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ABSTRACT

A STUDY ON CONTROLLING POWER SUPPLY
RAMP-UP TIME IN SRAM PUFS

SEPTEMBER 2019

HARSHAVARDHAN RAMANNA

B.Tech., NATIONAL INSTITUTE OF TECHNOLOGY KARNATAKA

M.S.E.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Daniel Holcomb

With growing connectivity in the modern era, the risk of encrypted data stored in

hardware being exposed to third-party adversaries is higher than ever. The security

of encrypted data depends on the secrecy of the stored key. Conventional methods

of storing keys in Non-Volatile Memory have been shown to be susceptible to phys-

ical attacks. Physically Unclonable Functions provide a unique alternative to con-

ventional key storage. SRAM PUFs utilize inherent process variation caused during

manufacturing to derive secret keys from the power-up values of SRAM memory cells.

This thesis analyzes the effect of supply ramp-up times on the reliability of SRAM

PUFs. We use SPICE simulations as the platform to observe the effect of supply ramp

times at the circuit level using carefully controlled supply voltages during power-

up. We also measure the effect of supply ramp times on commercially available

SRAM ICs by performing reliability and uniqueness measurements on two commercial

vi



SRAM models. Finally, a hardware implementation is proposed in a commercial 16nm

FinFET technology to establish the design flow for taping out a custom SRAM IC

with separated peripheral and core power supplies that would allow for experimental

evaluation of sequenced power supplies on the SRAM PUF.
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CHAPTER 1

INTRODUCTION

The field of security has grown both in importance as well as complexity over the

years. With increase in exposure to third parties, protecting encrypted data is more

relevant than ever. Due to the ready availability of computing power combined with

improved methods of attacking, it is necessary to utilize more robust measures to

ensure security of secret keys and thus the data stored in hardware. Key storage in

Non-Volatile Memory such as Flash has proven to be susceptible to physical attacks

[45] [3]. This has paved the way to Physically Unclonable Functions (PUFs) [19] which

offer an innovative alternative to classical cryptography. PUFs can be considered as

a type of hardware entangled secret that exploits inherent physical features that are

unique to the underlying hardware modules. They form specialized modules that are

easy to evaluate but almost impossible to predict or replicate. PUFs have formed an

important facet of hardware security and have proven useful for device authentication,

key generation [52] and key exchange [8]. This thesis focuses on one such PUF called

the SRAM Power-Up PUF [23] [21] [24].

When a stimulus is applied to the PUF structure, the PUF is expected to behave

in a seemingly random or unpredictable way. The stimulus is called a challenge to the

PUF. The applied stimulus interacts with the physical micro structure of the device to

produce an output that can be measured. The produced output is called a response.

PUFs thus, implement a challenge-response type of authentication, where the party

requiring authentication must provide a valid response to a challenge that is posed to

it. The combination of the input challenge and the output response form a Challenge-
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Response Pair (CRP). The advantage of PUFs is that the CRP for a PUF instance

is unpredictable but repeatable. PUFs have seen uses in numerous application such

as FPGA bitstream IP protection [21] and have also been implemented commercially

in FPGAs such as Xilinx Ultrascale [34] for secret key generation.

1.1 Process Variation

The randomness in the PUF responses are caused by the process variation during

manufacturing as well as changes in environmental factors [36]. One way of categoriz-

ing process variation is into global and local mismatch factors [43]. Global factors are

those independent of geometry and placement while local factors encapsulate those

dependent on locality.

Another way process variations can be classified are as systemic and random

variations [1]. Systemic variations are deterministic and dependent on the structure

as well as the topology of the gate or transistor. These are caused by known physical

phenomenon during manufacturing. For example, Chemical Mechanical Planarization

(CMP) results in different wire thickness across the chip depending on the routing

density. Random variations are those which cannot be determined or predicted. The

different sources of random variations [15] are:

• Edge effects - As lithography involves multiple masks and as the lengths of the

features reduce below the wavelength of light, edges forming the various device

layers vary between transistors. This is the main source of process variation for

FinFETs.

• Random dopant fluctuations - Differences in the implanted dopant concen-

tration can alter the properties of the transistor such as threshold voltages. Due

to reduced geometry in advanced technology nodes, dopant fluctuations has a

2



larger effect because the total number of dopants is fewer. This is the main

source of variation in MOSFETs.

• Oxide Effect - Fluctuations in oxide thickness during manufacturing affect the

threshold voltages of the transistors causing mismatch between devices.

Random variations can be further classified as intra-die and inter-die process vari-

ation. Inter-die process variation are differences in transistor parameters on different

ICs. These feature differences change not just from die to die but also from wafer to

wafer as well as wafer lot to wafer lot. Intra-die process variation on the other hand

is the variation in transistors present on the same chip. Intra-die process variations

exhibit spatial as well as structural correlation. Devices located close to each other

tend to have similar features as do similarly structured gates or transistors present on

the same die. With reduction in device sizes, both intra-die and random fluctuations

have increased drastically [5].

1.2 Physically Unclonable Functions

Several Physically Unclonable Functions have been proposed and implemented.

Some of the examples are Anderson PUF [2], the Ring Oscillator PUF [47], Sensor

based PUF [13] [55], Bistable PUF [10] [11]. Although all PUFs are based on utilizing

physical measurements of a random underlying process, PUFs can be categorized

based on several factors as shown in Figure 1.1. If the source of randomness of the

PUF is intrinsically present in the physical system, the PUF is categorized as an

Intrinsic PUF. If the source of randomness is explicitly introduced into the system,

the PUF is termed as an extrinsic PUF. Another way to categorize PUFs is based

on the challenge response pairs of the PUFs [42]. If the PUF has a limited set of

responses or just a single response, it is categorized as a weak PUF. On the other

hand, if the PUF has an exponential CRP mapping space, it is termed as a strong

3



PUF [41]. Due to the large number of CRPs, strong PUFs prevent an attacker from

performing a full read out of all CRPs.

Figure 1.1: A categorizing of PUFs.

An example of an extrinsic PUF is the Optical PUF [37] [40] shown in Figure

1.2. The optical PUF consists of a transparent material that is doped with light

scattering particles. When a beam of monochromatic light shines on the coated

material, a random and unique speckle pattern will be generated. The placement of

the light scattering particles is an uncontrolled process and the interaction between

the light and the particles is very complex. Therefore, it is very hard to duplicate the

response of the optical PUF such that the same speckle pattern will arise, hence the

postulation that it is unclonable.

A via PUF [29] on the other hand is an example of an intrinsic PUF. A via PUF is

based on randomly generated via-hole formation during IC fabrication. IC manufac-

turers establish a design rule regulating the minimum via hole size to guarantee the

physical connection between metal layers formed by a via. The via PUF intentionally

violates this design rule to create uncertainty in the via connection. The advantages

of using via holes are that the open or short states in the circuit create very clear

voltage or current differences, and once the open or short states are determined, they

are not changed over time by environmental factors and do not require expensive
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Figure 1.2: The implementation of the optical PUF [32].

post-processing such as error correction. Figure 1.3 shows a cross section of a via

PUF showing the different vias acting as short circuit and open circuits in the IC.

Figure 1.3: A cross section of the via PUF [29].

The Butterfly PUF [30] is an example of a weak PUF. A butterfly PUF consists

of two cross coupled latches that are forced into an unstable state before allowing

them to settle into a stable state as shown in Figure 1.4. Each latch contains an

asynchronous preset and an asynchronous clear pins, and the cross coupled latch

system has two stable states. One of the latches is sent a preset signal while the

other is sent a clear signal through an excitation signal. This causes the system to

enter an unstable state and when the excitation signal is removed, the PUF settles
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into one of the two stable states. The state that the PUF settles into depends on

the interconnect delays of the two latches. This is a weak PUF as there is only one

response per PUF instance.

Figure 1.4: Implementation of Butterfly PUF [30].

An example of a strong PUF on the other hand is an Arbiter PUF [9] [44]. An

Arbiter PUF implementation depicting the path of signals based on the challenge is

shown in 1.5. The Arbiter PUF exploits the difference in the delays of two multiplexer

paths. The exact path that each signal races through is determined by k external

bits which are applied at the stages, one bit per stage. These k bits form the chal-

lenge to the Arbiter PUF. An arbiter decides which signal arrived first or won the

race and outputs a 1-bit response. Since the delay between the various multiplexer

paths are dependent on process variation, the PUF response depends on the input

challenges. Thus the Arbiter PUF has 2k challenges and 1-bit response for each of

those challenges.
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Figure 1.5: Implementation of an Arbiter PUF where a low challenge bit switches the
path and a high challenge bit maintains the path in the switcher modules [20].

1.3 Key Generation using PUF

PUF responses are influenced by not just process variation but by noise and envi-

ronment factors as well. PUF responses are often not uniformly distributed across the

PUF. Due to these reasons, PUF responses cannot be directly used as cryptographic

keys [7]. To overcome the issue of noise and non-uniformity, Helper Data Algorithms

(HDA) [12] are used to generate cryptographically secure keys. HDA ensures that the

keys generated are reproducible and have high-entropy. The key generation is split

into two phases - enrollment and regeneration.

During the enrollment phase, the ”true” response of the given PUF is obtained.

Depending on the length of the response R as well as the error rate that needs to

be corrected, a code word Cs is selected from an Error Correcting Code C. The

response R is given as the input to the HDA to produce the Helper Data HD and a

secret key K. Although more advanced key generation methods have been proposed

recently [38] [31], we explain key generation using a simple method called code-offset

technique [14] shown in Figure 1.6.

1. First, the bit offset between Cs and R produces the Helper Data HD through

equation 1.1

HD ← Cs ⊕R (1.1)
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2. The secret key is produced through a hash function hi belonging to the universal

hashing function family H. The hash function hi is selected to ensure maximum

entropy in the generated secret key.

K ← hi(R) (1.2)

The Helper Data HD is available publicly and can be stored in the NVM of the

chip as long as an attacker cannot manipulate it. Although the Helper Data inevitably

leaks information [35] about the PUF response R, the information loss can be offset

by utilizing additional bits in the PUF response.

(a) (b) (c)

Figure 1.6: Figure 1.6a shows the generation of Helper Data HD. Figure 1.6c shows
the generation of the secret key.

The key regeneration phase shown in Figure 1.7 consists of the following steps:

1. The PUF response R′ is collected from the test PUF that needs to be authen-

ticated. By using the Helper Data provided from the enrollment stage HD, a

code word C ′s is generated using equation 1.3.

C ′s ← R′ ⊕HD (1.3)

2. The code word C ′s can be corrected to Cs if the two code words are separated by

a small Hamming Distance. Thus, selection of an appropriate ECC algorithm
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is imperative in ensuring that there no false negatives in matching the PUF

responses from enrollment and regeneration.

Cs ← ECC(C ′s) (1.4)

3. From the reconstructed code word Cs and the Helper Data HD, we can generate

the enrolled PUF response R using equation 1.5.

R← Cs ⊕HD (1.5)

4. The reconstructed response R can then be used to generate the secret key K

using the hashing function hi.

K ← hi(R) (1.6)

Figure 1.7: Process for secret key regeneration from noisy PUF response.

1.4 Error Correction and Reliability Improvements

As mentioned in the previous section, due to the difference in PUF responses at

the time of enrollment and key regeneration, error correction is a vital aspect of PUF

based keys. Although various techniques for ECC have been suggested, most of them

suffer from having an expensive overhead when being implemented in hardware.
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The earliest error correction for PUF based keys suggested the use of 2-D Ham-

ming Codes [18] [56]. The proposed 2-D Hamming Code ECC arranges the PUF

response into rows and columns, creating a matrix. Hamming Codes are used to pro-

duce redundant information for each row and column of the matrix. This redundant

information along with parity bits is used to correct errors in the PUF responses dur-

ing key regeneration. The main drawback of this method is that the matrix of PUF

response created during regeneration cannot have more than one row with two errors.

A more appropriate ECC method for PUFs utilizes Bose-Chaudhuri-Hochquenghen

(BCH) codes [46]. The first proposed implementation was capable of correcting 30

errors in a PUF response of 255 bits. The proposed implementation exposed 192 bits

of Helper Data, thereby requiring the key size to be reduced to 63. Several other

methods for improving error correction in PUFs have been suggested. Index-Based-

Syndrome (IBS) [56] is shown to leak less information than conventional ECC which

use bitwise XOR-masks. Other improvements include soft decision information in the

Helper Data Algorithm that reduces the number of PUF response bits required to

generate a secure key [31]. Suggestions to reduce ECC complexity include two stage

coding through the use of repetition coding and XOR-mask syndrome generation [7].

While the previously mentioned techniques deal with ECC itself, others papers

suggest reducing ECC overhead by improving the reliability of PUFs. Helper Data

required to generate a secret key increases with the unreliability of the PUF response

leading to larger information leak about the PUF response. Thus, to ensure a se-

cure cryptographic key, the PUF response bits need to be increased to overcome the

entropy loss. The area overhead required for ECC and the associated increase in

the number of PUF response bits to overcome the unreliability grows superlinearly

with the error rate [27]. Designers save area overhead when the reliability of the

PUF increases. For example, in an FPGA based PUF implementation, reducing the

BER from 10% to 3% reduces the ECC LUT and register usage by over 40% [53].
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Similarly, ASIC implementations of PUFs show 60% area savings when the error rate

drops from 20% to 5% [39].

One way to improve reliability is by utilizing the phenomenon of Negative Bias

Temperature Instability (NBTI)[6] [17]. When a MOSFET operates under a nega-

tive gate-to-source voltage, positive charges accumulate under the gate leading to an

increase in the threshold voltage. NBTI can be artificially achieved at high tempera-

tures by subjecting a PMOS of the SRAM to negative bias. By selectively targeting

one of the PMOS in the SRAM cell, the mismatch between the inverters is increased

leading to more repeatable power-up responses. Several circuit enhancement tech-

niques have also been proposed to achieve improved reliability. One such method

is to replace the 6T transistor in the memory core with a 8T cell that contains an

embedded latch which reinforces the bit value during power-up [28]. This method

changes the drive strength of the PMOS transistors dynamically to make the bit cells

less prone to noise and voltage fluctuations. Other improvements suggest modify-

ing the 6T structure to utilize active resistive loads, parallel loads or current mirror

loads [39]. These alterations make the SRAM cell more sensitive to process variations

leading to a more reliable PUF construction.

1.5 Hypotheses

Most of the previously discussed methods for improving reliability require chang-

ing SRAM cell structure or various methods of post-processing the PUF responses.

The ubiquity of SRAM PUFs stems from the ability to use existing SRAM circuitry

that are foundry-provided, tested and require no modifications, with post processing

circuits. Keeping this in mind, we propose a non-intrusive technique to improve the

reliability of SRAM PUFs. The main hypothesis of this research is that a large ramp-

up time during power-up of SRAM cells should minimize the effect of noise on the

power-up state, thereby improving reliability. This would mean that the Power-Up
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SRAM PUF’s responses would be more reliable if the power-up ramp times are larger.

Another hypothesis is that separating power supplies to the SRAM memory core and

its peripheral circuitry can improve reliability of the SRAM PUF by allowing for a

controlled power-up sequence that is less influenced by the peripheral circuitry. To

test these hypotheses, we propose to perform the following three experiments:

1. Perform circuit simulation of SRAM cells and SRAM modules from a foundry-

provided SPICE model file. SPICE simulations help analyze the effect of the

ramp-up time at the transistor level to evaluate the hypotheses under ideal

conditions with maximum observability. Although it allows for better control

over the test environment, it is slow and not scalable.

2. Measure BER of SRAM power-up using commercial SRAM ICs for different

ramp-up times and compare it to the results of SPICE simulations. Testing

commercially available SRAM ICs allows us to test our hypothesis in a realistic

setting and for different technology nodes. The drawback in this setup is that

most commercially available ICs provide a single power pin to the SRAM. Thus,

we cannot test the hypothesis of improving reliability by separating power sup-

plies to the core and peripheral circuit. We also do not know the implementation

details of the ICs.

3. Design and tape-out an SRAM IC with separate power supplies to the memory

core and the peripheral circuitry. The custom SRAM ICs allow an intermediate

level of controllability although they are limited to one process node and are

hard to implement.

Each of the proposed experiments and their results are discussed in detail in the

subsequent chapters.
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Table 1.1: Comparison of testing platforms.

Platform Control Scalablity Match to Reality
SPICE Simulation Best Least Least

Commercial SRAM IC Least Intermediate Best
Custom SRAM IC Intermediate Best Best

1.6 Thesis Outline

The thesis is organized into six chapters. Chapter two reviews the SRAM archi-

tecture and explains the working of the SRAM Power-up PUF. Chapter three shows

the experiment setup and results for the SPICE simulations of SRAM bit cells and

SRAM models. Chapter four explores the effect of supply ramp-up time on commer-

cially available SRAM Integrated Circuits, and compares to the results from Chapter

three. Chapter five focuses on the implementation of a custom SRAM IC. It explains

the different stages of the design implementation in detail and the testing method-

ology used to test the chips that were taped out. Finally, chapter six concludes the

thesis and discusses future work.
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CHAPTER 2

SRAM PUFS

This chapter explains the architecture of an SRAM module and its operations.

The chapter also explains the use of SRAM cells as Physically Unclonable Functions.

We also discuss the proposed hypothesis and compare the platforms we use to test

our hypothesis.

2.1 SRAM Architecture

An SRAM module consists of a memory core, row circuitry, column circuitry and

control logic. Figure 2.1 portrays the overall architecture of the SRAM module. The

memory core is made of SRAM cells packed as rows and columns. Each SRAM cell

is usually made of six transistors, four NMOS and two PMOS. Four transistors (M0-

M3) are arranged as cross coupled inverters and two more (M4-M5) that work as pass

transistors. Since a cross-coupled inverter has two stable states, each cell stores 1 bit

of information. When the wordline WL is not asserted, the cross-coupled inverters

maintain the value as long as power is supplied to them.

The row circuitry consists of row decoders and wordline drivers. The row decoders

select the wordline that must be activated based on the address provided and the

wordline drivers activate the wordline based on the control circuitry. The row circuitry

is pitch-matched to the SRAM cells to ensure that each wordline has the same drive

strength across the array.

The column circuitry consists of pre-charge circuitry, column decoders, write

drivers and sense amplifiers. The pre-charge circuitry consists of PMOS transistors
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Figure 2.1: Architecture of a SRAM module.

to charge the bitlines BL and BL before a read and write operation. The column

decoders are similar to the row decoders and are used to access particular bits in a

row of the memory core. The write drivers input values to a particular bit cell by

driving bitlines BL and BL. The sense amplifiers are placed after the write drivers
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at the end of the bitlines, and are used to read out values by sensing the differential

voltages on the bitlines. Figure 2.2 shows a single column consisting of the pre-charge

circuit and the word driver.

Figure 2.2: A slice of a SRAM column showing the bitline conditioning and write
drivers [54].

The read operation is achieved by first pre-charging the bitlines. The pre-charge

circuitry conditions the bitlines to ensure both BL and BL are at the same voltage.

Once both the bitlines are at the same potential, the row decoder and wordline driver

activate the wordline corresponding to the address selected. Depending on the value

stored in the cell, BL and BL are driven to opposite polarities. This small change in
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potential between the bitlines are sensed and amplified by the regenerative feedback

of sense amplifiers.

The write operation is conducted by first precharging the bitlines and then selec-

tively pulling one of them low. The write driver is used to determine and pull either

BL or BL low depending on the value to be written to the cell. The row circuitry

then activates the wordline that corresponds to the address where the value should

be written. The regenerative feedback of the cross-coupled inverters forces the bit

value written on the bitlines into the cell.

2.2 Operation of Power-Up SRAM PUF

The idea behind the power-up SRAM PUF is that values held in the SRAM cells

on power-up are unique to each IC and are repeatable over time for a particular PUF.

As the SRAM is volatile, the values stored are lost after power is removed. Thus,

when the SRAM power is removed and reapplied, each bit cell (shown in Figure 2.3)

in the SRAM powers up into a 0 or a 1. If the probability of the SRAM cell to

power-up to a 0 is p0, then the probability to power-up to a 1 is p1 = 1 − p0. Even

if the inverters forming each SRAM bit cell is intended to be of equal strength and

drive, process variations during manufacturing results in one of the inverters being

stronger than the other. This causes the particular bit cell to have a higher affinity

to settle into one state over the other, i.e., p0 > p1 or p0 < p1. If sufficient number of

cells’ power-up values are measured, the collection of the power-up affinities form a

unique fingerprint to the SRAM module.

As the power-up state is a function of both process variation and noise present in

the circuit during power-up, the power-up values measured can be different. Based

on the influence of noise on the power-up state of the cell and its affinity to power-up

into a 0 or a 1 bit, SRAM cells can be categorized into strong-0 cell, strong-1 cell or a

matched-cell. If the process variation mismatch is large between the inverters of the
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Figure 2.3: A single SRAM cell [54].

cell, the effect of noise on the power-up is minimized and power-up value is dependent

only on the process variation. For a given cell, if p0 ≈ 1, the cell is categorized as a

strong-0 cell and if p1 ≈ 1, the cell is categorized as a strong-1 cell. On the other hand,

matched-cells have an equal tendency to power-up into 0 or 1 ,i.e., p0 = p1 = 0.5.

Figure 2.4 shows the three types of bit cells based on power-up values.

(a) Matched Cell (b) Strong-1 Cell (c) Strong-0 Cell

Figure 2.4: Figure showing effect of process variation and noise on the power-up
state. A matched cell’s power-up state is influenced by the noise while a strong-1 and
strong-0 cell’s power-up is independent of noise.
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Since the power-up states of strongly skewed cells are independent of noise and

are dependent only on the process variation, these power-up states can be used as

identifying fingerprints and to generate reliable secret keys [23].

2.3 Reliability Metric

As a PUF uses a physical measurement to generate keys, noise in the underlying

physical processes lead to errors in key reconstructions. To ensure that SRAM PUFs

can be used for key generation, it is necessary for the SRAM PUF responses to be

repeatable over different conditions. In the case of power-up SRAM PUF, the secret

key generated using the power-up states of a given PUF must be reliable over multiple

power-ups. Reliability measurements determine the amount of repeatability of the

PUF responses over multiple trials. The reliability is measured by calculating the

Hamming distance between the PUF responses.

First, for a given power-up j the N -bit SRAM PUF response, denoted as Rj, is ob-

tained. To overcome the errors in responses, multiple PUF responses {R0, R1, ..., Rm}

are collected and averaged over an odd number of trials m to produce the enrollment

power-up response R. Each bit of the enrollment response R[i] is calculated using

equation 2.1.

R[i] =


0, if 1

m

m∑
j=0

Rj[i] < 0.5

1, otherwise

(2.1)

When the same PUF’s response are observed under a new trial p, the difference

between the enrollment response R and the new response Rp gives the Bit Error.

The total number of bit positions that differ between the two responses is called the

Hamming Distance and is calculated using equation 2.2.
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HD(R,Rp) =
N−1∑
i=0

R[i]⊕Rp[i] (2.2)

The Within Class Hamming Distance (WCHD) is the average Hamming Distance

obtained over k trials for the same PUF instance and is given by equation 2.3.

WCHD(R) =
1

k

k−1∑
j=0

HD(R,Rj) (2.3)

For the same PUF, the ideal reliability is 100%, meaning that the Hamming

Distance between the golden fingerprint R and a new fingerprint Rp is 0.

2.4 Uniqueness Metric

Although we want the PUF responses to be reproducible over multiple trials, i.e.,

be reliable, we want the PUF responses from different devices to be significantly

different from each other. The PUF response must ideally be completely random be-

tween devices and this randomness is measured by calculating the Hamming Distance

between PUF response of two different PUFs. If the power-up response of two PUFs

A and B are Ra and Rb, the Hamming distance between the responses is calculated

by equation 2.4.

HD(Ra, Rb) =
N−1∑
i=0

Ra[i]⊕Rb[i] (2.4)

where R[i] represents the ith bit of the response R. The Between Class Hamming

Distance (BCHD) is calculated using equation 2.5.

BCHD(a, b) =
1

m∗(m−1)
2

m−1∑
i=0

m−1∑
j=0

HD(Ra,i, Rb,j) (2.5)

where the subscript a and b represent two different PUFs A and B, i represents

the ith trial and j represents the jth trial. The Between Class Hamming Distance

(BCHD) is calculated over m trials.
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Ideally, the BCHD is 50% meaning that half of the bits of the response of PUF A

is expected to be different from that of PUF B.
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CHAPTER 3

SPICE SIMULATIONS

In this chapter, we discuss two different SPICE simulation setups and the results

obtained from the simulations. The objective behind performing SPICE simulation

is to get an understanding of the effect of supply ramp on the SRAM PUF at a

circuit level. To achieve this we first analyze the effect of supply ramp time on the

SRAM bit cell under ideal conditions by grounding the wordlines and bitlines. As

SRAM circuitry contains several components apart from the bit cells, we incorporate

the peripheral circuitry in the next set of experiments to analyze the effect of supply

ramp time in a more realistic manner. The SPICE simulations are performed using

commercial 16nm FinFET technology models that incorporate parameters to reflect

the inter-die and intra-die process variations found on the Silicon chips. While the

SRAM bit cell models are provided by a foundry, the circuit level netlist of the

SRAM module is provided by ARM. These SRAM modules contain a memory core of

size 256x16 and include precharge circuitry, sense amplifiers, row decoders, wordline

drivers and word drivers.

3.1 SRAM Bit Cell Simulations

To test the effect of supply ramp-up time on the power-up state of SRAM cells,

we create a SPICE netlist containing a 6T SRAM cell as shown in Figure 2.3. The

transistor sizing in the netlist is provided by the foundry and the wordlineWL, bitlines

BL and BL are grounded. To introduce process variation among different instances

of SRAM cells, we use Monte Carlo simulation to induce process variation into the
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SRAM cells. The process variation in the devices are modeled by expressing key model

features as equations of five principal parameters. Since the models are proprietary,

we do not have explicit control over the parameters nor do we have information about

what each of the parameters control. For each Monte Carlo simulation, each of the

five variables are sampled for each transistor, thereby creating a unique SRAM cell.

This is shown in Figure 3.1.

Figure 3.1: Five parameters following a Gaussian distribution are sampled for each
transistor in every Monte Carlo simulation. The distributions shown are for illustra-
tion purposes and the actual Gaussian distribution of each parameter is unknown to
us.

The power supply to each of the cells is provided with a particular ramp-up

time and the final power-up state of each cell is recorded. Apart from incorporating

process variation through Monte Carlo simulation, we add transient thermal noise to

the nodes of the SRAM cell as shown in Figure 3.2. The thermal noise is modelled

using a Gaussian distribution with a variance of σ2
Noise [22], where temperature is T

and the capacitance at the node is C (see Equation 3.1).
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Figure 3.2: Schematic of the SRAM bit cell with noise added.

σ2
Noise =

2KBT

C
(3.1)

The distribution is sampled at each time step of the simulation and added to the

nodes through a voltage source. Figure 3.3 shows power-up traces of the SRAM cells

with noise introduced to the nodes. We observe that different SRAM cells stabilize at

different voltage based on the process variation present in the cell. From the waveform

we see that the supply voltage plays a role in determining the power-up state of the

cell. Thus we experiment with different supply ramp times to see its effect on the

SRAM.

The Bit Error Rate is calculated by finding the difference between the power-up

states of the cells in two simulations with different transient thermal noise added to

the nodes. Figure 3.4 shows the concept utilized to find the BER. As measurements

can get biased due to the nature of random noise we add to the SRAM cells, we

randomly choose SRAM cells from individual trials to find the BER. The algorithm
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Figure 3.3: Plot depicting the power-up states of SRAM cells using 100 Monte Carlo
simulations with transient noise added.

we use to find the BER across multiple trials at each ramp time of the power supply

is shown in Algorithm 1 .

Figure 3.4: The difference between the power-up states with different noise gives the
BER.

We measure the power-up states of SRAM cells using 1000 Monte Carlo simula-

tions over 10 trials. In each trial we use a unique seed for generating the Gaussian

noise although the distribution has the same mean and deviation. Thus each trial

provides 1000 single-bit power-up values and we get 10,000 power-up values in total

per ramp time. The BER measurements for 1000 Monte Carlo Simulations are shown
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Algorithm 1 Pseudo code for calculating reliability of SRAM bit cells

1: N ← Number of Power-Up Trials (N=10)
2: M ← Number of bit cell instances from Monte Carlo simulations (N=1000)
3:

4: for i in N do
5: Noisei ← random(seed = i)
6: for j in M do
7: Triali[j]← Power − Up[Noisei]
8:

9: Bit Errors = 0
10: for 1, 2, · · · , count do
11: a← random(0, N)
12: b← random(0, N) 6= a
13: index← random(0,M)
14: Bit Errors += Triala[index]⊕ Trialb[index]

15: BER = Bit Errors/(count)

in Figures 3.6a, 3.6b and 3.6c with a linear ramp in the power supply. We see that

the BER reduces marginally (∼ 1%) when the ramp times are increased.

Apart from the linear ramp waveform, a sigmoid supply signal was also used to

test the effect of ramp time on the reliability of the SRAM cells. A sigmoid function

was chosen to measure the effect of a non-linear supply signal and also to use a signal

that does not have inflection points. The sigmoid function used in our experiments

is defined in Equation 3.2 using the error function described in Equation 3.3.

V (t) = 0.4V + 0.4 ∗ erf(αt− 5) (3.2)

erf(x) =
1√
π

∫ x

−x
e−t

2

dt (3.3)

We vary the value of α to change the slope and the time that the sigmoid signal

takes to reach VDD. Figure 3.5 shows the sigmoid signal for α = 1 and α = 10. The

value of the sigmoid signal at each time step was calculated using a Python script

and these values were provided as a piece-wise linear signal in the SPICE netlist.
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The BER measured between trials of noisy simulations at the same ramp time using

Algorithm 1 is shown in Figures 3.6d, 3.6e and 3.6f.

Figure 3.5: The sigmoid function used as the supply signal for the SPICE simulation.

(a) 10°C (b) 25°C (c) 40°C

(d) 10°C (e) 25°C (f) 40°C

Figure 3.6: BER of SRAM bit cells at different ramp times and temperatures. Figures
3.6a, 3.6b, 3.6c use linear power-up supply while Figures 3.6d, 3.6e, 3.6c use sigmoid
power-up.
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3.2 SRAM Module Simulation

SPICE simulations of SRAM cells assumes ideal conditions and thus may not

be representative of the behaviour of a SRAM module. While we assume that the

bitlines and wordlines are grounded during power-up in our previous experiment, in

reality the peripheral circuitry of the SRAM may impact the voltage of the bitlines

and the wordlines during the power-up process. Thus, we analyze the effect of supply

ramp times on the SRAM cells with the peripheral circuitry included. We use the

SPICE model of the SRAM module produced by the ARM Memory Compiler. The

SPICE model contains a memory core of 256x16 size, sense amplifiers, write drivers,

precharge circuitry and wordline drivers along with control circuitry. Although addi-

tional measurements and experiments would help conclusively understand the effect

of the peripheral circuitry on the power-up values, we show preliminary results ob-

tained in this section. The main limitation of our experiments is caused by the large

number of transistors in the SRAM module. Due to this, we add noises to a limited

set of nodes in the circuit, as well as increase the simulation time step to generate

results.

3.2.1 BER between noise-free and noisy power-up

The first experiment we perform is to measure the difference in power-up between

the noise-free SRAM module and that of the circuit with transient thermal noise

added to the nodes of the circuit. We perform this measurement with the power

supplies to the peripheral circuitry and the memory core tied together and again

with the power supplies separated. The separated supplies allows the power-up of

the SRAM module to be sequenced. We first power-up the peripheral circuitry and

power up the core supply once the peripheral supply is stable as shown in Figure 3.7.

We perform noise-free SPICE simulation on the SRAM module with the supplies

tied together and record the power-up values of all cells in the module across different
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Figure 3.7: The separation of power supplies to the peripheral circuitry and the
memory core allows the power-up to be sequenced. First the peripheral circuitry is
powered up and then the memory supply is ramped up.

ramp times. 10 Monte Carlo simulations were used to introduce process variation to

the transistors of the SRAM module, thus providing ten instances of 256x16 modules,

with 25x16x10 single-bit power-up values. We next repeat the simulation with noise

added to the nodes of the circuit. To reduce the run time of the simulation we add

noise only to the SRAM core, sense amplifiers, wordlines and bitlines. The difference

between the power-up values of the noise-free and noisy trial provides the BER1.

Figure 3.8a shows the BER measured when the power supplies of the SRAM are tied

together.

We repeat the above BER experiment but instead with the power supplies sepa-

rated and sequenced. The peripheral circuitry is always ramped up to VDD in the

first 1 µs. We then ramp up the memory core at varying ramp times to perform

the BER measurements. Figure 3.8b shows the BER when the power supplies are

sequenced. Due to the limited number of measurements, limited noise sources and

1BER is typically measured between trials of noisy instances. Thus, BER calculated between the
noise-free and noisy trial is an approximation. The simulation with noise consumes significant run
time as compared to noise-free trials.
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(a) Tied power supplies. (b) Sequenced power supplies.

Figure 3.8: BER for the SRAM module measured between noise-free and noisy power-
up values.

increased simulation step size, the results obtained may not necessarily capture the

behavior we would observe in taped-out ICs or other simulations. We observe that

on average, the BER measurements for the tied power supplies is higher than that of

the sequenced power supplies.

3.2.2 BER across ramp times for noise-free power-up

Another experiment we perform is to find the change in the noise-free power-up

of the SRAM module when the power supplies are sequenced as compared to the tied

supplies. This experiment allows us to analyze the effect of separating the power sup-

plies. We achieve this by finding the difference in power-up values between different

ramp times. The algorithm used for these measurements is shown in Algorithm 2.

Figure 3.9a shows the errors calculated between two trials at different ramp times

when the power supplies at tied together. Figure 3.9b shows the same measurement

when the power supplies are sequenced. We notice that the difference between the
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power-ups from different ramp times shows that separating and sequencing the power

supplies may cause power-up values to be less sensitive to supply ramp changes.

Algorithm 2 Algorithm for calculating the change in noise-free power-up

1: N ← Number of module instances through Monte Carlo simulation (N=10)
2: M ← Number of Addresses in the module (M=256)
3: Ramps← List of Ramp Times
4:

5: for R in Ramps do
6: for i in N do
7: for j in M do
8: TrialR,i[j]← Data[j] collected after ramp time of R

9:

10: for R1 6= R2 ⊂ Ramps do
11: ErrorsR1,R2 = 0
12: for 1, 2, · · · , count do
13: a← random(0, N)
14: Address← random(0,M)

15: ErrorsR1,R2 +=
15∑

bit=0

TrialR1,a[Address][bit]⊕ TrialR2,a[Address][bit]

16: BERR1,R2 = ErrorsR1,R2/(count ∗ 16)

3.3 Conclusion

Results of the SPICE simulation of the SRAM cells imply that there is an im-

provement in the reliability of SRAM cells’ power-up values when the ramp-up time

of the supply is increased (see Figure 3.6). We also observe that the trend is similar

even when the supply is non-linearly ramped up. Thus, increasing the rise time of the

power supply to the core could make the SRAM bit cells more reliable in powering-up

to the same value.

From the SPICE simulations of the SRAM modules, we observe that separating

and sequencing the power supplies to the peripheral circuitry and memory core in-

creases the reliability of the SRAM module with increasing ramp times (see Figure

3.8). Separating and sequencing the power supplies also ensures a smaller change in

the power-up values of the SRAM (see Figure 3.9). Although more measurements
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(a) Tied power supplies

(b) Sequenced power supplies

Figure 3.9: Percent change in power-up values across different ramp times.

are required to conclusively understand the effect of the peripheral circuitry on the

power-up values, the preliminary experiments show that separating and sequencing

the power supplies between the peripheral circuitry and the memory core may lead

to an overall improvement in reliability of the SRAM PUF and reduce the change in

power-up values between ramp times.
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CHAPTER 4

COMMERCIAL SRAM IC TESTING

This chapter presents the experimental data from power-up states of commer-

cially available SRAM ICs. We explore the effect of supply ramp-up time on these

commercial SRAM ICs and compare it to the SPICE simulation results obtained for

SRAM cells and modules. Testing commercial SRAM ICs helps us validate the effect

of supply ramp-up when the power supplies of the memory core and peripheral circuit

are tied together. Table 4.1 shows the commercial ICs that are used for performing

the experiments.

Table 4.1: List of commercial SRAM ICs used in the experiment.

IC Name Manufacturer Memory Size Interface
23LC1024 [50] Microchip Technologies 128K x 8 Serial
AS6C6264 [33] Alliance Memory 8K x 8 Parallel

To collect the power-up states of the commercial SRAM ICs, we use an ”Arduino

Mega 2560” [4] development board to drive the inputs and store the outputs. The

23LC1024 SRAM ICs require serial inputs and produce serial outputs. The Serial

Peripheral Interface (SPI) module on the Arduino board is used to interface with the

SRAM and read the data at each address sequentially. The AS6C6264 SRAM require

parallel inputs and produce parallel outputs which are accomplished using Digital

IOs of the Arduino development board. The outputs produced by the SRAM ICs are

read by the Arduino board and stored into a file, which is later post-processed to find

the reliability and uniqueness for each ramp-up time. Figure 4.1 shows the test setup

used to readout power-up states from commercial SRAM ICs.
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Figure 4.1: The setup for testing commercial SRAM ICs. The function generator
provides different ramp-up times and the Arduino provides the inputs to the IC and
stores the power-up states.

The Keysight 33511B arbitrary waveform generator [48] is programmed by using

the Keysight Waveform Builder Pro software [49] to produce a waveform that ramps

the supply voltage for a given time and stays at VDD until the Arduino collects all

the power-up values from the SRAM IC. The Arduino board detects when the supply

waveform has completed the ramp-up and enables communication with the SRAM

once the supply signal is stable. As the signal generated by the waveform generator

has a low drive strength, an operational amplifier (Op-Amp) [26] is used to increase

the drive strength. The Op-Amp is configured as a voltage follower circuit and is

powered by an external power supply.
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4.1 Reliability Measurements

The power-up values at each address for the chip are collected as part of a trial.

Thus, one trial for the 23LC1024 IC forms an array of 128K locations, each containing

8 bits while a trial for AS6C6264 forms an array of 8K locations with 8 bits each.

The power-up values are collected N times for each ramp. These trials are used

to calculate the BER at a given ramp using algorithm 3. In our experiments, each

address contains 8-bits of information and count = 10, 000, thus the Bit Error is

averaged over 10,000 x 8 bits. The BER calculated for different ramp times is shown

in Figure 4.2. The results show that BER on average is around 4% for the AS6C6264

SRAM and is around 5% for the 23LC1024 SRAM. Notably, the BER drops by 1%

for the AS6C6264 SRAM when the supply ramp time is 1 second whereas the BER

for the 23LC1024 SRAM is not impacted much with ramp times.

Algorithm 3 Pseudocode for calculating reliability of a single chip at a single ramp
time

1: N ← Number of Trials
2: M ← Total Number of Addresses in IC
3:

4: for i in N do
5: for j in M do
6: Triali[j]← Data[j]

7:

8: Bit Errors = 0
9: for 1, 2, · · · , count do

10: a← random(0, N)
11: b← random(0, N) 6= a
12: Address← random(0,M)

13: Bit Errors +=
7∑

bit=0

Triala[Address][bit]⊕ Trialb[Address][bit]

14: BER = Bit Errors/(count ∗ 8)

Another analysis performed on the power-up values collected is to measure the

reliability when the trials are conducted at different ramp times for the same chip.

The measurement is achieved by using Algorithm 4. The cross-ramp time BERs are
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(a) AS6C6264 SRAM BER measurement (b) 23LC1024 SRAM BER measurement

Figure 4.2: BER measurements of commercial SRAM ICs at various ramp times.

shown in Figure 4.3 and Figure 4.4. The experiments show that larger differences

between the supply ramp time at the enrollment and the key regeneration phase

leads to lower reliability. For example, for the AS6C6264 SRAM, the BER can be as

high as 20% which is 5 times higher than the BER obtained for any fixed ramp time

(see Figure 4.2a). For the 23LC1024 SRAM, the cross ramp BER can be more than 2

times that of the single ramp BER (see Figure 4.2b). Thus, ensuring that the supply

ramp times are constant at the time of enrollment and key regeneration is important

in minimizing BER.

Figure 4.3: The average BER for AS6C6264 SRAM chips for different enrollment and
key regeneration supply voltage ramp times.
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Algorithm 4 Pseudocode for calculating reliability at different ramp times

1: N ← Number of Trials
2: M ← Total Number of Addresses in IC
3: Ramps← List of Ramp Times
4:

5: for R in Ramps do
6: for i in N do
7: for j in M do
8: TrialR,i[j]← Data[j] collected after ramp time of R

9:

10: for R1 6= R2 ⊂ Ramps do
11: ErrorsR1,R2 = 0
12: for 1, 2, · · · , count do
13: a← random(0, N)
14: b← random(0, N)
15: Address← random(0,M)

16: ErrorsR1,R2 +=
7∑

bit=0

TrialR1,a[Address][bit]⊕ TrialR2,b[Address][bit]

17: BERR1,R2 = ErrorsR1,R2/(count ∗ 8)

Figure 4.4: The average BER for 23LC1024 SRAM chips for different enrollment and
key regeneration supply voltage ramp times.

4.2 Uniqueness Measurements

Similar to reliability measurements, uniqueness measurements are performed on

the data collected for each supply ramp time. But unlike reliability measurements

where we choose trials from the same chip, we now choose trials from two different

chips for a given ramp time. The procedure for calculating the uniqueness is given

in Algorithm 5. Figure 4.5 shows the measured uniqueness averaged across different
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chips at different ramp times. We observe that the uniqueness for the AS6C6264

SRAM reduces by ∼ 10% when the ramp time is around 1 second (see Figure 4.5a).

This minimum coincides with the BER minima found previously in Figure 4.2a. When

increasing the ramp times above 1 second, the uniqueness of the SRAM increases to

the ideal value of 50%. For the 23LC1024 SRAM, the minimal uniqueness coincides

with the lowest BER found for the supply ramp time of 1 µs (see Figure 4.2b). Increas-

ing supply ramp times increases the uniqueness up to 4%. The change in uniqueness

is however much smaller in comparison to the AS6C6264 SRAM.

Algorithm 5 Pseudocode for calculating uniqueness at a given ramp time

1: N ← Number of Trials
2: M ← Total Number of Addresses in IC
3: Chips← List of different chip instances
4:

5: for C in Chips do
6: for i in N do
7: for j in M do
8: TrialC,i[j]← Data[j] collected from Chip C

9:

10: for C1 6= C2 ⊂ Chips do
11: DifferenceC1,C2 = 0
12: for 1, 2, · · · , count do
13: a← random(0, N)
14: b← random(0, N)
15: Address← random(0,M)

16: DifferenceC1,C2 +=
7∑

bit=0

TrialC1,a[Address][bit]⊕ TrialC2,b[Address][bit]

17: UniquenessC1,C2
= DifferenceC1,C2/(count ∗ 8)

4.3 Power-Up Bias of the IC

To observe the effect of supply ramp on the power-up values across the chips, we

plot the average value of each bit in a subset of the address space for each ramp time.

Figures 4.6a, 4.6b, 4.6c show the average power-up values on a particular AS6C6264

SRAM at three different ramp times. We observe that particular addresses of the
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(a) (b)

Figure 4.5: Figure 4.5a shows the uniqueness of the AS6C6264 chips and Figure 4.5b
shows the uniqueness of the 23LC1024 chips.

IC get biased to power-up in the 1-state over 0-state when the supply ramp time is

increased while others get biased to 0-state. We term this as the ”local-bias” where

particular addresses have a high tendency to start-up in the 1-state. Figures 4.6d,

4.6e and 4.6f show the local bias on another instance of the AS6C6264 IC. Due to

the repeatability of the effect across chip instances and across address space, this

is likely caused by the architecture of the IC. We see a similar local bias in the

23LC1024 IC, as shown in Figure 4.7. For the AS6C6264 SRAM, this local bias is

most prominent around 1 seconds while the local bias is strongest around 1 µs for the

23LC1024 SRAM. This is the reason we see a reduction in the uniqueness of the chips

at those ramp time. Beyond this ramp time, the local bias effect across the address

space is reduced although the overall percentage of bits starting in 1-state continues

to increase. Figure 4.8 shows the overall percentage of bits in the SRAM powering-up

in the 1-state across different supply ramp times.
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(a) 1 µs (b) 1s (c) 10s

(d) 1 µs (e) 1s (f) 10s

Figure 4.6: Figures 4.6a, 4.6b and 4.6c show the average power-up values for one
instance of AS6C6264 SRAM chips at three different ramp times, while Figures 4.6d,
4.6e and 4.6f belong to another instance of the same model. Each point’s (X,Y)
coordinates indicate its address and bit position in the address.

40



(a) 1 µs (b) 1s (c) 10s

Figure 4.7: Figure showing the average power-up values for one of the ”23LC1024”
SRAM chips at three different supply ramp times.

4.4 Conclusions

In this chapter, we observe the following effects of the supply ramp time on the

reliability, uniqueness and bias of the SRAM:

• Depending on the architecture of the SRAM, varying supply ramp time causes

certain addresses to get biased to power-up in the 1-state (local bias) and oth-

ers to 0-state (Figure 4.6 and 4.7). The ramp time at which this local bias is

strongest most likely depends not just on the architecture but also the technol-

ogy node of the SRAM.

• When the local bias across the SRAM is maximum, the same set of addresses

have a high probability of powering up to 1 across chip instances. This leads to

a reduction in uniqueness (see Figure 4.5a and Figure 4.5b).
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(a) AS6C6264 (b) 23LC1024

Figure 4.8: The bias measurement shows of the percentage of bits powering-up to
1-state for the two SRAM models.

• The ramp times that induce the strongest local bias also maximize reliability

(see Figure 4.2a and Figure 4.2b).

From these observation we can conclude the following:

• Depending on the SRAM, we can choose a supply ramp time to either increase

uniqueness or to increase reliability. For example, if we want to ensure a reliable

SRAM PUF by using the AS6C6264 SRAM, we should choose a ramp time of

1 second (see Figure 4.2a) while maximizing uniqueness would require a ramp

time of 10 seconds (see Figure 4.5a).

• Given that the reliability does not worsen significantly at larger ramp times,

it is more beneficial to choose a supply ramp time to increase uniqueness than

to increase reliability. For example, the difference in maximum and minimum

BER is ∼ 2% while the difference in maximum and minimum uniqueness is

∼ 15% for the AS6C6264 SRAM (see Figures 4.2a and 4.5a).

• It is critical for reliability to use a consistent ramp time for enrollment and

regeneration. If the enrollment was performed at a particular ramp time and the
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regeneration is performed at a different ramp time, the BER increases rapidly

with difference in ramp times (see Figures 4.3 and 4.4).
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CHAPTER 5

CUSTOM SRAM IC

In the previous chapters we have seen that increasing ramp-up times on the power

supply improves the reliability of the SRAM PUF. We also observe that separating the

power supplies to the memory core and the peripheral circuitry further improves the

reliability. Commercial SRAM ICs often have the power supplies to the peripheral

circuitry and memory core tied together. Thus, to test our hypothesis in Silicon,

we designed and taped-out a custom IC with separated supplies in a commercial

16nm FinFET technology. Although the taped-out chip was found to have a short

on a peripheral circuitry power pin, the design steps taken for taping out lay a firm

foundation for future work. The various aspects of designing the custom SRAM IC

are described in the following sections.

5.1 Design and Synthesis

The custom SRAM IC design comprises four SRAM modules. Each SRAM module

consists of 256 addresses each storing 16 bits of information. The SRAM modules are

generated through the ARM Artisan Memory Compiler [25]. The compiler directives

are configured to generate independent power pins for the SRAM memory core and

SRAM peripheral circuitry. The SRAM module contains pins as shown in Table

5.1. Due to a constraint on the number of available IO pins, we design the primary

address and data inputs and the primary data output to be 1-bit wide. The serial

input signals are converted internally to provide the parallel inputs required by the

SRAM modules. Similarly the parallel outputs generated by the SRAM modules are
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converted back to a serial output stream as shown in Figure 5.1. Multiplexer and

demultiplexers are used to test one SRAM module at a time. The controller is a state

machine which triggers on the positive edge of the external clock input and helps

interface with the SRAM modules.

Table 5.1: Pin functionality and widths of the ARM Compiler generated SRAM
module.

PIN Name Functionality Width
A Address 8
D Data In 16
Q Data Out 16

CLK Clock 1
CEN Chip Enable 1

GWEN Write or Read 1
VSSE Ground 1

VDDPE Peripheral Power 1
VDDCE Core Power 1

Figure 5.1: Block diagram of the custom SRAM. Components in yellow are generated
by the ARM Artisan Memory Compiler and those in green are synthesized.
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In Figure 5.1, the control circuitry (shown in green) is designed using Verilog

and the SRAM modules (shown in yellow) are generated using the ARM Memory

Compiler. The functional correctness of the design is verified by performing logic

simulation using Mentor ModelSim. Using Verilog models for the SRAM modules

generated by the ARM Memory Compiler, we use a testbench to write data into

random locations of the SRAM and verify correctness by reading back the data.

Synopsys Design Compiler is used to perform logic synthesis and generate a gate

level netlist of the design. ARM Standard cell library along with the Verilog RTL

code is used to create the gate level netlist. The standard cell library contains timing,

area and power information of the standard cells characterized at various input slews

and output loads. The synthesis tool uses this information to optimize the design

subject to constraints. Along with the netlist, Synopsys DC generates timing, area

and power reports. These reports can be used to ensure that the design meets all the

constraints imposed on it. Further, these reports can be used as initial constraints

during Placement and Routing. Initial timing checks on setup and hold violations are

performed at this stage along with clock skew and available timing slack calculation.

Figure 5.2 shows the design flow to synthesize the netlist from the Verilog RTL code.

The reports from the synthesis flow are shown in Table 5.2.

Figure 5.2: The design flow for generating the gate level netlist from the Verilog
design.
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Table 5.2: Synthesis Reports generated from Synopsys DC.

Parameter Reported Values
Combinational Cell Count 698

Sequential Cell Count 420
Utilization 40.26%
Cell Rows 455

Cell Internal Power 376.5 µW
Net Switching Power 135.4 µW
Total Dynamic Power 511.9 µW
Cell Leakage Power 111.5 µW

IO Pad Power Consumption 62%
Register Power Consumption 27%

Combination Logic Power Consumption 1%
Slack (for 5000ns period) 2224.62 ns

Critical path length 108.19 ns

5.2 Floorplanning

The first step in the physical design flow is to create a floorplan using Synopsys IC

Compiler. The floorplan comprises of IO area and core area. The IO area is allocated

for the placement of IO pads while the core area contains the standard cells, hard

macros, signal and power routing used in the design. The size of the core area is

controlled by setting a target utilization and an aspect ratio. Utilization is the ratio

of used area to that of available area. IO pads are placed outside the core boundary at

a distance called the core to IO clearance. These pads are used to connect the primary

inputs and outputs from the core area to the external package pins via bumps.

Based on the size of the IO pad ring and the core boundary, design floorplans are

either pad limited or core limited. The floorplan of a core limited design is determined

by the size of the core boundary. These designs have high core utilization but lower

utilization in the IO pad ring. However, pad limited designs have low core utilization

and the IO pad ring determines the overall floorplan size. Our design is pad limited
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due to the large number of IO pads used relative to the core area. Figure 5.3 shows

the floorplan depicting the core area, the IO area and the SRAM macros.

Figure 5.3: The floorplan showing the core boundary and the IO pads.

The next step in the physical design flow is power grid creation. The power grid

routes power and ground signals from the IO pads to the various parts of the design.

In a typical SRAM IC a single power domain is used to deliver power to all cells and

macros as depicted in Figure 5.4a. The power network consists of two dimensional

grids where the top grid is routed in the two highest metals to minimize IR drop.

The lower grids is a fine grained mesh and is intended to meet the di
dt

requirements.

Each of the grids contain its own power straps which are spaced evenly across the

network. The power ring is used to ensure symmetric power delivery to all regions of

the design from the external IO power pad.

In our custom SRAM design, to supply power to the SRAM core, we create one

power network VDDCE around each SRAM module as illustrated in Figure 5.4b. This

network has a power ring routed using Metal 9 in the vertical direction and Metal 8

in the horizontal direction. The top grid of the network uses Metal 8 and Metal 9

while the lower grid uses Metal 5 and Metal 4. The standard cells and the peripheral

circuitry of all SRAM modules share a single power network VDDPE, whose power
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(a) (b)

Figure 5.4: Figure 5.4a shows the typical power grid using a common power ring to
the entire IC. Figure 5.4b shows the power grid of the custom SRAM IC using one
power ring around the entire design and one around each SRAM module.

ring and grids use metals similar to that of the VDDCE network. One single power

network VSS is used to provide ground to the entire design and is similar in structure

to the VDDPE network. Figure 5.5 shows all the power networks around a single

SRAM module.

Figure 5.5: Floorplan of the design depicting power rings and straps forming the grid.
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5.3 Placement, CTS and Routing

The next stage in the design process after the floorplanning is to determine the

position of standard cells and hard macros. This process is called placement. The

standard cells are placed in rows of fixed heights in the core area. The rows are

mirrored horizontally to share power and ground straps between adjacent rows. The

SRAM modules are hard macros which are placed at the four corners of the floorplan.

This results in the FRAM view of the design. A FRAM view is an abstract model

of the layout information. It does not contain all the layer information, but only

contains pin positions, metal blockages and via blockages of the standard cells and

macros.

After placement, Clock Tree Synthesis (CTS) is performed to pre-route the clock

signal from the external IO pin to the pins of the standard cells and SRAM macros.

Figure 5.6 shows the clock tree of the design. After CTS, global and detailed signal

routing is performed using a grid based router. Figure 5.7 shows the overall design

flow during placement, CTS and routing. Following each of the above stages, ICC

performs area and timing optimization.

After the design is placed and routed, the FRAM views of the standard cells and

the SRAM macros are replaced with layer information. The design flow at this stage

is depicted in Figure 5.9. The standard cell layer information is contained in ARM

standard cell libraries. The SRAM macro layout is generated by the ARM Memory

Compiler and is used at this design stage. The SRAM macro layout is shown in

Figure 5.8a. The SRAM macro shows the organization of the various parts of the

SRAM used in the design. The core consists of four banks made of 6T bit cells. Each

of the 16-bit words in the core is addressed through a row decoder that converts a

8-bit address input to activate one of 256 wordlines. The sense amplifiers read out

the value of the bits stored in the banks onto the data-out signal.
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Figure 5.6: The design with the Clock Tree highlighted.

Figure 5.7: The design flow for generating a placed and routed FRAM view of the
design.

The layout of the custom SRAM design which consists of the control circuitry and

four SRAM modules is shown in Figure 5.8b. The table 5.3 shows the dimensions

of the SRAM module, the design and the entire chip. After the FRAM views of the

standard cells and macros are replaced with the layer information to form the GDS2

layout, Design Rule check (DRC), Layout Vs Schematic (LVS) and Electrical Rule
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(a) 256x16 SRAM Module

(b) Design Layout

Figure 5.8: Figure 5.8a shows the GDS2 layout of a single SRAM module. Figure
5.8b shows the GDS2 layout of the custom SRAM design.

Check (ERC) are performed on the design. The error-free design was integrated onto

the layout that was sent to the fabrication plant.

Table 5.3: Dimensions of the various modules in the design.

Module Dimensions (µm x µm)
SRAM Module 36 x 40

Design 420 x 425
Chip 2500 x 2500

5.4 Chip Integration

Two instances of the custom SRAM design are integrated into the taped-out chip

to allow for intra-die testing and reliability comparisons as shown in Figure 5.11a.

Three other designs were implemented by my colleagues on the same chip as well.

The IO pads of the SRAM designs are routed to the bumps in the Re-Distribution

Layer (RDL). Figure 5.10 shows the RDL bumps and the integration to the final
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Figure 5.9: The design flow for generating the design layout.

packaging. The RDL routing was also performed using Synopsys ICC. With all the

designs integrated with the RDL routing, the GDS2 layouts were tested for DRC,

LVS and ERC using Mentor Calibre. Figure 5.11a shows the two instances of the

design along with the RDL routing. The taped-out chip dimensions are 2.5mm x

2.5mm. Figure 5.11b shows one of the SRAM designs on the fabricated die.

Figure 5.10: Figure showing how the die IO pads are connected to the package balls
[51].
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(a)
(b)

Figure 5.11: Figure 5.11a displaying the layout with all the designs integrated. The
SRAM designs are highlighted using a white box. The regularly placed white circles
are the RDL bumps. Figure 5.11b shows a photograph of a part of the unpackaged
die showing the custom SRAM design, RDL bumps and the RDL routing.

54



5.5 Chip packaging and PCB Design

The 2.5mm x 2.5mm die from the foundry is packaged as a Flip Chip Ball Grid

Array (FC-BGA). The solder balls of the packaged chip have a 1mm pitch and are

arranged into a 13 x 13 grid. Figure 5.12 shows the packaged chip and the balls of

the chip. To connect the chip to signal and power pins, a Printed Circuit Board

(PCB) with Surface Mount Technology (SMT) pads is required. The custom PCB is

designed using Autodesk Eagle and uses 4 layers to route the balls of the chip to the

pin header.

(a) Front side of the packaged chip (b) Back side of the packaged chip

Figure 5.12: The front side shows the die containing the designs while the back side
shows the balls of the package arranged into a 13 x 13 grid.

To minimize the number of PCBs required to test the packaged chips, a BGA

socket is incorporated into the PCB. The socket is made of a fixed bottom half which

is mounted onto the PCB using drill holes and bolts. The exploded view of the

socket is shown in Figure 5.13. The chip’s BGA comes into contact with the PCB

through an elastomer guide made of Gold wires embedded in an insulating plastic.

The corresponding part on the PCB where the bottom half of the socket mounts
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has SMT pads on the top layer to provide connectivity between the PCB and the

elastomer guide. The top of the socket is a removable lid that is operated using a

torque driver.

The 169 SMT pads corresponding to the 169 BGA are routed to 100 pin headers

to create a breakout board. To achieve the routing from inner SMT pads, dogbone

vias are used to route pads to the inner layers of the PCB. Figure 5.14a shows the

SMT pads and the dogbone vias. Figure 5.14b shows the entire PCB with the pin

headers and the routing from the BGA socket to the pin headers.

Figure 5.13: A BGA socket that allows testing multiple chips on a single PCB [16]

5.6 Testing

The designed PCB operates as a breakout board. Among the 169 balls of the chip,

all functionally-equivalent balls were shorted in the PCB and then routed to 100 pin

headers. The breakout board is designed to enable the chip to be mounted directly

on a breadboard for testing.
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(a)
(b)

Figure 5.14: figure 5.14a shows the custom PCB created for the BGA socket. It
shows the SMT pads corresponding to the BGA balls and the dogbone vias used for
routing. Figure 5.14b shows the complete PCB along with pin headers.

When we detected the short between the peripheral power supply and ground

on the packaged chip, we conducted various experiments to detect the location of

the electrical short. First, a SPICE netlist was extracted along with parasitics from

the layout used for tape-out and no electrical shorts were detected during the circuit

simulation. We next check for metal to metal shorts in the power grids through ERC

and LVS using Synopsys ICC. We introduced a short manually between the ground

and power supplies to ensure that the ERC and LVS checks were being performed

correctly. Although the manually shorted location was flagged by both ERC and LVS,

no metal to metal shorts were detected in the original design. We were not able to

perform LVS and ERC after full chip integration as the design hierarchy is removed

at that stage. To ensure that the short was not introduced during packaging, the

unpackaged die was tested using a probing-station. The probe station showed a low

resistance connection between the peripheral power and ground pin indicating a short

in the unpackaged die. Despite all the steps taken above, it is not clear where the

electrical short occurred or how it was created.
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CHAPTER 6

CONCLUSIONS

In this thesis, we have explored the effect of ramp-up times on the power-up SRAM

PUF and observed the following:

• From SPICE simulation of SRAM cells in isolation, increasing power supply

ramp time appears to increase the reliability of the power-up values.

• SPICE simulation of SRAM modules show that when the power supplies to

the peripheral circuitry and the memory core are separated and sequenced,

reliability increases with increasing ramp time of the memory core power supply.

The reliability does not increase , however, if the supplies are not sequenced.

• From measurements made using commercial SRAM ICs, we noticed an apparent

architecture-dependent trend in the reliability of the IC. For one of the tested

SRAMs, we notice maximum reliability at a particular ramp time of 1 second,

while for the other SRAM the reliability is largely not impacted by supply ramp

times.

• We also observe a trend in the power-up values across commercial SRAMs where

certain addresses tend to power-up to a particular state and the fraction of bits

powering-up to state-1 tends toward 0.5 with increasing ramp time.

From these observations, we can conclude the following:

• Increasing ramp times may increase the reliability of the SRAM cells.
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• Although more experiments and measurements are required, the preliminary

results show that separating and sequencing the power supplies between the

peripheral circuitry and the memory core could increase reliability and also

influence power-up values.

• In commercial SRAM ICs, the architecture of the IC plays a role in determining

the effect of ramp-up times on the SRAM.

• Ensuring the same ramp time between enrollment and key regeneration is im-

portant to ensure reliable power-up values.

• A ramp time can be chosen to either ensure high uniqueness or high reliability.

Apart from the above, we also provide a foundation for setting up a design flow

that can be used to tape-out a SRAM with separated power supplies for the peripheral

circuitry and memory core. Future work can involve testing the effect of supply ramp

time on a custom taped-out silicon chip. Unlike a commercial chip, the knowledge

of the SRAM architecture in the custom SRAM will help narrow down the impact

of the peripheral circuitry on the power-up state of the SRAM. Moreover, a custom

SRAM enables us individual control over the power delivery to the memory core

and peripheral circuitry, which may shed light on the impact of the power supply

sequencing on the power-up state of the SRAM.
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Nynke, and Wolters, Rob. Read-Proof Hardware from Protective Coatings. In
Cryptographic Hardware and Embedded Systems - CHES 2006 (Berlin, Heidel-
berg, 2006), Louis Goubin and Mitsuru Matsui, Eds., Springer Berlin Heidelberg,
pp. 369–383.

[53] Usmani, M. A., Keshavarz, S., Matthews, E., Shannon, L., Tessier, R., and Hol-
comb, D. E. Efficient PUF-Based Key Generation in FPGAs Using Per-Device
Configuration. IEEE Transactions on Very Large Scale Integration (VLSI) Sys-
tems 27, 2 (Feb 2019), 364–375.

[54] Weste, Neil, and Harris, David. CMOS VLSI Design: A Circuits and Systems
Perspective, 4th ed. Addison-Wesley Publishing Company, USA, 2010.

[55] Willers, Oliver, Huth, Christopher, Guajardo, Jorge, and Seidel, Helmut. MEMS
Gyroscopes As Physical Unclonable Functions. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security (New York,
NY, USA, 2016), CCS ’16, ACM, pp. 591–602.

[56] Yu, M., and Devadas, S. Secure and robust error correction for Physical Unclon-
able Functions. IEEE Design Test of Computers 27, 1 (Jan 2010), 48–65.

64

https://www.keysight.com/en/pd-2155031-pn-33511B/waveform-generator-20-mhz-1-channel-with-arb?nid=-536902257.1026947&cc=US&lc=eng
https://www.keysight.com/en/pd-2155031-pn-33511B/waveform-generator-20-mhz-1-channel-with-arb?nid=-536902257.1026947&cc=US&lc=eng
https://www.keysight.com/en/pd-2155031-pn-33511B/waveform-generator-20-mhz-1-channel-with-arb?nid=-536902257.1026947&cc=US&lc=eng
https://www.keysight.com/en/pd-1962285-pn-33503A/benchlink-waveform-builder-pro-software?cc=US&lc=eng
https://www.keysight.com/en/pd-1962285-pn-33503A/benchlink-waveform-builder-pro-software?cc=US&lc=eng
https://www.microchip.com/wwwproducts/en/23LC1024
https://www.microchip.com/wwwproducts/en/23LC1024
https://www.edn.com/design/systems-design/4419930/An-efficient-RDL-routing-for-flip-chip-designs
https://www.edn.com/design/systems-design/4419930/An-efficient-RDL-routing-for-flip-chip-designs

	A Study on Controlling Power Supply Ramp-Up Time in SRAM PUFs
	Recommended Citation

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Introduction
	Process Variation
	Physically Unclonable Functions
	Key Generation using PUF
	Error Correction and Reliability Improvements
	Hypotheses
	Thesis Outline

	SRAM PUFs
	SRAM Architecture
	Operation of Power-Up SRAM PUF
	Reliability Metric
	Uniqueness Metric

	SPICE Simulations
	SRAM Bit Cell Simulations
	SRAM Module Simulation
	BER between noise-free and noisy power-up
	BER across ramp times for noise-free power-up

	Conclusion

	Commercial SRAM IC Testing
	Reliability Measurements
	Uniqueness Measurements
	Power-Up Bias of the IC
	Conclusions

	Custom SRAM IC
	Design and Synthesis
	Floorplanning
	Placement, CTS and Routing
	Chip Integration
	Chip packaging and PCB Design
	Testing

	Conclusions
	Bibliography

