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ABSTRACT

EFFECTS OF PHONOLOGICAL CONTRAST ON
WITHIN-CATEGORY PHONETIC VARIATION

SEPTEMBER 2019

IVY HAUSER

B.A., UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL

M.A., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Kristine Yu and Professor John Kingston

This dissertation investigates an often assumed hypothesis in phonetics and

phonology: that there should be relatively less within-category phonetic variation

in production in languages which have relatively more phonological contrasts (Lind-

blom, 1986, on vowels). Although this hypothesis is intuitive, there is little existing

evidence to support the claim and it is difficult to generalize outside of vowels. In

this dissertation, I argue that this hypothesis is not trivially true and needs addi-

tional specification. I propose an extension of this hypothesis, Contrast-Dependent

Variation, which predicts relative differences in extent of within-category variation

between languages and individual speakers. Contrast-Dependent Variation can make

predictions across multiple phonetic spaces as it considers individual phonetic di-

mensions to be the relevant units of comparison, rather than phonological inventory

subsets (stops, vowels, etc.). I therefore predict that relative differences in extent

ix



of within-category variation can be predicted by differences in cue weight, rather

than differences in number of phonemes. The dissertation tests this hypothesis by

examining two between-language case studies: stops in Hindi and English and sibi-

lants in French and Polish. I also consider a within-language case study: individual

differences in extent of within-category variation in Mandarin sibilants. The results

here show that differences in extent of variability between languages and speakers are

systematic; they are structured according to the system of phonological contrasts.

The first between-language case study is on Hindi and English. Hindi has four stop

categories at each place of articulation while English has two. Contrast-Dependent

Variation predicts less variation in Hindi, but only along the particular phonetic di-

mensions that realize additional contrasts relative to English. This was observed in

the results: Hindi speakers exhibited less variation in closure voicing both within and

between speakers relative to English, but both languages exhibited similar amounts

of within-category variation in voiceless lag time. I analyze multiple sources of vari-

ation in the closure voicing data in both languages. The findings support Contrast-

Dependent Variation, but also have implications for feature representations in phono-

logical theory and theories of transfer in L2 acquisition.

In the second between-language case study, I consider sibilants in French and

Polish. The results demonstrate the importance of considering phonetic dimen-

sions rather than inventory subsets in evaluating the between-language predictions

of Contrast-Dependent Variation. Polish has three voiceless sibilants which contrast

in place of articulation while French has two. The French sibilants are contrasted

primarily in spectral center of gravity (COG). The Polish sibilants employ both COG

and the second formant of the following vowel (F2) to make the 3-way place contrast.

We might expect less variation in Polish along the dimensions which realize additional

contrasts relative to French, in this case F2. However, F2 is used as a primary cue to

vowel contrasts in French, therefore Contrast-Dependent Variation does not predict

x



any differences in extent of F2 variation between the two languages. In accordance

with the hypothesis, no significant differences were observed in the production study.

In the within-language case study, I focus on the three-way sibilant contrast in

Mandarin. There are individual differences in the phonetic implementation of the

contrast, with some speakers relying more on spectral center of gravity (COG) to

distinguish the sibilants while others rely on a combination of COG and the second

formant of the following vowel (F2). Contrast-Dependent Variation predicts more

variation in F2 in speakers that utilize the COG dimension more for contrast. This

relationship is seen across speakers for the alveolar and alveopalatal sibilants.

The last section of the dissertation explores metrics for quantifying contrast in

phonological inventories, considering the notions of dispersion and separability. I

propose a new metric to calculate acoustic dispersion with modeled articulatory-

acoustic data (Schwartz et al., 2012) as a test case. Model comparison shows that

results crucially depend on metric choice.
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CHAPTER 1

INTRODUCTION

This dissertation examines the relationship between phonological contrast and

phonetic variation. Specifically, how does the presence of phonological contrast in a

given phonetic space affect within-category variation of phonetic cues in production?

A major goal of this dissertation is to contribute to understanding the typology of

variation: How do amounts and sources of phonetic variation vary across languages?

There is a growing body of work showing that although phonetic realization is

variable, this variation is not random; it is often structured according to various

non-contrastive factors.1 The results in this dissertation show that structured non-

contrastive variation does not emerge identically across all languages: phonological

contrast is one mechanism which constrains the space of possible phonetic varia-

tion, resulting in predictable cross-linguistic differences in patterns of variability. In

addition, despite the ubiquity of (structured and unstructured) phonetic variation,

the results here also show some cases with high degrees of consistency in phonetic

realization.

(Lindblom, 1986, p. 33) proposes an intuitive hypothesis about the relationship

between phonological contrast and phonetic variation in vowel inventories: “the pho-

netic values of vowel phonemes should exhibit more variation in small than in large

systems.” Under this hypothesis, distributions must be tightened in a more crowded

space in order to avoid overlap between categories and preserve perceptual distinc-

1See §1.1 for a definition of how the term contrast is being used in this dissertation and further
discussion on terminology.
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tion. A language with relatively fewer categories exploiting a single phonetic space has

room for within-category variation while maintaining separation between categories.

The prediction arises from the assumption that speakers aid listener perception by

producing speech sounds that are sufficiently (but not maximally) perceptually dis-

tinct.

There is scant and conflicting evidence in favor of this hypothesis, which has

only been explicitly tested in vowel inventories (see §1.4 for a review). However, a

relationship between contrast and variation is often assumed in phonetic literature.

In this dissertation, I generalize the original Lindblom (1968) hypothesis outside of

vowels and examine the relationship between phonological contrast and extent of

within-category variation in multiple consonant spaces. I show that the assumption

of more variation in the absence of contrast, while mathematically intuitive, is not

trivially true. I propose a more explicit hypothesis which I call Contrast-Dependent

Variation: Acoustic realizations of speech sounds should exhibit less variation along

a particular phonetic dimension in languages that realize phonemic contrast(s) along

that dimension, relative to languages which do not realize phonemic contrasts along

that dimension. This dissertation tests this hypothesis with multiple case studies

using data from five languages.

In this chapter I define relevant terms (§1.1), outline the goals and hypotheses of

the dissertation (§1.2), review relevant background literature (§1.3-1.4), and discuss

the contributions of this dissertation (§1.5).

1.1 Definitions of terms

Throughout this dissertation, I employ the use of several terms (like “variation”)

which, while common, are often not clearly defined in the literature. In this section,

I briefly clarify the definitions assumed in this dissertation.
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1.1.1 Phonological contrast and categories

The term contrast is generally used to describe “a situation in which phonetic

differences reflect and represent categorical differences in meaning” (Scobbie, 2006, p.

89). In this dissertation, when I use the term contrast I am referring specifically to

phonemic contrast unless stated otherwise. I use the term non-contrastive to describe

phonetic differences which do not reflect categorical differences in meaning for native

speakers (i.e., they are not phonemic). Following this, a phonological category refers to

a group of tokens (either observed or abstract) where the phonetic differences among

tokens are non-contrastive. Phonemic or contrastive differences refer to phonetic

differences between phonological categories.

It is not always clear whether certain phonetic differences reflect a phonemic con-

trast. The term “quasi-phonemic contrast” has been used to describe these cases

(Harris, 1990; Hualde, 2004; Scobbie, 2006). The cases in this dissertation deal pri-

marily with examples of phonemic contrast. The issue of quasi-phonemic contrast is

further discussed in relation to category mergers in Chapters 3-4.

1.1.2 Variability, variation, variance

Throughout this dissertation, variability and variation are both used to refer to

“fluctuations within a single measure, specifically within-category acoustic phonetic

variability” (Vaughn et al., 2018). Variance is the quantitative measure of standard

deviation squared, which is used to calculate variation along a particular phonetic

dimension. In this dissertation, I frequently employ the coefficient of variation, a

quantitative measure where variance is divided by the category mean. This allows

for comparison of variance across different mean values.

There have been some attempts to draw a terminological distinction between vari-

ation and variability, where variation refers to fluctuation due to conditioning factors

(i.e., allophonic variation) (Vaughn et al., 2018). This distinction is acknowledged
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to be imperfect as not all fluctuation in phonetic realization can be easily character-

ized as “conditioned” or “unconditioned”. For example, seemingly random variability

might be due to conditioning factors which have not yet been analyzed. For this rea-

son, I collapse this potential distinction when discussing variability and variation and

will use the terms interchangeably in this dissertation.

I draw a necessary distinction between within-speaker and between-speaker vari-

ation as well as within-category and between-category variation. I also distinguish

between group-level measures of variation and speaker-level measures of variation.

Within-speaker variation refers to the variation exhibited by a single speaker where

variance is calculated over a set of phonetic observations from that speaker. In this

dissertation, within-speaker variation is always calculated over a single phonetic di-

mension.2 Group-level within-speaker variation refers to the “extent to which mem-

bers of a group are internally variable” (Vaughn et al., 2018). This can be calculated

by examining within-speaker variation and then deriving an aggregate measure of

those values. (Group-level) between-speaker variation refers to the variation exhib-

ited among multiple speakers where variance is calculated over a set of means3 which

are calculated from the sets of phonetic observations from each individual speaker.

Similarly, within-category variation refers to the variation exhibited in realization

of a single phonological category where variance is calculated over a set of phonetic

observations along a single phonetic dimension from realizations of that particular cat-

egory. These calculations may be restricted to observations from a certain speaker,

certain vowel context, etc. and are then termed within-category within-speaker varia-

tion, within-category within-vowel variation, etc. Between-category variation refers to

2It would be possible to create a measure of within-speaker variation where variance is calculated
over multiple phonetic dimensions to create an aggregate measure of variability for a single speaker.
When using the term here, I am referring to within-category variation along a single phonetic
dimension. Comparing aggregate variability across multiple dimensions is an area for future work.

3In these definitions, I use mean as the default measure of central tendency.
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the difference in mean values across realizations of multiple phonological categories

where variance is calculated over that set of mean values. These calculations may also

be restricted to observations from a particular speaker or vowel context and would

be termed between-category within-speaker variation or between-category within-vowel

variation accordingly.

1.1.3 Phonetic dimensions, cues, and correlates

For the discussion in this dissertation, I use the term phonetic dimension to re-

fer to any measure that can be extracted from the acoustic signal.4 These can be

temporal measures (e.g., voice onset time, vowel duration), spectral measures (e.g.,

center of gravity or formant values), or other acoustic measures. I also use the term

phonetic dimension to refer to derived measures which have been calculated from

acoustic measures such as locus equations (Sussman et al., 1991), or formant differ-

ence measurements for analyzing vowel transitions.

I use the term correlate to refer to any phonetic dimension which correlates with

realizations of different phonological categories and the term cue to refer to correlates

which have been shown to be relevant for perception, following Raphael (2005), among

others.5 The term cue can be used to refer to the relevant phonetic dimension in

production or perception. As this dissertation focuses on within-category variability

in production, I will typically use cue to refer to a particular phonetic dimension in

production unless otherwise specified.

4This is not meant to dismiss the relevance of articulatory or other dimensions. I am using the
term phonetic dimension as a shorthand for acoustic phonetic dimension because this dissertation
deals with acoustic data.

5The relationship between acoustic correlates and perceptual cues is not necessarily one-to-one.
For example, multiple correlates can integrate to create a singular perceptual effect (Repp et al.,
1978; Summerfield, 1979; Kingston, 1992, among others). However, in this dissertation I focus on
the behavior of cues in production. I use the term cue to refer to particular phonetic dimensions
which have been shown to be relevant for perception.
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Cue weight refers to a quantitative measure of relative cue strength in production

or perception. In this dissertation, I will by default use the term to indicate cue

weight in production unless otherwise specified. Weighting cues in production data

is frequently done by applying a classification algorithm (e.g., discriminant analysis,

logistic regression) where the relevant cues are predictors (Shultz et al., 2012; Garellek

and White, 2015; Schertz et al., 2015; Kim and Clayards, 2019). Strength of each

predictor is taken to be a metric of cue weight.6 When discussing differences in

amount of contrast or degree of contrast on a particular dimension, I am referring to

relative differences in the cue weights of that dimension.

I use the term primary cue to refer to the cue with the highest relative weight

in production and secondary cue to refer to cues with lower weights than the pri-

mary cue. As the studies in this dissertation are production experiments, I will use

these definitions unless otherwise specified to be referring to a perceptual cue. When

discussing perception, the term primary cue refers to the cue which has been shown

in perception experiments to exert the strongest influence on perception of a given

contrast.

I use the terms separability/separable and dispersion/dispersed to refer to prop-

erties of multiple phonological category distributions in phonetic space. Category

separability refers to the degree to which tokens from two or more phonological cate-

gories overlap in the phonetic space. Dispersion refers to category spread in phonetic

space. Categories which are dispersed are often also separable, but this is not always

the case.

6Specifics of how such methods are implemented are discussed further in Chapters 4-5.
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1.2 Goals and hypotheses

The main goals of the dissertation are as follows: to provide new data examining

within-category variation of multiple phonetic cues in consonant spaces, to situate

these findings within the current literature on phonetic variation, speech percep-

tion/production, and Dispersion Theory, and to propose testable hypotheses about

the relationship between phonological contrast and the extent of phonetic variation.

The broad claim in this dissertation is that phonological contrast constrains the

space of possible phonetic variation, resulting in predictable differences in patterns of

variability within and between languages. The experiments that follow test two pre-

dictions made by the Contrast-Dependent Variation hypothesis. I test the between-

language prediction of the hypothesis using stops in Hindi and English and sibilant

fricatives in Polish and French and the within-language prediction of the hypothesis

using sibilant fricatives in Mandarin.

1. Between-languages: For a given phonetic dimension X (e.g. voice onset time,

spectral center of gravity), we expect less group-level within-speaker variability

and less between-speaker variability in languages which employ X as a primary

cue to a phonological contrast relative to languages which do not employ X as

a primary cue to a phonological contrast.

2. Within-languages: Given a phonological contrast with two phonetic dimensions

X and Y serving as cues and between-speaker variation in which dimension

is used as the primary cue, we expect relatively more within-category within-

speaker variability in X for speakers who show relatively more contrast on Y.

In other words, we expect variability on X and degree of contrast on Y to be

positively correlated between speakers.

The following sections of Chapter 1 present a review of the relevant background

literature. In §1.3, I discuss the literature on variation in production with a focus
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on sources of variation relevant to the results in this dissertation. In §1.4, I discuss

the literature on Dispersion Theory with a focus on the Lindblom (1968) hypothesis

about within-category variation and dispersion in consonant inventories.

1.3 Background: Phonetic variation

It is well-established that phonetic realization of phonological categories is variable

both within and between speakers (Hillenbrand et al., 1995; Newman et al., 2001,

among others). There is a large body of work on sources of variation in speech

production, which include speaking rate, phonetic context, and sociocultural factors

(to name only a few). While sources of variation are relatively well-studied, there is

less work on what factors condition differences in extent of variation. The work in

this dissertation builds on the current literature on variation by examining differences

in extent of variation across languages and speakers.

In this section, I review the existing literature on individual differences and hy-

perarticulation as sources of phonetic variation in production. There are many other

factors which contribute to variation in production. However, these factors are the

most relevant to the results presented here. The experiments in this dissertation

were laboratory studies where factors which would be sources of variation in natural

speech (phonetic context, lexical frequency, etc.) were controlled. Further discussion

of sources of variation in laboratory experiments is included in Chapters 2-4.

1.3.1 Individual differences

Individual speaker differences are well-documented in many phonetic spaces in-

cluding differences in vowel formant frequencies among native speakers (Johnson

et al., 1993; Wright, 2004; Ferguson and Kewley-Port, 2007) and L2 learners (Baker

and Trofimovich, 2006), voice onset time (Allen et al., 2003; Scobbie, 2006; Theodore

et al., 2009; Chodroff and Wilson, 2017), and sibilant center of gravity (Newman
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et al., 2001; Tabain, 2001), among others. In some cases, the phonetic values for a

particular category produced by one speaker may be almost entirely overlapping with

values from the same category produced by another speaker (Newman et al., 2001 for

sibilant fricatives in English; Hillenbrand et al., 1995 for vowels in English).

A growing body of work demonstrates that although phonetic values from differ-

ent speakers can show a great deal of overlap, individual variation is often systematic

across contrasts and phonetic dimensions. In vowels, correlations across vowel cate-

gories between talker-specific formant values have been observed (Nearey, 1989; Rose,

2010). In stops, Chodroff et al. (2015) observed correlations in mean VOT values

within-speakers across different stop categories of English. Bang and Clayards (2016)

builds on this, examining correlations between phonetic values of stops and fricatives.

They observed correlations in VOT values among stops for individual talkers and also

observed correlations between VOT and fricative duration within talkers. Clayards

(2018) examined individual talker and token variation in three cues to stop voicing

in English, and did not observe consistent covariation between cues. Clayards argues

that this variation is structured by individual speaking styles as covaration between

cues is not systematic across speakers.

This dissertation builds on this work by testing additional hypotheses about how

between-speaker variation might be structured. The within-language predictions of

Contrast-Dependent Variation make predictions about patterns in individual differ-

ences, proposing additional systematicity in individual differences. The previous work

summarized here showed that individual differences in phonetic values are often sys-

tematic across different phonological categories. The experiment in Chapter 4 of this

dissertation builds on this, showing that individual differences in extent of variation

are also systematic across speakers.
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1.3.2 Hyperarticulation

Speakers adopt the use of clear speech in a variety of contexts. Most important

to the experiments in this dissertation is the use of clear speech in lab contexts.

Differences in lab speech and spontaneous speech are well documented, including a

tendency for hyperarticulation by default (Summers et al., 1988; Harnsberger et al.,

2008, though see Xu, 2010).

The use of clear speech or hyperarticulation generally involves a decrease in speak-

ing rate, an increased pitch range, and increased acoustic distance between contrast-

ing segments (Picheny et al., 1986; Bradlow and Bent, 2002; Smiljanić and Bradlow,

2005). The increased acoustic distance between contrasting segments can affect var-

ious acoustic cues depending on the contrast. For example, in English clear speech

VOT increases for voiceless stops but does not change for voiced stops (Chen, 1980;

Picheny et al., 1986; Ohala, 1994; Krause and Braida, 2004). However, speakers may

use different strategies to enhance contrast leading to between- and within-speaker

variability even in clear speech situations (Warner and Tucker, 2011).

There has been considerably less work on extent of variation in clear speech.

In this dissertation, I present results of multiple laboratory studies (where people

frequently tend towards clear speech) where differences in variation are present be-

tween languages and speakers. These experiments show that it is not the case that

speakers always minimize within-category variation in clear speech contexts. Further

discussion of hyperarticulation effects in the particular case studies here is included

in Chapters 2-4.

1.4 Background: Dispersion Theory

Dispersion Theory (c.f. Liljencrants and Lindblom, 1972; Lindblom, 1986; Schwartz

et al., 1997) was originally formulated to make predictions about the relative typo-

logical frequency of vowel inventories cross-linguistically. The intuition behind the
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proposal is that vowel spaces are optimized to aid in perceptual distinction. Liljen-

crants and Lindblom (1972) propose maximal contrast as an organizing principle in

vowel inventories. They define the vowel space using two phonetic dimensions: F1 and

F2′, which is a combination of F2 and F3. Their model correctly predicted the cross-

linguistic frequency of /i a u/ for three-vowel inventories but had more discrepancies

with predictions for larger inventories.

Several updates have been made to the original formulation of DT to address these

and other discrepancies in the predictions. Lindblom (1986) added multiple revisions

including the concept of sufficient instead of maximal dispersion. Dispersion from

sufficient contrast predicts that languages with more phonological categories in a

given space should have an overall larger phonetic space and have tighter categories

within that space. For example, the [i] from a 14 vowel inventory should have lower

F1 and higher F2 than the [i] from a 3 vowel inventory (on average, and scaled for

speaker differences). The realizations of [i] should also show less variation in the 14

vowel inventory than in the three vowel inventory.

In this dissertation, I propose a revision of the hypothesis about within-category

variation in Lindblom (1986). The original hypothesis was formulated only with

respect to vowels, though it is often assumed to be true for vowels and consonants.

The revision proposed here makes the hypothesis more explicit so it can be tested in

phonetic spaces other than vowel inventories.

1.4.1 Previous work on the predictions of Lindblom (1986)

This section reviews the literature on the prediction about size of the phonetic

space. The prediction has been examined in literature on vowels (using F1 and F2

as the relevant phonetic dimensions) and tones (F0 as relevant dimension) and the

results are mixed. These studies typically have not examined the related prediction

about within-category variation. The work in this dissertation aims to fill that gap
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by providing comparative case studies of within-category variation across consonant

inventories with different numbers of phonemic distinctions.

The prediction that larger vowel inventories should occupy larger phonetic spaces

is supported by data from studies including comparisons between German (14 vowels)

and Greek (5) (Jongman et al., 1989) and English (11) and Spanish (5) (Bradlow,

1995). However, other studies of vowels and inventory size have not observed the

dispersion prediction. Gendrot et al. (2007) compared the vowel spaces of eight

languages with inventories of different sizes and found that larger inventories did not

have relatively expanded vowel spaces. Livijn (2000) compared 28 languages and

found that languages with 4-8 vowels have comparably sized phonetic spaces and

space only increases with 11 or more vowels.

Specific investigations of the corresponding variation prediction have been limited.

Many of the studies mentioned here report variance information but do not provide

a comparative analysis so it is difficult to say whether the effect was observed. Brad-

low (1995) did examine variability in English and Spanish vowels and did not show

differences in extent of within-category variation between the two languages.

The evidence from the literature on tone systems also provides mixed results for

the predictions of DT. While earlier work (Maddieson, 1977) showed the predictions

of dispersion to be observed in tone systems (larger F0 space taken up by larger tone

systems), more recent work presents some contradictory evidence. Alexander (2010)

compared the tone spaces of five languages with different tone inventories and the

results were not in accordance with the DT predictions. She found that tone space

size differed as a function of type of tone language and that level-tone and contour-

tone systems may not be comparable based on number of tones. A follow-up study

examined tone inventories in an additional space of onset F0 × offglide F0 and the

results were again not in accordance with the DT prediction that larger inventories
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should use larger phonetic spaces. To my knowledge, no studies have examined the

within-category variation prediction of DT in tone inventories.

1.4.2 Dispersion Theory and consonants

DT was originally formulated to make predictions about vowel inventories (Liljen-

crants and Lindblom, 1972). However, the issue of whether consonant inventories are

also dispersed according to similar metrics has been relatively unexplored. If speakers

are aiding listener perception by constraining variation in crowded phonetic spaces,

we would expect to see the prediction hold for all types of speech sounds, including

consonants. This dissertation addresses the question of whether the within-category

variation prediction of DT applies across different types of consonant inventories.

Most of the literature on typological frequency of consonant inventories has re-

volved around maximal use of available features, proposed as an organizing principle

by Ohala (1979). Maximal use of available features has been formalized with Feature

Economy (Clements, 2003) which describes the tendency in phonological inventories

to maximize the ratio of phonological features to phonemes. The economy model does

predict the ubiquity of the typologically common /bilabial-coronal-velar/ inventory

in actual and randomly generated inventories (Mackie and Mielke, 2011). However,

it is unclear why it should be the case that feature economy applies to consonant

inventories yet phonetic dispersion applies to vowel inventories.

The principle of feature economy differs from the principle of maximizing percep-

tual distinction in DT. Ohala claims that maximizing perceptual distinction would

result in consonant inventories like [â k’ ts ì m r é], which do not actually exist. This

claim is countered by Lindblom (1986), who proposed the distinction between maxi-

mal contrast and sufficient contrast. Lindblom suggests that it need not necessarily

be the case that vowel and consonant systems are organized by different principles

when considering sufficient instead of maximal contrast. In a further elaboration of
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the idea of sufficient contrast as a organizing principle in consonant inventories, Lind-

blom and Maddieson (1988) propose a relationship between consonant inventory size

and complexity of consonant articulation. They divide consonants into three sets:

basic articulations, elaborated articulation, and complex articulations (combinations

of elaborated articulations). These sets are proposed to correlate with inventory size;

smaller inventories typically only use basic articulations, larger inventories make use

of the elaborated and complex articulations.

Despite the focus on alternative organizing principles, some work has shown evi-

dence for acoustic dispersion in consonant inventoires. Boersma and Hamann (2008)

propose a framework in which dispersion is emergent in sibilant systems by employ-

ing a bidirectional phonetic cue constraint model. They show that when production

and perception are modeled with bidirectional phonetic cue constraints, dispersion is

emergent without constraints demanding dispersion.

Although the model in Boersma and Hamann (2008) does cause emergent disper-

sion of sibilant inventories, it is unclear exactly what part of the model causes this

(bidirectionality, phonetic constraints, the combination of the two). It is also unclear

exactly how prevalent consonant dispersion patterns are typologically. Their focus is

on sibilant inventories, but stop and nasal inventories are referenced as well (although

no typological data is provided). They note that this type of change towards a more

dispersed inventory has been observed in real diachronic change between Medieval

and present Polish sibilants.

The work in this dissertation builds on this modeling work by examining dispersion

in the phonetic realization of present-day Polish sibilants. The model in Boersma

and Hamann (2008) simulates the emergence of dispersion between three sibilant

categories across the spectral center of gravity dimension in Polish. However, the

three sibilant categories are not contrasted solely along the center of gravity dimension
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in the data here. Further discussion of Boersma and Hamann (2008) is included in

the Polish and French case study in Chapter 3.

Other work on consonant dispersion includes Schwartz et al. (2012) who addressed

the question of whether stop inventories are dispersed using data generated from

a vocal tract model. They claim that the typologically common stop consonant

inventory /b d g/ should be viewed as a perceptually optimal and dispersed structure

just like the typologically common vowel inventory /i a u/. However, their results

from analysis of 50,000 stop tokens generated by a vocal tract model show that it is

not the most dispersed inventory when all places of articulation are considered.

To account for the fact that the vocal tract model results show that /b d g/ is

not the most acoustically dispersed inventory, they argue that the phonetic space

which is considered is not the relevant space for considering stop dispersion. The

space which should be considered is modulated by articulatory considerations, namely

Frame-Content Theory (MacNeilage, 1998), which is used to exclude pharyngeal and

epiglottal stops from the space considered for dispersion.

The theory claims that the emergence of proto-syllables in linguistic evolution and

in child linguistic development happens with articulatory exploration from mandible

movements through jaw cycles with high and low points in the jaw cycle correspond-

ing to the closed and open oral cavity. Proto-consonants emerged from the upward

movements of the mandible and proto-vowels from the downward movements, thus

creating syllables which show contrast between high and low points in the jaw cy-

cle. In Frame-Content theory, all proto-consonants have upward mandible movement.

Because pharyngeals and epiglottals are articulated with downward mandible move-

ments they are excluded from the space of this articulatory exploration. The move-

ment from a pharyngeal articulation to a vowel does not come from the upward and

downward movement of the mandible as in the articulation of [ba].
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In the phonetic space of articulatory exploration which excludes the pharyngeals

and epiglottals, the /b d g/ configuration is the most dispersed three stop system

(according to the metric used by Schwartz et al., presumably visual dispersedness). By

restricting the < F1, F2, F3 > space considered for dispersion to exclude pharyngeals

and epiglottals, Schwartz et al. (2012) are able to revive the dispersion account as

the major factor contributing to stop system organization. I return to these results

in Chapter 5, where I evaluate this analysis and propose a new metric for calculating

acoustic dispersion, testing it on the same data used by Schwartz et al.

1.4.3 Phonetic spaces in Dispersion Theory

Most work on DT carries implicit assumptions about the relevant space for un-

derstanding dispersion. The space for analysis of often assumed to be a subset of

the entire phonemic inventory defined by a shared phonological feature. For exam-

ple, work on consonant dispersion looks for dispersion within consonant inventories

(rather than, for example, between consonants and vowels). The spaces in which

dispersion is examined are often subsets of the consonant inventory as in Boersma

and Hamann (2008) with voiceless sibilant fricatives and Schwartz et al. (2012) with

voiced stops. These analyses only examine dispersion among segments in a particular

subset of interest. As with the vowel inventories, these subsets are defined (either

implicitly or explicitly) by phonological features to refer to particular segment classes

like sibilants or stops.

The approach taken in this dissertation differs from these previous approaches as

relevant spaces are defined according to phonetic dimensions, not phonological fea-

tures. The predictions of Contrast-Dependent Variation crucially refer to phonetic

dimensions instead a (potentially ad-hoc) subset of the phonemic inventory. I will

refer to inventory subsets in discussion of the problems, hypotheses, and implications,

but the hypotheses I test do not require an a priori selection of relevant phonemes.
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I also do not assume that the appropriate phonetic spaces for consonants are nec-

essarily different from those of vowels. The focus on phonetic dimensions allows for

investigation of variation along any explicitly defined dimension regardless of whether

that dimension is relevant for production/perception of consonants or vowels.

For example, in the case study of Hindi and English stops, defining the relevant

system as the stop inventory would generally predict more variation in English relative

to Hindi. As Contrast-Dependent Variation is implemented over phonetic dimensions

instead of inventories, the hypothesis makes different predictions for each phonetic

dimension. Understanding phonetic dimensions as the relevant spaces for evaluat-

ing Contrast-Dependent Variation makes crucially different predictions from previous

analyses in DT. Further discussion of this and other examples are included for the

individual case studies in each chapter of the dissertation.

1.5 Contributions of this dissertation

In summary, the previous literature on Dispersion Theory in consonants provides

mixed evidence for acoustic dispersion as an organizing principle in consonant inven-

tories. In addition, (to my knowledge) there have been no direct investigations of the

DT prediction about relative differences in within-category variation in consonant

spaces (Lindblom, 1986). The literature on phonetic variation in consonants docu-

ments many sources of variability, both within and between speakers. While there

is a large body of work on sources and structure of phonetic variability, we have less

understanding of the differences in extent of variability across speakers and languages.

This dissertation builds on work in DT by directly testing the hypothesis that the

presence of more phonological contrasts results in less within-category variation and

extending those predictions to consonant spaces. I propose a revision of the original

hypothesis which can be tested across multiple phonetic spaces. This dissertation also

builds on the literature on phonetic variability by examining phonological contrast
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as a factor that conditions the extent of variability. The results here showcase that

phonetic variation (both within and between speakers) is structured by another factor

which has received relatively less attention in the literature: differences in extent of

variability are also structured according to the system of phonological contrasts.

1.6 Outline of chapters

In the chapters that follow, I present three case studies testing the general hypoth-

esis that variation emerges in the absence of contrast (Contrast-Dependent Variation;

further specified in §1.2) and provide a methodological discussion on ways of quanti-

fying dispersion and separability with application to stop inventories and Mandarin

sibilants.

Chapter 2 presents the results of the experiment on stop consonant production

in Hindi and English. The goal of the experiment is to examine language-specific

differences in within-category variation across multiple phonetic dimensions according

to the between-language predictions. Hindi has four contrasting stops at each place

of articulation while English has two. Contrast-Dependent Variation predicts less

variation in Hindi, but only along the particular phonetic dimensions that realize

additional contrasts relative to English. This was observed in the results: Hindi

speakers exhibited less variation in closure voicing both within and between speakers

relative to English, but both languages exhibited similar amounts of within-category

variation in voiceless lag time. I analyze multiple sources of variation in the closure

voicing data in both languages. The findings support Contrast-Dependent Variation,

but also have implications for feature representations in phonological theory and

theories of transfer in L2 acquisition.

Chapter 3 presents the results of an experiment on sibilant fricative production in

Polish and French. The results here demonstrate the importance of considering pho-

netic dimensions rather than inventory subsets in evaluating the between-language
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predictions of Contrast-Dependent Variation. Polish has three voiceless sibilants

which contrast in place of articulation while French has two. The French sibilants are

contrasted primarily in spectral center of gravity (COG). The Polish sibilants employ

both COG and the second formant of the following vowel (F2) to make the 3-way

place contrast. We might expect less variation in Polish along the dimensions which

realize additional contrasts relative to French, in this case F2. However, F2 is used as

a primary cue to vowel contrasts in French, therefore Contrast-Dependent Variation

does not predict any differences in extent of F2 variation between the two languages.

The prediction simply refers to whether a particular phonetic dimension is employed

as a primary cue in the language, and does not restrict this to a particular subset of

phones. In accordance with the hypothesis, no significant differences were observed

in the production study. I discuss implementation of Contrast-Dependent Variation

predictions in light of these results and implications for sound change and perception.

Chapter 4 presents the results of an experiment on variation in production of

sibilant fricatives in Mandarin. The goal of this experiment is to examine individ-

ual speaker differences to test the within-language predictions of Contrast-Dependent

Variation. Mandarin (like Polish) has a sibilant contrast over three places of articu-

lation and there is individual variation in how these contrasts are instantiated in the

phonetic space. We expect to see relatively more variability on the F2 dimension in

speakers that have more between-category variation on the COG dimension. This was

observed as a general trend across speakers. I discuss these findings with reference to

the other experiments and review implications for perception and sound change.

Chapter 5 considers metrics for evaluating separability and dispersion between

phonetic categories. Although dispersion and separability are intuitively similar, I

argue that they should be considered independent properties of phonological invento-

ries. I discuss these differences with two case studies: stop inventories and Mandarin

sibilants (from Chapter 4). The case studies provide examples of how utilizing dif-
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ferent metrics changes results. For quantifying dispersion, I propose a new metric

which incorporates within-category variation directly into the distance measurement.

I discuss implications of the case studies and suggest methodological considerations

in choosing metrics of separability and dispersion in future work.

Chapter 6 summarizes the findings and contributions of the dissertation. I discuss

remaining questions and areas for future work.

20



CHAPTER 2

BETWEEN-LANGUAGE CASE STUDY: STOPS IN
HINDI AND ENGLISH

2.1 Introduction

In order to test the revision of the Lindblom (1986) hypothesis, I compare within-

category variation of stop consonants in Hindi and English using a speech production

experiment. Hindi has four stop categories at each place of articulation (POA): voiced,

voiced aspirated, voiceless, and voiceless aspirated, while English has two (consonant

inventory charts shown in Tables 2.1 and 2.3). I compare the variation of voiceless

lag time (positive voice onset time) and closure voicing in both languages.

To preview the results: Hindi and English long lag stops show comparable amounts

of lag time variation within- and between-speakers, but English phonologically voiced

stops show significantly more variation in closure voicing than Hindi voiced stops

both within- and between-speakers. Structured non-contrastive patterns of variation

emerge in the English voicing data, but not in Hindi. I use these results to argue

for a revision of Lindblom’s (1986) hypothesis (Hypothesis 1 of this dissertation):

phonetic realization of phonemes in larger phonological systems should exhibit less

within-category variation to avoid overlap, but only along the particular phonetic

dimensions that instantiate additional contrasts.

There is a large body of work in phonetics uncovering structure in acoustic vari-

ability, showing that variation in speech production is not random (see Chapter 1

for a review). The results here add to this literature by showing that these struc-

tured patterns of non-contrastive variation do not emerge identically in all languages.
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In this chapter, I examine differences in sources of conditioned variation and differ-

ences in extent of (what appears to be) unconditioned variation.1 In the data here,

non-contrastive patterns of prevoicing variation structured according to vowel con-

text only emerge in the English data, and not in the Hindi data. I argue that these

cross-linguistic differences can be predicted by the the structure of the phonologi-

cal inventory, but how the phonological contrasts are implemented in phonetic space

must also be considered. Specifically, we expect more variation in English because

prevoicing serves as a primary phonetic correlate of a phonemic contrast in Hindi,

but a secondary correlate of a contrast in English.

2.1.1 Hindi background

Hindi is one of several Indo-Aryan languages which exhibit a four-way stop con-

trast.2 The four-way contrast occurs at four places of articulation: bilabial, dental,

retroflex, and velar. This system is often understood as a laryngeal contrast over the

two dimensions of voicing and aspiration (Dutta, 2007). Assuming binary features,

fully crossing the values of voicing and aspiration results in four distinct phonological

categories.

Voice onset time (VOT) has frequently been analyzed as a phonetic correlate to

these stop contrasts (Lisker and Abramson, 1964; Abramson and Lisker, 1967; Poon

and Mateer, 1985). VOT is a duration measure of the onset of voicing relative to the

release of the stop occlusion. Historically, VOT has been implemented as a continuum

of negative and positive values. Voicing before the stop closure is analyzed as negative

VOT and voicing which begins after the stop closure is analyzed as positive VOT.

1We cannot say with certainty that any variation is random or unconditioned because it could
always be the case that we have not analyzed the appropriate factors which condition the variation.

2Dutta (2007) cites UPSID (Maddieson, 1981) which contains ten languages from six families
with the four-way contrast.
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Table 2.1. Consonant inventory of Hindi (Ohala, 1983)

Labial Dental/Alveolar Retroflex Palatal Velar Glottal
Stop p b t d ú ã k g

Aspirated stop ph bh th dh úh ãh kh gh

Affricate tS dZ
Fricative f v s z S h

Nasal m n ñ N
Approximant l j

Using only VOT to characterize stop contrasts in phonetic space has been recog-

nized as inadequate for languages like Hindi which have stops that are produced with

lead voicing and aspiration (Lisker and Abramson, 1964; Schiefer, 1986; Dixit, 1989).

VOT separates only stops that differ in laryngeal timing and does not distinguish

stops that incorporate another feature difference. In the case of Hindi voiced aspi-

rated stops, width of glottal opening (Benguerel and Bhatia, 1980) has been argued

to be a second necessary feature distinguishing the breathy/aspirated stops from the

other stops.

Various alternatives for analyzing the voiced aspirates have been proposed and

can be categorized into roughly two hypotheses: voiced aspiration is a result of two

independent gestures of voicing and aspiration, and, voiced aspiration is an indepen-

dent mode of phonation (Dutta, 2007). Exactly what features/phonetic dimensions

distinguish the voiced and voiced aspirated stops in Hindi is not directly relevant to

this study because this experiment aims to compare variation in Hindi and English.

The voiced aspirates are not a focus as they do not have a correspondent in the

English phonological system.

VOT has been standardly defined with negative values for lead voicing (Lisker and

Abramson, 1964; Cho and Ladefoged, 1999), but the use of a single measure for lead

and lag voicing has been challenged. Mikuteit and Reetz (2007) use data from East

Bengali (another language with a four-way stop contrast) to argue that lead voicing

and lag voicing should not be considered as part of a single continuum. They instead
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Table 2.2. Feature specifications for stops in Hindi

[-spread glottis] [+spread glottis]
[-voice] /t/ /th/
[+voice] /d/ /dh/

propose separate duration measures of after closure time (duration from release to

onset of voicing; lag time), onset voicing (start of glottal pulsing to release in initial

stops), and connection voicing (closure duration in medial stops).

Following this analysis, I consider lag time (traditionally known as positive VOT)

to be a separate phonetic dimension from lead time (traditionally known as nega-

tive VOT). In all discussion that follows, I use lag time to indicate the duration

between the stop burst and onset of voicing, CD to indicate closure duration, and

CV to indicate closure voicing (see §2.5.1 for further discussion of how voicing was

operationalized in the experiment).

In terms of distinctive features, Hindi is typically described as fully crossing all

values of two features [± voice] and [± spread glottis] (Dutta, 2007), shown in Table

2.2. In discussion of data in the present study, I refer to instances of [+voice] as

phonologically voiced stops and instances of [+sg] as phonologically aspirated stops.

There is some debate in the literature about the feature specification of the voiced

aspirates (Benguerel and Bhatia, 1980; Dixit, 1989; Dutta, 2007). There is also debate

about whether these features should be binary or privative (Honeybone, 2005; Schwarz

et al., 2019), which is not specific to Hindi. For the laryngeal relativists, the question

of feature binarity is independent from the question of what the features are. The

questions examined here do not hinge on any particular feature representations and

I discuss implications for feature specification in §2.5.5.

2.1.2 English background

English has two contrasting stop consonants at three places of articulation: bil-

abial, alveolar, and velar. These can be seen in the English consonant inventory given
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Table 2.3. Consonant inventory of English (Quirk et al., 1972)

Labial Dental Alveolar Post-alveolar Palatal Velar Glottal
Stop p b t d k g

Affricate tS dZ
Fricative f v T D s z S Z h

Nasal m n N
Approximant l ô j w

Table 2.4. Representations of English stops

Phoneme Distinctive
feature
(realist)

Distinctive
feature
(relativist)

Common phonetic realiza-
tions in word initial position

/b/ – [+voice] [b p ]
/p/ [sp. gl.] [-voice] [ph ]

in Table 2.3. In American English, lag time is the primary cue to the stop contrast

and other phonetic cues such as F0 frequently co-vary with lag time (Lisker, 1986;

Lisker and Abramson, 1967; Keating, 1984, among others). Because lag time is the

primary cue, English is often considered an “aspirating” language instead of a “true

voicing” language. Despite this, the English stops are typically represented using the

IPA symbols for voiceless and voiced stops /t d/.

There is some debate in the literature about which phonological features should

be used to distinguish English stops. The laryngeal realist view takes the position

that the phonological features should reflect the phonetic realization (Honeybone,

2005; Jessen and Ringen, 2002; Beckman et al., 2013, among others). Under this

view, the feature distinguishing the two English stops is [spread glottis] (features

are also typically privative in this view). The laryngeal relativist view takes a more

abstract approach focusing on cross-linguistic similarities. In this view, two-way

stop contrasts are represented with [(±)voice] and phonetic implementation can differ

across languages (Keating, 1984; Kingston and Diehl, 1994; Lombardi, 1994; Cyran

et al., 2011, among others). The table in 2.4 shows these potential representations of

the English stop phones.

25



In this chapter, I assume the [±voice] analysis and I revisit the question of feature

representation in §2.5.5. In all discussion that follows, I refer to the English short

lag stops /b d g/ as phonologically voiced and the English long lag stops /p t k/ as

phonologically voiceless.

Despite the classification of English as an aspirating language, several studies have

reported prevoicing on English phonologically voiced stops, which is assumed to be

the primary phonetic correlate of voicing in “true voicing” languages. In work on

British English, Docherty (1992) reported prevoicing (as percentage of voicing during

the stop closure) from five adult male speakers of Southern British English. The

mean percentages of voicing during the closure was 51% of CD for [b], 58% of CD

for [d], and 66% of CD for [g]. Deterding and Nolan (2007) found similar results

with seven British English speakers. Both studies elicited the stops in a word-initial

utterance-medial post-vocalic context (the same context used in the present study).

In work on prevoicing in American English, Lisker and Abramson (1964) report

data on utterance initial stops (n=4) and note that some English speakers produced

prevoiced stops in this context. However, one speaker produced 95% of all prevoiced

stops. Davidson (2016) also found prevoicing variation in connected read speech to

be influenced by linguistic factors such as adjacent sounds and lexical stress. There is

also a body of work documenting prevoicing in Southern American English varieties

(in the utterance-initial and medial contexts), sometimes with higher incidence among

male and African-American speakers (Jacewicz et al., 2009; Elston et al., 2016; Herd

et al., 2016; Hunnicutt and Morris, 2016). These findings suggest that the frequency

of prevoiced phonologically voiced stops may be determined by the regional dialect

of English speakers.
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Table 2.5. Hypotheses about within-category variation summarized

Hypothesis Summary Domain Phonetic
space

Lindblom (1986) “The phonetic values of vowel
phonemes should exhibit less vari-
ation in small systems than in
large systems.”

vowels F1/F2
assumed

Contrast-
dependent
variation (pro-
posed here)

For a given phonetic dimen-
sion X, we expect less group-
level within-speaker variability
and less between-speaker variabil-
ity in languages which employ X
as a primary cue to a phonologi-
cal contrast relative to languages
which do not employ X as a pri-
mary cue to a phonological con-
trast.

general any

2.2 Predictions

Lindblom’s (1986) hypothesis is that vowels in systems with more phonological

contrasts should show less within-category variation than vowels in systems with fewer

contrasts (see Chapter 1 for an extended review). In extending this prediction outside

of the F1/F2 space assumed for vowels, I have operationalized a revised hypothesis,

which is given in Table 2.5.

In the Dispersion Theory analyses, the relevant space is assumed to be the vowel

space. While there are no explicit criteria for determining relevant phonetic dimen-

sions, the first two formants are used in analyses. In trying to implement Lindblom’s

hypothesis as directly as possible, we might consider the stop inventory to be the

relevant “system” as Lindblom considered the vowel inventory to be the relevant

“system”.

Under this assumption, Hindi stops are hypothesized to vary less relative to En-

glish stops because there are more stop phonemes in Hindi. Lindblom’s prediction

does not distinguish between different phonetic dimensions outside of vowels and does

not address how within-category variation should be quantified. Therefore, under this
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Figure 2.1. Predicted voiceless lag time distributions for two hypotheses in Hindi
and English. Predictions of Contrast-Dependent Variation in top panel. Predictions
of Lindblom (1986) in bottom panel.
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hypothesis, one potential prediction could be that we expect voiceless aspirated stops

in Hindi to vary less in lag time relative to English. Expected results under this

prediction are shown in Fig. 2.1.

If we define the relevant “system” according to single phonetic dimensions in-

stead of overall number of phonemes, we expect no difference in lag time variation (a

schematic of predicted results is given in Figure 2.1). This is because because both

languages use the dimension of lag time to distinguish one contrast between short

lag and long lag stops (see Table 2.6). While there are four phonological contrasts in

Hindi at each place of articulation, the lag time contrast is not a four-way contrast.

When lead time and lag time are not considered as part of the same continuum,

Hindi has a single lag time contrast between the voiceless unaspirated and voiceless

aspirated stops, similar to the single contrast in English.
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Table 2.6. Phonetic dimensions in Hindi and English stops

↑ ← voiceless aspiration →
duration of /t/ /th/
closure voicing /d/ /dh/
↓ ← voiced aspiration →

← voiceless aspiration →
/d/ /t/

Because there is a single contrast that primarily exploits the lag time dimension in

both languages, we do not expect any differences in extent of lag time variation under

the revised hypothesis. However, we do expect more variation in English along the

voicing dimension relative to Hindi. English does not contrast any additional stops

along the voicing dimension, but Hindi does. Therefore, we predict more variability

in stop closure voicing in English relative to stops in Hindi.

2.3 Experimental design

2.3.1 Participants

All speakers were between the ages of 18-30 and recruited at The University of

Massachusetts Amherst. Most of the English speakers were undergraduates enrolled

in introductory linguistics courses and most of the Hindi speakers were master’s degree

students in varying fields at the university. In the first round of data collection, nine

speakers of each language were recorded.

Exclusion was determined based on two factors: an expression of difficulty or

discomfort with the task and a numerical cutoff of speaking rate, as measured by

pauses between the carrier phrase and the stimulus. The task was a production task

which involved reading phrases off a computer screen. Therefore, native speakers

with poor reading skills spoke unnaturally during the task and produced many speech

errors. Any participants who expressed difficulty with the task and/or paused before
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the stimulus leaving silence for more than 1.5 seconds on at least 75% of the phrases

were removed from the analysis.

Five Hindi speakers and one English speaker were excluded according to these cri-

teria. Two Hindi speakers were additionally removed from the analysis because they

were L2 speakers of Hindi. This was determined by their answers to a demographic

questionnaire about language background. Two English speakers were additionally

removed because they did not complete the task. After exclusions, data from two

Hindi speakers from the first round of data collection were retained.

To replace the Hindi speakers which were excluded in the first round, we ran a

second round of data collection with a few adjustments. The call for participants

was circulated in Hindi orthography to ensure the participants were comfortable with

reading in addition to speaking. The experimenter was a native speaker of Hindi

who spoke Hindi to the participants throughout the experiment.3 This helped in

resolving confusion among the participants about L1/L2 status of Hindi before they

participated. After this second round of data collection, recordings from six speakers

of each language were available for analysis.

2.3.2 Stimuli

The goal was for stimuli to be as similar as possible between languages. The

stimuli were C1VC2 words and non-words where C1 is a stop and V is one of [i a

u]. The coda consonant of the stimulus (C2) was in most cases a stop. If there

were no stops available that could make a phonotactically natural word or non-word,

then a fricative was used. If there were no fricatives available, then a sonorant was

used. Eliciting only monosyllabic words avoided potential problems with placement of

3This was the only difference in the procedure of the experiment between the first round and
the second round of data collection. The speakers whose data were retained from the first round of
collection did not systematically differ in extent of lag time variance relative to those in the second
round of collection.
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Table 2.7. Example stimuli: Type indicates word/non-word status and additional
word frequency levels in English

Language C1 vowel stimulus (IPA) type
Hindi b i bit word
Hindi kh i khil word
Hindi bh u bhut word
Hindi d a dag word

English p i pis word-hi
English t a tak non-word
English t u tub word-hi
English b a bag word-low

stress. All stimuli were recorded in a uniform carrier phrase: “Say X again” in English

and “Dobara X doharao” (repeat X again) in Hindi. The carrier phrases placed

the target words in focused environments in both languages. The stimuli were all

developed in consultation with native speakers to assure phonotactic wellformedness.

Example stimuli are given in Table 2.7.4

The stimuli were grouped according to different factors depending on the language.

Real words and non-words were used in both the Hindi and English stimuli. The

English stimuli were grouped further according to lexical statistics to allow for analysis

of lexical effects (lexical statistics obtained from the English Lexicon Project; Balota

et al. (2007)). The lexical statistics are not as readily available for Hindi so the English

data were checked for lexical effects under the assumption that if there were relevant

differences according to lexical statistics, the Hindi productions would likely differ in

the same way. Hindi stimuli were crossed according to the following factors: consonant

(16 levels) × vowel context (3 levels) × word status (2 levels: word/non-word) for

a total of 96 distinct stimuli. English stimuli were crossed according to: consonant

(6 levels) × vowel context (3 levels) × word status (4 levels: high frequency/low

frequency/non-word/has C1 minimal pair) for a total of 72 distinct stimuli.

4For a full list of stimuli and other experimental materials see the public archive for this disser-
tation at https://osf.io/2famr/.
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2.3.3 Recording

The participants were all recorded in a sound-attenuated booth using Audacity

software (Audacity Team, 1999-2014). The recordings were done using an M-Audio

Fast Track Pro Mobile Audio Interface and a Shure SM10A head-worn microphone.

The recordings were sampled at a rate of 44.1 kHz with a bit depth of 16. The

participants were presented with stimuli in the relevant orthography on a laptop

computer inside the booth. They were asked to produce the phrases as naturally

as possible. The research assistants were trained to give feedback which encouraged

natural production.5 The stimuli were recorded in four separate blocks, each with a

different random order, totaling four repetitions of each stimulus for analysis.

The recordings from each speaker were first scanned by the author and/or a native

speaker research assistant for speech errors. After these exclusions, there were a total

of 3663 tokens analyzed. The recordings were forced aligned using the Montreal

Forced Aligner (McAuliffe et al., 2017). The forced aligner creates Praat (Boersma

et al., 2001) textgrids marking boundaries at the word and segment level. A new

forced aligner model was trained on the Hindi acoustic data, which can be used in

future work. Additional information about forced alignment and the Hindi model is

given in Appendix A.2.

2.4 Lag time

2.4.1 Analysis: Lag time

In this section, I detail how lag time was analyzed for the phonologically voiceless

stops and summarize the results. In accordance with the revised prediction, there was

5This included things like suggesting the participant speak as if they were talking to a friend
and not giving a presentation, suggesting they say the phrase “in one breath” to discourage pausing
before the stimulus, etc.
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Figure 2.2. Voiceless short and long lag stops in Hindi. Left: CV sequence from
token of /tup/). Right: CV sequence from token of /thup/).
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no significant difference in group-level within-speaker lag time variability between the

two languages.

Many dialects of Hindi are currently undergoing a merger between the voiceless

aspirated labial stop /ph/ and the voiceless labiodental fricative /f/, where both are

produced as /f/ (Dutta, 2007). All of the speakers in this study consistently produced

the fricative, so the labial stops are not analyzed here. The coronal and velar stops in

both languages are compared. The coronal category included the dental and retroflex

stops in Hindi compared with the alveolar stops in English.

The forced aligned boundaries were used as input to AutoVOT (Keshet et al.,

2014) which allowed for automatic measurement of lag time intervals.6 AutoVOT

was used to measure lag time for the voiceless short and long lag stops in both

languages. Lag time was measured from the start of the burst to the onset of voicing.

The intervals created by AutoVOT were all hand-checked and hand-corrected by the

author. A random sample was additionally spot-checked by a research assistant.

Example tokens are shown in Figures 2.2-2.3. In both figures, the short lag tokens

are shown on the left and the long lag tokens on the right. A difference in the duration

of aspiration between the short and long lag tokens can be seen in both languages.

Lag times for the long lag stops are analyzed in this section.

6Many thanks to Eleanor Chodroff for making her AutoVOT tutorial Praat scripts publicly
available (https://www.eleanorchodroff.com/tutorial/autovot/autovot-intro.html).
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Figure 2.3. Short lag and long lag stops in English. Left: CV sequence from token
of /dit/. Right: CV sequence from token of /tip/.
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To abstract over differences in mean values between speakers and vowel contexts,

lag time values were centered around within-speaker within-category within-vowel

means. A standard outlier rejection method was applied before analysis, excluding

tokens with a z-score greater than the absolute value of 3 (Well and Myers, 2003).

This removed 30 of 3663 tokens.

2.4.2 Results: Lag time

In Figure 2.4, I show results for long lag stops in both languages at coronal and

velar places of articulation. These plots show the distributions of the centered lag time

values, collapsed over speakers. Lindblom’s hypothesis predicts less within-category

variation in Hindi (Fig. 2.1). If this were the case, the English distributions would be

wider than the Hindi distributions in the results. However, in Figure 2.4 the English

distributions do not appear to be wider than the Hindi distributions for either place

of articulation. In fact, it appears that Hindi speakers might actually produce more

variation than the English speakers.

To quantify the differences between the languages, I use a mixed effects linear

regression where within-speaker within-category lag time variance is the dependent

variable.7 Language, place of articulation, vowel (V), and their interactions were

7Using within-category variance as a dependent variable was also done in Vaughn et al. (2018)
to test for differences in group-level within-speaker variability.
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Figure 2.4. Experimental results for coronal and velar long lag stops, lag time in
ms
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included as predictors with random intercepts for speaker. No random intercepts

for speaker were included as this additional model structure was not justified by

the research question. We are mostly interested in the main effect of language, and

speaker is fully nested within language. R (R Core Team, 2013) was used for all

statistical analyses. The lmer function in the lme4 package (Bates et al., 2007) was

used for the regression model, using LmerTest to obtain p values (Kuznetsova et al.,

2017). Place was coded as a categorical variable with two levels: coronal and velar.

Default dummy coding contrast structure was used with English coronal /a/ as the

reference level.

Under Lindblom’s hypothesis, we expect less group-level within-speaker variation

in Hindi relative to English, therefore we would expect a significant effect of Language

in the model. Under Contrast-Dependent Variation, the revised hypothesis I propose

here, we do not expect a difference in group-level within-speaker variation, therefore

we expect no significant effect of Language in the model.

Although Language is the main effect of interest, other factors were included to

ensure that a significant effect of language would not be due to covariation with

other factors. It is possible that stop place of articulation and vowel quality may

independently influence extent of variation and therefore are included as additional

factors. Random intercepts for speaker were included as the question of interest here

is about differences in group-level within-category variation across the two languages.

The default lmer contrast structure was used.

The model output is given in Table 2.8. In the model results, we see no significant

effect of Language, in accordance with Contrast-Dependent Variation. There was

also no effect of place, but there was a significant effect of the /u/ context. How-

ever, the non-significant language × /u/ interaction indicates that the vowel effect is

consistent across the two languages. There are no significant differences between the
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Table 2.8. Fixed effects table for linear mixed effects regression. Dependent vari-
able: within-category within-speaker lag time variation (quantified by coefficient of
variation). Predictors: language, place of articulation, V (vowel context), language
× place, language × V, random intercepts for speaker. Model intercept is English
coronal /a/ context. Standard error values are similar between effects when there is
similar n in each level of the factor.

Fixed effects Estimate (se) t p
(Intercept) 16.37(2.51) 6.53 < 0.001∗∗∗

language-Hindi 2.18(3.38) 0.64 0.53
place-velar −0.92(1.64) -0.56 0.580
V-/i/ −3.46(2.01) -1.72 0.090
V-/u/ −4.44(2.01) -2.21 0.031∗

language-Hindi × place-velar −1.57(2.17) -0.72 0.472
language-Hindi × V-/i/ 1.51(2.59) 0.58 0.563
language-Hindi × V-/u/ 1.87(2.59) 0.72 0.472

two languages in within-category lag time variation for either place or in either vowel

context.

2.4.3 Interim discussion: Lag time

Despite the difference in number of stop contrasts in the two languages, the amount

of group-level within-speaker lag time variation was similar in both languages. This is

not expected under the most direct implementation of Lindblom (1986) which predicts

less variation in languages with more phonological contrasts. Phonological contrasts

are implemented in a multidimensional phonetic space and this prediction must be

re-formulated in terms of phonetic dimensions instead of phoneme inventories.

Under Contrast-Dependent Variation (Table 2.5), similar amounts of lag time

variation in Hindi and English are expected. Hindi and English both distinguish

one contrast primarily using lag time when voiceless lag time is considered to be a

separate dimension from prevoicing. The results here can be interpreted as providing

additional evidence for the division of lag time and lead time into separate dimensions

(Mikuteit and Reetz, 2007). Prevoicing and lag time pattern differently in the data

here–lag time variation is similar in both languages, but closure voicing variation
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differs between languages. An analysis of prevoicing and lag time which considers

them as separate phonetic dimensions allows us to capture the differences observed

here.

2.5 Voicing

In this section, I detail how voicing was analyzed for the phonologically voiced

stops and results. The summary of results includes analysis of individual differences

and vowel context effects. I also model the results using regression and compare

extent and sources of variation between the two languages using model comparison.

In accordance with the revised prediction, there is more variability in closure voicing

in English relative to Hindi both within and between speakers.

2.5.1 Analysis: Voicing

Closure duration (CD) and closure voicing (CV) were hand measured for all stops.

CD was measured from the offset of the preceding vowel until the stop burst. Tokens

with stop closures longer than 300ms were excluded. CV was measured as the por-

tion of the stop closure which contained periodicity in the waveform which indicates

voicing. Tokens where periodic voicing during the closure stopped and started again

were excluded (30 total tokens).

The percentage of the closure containing voicing was calculated from the mea-

surements of CD and CV. The percentage data was also classified according to three

categorical bins: no prevoicing (voicing through 0-25% of the stop closure), partial

prevoicing (25-90%), and full prevoicing (90-100%). The classification of full prevoic-

ing as voicing through 90% or more of CD follows the categorization in Beckman

et al. (2013).8

8The motivation for these classifications in Beckman et al. (2013) is to only classify tokens as
fully prevoiced if they are produced with active voicing instead of passive voicing. It is argued to be
unlikely that passive voicing would carry on through 90% of the CD.
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Figure 2.5. Voiced unaspirated and aspirated stops in Hindi. Left: CV sequence
from token of /dut/. Right: CV sequence from token of /dhup/.
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Figure 2.6. Short lag stop with closure voicing in English
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Example Hindi tokens are shown in Figures 2.5-2.6. The Hindi tokens both show

voicing before the stop closure which continues through the burst into the vowel.

The English token differs from the other phonologically voiced English token shown

in Figure 2.3. In the token shown here in Figure 2.6, voicing starts before the stop

burst. Phonetically voiced and voiceless realizations of the English [+voice] stops

were observed in the data here.

2.5.2 Results: Voicing

In this section, I concentrate on within-category variation in the phonologically

voiced stops in both languages.9 Fig. 2.7 provides a density plot of the closure voicing

percentages in both languages. In Hindi, the distribution of proportion voiced is

9Because the analysis is comparative and there are no voiced aspirate stops in English, the voiced
aspirated stops have excluded from the analyses here. The results do not change (there is still more
variation in English relative to Hindi) if the voiced aspirated stops in Hindi are included.

39



Figure 2.7. Density plot of percentage of voicing during stop closures
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skewed as almost all stops are produced with voicing during 100% of the closure. In

English, the distribution of voicing is more variable.

In Figure 2.8, I show the categorical voicing bins in both languages (no prevoic-

ing, partial prevoicing, full prevoicing), error bars show standard deviation between

speakers. In Hindi, almost all voiced stops are produced with full prevoicing (voicing

through at least 90% of CD). In English, there is more overall variation in degree of

prevoicing. Most of the phonologically voiced stops produced in English are partially

prevoiced but this varies between speakers.

As in the lag time analysis, I use mixed effects linear regression where within-

speaker within-category variation is the dependent variable. For this analysis, the

dependent variable was calculated by determining the variance in closure voicing (per-

cent of closure which has voicing) within category, speaker, and vowel context, which

was then used to calculate the coefficient of variation. Language, place of articulation,

vowel, and their interactions were included as predictors with random intercepts for

speaker. Default dummy coding contrast structure was used with English coronal /a/

context as the reference level.
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Figure 2.8. Voicing during stop closure in phonologically voiced stops (categorical
bins); Error bars show standard deviation between speakers.
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The model output is given in Table 2.9. Under Contrast-Dependent Variation,

we expect less group-level within-speaker variation in Hindi relative to English. We

therefore expect a significant effect of Language in the model, which was observed,

along with several other significant effects.

The significant effect of the velar place indicates more voicing variance for velar

stops. However, the negative estimate on the significant interaction between language

and velar place indicates less variation for Hindi velars relative to the English coronal

intercept. There were also significant main effects of the vowels /i u/ indicating less

within-category variation before these vowels relative to /a/. In this case as well,

an interaction term shows that this may not be the case in Hindi. The Hindi × /i/

interaction is significant with a positive intercept indicating more variation relative

to the English /a/ reference level.
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Table 2.9. Fixed effects table for linear mixed effects regression. Dependent vari-
able: within-category within-speaker voicing variation (quantified by coefficient of
variation). Predictors: language, place of articulation, V (vowel context), language
× place, language × V, random intercepts for speaker. Model intercept is English
coronal /a/ context.

Fixed effects Estimate (se) t p
(Intercept) 54.19(8.32) 6.52 < 0.001∗∗∗

language-Hindi −40.76(11.65) -3.652 0.002∗∗

place-labial 3.82(5.89) 0.65 0.518
place-velar 16.19(5.89) 2.75 0.007∗∗

V-/i/ −16.35(5.89) -2.77 0.006∗∗

V-/u/ −14.58(5.89) -2.48 0.015∗

language-Hindi × place-labial −1.67(7.79) -0.21 0.831
language-Hindi × place-velar −18.43(7.79) -2.37 0.028∗

language-Hindi × V-/i/ 17.31(7.79) 2.22 0.028∗

language-Hindi × V-/u/ 10.75(7.79) 1.38 0.171

Overall, these results show that there is less group-level within-category within-

speaker voicing variation in Hindi relative to English. There is less variation before

/u/ in both languages relative to /a/. In English, there is also more voicing variation

for velar stops and less variation before both high vowels relative to /a/.

In the next section, I examine the voicing variation further, turning to between-

language differences in how the variation is structured.

2.5.3 Results: Structure in voicing variation

2.5.3.1 Between-speaker variation

The Hindi pattern of voicing is consistent across all speakers. Fig. 2.9 shows

distributions for the two Hindi speakers with the most between-speaker difference in

amount of voicing. I also provide the data in terms of discrete voicing categories in

Fig. 2.10. Both graphs show similar patterns between the Hindi speakers.

While all Hindi speakers consistently fully voice phonologically voiced stops, En-

glish speakers show individual preferences for degree of closure voicing. Some English

speakers have voicing through 100% of the closure on almost all phonologically voiced
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Figure 2.9. Hindi speakers with greatest difference in voicing (continuous)
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stops while others have little closure voicing. Figure 2.11 shows the English speakers

that can be characterized as having the least and most voicing during phonologically

voiced stop closures. This density plot shows two distinct distributions with different

means and shapes. Figure 2.12 provides the same data binned into voicing categories.

2.5.3.2 Variation across vowel contexts

Smith and Westbury (1975) reported more prevoicing in English stops before high

vowels relative to low vowels. I observe a similar pattern in the English data, but

not in Hindi. Just as the pattern of voicing in Hindi is consistent across speakers,

the pattern of voicing is also consistent across vowel contexts. The data for both

languages are shown in Figures 2.13-2.14.

2.5.3.3 Modeling sources of variance

In this section, I compare the effects of different factors in accounting for overall

voicing variance in both languages. Due to the dependent variable (percentage of

closure with voicing) being continuous proportion data, I use Beta Regression (Ferrari

and Cribari-Neto, 2004), which is intended for proportion data bounded between

(0,1). Unlike a standard linear regression which assumes the data follow Gaussian
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Figure 2.10. Hindi speakers with greatest difference in voicing (categorical)
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Figure 2.11. English speakers with greatest difference in voicing (continuous)

0

5

10

0.00 0.25 0.50 0.75 1.00
Percent of closure with voicing

de
ns

ity English speaker
with most voicing
with least voicing

Percentage of voicing during voiced stop closures

44



Figure 2.12. English speakers with greatest difference in voicing (categorical)
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Figure 2.13. Prevoicing across vowel contexts in Hindi phonologically voiced stops
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Figure 2.14. Prevoicing across vowel contexts in English phonologically voiced stops
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distributions, the Beta Regression assumes Beta distributions, which tend to be more

characteristic of proportion data. As evident from the density plots in the previous

section, the data here are not normally distributed and would be better approximated

with Beta distributions.

Separate regression models were fit for English and Hindi using the following

factors as predictors: phonological voicing, place of articulation, speaker, and vowel

context (V), experimental block, and closure duration, with random intercepts for

word. The following interactions were also included in the full models: place × V,

place × speaker, and V × speaker.

Models were fit using the betareg (Cribari-Neto and Zeileis, 2010) and glmmTMB

(Brooks et al., 2017) R packages. Best fit models for both languages were determined

using variable selection with the Akaike Information Criterion (AIC) (Akaike, 1974).

Likelihood ratio tests were performed using the lmtest package (Zeileis and Hothorn,

2002) and stepwise selection was performed using the MASS package (Ripley et al.,

2013).

While using fixed effects to model factors like vowel context or word type is typical,

speaker effects are often modeled using random effects (Allen et al., 2003; Baayen
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et al., 2008). However, there are multiple reasons why a fixed effect for speaker is

preferable for this analysis. First, random effects are best suited to factors which

have many levels. A standard recommendation is at least five levels (Baayen, 2008;

Gorman and Johnson, 2013; Barr, 2013; Coolican, 2017). In this experiment, speaker

has six, which is small for accurately estimating variance from a random effect.

In addition, the main question here is how the sources of variance differ in the two

languages. Including speaker as a fixed effect allows for the quantitative measurement

(via the R squared value) of how much variation is accounted for by speaker relative

to the other factors. We are less concerned with which main effects are significant

(as is typical when using speaker as a random effect) and instead more concerned

with how much variance is accounted for by each factor and how the best fit models

differ between languages. If speaker is included as a random effect, the pattern of

results is consistent: there is more voicing variation in English relative to Hindi. This

alternative analysis is provided in Appendix A.3.

Regression models were fit for both languages using the full effect structure de-

scribed above (full output in the appendix in Tables A.1-A.2). There is a significant

effect of phonological voicing in both languages. In English, there is a significant

effect of the high vowel /i/ (indicating more voicing relative to /a/), but neither of

the vowel effects could be considered even marginally significant in Hindi. All English

speakers show significant or marginally significant speaker effects, while there is only

one speaker with a marginally significant effect in Hindi. In addition, there are several

significant interactions between speaker, vowel context, and place of articulation in

English, while none of the interactions reach significance in Hindi.

The differences between the full models for the two languages result in different

best fit models using the AIC criterion for model selection. The best fit model for the

Hindi data (given in Table (2.10)) includes only two of the predictors from the full

model: phonological voicing and closure duration. With only these two factors, this
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Table 2.10. Effect table for best fit model in Hindi. Beta regression with logit link.
Dependent variable: closure voicing. Call: voicing percent ∼ phonological voicing +
closure duration.

Effects Estimate (se) z p
(Intercept) 3.69(0.09) 43.23 < 0.001∗∗∗

Voicing -4.92(0.09) -55.58 < 0.001∗∗∗

Closure duration -2.26(0.45) -5.05 < 0.001∗∗∗

Pseudo R2: 0.78

Table 2.11. Model comparison: Likelihood ratio test of Hindi restricted model vs.
full model

Model 1: full model (voicing percent ∼ voicing + V × speaker + place × V +
place:speaker + closure duration + block + (1 | word))
Model 2: best-fit model (voicing percent ∼ phonological voicing + closure duration)

Model #Df Log Likelihood Change in Df ChiSq p

1 41 6239.60
2 4 6221.10 -37 36.82 0.48

model accounts for 78% of the voicing variation in the data. Vowel context, speaker,

block, their interactions, or the random effect of word do not significantly improve

the model fit. A likelihood ratio test comparing the full model to the best fit model

verifies this (given in Table 2.11). The non-significant Chi Square value indicates that

there is no significant change in log likelihood when the full model is reduced to the

best-fit model.10

The best fit model for the English data includes the same predictors as the best fit

model in Hindi (voicing and closure duration) as well as vowel context, speaker, the

V × speaker interaction, the place × V interaction, the place × speaker interaction,

and experimental block. The model is given in Table 2.12. This model accounts for

40% of the overall closure voicing variation in the English data. The only factor from

10This does not fail to reach significance simply because of the large change in degrees of freedom.
A comparison of the two models using the English data instead of the Hindi data results in a Chi
Square value of 721.3∗∗∗.
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the full model which is not included in the best-fit model is the random effect of word.

However, including that effect does significantly improve model fit, as is seen in the

significant Chi Square value in a likelihood ratio test comparing the English best fit

model to the English full model (Table 2.13).

The differences in the best fit models between the two languages show how the

extent and sources of voicing variation differ. In accounting for overall variation

in the data, the best fit Hindi model (with only voicing and closure duration as

predictors) accounts for 78% of the variation while the best fit English model only

accounts for 40% of the overall voicing variation. The variance accounted for by

individual factors also differs between the two languages. In the graphs in Fig. 2.15, I

show the proportion of total variance accounted for by each individual factor in both

languages. In the Hindi model, 77.82% of the overall voicing variation is accounted

for by phonological voicing. Hardly any additional variance is accounted for by any

of the other factors. In the English model, only 13.83% of the voicing variation is

accounted for by phonological voicing while around 21.70% of the overall variation

is accounted for by speaker. The other factors each account for less than 1% of the

overall variation.

Although the full model for English still only accounts for 40% of the overall

variance, this does not necessarily indicate that the remaining 60% percent of the

variance is due to random variation. It could be the case that this variation is also

structured by additional factors which are not analyzed in these models. What can

be concluded from these models is that the factors analyzed here account for less of

the overall variance in the English data relative to the Hindi data. In accounting for

variance, the strongest predictor of amount of closure voicing in Hindi is phonological

voicing whereas the strongest predictor of voicing in English is individual speaker.
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Table 2.12. Main effect table for best fit model in English. Beta regression with
logit link. Dependent variable: closure voicing. Call: voicing + V × speaker + place
× V + place:speaker + closure duration + block. Intercept is speaker e02 voiced
coronal /a/ context block 1.

Effects Estimate (se) z p
(Intercept) 2.41 ( 0.23 ) 10.34 < 0.001∗∗∗

voicing-voiceless -1.54 ( 0.07 ) -23.28 < 0.001∗∗∗

V-/i/ 0.66 ( 0.20 ) 3.24 0.001∗∗

V-/u/ -0.40 ( 0.21 ) -1.86 0.063
speaker-e03 0.55 ( 0.23 ) 2.40 0.016∗

speaker-e04 -0.66 ( 0.23 ) -2.86 0.004∗∗

speaker-e06 -1.04 ( 0.23 ) -4.56 < 0.001∗∗∗

speaker-e07 -1.94 ( 0.23 ) -8.37 < 0.001∗∗∗

speaker-e09 -1.90 ( 0.23 ) -8.30 < 0.001∗∗∗

place-labial -0.48 ( 0.20 ) -2.35 0.019∗

place-velar -0.21 ( 0.20 ) -1.04 0.299
closure duration -9.99 ( 1.02 ) -9.77 < 0.001∗∗∗

block 2 0.05 ( 0.08 ) 0.62 0.535
block 3 -0.05 ( 0.08 ) -0.64 0.525
block 4 0.05 ( 0.08 ) 0.61 0.541
V-/i/:speaker-e03 -0.44 ( 0.25 ) -1.79 0.073
V-/u/:speaker-e03 0.83 ( 0.25 ) 3.31 < 0.001∗∗∗

V-/i/:speaker-e04 -0.07 ( 0.25 ) -0.27 0.788
V-/u/:speaker-e04 1.37 ( 0.26 ) 5.30 < 0.001∗∗∗

V-/i/:speaker-e06 -0.55 ( 0.25 ) -2.20 0.028∗

V-/u/:speaker-e06 0.50 ( 0.26 ) 1.94 0.053
V-/i/:speaker-e07 0.07 ( 0.25 ) 0.29 0.774
V-/u/:speaker-e07 1.00 ( 0.26 ) 3.89 < 0.001∗∗∗

V-/i/:speaker-e09 -0.11 ( 0.25 ) -0.45 0.656
V-/u/:speaker-e09 0.84 ( 0.26 ) 3.28 0.001∗∗

V-/i/:place-labial -0.08 ( 0.17 ) -0.49 0.622
V-/u/:place-labial 0.08 ( 0.19 ) 0.41 0.682
V-/i/:place-velar 0.24 ( 0.18 ) 1.35 0.177
V-/u/:place-velar 0.24 ( 0.18 ) 1.34 0.182
speaker-e03:place-labial 0.50 ( 0.25 ) 2.01 0.045∗

speaker-e04:place-labial 0.11 ( 0.26 ) 0.44 0.660
speaker-e06:place-labial 0.37 ( 0.25 ) 1.45 0.146
speaker-e07:place-labial 0.70 ( 0.25 ) 2.77 0.006∗∗

speaker-e09:place-labial 0.51 ( 0.25 ) 2.01 0.044
speaker-e03:place-velar -0.24 ( 0.25 ) -0.95 0.342
speaker-e04:place-velar -0.68 ( 0.26 ) -2.64 0.008∗∗

speaker-e06:place-velar -0.50 ( 0.26 ) -1.94 0.053∗

speaker-e07:place-velar 0.02 ( 0.25 ) 0.09 0.931
speaker-e09:place-velar -0.11 ( 0.25 ) -0.42 0.674
Pseudo R2: 0.40
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Table 2.13. Model comparison: Likelihood ratio test of English restricted model vs.
full model

Model 1: full model (voicing percent ∼ voicing + V × speaker + place × V +
place:speaker + closure duration + block + (1 — word))
Model 2: best-fit model (voicing percent ∼ voicing + V × speaker + place × V +
place:speaker + closure duration + block)

Model #Df Log Likelihood Change in Df ChiSq p

1 41 1958.40
2 40 1954.0 -1 8.87 0.003∗∗

Figure 2.15. Proportion of total variance accounted for in regression models
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2.5.4 Interim discussion: Voicing

This section has provided results for closure voicing in Hindi and English phono-

logically voiced stops. I have shown that there is more group-level within-speaker

within-category variation in closure voicing in English relative to Hindi. I have also

shown that the voicing variation is structured differently in the two languages.

The pattern of voicing in Hindi is consistent across speakers and vowel contexts.

The English speakers vary more in closure voicing both within- and between-speakers.

Beta regression models for each language show that while underlying phonological

voicing accounts for almost 80% of the total voicing variation in Hindi, it accounts

for only 13% of the total voicing variation in English. Speaker, vowel context, and

their interactions significantly contribute to the English model, showing that the

additional variation in English is structured according to these phonologically non-

contrastive factors. However, these factors together still account for only 40% of the

overall voicing variation in the English data. This suggests that there is either more

random variation in English voicing relative to Hindi, or there are additional factors

that structure the English variation which are not considered in these models.

This section discusses the voicing results in light of the literature on prevoicing in

English stops, reviews implications for laryngeal realism and English featural anal-

yses, and discusses the potential articulatory explanation for variation across vowel

contexts.

2.5.5 Prevoicing in English stops

The prevoicing variation in English observed here is in line with recent work on

American English documenting prevoicing. Most studies of prevoicing have concen-

trated on Southern varieties, sometimes reporting prevoicing with higher incidence

among male and African-American speakers (Jacewicz et al., 2009; Elston et al., 2016;

Herd et al., 2016; Hunnicutt and Morris, 2016). However, none of the speakers in this
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study were speakers of a Southern variety.11 All speakers were female so gender effects

could not be tested with the data obtained in this experiment. This suggests that pre-

voicing in English may be more widespread than previously documented. The results

here differ from some (though not all) of the previous studies on English prevoicing in

that the stops were elicited intervocalically and not utterance initially. Further work

will need to be done with non-Southern populations to see if the prevoicing patterns

observed here are also present on utterance-initial stops.

It is possible that the degree of prevoicing observed here is the result of hyper-

articulation in a lab setting. However, multiple studies of clear/careful speech have

shown that English speakers do not generally prevoice more in these contexts, but in-

stead produce more salient release bursts (Keating, 1984; Picheny et al., 1986; Ohala,

1995; Hazan and Simpson, 2000). While it remains a possibility that the speaker-

specific preferences we observed in prevoicing are restricted to the lab context, the

existing literature documenting English prevoicing suggests these findings are typical

for American English speakers.

It might be the case that the between-speaker variation is due to speaker-specific

preference for different hyperarticulation strategies. Speakers which produced mostly

prevoiced stops would be using voicing as a way of hyperarticulating voiced stops,

and speakers who produced little voicing would be using other strategies (more salient

release bursts, increase in lag time difference, etc.). If these differences result from

hyperarticulation we may also expect block effects, with hyperarticulation decreasing

throughout the experiment. I did not observe any block effects (when included in the

regression models for Hindi and English, block was a non-significant factor in both).

We would also expect to see other evidence of hyperarticulation such as extended

lag time on voiceless stops. However, the speakers who produced the most prevoicing

11We assume this is the case based on participant answers to a demographic questionnaire. None
listed any southern states as places where they or their parents learned to speak English.
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did not also produce the longest lag times. In addition, these speakers showed a

general preference for prevoicing across all stops, even phonologically voiceless stops.

If the speakers who typically exhibit closure voicing during phonologically voiced stops

were doing so to hyperarticulate those stops, we would not expect the same speakers

to produce voicing during the closure for phonologically voiceless stops. This seems to

indicate that these speakers have a more general preference for voicing which (while

it might be enhanced in a hyperarticulation context) cannot be solely attributed to

hyperarticulation in the lab context.

2.5.5.1 Laryngeal realism and English featural analyses

The English prevoicing results have potential implications for considering laryn-

geal realism (e.g. Honeybone 2005, Beckman et al. 2013; cf. Cyran 2014) in the

featural representation of English stops. Under a laryngeal realist hypothesis, the

feature system in phonology should represent the phonetic reality of production. En-

glish is frequently analyzed (by laryngeal realists) as a language which does not use the

feature [voice], but instead [spread glottis]. This [spread glottis] feature reflects the

difference between voiceless short lag stops and voiceless long lag stops. Hunnicutt

& Morris (2016) offer a potential laryngeal realist phonological analysis of English

prevoicing based on data from Southern speakers.

The fact that English speakers use prevoicing on stops (at least sometimes) is

compatible with either a laryngeal realist or relativist analysis and these data do not

provide particular counterexamples to previous analyses of English in either frame-

work. However, the individual differences observed in the English prevoicing patterns

here potentially suggest different feature specifications on the individual level. For

example, the speaker who prevoiced almost all phonologically voiced stops could be

described as utilizing both [voice] and [spread glottis] representations simultaneously

(as in Hunnicutt & Morris’s analysis), while the speaker who prevoiced almost no
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phonologically voiced stops could be described as utilizing only the [spread glottis

feature].

2.5.5.2 Variation across vowel contexts

As in Smith and Westbury (1975), I observed more prevoicing before high vowels

in English. Smith and Westbury (1975) proposed a possible articulatory explanation:

moving the tongue root to produce a high vowel puts additional tension on the vocal

folds, making it easier to sustain voicing through the closure. However, the Hindi

speakers are consistent in voicing across vowel contexts and do not prevoice less in

front of low vowels relative to high vowels. The lack of even a small effect of this

kind in Hindi suggests two explanations. (1) It could be that the pattern observed in

English does not actually have a physiological basis and is a learned non-contrastive

pattern or (2) the Hindi speakers are able to overcome the physiological challenges to

maintain the contrasts of their language.

2.6 Discussion

2.6.1 Lindblom (1986) and Dispersion Theory

Lindblom’s (1986) hypothesis “that phonetic values of vowel phonemes should

exhibit less variation in small systems than in large systems” is often assumed to be

true, despite scant and conflicting evidence from the literature on vowels (see Ch.

1 for an overview). I argue that we cannot generalize this intuition outside of the

F1/F2 space assumed for vowels without a more explicit operationalization of the

hypothesis.

My results show that it is not the case that phonetic values in larger “systems”

are always less variable. In the experiment here, Hindi speakers showed just as much

variation as English speakers in voiceless lag time, despite having twice the number

of stop phonemes. Instead, the hypothesis should be defined over single phonetic
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dimensions as phonological contrasts are not unidimensional in phonetic space. We

expect Hindi speakers to exhibit less variation than English speakers but only along

the particular phonetic dimensions which realize additional contrasts.

2.6.2 Links to perception

Lindblom’s original hypothesis (and work in DT more generally) assumes that

production is optimized for ease of perception through sufficient dispersion of phono-

logical categories in acoustic space. DT hypotheses propose that category overlap

is avoided through less within-category dispersion and increased between-category

dispersion of mean values in the phonetic space. Modeling work on cue-weighting

in perception has shown that weighting cues based on how reliably they distinguish

phonological contrasts mirrors the cue-weighting patterns observed in perceptual data

(Toscano and McMurray, 2010). The model employed by Toscano and McMurray

(2010: 438) estimates the reliability of a phonetic dimesion with a ratio of mean

values to within-category variances. This type of model is supported by empirical

work on the relationship between within-category variability and cue-weighting in

perception. Clayards et al. (2008) showed that perceptual uncertainty increases with

within-category phonetic variability.

The results of this experiment provide empirical support from production for the

inclusion of within-category variance in cue-weighting models. A prediction that arises

from the reliability definition in Toscano and McMurray (2010) is that strength of

cue and relative amount of within-category variation should be inversely correlated.

The perception literature has shown lag time to be a higher weighted cue relative

to prevoicing for the phonological voicing constast in English (among others, Lisker

and Abramson (1964); Shultz et al. (2012)). In the results here, English speakers

exhibited more variation on the prevoicing dimension (a secondary perceptual cue to
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the stop contrast in English) relative to Hindi speakers, for whom prevoicing provides

a primary perceptual cue.

2.7 Conclusion

This experiment compared acoustics of stop production in Hindi and English.

Hindi and English speakers produced similar amounts of within-category variation in

voiceless lag time, but English speakers produced more variation in closure voicing.

This is in accordance with Contrast-Dependent Variation, my proposed revision of

Lindblom’s (1968) hypothesis: there should be less variation along a phonetic di-

mension in languages that realize more phonological contrasts along that dimension

relative to language that realize fewer contrasts on that dimensions (Table 2.5).

While it is well-established that production is variable in every language, these

results show that patterns and sources of variation are language-specific and relative

differences can be predicted. Despite physiological constraints, speakers can constrain

variation to preserve phonological contrast, as in Hindi. Speakers allow variation along

dimensions which do not threaten phonological contrast and this variation is can be

structured according to non-contrastive patterns.
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CHAPTER 3

BETWEEN-LANGUAGE CASE STUDY: SIBILANT
FRICATIVES IN POLISH AND FRENCH

3.1 Introduction

In Chapter 2, I examined differences in extent of within-category phonetic vari-

ation in stops between Hindi and English. The main finding was that speakers of

Hindi did show less variation than speakers of English, but only along the dimension

of closure voicing. This chapter extends the Contrast-Dependent Variation hypoth-

esis to another case study: sibilants in French and Polish. I present the results of

a speech production experiment matching the methods of the stop experiment as

closely as possible. The sibilant case is similar to the stop case in that one language

has more phonemes than the other and Contrast-Dependent Variation makes different

predictions from Lindblom (1986).

Under a direct implementation of Lindblom (1986), we might consider the sibilant

inventory to be the relevant space for comparison across the two languages. Polish has

more sibilant phonemes than French, therefore we would predict generally less within-

category variation in Polish. Contrast-Dependent Variation investigates individual

phonetic dimensions instead of inventory subsets. In this chapter, I examine variation

along two phonetic dimensions, spectral center of gravity and the second formant at

vowel onset. Although there are differences in the number of sibilant categories,

both languages use the COG and F2 dimensions as primary cues to phonological

contrasts. In French, F2 is relevant for vowel contrasts instead of sibilant contrasts.

However, as Contrast-Dependent Variation is implemented over phonetic dimensions
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Table 3.1. Consonant inventory of French (Fougeron and Smith, 1993)

Labial Dental Postalveolar Palatal Velar Uvular
Stop p b t d k g

Fricative f v s z S Z (x)
Nasal m n ñ (N)

Approximant l j w ö

instead of inventory subsets, there is still no difference in variation expected between

the two languages. The null results presented here clarify the implementation of

the Contrast-Dependent Variation predictions: the relevant “space” for evaluating

the hypothesis must be defined over phonetic dimensions rather than subsets of the

phonemic inventory to accurately capture the patterns of within-category variation

between-languages.

3.1.1 French background

French is described as having a voicing contrast in sibilants at two places of artic-

ulation (Fougeron and Smith, 1993). The consonant inventory of French is shown in

Figure 3.1. French /s z/ are typically described as having dental and apical articula-

tion and French /S Z/ are typically described as having palato-alveolar or postalveolar

articulation, although there is some disagreement about this in the literature. Dart

(1998) provides a review of the claims about sibilant place articulation in the lit-

erature on French. Dart (1998) also presented results from a comparative study of

coronal articulation in English and French. The group patterns for articulation of

French /s/ and /S/ were dental and postalveolar repectively. However, French speak-

ers did exhibit individual variation in place and apicality of [s]. In this chapter, I

follow Dart (1998) in referring to the two fricatives as dental and postalveolar.
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There have been relatively few studies examining perception of French fricatives by

adult listeners.1 McCasland (1983) used a fricative identification task to investigate

which cues contribute to fricative discrimination in French. They showed that while

both noise intensity and spectral cues were used to discriminate sibilants and non-

sibilants, spectral mean/center of gravity (COG) was mostly used to discriminate the

two sibilants. This is in line with work on English, which has a similar sibilant system

(Jongman et al., 1989; Jongman and Wade, 2007). Such work also shows that F2 of

following vowels covaries with sibilant category in English and can be understood as

a secondary cue to the sibilant contrast. These differences likely also occur in French.

Following McCasland (1983) and more recent work on sibilant assimilation in French

(Clayards et al., 2015), I assume COG to be the primary phonetic cue distinguishing

the dental sibilant from the postalveolar sibilant in French.

3.1.2 Polish background

Polish has been described as having contrastive coronal fricatives at three places

of articulation: alveolar, alveopalatal, and retroflex (Dogil, 1990). The consonant

inventory of Polish is shown in Table 3.2. Multiple studies (Nowak, 2006; Bukmaier

et al., 2014) report on a small number of speakers who show a spectral center of

gravity (COG) contrast between the dental fricative and the other two fricatives in

production. Several studies have reported little difference in spectral center of gravity

and other spectral measures of the frication noise (Żygis and Hamann, 2003; Buk-

maier and Harrington, 2016; Lee-Kim, 2011). Instead, the alveopalatal and retroflex

1There have been studies of fricative perception by French-acquiring infants (Cristià et al., 2011)
as well as studies investigating the perceptual effects of place assimilation in sibilant sequences
(Niebuhr et al., 2008, 2011; Clayards et al., 2015). These are not particularly relevant to the present
study as our participants were adults and all of the sibilants elicited were intervocalic.
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Table 3.2. Consonant inventory of Polish (Padgett and Żygis, 2007)

Labial Alveolar Alveopalatal Retroflex Palatal Velar Glottal

Stop p b t d k g

Fricative f v s z C ý ù ü x h

Affricate ts dz tC dý tù dü
Nasal m n ñ

Approximant l ô j w

fricatives have been described as being distinguished by the transition of the second

formant (F2) into the following vowel.2

When reporting on differences in vowel transitions, some quantify the vowel tran-

sition by the F2 difference at two vowel timepoints (Nowak, 2006; Chiu, 2009); some

quantify the transition by reporting the F2 value at vowel onset (Halle and Stevens,

1997; Kudela, 1968). Bukmaier and Harrington (2016) analyze onset of vowel tran-

sitions and show higher F2 values in the vowels following the alveopalatal, but these

values showed some overlap with vowels following the retroflex. They report F2 tra-

jectories between the onset and midpoint of the following vowel and argue that the

raised F2 values following the alveopalatal are evidence for a coarticulatory palatal-

izing influence.

In perception, Nowak (2006) showed that frication noise alone is sufficient to

categorize isolated fricatives for native speakers of Polish. However, it is possible

the speakers are not interpreting the isolated fricatives as speech and therefore have

enhanced discriminability. When the Polish fricatives were placed in a VCV context,

removal of the formant transitions into the following vowel made the alveopalatal and

retroflex fricatives confusable, indicating the primacy of F2 over COG as a cue to the

contrast between /C/ and /s ù/.

2Żygis and Hamann (2003) also report data from a second speaker who has a three-way COG
contrast between the sibilants.
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It has been argued that the Polish three-way sibilant contrast is diachronically

unstable. These arguments tend to center the retroflex as being particularly unstable

and predict that it will merge with either the alveopalatal or the dental Bukmaier

et al. (2014); Żygis et al. (2012). Mergers of both types have been reported in some

nonstandard dialects of Polish (Żygis et al., 2012; Nowak, 2006; Bukmaier et al.,

2014).

Nowak (2006) and Bukmaier et al. (2014) argue that the dental-retroflex merger

is more likely. The argument is based on: sensitivity to formant transitions in

acquisition and increased variability in retroflex articulation. Under the argument

that acquisition drives sound change (e.g. Stampe, 1972; Greenlee and Ohala, 1980;

Blevins, 2004), we anticipate the retroflex-alveopalatal contrast to be more stable

(as it is distinguished primarily by formant transitions) than the retroflex-dental or

alveopalatal-dental contrasts which are distinguished primarily by COG. This is be-

cause acquisition data show that children weigh formant transition information higher

than COG information in perception (Nittrouer and Studdert-Kennedy, 1987).

The retroflex is also argued to be particularly unstable due to increased articu-

latory variability relative to the other sibilants. Bukmaier et al. (2014) use EMA

to investigate tongue shapes of Polish speakers. They show that articulation of the

retroflex fricative varies more with speech rate than the other fricatives. At slower

speech rates, the retroflex displayed a sub-laminal production while at faster speech

rates the the tongue tip orientation was super-laminal. The other fricatives did not

show a comparable difference between speaking rates. This is potentially similar to

the retroflex in Mandarin Chinese. Hu (2008) also showed greater articulatory vari-

ability for /ù/ relative to the other sibilants in Mandarin. I return to the comparison

of Polish and Mandarin fricatives in Chapter 4 after the presentation of the Mandarin

data.
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While both Bukmaier et al. (2014) and Hu (2008) examine only articulatory vari-

ability and not acoustic variability, the increased articulatory variability could result

in increased acoustic variability. However, the Polish variation was analyzed across

two speech rate conditions. In the present study, there is no manipulation of speech

rate, so we do not necessarily expect greater variability for the retroflex in the present

results.

Although the contrast is argued to be diachronically unstable, many modern di-

alects of Polish maintain the three way contrast. Boersma and Hamann (2008) mod-

els a potential path of diachronic development of the contrast resulting in synchronic

stability. They show that when production and perception are modeled with bidirec-

tional phonetic cue constraints, dispersion is emergent without constraints demanding

dispersion. The non-dispersed inventories (exaggerated, confusable, or skewed con-

trasts) are not stable over time and move towards more dispersed configurations in

the diachronic simulations.

The phonetic cue constraints in Boersma and Hamann (2008) modulate between

the phonological surface form (the output of the phonological grammar) and the

realized phonetic form. The cue constraints are similar to faithfulness constraints

in standard OT in that they evaluate the relation between the phonological and

phonetic forms. The articulatory constraints are similar to markedness constraints

in that they only evaluate the phonetic form and not the relation between the two

forms. However, articulatory constraints are universally ranked because they reference

invariant articulatory difficulties which do not vary cross-linguistically.

In the Boersma and Hamann (2008) model, it is assumed that the learner has cor-

rect lexical representations but has not yet acquired pre-lexical phonetic perception.

With the use of a lexicon, the learner acquires the correct ranking of phonetic cue

constrains for their language using the Gradual Learning Algorithm (Boersma and

Hayes, 2001). This model is crucially bidirectional, meaning that the same constraints
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are used for perception and production. This is argued to be the main factor which

causes emergent dispersion over time.

They use Polish as an example case of a sibilant inventory which their model

predicts to have emergent dispersion across the three categories over time. However,

this result is not totally analogous to the actual phonetic facts about Polish sibilants.

While they accurately model the instability of Medieval Polish, the model does not

accurately reflect modern Polish sibilants. The model only considers dispersion across

one phonetic dimension, spectral center of gravity. Over time, the sibilants become

more dispersed across this single dimension.

This is presented as a desirable result, yet work on modern Polish (summarized

above) has shown that the sibilant contrast is instantiated over multiple phonetic di-

mensions. While some speakers have a three way COG sibilant contrast, many speak-

ers (including the ones in the present study) employ both the COG dimension and

the F2 dimension to make the full three way contrast. The use of additional phonetic

dimensions to achieve a dispersed inventory is not predicted by the model formulated

in Boersma and Hamann (2008), although a reformulation could potentially include

multiple dimensions. It is possible that a more complex model incorporating multiple

phonetic dimensions would more accurately simulate the actual development of Pol-

ish sibilants as contrasted over two phonetic dimensions. The results from Boersma

and Hamann (2008) show one way in which dispersion of mean acoustic values could

arise over time. Their model does not necessarily make any predictions about extent

of within-category variation, which is examined here.

In sum, the three way sibilant contrast in Polish is often argued to be diachroni-

cally unstable, yet modeling work shows the potential for stability through emergent

acoustic dispersion. However, as summarized above, recent work on modern Pol-

ish sibilants indicates that many speakers instantiate the three way sibilant contrast

across two dimensions of COG and F2, rather than dispersed along the COG di-
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mension. This is corroborated in perception; listeners use F2 as the primary cue

for distinguishing the alveopalatal sibilant from the other sibilants and COG as the

primary cue for distinguishing the dental sibilant from the other sibilants. In the

analysis here, I assume F2 to be the primary cue distinguishing the alveopalatal from

the retroflex and alveolar sibilants and COG to be the primary cue distinguishing the

dental from the alveopalatal and retroflex sibilants.

3.1.3 Predictions

Unlike previous literature in Dispersion Theory, this hypothesis is evaluated over

phonetic dimensions instead of phonological inventories. The relevant “space” or

“system” is a single phonetic dimension rather than a subset of the phonemic inven-

tory (see Table 2.5 for a comparison of this hypothesis with Lindblom (1986)). In

this chapter, I test the Contrast-Dependent Variation hypothesis over two phonetic

dimensions: COG and F2.

In the Hindi and English case from Chapter 2, the results showed more variation

in English, but only in voicing. This was not predicted by the direct implementation

of Lindblom (1986) where the stop inventory would likely be the relevant space.

This result is predicted under Contrast-Dependent Variation, which considers each

phonetic dimension as its own space. There is one contrast in both languages that

uses lag time as a primary cue, but there are no contrasts in English which use closure

voicing as a primary cue.

We can compare this case with the Polish and French sibilants. Under the most

direct implementation of Lindblom (1986), we would consider the sibilant inventory

to be the relevant space, and we would generally expect more variation in French

as French as fewer sibilant phonemes. Under Contrast-Dependent Variation, we only

expect more variation along the particular phonetic dimensions that realize fewer con-

trasts. Both languages employ the COG dimension as a primary cue to a phonological
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contrast. Therefore, we do not expect French speakers to exhibit more within-category

variation in COG relative to Polish speakers.

Considering the F2 dimension, previous work shows that Polish speakers use F2 at

vowel onset as a primary cue to the sibilant contrast (see summary in §3.1). However,

French speakers also utilize F2 as the primary cue to a phonological contrast, but in

French it is a vowel contrast, not a sibilant contrast.3 Contrast-Dependent Variation

then predicts no difference in F2 variation between the two languages, as both lan-

guages use F2 as the primary cue to a phonological contrast. While Lindblom (1986)

predicts a difference between these two languages, Contrast-Dependent Variation pre-

dicts no differences along these phonetic dimensions. I return to further discussion of

the implications for implementation of the Contrast-Dependent Variation hypothesis

in §3.5.

3.2 Experimental design

The methods were matched as closely as possible to the methods used in Chapter

2. Adaptation for French and Polish is described here.

3.2.1 Participants

The French speakers were undergraduate and graduate students at the University

of Massachusetts Amherst and surrounding colleges. All French speakers acquired

French natively in a predominantly French language environment before relocating to

the United States. Seven speakers of French were recorded. Exclusion was determined

based on the same criteria used in Experiment 1. Two speakers were excluded due

to frequent speech errors and one speaker was excluded due to frequent pauses before

3See Strange et al. (2007) for acoustic evidence showing the F2 vowel distinctions made by French
speakers and Gottfried and Beddor (1988) for perceptual evidence showing importance of F2.
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the stimulus (see Chapter 2 for additional details on the exclusion criteria). After

these exclusions, data from four speakers were analyzed.

The Polish speakers were all undergraduate students at the University of Mas-

sachusetts Amherst. All Polish speakers which were analyzed acquired Polish na-

tively in Poland before relocating to the United States. Six speakers of Polish were

recorded. One Polish speaker was excluded due to frequent speech errors, one Polish

speaker was excluded due to long pauses, and one Polish speaker was excluded due

to non-native speaker status. After these exclusions, data from three speakers were

analyzed.

3.2.2 Stimuli

The stimuli were words and non-words where the onset consonant was a sibilant

and the following vowel was one of [E a O]. This differs from the vowel contexts in

Experiment 1 due to allophony and neutralization in the [i a u] vowel contexts. Voiced

and voiceless sibilants were elicited, but only the voiceless sibilants are analyzed here.

The stimuli also differ from Chapter 2 in that they were also crossed over number of

syllables. Due to the rich inflectional system in Polish, the lexicon does not include

many monosyllabic words. Therefore, the stimuli sets were constructed to include

mono-, di-, and trisyllabic words in both languages.

The stimuli were also cross-classified according to word frequency. In French, the

Lexique online lexicon (New et al., 2001) was used for selecting stimuli. The words

were classified into two frequency categories, high and low. These were determined

by native speaker intuitions from a research assistant and verified by the data in

Lexique. In Polish, we used the Polimorf lexicon (Wolinski et al., 2012) for selecting

67



stimuli and verified native speaker frequency intuitions with orthographic frequency

data.4

All the stimuli were recorded in carrier phrases: “Powiedza la X od razu/obecnie”

(‘She said X right away/now’) in Polish and “Il dira X a lui/encore” (‘He will say X

to him/again’) in French. The second half of the carrier phrase was interchangeable

and both were used to help retain attention throughout the task. Polish stimuli were

crossed according to: sibilant (6 levels) × vowel context (3 levels) ×word status (3

levels: high frequency/low frequency/non-word) × number of syllables (3 levels). Due

to gaps in the Polish lexicon, not all factors could be fully crossed5 and the full stimuli

set included 126 stimuli. French stimuli were crossed according to: sibilant (4 levels)

× vowel context (3 levels) × word status (3 levels: high frequency/low frequency/non-

word) × number of syllables (3 levels) for a total of 108 distinct stimuli.6

3.2.3 Recording

Recording was done according to the same procedure used in Chapter 2. After

recording the participants completed a word frequency judgment task with the stimuli.

This was to ensure that the frequency data matched the intuitions of the participants.

The judgment task consisted of filling out a survey indicating degree of familiarity

with each word and took between 2-5 minutes to complete.

4Thanks to Gaja Jarosz for providing this data and offering helpful commentary on the experi-
mental design.

5Non-words were used, however, word status is still not fully crossed with all the other factors if
there are lexical gaps.

6The full stimuli list and other experimental materials are available in the public data archive
for this project at https://osf.io/2famr/.
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Table 3.3. Example stimuli

Language C1 vowel stimulus (IPA) type
French s E sEt word-hi
French s E sEZ word-low
French S E SEZ non-word
French s a saS word-hi
French S a Sak word-hi
French s a sad non-word
French S O SOp word-hi
French S O SOk word-low
French s O sOf non-word
Polish C E Cedem word-hi
Polish s E sEp word-low
Polish s E sEbovali non-word
Polish C a Cano word-low
Polish ù a ùal word-hi
Polish s a sad non-word
Polish ù O ùopa word-hi
Polish C O COrb word-low
Polish s O sOf non-word
Polish C O Corpany non-word
Polish ù O ùEf word-hi
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Figure 3.1. Dental and postalveolar sibilants in French. Left panel /sE/, right panel
/SE/.
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3.3 Analysis

The analysis used similar methods to the analysis in Chapter 2. The record-

ings from each speaker were first scanned by the author and research assistants for

speech errors. The recordings were forced aligned using the Montreal Forced Aligner

McAuliffe et al. (2017) by training new acoustic models on the data. A Praat script

based on DiCanio (2013) was used to extract spectral moments of the fricatives and

formant values of the following vowels. The formants were estimated using the Burg

method and extracted at 10 ms intervals throughout the duration of the vowel. For-

mant excursions greater than 1000 Hz over 10 ms were assumed to be tracking errors

and were excluded. This excluded a total of 30 observations across all speakers,

sibilants, and vowel contexts.

Example French tokens are given in Figure 3.1. There is a difference in spectral

center of gravity in the frication noise, with the dental sibilant exhibiting a much

higher COG relative to the postalveolar. Example Polish tokens are given in Figure

3.2. There is also a COG difference here between the dental sibilant and the other

two sibilants. The retroflex and the alveopalatal have similar centers of gravity, but

the second formant of the vowel is slightly higher following the alveopalatal than the

retroflex.
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Figure 3.2. Dental, alveopalatal, and retroflex sibilants in Polish. Left panel /sE/,
right panel /CE/, bottom panel /ùE/.
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3.4 Results

3.4.1 Center of gravity (COG)

The COG results corroborated the findings in the previous literature. In French,

speakers showed a COG distinction between both sibilants. Results from a represen-

tative French speaker are shown in Figure 3.3 (results from all speakers are given in

Appendix B.1). The figure contains data from one speaker and shows a density plot

with two distinct distributions representing the two sibilants categories of French.

This speaker has two distinct COG categories for /s/ and /S/ with little overlap be-

tween categories, a pattern observed in all speakers of French in this study. Speakers

differed in mean values of the sibilant categories but all showed the same pattern of

two distinct categories along the COG dimension.

In Polish, speakers showed a COG distinction between the dental sibilant and the

other two sibilants. Results from a representative Polish speaker are shown in Figure

3.4 (results from all speakers given in Appendix B.1). The figure is also a density

plot showing three distributions representing the three sibilant categories in Polish.

This speaker has a two-way contrast between the dental sibilant and the other two
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Figure 3.3. Voiceless sibilant COG contrast for a representative French speaker

sibilants, with a large degree of overlap in COG between /ù/ and /C/. All Polish

speakers recorded here displayed a similar pattern with a distinct COG distribution

for /s/ relative to the other two sibilants and more COG overlap between the /ù/

and /C/. Speakers differed in mean values, variance within categories, and amount of

overlap between the retroflex and alveopalatal.

3.4.2 Second formant of the following vowel (F2)

3.4.2.1 French

The French speakers did not produce noticeable differences in vowel formant tra-

jectories following the two sibilants. This is in accordance with the previous literature

describing the sibilants as primarily distinguished by COG. Data from a representa-

tive French speaker are shown in Figure 3.5 (data from all speakers given in Appendix

B.1). The figures show F2 values of the following vowel taken at 10ms intervals. In

each vowel context, there is no clear distinction between the F2 trajectories following

/s/ and the F2 trajectories following /S/, which was the case for all speakers of French.

While mean F2 values differed across speakers, all speakers displayed a similar pattern

of overlapping trajectories following the dental and postalveolar sibilant.
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Figure 3.4. Voiceless sibilant COG contrast for a representative Polish speaker

3.4.2.2 Polish

In accordance with the previous literature, Polish speakers produced differences

in F2 following the alveopalatal sibilant relative to the other sibilants (see §3.1 for

a review). However, the speakers here differ from the previous literature in that the

formant distinctions are not consistently in the slope of the formant transition; rather,

the onset F2 value is higher following the alveopalatal sibilant and these differences

persist throughout the duration of the vowel.

Vowel formant trajectories in Polish for tokens where [E] follows the sibilant are

shown in Figure 3.6 for two speakers. Speaker 3 is a male speaker and Speaker 5 is

a female speaker (data from all Polish speakers given in Appendix B.1). These two

speakers are representative of the group; all Polish speakers show higher F2 values

following the alveopalatal relative to the other sibilants and the difference continues

throughout the duration of [E]. The speakers differed in mean formant values and

within-category variance (which can be seen in the two speakers shown here), but

all speakers showed consistently higher F2 values following the alveopalatal sibilant

relative to the other sibilant in all vowel contexts.
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Figure 3.5. Formant trajectories from a representative French speaker. [O] context
(top panel), [a] context (middle panel), [E] context (bottom panel)
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Figure 3.6. F2 trajectories for [E] following /C/ and /ù/ in Polish.

There was more between-speaker variation in the other vowel contexts /O a/. Some

speakers showed rising transitions into /C/ with differences that did not continue until

the end of the vowel (much like what has been described in the previous literature),

while other speakers showed flat transitions where the differences were sustained

throughout the entire vowel duration.

For the hypothesis under investigation here, we are interested in which dimension

is the primary correlate of the contrast between the alveopalatal sibilant and the

other two sibilants. Although the exact shape of the formant transitions differs from

what has been found in the previous literature, these findings are in accordance with

the perceptual finding that the primary cue to the alveopalatal-retroflex contrast is

not in the spectral cues of the sibilant, but in the formants of the following vowel.

In the analyses that follow, I take F2 at vowel onset of the following vowel to be the

phonetic dimension of interest.

3.4.3 Comparative results

Under Lindblom’s (1986) hypothesis, we would expect more F2 variation in French

than in Polish if we consider the sibilant inventory to be the relevant system as Polish

has more sibilant phonemes than French. If we instead consider phonetic dimensions

as the relevant systems (as proposed here with Contrast-Dependent Variation), we
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do not expect any difference as both languages use the COG and F2 dimensions as

primary cues to phonological contrasts.

Following the same method as in Chapter 2 §2.4.2, I use a linear mixed effects

regression model where within-category within-speaker F2 variation is the dependent

variable. F2 values at 10ms into the following vowel were used for the variance

calculations. Under the hypothesis that predicts more variation in French, we expect

a significant main effect of language. If a difference in variation is only observed for

one of the sibilants, we could expect a significant effect of the language × sibilant

interaction.

For the purposes of this analysis, the dental sibilants in both languages are con-

sidered to be analogous and are given the same category label, /s/. The postalveolar

sibilant could be considered analogous to either the alveopalatal or the retroflex sibi-

lant in Polish. Here, I consider the French postalveolar to be comparable to the

Polish retroflex for the purposes of comparing within-category variance. The results

do not meaningfully change if the French postalveolar is instead compared to the

Polish alveopalatal.7 The results of the model are given in Table 3.4.

There is no main effect of language in the model. There is a significant main effect

of the alveopalatal sibilant, indicating that there is more within-category variation

for the alveopalatal sibilant relative to the intercept /s/ (although there is no French

analogue so this does not reflect an effect of language). There is also a significant main

effect for the vowel /E/, which indicates significantly less variation in /E/ relative to

the other vowels. Although there is no significant main effect of language there is a

significant effect of the interaction between language and the retroflex/postalveolar

categories. This indicates that there is a difference in within-category F2 variation

7It could be argued that the only phones which are comparable across the two languages are the
dental sibilants. There is no significant difference in extent of within-category variation between the
dental sibilant in Polish and the dental sibilant in French.
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Table 3.4. Fixed effect table for mixed effects linear regression in Polish and French.
Dependent variable: within-category within-speaker F2 variation. Predictors: lan-
guage, C (sibilant category), V (vowel context), C×language. Model intercept is
French /sa/.

Effects Estimate (se) t p
(Intercept) 8.66(2.75) 3.15 0.016∗

language-Polish 0.50(4.06) 0.12 0.910
C-/C/ 5.78(1.66) 3.49 0.001∗∗

C-/S ù/ 0.39(1.43) 0.27 0.786
V-/E/ −3.30(1.21) -2.74 0.009∗∗

V-/O/ 0.93(1.21) 0.77 0.45
language-Polish × C-/S ù/ 5.16(2.19) 2.36 0.024∗

between the retroflex sibilant in Polish and the postalveolar sibilant in French, but

no difference in variation between the dental sibilants in the two languages. However,

this effect is in opposite direction from what was predicted. The hypothesis predicts

less variation in Polish and the model shows significantly more variation in Polish /ù/

relative to French /S/.

3.5 Discussion

3.5.1 Clarifying hypothesis implementation

Under the Contrast-Dependent Variation hypothesis proposed here, we do not ex-

pect a difference in amount of within-category variation in COG or F2 between these

two languages. This is because both phonetic dimensions are employed as primary

cues to phonological contrasts in the context elicited in the experiment in both lan-

guages. In order to determine whether a given dimension is a cue to a phonological

contrast in production, we examine the values along that phonetic dimension to de-

termine whether they are predictive of phonological category membership. In other

words, we calculate the relative cue weight of that dimension.8

8This could be done using a variety of statistical methods. Linear discriminant analysis has
been used in the phonetics literature to quantify strength of a phonetic dimension as predictive of
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Figure 3.7. F2 trajectories across elicited vowel contexts for a representative French
speaker.

We know from previous literature (see §3.1 for a review) that both languages use

the COG dimension as a primary cue to sibilant contrasts: /s/ vs. /ù C/ in Polish and

/s/ vs. /S/ in French. F2 is additionally a cue to sibilant place of articulation in Polish

and distinguishes between /C/ vs. /s ù/. These findings are replicated in the data here.

Figures 3.3-3.6 show sibilant category separation along the COG dimension in both

languages and sibilant category separation along the F2 dimension in Polish.

While French does not use F2 to distinguish sibilants, F2 is used as a cue to

vowel contrasts. The figure in 3.7 shows F2 trajectories in three vowel contexts from

a representative French speaker. While there is some overlap between phonological

categories, this speaker produces higher F2 values for /a/ relative to /O/ and higher

F2 values for /E/ relative to /a/. All French speakers show this pattern, which is

expected based on the previous literature documenting F2 as a primary cue to vowel

backness (see §3.1 for further discussion of previous literature).

phonological category membership, or cue weight in production (e.g. Shultz et al., 2012). These
methods are discussed further in Chapter 4, where I employ LDA to determine cue weight for the
purposes of testing predictions of Contrast-Dependent Variation in Mandarin sibilants.
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I argue that the relevant “space” for considering the predictions of Contrast-

Dependent Variation is a phonetic dimension. In this chapter, the phonetic dimen-

sions under investigation are spectral center of gravity (time-normalized over the

middle 80% of the fricative) and the second formant of the following vowel measured

10ms after vowel onset. While F2 is often assumed to be a single phonetic dimension,

there are many ways of extracting information about F2. Following Yu (2017), I

consider a formant value at a temporally defined point of extraction to be a single

phonetic dimension belonging to a larger “family of parameters” (p.126).

When the F2 dimension is defined by F2 at a particular timepoint, it is not

necessary to specify an additional relevant unit in which strength of cue should be

considered (e.g. word, diphone, etc.). Rather, cue primacy for the purposes of eval-

uating Contrast-Dependent Variation is simply quantified by cue weight at the point

of measurement. Because the dimension under consideration here is F2 at 10ms into

the vowel, Contrast-Dependent Variation predicts no difference between Polish and

French as F2 (at that point) is predictive of phonological category distinctions in both

languages.

This result therefore only refers to the particular F2 dimension analyzed. It is

possible that other dimensions within the F2 family (F2 extracted at other timepoints,

or derived measurements such as transition slope, etc.) would show a difference

in within-category variation between these two languages. Whether (and in what

direction) we expect differences under Contrast-Dependent Variation would crucially

depend on the cue weights of the particular F2 dimension under consideration.

Contrast-Dependent Variation may predict a difference between the two languages

if the sibilants were instead in a word-final or pre-consonantal position. In that case,

French speakers would still use COG as a primary cue to the sibilant contrasts and

Polish speakers may employ COG as a primary cue distinguishing all three sibilant

contrasts (potentially suggested by the findings in Nowak, 2006). If the Polish speak-
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ers do in fact employ COG as the primary cue to all three sibilant contrasts in this

context, Contrast-Dependent Variation would predict less within-category COG vari-

ation in Polish relative to French.9

This case study provides another example of how defining the relevant “system”

according to phonetic dimensions (as proposed here) makes crucially different pre-

dictions from the original formuation of Lindblom (1986). Under the most direct

implementation of that hypothesis, we might understand the relevant system to be

the sibilant inventory. Therefore, we would expect generally more variation in French

relative to Polish because French has fewer sibilant phonemes. Even if the the use of

multiple phonetic dimensions is acknowledged, as long as the relevant space is defined

with inventory subsets, we would still predict a difference in amount of F2 variation

between French and Polish because Polish has more sibilant phonemes.

Because Contrast-Dependent Variation is formulated over phonetic dimensions

instead of phonological sub-inventories, it captures the fact that the F2 dimension

examined here is used as a primary cue to vowel contrasts in addition to sibilant

contrasts. Therefore, it does not predict a difference in within-category variation

between the two languages. The fact that F2 is used as a primary cue to vowel

contrasts is not captured by a direct implementation of Lindblom (1986) which would

not necessarily consider vowel contrasts when comparing within-category variation of

sibilant inventories.

As the main result in this chapter is null (no difference in within-category variation

between Polish and French), it is possible that we simply did not observe the difference

with the speakers analyzed here. However, this seems unlikely given that there was

a significant difference in amount of variation between Polish /ù/ and French /S/ in

9This would crucially depend on obtaining data from Polish speakers who have not merged the
sibilants and still make the three-way place distinction in this context. If the speakers only con-
trast two sibilants, Contrast-Dependent Variation predict no difference in within-category variation
between Polish and French. See §3.1 for additional discussion of sibilant mergers in Polish.
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the opposite direction which would be expected based on Lindblom (1986). The null

result between the dental sibilants also cannot necessarily be used to argue that the

amount of F2 variation in these languages should always same across all potential F2

dimensions, as the present analysis focuses only on F2 at 10ms into the vowel.

3.5.2 Retroflex variation in Polish

We did observe a significant difference in amount of variation between Polish /ù/

and French /S/ where the Polish speakers exhibited more within-category within-

speaker variation relative to the French speakers. There are multiple factors that

might affect retroflex variation which are not related to phonological contrast. First,

there is greater articulatory variability in retroflex articulation relative to the other

sibilants (Bukmaier et al., 2014). This could lead to more acoustic variability in the

retroflex sibilants generally, indicating that the effect of more variation in Polish is

not a language-specific effect but a retroflex-specific effect.10 However, given that the

task did not directly manipulate speech rate, it is unlikely that substantial variation

due to speech rate would be observed in the data here.

In addition, it is possible that sound change in progress is currently affecting the

realization of the retroflex sibilant for these speakers. As described in §3.1, there

are multiple dialects of Polish which merge the retroflex with either the dental or

alveopalatal. The retroflex is distinct from the dental sibilant on the COG dimen-

sion for all speakers in the data here. For some speakers, there is a large degree of

overlap in F2 values between the retroflex and alveopalatal, potentially indicating

a partial merger or merger in progress.11 A partial merger could result in higher

10The findings from Mandarin in Chapter 4 corroborate this and the similarities are discussed
further there.

11Tokens for each of the speakers were easily perceptually distinguished by two native speaker
consultants, which suggests the contrast is not completely merged for these speakers.
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amounts of within-category variation relative to a speaker with three distinct and

stable categories.

3.5.3 F2 and Polish sibilants

The results here showed not only differences in F2 onset/transition following the

alveopalatal sibilant, but differences in F2 that persist throughout the entire vowel.

This is not totally expected based on the previous literature which focuses on the

importance of formant transitions. For all speakers examined here, F2 values of [E]

are consistently raised following the alveopalatal sibilant relative to other instances

of /E/. This offers additional support for the conclusion of Bukmaier and Harrington

(2016), who show that the alveopalatal sibilant has a palatalizing influence on the

following vowel. However, the data here suggest that this coarticulatory influence is

not implemented identically across all speakers and vowels. More variation between-

speakers was observed in [O] and [a] with only some speakers producing raised F2

which persisted through the entire vowel and others producing differences only in

transition.

There was the most consistency across speakers in raising F2 following alveopalatal

sibilants in the mid front vowel [E]. It is possible that this could be due to more

coarticulation with the alveopalatal sibilant and the mid front vowel based on the

proximity of tongue gestures. It could be the case that there is a higher degree of

gestural overlap between the fricatives and the mid front vowel, resulting in more

consistency across speakers in the F2 patterns in /E/ relative to the other vowels.

The speakers in this study were all bilingual with English and living in the United

States at the time of recording. It seems unlikely that the English experience would

influence their Polish pronunciation such that they produce enhanced coarticulation

between the alveopalatal sibilant and following vowels. However, it remains a possi-

bility that the English environment has affected the acoustic correlates of the contrast
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and different results would be obtained from Polish speakers living in a predominantly

Polish language environment.

Nowak (2006) showed that removing the vocalic transitions made the alveopalatal

and retroflex sibilants confusable in perception. The results here suggest that the

entire vowel, not just the transitions into the sibilant, could play a role in perception.

Specifically, the consistent differences in formant values suggest that speakers may

be able to identify the preceding sibilant solely from later portions of the following

vowel. The differences across vowel also suggest that speakers may utilize different

cues (transition vs. steady-state F2) for perception of the contrast across different

vowels. A perception study would need to be done to further clarify how the vocalic

cues are used in sibilant perception.

As discussed in Section 3.1, diachronic mergers have been predicted for the Polish

sibilants (and observed in some nonstandard varieties). The F2 differences in [E]

following the two sibilants might be analyzed as the transfer of phonological contrast

to the vowel as part of a sibilant merger. Since the pattern is only consistent in [E], it

seems unlikely that these differences are indicative of transfer of contrast or merger

in progress. However, there was one speaker who produced near-identical formant

transitions for [O] and [a]. This speaker appears to have a partial merger of the

vocalic correlates for those vowels, but still distinguishes the sibilants with F2 values

in [E].

It remains a possibility that the Polish speakers could make additional distinctions

between the sibilants on other phonetic dimensions which are not investigated here.

For example, the speakers which seem to show a partial merger could contrast the

sibilants using formants other than F2 or other information in the fricative spectra.

The dimensions examined here (F2 and COG) are likely the most relevant based

on the existing literature on production and perception of Polish sibilants. However,
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there is additional information in the acoustic signal and investigating the involvement

of other dimensions in this contrast is an area for future work.

3.6 Conclusion

The results in this chapter demonstrate a crucial difference in Contrast-Dependent

Variation relative to Lindblom (1986). When using Contrast-Dependent Variation to

make predictions about relative differences in amount of variation, each phonetic di-

mension is considered to be a “system” for evaluating the prediction. This accounts for

the fact that while French does not use F2 as a primary cue to the sibilant contrasts,

it does use F2 as a primary cue to the following vowel contrasts. Contrast-Dependent

Variation therefore does not predict any difference between the two languages and no

difference was observed here.

The Polish data also raise questions about the nature of the sibilant contrast

for these speakers. Specifically, the results diverged from some previous work on

Polish sibilants in that the F2 differences following the alveopalatal sibilant frequently

persisted throughout the entire duration of the vowel. A similar pattern was observed

with the alveopalatal sibilant in Chapter 4 in Mandarin and I discuss both cases

further in §4.7.
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CHAPTER 4

WITHIN-LANGUAGE CASE STUDY: SIBILANT
FRICATIVES IN MANDARIN

4.1 Introduction

I have argued for a revision of Lindblom’s hypothesis which is operationalized over

phonetic dimensions instead of phonological inventories. This hypothesis was tested

by examining relative differences in extent of variation between-languages in Chapters

2-3. In this chapter, I formulate and test an extension of the Contrast-Dependent

Variation hypothesis that predicts differences in extent of variation between speakers

of the same language. Given a contrast where speakers differ in which phonetic

dimension serves as primary cue: We expect variation to emerge on dimension B for

speakers that primarily use dimension A for contrast (further specified in §4.3).

I test this hypothesis by examining sibilants in Mandarin, where speakers show

individual differences in how the sibilant contrasts are realized in phonetic space. Us-

ing similar experimental methodology to Chapter 2, I compare the degree of contrast

in spectral center of gravity (COG) with the amount of variation in the onset of the

second formant of the following vowel (F2). The main finding is that amount of F2

variation increases with degree of COG contrast across speakers. Implications for

perception and cue weighting are also discussed.
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Table 4.1. Consonant inventory of Mandarin (Duanmu, 2007)

Labial Alveolar Retroflex Alveopalatal Velar
Stop p ph t th k kh

Affricate ts tsh ús úsh tC tCh

Fricative f s ù C x
Nasal m n ñ (N)

Approximant l

4.2 Background

4.2.1 Mandarin sibilants

Mandarin has a rich fricative inventory with five places of articulation for fricatives

and affricates. Mandarin sibilants have been characterized as having a variety of

different places of articulation: dental, denti-alveolar, retroflex, laminal post-alveolar,

and apical post-alveolar. Chang and Shih (2015) provides a review of these claims;

some of this variation is likely attributable to data collection in different regions. In

this study, I use the terms dental, retroflex and alveopalatal (Ladefoged and Wu, 1984;

Duanmu, 2007; Chang and Shih, 2015). The existence of three sibilant categories and

variation in phonetic implementation across speakers is of importance for testing the

hypotheses here and the exact places of articulation are not crucial. The consonant

inventory of Mandarin is given in Table 4.1.

Acoustically, the three sibilants have sometimes been described as having a three-

way contrast in spectral center of gravity1 (COG; Lee, 1999; Lee-Kim, 2011; Kallay

and Holliday, 2012). Other studies have reported a two-way center of gravity con-

trast between the alveolar and the other two sibilants and an F2 onset contrast dis-

tinguishing the alveopalatal from the retroflex (Stevens et al., 2004). COG has also

been shown to be influenced by coarticulation with following vowels—COG of alve-

olar and retroflex sibilants is lower when followed by a rounded vowel and a smaller

1Spectral mean is a term also used in the literature and is synonymous with spectral center of
gravity. I use COG here.
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COG difference between the alveolar and retroflex has been found before /u/ relative

to other vowels (Jeng, 2006; Li, 2009). However, Hu (2008) examined articulation

and acoustics and found that speakers, not vowel context, were the major source of

variability in both articulation and acoustics. As I am focusing on the effect of COG,

I only examine the sibilants in Mandarin. Mandarin does have other fricatives for

which COG is likely a relevant cue in perception and production, however COG is

not expected to be a primary cue distinguishing non-sibilant fricatives (cf. Jongman

et al., 2000).

There is variation across regional dialects in realization of the sibilants. It is some-

times claimed that Taiwan Mandarin and other southern dialects lack the contrast

between the alveolar and the retroflex sibilant (Kubler, 1985; Duanmu, 2000). How-

ever, some work shows only a partial merger–while the contrast might be less distinct

in Taiwan Mandarin, various factors influence degree of contrast in the dialect. Vowel

context, sociolinguistic factors, formality of task, contrastive focus, and other types

of prosodic prominence have all been shown to enhance the alveolar-retroflex contrast

even for Taiwan speakers (Chung, 2006; Jeng, 2006; Li, 2009; Chuang and Fon, 2010;

Chang and Shih, 2012, 2015).

It is difficult to determine exactly how widespread the alveolar-retroflex merger

(or partial merger) is given that most of the work on the merger has focused only on

Taiwan Mandarin. The use of retroflexion also has socio-indexical value; it is associ-

ated with higher education levels and distinguishes standard Mandarin pronunciation

from “dialect-accented” Mandarin (Chang et al., 2013). Given the sociolinguistic sit-

uation, it is possible that many speakers who may have the merger in casual contexts

distinguish the sounds fully in formal and/or laboratory contexts.

In perception, several studies have found the primary cue for the retroflex-alveolar

contrast to be COG or the position of the lowest spectral prominence (Wu and Lin,

1989; Li, 2008; Chang, 2013). Li (2008) argues that COG is not sufficient to distin-
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guish the alveopalatal from the other two sibilants and the primary cue distinguish-

ing /C/ is instead F2 onset of the following vowel. There is also dialectal variation

in perception of the fricatives. Chang (2013) compared perception between Taiwan

Mandarin (alveolar-retroflex merger) and Beijing Mandarin (no merger) listeners and

found different perceptual boundaries for cross-dialectal perception.

There is an allophonic restriction on sibilants requiring [C] before high front vowels

(Duanmu, 2007; Lin, 2014). Because of this positional neutralization, some have

argued that the alveopalatals can be represented as underlying velars which become

palatalized before high vowels (Wu, 1994). This matches the diachronic evidence

which suggests that the alveopalatals arose in Mandarin due to velar palatalization

(Chao, 1965; Li, 1999). However, all sibilants contrast preceding the vowels [a] and [@u

u] synchronically (Duanmu, 2007; Li, 2008; Lin, 2014). Therefore, all three sibilants

are considered to be independent phonemes in many synchronic analyses (Li, 1999;

Cheng, 2011) and are assumed to be distinct phonological categories in this study.

In sum, the previous work on Mandarin sibilants has shown variation in how the

sibilant contrasts are realized phonetically among individual speakers and regional

dialects. Specifically, some acoustic studies report data from speakers with a three

way COG contrast between /s ù C/, while others report relatively more use of F2.

There is a also merger between the alveolar and retroflex which is common in some

regional dialects and often associated with lower social prestige.

4.2.2 Cue weighting in production

In this chapter, I investigate the relationship between degree of contrast on the

COG dimension and extent of within-category variation on the F2 dimension. I take

“degree of contrast” to mean the relative strength of a particular phonetic dimension
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in predicting phonological category. This is typically referred to as cue weight2 and

is often calculated using classification algorithms. In the data here, cue weights differ

across speakers such that not all speakers use the same dimension as the primary cue

to the sibilant contrasts.

Cue weight in production is typically measured using a classification algorithm

(e.g., discriminant analysis, logistic regression) which assigns relative weights to each

predictor dimension. Differences in cue weighting patterns for the same contrast have

been observed in production between native speakers of the same language (Shultz

et al., 2012), native and non-native speakers (Schertz et al., 2015), non-native speakers

with different levels of L2 exposure (Kong and Yoon, 2013), and speakers of a language

undergoing sound change (Bang et al., 2018; Coetzee et al., 2018; Kuang and Cui,

2018).

In this chapter, I investigate the question of whether cue weight of COG is pre-

dictive of variation in F2. Previous work on individual variation in cue weights has

found a related (but non-identical) correlation. Shultz et al. (2012) examined native

English stop production and found an inverse correlation between weight of VOT and

weight of F0 across speakers, indicating that speakers who used the VOT dimension

more contrastively used the F0 dimension less contrastively. The experiment in this

chapter builds on this work by examining the relationship between cue weight and

variability. Implications for cue weighting are further discussed in §4.7.

4.3 Predictions

In Table 4.2, I compare two instances of Contrast-Dependent Variation that rela-

tive differences in within-category phonetic variation can be predicted by differences in

phonological contrast implementation. The between-language prediction was tested

2Here I am referring only to cue weight in production. See Chapter 1 for additional discussion
of cue weighting in production vs. perception.
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Table 4.2. Between vs. within-language predictions of Contrast-Dependent Variation

Prediction Summary
Within-languages Given a phonological contrast with two phonetic

dimensions X and Y serving as cues and between-
speaker variation in which dimension is used as
the primary cue: we expect relatively more within-
category within-speaker variability in X for speak-
ers who show relatively more contrast on Y.

Between-languages For a given phonetic dimension X: we expect
less group-level within-speaker variability and less
between-speaker variability in languages which
employ X as a primary cue to a phonological con-
trast relative to languages which do not employ X
as a primary cue to a phonological contrast.

in Chapters 2-3, the within-language prediction is tested here. See Chapter 1 for

detailed definitions of relevant terms in these hypotheses.

In the case of the Mandarin sibilants, we consider a 3-way phonological contrast

between /s ù C/. While there are many phonetic dimensions potentially involved in

this contrast, previous literature points to COG and F2 as being the two dimensions

which are used as primary cues in production and perception. There is between-

speaker variation in how many sibilants are contrastive and which dimensions are

used as primary cues for each contrast (as discussed in §4.2). Given this situation,

we expect more variation on the dimension which is not the primary dimension for

contrast. Specifically, we expect relatively more variation in F2 in speakers who use

COG more to distinguish the sibilant contrasts (operationalized as cue weight in

production).

In Figure 4.1, I provide schematics showing the expected between-speaker differ-

ences predicted by Contrast-Dependent Variation. Speaker A (top panel) uses COG

as the primary cue for all three sibilant contrasts and exhibits more variation in the

F2 dimension relative to Speaker B (middle panel) who uses COG as the primary

cue for only two of the sibilant contrasts. If this pattern holds across speakers, we
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expect these between-speaker differences to amount to positive correlations between

F2 variation and COG contrast when compared across speakers. Schematic plots

showing the expected outcome are given in the bottom panel of Figure 4.1. If COG

contrast and F2 variation are related in the way predicted here, we should expect to

see a positive correlation between these values across speakers.

4.4 Experimental design

The methods were matched as closely as possible to the methods from Chapter 2

(described in detail in §2.3), with some necessary changes. All parts of the experiment

were conducted in Mandarin by native speaker research assistants.

4.4.1 Participants

All speakers were between the ages of 18-30 and recruited at The University of

Massachusetts Amherst and surrounding colleges. Most speakers were undergraduate

students. Participants were recruited through the Linguistics Department’s partic-

ipant recruitment system and through email advertisements to the Taiwanese and

Chinese Students’ Association. All recruitment materials (emails, sign-up info, etc.)

were distributed in Mandarin orthography.

19 Mandarin speakers were recorded. All speakers acquired Mandarin natively in

China and relocated to the United States for college or high school. One speaker was

excluded because they did not complete the task. One speaker was excluded due to

frequent speech errors (difficulty on more than 25% of stimuli). Additional noise from

a room fan and/or use of breathy voice prevented accurate formant tracking for six

speakers. After these exclusions, data from 11 speakers were fully analyzed.

4.4.2 Stimuli

The stimuli in Mandarin were words and rare words which we expect to behave

as non-words. Because the Mandarin writing system is logosyllabic, developing new
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Figure 4.1. Expected results under Contrast-Dependent Variation. Top panel:
Predicted speaker with relatively more COG contrast and more F2 variation. Middle
panel: Predicted speaker with less COG contrast and less F2 variation. Bottom panel:
Predicted relationship between COG contrast and F2 variation across speakers.
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Figure 4.2. An example prompt screen from the Mandarin experiment.

symbols for non-words presents several problems for participant reading. Instead

of attempting to design new and orthographically natural characters, we used rare

words with existing characters as “non-words”. Each stimulus was presented with the

simplified Mandarin orthographic character and the pinyin script, a romanized quasi-

phonemic orthographic system. With the pinyin presented alongside the logosyllabic

characters, the participants were able to pronounce the intended stimulus even if they

were unfamiliar with the word or Mandarin character. No participants self-reported

trouble reading either orthographic system. The stimuli were read in the carrier

phrase “wǒ bǎ X dú ȳI biàn” (‘I read X once’). An example prompt screen is shown

in Figure 4.2.

Mandarin stimuli were crossed according to the following factors: sibilant (3 levels:

s ù C) × vowel context (3 levels: i a u) × word status (3 levels: high frequency/low

frequency/non-word) × number of syllables (2 levels) × tone (4 levels). Word fre-

quency judgments were provided by two native speaker research assistants for the

initial frequency classifications. The participants were also given a frequency judg-

ment task to verify the research assistants’ intuitions. Not all factors could be fully

crossed: there is a phonotactic restriction that requires the alveopalatal sibilant be-
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Table 4.3. Example Mandarin stimuli

Language C vowel stimulus (IPA) stimulus (pinyin) tone frequency
Mandarin s a sá sa 4 low
Mandarin s a sā sa 1 high
Mandarin s a sá sa 4 rare
Mandarin ù a ùā sha 1 low
Mandarin ù a ùǎ sha 3 high
Mandarin C a Cā xia 1 low
Mandarin C a Cà xia 2 high
Mandarin C a Cá xia 4 rare
Mandarin s u sú su 4 rare
Mandarin s u sū su 1 high
Mandarin s u sǔ su 3 low
Mandarin ù u ùū shu 1 low
Mandarin ù u ùǔ shu 3 high
Mandarin ù u ùù shu 2 rare
Mandarin C u Cǔ xiu 3 low
Mandarin C u Cu xiū 1 high
Mandarin C a Cá xia 4 rare
Mandarin C i C̄i xi 1 low

Mandarin C i C̀i xi 2 high

Mandarin C i Ći xi 4 rare

fore [i], so the three sibilants are only fully crossed in the [a] and [u] contexts. Due

to limitations of the lexicon, some of the tones are not fully crossed with all other

factors. There were a total of 137 distinct sibilant stimuli.3 Additional stimuli with

word-initial affricates and stops were included as fillers. Word-initial non-sibilant

fricatives were not included in the task.

4.4.3 Recording

Recording was done according to the same procedure used in Chapter 2. The

only difference was the inclusion of additional stimuli in the task. Stop and affricate

tokens were elicited along with the voiceless sibilants, neither of which are analyzed

3The full stimuli list is available in the data archive for this project at https://osf.io/2famr/.
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Figure 4.3. Alveolar, retroflex, and alveopalatal sibilants in Mandarin. Left: /su/.
Right: /ùu/. Bottom: /Cu/.
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here. After recording the participants did the word frequency judgment task (as in

Chapter 3) to ensure the rare words were actually unknown to the participants.

4.4.4 Data processing and analysis

The data processing followed similar methods to those used in Chapters 2-3. The

recordings from each speaker were first scanned by the author and research assistants

for speech errors. The recordings were forced aligned using the Montreal Forced

Aligner McAuliffe et al. (2017) using a pretrained Mandarin model.4

A Praat script based on DiCanio (2013) was used to extract spectral moments

of the fricatives and formant values of the following vowels. The spectral moments

were time-averaged over the middle 60% of the fricative interval. The formants were

estimated using the Burg method and extracted at 10 ms intervals throughout the

duration of the vowel. Formant excursions greater than 1000 Hz over 10 ms were

4Available at https://montreal-forced-aligner.readthedocs.io/en/latest/pretrained models.html.
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assumed to be tracking errors and were excluded. This excluded a total of 28 obser-

vations across all speakers, sibilants, and vowel contexts.

Example tokens are shown in Figure 4.3. As expected based on the previous

literature, the alveolar sibilant exhibits a higher center of gravity relative to the other

two sibilants and the alveopalatal exhibits higher F2 relative to the other sibilants.

4.5 Results: Differences in contrast implementation

In accordance with the previous literature, we found differences across speakers

in use of COG vs. F2 in the sibilant contrast. In this section, I show example speak-

ers with different phonetic implementations of the sibilant contrast. Graphs for all

speakers are included in Appendix C.1.

4.5.1 Contrasts in COG

All speakers distinguished the alveolar sibilant from the other two sibilants in

COG. There was variation between-speakers in degree of COG overlap between the

retroflex and alveopalatal, with some speakers having almost total category overlap

and other speakers having little category overlap. In Figure 4.4, I show two example

speakers which appear to have three distinct sibilant categories on the COG dimen-

sion. Compare these with the example speakers shown in Figure 4.5, which appear

to distinguish only two of the sibilants in COG alone. Speaker m-02 has almost to-

tal overlap between the retroflex and alveopalatal sibilants in COG. Speaker m-15

appears to have two distinct categories between the alveolar and retroflex, while the

alveopalatal COG values overlap with both categories.

4.5.2 Contrasts in F2

There was consistency across speakers in use of higher F2 following the alveopalatal

sibilant. These differences consistently persist throughout the entire duration of the

following vowel in all vowel contexts. There was between-speaker variation in mean
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Figure 4.4. Example speakers: 3 distinct categories on COG dimension. COG in
Hz.
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Figure 4.5. Example speakers: 2 distinct categories on COG dimension. COG in
Hz.
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F2 values and within-category variance. There were also differences in group-level

within-speaker variation between the /a/ and /u/ contexts, with speakers exhibiting

generally more within-category variation in F2 for sibilants preceding /u/.

Representative speakers are shown in Figures 4.6-4.7. These speakers reflect the

consistent group pattern of higher F2 values throughout the duration of the vowel

following the alveopalatal sibilant and more within-speaker variation in /u/ relative

to /a/.

These results are similar to the results for Polish (Chapter 3), which exhibits a

similar sibilant contrast. The vowels following the alveopalatal sibilant in Polish also

exhibit raised F2 values, with differences frequently extending the full duration of

the vowel (though this differed somewhat across vowel contexts). The consistency of

this finding across these two languages suggests a general coarticulatory effect of the

alveopalatal sibilant. I return to this issue in §4.7.

4.5.3 Contrasts in the two dimensional space

The figures in 4.8-4.11 show the three sibilant contrasts in a two-dimensional

COGxF2 space for example speakers. These speakers are examples from the group

and are intended to reflect the between-speaker variation in contrast implementation

which is present in the data. Figures showing data from all speakers are given in

Appendix C.1.

The F2 values shown here are the F2 onset measurements at 10 ms into the

following vowel. Density plots are given along the x and y axes which show the

distributions of the tokens in the COG and F2 spaces respectively. Each dot in the

main panel represents the values from a single token in the two-dimensional space.

In Figure 4.8, I show a speaker who seems to have three distinct distributions

on the COG dimension and 2 distinct distributions on the F2 dimension. This is
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Figure 4.6. Example speakers: Formant trajectories of /a/ following the three
sibilants. F2 in Hz.
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Figure 4.7. Example speakers: Formant trajectories of /a/ following three sibilants.
F2 in Hz.
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Figure 4.8. Sibilant contrasts in phonetic space: Speaker 19. F2 and COG in Hz.

the speaker with greatest COG distinction between categories, although two other

speakers show a similar pattern with slightly more category overlap.

In Figure 4.9, we see a speaker who has two distinct distributions on both the

COG and F2 dimensions, but three distinct categories in the two dimensional space.

The speaker in Figure 4.10 also has two distinct distributions on both dimensions but

the alveopalatal shares similar COG values with the alveolar instead of the retroflex

as with speaker 02 in Figure 4.9. Several other speakers are similar in that they have

3 distinct categories in the two-dimensional space, but have higher degrees of overlap

one each individual dimension.

Out of 11 total speakers, two speakers appeared to merge the alveolar and retroflex

sibilants, despite none of the speakers being from regions typically associated with

the merger. A speaker with a potential merger is shown in Figure 4.11. This speaker

shows some separability between categories, but has a large degree of overlap between

the retroflex and the alveolar. Previous literature (see §4.2 for a review) suggests that

in case of the alveolar-retroflex merger, it is typical for phonologically retroflex tokens

to be realized as alveolar. However, the speaker in 4.11 seems to display the opposite
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Figure 4.9. Sibilant contrasts in phonetic space: Speaker 02. F2 and COG in Hz.

Figure 4.10. Sibilant contrasts in phonetic space: Speaker 06. F2 and COG in Hz.
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Figure 4.11. Sibilant contrasts in phonetic space: Speaker 08. F2 and COG in Hz.

pattern. This speaker exhibits more variation in the alveolar category, with lower

COG values overlapping with the retroflex distribution.

4.5.4 Interim discussion: Differences in contrast implementation

These results show individual differences in how the sibilant contrasts are instan-

tiated in the phonetic space of F2xCOG. There are no speakers which seem to use

the COG or F2 dimensions exclusively and all speakers consistently exhibit higher F2

values for the alveopalatal sibilant. Even speakers which show 3 distinct categories

along the COG dimension (as in Figure 4.8) still show relatively higher F2 values

following /C/.

Most speakers appear to have the 3-way contrast in this space, (only two speakers

appear to have a potential merger between /s/ and /ù/). It could be the case that

more of the speakers would show a merger in natural speech. Given the socio-indexical

value of /ù/ in Mandarin (see §4.2), it is possible that speakers who would have the

merger in natural speech produced retroflexion in the lab setting due to prescriptive

influence or as part of a hyperarticulation strategy. Further work would need to be

done to clarify the effect of the laboratory setting on retroflex production. I discuss
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the retroflex merger further in §4.7. For the purposes of this analysis, whether any

individual speaker has the merger (and is what context) is not of critical importance.

All speakers, including the ones who appear to merge /s ù/, can be analyzed and

compared using the same methodology.

4.6 Results: Effect of contrast on variability

4.6.1 Quantifying variables

In order to test the hypothesis that we expect relatively more F2 variation in

speakers who use the COG dimension more for contrast, we need to quantify both F2

variability and COG contrast. F2 variance was calculated within speaker, sibilant,

and vowel context. These variances were divided by the within category mean to

calculate the coefficient of variation (which is unitless). This was done to abstract over

differences in mean values and compare the variation across speakers and contexts.

4.6.1.1 Quantifying cue weight with LDA

COG contrast was quantified with Linear Discriminant Analysis (LDA; Fisher,

1936; Fukunaga, 1990; Duda et al., 2012). LDA is a classification method that relates

continuous predictor variables to category labels. Classification is achieved through

finding the linear combination of predictor features which best separates two cate-

gories.5 LDA assumes the category distributions are drawn from Gaussian distribu-

tions with a common covariance matrix.

The purpose of LDA is to find the linear function that can best discriminate

a set of categories (here the sibilant categories) given a set of predicting features

(here the acoustic measures of COG and F2). LDA is often used as a dimensionality

reduction technique to find linear combinations of existing features which maximally

5LDA therefore only determines linear separability. Similar discrimination algorithms can be
applied which utilize different functions for separability (e.g., quadratic discriminant analysis). The
methodology for using these would be similar though they are not directly examined here.

105



separate the relevant categories. This is common in the literature on automatic speech

recognition (see Haeb-Umbach and Ney, 1992; Viszlay et al., 2012, for a review).

There is a precedent in the phonetics literature of using LDA for the purpose

of determining cue weight in production (Shultz et al., 2012; Garellek and White,

2015; Schertz et al., 2015; Kim and Clayards, 2019, among others). There are many

classification and feature selection algorithms that could potentially be used to classify

phonetic observations into categories. However, I focus on LDA for the analysis here

as methodological consistency allows us to compare the present results to previous

results on cue weighting in production (see §4.7 for such comparisons). I provide

further discussion of alternative analyses in Appendix C.2.

Following the previous literature in phonetics, I use the coefficients of linear dis-

criminants as the measure of cue weight from LDA. The coefficients are regression

weights used to calculate the probability of category membership (James et al., 2013).

They indicate the contribution of each predictor variable to the discriminant function;

higher values indicate more contribution to the discriminant function.6 These weights

can be interpreted as indexing the strength of each individual predictor.

An LDA was performed in each vowel context for each speaker using COG as

the relevant predictor. In the results that follow, I take the coefficients of linear

discriminants to be the cue weights, the quantitative measure of contrast on the

COG dimension (see §4.6.1.1 for background on LDA methodology).

4.6.2 Correlations across speakers

In Figure 4.12, I show the COG coefficients and F2 variability values partitioned by

sibilant and vowel context. We can see differences in overall F2 variation according to

6The polarity of the coefficients will depend on the coding of factors. High positive values and low
negative values both indicate high contribution to the discriminant function. Coefficients in phonetics
are therefore sometimes presented with reverse polarity such that higher values always indicate more
weight regardless of how factors are coded (Shultz et al., 2012; Schertz et al., 2015).This is also done
here when appropriate.
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sibilant and vowel context by comparing the values along the y axes of the individual

panels. There does seem to be a positive relationship across speakers for [s] in both

vowel contexts. However, there is generally less variation in the [a] context relative

to the [u] context, which can also be seen in the raw formant trajectories (Figures

4.6-4.7. There is also one speaker, m-15, who exhibits low variability in F2, yet has

high COG coefficients.

The results for the alveopalatal sibilant also appear to show positive correlations in

both vowel contexts. Unlike in the alveolar and retroflex results, there does not seem

to be a general difference in amount of F2 variation between the two vowel contexts.

The results for the retroflex sibilant do appear to show a difference in amount of F2

variation between the vowel contexts but do not appear to show a positive correlation

between F2 variation and COG contrast.

4.6.3 Modeling F2 variation effects with regression

The hypothesis is that speakers who exhibit relatively more COG contrast should

also have relatively more F2 variation. In order to quantify the effect of COG contrast,

I use a linear mixed effects regression model to predict differences in F2 variation.

The dependent variable is F2 variation within-speaker, sibilant category, and vowel

context. The factors included in the model are: COG contrast (COGcoefs; as mea-

sured by the LDA coefficients), sibilant (C), vowel context (V), COG coefficients ×

sibilant interaction, and random intercepts for speaker.

This means that we expect a significant effect of the COG coefficients in the re-

gression output, which shows the effect of COG contrast in the intercept case (here

/ùa/). If the same relationship between COG contrast and F2 variation holds across

all the sibilants we expect non-significant interactions between the COG coefficients

and each sibilant. Significant interactions between the COG coefficients and an indi-
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Figure 4.12. COG coefficients and F2 variation across speakers: Alveolar sibilant
in top panel, alveopalatal sibilant in middle panel, retroflex sibilant in bottom panel.
F2 variation is the unitless coefficient of variation.
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Table 4.4. Fixed effects table for linear mixed effects regression. Dependent vari-
able: within-category within-vowel F2 variation, Predictors: COG coefficients, C, V,
C×COGcoefs interaction, random intercepts for speaker. Intercept is [ùa].

Fixed effects Estimate (se) t p
(Intercept) 15.98(5.65) 2.83 0.007 ∗∗

COGcoefs −2.66(3.03) -0.88 0.384
C-/s/ −16.87(7.15) -2.36 0.022∗

C-/C/ −26.32(7.15) -3.68 < 0.001∗∗∗

V-/u/ 12.23(1.75) 6.99 < 0.001∗∗∗

COGcoefs:C-/s/ 8.21(4.01) 2.05 0.046∗

COGcoefs:C-/C/ 10.83(4.01) 2.70 0.009∗∗

vidual sibilant indicates that the relationship between COG contrast and F2 variation

is different for that sibilant relative to the sibilant which is the intercept.

The output of the regression model is given in Table 4.4. The main effect of

the COG coefficients is non-significant, indicating no significant relationship between

COG contrast and F2 variability for intercept /ùa/. The significant effects of the

sibilants /s/ and /C/ indicate that there is a significant difference in amount of F2

variation relative to /ù/. The negative values of the estimates indicate that /s/

and /C/ exhibit significantly less within-category F2 variation relative to /ù/. The

significant effect of the vowel /u/ indicates that there is significantly more F2 variation

in the /u/ context relative to the /a/ context.

The crucial results are the interactions between the COG coefficients and the

individual sibilants. The significant effect of COGcoefs × /s/ indicates that the

relationship between COG contrast and F2 variation is significantly different for /s/

relative to /ù/. The positive estimate indicates that there is a positive relationship

between COG contrast and F2 variation for /s/, unlike for /ù/ where there is no

significant relationship. There is also a significant interaction for the COG coefficients

× /C/, indicating a positive relationship between COG contrast and F2 variation for

the alveopalatal as well. In sum, these results indicate that there is overall less within-
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category F2 variation in /s/ and /C/ relative to /ù/, and this variation increases with

COG cue weight for /s/ and /C/ but not /ù/.

4.7 Discussion

The results for the alveolar and alveopalatal sibilants were in accordance with the

within-language prediction of Contrast-Dependent Variation: speakers who exhibited

greater contrast on the COG dimension (as measured by the LDA coefficients) also

exhibited greater amounts of within-category variability on the F2 dimension. This

hypothesis is an extension of Lindblom’s (1986) hypothesis, which did not make any

predictions about differences in variation among speakers of the same language. As

I have implemented the between-language prediction to refer to phonetic dimensions

instead of phonological inventories, the hypothesis can extend to predict variation dif-

ferences among speakers with different phonetic realizations of the same phonological

contrast. In the case study presented here, variation on the F2 dimension increased

as contrast on the COG dimension increased. The effect was observed across speakers

except in the retroflex sibilant.

4.7.1 Lack of effect for the retroflex sibilant

F2 variation for the retroflex category did not correlate with COG contrast across

speakers. There are several reasons why this might be the case, as there are multi-

ple factors potentially influencing retroflex variation which are independent of COG

contrast and unique to the retroflex. The retroflex sibilant also behaved uniquely in

the Polish results in Chapter 4, where we observed more within-category variation

in retroflex production relative to the other sibilants in Polish and French. In the

Mandarin data, we did not observe more within-category variation in retroflex real-

ization generally, but we did observe more retroflex variation in the /u/ vowel context

relative to the other sibilants.
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First, the retroflex sibilant is involved in a merger in many dialects of Mandarin.

Most of the speakers in this study produced three distinct sibilant categories in the

F2xCOG space. This was expected as none of the speakers are from regions typically

associated with the merger. However, there were a few speakers that displayed a

good amount of overlap between the retroflex and the alveolar categories in F2xCOG

space. It is also possible that there are additional speakers who merge those categories

in natural speech (producing all retroflex/alveolar tokens as alveolar) but produced

retroflexion in the lab due to the social prestige associated with retroflexion. If

speakers realize /ù/ tokens as alveolar, even only in some contexts, this could result

in additional within-category variability for /ù/. Increased retroflex variability could

potentially obscure any relationship between COG contrast and F2 variation.

As in Polish, articulatory variability in retroflex production has been reported in

Mandarin. In an MRI study of Mandarin sibilant production, Proctor et al. (2012)

found more articulatory variation in retroflex production relative to the other sibi-

lants. It is possible that differences in articulation independently contributed to

within-category retroflex variation, leading to larger amounts of variation in general

thus obscuring any contrast effects.

There is an additional factor which might constrain retroflex variation as op-

posed to contributing additional variation. For many speakers the distribution of the

retroflex sibilant is unique in that it is bounded in the COGxF2 space. The retroflex

frequently contrasts with the alveolar in COG and the alveopalatal in F2. An exam-

ple speaker showing this configuration is shown in Figure 4.13. For the speaker in

this figure, producing more variation along the F2 dimension in the retroflex category

would result in increased category overlap with the alveopalatal. Similarly, producing

more variation along the COG dimension would result in increased category overlap

with the alveolar. It is possible that this constrains retroflex variation such that

variation does not increase as COG contrast increases.
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Figure 4.13. Example speaker with retroflex category bounded in phonetic space.
F2 and COG in Hz.

The location of the mean category values as in Figure 4.13 is similar to the dis-

tribution of the Polish sibilants in Chapter 3. In that data, the retroflex sibilant

often shared similar mean COG values with the alveopalatal and shared similar F2

values with the alveolar (the same configuration has been reported in previous work

on Polish as well, see Chapter 3 for a review).

In sum, there are multiple factors that might independently contribute to within-

category retroflex variation in addition to any phonological contrast effects. The

acoustic position of the retroflex sibilant relative to the other sibilant categories, the

potential involvement in a merger, and articulatory variability are all factors which

could be contributing to retroflex acoustic variation. Realization of the retroflex

sibilant generally exhibited more group-level within-speaker variability and did not

show any contrast effects. The findings for the retroflex sibilant in Polish were similar,

suggesting that these effects may not be language-specific and are likely more general

to retroflex sibilant production.
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4.7.2 F2 in Mandarin sibilants

In the data here, all speakers exhibited raised F2 values following the alveopalatal

sibilant which continued throughout the duration of the vowel. This is similar to what

was observed for vowels following Polish sibilants in Chapter 3, though the Mandarin

data show more consistency across speakers. This raises questions for perception.

Specifically, can speakers identify the preceding sibilant solely from the vocalic portion

or even just the vowel offset? The data here show good separability between the

alveopalatal and the other sibilants at vowel offset, but additional perception work

will need to be done to determine if listeners attend to this information and use it in

perception for the purposes of sibilant discrimination.

4.7.3 Cue weighting in production and perception

The relationship between contrast and variation has implications for general un-

derstanding of cue weighting. Coefficients from linear discriminant analysis have of-

ten been used as the metric of cue strength/weight in production (Shultz et al., 2012;

Garellek and White, 2015; Schertz et al., 2015; Kim and Clayards, 2019, among oth-

ers). Shultz et al. (2012) examined multiple cues in production of English stops and

found an inverse correlation between weight of VOT and weight of F0 (as determined

by discriminant analysis coefficients). This indicates a type of trading relationship be-

tween the two cues: the more contrastively a speaker uses VOT, the less contrastively

they use F0.

The hypothesis examined here is not that cue weight on the COG dimension cor-

relates with cue weight on the F2 dimension, but rather that cue weight on the COG

dimension correlates with variation on the F2 dimension. This is a related but non-

identical hypothesis. However, an inverse relationship between the two relevant cues

was also observed here, in line with the findings in Shultz et al. (2012). The results
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Figure 4.14. Inverse relationship between weight of COG and weight of F2 across
speakers.

are shown in Figure 4.14.7 In this data, speakers who use COG more contrastively

generally use F2 less contrastively and exhibited more variation in F2.

The results here build on the existing literature showing relationships between

cue weights in production. As in the Shultz et al. (2012) English data, the relative

strengths of the two cues are inversely correlated. The investigation here goes a step

further by examining the relationship between the COG coefficients and F2 variation.8

These results suggest it is possible to predict relative differences in extent of within-

category variation on one dimension based on the cue weights of another dimension.

If listeners know about this relationship, it could potentially aid in talker-specific

adaption in perception.

7The coefficients are presented with their z-score values, as is done in Shultz et al. (2012); Schertz
et al. (2015); Kim and Clayards (2019).

8Although it is intuitive that cue strength might correlate with within-category variation, this
is not necessarily the case. It is possible to have a low cue weight due to high overlap with little
within-category variation. For example, the values from two categories might be entirely overlapping
yet have very little within-category variation.
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Although correlations between relative cue weights have been observed in pro-

duction, these relationships do not seem to be predictive of relative cue weights in

perception. Multiple studies have examined the relationship between cue weights in

production and cue weights in perception for the same individuals and have found no

significant relationship (Schertz et al., 2015; Shultz et al., 2012; Kim and Clayards,

2019).Though they have found trends in the positive direction, potentially indicating

a weak relationship between cue weight in production and cue weight in perception.

Based on this, we would not expect the differences in COG contrast observed here to

necessarily be predictive of how the speakers would use COG vs. F2 in a perception

task.

4.7.4 Comparison with the between-language case studies

Both the within-language and between-language predictions of Contrast-Dependent

Variation test the same general hypothesis that phonological contrast constrains pos-

sible phonetic variation such that variation emerges in the absence of contrast. The

between-language prediction was tested with the Hindi/English and Polish/French

case studies and the within-language prediction was tested in Mandarin. The within-

language prediction examined in this chapter could also be tested in the other lan-

guages from the between-language case studies in future work.

For example, in English stops, I would predict that English speakers that have

higher cue weight for the primary cue of VOT would also have higher amounts of

within-category variation in secondary cues such as F0 or closure voicing. In fact,

results from existing work on cue weighting in English stops (Shultz et al., 2012)

(summarized in the previous section) already suggest that this might be the case.

Shultz found an inverse relationship between weight of VOT and weight of F0. In the

Mandarin data, I found a similar inverse relationship between weight of COG and

weight of F2 and also a positive relationship between weight of COG and variation in
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F2. If within-category variation is directly related to cue weight we would expect to

see a similar correlation between weight of VOT and variation of F0 in English stops

given the results here and the Shultz et al. (2012) findings.

4.8 Conclusion

In this chapter, I presented the results of a production study comparing F2 vari-

ation across Mandarin speakers. The hypothesis being tested is a prediction of the

Contrast-Dependent Variation hypothesis examined in Chapters 2-3. In the case of

the Mandarin sibilants, we expect relatively more variation along the F2 dimension

for speakers that use COG more for contrast, which was observed in the data here.

This result demonstrates a way in which patterns in extent of variation are predictable

across speakers, an additional way in which phonetic variation is structured and not

random. This has implications for Dispersion Theory, cue weighting, and perception.
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CHAPTER 5

EVALUATING METRICS FOR DISPERSION AND
SEPARABILITY

5.1 Introduction

This chapter1 examines metrics used for quantifying dispersion between phonologi-

cal categories, which are relevant methodologies for exploring the relationship between

contrast and variation. I propose a new metric for calculating acoustic dispersion,

which improves over the standard metric of mean-to-mean distance by incorporating

within-category variance information directly into the distance measurement.

The Contrast-Dependent Variation hypothesis tested in this dissertation is a revi-

sion of Lindblom’s (1986) hypothesis which is based in Dispersion Theory (DT). DT

makes predictions about the language-specific phonetic realization of phonemes (vari-

ation, spread, etc.) and about which phonological inventories should be typologically

common (see Chapter 1 for a detailed review). In this chapter, I examine the large-

scale typological predictions of DT and their application to consonant inventories,

using modeled data from Schwartz et al. (2012).

Previous work has found that the most common stop inventory is not the most

acoustically dispersed unless pharyngeals and epiglottals are excluded from the dis-

persion calculation (Schwartz et al., 2012). Although the new metric proposed here

does not recover DT predictions for stop inventories, it changes results, showing that

dispersion results depend on metric choice. The metric can be used in any acoustic

1Portions of this chapter have been published previously in Hauser (2017).
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space to include information about within-category variance when calculating disper-

sion.

5.2 Background

Dispersion Theory (Liljencrants and Lindblom, 1972; Schwartz et al., 1997) has

been used to account for typological trends in vowel inventories cross-linguistically.

Dispersion2 is typically calculated using triangle area between three mean or proto-

typical vowel points in the acoustic space of formant frequencies. Within-category

variance has been proposed to be a factor in Dispersion Theory (Lindblom, 1986) and

data exists showing it affects perception (Pisoni and Tash, 1974; McMurray et al.,

2002; Clarke and Luce, 2005; Clayards et al., 2008), yet conventional dispersion met-

rics do not take within-category variance into account. A new metric for calculating

dispersion is proposed here which incorporates within-category variance. As a test

case for these analyses, I examine place of articulation dispersion in stop inventories.

Schwartz et al. (2012) used modeled vocal tract articulatory-acoustic data to evalu-

ate acoustic dispersion in stop inventories. They used mean-to-mean distance between

acoustic categories in three-dimensional formant space < F1, F2, F3 > to calculate

dispersion of stop place of articulation (POA).3 With this metric, Schwartz et al.

found that the typologically common /bilabial coronal velar/4 configuration is not

the most dispersed three-stop inventory in the acoustic space of formant onset fre-

quencies (which are taken to be the primary perceptual cue for POA, see §5.2.2 for

2Dispersion Theory is used to reference the theory posited by Liljencrants and Lindblom (1972)
and other subsequent work which makes predictions about typological frequency of certain inven-
tories. This is distinct from dispersion itself which refers to a measure capturing how “spread out”
points or categories are and is not necessarily tied to the predictions of Dispersion Theory.

3They discuss the use of mean-to-mean distance, though no quantitative metric is provided.

4Effectively all languages with three-stop inventories (or stop inventories which use three places
of articulation plus voicing contrasts) have a /bilabial coronal velar/ configuration. 334 out of 336
languages with three-stop inventories in P-base (Mielke, 2008) are /bilabial coronal velar/.
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further discussion). Instead, the optimally dispersed configuration is the unattested

(not observed in any languages of the world) /coronal velar epi-pharyngeal/ inven-

tory. Schwartz et al. (2012) did not find that the most dispersed inventory in the

acoustic space of the first three formants is the most typologically common. This

is inconsistent with DT, which predicts that the most common inventories will be

acoustically dispersed to aid in perceptual distinction.

Schwartz et al. (2012) recover the DT result by proposing a restriction of the

phonetic space according to an evolutionary and articulatory Frame Content model

(MacNeilage, 1998) and their own Perception for Action Control Theory to exclude

pharyngeals and epiglottals. Perception for Action Control Theory claims that the

gestural content of speech constrains the perceptual representation. They consider

speech sounds to be “bundles” of articulatory and perceptual features, integrating

previously competing perceptual and motor theories.

This is combined with Frame Content Theory (MacNeilage, 1998), an evolution-

ary account of the emergence of language which hypothesizes that proto-consonants

emerged from the high mandible cycles of jaw closure and proto-vowels from the low

cycles. The theory also applies to child language acquisition as the child begins bab-

bling with similar mandible cycles. With progressive exploration of the vocal tract

and gradual enlargement of the stop space from a neutral vocal tract configuration,

/b d g/ emerges as the optimal stop system in terms of acoustic dispersion in the

space allowed by Frame-Content style exploration. Schwartz et al. model this type of

exploration using the same vocal tract model which generated the stop space. Pha-

ryngeals and epiglottals are excluded because their articulation involves a downward

movement of the mandible and is therefore not predicted to be a proto-stop by Frame

Content Theory.

However, while this argument provides an explanation for why /b d g/ may have

been evolutionarily prior to a system with pharyngeals and epiglottals, it does not
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explain why this configuration is so common presently. Pharyngeal and epiglottal

stops are attested and should not be harder to produce than other stops (Edmondson

et al., 2005), so we might expect that they would have become more ubiquitous over

time given that they create a dispersed triangle with /d/ and /g/.

In light of the Schwartz et al. results, there are three hypotheses which could

explain why the most dispersed stop inventory is not typologically common: (1)

Dispersion Theory does not apply to consonants, (2) the phonetic space in which dis-

persion was considered is not appropriate for stop POA, or (3) the metric by which

dispersion was calculated is not the most relevant for the data. The second hypothesis

was explored by Schwartz et al. (2012). In a phonetic space which does not include

pharyngeal or epiglottal stops, the /bilabial coronal velar/ inventory was the most

dispersed. In that analysis, Dispersion Theory did not apply to stop inventories with-

out manipulating the phonetic space when the conventional mean-to-mean distance

metric was used. This chapter tests the third hypothesis: a different metric for dis-

persion is needed to capture distributional information about the categories instead

of only their central tendencies.

5.2.1 Relevance of variance information

The acoustic categories of stop consonants examined in this chapter do not have

homogeneous distribution shapes or variances, and are therefore not well represented

only by their means. Collapsing acoustic categories to their means results in loss of im-

portant distributional information. While this dissertation does not directly examine

perception, DT was originally argued to have a perceptual explanation (Liljencrants

and Lindblom, 1972); acoustic categories should be dispersed to aid in perceptual

distinction. Therefore, the methods used to test the predictions of DT should be

informed by perceptual data as best as possible.
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Including distributional information in a dispersion metric instead of only category

means is perceptually relevant because within-category distributional information has

been shown to affect human speech perception. Clayards et al. (2008) provides exper-

imental data which shows that perceptual uncertainty increases with within-category

variation. There is also evidence that listeners are sensitive to within-category distri-

butional differences based on eye movements (McMurray et al., 2002), and boundary

marking between categories (Clarke and Luce, 2005). Given these findings, within-

category variation should be considered when calculating acoustic dispersion.

5.2.2 Formants as space for POA

Using the first three formants measured at the onset of the vowel is a reason-

able phonetic space for considering dispersion of stop categories. Stop articulation

is complex and various acoustic measures could potentially be used to classify stops

including burst spectrum and voice onset time, but there is experimental and com-

putational evidence suggesting the primacy of formant transitions as cues to place of

articulation.

Stevens and Blumstein (1978) argue that the onset spectrum of the CV syllable

provides a primary and invariant cue to POA. In Walley and Carrell (1983), adults

and children were asked to identify stops where the burst spectra and formant transi-

tions specified different places of articulation. Both adults and children consistently

used the formant transitions for place of articulation identification. This provides

perceptual evidence that formant transitions are primary cues to place of articulation

in stops. In computational work, Sussman et al. (1991) found that locus equations

effectively categorize stops by place of articulation. Locus equations use a regression

line fit between F2 onset and F2 vowel values following stop consonants; using a

model which employs locus equations can categorize stops by place with little error.
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This provides computational evidence for the importance of formant transitions in

the categorization of stops by place of articulation.

While these results provide evidence for the importance of formant transitions, the

values used in Schwartz et al. (2012) (and in the calculations here) are not transition

values, but onset formant values. These values do not necessarily convey information

about how the formant value changes over time. Therefore, they are not directly

analogous to the results discussed above. However, I do follow Schwartz et al. (2012)

in assuming these onset formant measurements to be an appropriate (though perhaps

non-optimal) space for considering dispersion of stop POA.

5.3 Methods

The data analyzed here are the same data generated by a vocal tract articulatory-

acoustic model in Schwartz et al. (2012).5 The vocal tract model is based on the

vocal tract model originally developed by Maeda (1990) which was designed from

drawings of over 500 hand drawn mid-sagittal contours obtained from the reading

of ten French sentences. The vocal tract was divided into a standard set of sections

from the lips to the glottis which defined possible places of articulation, shown in

Figure 5.1. The possible closures were distributed along the grid in Figure 5.1(a).

Figure 5.1(b) shows how the grid corresponds to places of articulation as reported by

Ladefoged and Maddieson (1996).

50,000 stop tokens were generated with possible occlusions at all places along

the vocal tract between lips and glottis in three vowel contexts [i a u]. Double

articulations and non-anatomically possible articulations were excluded. The tokens

were randomly sampled from the grid of the vocal tract in 5.1(a).

5Many thanks to Schwartz et al. for sharing this data and providing helpful commentary.
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Figure 5.1. Vocal tract model places of articulation from the model in Schwartz
et al. (2012)

The stop tokens were grouped according to the following places of articulation

(POA) on the vocal tract: bilabial, coronal, palatal, velar, uvular, epi-pharyngeal.6

After the stop burst, when the vocal tract is no longer occluded, formant structure

(resonances of the vocal tract) appears due to the production of the vowel. The first

three formants (F1, F2, F3) were measured at the beginning of the transition to the

vowel where the formant structure first appears after the occlusion. These formant

measurements served as the input for the calculations presented in the following

sections.

Figure 17 shows the data plotted in < F1, F2 > (top panel) and < F2, F3 >

(lower panel) space. The plots on the left display all of the data from the model,

coded by color and shape for POA. The plots on the right show only the means at

each POA. It is evident from this visualization that the variances and shapes of the

6The model produced separate categories for alveolar and dental, but the categories are collapsed
into one category coronal due to the rarity of contrastive dental place cross-linguistically. Only 3%
of languages contrast dental and alveolar place (Mielke, 2008). Epiglottal and pharyngeal stops are
also merged for similar reasons (Esling, 2003).

7All calculations were done in R (R Core Team, 2013) with plotting using the ggplot2 package
(Wickham, 2009).
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stop categories in this acoustic space are not homogeneous. Reducing these categories

to a single mean point obscures this distributional information, which is relevant for

evaluating dispersion.

5.4 Mean-to-mean acoustic distance

In this section, dispersion calculations are presented which utilize triangle area

and a definition of mean-to-mean distance based on Euclidean distance. Triangle

area in formant space is the conventional way of calculating dispersion in vowel spaces

(Andruski et al., 1999; Jacewicz et al., 2007). These results replicate the findings of

Schwartz et al. (2012) who used mean-to-mean distance in three-dimensional formant

space but did not provide a quantitative definition, so it can be assumed the standard

triangle area approach was used.

The data generated by the model include a cluster of points at each place of

articulation in three-dimensional < F1, F2, F3 > space. The mean of each cluster

was calculated and used to measure dispersion between every possible combination

of three place of articulation categories. Distance between two mean points in the

three-dimensional formant space was calculated using the equation in Figure 5.2, and
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Figure 5.2. Equation: Distance between two mean points (i, j) in < F1, F2, F3 >
space

dij =
√

(F1j − F1i)2 + (F2j − F2i)2 + (F3j − F3i)2

Figure 5.3. Equation: Area of a triangle as a dispersion measure

A =
√

s(s− dij)(s− djk)(s− dik) where s = (dij + djk + dik)/2

dispersion was measured using the area of the triangle made by three means as in the

equation in Figure 5.3. By definition, the larger the area of the triangle, the more

dispersed the three points are.

Dispersion was calculated for all possible combinations of three places of articu-

lation (20 total). Table 5.1 provides dispersion measures for the five most dispersed

three-stop inventories in the three dimensional < F1, F2, F3 > space in kHz2 and

ERB2. Use of both Hz and a perceptual unit to calculate dispersion is in accordance

with previous work on Dispersion Theory (Lindblom, 1986). Transformation into

either ERB or Bark slightly changes a few of the rankings, but the /bilabial coronal

velar/ inventory consistently ranks below several unattested inventories regardless of

unit of measure for formant frequencies in these calculations.

5.4.1 Interim discussion: Mean-to-mean acoustic distance

The measures in Table 5.1 support the conclusion of Schwartz et al. (2012) that the

/coronal velar epi-pharyngeal/ inventory is the most dispersed in this acoustic space

Table 5.1. Mean-to-mean distance dispersion results (ranked according to kHz2

results)

POA1 POA2 POA3 Dispersion (kHz2) Dispersion (ERB2)
1 coronal velar epi-pharyngeal 0.40 9.6
2 coronal velar uvular 0.30 6.2
3 palatal velar epi-pharyngeal 0.29 7.1
4 bilabial coronal epi-pharyngeal 0.23 11
5 bilabial coronal velar 0.23 4.2

...
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of < F1, F2, F3 >. The typologically common inventory, /bilabial coronal velar/, is

the fifth most dispersed inventory. All inventories which are better dispersed than

/bilabial coronal velar/ are unattested. Based on this mean-to-mean distance defini-

tion of dispersion in this acoustic space, Dispersion Theory does not make accurate

predictions regarding typological frequency.

But mean-to-mean distance may not be a good metric for understanding the dis-

persion of stop categories within this space, as discussed in §5.2. While it does capture

the central tendency of each category, mean-to-mean distance ignores the distribution

of all the tokens, reducing each category to a single data point. It could be the case

that the /coronal velar epi-pharyngeal/ inventory, while dispersed under the mean-

to-mean distance metric, is non-optimal because high amounts of within-category

variance reduce dispersion. Given consistent mean-to-mean distance between a set of

distributions, a set with tighter variances is more dispersed than a set of distributions

with greater variances and therefore more overlap. Incorporating covariance into a

dispersion metric better captures these distributional aspects of dispersion.

5.5 Incorporating variance: Jeffries-Matusita distance

To incorporate within-category distribution information, I propose a dispersion

metric which incorporates the Jeffries-Matusita (JM) distance (Bruzzone et al., 1995;

Kobayashi and Thomas, 1967; Jolad et al., 2012). This distance metric incorporates

covariance, the multidimensional analog of variance. The JM distance is a trans-

formation of the Bhattacharrya distance, which is often used as a class separability

measure in feature selection and pattern recognition literature (Choi and Lee, 2003).

Although these are standard measures in other literatures, neither distance metric

has been applied to calculate acoustic dispersion in speech sound inventories. The

JM distance transforms the Bhattacharrya distance into a fixed range [0,
√

2] instead

of an infinite range. Other distance metrics incorporating covariance were also used
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Figure 5.4. Equation: Jeffries-Matusita Distance (DJM) as a function of the Bhat-
tacharya Distance (DB) between two Gaussian distributions F,G with probability
density functions f, g

DJM(F,G) =
√

2(1− exp(−DB(F,G))) where DB(F,G) =
∫
x

√
f(x)g(x)dx

and obtained similar results, which suggests these results are due to the incorporation

of covariance generally, not the JM distance specifically.

The general equation for the JM distance (Bruzzone et al., 1995) is given in the

equation in Figure 5.4. The JM distance, unlike mean-to-mean distance, applies to

distributions8 rather than single points. Using the JM distance instead of mean-to-

mean distance as the base of the dispersion metric incorporates the geometric fact

that dispersed inventories have categories which have large between-category varia-

tion relative to the amount of within-category variation, and therefore less category

overlap. Dispersion is still calculated based on triangle area as in Equation 5.3 in

< F1, F2, F3 > space, but using JM distance measures instead of mean-to-mean

Euclidean distance measures.

The results from the JM distance calculations are given in Table 5.2, which shows a

selection of the 16 most dispersed three-stop inventories.9 These results are different

from the mean-to-mean distance calculations; the most dispersed inventory is now

/bilabial coronal epi-pharyngeal/, an inventory which is also unattested. There are

15 inventories which are more dispersed than the typologically common /bilabial

coronal velar/ inventory.

8This equation assumes Gaussian distributions. This is a standard assumption made for ease of
computation. Restructuring and transforming the data to better approximate Gaussian distributions
does not change results.

9These dispersion measures are unitless because the JM distance transforms the distances into
the fixed range [0,

√
2] which are then used to calculate triangle area, so the resulting dispersion

measures will always lie within the same fixed range regardless of the original unit of the formant
measurements.
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Table 5.2. JM distance dispersion results

POA1 POA2 POA3 Dispersion (from Hz) Dispersion (from ERB)
1 bilabial coronal epi-pharyngeal 0.865 0.865
2 bilabial palatal epi-pharyngeal 0.864 0.850
3 bilabial palatal uvular 0.864 0.850
...

14 coronal palatal uvular 0.782 0.789
15 bilabial coronal palatal 0.781 0.776
16 bilabial coronal velar 0.774 0.741

5.5.1 Interim discussion: JM distance

The use of the Jeffries-Matusita distance changed results, providing an example of

how choice of metric is crucial in work on dispersion of inventories. However, using the

Jeffries-Matusita distance for stop inventories did not improve results in favor of the

predictions of Dispersion Theory relative to the use of mean-to-mean distance despite

including covariance, additional perceptually relevant information. The stop system

which should be optimal given its typological frequency, /bilabial coronal velar/, is

not optimal in the results of this study in the < F1, F2, F3 > space with either metric

for calculating dispersion. In the results here, the epi-pharyngeal place is always in

the most dispersed inventory, likely because of the structure of the distributions in

the three dimensional formant space. Epi-pharyngeal consonants are distinct from all

the other places of articulation along the F1 dimension (this is visible in Figure 1).

One major difference in the JM distance results relative to the mean-to-mean

distance results is the lack of the velar place in any of the top five most dispersed

inventories. In the most dispersed inventory, bilabial replaced velar when the analysis

was done with JM distance. This is due to the high amounts of within-category

variation in the formants following the velar stops. This can be viewed in Figure 5.3.

The mean of the velar category is not representative of the entire distribution and

the high amounts of within-category variation result in higher measures of the JM

distance.
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Table 5.3. JM distance dispersion results: < F2, F3 > space

POA1 POA2 POA3 Dispersion (from Hz) Dispersion (from ERB)
1 coronal velar epi-pharyngeal 0.836 0.840
2 coronal palatal epi-pharyngeal 0.774 0.783
3 coronal palatal uvular 0.765 0.777
...
9 palatal velar epi-pharyngeal 0.741 0.764

10 bilabial coronal epi-pharyngeal 0.737 0.735
11 bilabial coronal velar 0.698 0.665

A conceivable change to the space would be to down-weight or exclude the F1 di-

mension entirely, on the premise that it must not be relevant for consonant perception

given the rarity of epi-pharyngeal stops cross-linguistically. However, considering only

an acoustic space of < F2, F3 > does not automatically make /bilabial coronal velar/

optimally dispersed. The /coronal velar epi-pharyngeal/ inventory is still the most

dispersed three-stop inventory even when the F1 dimension is excluded entirely. The

dispersion results in the < F2, F3 > space are provided in Table 5.3. The predicted

/bilabial coronal velar/ inventory is still not the most dispersed inventory, and all the

inventories which are better dispersed are either typologically rare or unattested.

Following Lindblom’s (1986) revision of Dispersion Theory, it could be the case

that the /bilabial coronal velar/ inventory is not maximally dispersed, but is suffi-

ciently dispersed. The /coronal velar epi-pharyngeal/ inventory could be the maxi-

mally dispersed inventory but the dispersion of /bilabial coronal velar/ is sufficient

and therefore optimal. If this were the case, inventories with similar dispersion mea-

sures to /bilabial coronal velar/ should also be typologically common but effectively

all other three-stop inventories are unattested. Drawing a distinction between suf-

ficient and maximal dispersion does not immediately explain why /bilabial coronal

velar/ is typologically common but not dispersed.
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5.6 Conclusion

These results showcase the methodological importance of choosing the appropriate

metric for quantifying acoustic dispersion. I argue that incorporating within-category

variance should be a primary consideration in work on acoustic dispersion. The most

dispersed inventory in < F1, F2, F3 > and < F2, F3 > space is not the most typo-

logically common inventory, but is instead an inventory which is unattested. Given

that the formant space is the appropriate phonetic space for stop place of articulation

(see §5.2) and the metric is suitable, these results suggest that the typological predic-

tions of Dispersion Theory do not apply to consonants as they apply to vowels. The

predictions of Dispersion Theory are not recovered by using a metric which incorpo-

rates distributional information. If Dispersion Theory does apply to stop inventories,

it must be the case that the phonetic space is altered in some way (e.g. Schwartz et

al. (2012)).

The new dispersion metric proposed here builds on the mean-to-mean distance

measure for dispersion by incorporating important perceptually relevant information

about category distributions. The metric is not specific to stop inventories and can be

used to calculate dispersion in any acoustic space. The results show that incorporating

within-category variance information into a dispersion metric does affect the outcome

of dispersion results. This is important to consider in work on Dispersion Theory,

regardless of the acoustic space under consideration.
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CHAPTER 6

CONCLUSION

6.1 Summary

This dissertation has investigated the effect of phonological contrast on phonetic

variation in multiple case studies. The hypotheses here broadly propose that variation

emerges in the absence of contrast, resulting in predictable language- and speaker-

specific differences in extent of phonetic variation. This roughly follows a prediction of

Dispersion Theory (Liljencrants and Lindblom, 1972; Lindblom, 1986), which states

that phonological systems with more contrasts should exhibit less phonetic variation

relative to systems with fewer contrasts. However, the results here have supported

a revision of this prediction which refers to specific phonetic dimensions rather than

phonological systems/inventories.

The first test case presented in Chapter 2 examined stops consonants in Hindi

and English. Hindi has four stop contrasts at each place of articulation, while En-

glish has two. Contrast-Dependent Variation predicts less variation in Hindi, but

only along the particular phonetic dimensions which realize additional phonological

contrasts relative to English. In the results of the experimental task, both languages

showed similar amounts of group level within-speaker variation, but English speakers

exhibited more group level within- and between-speaker variation in closure voicing.

This is in accordance with Contrast-Dependent Variation as the voicing dimension is

employed as the primary cue to phonological contrasts in Hindi but not in English.

The second test case presented in Chapter 3 examined sibilant fricatives in Polish

and French. Polish has three voiceless sibilants which contrast in place of articulation,

131



while French has two. Contrast-Dependent Variation predicts no difference in amount

of within-category variation in COG or F2 in these two languages. This is because

both phonetic dimensions serve as primary cues to phonological contrasts in the

context elicited in the experiment. This differs from the predictions of Lindblom

(1986). A direct implementation of that hypothesis would likely consider the sibilant

inventory as the relevant “system” and predict more variation in French because

Polish has more sibilant phonemes. This case study provides a concrete example

of how Contrast-Dependent Variation differs from Lindblom (1986) by considering

phonetic dimensions rather than subsets of phonological inventories.

The final test case presented in Chapter 4 is a within-language case study ex-

amining differences in extent of variation in production of sibilant fricatives across

speakers in Mandarin. The hypothesis is an extension of the between-language hy-

pothesis which predicts relative differences in extent of variation between speakers

who use different phonetic dimensions to realize the same phonological contrast.

The last chapter explores methods for quantifying contrast through metrics of

dispersion and separability. A new metric for calculating acoustic dispersion is pro-

posed and is compared to the traditional mean-to-mean distance using modeled stop

inventory data. The results show that choice of metric changes results, although the

new metric does not recover the cross-linguistic typological predictions of Dispersion

Theory for stop inventories.

6.2 Contributions and implications

6.2.1 Dispersion Theory

This dissertation contributes to the literature on Dispersion Theory (DT) by ex-

plicitly testing one of the hypotheses in Lindblom (1986): that phonemes in larger

inventories should show relatively less within-category variation than phonemes in

smaller inventories. In its original formulation, this hypothesis only refers to vowel
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inventories, yet it is sometimes assumed to be general. I have explicitly tested this

hypothesis and proposed a revision (Contrast-Dependent Variation) which is more

explicit and domain general.

The work here also extends the predictions of DT to consonant inventories, fol-

lowing Boersma and Hamann (2008); Schwartz et al. (2012). The previous work has

focused solely on dispersion of the central tendencies of categories in acoustic space.

This dissertation considers the related and often assumed prediction of DT, that

within-category variation should correlate with size of inventory. My proposal refines

this, making the hypothesis about phonetic dimensions instead of phonemes. I argue

that the prediction must be operationalized over phonetic dimensions rather than

(potentially ad hoc) subsets of phonological inventories. Under this reformulation,

we do expect relatively more variation in smaller inventories but only along the spe-

cific phonetic dimensions that realize additional contrasts. Because this hypothesis

is domain general, it can potentially be applied to vowel inventories as well in future

work.

6.2.2 Structure in phonetic variation

There is a large body of work showing that variation in phonetic realization is

structured and not entirely random (see Chapter 1 for a review). The results in this

dissertation build on those findings by showing additional ways in which phonetic

variation in systematic. Previous work mostly focuses on explaining fluctuations in

acoustic values according to various non-contrastive conditioning factors. My findings

not only show structure in phonetic variation, they additionally show systematicity

in extent of variation across languages and speakers.
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6.3 Remaining questions and future work

In order to further refine these hypotheses, additional test cases are necessary.

There are two particular stop cases which seem to be likely counterexamples for the

between-language prediction of Contrast-Dependent Variation. As I have formulated

the hypothesis here, the only factors contributing to relative differences in within-

category variation is the presence of phonological contrast on particular phonetic

dimensions in the language. This may be too simplistic to generalize to all cases and

more work needs to be done to further clarify the hypothesis.

Given the findings that patterns of variation are language- and speaker-specific,

we might also ask how malleable these patterns are across different speaking contexts.

Specifically, do speakers adjust the extent of variation in production in the direction of

recently heard speech? These questions could be addressed by employing the phonetic

imitation paradigm which uses unconscious human imitative tendencies to examine

the link between speech perception and production. Foundational work using this

methodology has shown that speakers do not imitate phonetic values that approach

a phonological category boundary (Nielsen, 2011). Before examining imitation of

variation, additional testing needs to be done to remove a potential confound of

hypoarticulation, which is present in previous work. This will clarify the effect before

generalizing to different languages and examining imitation of variation.

The findings in this dissertation also have implications for L2 acquisition and non-

native speech production. Recent work on non-native speech production has shown

that extent of phonetic variability is specific to the L1/L2 pairing (Vaughn et al.,

2018). It is not the case that non-native speakers are always more variable than

native speakers. Rather, the relative differences between variation in native and non-

native speech seem to be specific to the phonetic dimension under consideration and

the L1/L2 pairing.
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Vaughn et al. (2018) examines patterns of variability in vowels and stops pro-

duced by native Japanese speakers and L2 Japanese speakers with L1s English and

Mandarin. They did not observe significant differences in the amount of variabil-

ity in Japanese vowel formants between L2 Japanese L1 Mandarin speakers or L2

Japanese L1 English speakers relative to L1 Japanese speakers. However, there were

non-significant trends of less variation for L1 Mandarin speakers and more variation

for L1 English speakers. In stop productions, L2 Japanese L1 Mandarin speakers

showed more variability in VOT of voiceless stops relative to L1 Japanese speakers,

but less variability in VOT of voiced stops. L2 Japanese L1 English speakers did

not differ from the L1 Japanese speakers. They also found no differences in means or

variability in non-native speech between learners with different amounts of instruction

and exposure to Japanese.

These findings suggest that additional properties of the L1 (other than mean val-

ues) may affect L2 production. Vaughn et al. (2018) offer a potential explanation for

their findings by invoking the Dispersion Theory hypothesis from Lindblom (1986)

examined here. If native speakers produce different amounts of within-category varia-

tion due to different inventory sizes, it could be the case that native speakers transfer

that phonetic variability into their L2 production. This would result in the differences

observed by Vaughn et al. (2018). However, more work would need to be done to

clarify this hypothesis.

Vaughn et al. suggest that differences in L1 variability may play a role in deter-

mining variability in L2 production. The results in this dissertation are relevant to

these conclusions as they provide evidence for language-specific L1 variability pat-

terns. The Vaughn et al. (2018) results could be paired with Contrast-Dependent

Variation for the purposes of further developing theories of phonetic transfer in L2

speech to additionally account for phonetic variability. More work will need to be

done to determine whether incorporating variation into existing theories of phonetic
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transfer is warranted. If native language variability patterns transfer in L2 acquisi-

tion, the hypotheses proposed here make predictions not only about language-specific

variability, but also about variability patterns in non-native speech.

136



APPENDIX A

HINDI AND ENGLISH STOPS

A.1 Full output of regression models
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Table A.1. English full model with word as random intercept and logit link for beta
regression. Call: voicing percent ∼ voicing + V × speaker + place × V + place ×
speaker + closure duration + block + (1|word). Model intercept is speaker e02 block
1 voiced coronal /a/ context.

Estimate (se) z p
(Intercept) 2.45 ( 0.26 ) 9.38 < 0.001∗∗∗

voicing-voiceless -1.57 ( 0.08 ) -18.52 < 0.001∗∗∗

V-/i/ 0.63 ( 0.23 ) 2.70 0.007∗∗

V-/u/ -0.42 ( 0.25 ) -1.70 0.089
speaker-e03 0.55 ( 0.23 ) 2.37 0.018∗

speaker-e04 -0.68 ( 0.23 ) -2.97 0.003∗∗

speaker-e06 -1.05 ( 0.23 ) -4.59 < 0.001∗∗∗

speaker-e07 -1.95 ( 0.24 ) -8.28 < 0.001∗∗∗

speaker-e09 -1.92 ( 0.24 ) -8.14 < 0.001∗∗∗

place-labial -0.51 ( 0.24 ) -2.15 0.032∗

place-velar -0.22 ( 0.23 ) -0.95 0.344
closure duration -10.08 ( 1.23 ) -8.18 < 0.001∗∗∗

block 2 0.06 ( 0.08 ) 0.72 0.471
block 3 -0.05 ( 0.08 ) -0.56 0.573
block 4 0.05 ( 0.08 ) 0.63 0.530

V-/i/:speaker-e03 -0.45 ( 0.25 ) -1.79 0.074
V-/u/:speaker-e03 0.82 ( 0.26 ) 3.22 0.001∗∗

V-/i/:speaker-e04 -0.06 ( 0.25 ) -0.23 0.820
V-/u/:speaker-e04 1.38 ( 0.26 ) 5.36 < 0.001∗∗∗

V-/i/:speaker-e06 -0.54 ( 0.26 ) -2.08 0.037∗

V-/u/:speaker-e06 0.50 ( 0.26 ) 1.90 0.058
V-/i/:speaker-e07 0.08 ( 0.25 ) 0.32 0.750
V-/u/:speaker-e07 1.00 ( 0.26 ) 3.81 < 0.001∗∗∗

V-/i/:speaker-e09 -0.11 ( 0.26 ) -0.42 0.676
V-/u/:speaker-e09 0.84 ( 0.27 ) 3.15 0.002∗∗

V-/i/:place-labial -0.05 ( 0.22 ) -0.22 0.829
V-/u/:place-labial 0.09 ( 0.24 ) 0.36 0.719
V-/i/:place-velar 0.26 ( 0.22 ) 1.18 0.239
V-/u/:place-velar 0.28 ( 0.23 ) 1.22 0.221

speaker-e03:place-labial 0.51 ( 0.26 ) 1.99 0.046∗

speaker-e04:place-labial 0.13 ( 0.26 ) 0.49 0.627
speaker-e06:place-labial 0.37 ( 0.27 ) 1.38 0.167
speaker-e07:place-labial 0.70 ( 0.26 ) 2.67 0.008∗∗

speaker-e09:place-labial 0.51 ( 0.27 ) 1.92 0.055
speaker-e03:place-velar -0.25 ( 0.25 ) -1.00 0.319
speaker-e04:place-velar -0.70 ( 0.25 ) -2.77 0.006∗∗

speaker-e06:place-velar -0.52 ( 0.26 ) -1.97 0.049∗

speaker-e07:place-velar 0.01 ( 0.26 ) 0.04 0.970
speaker-e09:place-velar -0.12 ( 0.26 ) -0.44 0.662

Num. obs 1561
Num. groups: word 61

Var. word (intercept) 0.034
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Table A.2. Hindi full model with word as random intercept and logit link for beta
regression. Call: voicing percent ∼ voicing + V × speaker + place × V + place ×
speaker + closure duration + block + (1|word). Model intercept in speaker h09 block
1 voiced coronal /a/ context.

Estimate (se) z p
(Intercept) 3.83 ( 0.22 ) 17.68 < 0.001∗∗∗

voicing-voiceless -4.94 ( 0.09 ) -55.55 < 0.001∗∗∗

V-/i/ 0.08 ( 0.19 ) 0.40 0.692
V-/u/ 0.11 ( 0.19 ) 0.57 0.565

speaker-h11 0.29 ( 0.20 ) 1.45 0.148
speaker-h13 -0.01 ( 0.20 ) -0.06 0.953
speaker-h14 0.00 ( 0.20 ) -0.02 0.980
speaker-h15 0.09 ( 0.21 ) 0.43 0.667
speaker-h16 -0.06 ( 0.21 ) -0.26 0.792
place-labial 0.16 ( 0.23 ) 0.69 0.487
place-velar 0.06 ( 0.19 ) 0.29 0.773

closure duration -2.84 ( 0.68 ) -4.20 < 0.001∗∗∗

block 2 -0.14 ( 0.08 ) -1.75 0.079∗

block 3 -0.20 ( 0.08 ) -2.40 0.016∗

block 4 -0.21 ( 0.08 ) -2.53 0.012∗

V-/i/:speaker-h11 -0.03 ( 0.25 ) -0.12 0.903
V-/u/:speaker-h11 -0.27 ( 0.24 ) -1.11 0.265
V-/i/:speaker-h13 0.06 ( 0.25 ) 0.24 0.811
V-/u/:speaker-h13 0.11 ( 0.25 ) 0.44 0.659
V-/i/:speaker-h14 -0.12 ( 0.24 ) -0.48 0.632
V-/u/:speaker-h14 0.07 ( 0.24 ) 0.27 0.786
V-/i/:speaker-h15 -0.07 ( 0.24 ) -0.29 0.773
V-/u/:speaker-h15 0.03 ( 0.24 ) 0.11 0.910
V-/i/:speaker-h16 0.29 ( 0.25 ) 1.20 0.231
V-/u/:speaker-h16 0.07 ( 0.24 ) 0.30 0.763
V-/i/:place-labial -0.17 ( 0.19 ) -0.89 0.373
V-/u/:place-labial -0.05 ( 0.18 ) -0.27 0.786
V-/i/:place-velar 0.13 ( 0.16 ) 0.81 0.420
V-/u/:place-velar -0.06 ( 0.16 ) -0.40 0.691

speaker-h11:place-labial -0.17 ( 0.26 ) -0.63 0.526
speaker-h13:place-labial -0.16 ( 0.28 ) -0.57 0.572
speaker-h14:place-labial -0.26 ( 0.28 ) -0.95 0.341
speaker-h15:place-labial 0.00 ( 0.27 ) 0.01 0.996
speaker-h16:place-labial 0.01 ( 0.27 ) 0.05 0.961
speaker-h11:place-velar 0.09 ( 0.23 ) 0.40 0.692
speaker-h13:place-velar -0.25 ( 0.24 ) -1.06 0.290
speaker-h14:place-velar -0.19 ( 0.23 ) -0.84 0.404
speaker-h15:place-velar -0.20 ( 0.22 ) -0.90 0.366
speaker-h16:place-velar -0.29 ( 0.23 ) -1.28 0.202

Num. obs 1455
Num. groups: word 69

Var. word (intercept) 1.34e-09
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A.2 Forced alignment in Hindi

Both the English and Hindi data in Chapter 2 were forced aligned using the Mon-

treal Forced Aligner (MFA McAuliffe et al., 2017). MFA is an open-source software

which can be downloaded at https://montreal-forced-aligner.readthedocs.io/. The

aligner requires an acoustic model, a transcript, and a pronunciation dictionary as

input. The output is a set of textgrids which correspond to the audio files and have

two tiers: one for word boundaries and one for phone boundaries.

The English data were aligned using the pretrained acoustic model and pronun-

ciation dictionary for English (non-word stimuli were manually added to the pronun-

ciation dictionary), both of which are available at the above site. The transcript was

automatically generated from the list of experimental stimuli.

There was no pretrained acoustic model for Hindi at the time of analysis. To

align the Hindi data, I trained an acoustic model on the data from the experiment

which was then used to perform the alignment on the same data. This was done by

using the train and align function of the MFA. To train a new acoustic model, the

MFA requires a transcript and a pronunciation dictionary, or a phonemic transcript.

The Hindi phonemic transcript was easily generated from the stimuli list and the

data were able to be aligned with the transcript and raw audio files. The output

of train and align is both the aligned textgrids described above and a new acoustic

model which can be used to align future data. The acoustic model also includes an

automatically generated dictionary of all the words in the transcripts.

The acoustic model which I trained on the Hindi data is available for download in

the public archive for this experiment. Since it was only trained on this experimental

data, the corresponding dictionary only includes words used in the experiment. The

dictionary would need to be updated for more general use.
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A.3 Stop voicing analysis with speaker as a random effect

As discussed in §2.5.3.3, there are multiple reasons to prefer an analysis which

uses speaker as a fixed effect for this particular data. However, the results do not

meaningfully change if speaker is instead included as a random effect in the regression

models.

The full models are given in Tables A.4–A.3. There are few differences when

speaker is included as a random effect. In the English model, there is still a significant

difference between the velar place and the coronal intercept. There are also significant

vowel differences for both high vowels relative to the low vowel /a/ instead of just

/i/. The effect of closure duration is still significant. The Hindi model does not show

any differences in the remaining factors when speaker is included as a random effect.

In this analysis, the best fit model for English is the full model. The best fit

model for Hindi includes the factors of voicing and closure duration. This is the same

model which is selected as the best fit model when speaker is included as a fixed effect

(model output given in Table 2.10). Speaker as a predictor is included in the best

fit models for English and not included in the best fit models for Hindi regardless of

whether speaker is specified as a random or fixed effect.
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Table A.3. Hindi full model with word and speaker as random intercepts and logit
link for beta regression. Call: voicing percent ∼ voicing + place × V + closure
duration + block + (1 | word) + (1 | speaker)

Estimate Std. Error z p
(Intercept) 3.811 0.132 28.863 0.000

voicing-voiceless -4.928 0.089 -55.372 0.000
place-labial 0.070 0.132 0.533 0.594
place-velar -0.078 0.113 -0.694 0.488

V-/i/ 0.095 0.091 1.036 0.300
V-/u/ 0.111 0.091 1.213 0.225

closure duration -2.563 0.555 -4.614 0.000
block 2 -0.111 0.082 -1.359 0.174
block 3 -0.167 0.082 -2.042 0.041
block 4 -0.177 0.082 -2.153 0.031

place-labial:V-/i/ -0.146 0.185 -0.790 0.429
place-velar:V-/i/ 0.109 0.159 0.684 0.494

place-labial:V-/u/ -0.060 0.181 -0.330 0.741
place-velar:V-/u/ -0.067 0.156 -0.426 0.670

Num. obs. 1455
Num. groups: word 69

Var. word (intercept) 1.83e-09
Num. groups: speaker 6

Var. speaker (intercept) 2.93e-03
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Table A.4. English full model with word and speaker as random intercepts and
logit link for beta regression. Call: voicing percent ∼ voicing + place × V + closure
duration + block + (1 | word) + (1 | speaker)

Estimate Std. Error z p
(Intercept) 1.584 0.374 4.232 0.000

voicing-voiceless -1.550 0.084 -18.389 0.000
place-labial -0.117 0.156 -0.752 0.452
place-velar -0.465 0.154 -3.028 0.002

V-/i/ 0.432 0.154 2.807 0.005
V-/u/ 0.371 0.167 2.219 0.026

closure duration -9.957 1.212 -8.213 0.000
block 2 0.067 0.086 0.776 0.438
block 3 -0.039 0.085 -0.461 0.645
block 4 0.055 0.085 0.651 0.515

place-labial:V-/i/ -0.049 0.217 -0.223 0.823
place-velar:V-/i/ 0.265 0.223 1.189 0.234

place-labial:V-/u/ 0.070 0.237 0.294 0.768
place-velar:V-/u/ 0.259 0.228 1.137 0.256

Num. obs. 1561
Num. groups: word 61

Var. word (intercept) 0.032
Num. groups: speaker 6

Var. speaker (intercept) 0.633
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APPENDIX B

POLISH AND FRENCH SIBILANTS

B.1 Graphs for all speakers

Figure B.1. COG contrasts in French: Speaker 03
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Figure B.2. COG contrasts in French: Speaker 04

Figure B.3. COG contrasts in French: Speaker 05
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Figure B.4. COG contrasts in French: Speaker 06

Figure B.5. COG contrasts in Polish: Speaker 03
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Figure B.6. COG contrasts in Polish: Speaker 05

Figure B.7. COG contrasts in Polish: Speaker 06
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Figure B.8. F2 trajectories in French: Speaker 03
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Figure B.9. F2 trajectories in French: Speaker 04
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Figure B.10. F2 trajectories in French: Speaker 05
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Figure B.11. F2 trajectories in French: Speaker 06
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Figure B.12. F2 trajectories in Polish: Speaker 03
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Figure B.13. F2 trajectories in Polish: Speaker 05
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Figure B.14. F2 trajectories in Polish: Speaker 06
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APPENDIX C

MANDARIN SIBILANTS

C.1 Graphs for all speakers

This appendix provides the two dimensional graphs showing sibilant contrasts for

all speakers in the Mandarin experiment.

Figure C.1. Speaker m-02
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Figure C.2. Speaker m-03

Figure C.3. Speaker m-06
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Figure C.4. Speaker m-07

Figure C.5. Speaker m-08
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Figure C.6. Speaker m-09

Figure C.7. Speaker m-15
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Figure C.8. Speaker m-17

Figure C.9. Speaker m-19
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C.2 Alternative analyses for cue weight

In Chapter 4, the Mandarin results showed that variation in F2 (onset of second

formant of the following vowel) increases with degree of contrast along the COG

(spectral center of gravity) dimension across speakers. In that analysis, I used LDA to

quantify contrast on the COG dimension, taking the LDA coefficients as cue weights.

In this appendix I re-consider those results, discussing use of the coefficients and

comparing those results with alternatives obtained from the use of LDA error rate

and JM distance.

C.2.1 Error vs. coefficients in LDA

There are multiple ways to compare the phonetic spaces of phonological inventories

using LDA. In Chapter 4, I used the coefficients of linear discriminants. However, we

might also consider using model error rate (as in the stop inventory case study) in

place of the coefficients to measure contrast on the COG dimension. In this section, I

show the same results using LDA error and discuss why the coefficients are preferable

for the hypothesis being tested. To obtain error rates, LDA was performed with COG

as the sole predictor variable and error rates were calculated by dividing the number

of misclassified tokens by the total sample size. As in the stop inventory example,

the training and testing data sets were identical.

Figure C.10 shows the same results displayed in Figure 4.12, but using the LDA

error rate instead of the coefficients as the measure of COG separability. I show

Figure 4.12 again here for reference (as Figure C.11). Higher coefficients indicate

more contribution of the COG dimension to separability whereas lower error rate

indicates more separability when COG is the sole predictor. If error was providing

exactly the same information about contrast as the coefficients, we would expect to

see the reverse trends we see in Figure C.11. In Figure C.10 (error results), there

seem to be potential negative trends for the alveolar and alveopalatal sibilants and
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Table C.1. Fixed effects table for linear mixed effects regression. Dependent vari-
able: within-category within-vowel F2 variation, Predictors: COG separability (LDA
error), C, V, C×COGsep interaction, random intercepts for speaker. Intercept is [ùa].

Fixed effects Estimate (se) t p
(Intercept) 10.29(2.63) 3.90 < 0.001∗∗

COGsep (LDA error) 6.60(12.95) 0.51 0.612
C-/s/ 0.50(3.54) 0.14 0.889
C-/C/ −1.93(3.54) -0.54 0.590
V-/u/ 12.30(1.92) 6.40 < 0.001∗∗∗

COGsep × C-/s/ −19.53(17) -1.15 0.257
COGsep × C-/C/ −34.91(17) -2.05 0.046∗

no visible trends for the retroflex in either vowel context. In the /a/ context there is

one particular speaker, m-02, who has high COG error and does not seem to pattern

with the potential negative trend. This speaker does seem to pattern with the group

when the LDA coefficients are used.

In Table C.1, I provide the results from a mixed effects linear regression model

relating LDA error to F2 variation (analogous to the results in Table 4.4 but using

LDA error rate instead of LDA coefficients as a predictor). This model still shows the

effect of more variation in the /u/ vowel context, but the effect of COG separability

is different. There is still no significant effect for the effect of COG separability on

F2 variation for the intercept /ù/. In the model using the coefficients for cue weight,

we observed a significant effect of the COG coefficients for both /s/ and /C/ (as

determined by the interactions; see Chapter 4 for a more detailed explanation of this

interpretation). In this model, we do not see a significant effect of LDA error for

the alveolar sibilant, but we do see a significant effect for the alveopalatal sibilant

(though it is marginal at p = 0.046).

The differences in model outcomes between the model in Table 4.4 and the model

in Table C.1 are due to the relative differences in LDA error vs. LDA coefficients.

LDA coefficients provide a measure of the relative weight of the COG dimension
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Figure C.10. COG separability (LDA error rate) and F2 variation across speakers:
Alveolar sibilant in top panel, alveopalatal sibilant in middle panel, retroflex sibilant
in bottom panel.
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Figure C.11. COG separability (LDA coefficients) and F2 variation across speakers:
Alveolar sibilant in top panel, alveopalatal sibilant in middle panel, retroflex sibilant
in bottom panel (reprinted here from Chapter 4 for comparison with Figure C.10).
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Figure C.12. Example speaker: 2 distinct categories on COG dimension

in determining separability, whereas LDA error provides a measure of the overall

classification accuracy of the model with COG as the sole predictor. These values are

intuitively related, but they are not perfectly correlated.

I illustrate the difference between LDA error and coefficients by considering the

speaker with the biggest difference in results between the LDA coefficients and LDA

error analyses. In Figure C.10, there is one speaker, m-02, who consistently does not

pattern with the rest of the group in the /a/ context (left panel). This speaker has the

highest error rate in that context. The pattern with the rest of the speakers appears

to be a negative trend between error and F2 variation for /s/ and /C/. In Figure C.12

we see the raw data for this speaker. The COG density plot above the x-axis shows

good separability between the /s/ category and the other two sibilants. However, the

distributions for /C/ and /ù/ are almost entirely overlapping. This overlap results

in a high overall error rate in classification when using COG as the only predictor.

The high error rate does not reflect the fact that there is almost perfect separation

between /s/ and the other two sibilants on the COG dimension. This separation

results in this speaker having a relatively higher COG coefficient value.
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LDA error provides a more direct measure of linear separability, effectively cor-

responding to amount of category overlap on the COG dimension. This differs from

the LDA coefficients, which provide a measure of how much the COG dimension

contributes to overall separability. Error rate provides a better metric for compar-

ing overall category separability, while the coefficients provide a better metric for

comparing strength of COG as a predictor. In the stop inventory example, we were

mainly interested in how separable the categories were overall and were not interested

in the relative contribution of each of the predictor dimensions (F1 & F2). In that

case, the overall error rate of the LDA model was more appropriate for comparing

the inventories.

However, the main question of interest with the Mandarin sibilants does not deal

with overall separability across multiple dimensions, but rather the degree of contrast

on a particular dimension (COG). As the sibilants contrasts are multidimensional,

assessing the contrast on one of those dimensions is better approximated by the

strength of that dimension as a predictor rather than the overall error rate of an

LDA model. Therefore, LDA coefficients are preferable to error for this particular

analysis. This is in line with previous work in phonetics which uses LDA coefficients

as a measure of relative cue weight in production (see Chapter 4).

C.2.2 LDA coefficients vs. JM distance

In Chapter 4, the main result was that F2 variation increases with COG contrast

(as defined by the coefficients of linear discriminants from LDA) for /s/ and /C/.

This relationship is not significant for any of the sibilants when COG dispersion from

JM distance is instead used as a metric of contrast. One reason for this is that the

dispersion metric continues to increase with mean distance between categories, even

when the categories are perfectly separable. I will showcase this difference with results
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from example speakers and revisit the results from Chapter 4 using dispersion instead

of LDA coefficients as a predictor of F2 variation.

COG dispersion was calculated by applying the JM distance to calculate the

acoustic distances between each of the three sibilant categories for each speaker in

each vowel context.1 Because these calculations were done over a single dimension

(the COG dimension), triangle area was not appropriate for calculating a dispersion

measure. Instead, the distances between each pair of sibilants were summed to create

an aggregate measure of category dispersion for each speaker in each vowel context.

The difference between the dispersion metric and the separability metric is well

illustrated by examining speakers whose results change between the two methods.

Speaker m-07 ranks lower among all speakers in separability from LDA, but higher

in dispersion from JM distance. Raw data from this speaker is given in Figure C.13

(top panel). Compare this with the data from another speaker, m-06 in the bottom

panel, who ranks higher than m-07 in separability but lower than m-07 in dispersion

in both vowel contexts.

Across all speakers, the distance between /ù/ and /s/ for m-07 is one of the highest

mean-to-mean distances between any two categories on the COG dimension, which

contributes to the high dispersion score. The JM distance does incorporate within-

category variation in addition to mean-to-mean distance, but the ratio of between-

category to within-category variation between /s/ and /ù/ for m-07 is still much higher

relative to other speakers, resulting in the higher dispersion score. Despite this, there

is still considerable overlap between /ù/ and /C/ on the COG dimension for this

speaker, which leads to the relatively lower COG coefficients. Consider speaker m-06

(bottom panel of Figure C.13), who ranks lower than m-07 in dispersion. This speaker

1Distances were calculated between /s/-/ù/, /s/-/C/, and /ù/-/C/ in /a/ and /u/ contexts.
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Figure C.13. Sibilant categories in COGxF2 space for two speakers. m-07 (top
panel) ranks lower than m-02 (bottom panel) in separability but higher in dispersion.
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Table C.2. Fixed effects table for linear mixed effects regression. Dependent vari-
able: within-category within-vowel F2 variation, Predictors: COG dispersion (JM
distance), C, V, C×COGdisp interaction, random intercepts for speaker. Intercept is
[ùa].

Fixed effects Estimate (se) t p
(Intercept) 10.30(7.51) 1.37 0.177
COGdisp (JM distance) 0.24(2.16) 0.11 0.911
C-/s/ −0.66(9.58) -0.69 0.946
C-/C/ −22.86(9.58) -2.39 0.021∗

V-/u/ 12.04(1.81) 6.64 < 0.001∗∗∗

COGdisp × C-/s/ −0.32(2.85) -0.11 0.911
COGdisp × C-/C/ 4.68(2.85) 1.64 0.110

exhibited smaller between-category distance but almost perfect separability between

/ù/ and the other two sibilants, leading to higher COG coefficients.

The results comparing COG dispersion and F2 variation are given in Figure C.14.

This is analogous to Figure 4.12 (but with JM distance as the metric of COG sepa-

rability instead of the LDA coefficients), which is printed again here for reference as

Figure C.15. The original hypothesis predicts a positive correlation between degree

of COG contrast and F2 variation across speakers. When COG contrast is quantified

as category dispersion with JM distance, we do not see any significant trend. The

data for the alveolar sibilant in the /u/ context are potentially approaching a posi-

tive trend across speakers, but this is not significant when modeled with linear mixed

effects regression (Table C.2). None of the expected interactions are significant, indi-

cating no significant relationships between COG dispersion and F2 variation across

speakers.

C.2.2.1 Interim discussion: Separability and dispersion in Mandarin sibi-

lants

In the case of the Mandarin sibilants, we are more interested in how the COG

dimension is used contrastively by each speaker. The dispersion metric does not
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Figure C.14. COG dispersion and F2 variation across speakers: Alveolar sibilant
in top panel, alveopalatal sibilant in middle panel, retroflex sibilant in bottom panel.
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Figure C.15. COG separability and F2 variation across speakers: Alveolar sibilant
in top panel, alveopalatal sibilant in middle panel, retroflex sibilant in bottom panel.
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distinguish between sufficient and maximal category dispersion, a notion introduced

to Dispersion Theory in Lindblom (1986), which is also relevant here. Phonetic

categories need only be sufficiently dispersed for phonological contrast. The JM

distance provides higher values for categories which are maximally dispersed relative

to categories which are sufficiently dispersed for contrast. The coefficients from LDA

provide a metric of COG’s contribution to overall contrast and are preferable for

this analysis. The results shown here demonstrate that acoustic dispersion, category

separability, and cue weight along a single dimension all provide different results

despite the fact that they seem intuitively related.

In this appendix, I have reviewed LDA error, LDA coefficients, and JM distance

as ways of quantifying relationships between contrastive phonological categories in

acoustic space. LDA error is best used in cases where the relevant hypothesis deals

with overall category separability (especially if across multiple phonetic dimensions)

as in the stop inventory example, LDA coefficients are best used for cases where the

relevant hypothesis deals with the relative contribution of multiple phonetic dimen-

sions to overall category separability as in the Mandarin sibilants example, and the

JM distance is best used for cases where the relevant hypothesis deals with overall cat-

egory spread, and is particularly relevant for testing hypotheses related to Dispersion

Theory.
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APPENDIX D

METRICS FOR DISPERSION IN STOP INVENTORIES

D.1 LDA analysis

To determine relative differences in separability between stop inventories, I ran

LDA models for every possible 3 stop inventory. Calculations were done in R (R

Core Team, 2013) using the MASS package (Ripley et al., 2013). In each inventory,

the set of observations was all stop tokens generated by the model at the places of

articulation included in each inventory. The predictor variables were F2 and F3 values

and the dependent variable was the POA category labels.

The error rate of LDA classification provides one way of quantifying how separable

the categories are. This error rate reflects how well the linear combination from LDA

separates the data into the labeled categories. Error rates for the stop inventory data

were calculated by dividing the number of misclassified tokens by the total sample

size. These calculations were done with the training set as the testing set, a method

which typically leads to lower error rates relative to partitioning a subset of the data

for testing (James et al., 2013). This is not an issue for the present analysis since

we are only concerned with relative differences in error rate, not with the error rate

values themselves.

In Table D.1, I provide LDA error results for selected inventories. The results differ

from both sets of dispersion results. The inventory with the smallest error (which can

be considered the most linearly separable inventory) is the /bilabial coronal uvular/

inventory. The inventory which is most dispersed according to both metrics examined

here, /coronal velar epi-pharyngeal/, is only the ninth most separable. The typolog-
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Table D.1. LDA classification error results: < F2, F3 > space

POA1 POA2 POA3 LDA error rate
1 bilabial coronal uvular 0.0019
2 bilabial uvular epi-pharyngeal 0.0047
3 bilabial palatal uvular 0.0051
...
9 coronal velar epi-pharyngeal 0.0140

10 coronal uvular velar 0.0190
11 bilabial uvular velar 0.0660
12 bilabial coronal velar 0.0661

ically common /bilabial coronal velar/ inventory is even less separable at number

11.

Intuitively, dispersed inventories have categories which are also easily separable.

However, as these results have shown, separability (as defined by LDA error rate)

and dispersion (as defined by JM distance) are not quantitatively identical. In this

particular set of data, the uvular category is present in all of the five most separable

inventories, but only one of the five most dispersed inventories. The uvular distribu-

tion has smaller within-category variance relative to the other places. This results in

good separability even for categories which have similar means.

Metrics of dispersion such as JM and mean-to-mean distance provide a way of

quantifying distance between categories. I have argued in Chapter 5 that this is best

done with a measure of distance that includes within-category variance. If dispersion

is understood as a ratio of within-category to between-category variance, dispersed

inventories frequently have good separability and little overlap. However, this is not

always the case. These results show that dispersion and separability, while related,

are not quantitatively identical.
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