman 

(1995) find empirical support for their theoretical prediction that individuals’ withdrawals 

exhibit a non-monotonic relationship with the range of the threshold. We closely follow 

their experimental design and introduce ambiguity and partial destruction. 

Our study makes several contributions to the literature. First, we extend the 

previous literature which has focused on risky thresholds (Budescu, Rapoport and 

Suleiman (1992); Rapoport and Suleiman (1992); Budescu, Rapoport and Suleiman 

(1990)) and examine behavior under ambiguous thresholds. Second, we examine both 

full and partial destruction of the resource. With full destruction, if the sum of 

withdrawals exceeds the threshold, the resource is completely destroyed and the agents 

receive nothing from it (Botelho, Dinar, Pinto and Rapoport 2014; Rapoport and Au 

2001). The amount by which the threshold is exceeded does not impact the damage. 

Whereas in the real-world, the destruction of resource, depends on not only if the 

threshold is crossed, but also by how much (Aflaki 2013). We refer to this set-up as 

partial destruction. Here if the withdrawals exceed the threshold by a high amount, then 

the damage to the resource will also be more severe. Third, we improve identification by 

directly eliciting risk and ambiguity preferences of the subjects, unlike Budescu et al. 

(1995) who use the behavior in the TCPR experiment to back out risk preferences. 
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At the aggregate level, we replicate Budescu et al. (1995) result of a non-

monotonic relationship between the range and withdrawals in the risky TCPR with full 

destruction. But for ambiguous TCPRs and for TCPRs with partial destruction, we find 

limited or no support for the non-monotonicity prediction. At the individual-level, we 

find about one-third of the subjects exhibit a non-monotonic relationship between the 

range and withdrawals.  

We find that ambiguous TCPRs are more likely to be destroyed than risky 

TCPRs, a finding that runs counter to the theoretical prediction. Ambiguity has 

significantly negative effect on the survival of the resource for both, full and partial 

destruction TCPRs. We also find that an increase in the range leads to an increase in the 

probability of destruction of the resource, except for ambiguous TCPRs with partial 

destruction. And when the range is sufficiently high, the probability of destruction of 

ambiguous and risky TCPRs is not significantly different, suggesting that to conserve 

TCPRs, we need reduce the range and eliminate ambiguity jointly. 

The rest of the paper is as follows. Section 4.2 reviews the related literature. 

Section 4.3 presents the theoretical framework. Section 4.4 discusses the experimental 

design. Section 4.5 presents the results. The final section is the discussion section.      

4.2 Related Literature 

The literature on risky TCPR is substantial (Mantilla 2018). The closest set of 

papers to ours are Budescu, Rapoport and Suleiman (1995), Rapoport, Budescu, 

Suleiman and Weg (1992), Budescu, Rapoport and Suleiman (1992), Rapoport and 

Suleiman (1992) and Budescu, Rapoport and Suleiman (1990). In these studies, the 

subjects are placed in groups (usually of five members), and each subject chooses how 
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many units of a resource to withdraw. The subjects make their decisions simultaneously 

without any communication or feedback. If the sum of withdrawals is less than or equal 

to the resource size, then the subject receives her withdrawal. If the sum of withdrawals 

exceeds the resource size, then each subject receives nothing. The size of the resource (or 

threshold) is not known with certainty. But subjects know the lower and upper-bound of 

the resource and that the threshold is uniformly distributed. A robust result of these 

papers is that even if the mean of the resource size is kept constant, increasing the 

variance or the range of the resource size (difference between the upper and lower bounds 

of the resource) leads to an increase in withdrawals from the resource. This positive 

relationship between withdrawals and the range is consistent with the theoretical Nash 

predictions (Budescu, Rapoport and Suleiman 1995).  

All these papers, however, only explore risky thresholds and not ambiguous ones. 

Since many environmental problems are characterized by ambiguity rather than risk 

(Heal and Millner 2017), it is crucial to examine how individuals utilize TCPRs under 

ambiguity. To the best of our knowledge, ambiguous thresholds have only been 

experimentally addressed in a threshold public good (TPG) framework (Dannenberg et al. 

2015) but not in TCPRs.20 Dannenberg et al. (2015) find that contributions to the TPG are 

lower with ambiguous thresholds relative to risky ones.  

An important line of research on risky TCPR is the order in which subjects 

withdraw, simultaneously or sequentially (Budescu, Au and Chen 1997; Suleiman, 

Rapoport and Budescu 1996; Budescu, Suleiman and Rapoport 1995; Budescu, Rapoport 

 
20 As differences in behavior between common-pool resources and public goods games is well-documented, 

it is essential to assess the impact of ambiguity in common-pool resources separately from public good 

games (Apesteguia and Maier-Rigaud 2006; Sell and Son 1997).  
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and Suleiman 1993). In a sequential protocol, each subject is assigned a position, and 

withdraws according to that position.  A major finding is that there is an inverse 

relationship between the players’ position and the amount they withdraw from the 

resource. There is an ‘early mover’ advantage enjoyed by those who are assigned the first 

position.  

A few papers also examine risky TCPRs in a dynamic setting. Botelho et al. 

(2014) find subjects do not follow the socially-optimal path of withdrawals in a repeated 

TCPR game. They also find that when that resource is destroyed faster when the range 

about the resource size is wider. Adler (2014) finds that when subjects receive unreliable 

information or frequently revised estimates about the threshold, it leads to faster 

depletion of the resource. The policy recommendation that follows is that if policy-

makers are to give information to users, it should be reliable, otherwise it is better not to 

give any information. Maas et al. (2017) also explore various policy-options such as taxes 

and fines for reducing over-withdrawals from a risky TCPR. They find that both taxes 

and fines improve efficiency, but taxes more so. We now turn to the theoretical 

framework of TCPR game under risk and ambiguity. 

4.3 Theoretical Framework 

Rapoport and Suleiman (1992) present the game-theoretic solution to a TCPR 

with uncertainty and refine it further in Budescu, Rapoport and Suleiman (1995). These 

works examine the TCPR where the threshold is risky and crossing the threshold leads to 

the full destruction of resource. Aflaki (2013) extends the analysis to an ambiguous 

threshold and to situations where exceeding the threshold causes partial destruction of the 
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resource. Before we discuss the main theoretical predictions of Aflaki (2013), we present 

the key details of the TCPR game (for further details see Appendix A). 

4.3.1 TCPR Game Set-up 

In the TCPR game, there is a resource with an uncertain threshold (�̃�), with 𝛼 as 

the lower-bound and 𝛽 as the upper-bound of the threshold. Under risk, the probability 

distribution over [𝛼, 𝛽] is objectively known while under ambiguity it is not. There are 𝑛 

agents indexed by 𝑖 = 1,… , 𝑛.  Each agent, 𝑖, makes a withdrawal, 𝑟𝑖, from the resource. 

The total withdrawal made by agents other than 𝑖 is 𝑟−𝑖.  

The withdrawals received (𝜋𝑖) by each agent 𝑖 depends on the sum total of 

withdrawals, 𝒓𝒕𝒐𝒕𝒂𝒍 = 𝑟𝑖 + 𝑟−𝑖, the realized value of the threshold, �̃�, and on whether 

exceeding the threshold (𝒓𝒕𝒐𝒕𝒂𝒍 > �̃�) leads to full or partial destruction of the resource.  

Under full destruction, 

 
𝜋𝑖𝐹𝑢𝑙𝑙_𝐷𝑒𝑠𝑡. = {

𝑟𝑖,                         𝒓
𝒕𝒐𝒕𝒂𝒍 ≤ �̃�

0, 𝑎𝑛𝑑          𝒓𝒕𝒐𝒕𝒂𝒍 > �̃�
 

(5) 

While under partial destruction, 

 
𝜋𝑖𝑃𝑎𝑟𝑡_𝐷𝑒𝑠𝑡. = {

𝑟𝑖,                                     𝒓
𝒕𝒐𝒕𝒂𝒍 ≤ �̃�

𝑟𝑖 ∗ 𝑒
−𝑘(𝒓𝒕𝒐𝒕𝒂𝒍−�̃�), 𝒓𝒕𝒐𝒕𝒂𝒍 > �̃�

 
(6) 

With either full or partial destruction, if the sum total of withdrawals is less than 

or equal to the realized value of the threshold (𝒓𝒕𝒐𝒕𝒂𝒍 ≤ �̃�), then each agent receives her 

withdrawal, 𝑟𝑖. With full destruction, agents receive nothing if the threshold is crossed 

(𝒓𝒕𝒐𝒕𝒂𝒍 > �̃�) and with partial destruction, agents receive a fraction of withdrawals. The 

fraction received is determined by two factors. First, by how much the withdrawals 

exceeded the threshold, 𝒓𝒕𝒐𝒕𝒂𝒍 − �̃�. The higher the amount by which they exceed the 
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threshold (𝒓𝒕𝒐𝒕𝒂𝒍 − �̃�), the lower the amount they will receive. Second, by the rate at 

which the resource deteriorates, 𝑘, when the threshold is crossed. The higher the rate of 

deterioration, 𝑘, the lower the amount they will receive. When 𝑘 → ∞, crossing the 

threshold leads to full destruction of the resource. 

Each agent has a power utility function, 𝑢(𝑟) = 𝑟𝑐, where, 𝑐, represents the risk-

preference of the agent. A risk-neutral agent has 𝑐 = 1, while for a risk-averse agent, 𝑐 is 

0 < 𝑐 < 1, and for a risk-seeking agent 𝑐 > 1.  

4.3.2 Nash Equilibrium – Full Destruction  

Assuming symmetric agents, the Nash Equilibrium (NE) under risk with full 

destruction, for a uniformly distributed threshold, �̃�~𝑈[𝛼, 𝛽], where 𝛽 >  𝛼, is given by 

 
𝑟𝑅𝐼𝑆𝐾_𝑁𝐸
∗∗ = max {

𝛼

𝑛
,
𝑐𝛽

𝑛𝑐 + 1
} 

(7) 

The first term of the NE, 
𝛼

𝑛
, is the case where agents limit their withdrawals to the 

lower-bound of the resource, 𝛼. Since the threshold is never less than the lower-bound, 𝛼, 

(Pr(𝛼 ≤ �̃�) = 1), the agents always receive their withdrawals if the sum of total 

withdrawals is less than or equal to the lower-bound (𝛼). The second term of the NE, 

𝑐𝛽

𝑛𝑐+1
, is the case where agents no longer limit their withdrawals to the lower-bound (𝛼). 

Since withdrawing more than the lower-bound induces the chance of crossing the 

threshold and destroying the resource, agents receive their withdrawals probabilistically.  

Whether agents choose the first or second term of the NE, depends on the range 

(𝛽 − 𝛼) of the resource, which is the difference between the upper and lower-bound of 

the resource. When the range is narrow, 𝛽 − 𝛼 ≤
𝛼

𝑛∗𝑐
, agents will choose 

𝛼

𝑛
. But when the 
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range (𝛽 − 𝛼) becomes wide, 𝛽 − 𝛼 >
𝛼

𝑛∗𝑐
, agents will choose the second term, 

𝑐𝛽

𝑛𝑐+1
. 

Throughout the game the average value of the resource, (𝛽 + 𝛼)/2, remains constant. 

Any change in withdrawal decisions is driven by the change in the range (𝛽 − 𝛼), and not 

the average value, (𝛽 + 𝛼)/2. 

The NE under ambiguity with full destruction, assuming symmetric agents, is 

given by 

 
𝑟𝐴𝑀𝐵_𝑁𝐸
∗∗ = max {

𝛼

𝑛
,
𝑐𝜆𝛽

𝑛𝑐 + 1
} 

(8) 

Under full destruction, the NE under risk and ambiguity differs only by the 

presence of 𝜆 in the second term. 𝜆 lies between 0 and 1, and it captures the agent’s 

degree of confidence in her belief about the distribution of the threshold.21 While 1 − 𝜆 

represents the degree of ambiguity in her belief. In this set-up, 𝜆 captures the agent’s 

belief that the threshold is uniformly distributed, �̃�~𝑈[𝛼, 𝛽]. When the agent is 

ambiguity-neutral (𝜆 = 1), the agent treats the ambiguous TCPR game as a risky TCPR 

game, and therefore, the NE under risk and ambiguity become identical. On the other 

hand, when the agent is extremely ambiguity-averse (𝜆 = 0), the agent only considers the 

worst-state of the world, which is the lower-bound of the threshold (𝛼), and therefore 

always chooses 
𝛼

𝑛
. 

4.3.3 Nash Equilibrium – Partial Destruction  

Given the functional form of the destruction function, 𝑒−𝑘(𝒓
𝒕𝒐𝒕𝒂𝒍−�̃�), a closed-form 

solution of the NE for the partial destruction case is not possible. The NE can be 

 
21 The Choquet Expected Utility (CEU) model with simple capacities as presented in Aflaki (2013) does 

not admit ambiguity-seeking preferences. 
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numerically calculated (see Appendix A for details). We now turn to the main theoretical 

predictions of the TCPR game under risk and ambiguity. 

4.3.4 Main Theoretical Predictions 

There are three key predictions of the model. The first pertains to how individual 

withdrawals from the resource vary with the range (𝛽 − 𝛼). A non-monotonic 

relationship between the withdrawals and range (𝛽 − 𝛼) is predicted. The second relates 

to the type of uncertainty, risk vs. ambiguity, and the probability of crossing the 

threshold. Assuming ambiguity-averse users, the probability of crossing the threshold is 

lower when the threshold is ambiguous as opposed to when it is risky. The third 

prediction is that there is a positive relationship between the range (𝛽 − 𝛼) and 

probability of crossing the threshold. An increase in the range (𝛽 − 𝛼) will increase the 

probability of crossing the threshold. 

As the TCPR game exhibits multiple equilibria, we follow Aflaki (2013) in 

limiting our analysis to the symmetric equilibrium by assuming symmetric agents 

throughout our discussion. 

• Prediction 1: Non-monotonic relationship between the range (𝛽 − 𝛼) and 

withdrawals. 

The NE is a kinked function of the range (𝛽 − 𝛼) which leads to a non-monotonic 

relationship between the range (𝛽 − 𝛼) and withdrawals. Initially as the range (𝛽 − 𝛼) 

increases, the withdrawals decrease, and reach the minimum at the kink. Thereafter, as 

the range (𝛽 − 𝛼) increases, the withdrawals also increase.   
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The reason for the initial negative relationship and then positive relationship 

between the range and withdrawals is as follows. When the range is narrow, 𝛽 − 𝛼 ≤
𝛼

𝑛∗𝑐
, 

agents choose to withdraw 
𝛼

𝑛
, so that the sum of their withdrawals does not exceed the 

lower-bound (𝛼). An increase in the range (𝛽 − 𝛼) reduces the lower-bound of the 

threshold (𝛼), and therefore, the withdrawal, 
𝛼

𝑛
, also decreases.22 But when the range 

becomes wide, 𝛽 − 𝛼 >
𝛼

𝑛∗𝑐
, agents choose to withdraw 

𝑐𝛽

𝑛𝑐+1
. An increase in the range 

(𝛽 − 𝛼), increases the upper-bound of the threshold (𝛽), and therefore, the withdrawal, 

𝑐𝛽

𝑛𝑐+1
, also increases. The case of ambiguity with full destruction is analogous. For partial 

destruction under both risk and ambiguity, numerical calculations show a non-monotonic 

relationship between the range and the withdrawals. The non-monotonic relationship is 

visible in Figure 4.1. 

From Figure 4.1, we see that there is a non-monotonic relationship between the 

withdrawals and the range (𝛽 − 𝛼) for agents who are risk and ambiguity-neutral 

(represented by solid squares) and those who are moderately risk and ambiguity-averse 

(represented by hollow triangles).23 

• Prediction 2: If agents are ambiguity-averse, an ambiguous TCPR is less 

likely to be destroyed than a risky TCPR. 

 
22 An increase in the range (𝛽 − 𝛼), always leads to an increase of the upper-bound, 𝛽, and decrease of 

lower-bound 𝛼, because the average value of the bounds, (𝛽 + 𝛼)/2, is constant in this game. 
23 However, it is possible for the relationship between the range (𝛽 − 𝛼) and withdrawals to be monotonic 

if the agents have extreme risk and ambiguity preferences. If an agent is either extremely risk averse or 

ambiguity-averse (𝑐 = 0, 𝜆 = 0), then her withdrawals will monotonically decrease as the range (𝛽 − 𝛼) 

increases. Similarly, if an agent is extremely risk-seeking (𝑐 → 5), then her withdrawals will monotonically 

increase as the range (𝛽 − 𝛼) increases. Recall, that the CEU ambiguity model as presented by Aflaki 

(2013) does not admit ambiguity-seeking preferences, so we cannot comment on the impact of ambiguity-

seeking preferences.  
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Figure 4.1 – Withdrawals are Non-Monotonic in the Range 

When agents are ambiguity-neutral (𝜆 = 1), they behave identically in risky and 

ambiguous TCPRs, but when agents are ambiguity-averse (𝜆 < 1), they either withdraw 

less or an equal amount from an ambiguous TCPR than a risky one, hence, reducing the 

chance of destroying the TCPR. For TCPR with full destruction, this is easily verified by 

comparing the predicted Nash withdrawal for risk and ambiguity. 

𝑟𝑅𝐼𝑆𝐾_𝑁𝐸
∗∗ = max {

𝛼

𝑛
,
𝑐𝛽

𝑛𝑐 + 1
} 

(9) 

𝑟𝐴𝑀𝐵_𝑁𝐸
∗∗ = max {

𝛼

𝑛
,
𝑐𝜆𝛽

𝑛𝑐 + 1
} 

(10) 

For partial destruction, because of the function-form of the destruction function, a 

closed form solution for NE is not possible. The Nash withdrawal in an ambiguous TCPR 

will always be less than or equal to the Nash withdrawal in a risky TCPR. This occurs 

because in ambiguity the Nash withdrawal is a convex combination (0 ≤ 𝜆 ≤ 1) of the 
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withdrawal assuming a risky TCPR and the withdrawal assuming the worst-state of the 

world (�̃� = 𝛼), which will always be less than or equal to the withdrawal in a risky TCPR 

(see Appendix A for more details).   

• Prediction 3: There is a positive relationship between the probability of 

crossing the threshold and the range (𝛽 − 𝛼).  

As the range (𝛽 − 𝛼) increases the probability of crossing the threshold also 

increases. Figure 4.2 visually presents this relationship. This positive relationship holds 

for both the full and partial destruction cases.  

 

Figure 4.2 – Positive Relationship - Range and the Probability of Destruction 

The probability of crossing the threshold depends on the amount of withdrawal. 

An increase in risk and ambiguity aversion (𝑐 → 0, 𝜆 → 0), reduces the amount 

withdrawn by the agent, and thereby reduces the probability of crossing the threshold. 

But unless agents have extreme risk and ambiguity preferences (𝑐 = 0, 𝜆 = 0) as 
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represented by the plus symbol in Figure 4.2, a positive relationship is also predicted for 

‘reasonably’ risk-averse and ambiguity averse agents. But for the extremely risk-averse 

and ambiguity-averse agent, the range (𝛽 − 𝛼) has no impact on the probability of 

destruction, because she always withdraws, (
𝛼

𝑛
). And since the withdrawal never exceeds 

the lower-bound of the threshold (𝛼), the probability of crossing the threshold is zero. We 

now turn to our experimental design. 

4.4 Experimental Design 

Each subject undertakes two tasks. The first task is a risk and ambiguity 

preference elicitation task and is the same for all subjects. The second task is the TCPR 

game which varies depending on the condition. We vary the type of uncertainty on the 

threshold- risk or ambiguity, and the consequence of crossing the threshold – full or 

partial destruction, which gives us four conditions: (i) risky threshold with full 

destruction (ii) ambiguous threshold with full destruction (iii) risky threshold with partial 

destruction (iv) ambiguous threshold with partial destruction. Our experiment follows a 

between-subjects protocol, so a subject participates only in one condition. After 

completing both the tasks, the subjects fill out a demographic survey. We now describe 

the experimental tasks. 

4.4.1 Task One – Risk and Ambiguity Preferences Elicitation 

We elicit the risk and ambiguity preferences of the subjects using the method 

devised by Gneezy, Imas and List (2015). The subjects go through two multiple-price 

lists (MPLs). The first MPL is to elicit the risk preference and the switch points in the 

MPL yield a risk-preference interval identical to the Holt and Laury (2002) MPL. 
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In this MPL, the subjects are presented with a pair of lotteries. They choose which 

lottery they prefer. The first lottery is called Option A while the second one is Option B. 

In Option A, the possible pay-offs are 200 tokens or 160 tokens while in Option B, they 

are 385 tokens or 10 tokens.24 There are ten pairs in this list and as one moves down the 

list, the chance of the higher pay-off for both lotteries (200 and 385 tokens) increases. In 

the first pair, the expected value of Option A is higher, in the tenth and final pair, Option 

B gives a higher amount for sure. The pair at which the subject prefers Option A to B is 

reveals her risk-preference. Unlike other studies where a subject makes a separate choice 

between Option A and B at each pair, subjects are asked to choose one switch point. 

Allowing only one switch point eliminates inconsistent responses, that is, when subjects 

switch back and forth between Option A and B. Gneezy et al (2015) argue that enforcing 

a single switch point does not alter elicited parameters. Subjects make a choice for the 

risk MPL, and then for the ambiguity MPL. 

In the ambiguity MPL, subjects choose to draw a ball from either Urn A or B. In 

Urn A, there are 50 red and 50 black balls. 25 Whereas the composition of Urn B is 

unknown, therefore, the subjects do not know how many red and black balls are in it. The 

subjects first choose a ‘success’ color, either red or black.26 If they draw a ball that 

matches their success color, they will win tokens, otherwise not. Since there are 50 red 

and black balls, there is a fifty per cent chance of winning tokens. The chance of winning 

 
24 The conversion rate is set at 20 tokens = $1 USD.  
25 The actual ‘urn’ in the lab was a bag with playing cards, where drawing a black card meant drawing a 

black ball (same for drawing a red card). After a subject had drawn from the urn, the subject was free to 

verify the composition of the urns. 
26 The subjects are allowed to choose a success color to allay any fears that they might have about the 

experimenter rigging Urn B to reduce payments to subjects. For instance, if the experimenter wants to save 

money, she can set red as the winning color, and in Urn B, put only 1 red ball, thus, reducing the chance of 

payment. But when subjects choose the success color, the experimenter no longer can ‘rig’ Urn B. 
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from Urn B is unknown. The subjects make 20 decisions in which they choose to draw 

from either Urn A or B.  

The pay-off from Urn A remains constant throughout, they earn 200 tokens if 

their draw matches the success color, otherwise 0. The pay-off from Urn B keeps 

increasing as one moves down the list. In the first choice, Urn B gives 164 tokens if the 

draw matches the success color, in the twentieth and final choice, it gives 316 tokens. The 

point at which the subject prefers to draw from Urn B over A reveals her ambiguity 

preference. Those who switch to Urn B later are more ambiguity-averse. Similar to the 

risk MPL, subjects can only choose one switch point. 

At the end of the experiment (after completing task 1 and 2), a subject tosses a 

coin to determine whether she would be paid for the risk or ambiguity MPL (Head for 

risk and Tails for ambiguity). If the risk MPL is chosen, a 10-sided die is rolled twice. 

First to determine which choice from the list will be selected. If the number on the die is 

lower than the switch point, Option A will be played, otherwise B. The second time it is 

rolled to determine the pay-off from the lottery. If the ambiguity MPL is chosen, a 20-

sided die is rolled. If the number on the die is lower than the switch point, the subject 

draws from Urn A, otherwise from Urn B.  

4.4.2 Task Two – TCPR Game 

The second task is the TCPR game. It is described in the following manner. The 

subjects are informed that there is a box with tokens in it, however, the exact number of 

the tokens in it is unknown but they are informed about the bounds, 𝛼 and 𝛽. The 

information they receive about the range (𝛽 − 𝛼) depends on the condition, risk or 

ambiguity, and is presented in Table 4.1. 
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Consistent with earlier literature (Budescu, Rapoport and Suleiman 1995; 1992), 

we use a uniform distribution in the case of risk. The advantage of using a uniform 

distribution is that it is easy to explain to subjects. Whereas in the case of ambiguity, we 

give no information whatsoever about the distribution. Following Ahn (2014), our 

identifying assumption is that subjects impose a uniform distribution.27 

Table 4.1 – Information given to Subjects under Risk and Ambiguity 

 Range (𝜷− 𝜶) Information Avg. No. of Tokens 

Known 

Risk Each number in the Range has 

the same chance of being 

chosen. 

Yes, shown on decision-

screen. 

Ambiguity The chance of each number in 

the Range being chosen is 

unknown to you. 

No, decision-screen states 

that the average number of 

tokens is unknown. 

 

The subjects are told that they are in a group of three, the subject herself and two 

others. Each subject has to decide how many tokens to withdraw from the box. If the sum 

of withdrawals by the group is less than or equal to the actual number of the tokens, then 

each subject receives the number of tokens she withdrew. If the total withdrawal exceeds 

the actual number of tokens, then the tokens they receive depends on the condition, full 

or partial destruction.  

In the case of full destruction, if the total withdrawal exceeds the actual number of 

tokens, the subject receives 0 tokens. In the partial destruction condition, the subject 

 
27 Binmore et al. (2012) find empirical support for the Principle of Insufficient Reason, absent any reason to 

think otherwise, a person should assign equal probabilities to the outcomes. Baillon et al. (forthcoming) 

argue that the assumption of symmetry of beliefs is a reasonable one for artificial settings such as ours, 

tokens in a box, but not for natural events i.e. bets on the stock market. 
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receives a fraction of the tokens she withdrew. The fraction is calculated according to the 

destruction function, 𝑒−𝑘(𝒓
𝒕𝒐𝒕𝒂𝒍−�̈�), as presented in Aflaki (2013).  

We set 𝑘 = 0.1, therefore, the exact fraction received by the subject depends on 

the amount by which the total withdrawals (𝒓𝒕𝒐𝒕𝒂𝒍) exceed the actual number of tokens in 

the box (�̈�).28 The subjects are given a table which states the percentage of tokens they 

will receive if the total withdrawal exceeds the actual number. The table shows that if 

they exceed the actual number by 1 token, they will receive 90 per cent of the tokens, 2 

tokens then 82 per cent and so on until 52 tokens for which they will receive 1 per cent. If 

total withdrawal exceeds the threshold by 53 tokens or more, they receive 0 tokens. The 

exchange rate for tokens is set at 40 tokens = 1 US$. 

As in Budescu et al. (1995), there are 20 rounds in this task. The subjects do not 

receive any feedback between rounds. Four rounds are chosen randomly for payment. We 

ask two subjects to volunteer, one to roll a 20-sided die, the other one to observe. The 

numbers that appear on the die roll are chosen. In case of the same number being rolled 

twice, the die is rolled again, until four different rounds are chosen for payment.  

4.4.3 Parameters of the Game 

We have seven different ranges (𝛽 − 𝛼) in our experiment as shown in Table 4.2. 

The first five are drawn from Budescu et al. (1995) and final two are our addition. The 

ones we introduce are wider, that is, 𝛽 − 𝛼 is greater, than the ones in Budescu et al 

(1995). We introduce these to better test the predicted non-monotonic relationship 

between the range (𝛽 − 𝛼) and withdrawals. Recall that the prediction is that there is a 

 
28 𝑘 = 0.1 gives us predictions that are quite close to the full destruction case (see Figures 4.1 and 4.2). 
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positive relationship between the range (𝛽 − 𝛼) and withdrawals when the range (𝛽 − 𝛼) 

is wide. By introducing wider ranges (𝛽 − 𝛼), we are better placed to observe this 

positive relationship. These ranges are presented in a randomized order to the subjects. 

All ranges appear three times except for the narrowest range (10) which appears twice. 

Notice that the average value of the bounds is constant, 500 tokens. Therefore, 

changes in withdrawal decisions across the ranges is being caused by the difference, 𝛽 −

𝛼, and not by changes in the mean value of the resource ([𝛼 + 𝛽]/2). The average value 

is clearly stated on their decision-screen in the risk conditions. Therefore, at least in the 

risk condition changes in withdrawal decisions cannot be attributed to miscalculation of 

the average value. 

Table 4.2 – Ranges (𝛽 − 𝛼) 

Range (𝜷− 𝜶) 𝜶 (lower-bound) 𝜷 (upper-bound) 

10 495 505 

70 465 535 

200 400 600 

380 310 690 

560 220 780 

700 150^ 850^ 

820 90^ 910^ 

^ These values have been chosen by us. The others are from Budescu et al. (1995) 

4.4.4 Implementation 

The experiment was programmed in z-Tree (Fischbacher 2007) and conducted at 

the Cleve. E. Willis Experimental Economics Lab at the University of Massachusetts 
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Amherst in Spring 2016. The subjects were recruited through ORSEE (Greiner 2015). 

There were 141 subjects (59 females) in total, with 36 subjects in each condition (except 

ambiguity with full destruction which had 33 subjects). There were two sessions of each 

condition. Each session lasted about one and a half hours. The average earnings were 

$21.25, with the minimum being $5 and the maximum was $41.25, including the $5 

show-up fee. The subjects were paid in cash and in private at the end of the session. We 

now turn to our results. 

4.5 Results 

Our main results pertain to the three theoretical predictions presented earlier. 

Before discussing those, we present a brief overview of our data.  

A total of 141 subjects participated in the experiment. There are 36 subjects in 

each condition except ambiguity with full destruction in which there are 33. There are 

two ambiguity-seeking subjects in the ambiguity with full destruction condition. As the 

CEU ambiguity model presented in Aflaki (2013) does not admit ambiguity seeking 

preferences, we exclude these two subjects from the analysis leaving us with a total 139 

subjects.29 In the TCPR game, each subject makes 3 withdrawals decisions for each value 

of the range (and 2 decisions for when the range is 10). Similar to Budescu et al. (1995), 

we take the average of these decisions.30 Since there are seven values in the range (𝛽 −

𝛼), we obtain 7 observations per subject. We have a total of 973 observations (7 decisions 

x 139 subjects). We now turn to our first prediction that there is a non-monotonic 

relationship between the range and withdrawals. 

 
29 Including these two subjects does not significantly alter our results. 
30 Using all observations instead of the average does not significantly change our results. 
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4.5.1 Non-Monotonic Relationship between Range and Withdrawals  

The theoretical prediction is that initially as the range (𝛽 − 𝛼) increases, the 

agents decrease their withdrawal because the equilibrium withdrawal does not exceed the 

lower-bound (𝛼). Thereafter, the withdrawals increase as the range (𝛽 − 𝛼) increases 

leading to a kink as depicted in Figure 4.1. To formally test whether there is a negative 

relationship between the range (𝛽 − 𝛼) and withdrawals (𝑟) before the kink (𝑀), and a 

positive relationship after it, we run a non-linear piece-wise regression of the following 

form: 

𝑟 = {
𝑎1 + 𝑏1(𝛽 − 𝛼),        (𝛽 − 𝛼) ≤ 𝑀

𝑎2 + 𝑏2(𝛽 − 𝛼),       (𝛽 − 𝛼) ≥ 𝑀
 

Here withdrawals are a function of the range (𝛽 − 𝛼). We estimate four 

parameters (𝑎1, 𝑏1, 𝑏2, 𝑀).31 We are particularly interested in the signs of the slope 

parameter estimates (𝑏1, 𝑏2). The theoretical prediction is that 𝑏1 < 0 and 𝑏2 > 0, that is, 

there is a non-monotonic single-dipped (𝑏1 < 0, 𝑏2 > 0) relationship between the range 

(𝛽 − 𝛼) and withdrawals. Recall that this non-monotonic relationship holds if subjects 

are reasonably risk and ambiguity averse. So before proceeding to test this prediction, we 

check if our subjects are risk and ambiguity averse. 

To estimate the risk (𝑐) and ambiguity (𝜆) parameters for each condition at the 

aggregate level, we use the Maximum Likelihood method (Gneezy et al 2015; Harrison 

2006; Gould et al. 2006). The estimated values of these parameters for the various 

conditions are given in Table 4.3. The conditions are abbreviated as follows – the first 

letter refers to the type of uncertainty, R is risk (and A is ambiguity). The second term 

 
31 We do not estimate 𝑎2 as it can be calculated using the other estimates (𝑎2̂ = 𝑎1̂ + 𝑏1̂ ∗ (�̂�)). 
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refers to the type of destruction, FD is full destruction and PD is partial destruction. At 

the aggregate level in each condition, subjects are risk-averse (0 < 𝑐 < 1) and ambiguity-

averse (𝜆 < 1), but they do not have extreme preferences. 

Table 4.3 – Estimated Value of Risk and Ambiguity Parameters – All Conditions 

 R–FD R–PD A–FD A–PD 

𝒄 0.372∗∗∗(0.015) 0.39∗∗∗(0.016) 0.446∗∗∗(0.017) 0.379∗∗∗(0.028) 

𝑵 360 360 310 360 

𝝀 − − 0.908∗∗∗(0.022) 0.897∗∗∗(0.029) 

𝑵 − − 620 720 

*** p-value ≤ 0.01; ** p-value ≤ 0.05; * p-value ≤ 0.1; Standard errors in parentheses. Clustered at 

subject-level. 
 

Since the subjects are risk and ambiguity averse, as reported in Table 4.3, we 

expect the non-monotonic relationship to exist for all conditions. In our non-linear 

regression we do not restrict the parameters to be either negative or positive. We let the 

data ‘speak’ and see which relationship between the range (𝛽 − 𝛼) and withdrawals fits 

the data best.  

If the relationship is non-monotonic, it need not be single-dipped (𝑏1 < 0, 𝑏2 > 0) 

as predicted. It could be single-peaked (𝑏1 > 0, 𝑏2 < 0), dipped-flat (𝑏1 < 0, 𝑏2 = 0), 

peaked-flat (𝑏1 > 0, 𝑏2 = 0), flat-dipped (𝑏1 = 0, 𝑏2 < 0) and flat-peaked (𝑏1 = 0, 𝑏2 >

0). The relationship could also be monotonic, either increasing (𝑏1 > 0, 𝑏2 > 0) or 

decreasing (𝑏1 < 0, 𝑏2 < 0). Finally, there could be no relationship between that range 

(𝛽 − 𝛼) and withdrawals making it flat (𝑏1 = 0, 𝑏2 = 0).  
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Table 4.4 – Non-Linear Regression – All Conditions 

 R–FD A–FD R–PD A–PD 

𝒃𝟏 −0.064∗∗∗ (0.012) −0.02 (0.029) −0.043 (0.032) −0.137 (0.023) 

𝒃𝟐 0.111∗∗∗ (0.044) 0.087∗∗ (0.041) 0.041 (0.049) 0.037 (0.037) 

𝑴 472.45∗∗∗(37.81) 462.74∗∗∗(88.45) 406.06∗∗(197.35) 385.07(249.60) 

R-squared 0.0287 0.0161 0.012 0.0027 

Root MSE 62.70 75.64 111.37 100.1 

𝑵 252 217 252 252 

Consistent Full Partial Inconsistent Inconsistent 

*** p-value ≤ 0.01; ** p-value ≤ 0.05; * p-value ≤ 0.1; Standard errors in parentheses. Clustered at 

subject-level. 

 

The results of the piece-wise regression are presented in Table 4.4. We classify 

the condition to be ‘fully consistent’ with the theoretical prediction if it is single-dipped 

(𝑏1 < 0 𝑎𝑛𝑑 𝑏2 > 0) and the slope estimates are statistically significant at least at the 10 

per cent level. If only one of the slope estimates has the correct direction (𝑏1 < 0 𝑜𝑟 𝑏2 >

0) and it is significant at least at the 10 per cent level while the other is flat (𝑏𝑖 = 0) or 

statistically insignificant, we then classify the condition as ‘partially consistent’. Finally, 

if either of the directions of the slope estimates is contrary to the theoretical prediction 

((𝑏1 > 0 𝑜𝑟 𝑏2 < 0) or if neither of the estimates are statistically significant, we classify 

it as ‘inconsistent’.  

From Table 4.4, we see that at the aggregate level, only the risk with full 

destruction condition is fully consistent with the theoretical prediction of a non-

monotonic single-dipped relationship. We replicate Budescu et al. (1995) finding that in a 
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risky TCPR with full destruction, withdrawals are non-monotonic in the range (𝛽 − 𝛼) 

which gives us our first result.  

• Result 1 – At the aggregate level, we find full support for the theoretically 

predicted non-monotonic single-dipped relationship only in a risky TCPR 

with full destruction. For an ambiguous TCPR with full destruction, we 

find partial support. But for a TCPR with partial destruction, either risky 

or ambiguous, we do not find any support for the theoretical prediction. 

However, the result at the aggregate level, may mask individual behavior 

underlying it. To examine whether an individual’s behavior is in line with the prediction, 

we again run a non-linear regression for each individual subject separately to check if 

there is a non-monotonic relationship between withdrawals and the range (𝛽 − 𝛼).  We 

use the same classification scheme of fully or partially consistent with the single-dipped 

non-monotonic prediction. We also classify subjects who respond to the range (𝛽 − 𝛼) in 

a monotonic manner, both increasing (𝑏1 > 0, 𝑏2 > 0) or decreasing (𝑏1 < 0, 𝑏2 < 0). 

Those subjects for whom both the slope estimates are significant at least at the 10 per 

cent level are ‘fully consistent’ while if only one of the slope estimate is significant, then 

those are partially consistent. Finally, a subject is considered ‘inconsistent’ if the 

subject’s withdrawals are single-peaked (𝑏1 > 0, 𝑏2 < 0) or if both slope estimates are 

insignificant. 
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Table 4.5 – Percentage of Subjects – Withdrawals and Range Relationship 

Relationship R-FD  

(N=36) 

R-PD  

(N=36) 

A-FD  

(N=31) 

A-PD  

(N=36) 

Non-Monotonic 37 31 23 14 

Full 14 17 13 3 

Partial 23 14 10 11 

Monotonic 20 17 47 29 

Full 11 11 27 23 

Partial 9 6 20 6 

Inconsistent 43 51 30 57 

Total 100 100 100 100 

The percentages have been rounded. 

At the aggregate level for the full destruction conditions, we find either full or 

partial support for the single-dipped non-monotonic relationship. We do not find any 

support for the partial destruction condition. But from Table 4.5, we see that there is 

considerable heterogeneity in individual behavior.  

Even in the risk with full destruction condition where we find full support at the 

aggregate level, only a minority of subjects, 37 per cent, display a non-monotonic 

relationship. Similarly, in the partial destruction condition where we find no support at 

the aggregate level, some subjects’ do follow the non-monotonic prediction, 14 per cent 

in the ambiguity with partial destruction condition and 31 per cent in the risk with partial 

destruction, which is close the fraction observed in the risk with full destruction condition 

(37 per cent).   
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We also find that many subjects exhibit a monotonic relationship between the 

range (𝛽 − 𝛼) and withdrawals, and in the ambiguity with full destruction condition, 47 

per cent of the subjects respond to the range (𝛽 − 𝛼) in a monotonic manner.  

A substantial fraction of subjects, however, do not respond to the range (𝛽 − 𝛼) in 

any systematic fashion. The lowest number of inconsistent subjects are in the ambiguity 

with full destruction condition (30 per cent) and the highest are in the ambiguity with 

partial destruction condition (57 per cent). Of those classified as inconsistent, none of 

them exhibited a single-peaked relationship (𝑏1 > 0, 𝑏2 < 0), which would suggest that 

subjects’ behavior is opposite of the theoretical prediction. Instead we find that neither of 

the slope estimates (𝑏1, 𝑏2) are statistically significant for the inconsistent subjects. 

Policy-makers interested in altering behavior of users need to account for the 

heterogeneity in the response to the range (𝛽 − 𝛼) amongst individuals. 

• Result 2 – Individuals’ response to the changes in the range (𝛽 − 𝛼) is 

heterogeneous. In each condition, a minority of subjects conforms to 

theoretically predicted single-dipped non-monotonic relationship. We also 

observe in each condition, some subjects exhibiting a monotonic 

relationship. Finally, there is a substantial fraction of subjects in each 

condition, who do not display any systematic relationship between the 

range (𝛽 − 𝛼) and withdrawals.  

Putting Result 1 and 2 together, we argue that empirical support for the non-

monotonicity prediction is limited. We now turn to the second prediction that if agents 

are ambiguity-averse, then an ambiguous TCPR is less likely to be destroyed. 
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4.5.2 Ambiguous TCPR and the Probability of Destruction 

To estimate the probability of destruction in various conditions, we run a 

fractional logit regression which is used for settings where the dependent variable lies 

between 0 and 1 (Papke and Woolridge 2008).32 For us, the dependent variable is the 

probability of crossing the threshold leading to destruction, either full or partial, 

depending on the condition. In Figure 4.3, we present the estimated mean probabilities of 

destructions across the range (𝛽 − 𝛼) for all conditions.33 

 

Figure 4.3 – Probability of Destruction and Range – All Conditions 

In Figure 4.3, on the X-axis, we have the range (𝛽 − 𝛼) and on the Y-axis, we 

have the probability of crossing the threshold. For instance, the value of 0.1 corresponds 

to a 10 per cent chance of destroying the resource. We are interested in whether the 

 
32 The raw coefficients of the regression generating Figure 4.4 are available in the Supplemental Results 

Appendix B. 
33 The precise estimated values and their standard errors are available in the Supplemental Results 

Appendix B. 
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probability of destruction is lower with ambiguous TCPRs. Visually it appears that the 

probability of destruction is higher in the ambiguity conditions, except when the range 

(𝛽 − 𝛼) is high (≥ 700). The ambiguity with full destruction line (solid triangles) lies 

above the risk with full destruction condition (hollow diamonds). Similarly, ambiguity 

with partial destruction line (solid circles) lies above the risk with partial destruction 

condition (hollow squares).  

It appears as if the observed behavior is in the opposite direction of the theoretical 

prediction, ambiguous TCPRs are more likely to be destroyed. Post-estimation statistical 

tests for a difference in estimated means of probability of destruction indeed confirm 

what we observe visually in Figure 4.4. The probability of destruction of ambiguous 

TCPRs is significantly higher than risky TCPRs, irrespective of full or partial destruction, 

as long as the range (𝛽 − 𝛼) is not too high.  

 

Figure 4.4 –Probability of Crossing the Threshold – Amb. vs. Risk (Full Destruction) 
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Figure 4.5 –Probability of Crossing the Threshold – Amb. vs. Risk (Partial Destruction) 

In Figure 4.4, we present the difference in the probability of destruction between 

ambiguous and risky TCPRs with full destruction. On the X-axis, we have the range (𝛽 −

𝛼). On the Y-axis, we have the estimated difference in the probability of destruction, with 

the bars representing the 95 per cent confidence intervals (CI), and the solid horizontal 

line represents zero. For instance, when the range (𝛽 − 𝛼) is 10, then the estimated 

difference is close to 0.2, which shows that the chance of an ambiguous TCPR being 

destroyed is almost 20 per cent higher than a risky TCPR. 34 Since the 95 CI bar lies 

above the zero line, we know that this difference is statistically significant. But when the 

range (𝛽 − 𝛼) is high (≥ 560), we see that 95 CI bars overlap with the zero line, which 

means that the difference is not statistically significant. 

Figure 4.5 presents the difference in the probability of destruction for ambiguous 

and risky TCPRs with partial destruction. It can also be interpreted in the same manner as 

 
34 For exact estimated values and the associated standard errors (see Supplemental Results Appendix B). 
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Figure 4.4. Here we have analyzed full and partial destruction separately, if we pool the 

data from both destruction types, we still find that ambiguous TCPRs are more likely to 

be destroyed than risky TCPRs (see  Appendix B Supplemental Results). 

A potential reason for observing higher probability of destruction in ambiguous 

TCPRs could be because of differing risk and ambiguity preferences of the subjects in the 

conditions. If subjects are more risk-seeking in the ambiguous conditions, then we would 

observe higher probability of destruction in the ambiguous conditions. However, in our 

regression we control for risk and ambiguity preferences35, so we cannot attribute the 

difference in the probability of destruction to differing risk and ambiguity preferences. 

Another potential reason could be that subjects have non-symmetric beliefs such 

that they overestimate the size of the resource (or the value of the threshold) under 

ambiguity. If such overestimation is common, then we would observe more ambiguity-

seeking behavior in the ambiguity elicitation task. Of the 141 subjects in our experiment, 

only three of them make ambiguity-seeking choices in the elicitation task. Only two of 

the three ambiguity-seekers are in the ambiguity condition, and we exclude them from 

our analysis (although our results are robust to their inclusion). Therefore, we do not 

believe that overestimation of the resource is driving this result. 

 Our finding that ambiguity leads to a higher chance of destruction in a TCPR 

mirrors the results of Dannenberg et al. (2015) who observe lower contributions to a 

public good when the threshold is ambiguous as compared to when it is risky.  

• Result 3 – Contrary to the prediction that ambiguity as compared to risk 

reduces the probability of destruction, we find that ambiguity significantly 

 
35 Risk-aversion is captured by the number of ‘safe’ choices made in the risk MPL, and ambiguity-aversion 

refers to the number of withdrawals from a risky urn instead of an ambiguous urn. 
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increases the probability of destruction in a TCPR. We find that this result 

holds for both full and partial destruction. However, this result is 

mediated by the range (𝛽 − 𝛼), because when the range (𝛽 − 𝛼) is high, 

ambiguity does not have a significant effect.  

The main policy-implication of this result is that reducing the range (𝛽 − 𝛼) and 

changing the type of uncertainty from ambiguity to risk in conjunction will be the most 

effective way to reduce the probability of destruction of TCPRs. We now turn to our third 

prediction that there is a positive relationship between the range (𝛽 − 𝛼) and the 

probability of crossing the threshold.   

4.5.3 Range and the Probability of Crossing the Threshold 

Recall that the probability of crossing the threshold increases as the range (𝛽 − 𝛼) 

increases only holds if the subjects are not extremely risk and ambiguity averse (𝑐 =

0, 𝜆 = 0). From Table 4.3, we see that subjects are risk-averse and ambiguity-averse but 

not extremely so, therefore, we expect to find support for this prediction. From Figure 

4.3, we see that for all conditions, except for ambiguity with full destruction, the 

probability of destruction is increasing as the range (𝛽 − 𝛼).  

From our fractional logit regression36, we obtain the average marginal effect of a 

unit increase in the range (𝛽 − 𝛼) on the probability of destruction across all conditions. 

These are reported in Table 4.6. Our statistical analysis confirms what we visually 

observe in Figure 4.3, there is a significant and positive relationship between the range 

(𝛽 − 𝛼) on the probability of destruction across all conditions except ambiguity with 

 
36 Full regression reported in the Supplemental Results Appendix B. 
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partial destruction, where we observe no relationship between the range (𝛽 − 𝛼) and the 

probability of destruction. 

Table 4.6 – Impact of Range on Probability of Destruction – All Conditions 

 R-FD R-PD A-FD A-PD 

Range (𝜷 − 𝜶) 0.000479*** 

(5.95e-05) 

0.000206** 

(8.86e-05) 

0.000289*** 

(7.01e-05) 

-7.96e-06 

(8.46e-05) 

*** p-value ≤ 0.01; ** p-value ≤ 0.05; * p-value ≤ 0.1; Standard errors in parentheses. 

The coefficients appear to be small but that is driven by the fact that our range 

(𝛽 − 𝛼) of threshold is wide, the lowest being 10 and the highest is 820, while the range 

of probability is bound between 0 and 1. But the impact of the range (𝛽 − 𝛼) on the 

probability of destruction is substantial. For instance, in the risk with full destruction 

condition, if the range (𝛽 − 𝛼) increases from 10 to 560, we will observe that chance of 

the TCPR being destroyed will increase by over 26 percentage points. Because the 

coefficient is 0.000479 * 550 (is the change in the range) which will give us an increase 

of 0.263 in the probability of destruction.  

• Result 4 – As the range (𝛽 − 𝛼) increases, the probability of crossing the 

threshold increases significantly in all conditions except in the case of 

ambiguity under partial destruction. 

This result highlights the importance of the joint impact of the type of uncertainty 

(risk vs. ambiguity) and the type of destruction (full vs. partial). When trying to preserve 

a resource with ambiguity and partial destruction, reducing the range (𝛽 − 𝛼) will not 

suffice. In conjunction with reducing the range (𝛽 − 𝛼), policy-makers should strive to 

better inform the users about the chance of crossing the threshold i.e. transforming the 

ambiguity to risk. Similarly, to make reductions in the range (𝛽 − 𝛼) effective, policy-
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makers should inform the users about the detrimental impact of crossing the threshold, so 

the users treat it as a case of full destruction instead of partial. We now turn to our 

concluding discussion. 

4.6 Discussion 

Our study examines the impact of uncertainty on the threshold in a common-pool 

resource game. We extend the existing experimental literature on uncertainty in TCPRs 

by examining different types of uncertainty (risk vs. ambiguity) and different 

consequences of crossing the threshold (full vs. partial destruction).  

Overall, we find limited support for the prediction that withdrawals follow the 

single dipped non-monotonic pattern. At the aggregate level, we only find full support for 

this prediction in the risk with full destruction condition, and for other conditions, we find 

only partial or no support. Similarly, at the individual level, only a minority of the 

subjects exhibit this single dipped non-monotonic relationship. Note that this test of non-

monotonicity between the range (𝛽 − 𝛼) and the withdrawals is a not a stringent one. 

Because we are only checking if the signs of the slope parameter estimates (𝑏1, 𝑏2) are in 

line with the theoretical prediction and not the values of the slope parameter estimates. 

Since observed behavior deviates considerably from the prediction, reexamining the 

theoretical framework of Budescu et al. (1995) is warranted. 

We find that ambiguity as compared to risk significantly increases the probability 

of crossing the threshold. This result holds irrespective of whether the type of destruction 

is full or partial. Although the theoretical prediction is that ambiguity will reduce 

destruction, our evidence suggests that the opposite occurs. Ambiguity has a similarly 

detrimental impact for the provision of public goods (Dannenberg et al. 2015). The 
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policy-implication of our finding is that more information about the resource improves 

the chances of its survival. However, the impact of ambiguity is moderated by the range 

(𝛽 − 𝛼). There is no significant difference between the probability of destruction of risky 

and ambiguous TCPRs when the range (𝛽 − 𝛼) is high. 

Finally, as predicted, we find that the range (𝛽 − 𝛼) has significant and positive 

effect on the probability of destruction for all conditions, except for ambiguity with 

partial destruction. The policy-implication of this result is that tackling uncertainty jointly 

by reducing both the range (𝛽 − 𝛼) while gathering more information about the threshold 

(changing it from being ambiguous to risky) will be most effective in preserving TCPRs.   

Since there is growing pressure on natural and environmental resources, we 

believe more research on how they are utilized under uncertainty is essential. Future 

scholars can extend this line of research in several directions. First, we have introduced 

ambiguity only in one form, that is, by not giving any information about the threshold. 

Another possibility is to give multiple distributions over the threshold, as presented in the 

multiple-priors models of ambiguity-aversion.  

Second, in our experiment, the subjects’ beliefs are not elicited. Since we observe 

higher chances of destruction under ambiguity as well as under partial destruction of the 

resource, it would be valuable to investigate how the subject’s beliefs over threshold as 

well as the strategies of others, when there is ambiguity and/or partial destruction.  

Third, the subjects do not receive any feedback on their decisions. They also are 

not able to communicate with other group members. Since most of the resources are used 

over multiple-periods, and with many users in interaction with each other, introducing 
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feedback and communication, would shed light on how behavior adjusts in a dynamic 

setting.  

Finally, in many studies, sanctioning has been used to sustain cooperation. Will a 

sanctioning technology reduce overharvesting? Particularly interesting would be to see 

what decisions are penalized, because unlike in a public-goods game, where the socially 

optimal action (full contribution) is obvious, but that is not the case in a TCPR game with 

uncertainty. A high level of withdrawal is not necessarily driven by ‘greed’, if one 

believes that the threshold is high, then the socially optimal action is to withdraw a high 

amount. Addressing these questions will provide valuable insights to policy-makers and 

will play a role in better managing common-pool resources. 
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CHAPTER 5 

 

COMMON-POOL RESOURCES UNDER THRESHOLD AND GROUP SIZE 

UNCERTAINTY 

5.1 Introduction 

A wide-variety of environmental problems that society faces, from exhaustion of 

water reserves to overharvesting of fisheries, from the destruction of forests to the 

dumping of waste materials in rivers, pertains to threshold common-pool resources 

(TCPRs).37 A TCPR is a resource which can be consumed safely up to a certain level, the 

threshold, but consuming it beyond the threshold leads to the destruction of the resource 

(Rapaport & Au 2001). Often times, there is considerable uncertainty surrounding these 

TCPRs, particularly about the threshold (Aflaki 2013) and the group size, that is the 

number of users of the TCPR (de Kwaadsteniet, van Dijk, Wit & de Cremer 2008). 

Although the users of the resource might be aware that a threshold exists and crossing it 

will destroy the resource, they might not know the exact value of the threshold or the 

exact number of other users. For instance, fishermen know that overharvesting will 

destroy the fish stock, but what level of fishing constitutes overharvesting might not be 

known with precision. Here the fishermen face threshold uncertainty. They might also not 

know how many other fishermen are out there. Here the fishermen face group size 

uncertainty. While threshold and group size uncertainty exist simultaneously in many 

settings, existing research has analyzed them in isolation. Policy-makers seeking to 

 
37 The literature on social dilemmas often refers to these environmental problems as resource dilemmas 

(Suleiman, Rapoport & Budescu 1996; Samuelson & Messick 1986) 
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ensure optimal utilization of these resources need to know the impact of these two forms 

of uncertainty on withdrawal behavior.  

Our key contribution is the joint examination of the impact of threshold and group 

size uncertainty on withdrawals from a TCPR. Evidence suggests that threshold and 

group size uncertainty have opposite effects on the preservation of the TCPR which 

makes a joint analysis particularly important. Botelho, Dinar, Pinto & Rapoport (2014) 

find that threshold uncertainty leads to socially sub-optimal withdrawals and higher rates 

of destruction of the resource while Au & Ngai (2003) find that group size uncertainty 

reduces the destruction rate of the TCPR. 

However, it should be noted that threshold uncertainty which emerges from the 

scientific non-linearities present in environmental resources is very difficult to reduce as 

the requisite scientific knowledge is lacking (Pindyck 2007) while group size uncertainty 

is relatively easier to tackle for policy-makers. Therefore, the focus of our analysis is on 

how altering group size uncertainty impacts withdrawal behavior in the presence of 

threshold uncertainty. 

We run a laboratory experiment to examine the impact of threshold and group 

size uncertainty.38 The laboratory methodology is ideal to address this issue because we 

can exogenously vary the type of uncertainty (threshold vs. group size) and its magnitude 

(low vs. high uncertainty). Such control is not possible in the field. Our experiment uses a 

within-subjects design where each subject participates in three TCPR games. The three 

games differ in what element(s) of the TCPR game is uncertain – the threshold, the group 

 
38 To be precise, in our experiment we are looking at risk and not (Knightian) uncertainty, because the 

subjects have objective information about the probabilities. We call it uncertainty to maintain consistency 

with the existing work on TCPR games (Botelho et al. 2014; Au & Ngai 2003; Suleiman, Rapoport & 

Budescu 1996). 
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size, and both the threshold and group size. Within each game, we vary the magnitude of 

uncertainty about the threshold and group size. 

The remainder of the paper is structured as follows: section 5.2 reviews the 

related literature, section 5.3 presents the theoretical framework, section 5.4 discusses the 

experimental design, section 5.5 presents the results and the final section is the discussion 

section. 

5.2 Related Literature 

Despite the theoretical importance of group size uncertainty in strategic games 

(Myerson 1998), few studies have explored it experimentally in TCPR games. To the best 

of our knowledge, there are only two studies which do so (de Kwaadsteniet et al. 2008; 

Au & Ngai 2003).  

In Au & Ngai (2003), subjects are placed in a group and each one of them makes 

a withdrawal from a resource consisting of 1000 units or ‘fish’. If the sum of withdrawals 

is less than or equal to the resource size, then the subject receives her withdrawal. 

Whereas if the sum of withdrawals exceeds the resource size, then each subject receives 

nothing. Au & Ngai (2003) analyze how different protocols of play impact withdrawals 

and whether uncertainty about the group size has any effect on withdrawals. They 

examine two protocols of play, sequential and self-paced protocol.   

In the sequential protocol, each subject in the group is assigned a position and 

have to make withdrawals in that order. The subject assigned the first position gets to 

withdraw from the resource first. The subject in the second position observes the 

withdrawal of the first position player and then makes her own withdrawal. And then the 

third position player observes the withdrawals of the previous players. The game 
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continues until the last player makes her withdrawal or the sum of withdrawals by the 

players exceeds the resource size, whichever comes first. In the self-paced protocol, the 

subjects are not restricted to withdraw in any pre-specified order. A subject can withdraw 

in the first round or can wait till the next round. In each round, the subject is informed 

about how many other subjects have withdrawn and how much has been withdrawn. 

Each protocol is played with a certain group size, in which there are five 

members, or an uncertain group size, where the average number of group members is also 

five, but the group size is uniformly distributed between three to seven members. The 

main finding is that withdrawals are lower, leading to a lower rate of destruction of the 

resource, under group size uncertainty in both protocols.  

In de Kwaadsteneit et al. (2008), the focus is on individual personality traits as 

measured by the Social Value Orientation (SVO) and how these traits impact withdrawals 

from a resource in the face of group size uncertainty. They use a simultaneous protocol of 

play in which all players withdraw from the resource simultaneously without any 

communication or feedback. The key finding is that the impact of group size uncertainty 

on withdrawals is heterogenous and depends on the ‘type’ of subject. Those subjects who 

are classified as pro-socials (these are more cooperative) according to the SVO withdraw 

significantly less than those who are classified as pro-selfs (these are more competitive) 

under group size uncertainty. But when the group size is certain, then both type of 

subjects, pro-socials and pro-selfs, withdraw the same amount. 

In both these studies, de Kwaadsteneit et al. (2008) and Au & Ngai (2003), the 

resource size (or the threshold) is known and only the group size is uncertainty. But in 



 

 80 

our study, both the threshold and group size are uncertain, thereby better capturing the 

multiple uncertainties exhibited in TCPRs.  

5.3 Theoretical Framework 

The following discussion draws upon the work of Rapoport & Suleiman (1992) 

who analyze the TCPR game with threshold uncertainty.  

5.3.1 TCPR Game under Threshold Uncertainty 

There is a resource with an uncertain threshold (�̃�), and its probability distribution 

is, 𝐹�̃� . The support of �̃� is finite and within the range [𝛼, 𝛽] with 𝛽 > 𝛼, which makes 𝛼 

the lower-bound 𝛽 as the upper-bound of the threshold. We present the case where the 

threshold is uniformly distributed, �̃�~𝑈[𝛼, 𝛽], because we use a uniform distribution in 

our experiment. 

There are 𝑛 agents indexed by 𝑖 = 1,… , 𝑛.  Each agent, 𝑖, makes a withdrawal, 𝑟𝑖, 

from the resource which enters her utility function. The agent has a utility function, 

𝑢(𝑟) = 𝑟𝑐, where 𝑐, is the risk preference parameter. A risk-neutral agent has 𝑐 = 1, 

while for a risk-averse subject it is 𝑐 < 1, and for a risk-seeking subject 𝑐 > 1. The total 

withdrawal made by agents other than 𝑖 is 𝑟−𝑖.  

The withdrawals received (𝜋𝑖) by each agent 𝑖 depends on the sum total of 

withdrawals, 𝑹 = 𝑟𝑖 + 𝑟−𝑖 and the realized value of the threshold, �̈�. If the total 

withdrawals do not exceed the realized value of the threshold, then each agent receives 

her withdrawal. Whereas if total withdrawals do exceed the realized value of the 

threshold, then each agent receives nothing. 
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𝜋𝑖 = {

𝑟𝑖,                         𝑹 ≤ �̈�

0,                 𝑹 > �̈�
  

(11) 

The expected utility 𝔼�̃�𝑢(𝑟𝑖) of the agent (where 𝔼�̃� represents the expectation 

with respect to the uniformly distributed threshold), is as follows 

 𝔼�̃�𝑢(𝑟𝑖)

=

{
 
 

 
 

 𝑟𝑖
𝑐                                                                                    𝑹 ≤ 𝛼

∫  𝑟𝑖
𝑐

𝛽

𝑟𝑖+𝑟−𝑖

1

𝛽 − 𝛼
𝑑𝑥                                                      𝛼 ≤ 𝑹 ≤ 𝛽

    0                                                                                          𝑹 > 𝛽 

 

(12) 

The NE of TCPR game under threshold uncertainty is 

 
𝑟𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛−𝑇ℎ−𝑁𝐸
∗∗ = max {

𝛼

𝑛
,
𝑐𝛽

𝑛𝑐 + 1
} 

(13) 

 

The socially optimal withdrawal for an agent in TCPR game under threshold 

uncertainty is as follows 

 
𝑟𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛−𝑇ℎ−𝑆𝑂
∗∗ = max {

𝛼

𝑛
,

𝑐𝛽

𝑛 ∗ (𝑐 + 1)
} 

(10) 

Notice that the first term of the NE and socially optimal level, 
𝛼

𝑛
, coincide, 

suggesting that for some values of threshold uncertainty they will be the same. However, 

the second term is different, such that for 𝑛 > 1, the NE exceeds the SO (
𝑐𝛽

𝑛𝑐+1
>

𝑐𝛽

𝑛∗(𝑐+1)
). 

We now present the main hypotheses of interest based on the findings of the prior 

literature and the theoretical framework. 

Hypothesis 1: Group size uncertainty reduces withdrawals in a TCPR game in the 

presence of threshold uncertainty 
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Hypothesis 2: Withdrawals exceed the socially optimal level when the threshold 

uncertainty is high but not when low 

We now turn to our experimental design. 

5.4 Experimental Design 

We use a within-subject design in which each subject participates in three TCPR 

games. In each of these games, the subject has to decide on how many units to withdraw 

from the resource. These games are followed by a risk preference elicitation task, the 

Holt-Laury (2002) multiple-price list (MPL)39, and a non-incentivized survey in which 

we collect demographics.  

The three TCPR games are Threshold Uncertain (TU), Group Size Uncertain 

(GU) and both Threshold and Group Size Uncertain (TGU). To control for potential order 

effects, half the subjects first participated in the TU game, then the GU game and finally 

the TGU game. While the other half of the subjects first participated in the GU game, 

then the TU game and finally the TGU game. In both these orders, we kept the TGU 

game the final one because of its relative complexity (because in TGU, both the group 

size and the threshold are uncertain).   

We follow a simultaneous-decision protocol (Budescu, Rapoport & Suleiman 

1995) where the subjects make each decision independently without any communication 

or feedback. The subjects do not know who the other group members are and cannot 

communicate with them. They also do not receive any feedback either about the decisions 

 
39 We use the Holt-Laury MPL as presented in Gneezy, Imas & List (2015) in which the subjects are 

restricted to choosing a single ‘switch’ point between the ‘safe’ and ‘risky’ lotteries. This restriction 

eliminates inconsistent responses where subjects switch back and forth between the lotteries. Gneezy, List 

& Imas (2015) argue that enforcing a unique switch point does not impact the elicited risk-preference 

parameter and prevents the loss of data arising from inconsistent choices.  
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made by others or the outcome of their decisions i.e. whether the resource is destroyed or 

not.  

Subjects are paid for three rounds, one round randomly selected round from each 

game. After the subjects complete the TCPR games and the risk-elicitation task, the 

payment rounds are selected by rolling a die. For the die roll, we ask two subjects to 

volunteer. One to roll the die and the other to observe. We now describe the TCPR games 

in more detail. 

5.4.1 Threshold Uncertainty (TU) Game 

The resource is described as a box of tokens. The subjects are in a group of 6 

members and each subject has to decide how many tokens to withdraw from the box. 

However, the exact number of tokens in the box is not known. The subjects are informed 

about the lower (𝛼) and upper-bound (𝛽) of the number of tokens in the box and that the 

tokens are uniformly distributed.40 There are six rounds in this game. In each round, 

different lower (𝛼) and upper-bounds (𝛽) are presented in a randomized order. However, 

the mean number of tokens is always 1000 tokens and this is stated on their decision 

screen. Therefore, if withdrawals change between rounds, they are changing as a result of 

the change in the variance or range (𝛽 − 𝛼) of the resource size, because the mean value 

of the resource is constant (see Table 5.1). 

 

 

 
40 We choose a uniform distribution for both group size and threshold uncertainty because it is 

straightforward to explain to the subjects and is consistent with earlier literature (de Kwaadsteneit et al. 

2008; Au & Ngai 2003; Rapoport, Budescu, Suleiman & Weg 1992). 
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Table 5.1 – Range & the Lower and Upper-Bounds of the Resource Size  

Mean Resource 

Size 

Range (𝜷− 𝜶) Lower-Bound (𝜶) Upper-Bound (𝜷) 

1000 10 995 1005 

1000 70 965 1035 

1000 250 875 1125 

1000 450 775 1225 

1000 1400 300 1700 

1000 1800 100 1900 

Each member can withdraw any number of tokens between 0 and the upper-bound 

(𝛽). If the sum of withdrawal is less than or equal to the randomly drawn number of 

tokens (threshold) in the box, the subject receives her withdrawal. But if the sum of 

withdrawal exceeds the threshold, the subject receives zero tokens.  

5.4.2 Group Size Uncertainty (GU) Game 

The resource is described as 1000 tokens in a box. Each subject is a member of a 

group and has to decide how many tokens to withdraw from the box. However, the 

subject does not know the exact group size. But the subject is informed about the lower 

(𝑦) and upper-bound (z) of the group size and that the group size is uniformly distributed.   

There are four rounds in this game. In each round, different lower (𝑦) and upper-

bounds (𝑧) of the group size are presented in a randomized order. However, the mean 

group size is always six members and this is stated on their decision screen. Therefore, if 

withdrawals change between rounds, they are changing as a result of the change in the 
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variance of the group size, because the mean value of the group size is constant (see 

Table 5.2). 

Table 5.2 – Range & the Lower and Upper-Bounds of the Group Size  

Mean Group Size Range (𝒛 − 𝒚) Lower-Bound (𝒚) Upper-Bound (𝒛) 

6 8 2 10 

6 6 3 9 

6 4 4 8 

6 2 5 7 

Each member can withdraw any number of tokens between 0 and 1000 tokens. If 

the sum of withdrawal by the group is less than or equal to 1000 tokens, the subject 

receives her withdrawal. But if the sum of withdrawal exceeds 1000 tokens, the subject 

receives zero tokens. 

5.4.3 Threshold and Group Size Uncertainty (TGU) Game  

The resource is described as a box of tokens. The subjects are in a group and each 

subject has to decide how many tokens to withdraw from the box. However, the exact 

number of tokens in the box as well as the group size is not known. The subjects are 

informed about the lower (𝛼) and upper-bound (𝛽) of the number of tokens in the box as 

well as the lower (𝑦) and upper-bound (𝑧) of the group size. They are also informed that 

both the number of tokens and the group size are uniformly distributed. 

There are six different lower (𝛼) and upper-bound (𝛽) of the number of tokens 

and the mean number of tokens is 1000, same as the TU game (see Table 5.1). The 

difference is that the group size is not certain. There are two different possible group 
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sizes drawn from the GU game. One where the group size can be anywhere between 5 to 

7 subjects and the other one where it can be anywhere between 3 to 9 subjects. The mean 

number of group members is six, the same as in the GU game. There are a total of 12 

rounds (six different bounds on number of tokens ∗ two possible group sizes). The 

different lower (𝛼) and upper-bound (𝛽) of the number of tokens and group sizes are 

presented in a randomized order. 

The mean number of tokens and the mean group size are always stated on their 

decision screen. Therefore, if withdrawals change between rounds, they are changing as a 

result of the change in the variance of the resource and/or group size, because the mean 

value of the resource (1000 tokens) and group size (6 members) remain constant 

throughout the rounds. 

Each member can withdraw any number of tokens between 0 and the upper-bound 

(𝛽). If the sum of withdrawal is less than or equal to the randomly drawn number of 

tokens (threshold) in the box, the subject receives her withdrawal. But if the sum of 

withdrawal exceeds the threshold, the subject receives zero tokens. We now discuss the 

experimental implementation. 

5.4.4 Implementation 

The experiment was programmed in z-Tree (Fischbacher 2007) and conducted at 

the Clive. E. Willis Experimental Economics Lab at the University of Massachusetts 

Amherst in Fall 2017. The subjects were students of University of Massachusetts 

Amherst and were recruited through ORSEE (Greiner 2004). There were 64 subjects, 

with 32 subjects in each order (TU-GU-TGU and GU-TU-TGU). The data was collected 

in four sessions (two sessions of each order). Each session lasted about two hours. The 
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average earnings were $29.71 inclusive of the $5 show-up fee. The subjects were paid in 

cash and in private at the end of the session. 

5.5 Results 

The main focus of our study is to assess the impact of group size uncertainty on 

withdrawals in an uncertain TCPR game (Hypothesis 1) and to examine whether 

withdrawals exceed the socially optimal level when the threshold uncertainty is high 

(Hypothesis 2). Before turning to the main results, we present the overview of the data.  

Each subject made six decisions in the TU game and 12 decisions in the TGU 

game, with six decisions with low group size uncertainty (five to seven subjects) and the 

other six decisions with high group size uncertainty (three to nine subjects), making for a 

total of 18 decisions with threshold uncertainty. 64 subjects participated in the 

experiment, giving us a total of 1152 observations (64 subjects x 18 decisions). We now 

turn to the main analysis for which we need to estimate the risk preference of the 

subjects. 

5.5.1 Risk Preferences of Subjects 

To determine the socially optimal and Nash level of withdrawal in the TU game, 

we need to identify the risk preference parameter (𝑐) of the subjects. We do so from the 

incentivized risk-preference elicitation task undertaken by the subjects (Gneezy, Imas & 

List 2015). The subjects choose a switch point between 10 lotteries presented in a 

multiple-price list giving us a total of 640 observations (64 subjects x 10 decisions). 

Using the Maximum Likelihood method (Harrison 2006), we estimate the risk preference 
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parameter (𝑐 = 0.385), which means that on average our subjects are risk-averse (0 ≤

𝑐 < 1), see Table 5.3. 

5.5.2 Predicted Socially Optimal and Nash Withdrawals in TU Game 

Using the point estimate of the risk preference parameter (𝑐 = 0.385), we can 

calculate the socially optimal and Nash level of withdrawals for the TU game. The 

calculated values for various values of the threshold uncertainty are presented in Table 

5.4. Notice that the socially optimal and Nash level of withdrawals coincide when the 

threshold uncertainty is low (250 or less) but the Nash exceeds the socially optimal when 

the threshold uncertainty is high (450 or more). 

Table 5.3 – Risk Preference Estimate 

              Variable                   Values 

𝒄 0.385∗∗∗(0.009) 

𝑵 640 

*** p-value ≤ 0.01; ** p-value ≤ 0.05; * p-value ≤ 0.1; Standard errors in parentheses. Clustered at 

subject-level. 

 

Table 5.4 – Predicted Socially Optimal and Nash Withdrawals in TU Game 

Threshold 

Uncertainty 

   Socially    

Optimal 

    Nash Predicted Nash exceeds 

Socially Optimal 

10 165.83 165.83 No 

70 160.83 160.83 No 

250 145.83 145.83 No 

450 129.16 139.31 Yes 

1400 74.69 193.32 Yes 

1800 83.48 216.07 Yes 
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5.5.3 Withdrawal Decisions 

We now turn to Hypothesis 1: Group size uncertainty reduces withdrawals in the 

presence of threshold uncertainty. In Figure 5.1, we present the mean withdrawals 

alongside the 95 percent confidence intervals for all conditions: threshold uncertainty 

with no, low (5 to 7 subjects) and high (3 to 9 subjects) group size uncertainty. On the x-

axis, we have the level of threshold uncertainty, the difference between the upper and 

lower bound the resource. While on the y-axis, we have number of tokens withdrawn by 

a subject. 

To test whether these withdrawals differ by group size uncertainty we run an OLS 

regression with the number of tokens withdrawn as the dependent variable. In Model (1) 

of Table 5.5, we only introduce the threshold uncertainty as independent variables. Each 

range of threshold uncertainty (10, 70, 250, 450, 1400 and 1800) are coded as dummy 

variables with 450 serving as base. We set 450 as the base because the theoretical 

prediction is that Nash withdrawals will be lowest at 450 (see Table 5.4). From Column 

(1) of Table 5.5, we see that when the threshold uncertainty is lower than 450, 

withdrawals are (weakly) significantly higher. However, when the threshold exceeds 450, 

withdrawals are not significantly higher. This result holds even when we introduce group 

size uncertainty (Model 2) and demographic information (Model 3). Our preferred 

specification is Model (3) as it disaggregates the impact of group size uncertainty, risk 

aversion, and demographic characteristics (gender and willingness to trust others41). We 

find that risk aversion, as measured by the number of safe choices made on the multiple 

price list, significantly reduces withdrawals from the TCPR ((p-value 0.006)). Those 

 
41 We measure trust through the General Social Survey question “Generally speaking, would you say that 

most people can be trusted or that you can't be too careful in dealing with people?”  
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subjects who trust others withdraw less but the difference is only weakly significant (p-

value 0.062). The withdrawal behavior of female subjects is not significantly different 

from non-female subjects (p-value 0.150). 

For the varying levels of group size uncertainty, in Figure 5.2, we present the 

estimated withdrawals along with the 95 percent confidence interval on the y-axis. While 

on the x-axis we have the different levels of threshold uncertainty.  

Table 5.5 – OLS Regression Result 

 

Variables Model (1) Model (2) Model (3) 

    

    

Thr. Unc. 10 10.47*** 15.81*** 15.81*** 

 (3.573) (4.885) (4.891) 

Thr. Unc. 70 20.64*** 45.69** 45.69** 

 (7.621) (19.67) (19.70) 

Thr. Unc. 250 9.307* 21.47* 21.47* 

 (4.942) (12.29) (12.31) 

Thr. Unc. 1400 4.193 1.219 1.219 

 (8.754) (10.61) (10.62) 

Thr. Unc. 1800 18.58 39.59 39.59 

 (13.69) (30.81) (30.85) 

    

Low Gs. Unc#Thr. Unc. 10  -14.06*** -14.06*** 

  (3.410) (3.415) 

Low Gs. Unc # Thr. Unc. 70  -45.75** -45.75** 

  (18.23) (18.25) 

Low Gs. Unc # Thr. Unc. 250  -26.66** -26.66** 

  (11.71) (11.73) 

Low Gs. Unc # Thr. Unc. 450  -10.98** -10.98** 

  (4.156) (4.162) 

Low Gs. Unc # Thr. Unc. 1400  -20.25 -20.25 

  (13.98) (14.00) 

Low Gs. Unc # Thr. Unc. 1800  -50.36 -50.36 

  (30.30) (30.34) 

High Gs. Unc # Thr. Unc. 10  -30.61*** -30.61*** 

  (5.596) (5.603) 

High Gs. Unc # Thr. Unc. 70  -58.06*** -58.06*** 

  (18.19) (18.21) 

High Gs. Unc # Thr. Unc. 250  -38.48*** -38.48*** 

  (12.31) (12.32) 
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High Gs. Unc # Thr. Unc. 450  -17.67*** -17.67*** 

  (5.476) (5.483) 

High Gs. Unc # Thr. Unc. 1400  0.516 0.516 

  (10.11) (10.13) 

High Gs. Unc # Thr. Unc. 1800  -41.33 -41.33 

  (31.30) (31.34) 

Risk- Aversion   -11.56*** 

   (4.034) 

Trust Others   -22.14* 

   (11.66) 

Female   -16.24 

   (11.15) 

Constant (Th. Unc. 450) 134.6*** 144.1*** 229.9*** 

 (5.311) (6.180) (28.97) 

    

Observations 1,152 1,152 1,152 

R-squared 0.005 0.033 0.089 
*** p-value ≤ 0.01; ** p-value ≤ 0.05; * p-value ≤ 0.1; Standard errors in parentheses. Clustered at 

subject-level. Thr. Unc: Threshold Uncertainty; Gs. Unc.: Group Size Uncertainty; #: interaction 

 

 

Figure 5.1 – Mean Token Withdrawals 

We examine the impact of group size uncertainty on withdrawals across threshold 

uncertainty. In Figure 5.3, on the y-axis, we present the estimated difference along with 

the 95 percent confidence interval in withdrawals when group size is certain (6 subjects) 
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as compared to when the group size uncertainty is either low (5 to 7 subjects) or high (3 

to 9 subjects). Also, on the y-axis, we have a red line which marks zero. If the confidence 

interval overlaps the zero line, it means that the estimated difference is not statistically 

significant. On the x-axis, we have the various levels of threshold uncertainty. We see 

that withdrawals are significantly lower with group size uncertainty, either low or high, 

when the threshold uncertainty is 450 or less. But when the threshold uncertainty is high 

(above 1400), the difference is not significant.  

 
Figure 5.2 – Estimated Withdrawals – Across Threshold and Group Size 
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Figure 5.3 – Difference in Estimated Withdrawals – Certain vs. Uncertain Group Size 

 

 

Figure 5.4 - Difference in Estimated Withdrawals – Low vs. High Group Size 
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We also examine whether withdrawals are different between low and high group 

size uncertainty. In Figure 5.4, we see that withdrawals are significantly higher under low 

group size uncertainty when the threshold uncertainty is 250 or less. However, when the 

threshold uncertainty is 450 or more, there is no significant difference in withdrawals 

between low and high group size uncertainty. We now have our first result. 

• Result 1a: Withdrawals are significantly lower in the presence of group 

size uncertainty; this holds for both low and high levels of group size 

uncertainty. However, as compared to a certain group size, the uncertain 

group size only reduces withdrawals when the threshold uncertainty is low 

or intermediate (450 or less), but group size uncertainty does not have a 

significant impact on withdrawals when the threshold uncertainty is high 

(1400 or more). 

• Result 1b: Compared to low group size uncertainty, withdrawals are 

significantly lower with high group size uncertainty. However, the higher 

group size uncertainty only reduces withdrawals when the threshold 

uncertainty is low or intermediate (250 or less), but it does not have a 

significant impact on withdrawals when the threshold uncertainty is high 

(450 or more). 

The key policy implication here is that the presence of group size uncertainty 

reduces withdrawals relative to the case of group size certainty. The decision to reduce 

the group size uncertainty therefore depends on whether the resource is being over or 

under-harvested. However, policy-makers should also bear in mind that group size 

uncertainty also interacts with the threshold uncertainty. When the threshold uncertainty 
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is high, the presence of group size uncertainty does not have a significant impact on 

withdrawals. Therefore, the policy of targeting group size uncertainty will only be 

effective in a setting where the threshold uncertainty is not too severe. We now turn to 

our Hypothesis 2. 

5.5.4 Sub-optimality  

Our Hypothesis 2 is that withdrawals exceed the socially optimal level when the 

threshold uncertainty is high (450 or more) but not when low (250 or less). We test 

whether the estimated withdrawals from Model (3) are significantly different from the 

socially optimal level. In Figure 5.5, for the case of threshold uncertainty with no group 

size uncertainty, on the y-axis we present the estimated difference between the 

withdrawals and the socially optimal withdrawal level. A negative number on the y-axis 

means that the withdrawals are below the socially optimal level, zero means that there is 

no difference, while a positive number means that the tokens withdrawn exceed the 

socially optimal level. On the x-axis, we have the various levels of threshold uncertainty. 

The estimated difference is presented alongside the 95 per cent confidence intervals. If 

the interval overlaps zero (the solid red line), the difference is not statistically significant. 

Figure 5.6 and 5.7 present the same information but for the case of low and high group 

size uncertainty respectively. The results from these figures are summarized in Table 5.6. 
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Figure 5.5 – Difference – Withdrawals vs. Socially Optimal – No Group Size Uncertainty 

 

Figure 5.6  – Difference – Withdrawals vs. Socially Optimal – Low Group Size 

Uncertainty 
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Figure 5.7  – Difference – Withdrawals vs. Socially Optimal – High Group Size 

Uncertainty 

 

Table 5.6 – Significant Difference in Estimated Withdrawals and Socially Optimal Level 

Threshold 

Uncertainty 

Certain Group 

Size (6 Subjects) 

Low Gs. Unc (5 to 

7 Subjects) 

High Gs. Unc (3 to 

9 Subjects) 

10 No Yes, Lower Yes, Lower 

70 No Yes, Lower Yes, Lower 

250 No No Yes, Lower 

450 Yes, Higher No No 

1400 Yes, Higher Yes, Higher Yes, Higher 

1800 Yes, Higher Yes, Higher Yes, Higher 

 

We see from Table 5.6, that whenever the threshold uncertainty is high, the 

withdrawals significantly exceed the socially optimal level. For the certain group size, 
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whenever the threshold uncertainty is 450 or more, the withdrawals exceed the socially 

optimal level while for the case of group size uncertainty, whenever the threshold 

uncertainty is 1400 or more. What is interesting to note is that in the presence of group 

size uncertainty, withdrawals fall significantly below the socially optimal level when the 

threshold uncertainty is low (70 or less in the case of low group size uncertainty; 250 in 

the case of high group size uncertainty). This gives us our second result. 

• Result 2a: At high levels of threshold uncertainty, withdrawals exceed the 

socially optimal level, but not when the threshold uncertainty is low. 

• Result 2b: When the threshold uncertainty is low, then the presence of 

group size uncertainty leads to withdrawals being significantly less than 

the socially optimal level. 

These results suggest that reducing group size uncertainty will lead to efficiency 

gains as the withdrawals will become closer to the socially optimal level. However, this 

result is mediated by the level of threshold uncertainty, if the existing level of threshold 

uncertainty is high, then reducing group size uncertainty has no significant effect. We 

now turn to our concluding discussion.  

5.6 Discussion 

A major challenge before policy-makers is to utilize common-pool resources in an 

optimal manner. These environmental resources are often marked by uncertainty on 

different dimensions i.e. number of users, stock size, regeneration rate. We focus on two 

dimensions: threshold uncertainty, where withdrawing from the resource above the 

threshold leads to destruction of the resource, and group size uncertainty, where the 
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number of users is not exactly known. As the uncertainty on threshold is driven by deep 

scientific uncertainty, it is relatively difficult for policy-makers to reduce that. Whereas 

group size uncertainty is easier for policy-makers to reduce e.g. through better informing 

users, restricting access to the resource to a specific group. Using a lab experiment, we 

examine the impact of group size uncertainty on withdrawals in a common-pool resource 

game with threshold uncertainty. 

The key finding is that group size uncertainty reduces withdrawals from the 

resource, but not across all levels of threshold uncertainty. When the threshold 

uncertainty is low, we see a reduction in withdrawals, but when the threshold uncertainty 

is high, group size uncertainty does not have a significant effect on withdrawals. The 

policy-implication is that reducing group size uncertainty is context specific. If the 

resource is being under-utilized, then reducing group size uncertainty will be efficient. 

However, if the resource is already being over-utilized, then reducing group size 

uncertainty will further exacerbate the problem. The caveat being that if the existing level 

of threshold uncertainty is already very high, then altering group size uncertainty will not 

have an impact on withdrawals. 

Analyzing individual behavior in social dilemmas with uncertainty has important 

policy-implications, therefore, further examination of this topic is warranted. Future work 

should explore whether these results hold for larger groups, when there is ambiguity 

instead of risk on the threshold, amongst others. 

 

 

 

 



 

 100 

APPENDIX A 

 

THEORETICAL APPENDIX 

Here we present the main elements of the theoretical framework presented in 

Budescu, Rapoport and Suleiman (1995) and Aflaki (2013).42 We first discuss the TCPR 

game under risk and then under ambiguity.  

Basic Set-Up – TCPR Game under Risk 

In the TCPR game under risk, Γ𝑅𝐼𝑆𝐾, there is a resource with an uncertain 

threshold (�̃�), and its probability distribution is, 𝐹�̃� . The support of �̃� is finite and within 

the range [𝛼, 𝛽] with 𝛽 > 𝛼, which makes 𝛼 the lower-bound 𝛽 as the upper-bound of the 

threshold. 

There are 𝑛 agents indexed by 𝑖 = 1,… , 𝑛.  Each agent, 𝑖, makes a withdrawal, 𝑟𝑖, 

from the resource which enters her utility function. The agent has a power utility 

function, 𝑢(𝑟) = 𝑟𝑐, where, 𝑐, represents the risk-preference of the agent. A risk-neutral 

agent has 𝑐 = 1, while for a risk-averse agent, 𝑐 is 0 < 𝑐 < 1, and for a risk-seeking 

agent 𝑐 > 1. The total withdrawal made by agents other than 𝑖 is 𝑟−𝑖.  

The withdrawals received (𝜋𝑖) by each agent 𝑖 depends on the sum total of 

withdrawals, 𝑹 = 𝑟𝑖 + 𝑟−𝑖, the realized value of the threshold, �̈�, and on the destruction 

function, ℎ(𝑹, �̃�). The withdrawal received (𝜋𝑖) by an agent 

 𝜋𝑖 = 𝑟𝑖 ∗  ℎ(𝑹, �̃�) (14) 

 
42 For proofs and further details, see the original papers. 
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The destruction function, ℎ(𝑹, �̃�) ∈ (0,1), captures the relationship between the 

withdrawals (𝑟𝑖) and the realized value of the threshold, �̈�. The destruction function 

presented in Aflaki (2013) is 

 ℎ(𝑹, �̃�) = {
1,                              𝑹 ≤ �̃�

𝑒−𝑘(𝑹−�̃�),               𝑹 > �̃�
 

(15) 

When the total withdrawal is less than or equal to the realized value of the 

threshold, (𝑹 ≤ �̈�), each agent receives her withdrawal, 𝑟𝑖, because withdrawal received 

is 𝜋𝑖 = 𝑟𝑖 ∗  ℎ(𝑹, �̃�) which in this case is 𝜋𝑖 = 𝑟𝑖 ∗ 1. When the total withdrawal exceeds 

the realized value of the threshold (𝑹 > �̈�), the withdrawal, 𝑟𝑖, by the agent is reduced by 

the fraction, 𝑒−𝑘(𝑹−�̈�), because withdrawal received is 𝜋𝑖 = 𝑟𝑖 ∗  𝑒
−𝑘(𝑹−�̈�). The fraction, 

𝑒−𝑘(𝑹−�̈�), is determined jointly by how much the total withdrawal exceeded the realized 

valued of the threshold, 𝑹 − �̈� and the rate of destruction, 𝑘.  

The higher (lower) the amount by which the total withdrawal exceeded the 

threshold, the lower (higher) the fraction of withdrawals received. The higher (lower) the 

rate of destruction, 𝑘, the lower (higher) the fraction of withdrawals received.  

The boundary case is when 𝑘 → ∞, the fraction, 𝑒−𝑘(𝑹−�̈�), becomes zero. When 

𝑘 → ∞, crossing the threshold leads to the full destruction of the resource. The other 

boundary case is when 𝑘 = 0, then crossing the threshold has no impact on the 

withdrawals received because the fraction, 𝑒−𝑘(𝑹−�̈�), becomes equal to one. The case of 

partial destruction occurs when 𝑘 is positive (𝑘 > 0) but not infinite. It is assumed that 

the destruction function, ℎ(𝑹, �̈�), is decreasing in 𝑹, the total withdrawals, and 

increasing in �̈�, the realized value of the threshold, and is twice-differentiable with 

respect to 𝑹 almost everywhere.  
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The maximization problem that the agent faces is 

 𝑀𝑎𝑥(𝑟𝑖) Γ𝑅𝐼𝑆𝐾 (𝑟𝑖, 𝑟−𝑖) = 𝔼�̃�𝑢 (𝑟𝑖ℎ(𝑹, �̃�)) 
(16) 

Here 𝔼�̃� represents the expectation with respect to the randomly distributed 

threshold, �̃�. The best-response of player 𝑖 is 

 𝑟𝑖
∗(𝑟−𝑖) = arg𝑚𝑎𝑥(𝑟𝑖≥0) Γ𝑅𝐼𝑆𝐾 (𝑟𝑖, 𝑟−𝑖) (17) 

Since the TCPR game is a game of strategic substitutes, 𝑟𝑖
∗(𝑟−𝑖) is decreasing in 

𝑟−𝑖. More withdrawals by others reduces the withdrawals of player 𝑖.  

Assuming symmetric agents, the Nash Equilibrium (NE) of the TCPR game under 

risk is the solution to 

 𝔼�̃�{𝑢
′ (𝑟ℎ(𝒏𝒓, �̃�)) (ℎ(𝒏𝒓, �̃�) + 𝑟ℎ1(𝒏𝒓, �̃�))} = 0  (18) 

The NE is truncated to the interval [
𝛼

𝑛
,
𝛽

𝑛
]. We now turn to the TCPR game with 

full destruction.   

Nash Equilibrium – Full Destruction – Risk  

In Budescu, Rapoport and Suleiman (1995), the case of full destruction is 

presented, that is where crossing the threshold even by one unit leads to full destruction 

of the resource (because 𝑘 → ∞), which gives us the following destruction function 

 
ℎ(𝑹, �̃�) = {

1,                              𝑹 ≤ �̈�

0,                             𝑹 > �̈�
 

(19) 

With a uniformly distributed threshold, �̃�~𝑈[𝛼, 𝛽], (where 𝛽 >  𝛼), we have 

𝔼�̃�𝑢 (𝑟𝑖ℎ(𝑹, �̃�)) as 
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 𝔼�̃�𝑢(∙)

=

{
 
 

 
 
      𝑟𝑖

𝑐                                                                                      𝑹 ≤ 𝛼

∫ 𝑟𝑖
𝑐

𝛽

𝑟𝑖+𝑟−𝑖

1

𝛽 − 𝛼
𝑑𝑥                                                      𝛼 ≤ 𝑹 ≤ 𝛽

    0                                                                                          𝑹 > 𝛽 

 

(20) 

The NE of TCPR under risk and full destruction is 

 
𝑟𝑅𝐼𝑆𝐾−𝐹𝑢𝑙𝑙−𝑁𝐸
∗∗ = max {

𝛼

𝑛
,
𝑐𝛽

𝑛𝑐 + 1
} 

(21) 

The first term of the NE, 
𝛼

𝑛
, is attained when 𝑹 ≤ 𝛼. Any 𝑟𝑖 is in equilibrium when 

the following condition is satisfied 

 𝑟𝑖 + 𝑟−𝑖 = 𝛼 (22) 

Since we assume symmetric agents, we drop the subscript 𝑖, and obtain 

 𝑟 + (𝑛 − 1) ∗ 𝑟 = 𝛼 (23) 

Solving (10), we obtain 

 𝑟𝑅𝐼𝑆𝐾−𝐹𝑢𝑙𝑙−𝑁𝐸
∗∗ =

𝛼

𝑛
 (24) 

The second term of the NE, 
𝑐𝛽

𝑛𝑐+1
, is attained when 𝛼 ≤ 𝑹 ≤ 𝛽. When total 

withdrawals (𝑹) exceed the lower-bound (𝛼), the withdrawals are received 

probabilistically, which is captured by 

 

𝔼�̃�𝑢(∙) = ∫ 𝑟𝑖
𝑐

𝛽

𝑟𝑖+𝑟−𝑖

1

𝛽 − 𝛼
𝑑𝑥 =

𝑟𝑖
𝑐(𝛽 − 𝑟𝑖 − 𝑟−𝑖)

𝛽 − 𝛼
 

(25) 

To find the withdrawal in equilibrium, we set the derivative of 𝔼�̃�𝑢(∙) with 

respect to 𝑟𝑖 to zero, which gives us 𝔼�̃�{𝑢
′(∙)} as 
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𝔼�̃�{𝑢

′(∙)} =
𝑐𝑟𝑖

(𝑐−1)(𝛽 − 𝑟𝑖 − 𝑟−𝑖)

𝛽 − 𝛼
−

𝑟𝑖
𝑐

𝛽 − 𝛼
= 0 

(26) 

Assuming symmetric agents, solving (13) gives us the NE 

 
𝑟𝑅𝐼𝑆𝐾−𝐹𝑢𝑙𝑙−𝑁𝐸
∗∗ =

𝑐𝛽

𝑛𝑐 + 1
 

(27) 

Putting (11) and (14) together, we obtain the NE as presented in (8). Now we turn 

to the case of partial destruction. 

Nash Equilibrium – Partial Destruction – Risk  

Aflaki (2013) introduces the case of partial destruction, where 𝑘 > 0 but not 

infinite. With, �̃�~𝑈[𝛼, 𝛽], (where 𝛽 >  𝛼), we have 𝔼�̃�𝑢 (𝑟𝑖ℎ(𝑹, �̃�)) as 

 𝔼�̃�𝑢(∙)

=

{
 
 

 
 
   𝑟𝑖

𝑐                                                                                                    𝑹 ≤ 𝛼

 ∫ 𝑟𝑖
𝑐

𝛽

𝑟𝑖+𝑟−𝑖

1

𝛽 − 𝛼
𝑑𝑥 + ∫ (𝑟𝑖𝑒

−𝑘(𝑹−�̈�))𝑐
1

𝛽 − 𝛼
𝑑𝑥,

𝑟𝑖+𝑟−𝑖

𝛼

     𝛼 ≤ 𝑹 ≤ 𝛽

(𝑟𝑖𝑒
−𝑘(𝑹−�̈�))𝑐                                                                                 𝑹 > 𝛽 

 

(28) 

The NE of TCPR under risk and partial destruction is 

 𝑟𝑅𝐼𝑆𝐾−𝑃𝑎𝑟𝑡𝑖𝑎𝑙−𝑁𝐸
∗∗ = max {

𝛼

𝑛
, 𝜗} (29) 

The first term of the NE, 
𝛼

𝑛
, is obtained in the same manner as discussed above. 

The second term of the NE, 𝜗, is the numerical solution to 𝔼�̃�{𝑢′(∙)} = 0, when 𝛼 ≤ 𝑹 ≤

𝛽.43 Unlike the full destruction case, a closed-form solution is not possible in the partial 

destruction case because of the functional form of the destruction function, which is 

 
43 We ignore the case of 𝑹 > 𝛽, because the NE is truncated to the interval [

𝛼

𝑛
,
𝛽

𝑛
]. With symmetric players, 

𝑹 > 𝛽 is 𝒏𝒓 > 𝛽, then 𝑟𝑁𝐸
∗∗ > 𝛽/𝑛. But all points outside of  [

𝛼

𝑛
,
𝛽

𝑛
] are strategically dominated and 

therefore cannot be NE. 
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ℎ(𝑹, �̃�) = {

1,                              𝑹 ≤ �̃�

𝑒−𝑘(𝑹−�̃�),               𝑹 > �̃�
 

(30) 

In the partial destruction case, when 𝛼 ≤ 𝑹 ≤ 𝛽, we have 𝔼�̃�𝑢(∙) as 

 

𝔼�̃�𝑢(∙)    = ∫ 𝑟𝑖
𝑐

𝛽

𝑟𝑖+𝑟−𝑖

1

𝛽 − 𝛼
𝑑𝑥 + ∫ (𝑟𝑖𝑒

−𝑘(𝑹−�̈�))𝑐
1

𝛽 − 𝛼
𝑑𝑥

𝑟𝑖+𝑟−𝑖

𝛼

 

=
(1 − 𝑒−𝑐𝑘(𝑟𝑖+𝑟−𝑖−𝛼))𝑟𝑐

𝑐𝑘(𝛽 − 𝛼)
+
𝑟𝑖
𝑐(𝛽 − 𝑟𝑖 − 𝑟−𝑖)

𝛽 − 𝛼
 

(31) 

To find the withdrawal in equilibrium, we set the derivative of 𝔼�̃�𝑢(∙) with 

respect to 𝑟𝑖 to zero, which gives us 𝔼�̃�{𝑢
′(∙)} as 

 (1 − 𝑒−𝑐𝑘(𝑟𝑖+𝑟−𝑖−𝛼))𝑟𝑖
(𝑐−1)

𝑘(𝛽 − 𝛼)
−

𝑟𝑖
𝑐

𝛽 − 𝛼
+
𝑒−𝑐𝑘(𝑟𝑖+𝑟−𝑖−𝛼)𝑟𝑖

𝑐

𝛽 − 𝛼

+
𝑐𝑟𝑖

(𝑐−1)(𝛽 − 𝑟𝑖 − 𝑟−𝑖)

𝛽 − 𝛼
= 0 

(32) 

Assuming symmetric agents, so we can drop the subscript 𝑖, the solution to (19) is 

the Nash Equilibrium (NE) under partial destruction. Although a closed-form solution to 

(19) is not possible, it can be numerically solved. The second term of the NE in (16), 𝜗, is 

the solution to (23). We now turn to the TCPR game under ambiguity. 

TCPR Game under Ambiguity 

The set-up of the TCPR game under ambiguity, Γ𝐴𝑀𝐵, is similar to the one under 

risk discussed above. The key difference is that unlike in the case of risk, the probability 

distribution over the threshold, �̃�, is not objectively known. Aflaki (2013) uses a variant 

of the Choquet Expected Utility (CEU) developed by Eichberger and Kelsey (2000) to 

analyze the TCPR game under ambiguity. In CEU, ambiguity is conceptualized as 
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‘missing information’ and is operationalized as non-additive probability measures or 

capacities. 

 The concept of a capacity is central to CEU. A capacity on a set Ω (i.e. the set of 

all states) is a real-valued function 𝑣 on subsets of Ω that satisfies the following 

properties: 

(𝑖)𝐴 ⊂ 𝐵 ⇒ 𝑣(𝐴) ≤ 𝑣(𝐵) 

(𝑖𝑖)𝑣(∅) = 0  

(𝑖𝑖𝑖) 𝑣(Ω) = 1 

The expectations of any capacity 𝑣 over an act 𝑓: Ω → ℝ can be calculated using a 

Choquet integral (Choquet 1954). The capacity 𝑣 is simple if there exists an additive 

probability measure, 𝒫, and a real number, 𝜆 ∈ [0,1], such that for every 𝐴 ⊂ Ω, we have 

𝑣(𝐴) =  𝜆𝒫(𝐴). An agent’s degree of confidence in the ambiguous belief measure is 

captured by 𝜆. Conversely, 1 − 𝜆 captures the degree of ambiguity in the measure.44 With 

a simple capacity, 𝑣 =  𝜆𝒫 the Choquet integral of an act 𝑓 is: 

 𝐶𝐸(𝑓) = 𝜆𝔼𝑢𝒫(𝑓) + (1 − 𝜆)min
𝜔𝑖

𝑢( 𝑓(𝜔𝑖)) (33) 

Here 𝜔𝑖 ∈ Ω refers to the states of the world. By modelling ambiguity in this 

manner, the distinction between the risk and ambiguous TCPR game is that under risk, 

the probability distribution is 𝐹�̃�, whereas under ambiguity the belief about the resource 

size is 𝜆𝐹�̃�. The maximization problem of the agent faces under ambiguity is 

 𝑀𝑎𝑥(𝑟𝑖) Γ𝐴𝑀𝐵 (𝑟𝑖 , 𝑟−𝑖; 𝜆)

= 𝜆𝔼�̃�𝑢 (𝑟𝑖ℎ(𝑹, �̃�)) + (1 − 𝜆)𝑢(𝑟𝑖ℎ(𝑹, 𝛼)) 

(34) 

 
44 In this model, agents can either be ambiguity-neutral or averse, but not seeking. 
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In this set-up, 𝜆 captures the agent’s belief that the threshold is uniformly 

distributed, �̃�~𝑈[𝛼, 𝛽]. And (1 − 𝜆) captures the agent’s belief that the threshold is 𝛼, 

the lower-bound of the threshold (or the worst-state of the world). We now present the 

NE under ambiguity with full-destruction. 

Nash Equilibrium – Full Destruction - Ambiguity 

In the case of full-destruction, we have 𝜆𝔼�̃�𝑢 (𝑟𝑖ℎ(𝑹, �̃�)) as 

 𝜆𝔼�̃�𝑢(∙)

=

{
 
 

 
 
      𝑟𝑖

𝑐                                                                                      𝑹 ≤ 𝛼

∫ 𝑟𝑖
𝑐

𝛽

𝑟𝑖+𝑟−𝑖

1

𝛽 − 𝛼
𝑑𝑥                                                      𝛼 ≤ 𝑹 ≤ 𝛽

    0                                                                                          𝑹 > 𝛽 

 

(35) 

And we have (1 − 𝜆)𝑢(𝑟𝑖ℎ(𝑹, 𝛼)) as 

 (1 − 𝜆)𝑢(𝑟𝑖ℎ(𝑹, 𝛼)) = {
𝑟𝑖
𝑐                                        𝑹 ≤ 𝛼
0                                         𝑹 > 𝛼

 
(36) 

Solving (22) and (23) in the same manner as we did in the case of risk (from (9) to 

(13)), we obtain the NE under ambiguity with full-destruction as 

 
𝑟𝐴𝑀𝐵−𝐹𝑢𝑙𝑙−𝑁𝐸
∗∗ = max {

𝛼

𝑛
,
𝑐𝜆𝛽

𝑛𝑐 + 1
} 

(37) 

When 𝑹 ≤ 𝛼, we obtain the following from (22) 

 𝑟𝐴𝑀𝐵−𝐹𝑢𝑙𝑙−𝑁𝐸
∗ = 𝜆 ∗

𝛼

𝑛
 (38) 

And when 𝑹 ≤ 𝛼, from (23) we obtain the following 

 𝑟𝐴𝑀𝐵−𝐹𝑢𝑙𝑙−𝑁𝐸
∗ = (1 − 𝜆) ∗

𝛼

𝑛
 (39) 

 Combining (25) and (26) gives us the firm term of the NE under ambiguity with 

full destruction 
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 𝑟𝐴𝑀𝐵−𝐹𝑢𝑙𝑙−𝑁𝐸
∗ =

𝛼

𝑛
= 𝜆

𝛼

𝑛
+ (1 − 𝜆)

𝛼

𝑛
 (40) 

When 𝛼 ≤ 𝑹 ≤ 𝛽, from (22) we obtain 

 
𝑟𝐴𝑀𝐵−𝐹𝑢𝑙𝑙−𝑁𝐸
∗ = 𝜆 ∗

𝑐𝛽

𝑛𝑐 + 1
 

(41) 

And when 𝛼 ≤ 𝑹 ≤ 𝛽, from (23) we obtain 

 𝑟𝐴𝑀𝐵−𝐹𝑢𝑙𝑙−𝑁𝐸
∗ = (1 − 𝜆) ∗ 0 (42) 

Combining (28) and (29) gives us the second term of the NE under ambiguity 

with full destruction 

 
𝑟𝐴𝑀𝐵−𝐹𝑢𝑙𝑙−𝑁𝐸
∗ =

𝑐𝜆𝛽

𝑛𝑐 + 1
= 𝜆 ∗

𝑐𝛽

𝑛𝑐 + 1
+ (1 − 𝜆) ∗ 0 

(43) 

We get the NE under ambiguity with full destruction (24), by putting (27) and 

(30) together. We now turn to the case of partial destruction. 

Nash Equilibrium – Partial Destruction – Ambiguity 

In the case of partial-destruction, we have 𝜆𝔼�̃�𝑢 (𝑟𝑖ℎ(𝑹, �̃�)) as 

 𝜆𝔼�̃�𝑢(∙)

=

{
 
 

 
 
   𝑟𝑖

𝑐                                                                                                    𝑹 ≤ 𝛼

 ∫ 𝑟𝑖
𝑐

𝛽

𝑟𝑖+𝑟−𝑖

1

𝛽 − 𝛼
𝑑𝑥 + ∫ (𝑟𝑖𝑒

−𝑘(𝑹−�̈�))𝑐
1

𝛽 − 𝛼
𝑑𝑥,

𝑟𝑖+𝑟−𝑖

𝛼

     𝛼 ≤ 𝑹 ≤ 𝛽

(𝑟𝑖𝑒
−𝑘(𝑹−�̈�))𝑐                                                                                 𝑹 > 𝛽 

 

(44) 

And we have (1 − 𝜆)𝑢(𝑟𝑖ℎ(𝑹, 𝛼)) as 

 
(1 − 𝜆)𝑢(𝑟𝑖ℎ(𝑹, 𝛼)) = {

𝑟𝑖
𝑐                                                       𝑹 ≤ 𝛼

(𝑟𝑖𝑒
−𝑘(𝑹−𝛼))𝑐                                   𝑹 > 𝛼

 
(45) 

Solving (31) and (32) in the same manner as we did in the case of risk (from (18) 

to (19)), we obtain the NE under ambiguity with partial-destruction as 
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 𝑟𝐴𝑀𝐵−𝑃𝑎𝑟𝑡𝑖𝑎𝑙−𝑁𝐸
∗∗ = max {

𝛼

𝑛
, 𝜑} (46) 

The first term of the NE, 
𝛼

𝑛
, is obtained in the same manner as discussed above. 

The second term of the NE, 𝜑, is the numerical solution to 𝜆𝔼�̃�{𝑢
′(∙)} + (1 −

𝜆){𝑢′(∙)} = 0, when 𝛼 ≤ 𝑹 ≤ 𝛽. Here again, unlike the full destruction case, a closed-

form solution of 𝜑 is not possible in the partial destruction case because of the functional 

form of the destruction function as presented in (17). We have 𝜆𝔼�̃�{𝑢
′(∙)} as 

 
𝜆 (
(1 − 𝑒−𝑐𝑘(𝑟𝑖+𝑟−𝑖−𝛼))𝑟𝑖

(𝑐−1)

𝑘(𝛽 − 𝛼)
−

𝑟𝑖
𝑐

𝛽 − 𝛼
+
𝑒−𝑐𝑘(𝑟𝑖+𝑟−𝑖−𝛼)𝑟𝑖

𝑐

𝛽 − 𝛼
+
𝑐𝑟𝑖

(𝑐−1)(𝛽 − 𝑟𝑖 − 𝑟−𝑖)
𝛽 − 𝛼

)

= 𝜆 ∗ (𝐴)
 

 

(47

) 

And when 𝛼 ≤ 𝑹 ≤ 𝛽,  we have (1 − 𝜆){𝑢′(∙)} as 

 (1 − 𝜆)(𝑐(𝑒−𝑘(𝑟𝑖+𝑟−𝑖−𝛼)𝑟)
−1+𝑐

(𝑒−𝑘(𝑟𝑖+𝑟−𝑖−𝛼) − 𝑒−𝑘(𝑟𝑖+𝑟−𝑖−𝛼)𝑘𝑟))

= (1 − 𝜆) ∗ (𝐵)
 

(48) 

Assuming symmetric agents, so we can drop the subscript 𝑖 from (34) and (35), 

the solution to (36) gives us the second term of the NE, 𝜑 

 𝜆 ∗ (𝐴) + (1 − 𝜆) ∗ (𝐵) = 0 (49) 

Putting together the two terms, 
𝛼

𝑛
 and 𝜑, we obtain the NE under ambiguity with partial 

destruction as presented in (37). 
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APPENDIX B 

 

SUPPLEMENTAL RESULTS APPENDIX 

Here we present the supplemental results as mentioned in the main text. 

Fractional Logit Regression 

To examine the relationship between the range (𝛽 − 𝛼) and the probability of 

crossing the threshold, we run a fractional logit regression which is used to analyze 

proportions (Papke and Woolridge 2008). The dependent variable is the probability of 

crossing the threshold, which lies between 0 and 1. The regression output is reported in 

Table 6.1. In Model (1), we have the range (𝛽 − 𝛼) and dummy variables for the 

conditions (with risk with full destruction being the base category) as independent 

variables. In Model (2), we introduce an interaction between the range (𝛽 − 𝛼) and the 

conditions, so as to account for a differential response to the range (𝛽 − 𝛼). In Model (3), 

we add variables for risk and ambiguity preferences.  

For both risk and ambiguity, we use the subjects’ switch point in the MPL, the 

higher the number, the more risk and ambiguity averse the agent. Finally, in Model (4), 

we also include demographic variables such as age, gender, religiosity, employment 

status and whether they recognized anyone at the lab. 

Across all Models, we see that the range (𝛽 − 𝛼) and condition dummies as well 

as their interaction are significant. While risk and ambiguity preferences as well as 

demographics do not have a significant effect. 
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Table 6.1 – Fractional Logit Regression 

 (1) (2) (3) (4) 

 Model 1 Model 2 Model 3 Model 4 

     

Range (𝜷− 𝜶) 0.00110*** 0.00289*** 0.00291*** 0.00292*** 

 (0.000204) (0.000503) (0.000503) (0.000508) 

Amb-Full 0.558** 1.316*** 1.260*** 1.301*** 

 (0.269) (0.462) (0.460) (0.469) 

Risk-Part 0.661*** 1.600*** 1.633*** 1.612*** 

 (0.215) (0.448) (0.440) (0.443) 

Amb-Part 1.166*** 2.456*** 2.456*** 2.399*** 

 (0.234) (0.441) (0.433) (0.435) 

Amb-Full#Range  -0.00157** -0.00159*** -0.00160*** 

  (0.000614) (0.000615) (0.000620) 

Risk-Part#Range  -0.00201*** -0.00202*** -0.00204*** 

  (0.000644) (0.000647) (0.000652) 

Amb-Part#Range  -0.00292*** -0.00294*** -0.00296*** 

  (0.000606) (0.000607) (0.000612) 

Risk-aversion   -0.0984 -0.0947 

   (0.0710) (0.0714) 
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Ambiguity-

aversion 

  -0.00910 -0.00768 

   (0.0214) (0.0218) 

 

Demographics 

 

No 

 

No 

 

No 

 

Yes 

     

Constant -1.571*** -2.418*** -1.751*** -0.721 

 (0.167) (0.348) (0.579) (1.494) 

     

Observations 945 945 945 945 

Pseudo 𝑹𝟐 0.045 0.059 0.063 0.068 

*** p-value ≤ 0.01; ** p-value ≤ 0.05; * p-value ≤ 0.1; Standard errors in parentheses. Clustered at 

subject-level. 
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Ambiguous vs. Risky Threshold 

 

We first report the average marginal effect of the threshold being ambiguous 

versus risky on the probability of crossing the threshold across different values of the 

range (𝛽 − 𝛼).  

In Table 6.2, in Column (1) we see that if the threshold is ambiguous, it 

significantly increases the probability of crossing the threshold across the range (𝛽 − 𝛼), 

except when the range (𝛽 − 𝛼) is high (≥ 700). This result shows that the impact of 

ambiguity on the probability of crossing the threshold is not uniform across the range 

(𝛽 − 𝛼). Therefore, if the underlying uncertainty about the threshold, that is, the range 

(𝛽 − 𝛼) is high, then changing the type of uncertainty from ambiguity to risk does not 

significantly reduce the probability of crossing the threshold.  
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Table 6.2 – Probability of Destruction – Ambiguity vs. Risk 

Range (𝜷 − 𝜶) (1) (2) (3) 

 A vs. R (Pooled) A-FD vs R-FD A-PD vs R-PD 

    

10 0.195*** 0.168*** 0.201** 

 (0.0548) (0.0622) (0.0889) 

70 0.188*** 0.169*** 0.190** 

 (0.0527) (0.0624) (0.0840) 

200 0.172*** 0.165*** 0.163** 

 (0.0484) (0.0622) (0.0738) 

380 0.140*** 0.143** 0.125** 

 (0.0434) (0.0610) (0.0623) 

560 0.0965** 0.0995 0.0861 

 (0.0412) (0.0608) (0.0567) 

700 0.0556 0.0525 0.0548 

 (0.0432) (0.0647) (0.0585) 

820 0.0176 0.00666 0.0278 

 (0.0478) (0.0719) (0.0642) 

    

*** p-value ≤ 0.01; ** p-value ≤ 0.05; * p-value ≤ 0.1; Standard errors in parentheses. 
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The increase in the probability of crossing the threshold because of ambiguity 

(pooled across full and partial destruction) is presented visually in Figure 6.1. 

 

Figure 6.1 –Probability of Destruction – Amb. vs. Risk (Pooled) 

 

Full vs. Partial Destruction TCPRs 

Our finding is that partial destruction of the resource significantly increases the 

probability of crossing the threshold but only when the range (β − α) is low. For high 

ranges (β − α), the probability of crossing the threshold under partial and full destruction 

are not significantly different. We observe this for both risk and ambiguity destruction 

conditions. 

In Table 6.3, we report the average marginal effect of the destruction being partial 

versus full on the probability of crossing the threshold across different values of the range 

(𝛽 − 𝛼). 

In Column (1) of Table 6.3, we see that partial destruction of the resource 

significantly increases the probability of crossing the threshold. But when the range (𝛽 −
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𝛼) is high (≥ 700), the probability under partial destruction is not significantly different 

from full destruction. This result shows that the impact of the type of destruction on the 

probability of crossing the threshold is not uniform across the range (𝛽 − 𝛼). Therefore, 

if the underlying uncertainty about the threshold, that is, the range (𝛽 − 𝛼) is high, then 

better informing the agents about the damage to the resource caused by crossing the 

threshold (so that users perceive the destruction to be full rather than partial) will not 

significantly reduce the probability of crossing the threshold. Figure 6.2 presents the 

increase in the probability of crossing the threshold because of partial destruction. 

  In the preceding comparison between partial and full destruction conditions, we 

had pooled the data from the risk and ambiguity conditions. We now examine if the 

impact of partial destruction differs by the type of uncertainty. In Column (2) of Table 

6.3, we compare the impact of partial versus full destruction in the risk condition. We see 

that partial destruction significantly increases the probability of crossing the threshold as 

long as the range (𝛽 − 𝛼) is 560 or less. But when the range (𝛽 − 𝛼) is high (≥ 700), the 

probability of crossing the threshold is not significantly different. Figure 6.3 presents this 

visually. 

The result for the ambiguity condition is similar. In Column (3) of Table 6.3, we 

see that partial destruction significantly increases the probability of crossing the threshold 

as long as the range (𝛽 − 𝛼) is 380 or less. For high values of the range (𝛽 − 𝛼), the 

difference between partial and full destruction conditions with an ambiguous threshold is 

no longer significant. Figure 6.4 illustrates this finding. 
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Table 6.3 – Probability of Destruction –Partial vs. Full  

Range (𝜷 − 𝜶) (1) (2) (3) 

 PD vs. FD (Pooled) A-FD vs R-FD A-PD vs R-PD 

10 0.247*** 0.224*** 0.258*** 

 (0.0534) (0.0645) (0.0873) 

70 0.238*** 0.221*** 0.242*** 

 (0.0515) (0.0622) (0.0841) 

200 0.213*** 0.208*** 0.206*** 

 (0.0475) (0.0572) (0.0778) 

380 0.167*** 0.170*** 0.153** 

 (0.0428) (0.0502) (0.0713) 

560 0.106*** 0.109** 0.0954 

 (0.0407) (0.0464) (0.0691) 

700 0.0500 0.0468 0.0492 

 (0.0428) (0.0505) (0.0711) 

820 -0.00141 -0.0122 0.00889 

 (0.0475) (0.0598) (0.0755) 

*** p-value ≤ 0.01; ** p-value ≤ 0.05; * p-value ≤ 0.1; Standard errors in parentheses. 
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Figure 6.2 – Probability of Destruction - Partial vs. Full Destruction (Pooled) 
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Figure 6.3 – Probability of Destruction - Partial vs. Full Destruction (Risk) 
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Figure 6.4 – Probability of Destruction - Partial vs. Full Destruction (Ambiguity) 
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