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ABSTRACT 

 

CHARACTERIZING THE INTERACTION BETWEEN NON-PATHOGENIC 

FUSARIUM OXYSPORUM AND ARABIDOPSIS THALIANA TO DETERMINE 

BENEFICIAL EFFECTS CONFERRED TO THE MODEL HOST PLANT 

 

September 2019 

 

KATHRYN ISABELLE VESCIO, B.S., PENNSYLVANIA STATE UNIVERSITY 

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 
 
 

Directed by: Professor Li-Jun Ma 
 
 
 

Fusarium oxysporum (Fo) is a soil-borne fungal pathogen that causes vascular 

wilt disease on a broad range of plants, including agricultural crops and the model plant 

Arabidopsis thaliana. There are non-pathogenic members of the Fo species complex that 

confer defense benefits against other pathogens to the host plant, however alteration to 

the host’s physiology through interaction with one of these strains, Fo47, have not been 

described. In this study, we aimed to establish the Fo47-A. thaliana interaction and 

determine if Fo47 reduces disease severity of a pathogenic Fo isolate, Fo5176. 

Additionally, we sought to use bioinformatics to mine transcriptomic data of the infection 

between Fo47 and A. thaliana for putative effectors from the non-pathogenic isolate 

using a pipeline that is validated by identifying known effectors in the interaction 

between Fo5176 and A. thaliana. Phenotypic characterization of A. thaliana plants 
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inoculated with Fo47 or Fo5176 has revealed a significant increase in rosette biomass of 

Fo47 inoculated plants when compared to mock (sterile water) inoculated plants. As is 

observed in other systems, treatment of plants with Fo47 prior to challenging with 

pathogenic Fo significantly reduces the disease severity over time. The results of this 

study suggest that Fo47 is a possible biocontrol agent against Fo5176, and that 

inoculation with non-pathogenic Fo alters the physiology of A. thaliana such that it has a 

higher rosette biomass without alterations to the water status of the plant. Our pipeline for 

extracting putative effectors using transcriptomic data as a critical filter generated 13 

candidate genes for further experimentation to determine their role in the Fo47-A. 

thaliana interaction. This research reports the first known observation that Fo47 increases 

the shoot biomass of the host plant it is interacting with, and that the model plant A. 

thaliana can be used as a host to examine the spectrum of interactions capable within the 

Fusarium oxysporum species complex. 
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CHAPTER 1 

 

PHENOTYPIC CHARACTERIZATION OF THE NON-PATHOGNEIC INTERACTION 

BETWEEN A. THALIANA AND F. OXYSPORUM 

 

INTRODUCTION 

 

The A. thaliana and F. oxysporum pathosystem 

Arabidopsis thaliana is one of the most commonly used model plants by researchers 

worldwide. The reason for this is that this plant has desirable features like most other model 

organisms such as a short life cycle, small size, and ample offspring production. However, the 

extensive community and collection of omics related resources makes A. thaliana a unique 

system to work in. The A. thaliana genome was the first plant genome sequenced in 2000, and 

the information behind this plant has exploded with databases that store genomic, transcriptomic, 

proteomic, and metabolomic related information along with modeling tools to infer homology 

and biological meaning from data (Berardini et al., 2015). This research will be utilizing A. 

thaliana as the host for interaction with two different F. oxysporum isolates because of the 

existing knowledge regarding the response to pathogenic F. oxysporum in addition to the vast 

literature base and resources for pathology experiments using this plant.  

The fungal isolates used in this research are species complex members of Fusarium 

oxysporum. This asexual fungal species is part of the Fusarium genus, which contains several 

other notable plant pathogenic fungi like F. graminearum, F. verticilloides, and F. solani. These 

species share similarities like spore structures however F. oxysporum differs from these other 



 2 

species in several ways. One of the earliest discovered differences is the lack of a sexual stage in 

F. oxysporum, which is seen in other Fusarium species. A more comprehensive understanding of 

the differences between F. oxysporum and its sister species was done through genomics, which 

revealed accessory chromosomes in F. oxysporum that are required for host pathogenicity in 

addition to features like repeats and transposons that distinguish this species genome structure 

(Ma et al., 2013, 2010). Fusarium oxysporum members fall into mock taxonomic groupings 

called formae specialis (f. sp.) that are based on pathogenicity on a host. Examples of this 

obscure classification are that all pea (Pisum sativum) infecting F. oxysporum isolates are called 

F. oxysporum formae specialis pisi, and all isolates that infect tomato are F. oxysporum f. sp. 

lycopersici (Baayen et al., 2000).  

In terms of plant infections, Fusarium oxysporum was listed as the 5th top fungal 

pathogen for research because of the broad host range of the F. oxysporum species complex 

comprising over 100 crop species, as well as difficulty in managing the disease through 

generating resistant plant cultivars (Dean et al., 2012). F. oxysporum is considered a hemi 

biotrophic vascular wilt pathogen, but results in a root, bulb, or crown rot in some hosts. This 

pathogen is classified as a hemibiotroph because it has a biotrophic infection stage where is 

sustains off of living tissue, and then transitions into a necrotrophic lifestyle of consuming dead 

tissue. In the soil where this fungus can be isolated from, it is leading a predominately 

saprophytic lifestyle of degrading organic matter. The term “vascular wilt” is descriptive of the 

symptoms from plants infected with this type of pathogen like stunting, leaf epinasty, chlorosis, 

and necrosis as well as vascular bundle discoloration (Michielse & Rep, 2009). Plant responses 

to vascular wilt fungi are also unique in comparison to responses to foliar or root pathogens 

because the host response centers on physical containment of the infection by clogging xylem 
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vessels with gums, waxes, and phenolic compounds, release of antimicrobials, and 

transcriptional reprogramming of neighboring parenchyma cells (Yadeta & Thomma, 2013).  

During this thesis work, I will be using two F. oxysporum isolates; the pathogenic isolate is 

Fo5176, and the non-pathogenic isolate Fo47 (Alabouvette, Lemanceau, & Steinberg, 1993). 

Fo5176 and other brassica infecting strains of F. oxysporum are capable of infecting and 

inducing disease symptoms in A. thaliana, and the interaction has been described thoroughly 

through the lens of microscopy and molecular plant-pathogen interactions. By using a stain that 

dyes an enzyme specifically secreted by F. oxysporum, the growth of  F. oxysporum f. sp. 

conglutinans within the root was described, and this work highlighted that a known resistance 

gene in A. thaliana to F. oxysporum, RFO1, was required to restrict vascular proliferation by the 

pathogen (A. Diener, 2012). The growth of an A. thaliana infecting isolate in root tissue was also 

characterized using confocal microscopy. This preliminary work found that F. oxysporum 

colonizes more frequently at lateral and apical root tips, grows intercellularly initially prior to 

intracellular growth in plant cells, and between 5-6 days post inoculation F. oxysporum can be 

observed colonizing the plant vasculature (Czymmek et al., 2007). On a molecular level, A. 

thaliana has been used to dissect genes and pathways involved in the interaction with pathogenic 

F. oxysporum. We know that there are resistance genes to F. oxysporum that have a variable 

distribution among A. thaliana ecotypes, and that the introduction of the RESISTANCE TO 

FUSARIUM OXYSPORUM 1 (RFO1) gene contributes to resistance against 3 A. thaliana 

infecting formae specialis (Diener & Ausubel, 2005). Through mutagenesis of key 

phytohormone signaling components, the role of the cytosolic Jasmonic acid sensor COI1 in 

promoting disease symptoms to Fo5176 in A. thaliana was determined (Thatcher, Manners, & 

Kazan, 2009). Similarly, 2 subunits of the transcriptional Mediator complex, MEDIATOR18 and 
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MEDIATOR20 were found to be positive regulators of Fo5176 infection in the A. thaliana Col-0 

ecotype (Fallath et al., 2017). Akin to Jasmonic Acid, certain auxin signaling mutants display 

increased resistance to Fo5176 and suggest that Fo5176 utilizes active auxin and Jasmonic acid 

signaling pathways to colonize the plant root effectively (Kidd et al., 2011). This interaction has 

also been analyzed on a  transcriptomic level, and uncovered broad changes in the expression of 

transcripts associated with signal perception, Salicylic acid (SA), Jasmonic acid (JA) and 

Ethylene (Et) signaling, pathogenesis-related (PR) proteins, and stress inducible transcription 

factors at one and six days post infection (Lyons et al., 2015; Zhu et al., 2013). 

Non-Pathogenic F. oxysporum interactions with plants 

The non-pathogenic isolate to be used in this study has been documented in other plant 

systems to provide protective functions against several root pathogens through indirect means as 

well as eliciting plant defense gene expression, but no such characterization has been done in A. 

thaliana. Fo47 was initially isolated from the Châteaubriand region of France where there were 

low incidences of muskmelon Fusarium wilt symptoms (Alabouvette, 1986; Rouxel & 

Alabouvette, 1979). Since its isolation out of suppressive soil, this strain has been exposed to 

numerous plant hosts without causing disease symptoms. Quite the opposite occurs, and typically 

it is observed that plants inoculated with Fo47 have improved responses to pathogen challenge 

than plants that are not exposed to Fo47.  

The benefits conferred to tomato against pathogenic F. oxysporum f. sp. lycopersici have 

been well characterized in terms of Fo47 influencing the defense response to the pathogen. Pre-

inoculation of tomato roots primes the plant for defense against the pathogenic formae specialis 

by increasing the expression of known defense related genes and reduces the amount of 

pathogenic fungus detected in root tissue (Aimé, Alabouvette, Steinberg, & Olivain, 2013; Aimé, 
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Cordier, Alabouvette, & Olivain, 2008; Fuchs, Moënne-Loccoz, & Défago, 1999). When tomato 

roots are exposed to a 1:100 mix of pathogenic F. oxysporum and Fo47, there is a delay in the 

colonization of the vasculature by the pathogen (Nahalkova, Fatehi, Olivain, & Alabouvette, 

2008). The xylem sap proteome of tomato inoculated with a 1:1 mixture of Fo47 and the 

pathogenic formae specialis was dissected and found that it was largely similar to the mock 

inoculated xylem sap proteome. The major differences between the sap proteomes were that 

plants exposed to Fo47 alongside the pathogen accumulated a beta-glucanase enzyme and 

Pathogenesis-Related protein that were correlated with a reduction in disease symptoms, but not 

reduction in vascular colonization by the pathogen (de Lamo et al., 2018). The overarching 

observation in the tomato system is that Fo47 primes the plant mostly through inducing defense 

genes and proteins, and that competition for nutrients and space along the rhizosphere may be 

important between F. oxysporum isolates, these physical interactions are not the major factors in 

reducing the disease pressure pathogenic F. oxysporum exerts on tomato. 

In the additional plants that Fo47 has been reported to interact with, similar trends have 

been reported of a reduction in disease severity due to priming of host defense genes. However, 

in each system that Fo47 interacts with there is a nuance that demonstrates the potential of this 

isolate to inhibit pathogenic challengers by other means. In pepper for example, Fo47 primes the 

induction of Pathogenesis-related genes that promote resistance to Phytopthora capscisi and 

Verticillium dahliae as well as stimulates the production of anti-microbial exudates from roots 

like caffeic acid that inhibit the disease severity of V. dahliae, a generalist vascular wilt pathogen 

(Veloso et al., 2016; Veloso & Díaz, 2012). Cucumber and pea roots have also been inoculated 

with Fo47, and then examined microscopically to determine the cytological effects Fo47 has on 

root interactions with pathogens. When cucumber is challenged with Pythium after Fo47 
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inoculation, Fo47 is found within Pythium hyphal cells inside and outside the root as well as 

stimulate the production of phenolic and cell wall depositions between the cortical cells and 

vasculature that the authors hypothesize has a function in impeding Pythium’s colonization 

(Benhamou, Garand, & Goulet, 2002). In pea, there are similar cytological findings of Fo47 

stimulating the plant to deposit anti-microbial compounds in the apoplast and cell walls 

(Benhamou & Garand, 2001). In these cytological reports in addition to fluorescent microscopy 

of Fo47 in tomato, Fo47 has been observed growing intercellularly along the root epidermis and 

within the cortical cell layers. A factor that seems to separate Fo47 from pathogenic F. 

oxysporum is the inability of Fo47 to inhabit the vasculature of inoculated hosts. A report of this 

phenomena being reversed comes from an experiment where an accessory chromosome from the 

tomato pathogen was introduced into Fo47, and when plants where challenged with that mutant 

Fo47 vascular bundle discoloration and disease was observed (Ma et al., 2010). 

While there is an established history of research into plant interactions with F. 

oxysporum, the goal of this proposed thesis is to contribute novel insights into the infection of A. 

thaliana with F. oxysporum by analyzing both the fungus and plant and focusing on the non-

pathogenic interaction that has been previously unreported. We aim to determine if Fo47 has a 

physiological impact on the above ground growth of A. thaliana, and that it confers similar 

defense benefits in A. thaliana against root pathogens as it does in other systems. 
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METHODS 

 

Growth of Arabidopsis thaliana for Inoculation 

Seeds of A. thaliana ecotype Col-0 were sterilized in 1 mL of 70% Ethanol for 3 washes, 

5 minutes each, and 1 wash with 50% bleach for 5 minutes. After removing the bleach solution, 

seeds were rinsed with 1 mL of sterile distilled and deionized water, and stratified for 3-4 days in 

the dark at 4°C. Seeds were planted into 4” pots filled with an autoclaved mixture of fine grain 

play sand: MetroMix 360: vermiculite in a 1:2:1 ratio, watered with 800 mL of distilled 

deionized water, and covered with a clear plastic lid to retain a high humidity for 3 days in the 

growth chamber with the following settings: 28°C day/24°C night, 14 hour day/10 hour night, 

bottom watered in the tray daily for 1 hour after removing plastic cover, and light levels ranging 

from 89-94 μmol·m-2·s-1. After 3 days, plastic lid was removed, and plants were allowed to 

grow for 11 additional days prior to inoculation with Fusarium oxysporum microconidia. Plants 

are 14 days old at the time of inoculation and have at least 4 fully expanded true leaves. 

Preparing Microconidia Suspensions of Fusarium oxysporum isolates 

Stocks of Fo47 and Fo5176 microconidia suspended in 30% glycerol were thawed from 

the -80C freezer, and 200 uL of stock was added to approximately 100 mL of 1X Potato 

Dextrose Broth. Fungal cultures were grown in 50 mL falcon tubes in an incubating shaker that 

was set to 28°C and 150 rpm. Fo47 is grown for 3-4 days before filtering microconidia from 

broth, and Fo5176 is grown for 5-6 days to ensure adequate spore quantities. Cultures are filtered 

through sterilized double layer cheese cloth, centrifuged for 15 minutes at 4,500 rpm, and the 

supernatant is removed. The spore pellet is rinsed twice with 50 mL of sterile distilled and 

deionized water prior to quantification with a hemocytometer. An aliquot of the microconidial 
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spore solution is diluted and viewed under the microscope at 10X to count the number of spores 

in 5 out of the 9 fields on the hemocytometer. The math to determine the number of spores per 

mL is as follows:  

 

X Number of Microconidia Counted in 5 Fields x (Dilution Factor/# of Fields Counted=5) x 

10,000 spores/mL (constant)= X microconidia/mL  

 

The concentration of the spore solution is used to determine how much of it is needed to 

make a 50 mL inoculum that contains 1 x 106 microconidia/mL. Spore solutions are made and 

stored in the 4°C fridge until ready to use. The spores are used within 10 hours of filtering from 

medium. 

Root Dip Inoculation Procedure 

Arabidopsis thaliana plants with at least 4 expanded leaves are removed from the 4” pots 

14 days after planting them, and the roots rinsed briefly in distilled and deionized water twice to 

remove bulk soil prior to being placed into a petri dish with 50 mL of inoculum for 45-60 

seconds. After treatment, plant are re-potted in 4” pots that contain an autoclaved mixture of fine 

grain play sand: MetroMix 360: vermiculite in a 1:2:1 ratio, and the pots are placed into pipette 

tip boxes so they may be bottom watered for 1 hour with 75 mL of water daily while preventing 

cross-contamination between treatments. Mock treated plants are inoculated with 50 mL of 

sterile distilled and deionized water, and inoculum petri dishes are replaced with fresh inoculum 

after every 9 plants. Plants are then placed into the growth chamber with the same settings as the 

plants were grown in. To probe if Fo47 is a candidate for priming A. thaliana for defense against 

Fo5176, plants are inoculated with Fo47 and then 4 days later inoculated with Fo5176. 
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Additionally, a treatment of simultaneously inoculating A. thaliana roots with a 1:1 ratio of 1 x 

106 microconidia/mL Fo47 and Fo5176 was included to test if Fo47 can reduce disease 

symptoms through non-priming induced means when it is in equal quantities to the pathogenic 

isolate. Each 4” pot receives inoculated 3 plants, and per treatment there are 6 pots. The pots are 

randomly arranged in the growth chamber and re-arranged when removed for photographs. 

Disease Score Calculation and Survival Curve Generation 

Disease score is on a scale ranging from 0 to 4 with 0 being symptomless, and 4 being 

necrotic. The stages in between range from wilted/stunted (1) to initial chlorosis (2) and 

advanced chlorosis where more than 50% of the leaves are chlorotic (3). Per time point and 

treatment, between 15-18 plants have their disease score assigned. Plants that will be harvested at 

6 days post inoculation (DPI) for biomass and RWC quantification have their disease score 

calculated every 2 days. The plants that are a part of the long-term experiment to determine if 

Fo47 treatment reduces disease are observed every 4, 7, 10, 14, 21, and 28 DPI. For plants that 

are inoculated with Fo47 4 days prior to Fo5176 challenge, their disease score was calculated 

every 3, 7, 11, 18, 25 days after inoculation with Fo5176. Kaplan-Meier plots were constructed 

to assess plant mortality after challenge with the pathogenic isolate of F. oxysporum. GraphPad 

Prism 8 software was used to compare survival among treatment groups by the Log-rank test.  

Biomass Quantification and Determining Relative Water Content of Whole Rosettes  

A. thaliana rosette biomass and relative water content (RWC) was determined for 18 

plants per treatment at 6 days post inoculation to determine if Fo47 inoculation alters these 

parameters. To determine the RWC a protocol from (Hummel et al., 2010) was followed that 

involved quickly measuring the fresh weight of the whole rosette, floating the rosette in a 60 mm 

petri dish with 10 mL of sterile distilled and deionized water in the dark at 4°C for 24 hours, 
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weighing again to collect turgid weight, and then drying for 3 days at 50°C in the incubator on a 

piece of wax paper in the petri dish to generate tissue for dry weight. The RWC is calculated by 

the following equation:  

 

(Fresh weight-Dry weight)/(Turgid weight-Dry weight) X 100 = RWC % 

 

Statistical Analysis 

 The GLM procedure and Fisher’s Least Significant Difference Test in SAS was used to 

determine if there were statistically significant differences in the effect treatment has on 

physiological parameters or disease score. Statistical analysis was performed on each replicate, 

as well as for 3 out of 5 replicates together for the biomass and co-inoculation data. The 2 

replicates that were dropped from each experiment were removed because of their variance from 

the remaining 3 replicates.  
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RESULTS AND DISCUSSION 

 

Fo47 Reduces the Disease Severity of Fo5176 on A. thaliana 

Previous research regarding the protective effect of Fo47 against pathogens has been 

recapitulated within A. thaliana by comparing the average disease score over time of plants 

inoculated with sterile water as a mock treatment, or 1 x 106 spores/mL of either Fo47, Fo5176, 

and 1:1 combination of Fo5176 and Fo47, or plants inoculated with 1 x 106 spores/mL of Fo47 

and then challenged with 1 x 106 spores/mL of Fo5176 4 days after the inoculation with Fo47. 

The average disease scores for each treatment and time point that were collected are listed in 

Table 1, along with standard error in parenthesis and statistically significant differences by 

Fisher’s LSD denoted by letters. The overall average disease score is calculated from replicates 

1, 3, and 5. The reduction in disease severity in plants pre-inoculated with Fo47 prior to Fo5176 

challenge ( Figure 1) is accompanied by a slightly increased survivability in comparison to plants 

challenged strictly with the pathogen or the mixture of pathogen and non-pathogenic F. 

oxysporum (Figure 2 and 3).  

 

  

Replicate 1

Average Disease Score Days Post Inoculation with Fo5176

Treatment 3 4 7 10 11 14 18 21 25 28

Mock x 0.00A 0.00A 0.00A x 0.00A x 0.00A x 0.00A

Fo47 x 0.00A 0.00A 0.00A x 0.00A x 0.00A x 0.00A

Fo5176 x 1.00B 2.5 (0.15)B 3.67 (0.11)B x 4.00B x 4.00B x 4.00B

Fo5176:Fo47 x 1.00B 1.5 (0.15)C 3.28 (0.11)C x 4.00B x 4.00B x 4.00B

Mock to Mock 0.00A x 0.00A x 0.00A x 0.00A x 0.00A x

Fo47 to Fo5176 0 (0.08)A x 0.11 (0.06)D x 0.94 (0.18)C x 2 (0.15)C x 3.56C x

A
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Replicate 2

Average Disease Score Days Post Inoculation with Fo5176

Treatment 3 4 7 10 11 14 18 21 25 28

Mock x 0.00A 0.00A 0.00A x 0.00A x 0.00A x 0.00A

Fo47 x 0.00A 0.00A 0.00A x 0.00A x 0.00A x 0.00A

Fo5176 x 0.56 (0.12)B 1.67 (0.28)B 3.17 (0.31)B x 3.56 (0.27)B x 3.67 (0.23)B x 3.67 (0.23)B

Fo5176:Fo47 x 0.39 (0.12)B 1.11 (0.11)C 2.94 (0.19)B x 4.00B x 4.00B x 4.00B

Mock to Mock 0.00A x 0.00A x 0.00A x 0.00A x 0.00A x

Fo47 to Fo5176 0.33 (0.11)A x 0.89 (0.08)A x 2 (0.23)C x 3.67 (0.23)B x 3.72 (0.19)B x

B

Replicate 3

Average Disease Score Days Post Inoculation with Fo5176

Treatment 3 4 7 10 11 14 18 21 25 28

Mock x 0.00A 0.00A 0.00A x 0.00A x 0.00A x 0.00A

Fo47 x 0.00A 0.00A 0.00A x 0.00A x 0.00A x 0.00A

Fo5176 x 0.5 (0.12)B 1.28 (0.18)B 2.33 (0.18)B x 2.83 (0.22)B x 4.00B x 4.00B

Fo5176:Fo47 x 0.11 (0.08)A 1.33 (0.16)B 1.89 (0.18)C x 2.67 (0.26)B x 4.00B x 4.00B

Mock to Mock 0.00A x 0.00A x 0.00A x 0.00A x 0.00A x

Fo47 to Fo5176 0.33 (0.11)A x 1.00C x 1.11 (0.08)C x 3.72 (0.16)C x 3.78 (0.13)C x

C

Replicate 4

Average Disease Score Days Post Inoculation with Fo5176

Treatment 3 4 7 10 11 14 18 21 25 28

Mock x 0.00A 0.00A 0.00A x 0.00A x 0.00A x 0.00A

Fo47 x 0.00A 0.00A 0.00A x 0.00A x 0.00A x 0.00A

Fo5176 x 0.72 (0.11)B 1.06 (0.1)B 2.5 (0.23)B x 3.56 (0.15)B x 4.00B x 4.00B

Fo5176:Fo47 x 0.39 (0.12)C 0.67 (0.11)C 1.94 (0.27)C x 2.83 (0.28)C x 3.61 (0.22)C x 3.72 (0.18)C

Mock to Mock 0.00A x 0.00A x 0.00A x 0.00A x 0.00 x

Fo47 to Fo5176 0.00A x 0.88 (0.11)D x 1.41 (0.17)B x 3.71 (0.14)C x 3.76 (0.13)C x

D
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Table 1: Disease Scores for A. thaliana Inoculated with F. oxysporum.   

Panels A-E are the average disease scores for each treatment and timepoint days post inoculation with Fo5176. 
These averages are based off of as many as 18 observations per treatment, and standard error for the average is 
presented in parenthesis. Panel F is the combined result of replicates 1, 3, 5 and contains as many as 18 observations 
per treatment and time point. Statistical significance was determined with Fisher’s LSD Test, and significantly 
different means are denoted with different letters. Standard error is presented in parenthesis, and averages that lack a 
parenthesis have a standard error of 0. 

 
 
 
 
 
 
 
 
 
 
 

Replicate 5

Average Disease Score Days Post Inoculation with Fo5176

Treatment 3 4 7 10 11 14 18 21 25 28

Mock x 0.00A 0.00A 0.00A x 0.00A x 0.00A x 0.00A

Fo47 x 0.00A 0.00A 0.00A x 0.00A x 0.00A x 0.00A

Fo5176 x 0.39 (0.12)B 1.44 (0.15)B 3.11 (0.16)B x 3.67 (0.11)B x 4.00B x 4.00B

Fo5176:Fo47 x 0.39 (0.12)B 1.28 (0.16)B 2.28 (0.21)C x 3.28 (0.18)C x 4.00B x 4.00B

Mock to Mock 0.00A x 0.00A x 0.00A x 0.00A x 0.00A x

Fo47 to Fo5176 0.44 (0.12)B x 1.33 (0.11)B x 2.67 (0.16)D x 3.72 (0.14)C x 3.72 (0.14)C x

E

Average Disease Score Days Post Inoculation with Fo5176

Treatment 3 4 7 10 11 14 18 21 25 28

Mock x 0.00A 0.00A 0.00A x 0.00A x 0.00A x 0.00A

Fo47 x 0.00A 0.00A 0.00A x 0.00A x 0.00A x 0.00A

Fo5176 x 0.63 (0.07)B 1.740 (0.13)B 3.04 (0.12)B x 3.5 (0.10)B x 4.00B x 4.00B

Fo5176:Fo47 x 0.5 (0.07)C 1.37 (0.09)C 2.48 (0.13)C x 3.31 (0.13)S x 4.00B x 4.00B

Mock to Mock 0.00A x 0.00A x 0.00A x 0.00A x 0.00A x

Fo47 to Fo5176 0.3 (0.06)A x 1.09 (0.05)D x 1.93 (0.12)C x 3.67 (0.08)C x 3.83 (0.06)C x

F
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Figure 1: Reduction in Disease Score in Plants Pre-Inoculated with Fo47 Compared to Fo5176 Inoculated plants.  

Average disease score of plants in replicates 1, 3, and 5 of the co-inoculation experiments presented with standard 
error bars. Statistical difference determined by Fisher’s LSD Test, and significantly different means are denoted with 
different letters. 

 

Figure 2: Survivability of A. thaliana plants after Inoculation with F. oxysporum. 

Kaplan-Meier plot of data containing replicates 1, 3, and 5. The Log-Rank test (p-value < 0.005) detected 
differences between the Mock and Fo47 inoculated plants when compared to the plants that are inoculated with 
Fo5176, but no significant difference between plants that are simultaneously inoculated with Fo47 and Fo5176 to 
plants that are exposed to Fo5176.  
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Figure 3: Survivability of A. thaliana Inoculated with Fo5176 compared to plants inoculated with Fo47 before 
pathogen inoculation. 

When these two treatments were isolated, we are able to detect statistically significant increase in survivability by 
the Gehan-Breslow-Wilcoxon test (p-value < 0.01) between plants pre-inoculated with Fo47 prior to Fo5176 
challenge and plants inoculated with Fo5176. This graph is composed of all observations in replicates 1, 3, and 5 for 
the co-inoculation experiment. Pictures included are representative images of plants at indicated days post 
inoculation with Fo5176. 

 
Taken together, the decreased disease severity and mortality exhibited by Fo47 pre-

inoculated plants indicates that this non-pathogenic F. oxysporum isolate has the potential to 

prime the plant for immunity against pathogens as demonstrated in tomato or pepper, or through 

other means. The plants that are exposed to a 1:1 mixture of pathogenic and non-pathogenic 

spores do not differ in their survivability or disease score compared to plants exposed to only the 

pathogen suggesting that Fo47 does not compete successfully against Fo5176 when it is in equal 

concentrations and, or directly through antibiosis.  Future studies should be considerate of time 

and consider inoculation from the time of pathogen introduction instead of when plants are 

initially challenged with the non-pathogen. This research would have benefitted from an 

additional treatment group of mock plants inoculated with the pathogenic isolate at the same time 

Mock to Mock Fo5176 Fo47 to Fo5176

3 to 4 DPI

10 to 11 DPI
Mock to Mock Fo5176 Fo47 to Fo5176

18 to 21 DPI

Mock to Mock Fo5176 Fo47 to Fo5176
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as the plants that are exposed to Fo5176 4 days after initial inoculation with Fo47. Regardless of 

experimental design challenges, this work suggests a protective effect of Fo47 on A. thaliana. 

Rosette Biomass is Greater in A. thaliana Inoculated with Fo47 

 In previous interactions with Fo47, there is a gap in the physiological implications this 

interaction has on the host plant. When we look outside of Fo47, and Fusaria, there are several 

examples of fungal interactions resulting in increases in yield in A. thaliana. Trichoderma 

species of fungi are fairly well known for their anti-biotic and anti-fungal effects in soil and the 

rhizosphere. Trichoderma virens reduces disease severity of multiple pathogens in A. thaliana in 

addition to increasing the fresh weight of rosettes and the number of lateral roots. This increase 

in fresh weight and lateral root proliferation is due to production of auxin-like compounds by T. 

virens that stimulate auxin signaling in the plant (Contreras-Cornejo, Macias-Rodriguez, Cortes-

Penagos, & Lopez-Bucio, 2009). Piriformospora indica is a root colonizing endophyte capable 

of interacting with a broad host range and has been reported to improve the biomass of several 

plants, including A. thaliana. Additionally, P. indica increases plant height under low nutrient 

conditions (Banhara et al., 2015). The genus Colletotrichum contains several plant pathogens 

much like Fusarium, and C. tofieldiae is a species that has an endophytic relationship with A. 

thaliana. When in phosphorous limiting conditions, C. tofieldiae translocates phosphorous from 

the medium to the plant roots and improves the fresh weight as well as fitness of A. thaliana in 

this stressful condition (Hiruma et al., 2016). The interaction Fo47 shares with A. thaliana 

mirrors some of these examples in that we know from RNA-seq of the interaction between Fo47 

and A. thaliana roots involves an induction of key nitrate and phosphate transporter and 

assimilation genes (Li Guo, unpublished data, Figure 3)  
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 Figure 4: Differentially Expressed Nutrient Related Genes in A. thaliana Inoculated with F. oxysporum.  

Panel A contains genes related to Nitrogen transport and assimilation. Panel B contains genes related to 
Phosphorous transport and assimilation. Z-scores are composed of the average FPKM values for each timepoint and 
treatment. Heat Map generated by Dr. Li Guo. 

 

The dry biomass of A. thaliana rosettes is greater 6 days after inoculation with Fo47 in 

comparison to plants mock inoculated with sterile water. Table 2 lists the averages for 

physiological parameters quantified at 6 DPI for each replicate of this experiment to better define 

the effect Fo47 has on A. thaliana above ground physiology and growth. After reviewing the 

averages for each replicate of the experiment, it was decided to drop replicates 3 and 4 from the 
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overall average because of deviation from the other 3 replicates. Figure 5 highlights the increase 

in rosette biomass of Fo47 inoculated plants in comparison to Mock and Fo5176 inoculated 

plants.  

 

 

Fresh Weight (mg)

Replicate 1 Replicate 2 Replicate 3 Replicate 4 Replicate 5 Average

Mock 55.94 (2.69)A 49.22 (2.94)A 28.72 (1.74)A 35.44 (1.55)A 55.95 (1.93)A 49.96 (1.57)A

Fo47 54.61 (2.56)A 54.5 (2.46)A 25.72 (1.33)A 41.83 (2.10)B 54.61 (1.11)A 52.33 (1.29)A

Fo5176 11.16 (1.19)B 23.33 (1.47)B 2.56 (0.35)B 13.22(0.92)C 11.17 (0.61)B 14.30 (1.10)B

A

Turgid Weight (mg)

Replicate 1 Replicate 2 Replicate 3 Replicate 4 Replicate 5 Average

Mock 59.72 (2.63)A 52.56 (2.92)A 31.83 (1.77)A 40.78 (1.56)A 59.72 (1.86)A 54.13 (1.51)A

Fo47 58.44 (2.63)A 57.72 (2.42)A 28.72 (1.38)A 46.5 (2.12)B 58.44 (1.20)A 56.52 (1.27)A

Fo5176 19.83 (1.26)B 31.78 (1.65)B 9.5 (0.62)B 21.39 (1.05)C 19.83 (0.69)B 22.31 (1.19)B

B
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Table 2: Physiological Characteristics Quantified During A. thaliana Interaction with F. oxysporum.  

Panel A is the average fresh weight of rosettes for 18 observations from each replicate. Panel B is the average turgid 
weight of rosettes, Panel C is the average dry weight of rosettes, and Panel D is the average Relative Water Content 
that is calculated from the fresh, turgid, and dry weight measurements. The average column in each panel is 
comprised of the observations in replicate 1, 2, and 5. Statistical significance of the means was determined by 
Fisher’s LSD test, and treatments with significantly different means (p-value < 0.05) are denoted by different letters. 
Standard error is presented in parenthesis, and averages that lack a parenthesis have a standard error of 0. 

 

Dry Weight (mg)

Replicate 1 Replicate 2 Replicate 3 Replicate 4 Replicate 5 Average

Mock 4.5 (0.25)A 4.28 (0.26)A 2.33 (0.11)A 3 (0.16)A 4.5 (0.15)A 4.19 (0.13)A

Fo47 5.28 (0.25)B 5.5 (0.22)B 2.72 (0.14)B 3.83 (0.20)B 5.28 (0.14)B 5.06 (0.14)B

Fo5176 1.27 (0.18)C 2.78 (0.19)C 0.16 (0.09)C 1.22 (0.15)C 1.28 (0.15)C 1.67 (0.15)C

C

Relative Water Content (%)

Replicate 1 Replicate 2 Replicate 3 Replicate 4 Replicate 5 Average

Mock 92.88 (0.60)A 92.53 (0.77)A 89.11 (0.58)A 85.69 (0.72)A 92.88 (0.73)A 91.14 (0.50)A

Fo47 92.66 (0.41)A 93.59 (0.43)A 88.09 (0.73)A 88.74 (0.53)A 92.66 (0.52)A 91.68 (0.39)A

Fo5176 51.01 (2.52)B 69.97 (1.34)B 24.37 (1.91)B 58.57 (1.70)B 51.01 (1.88)B 57.36 (1.66)B

D
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Figure 5: Statistically Significant Increase in Rosette Biomass of Fo47 Inoculated A. thaliana.  

Box-Whisker Plot of the dry biomass of rosettes 6 days post inoculation. Average dry biomass was calculated for the 
combined replicates of 1, 2, and 5, and that data is shown here. Within the box, “x” represents the mean, and the line 
represents the mode. The whiskers extending out of the box depict data that falls 50% outside of the mean with 
outliers highlighted as dots outside the whiskers.  

 

The means through which this effect occurs could be through promoting A. thaliana to 

increase nutrient absorption and assimilation as RNA-seq data supports. The number of leaves 

were determined (Figure 6), and there was not significantly more perceivable biomass to Fo47 

inoculated plants compared to mock inoculated ones. It is possible the Fo47 inoculation alters 

carbon partitioning in the rosette and increases the thickness of leaves to result in the significant 

increase in dry biomass, but with the current physiological data we are unable to quantify leaf 

thickness (Weraduwage et al., 2015). 
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Figure 6: No Significant Difference in the Number of Leaves on A. thaliana Rosettes 6 Days After Inoculation with 
F. oxysporum.  

Box-Whisker Plot of the number of petiolate leaves illustrates that there is not a difference in the number of leaves 
between rosettes. Average number of petiolate leaves was calculated for the combined replicates of 1, 2, and 5, and 
that data is shown here. Within the box, “x” represents the mean, and the bars represent data that falls 50% outside 
of the mean. 

  

The interaction between Fo47 and A. thaliana is markedly different from the interaction 

that pathogenic F. oxysporum have with A. thaliana. As it has been observed in other systems, 

Fo47 displays characteristics of a priming agent that induces the plant immune system and 

reduces disease severity when the plant is challenged with a pathogen. We choose to challenge 

plants with Fo5176 4 days after inoculation with Fo47 based on transcriptomic analysis of the 

interaction between Fo47 and A. thaliana roots. Network analysis of differentially expressed 

transcripts captured an up-regulation in salicylic acid, and plant defense related genes between 2-

4 days after inoculation with Fo47 (Figure 7).  
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Figure 7: Transcriptional Regulatory Network of A. thaliana roots 96 Hours Post Inoculation with Fo47.  

Network constructed using STRING protein interaction database and edited in Gephi. This transcriptional network is 
based off of the RNA-seq data and genes that are differentially expressed between Fo47 inoculation and Fo5176 
inoculation. Module highlighted in the black box is enriched for genes with roles in Salicylic Acid defense mediated 
responses. 

 

It is possible that through priming the molecular arsenal of the plant against a pathogen, 

Fo47 reduces disease pressure to Fo5176 in A. thaliana. Testing this hypothesis further can be 

done through several means and based on known benefits it would be worthwhile to follow up 

with qRT-PCR of candidate defense genes, callose staining of the roots, ROS burst 

quantification, and advanced microscopy of the in planta interaction between Fo47, and the 

pathogenic Fo5176. Using the baseline of the interaction established through this body of work, 

any perturbations in the observed phenotypes of mutants could be used to identify positive and 

negative regulators of the reduction in disease severity and/or increase in biomass. The 

interaction between Fo47 and A. thaliana is potentially unique in that the biomass of rosettes that 

have had their roots inoculated with Fo47 is significantly greater than mock inoculated plants 
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suggesting a physiological effect on the above ground growth of A. thaliana by Fo47. Research 

with this isolate thus far has not reported alterations to the host plants physiology, and this opens 

up new research avenues regarding the potential of Fo47 to increase biomass and potentially 

yield of the commercial crops that it has been reported to interact with.  
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CHAPTER 2 

 

EFFECTOR PREDICTION IN THE NON-PATHOGENIC F. OXYSPORUM 

ISOLATE UTILIZING IN PLANTA RNA-SEQ DATA 

 

INTRODUCTION 

 

Role of Effectors in Plant Immunology  

 Plant-microbe interactions exist on a continuum ranging from beneficial to pathogenic. 

The molecular communication that occurs between microbes and a plant host is a predictor of 

how the interaction will play out, and proteins are major signals that plants and microbes use to 

facilitate a parasitic or symbiotic interaction. In the case of parasitic or pathogenic relationships, 

plants have developed an elaborate system of receptors connected to signaling cascades that 

regulate multiple aspects of the plant defense response upon recognition of microbe. Jones and 

Dangl developed a simplified model called the “ZigZag Model” for the plant immune system in 

2006 that describes the stages of the plant immune response to a microbe (Jones & Dangl, 2006). 

In this model, recognition of pathogen associated molecular patterns (PAMPS, more commonly 

called microbe associated molecular patterns now (MAMPS)), by plant receptor kinases in the 

cell membrane induces an innate immune response called PAMP Triggered Immunity (PTI) that 

is characterized by secretion of broad-spectrum antimicrobial enzymes and compounds (Spoel & 

Dong, 2012). MAMPS are molecules like chitin, beta-glucans, flagellin, and peptidoglycan that 

are ubiquitous and conserved components of fungi, oomycetes, and bacteria. PTI is sufficient to 

prevent disease in most cases, and microbes or pathogens that elicit PTI do not result in disease 
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symptoms. This case is called an incompatible interaction because the microbe or pest is not able 

to overcome the basal immune responses (Surico, 2013). The next step in the ZigZag Model 

illustrates an interaction between a plant and a microbe where the microbe has effectors that 

prevent downstream signal transduction events that trigger PTI or overcome the PTI response. 

This represents Effector Triggered Susceptibility (ETS), and a compatible interaction because 

disease symptoms become evident due to microbial infection. Effectors are proteins secreted into 

the apoplastic space or into the host cytosol by a microbe that can be essential for virulence on a 

host plant. The last part of this model is Effector Triggered Immunity (ETI), which is a return 

back to an incompatible interaction between the plant and microbe, due to the plant containing 

Resistance (R) proteins that recognize effectors or the perturbation the effector causes, and 

initiate a strong immune response specific to the threat (Jones & Dangl, 2006). Plants use 

phytohormone regulated signaling cascades that cross-talk with one another to fine-tune 

responses to microbes ranging from symbioants to pathogens. These same phytohormone 

signaling networks that are controlled mostly by Salicylic Acid, Jasmonic Acid, and Ethylene 

gas are the subjects of manipulation by plant pathogens to shift the host response away from the 

necessary defense (Pieterse et al., 2012). 

Effectors within F. oxysporum 

 In the early 2000’s the hunt for effectors within F. oxysporum had begun with the initial 

report of the SIX1 (Secreted in Xylem 1) protein from F. oxysporum f. sp. lycopersici 

contributing to the virulence of this pathogen on certain tomato cultivars (Takken & Rep, 2010). 

Since then, numerous SIX and other classes of effectors have been identified in F. oxysporum 

that contribute to the virulence of formae specialis on host plants (de Sain & Rep, 2015). The 

pathogenic isolate used in this study (Fo5176) contains homologous SIX genes, some of which 



 26 

function in pathogenicity in A. thaliana. Through homology-based comparison between F. 

oxysporum f. sp. lycopersici and Fo5176, 4 homologs to SIX effectors from the tomato infecting 

strain were identified in this A. thaliana infecting strain. Of these 4, SIX4 was 99% similar on 

the amino acid level, induced during infection of host roots, and deletion of the SIX4 gene 

resulted in a decrease of disease symptoms and in increase in survival of inoculated plants 

compared to inoculation with wild type Fo5176 (Thatcher et al., 2012). 

 Effectors are typically discussed in the context of plant-pathogen interactions, however 

the function of an effector to modulate the interaction a microbe has with a plant host is also 

shared by non-pathogenic microbes.  Trichoderma virens again presents itself as an interesting 

example to explore pathology concepts in a beneficial interaction. Through bioinformatic 

analysis of the T. virens proteome and transcriptome when interacting with plant hosts, a class II 

hydrophobin protein was identified that was demonstrated to be a contributor to plant biomass 

increases, and colonization of the root by T. virens. This protein also has roles in the 

mycoparatisitic effect T. virens exerts over Rhizoctonia solani, and when over-expressed reduces 

the colony size of R. solani in in vitro assays (Guzmán-Guzmán et al., 2017). Arbuscular 

mycorrhizae (AM) are commonly found interacting with a wide variety of plants, and form 

intracellular structures called arbuscules that resemble pathogenic haustoria but are sites of 

nutrient exchange between the fungal symbioant and plant. In the AM fungus Rhizophagus 

irregularis, an effector that shares conserved domains with the crinkler (CRN) effector family is 

necessary for the formation of arbuscules in Medicago truncatula (Voß et al,. 2018). While the 

effector repertoire of Fo47 has not been defined, a different non-pathogenic F. oxysporum isolate 

CS-20 has had a small secreted protein characterized that reduces disease severity of F. 

oxysporum f. sp. lycopersici when plants are exposed to the putative effector prior to pathogen 
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challenge. This small protein named CS20EP was isolated by fractionating secreted proteins and 

reduces pathogen symptoms by increasing the expression of the Pathogenesis-Related 1(PR-1) 

gene and chitinase activity in tomato roots and leaves (Shcherbakova et al., 2016). 

 In this chapter, we sought to shed some light into the effector potential of Fo47 when it is 

interacting with A. thaliana. A pipeline for putative effector identification was designed, tested 

using the interaction between the pathogenic isolate Fo5176 and A. thaliana, and successfully 

pulled out the known SIX4 effector as well as other candidates with homology to effectors in 

other pathosystems. A crucial filter in our pipeline is the use of transcriptomic data of the early 

interaction between F. oxysporum and A. thaliana roots between 12 and 96 hours post 

inoculation. Unlike purely genomic or in silico-based research into detecting effectors, the use of 

RNA-seq data allowed for us to operate under the principal that effector proteins are specifically 

induced when the fungus interacts with the plant and select genes that are expressed in planta. In 

Fo47, we were able to identify 13 putative effectors, and 3 of our candidates share homology 

with known pathogen effectors. This chapter highlights the use of transcriptomic data to refine 

the search for putative effectors in a non-pathogenic interaction, and it will be exciting to further 

elucidate the role of these candidate genes in the Fo47-A. thaliana interaction. 
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METHODS 

Transcriptome Analysis of the Interaction between Fo47 and A. thaliana roots 

  Infected plants at 12, 24, 48, and 96 HPI were harvested and roots collected from 5 

plants per treatment per time point were subject to total RNA isolation. Meanwhile, the same 

number of control plants at 12 HPI, Fo5176 and Fo47 fungal mycelia from 5 day-old liquid 

cultures were also collected for RNA extraction. Three biological replicates were produced for 

each treatment. Total RNA extractions were conducted using the ZR Soil/Fecal RNA Microprep 

Kit (Zymo Research, CA, Cat. R2040) following manufacturer’s protocol, and the RNA quantity 

and quality were assessed by NanoDrop 2000 and Agilent 2100 Bioanalyzer. Illumina TruSeq 

Stranded mRNA libraries were prepared and sequenced by Illumina HiSeq™ 2000 Sequencing 

System at the Broad Institute in Massachusetts.  

Pair-end RNA-seq reads were first assessed for quality by FastQC 0.10.1 and then 

trimmed by Trimmomatic 0.32 to remove sequence adapters and low-quality reads that had a 

quality score threshold of 30 every sliding window of 4 nucleotides (Andrews, 2010; Bolger, 

Lohse, & Usadel, 2014). RNAseq data analysis was conducted using Tuxedo suite pipeline. 

Briefly, trimmed reads were mapped to reference genomes of Fo5176 and Fo47 (Broad Institute, 

MA) using Tophat 2.0.9. Mapped reads were assembled into transcripts and FPKM (fragments 

per kilobase per million mapped reads) were calculated using Cufflinks/2.2.1. Differential gene 

expression was conducted using Cuffdiff for infected samples per time point versus fungal 

control to discover differentially expressed fungal genes using a maximum false discovery rate 

of 0.05 and a minimal two-fold change as thresholds (Trapnell et al., 2012). RNA and 

transcriptomic resources and data made available by Dr. Li Guo. 

Filtering for Putative Effectors in Non-Pathogenic F. oxysporum 
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The reference genomes of Fo47 and Fo5176 were analyzed by SignalP 4.1 to determine 

which genes has a predicted signal peptide domain with a D value that is greater than 0.45 to 

reduce the incidence of false positives (Nielsen, 2017). The list of genes that contained a signal 

peptide domain were then compared to the RNA-seq data set we have of differentially expressed 

fungal genes when interacting with A. thaliana roots, and genes with a signal peptide were 

selected that were specifically induced at least 2 fold more in planta than in culture conditions, 

and had an average FPKM of at least 10.  

This short list was further reduced by considering protein size, and since effectors are 

usually small proteins, the cut off was for genes with a product that is 500 amino acids or less. 

We also examined the sequences of these candidate proteins, and determined if they were 

enriched for cysteine residues, as well as lacked transmembrane domains. Cysteine residues are 

common in effectors, and they are thought to contribute to the stability and tertiary structure of 

these secreted proteins (de Jonge & Thomma, 2009). The known effector from Fo5176, SIX4, 

was used as a check for the filters to ensure that it was not filtering out known F. oxysporum 

effectors. Further characterization of all candidate proteins by homology-based approaches was 

performed using HMMER to define the architecture of known domains within these sequences 

utilizing the UniProtKB proteome reference database (Finn, Clements, & Eddy, 2011). The 

BLAST tool available through the Pathogen-Host Interface Database (PHI-Base) was used to 

determine if the candidate Fo47 proteins have significant homology to proteins that have a 

known role in plant infection processes (Urban et al., 2017). 
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RESULTS AND DISCUSSION 

Effector Screening Pipeline Proof of Concept with Fo5176 

  

Figure 8: Pipeline for Identifying Putative Effectors from F. oxysporum  

 

Figure 8 is a breakdown of the filters applied to the whole translated genome of the 

Fo5176 isolate to home in on potential effectors. Table 3 describes the candidate effectors 

identified from Fo5176 and highlighted by a red box within this table is the SIX4 gene. We know 

from previous research that SIX4 is expressed by Fo5176 when it interacts with A. thaliana, and 

we wanted to use the identification of this effector from our pipeline as a validation measure that 

we are not excluding known effectors (Thatcher et al., 2012). 

 
  

Whole Translated Genome for Fo5176 or Fo47

SignalP 4.1 to identify genes with a N-terminus signal peptide

Expression of genes with a predicted signal peptide domain utilizing time 
course transcriptome of Fo5176 or Fo47 infection of A. thaliana

1. Log2 Fold Change greater than 2 for a time point in planta when 
compared to expression in culture

2. Average FPKM between replicates for a time point greater than 10
3. Statistically significant p-value < 0.05

Differentially expressed genes with a predicted signal peptide
1. Protein size less than 500 amino acids
2. More than 4 cysteine residues
3. Phobius transmembrane prediction to identify genes with TM domains

Candidate putative effector genes are characterized for domain architecture by HMMER and 
homology to known effectors by PHI-BLAST tool through PHI-BASE
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Table 3: Properties of Candidate Effectors from Fo5176 that were Isolated by our Pipeline.  

The SIX4 gene, FOXB_04901, was used as a control as previous work determined it is expressed and an effector on 
A. thaliana. SIX4 was pulled out of our pipeline, and is highlighted in red. The gene highlighted in black is 
homologous to a gene in Table 4 from Fo47. Expression of candidate genes is reported as the Log2 fold change of 
the in planta expression compared to the expression in liquid culture. 

 
  

Gene ID 12 HPI FC 24 HPI FC 48 HPI FC 96 HPI FC Protein Size
# of Cysteine 

Residues HMMER Predicted Domains Homology to Known Effectors

FOXB_04098 2.51 4.36 5.34 5.63 433 13 Glycosyl hydrolase family 18 domain
T. virens chitinase CHT42, reduced virulence on 
R. solani

FOXB_09542 4.47 6.30 5.08 4.95 241 12 Pectate lyase Domain
F. solani subspecies pisi pectate lysase A pelA, 
reduced virulence on pea

FOXB_11108 5.59 6.58 5.21 5.81 241 12 No Significant Domains No Significant Hits

FOXB_17950 6.79 5.13 7.19 5.20 96 10 CFEM Domain No Significant Hits

FOXB_04592 -0.99 3.07 1.16 1.41 401 10 Glycosyl hydrolase family 61 domain No Significant Hits

FOXB_00712 4.46 6.36 6.14 4.45 236 9 CHAP Domain No Significant Hits

FOXB_04181 5.26 5.28 4.56 4.58 196 8 CFEM Domain
F. graminearum FGSG_02077, reduced 
virulence on wheat

FOXB_18619 3.95 6.03 7.59 7.73 139 6 No Significant Domains
Leptosphaeria maculans AvrLm6, avirulence 
determinant on Brassica napus

FOXB_04959 1.59 3.17 3.60 3.83 221 6 No Significant Domains No Significant Hits

FOXB_04901 4.04 8.62 10.72 11.33 243 6 No Significant Domains
F. oxysporum f. sp. lycopersici SIX4, avirulence 
determinant on tomato

FOXB_05922 5.42 4.85 1.35 2.27 315 6 CFEM Domain No Significant Hits

FOXB_06937 5.93 5.02 5.88 5.73 211 5 No Significant Domains No Significant Hits

FOXB_19213 5.99 8.65 8.72 9.03 131 4 No Significant Domains No Significant Hits

FOXB_14988 1.55 1.28 1.52 2.81 146 4 No Significant Domains No Significant Hits
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Table 4: Characteristics of Candidate Effectors Identified in Fo47 using our Pipeline.  

The gene highlighted in a black box is homologous to a gene in Table 3. Expression of candidate genes is reported 
as the Log2 fold change of the in planta expression compared to the expression in liquid culture. 

 

Characteristics of Putative Fo47 Effectors Involved in the A. thaliana Interaction 

 Our pipeline using publicly available genomic data and bioinformatic packages combined 

with experimental RNA-seq data of the interaction between the non-pathogenic F. oxysporum 

isolate Fo47 and A. thaliana was able to identify 13 candidate effector genes that could be 

important for the beneficial interaction between the two (Table 4). Three of these candidates are 

particularly unique as they share homology with known effectors from other systems.  

The gene highlighted with a black box in tables 3 and 4 are homologous to each other with 100% 

similarity between Fo5176 and Fo47 on the protein level. These genes, FOXB_04181 and 

FOZG_02644, share 59% amino acid similarity with a gene from F. graminearum, 

FGSG_02077, that when reduced in expression by transposon insertion results in lower 

pathogenicity on wheat (Dufresne et al., 2008). In F. graminearum, the role or function of this 

Gene ID 12 HPI FC 24 HPI FC 48 HPI FC 96 HPI FC Protein Size
# of Cysteine 

Residues HMMER Predicted Domains Homology to Known Effectors

FOZG_18295 7.70 9.16 8.92 9.35 241 12 No Domains No Significant Hits

FOZG_13798 4.28 7.46 7.84 7.27 96 10 CFEM Domain No Significant Hits

FOZG_17490 7.95 9.73 7.03 7.55 95 8 No Domains No Significant Hits

FOZG_17267 4.71 4.49 6.17 4.62 135 8 No Domains No Significant Hits

FOZG_02644 2.44 1.54 1.71 2.37 196 8 CFEM Domain
F. graminearum FGSG_02077, reduced
virulence on wheat

FOZG_18219 4.46 4.48 4.91 5.29 228 8 No Domains No Significant Hits

FOZG_16010 3.55 5.98 5.77 4.80 276 7 MEROPS peptidase domain
Coccidioides posadasii MEP1, reduced
virulence on mouse

FOZG_02301 5.85 4.97 4.69 5.44 326 7 No Domains No Significant Hits

FOZG_03790 3.31 3.41 1.93 2.30 315 6 CFEM Domain No Significant Hits

FOZG_15044 4.20 2.44 2.99 2.63 211 5 No Domains No Significant Hits

FOZG_16552 7.12 9.81 7.86 4.13 247 5 No Domains No Significant Hits

FOZG_07196 2.01 1.82 4.15 4.62 404 5 Glycosyl hydrolase family 17 domain
Blumeria graminis f. sp. Hordei BEC1005,
reduced virulence on barley

FOZG_04373 5.15 6.01 6.24 5.23 284 4 No Domains No Significant Hits
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hypothetical protein is not understood, but like the homologs in Fo5176 and Fo47 it contains a 

CFEM domain. CFEM domains are unique to fungi and tend to be found in extracellular 

membrane proteins with functions in pathogenesis (Zhang et al., 2015). The first CFEM domain 

containing protein was described in Magnaportha grisea, MAC1, and this protein was found to 

be a necessary protein for successful appressorium formation on rice (Choi & Dean, 1997). 

CFEM domain containing proteins are also found in non-pathogenic fungi, and in 

Saccharomyces cerevisiae the protein CCW14 supports fungal cell wall stability by contributing 

to its biogenesis (Mrsa et al., 1999). There are two additional genes with CFEM domains in 

tables 3 and 4, and in both cases the genes are homologous between Fo5176 and Fo47 with 

100% amino acid similarity. In the case of CFEM domain containing genes that are homologous 

between Fo5176 and Fo47, it is possible that these genes function in the broader interaction with 

A. thaliana that is shared between Fo5176 and Fo47 and are not effectors specific for pathogenic 

or non-pathogenic interactions.  

The 2 additional putative effectors identified from Fo47 with structural similarities to 

known effectors are FOZG_16010 and FOZG_07196. FOZG_16010 is 51% identical on the 

amino acid level to a metalloprotease effector (MEP1) from Coccidioides posadasii that 

contributes to virulence on mouse by enzymatically breaking down a cell surface antigen that 

recognizes C. posadasii spores (Hung et al., 2005). A similar metalloprotease from F. oxysporum 

f. sp. lycopersici (MEP1) also contributes to virulence of this pathogen on tomato by working 

synergistically with a serine protease to cleave tomato chitinase enzymes and reduce their 

efficacy in digesting fungal cell walls (Jashni et al., 2015). It is plausible to hypothesize that this 

MEP1 like gene from Fo47 is involved in suppressing plant enzymatic activity that would 

prevent the establishment of Fo47 in the host epidermis and cortex.  
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The final effector with homology data behind it is FOZG_07196, and this gene is 30% 

similar on the protein level to the BEC1005 gene from Blumeria graminis f. sp. hordei. In B. 

graminis, this protein functions in cell wall remodeling prior to haustoria formation, and the 

authors state that it is a protein with a morphogenic role related to pathogenicity but argue that it 

is not an effector in the traditional sense (Pliego et al., 2013). In the interaction shared between 

Fo47 and pea roots, microscopic observations have revealed that Fo47 hyphae undergo 

alterations as they colonize the plant tissue. The authors report that the majority of Fo47 hyphae 

have a distorted and retracted cytoplasm with an accumulation of inclusions in the space between 

the membrane and cell wall (Benhamou & Garand, 2001). It is possible that in Fo47 this 

candidate effector functions in a way that is more of a morphological rather than secreted 

pathological factor to remodel cell wall components when interacting with A. thaliana roots. The 

effectors that do not have any recognizable domains or architecture are not discounted. In table 

3, the SIX4 effector does not have any additional information to support its role as an effector, 

and it has been reported by other groups to lack recognizable domains (Thatcher et al., 2012). It 

is a property of effectors to have a high degree of diversity in sequences and resulting structures, 

and structural similarity does not mean that these sequences share functional roles (Białas et al., 

2017). This is why our filters focus on non-structure or homology-based identification methods 

early on and include them later. 

We report a conservative list of candidates that warrant further investigation for their 

expression in planta and predicted protein sequence and structure that suggests that they have a 

role in interacting with A. thaliana. Without functional characterization and localization, it is 

challenging to deduce the role these candidate effectors play in the interaction between Fo47 and 

A. thaliana. Our pipeline was validated using expression data from the pathogenic interaction 
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between Fo5176 and A. thaliana to identify the known SIX4 effector gene, and then applied to 

the non-pathogenic isolate Fo47 that has not had its effector potential described to our 

knowledge.  

Our analysis identified candidates that are shared between the pathogen and non-

pathogen and likely represent a core group of CFEM domain containing genes that F. oxysporum 

expresses to facilitate intercellular colonization of the host. We also isolated genes unique to the 

non-pathogen that could have metalloprotease or cell wall remodeling activity and be a 

component of Fo47’s ability to exist within the plant root without resulting in disease symptoms. 

The use of RNA-seq data as a filter to remove genes that have the critical signal peptide domain 

that is necessary for the effector to leave the fungal cell, but are not induced when the fungus is 

in planta in comparison to culture conditions was a major asset in this analysis to lend some 

experimental basis to an otherwise in silico predictive search. It would be interesting to apply 

this filter to other Fo47-host interactions to determine if there is a core set of genes expressed 

that have effector characteristic as well as putative candidates that are host-specific, and to 

determine if Fo47 secreted proteins are a component of the disease reduction and biomass 

increase in the A. thaliana interaction. 
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