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ABSTRACT 

PATTERNS OF MORPHOLOGICAL PLASTICITY IN METRIACLIMA ZEBRA AND 

DANIO RERIO SUGGEST DIFFERENTLY CANALIZED PHENOTYPES DUE TO 

FORM-FUNCTION RELATIONSHIPS 

SEPTEMBER 2019 

DYLAN JOCKEL, B.S., MARLBORO COLLEGE 

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Associate Professor R. Craig Albertson 

In order to ascertain the degree of compatibility in developmental restructuring 

and behavioral plasticity between two fish species frequently made subject of laboratory 

research (Metraclima zebra & Dano rerio), alternative trophic niche exposure 

experiments utilizing novel three-prong feeding treatments were conducted to obtain 

morphometric data, which demonstrated both species do bear some degree of plasticity. 

The results are somewhat complicated by differences in locality of detectable 

restructuring, which may be due to disparity in the form-function relationship for each 

species’ lineage. Broadly, the confluence of each is notable in differences between 

respective species’ jaw protrusion, as it is driven by anterior kinethmoid rotation in D. 

rerio. as opposed to force imparted upon the rostral cartilage of the premaxilla’s articular 

process in M. zebra. Each is markedly distinct in the pharyngeal jaw as well, as zebrafish 

(also toothless at the oral jaw) bear teeth only on the lower set at the posterior of the 

mouth, while cichlids bear teeth on all jaws and additionally possess a unique, fused 

lower pharyngeal jaw. However, accounting for this difference in experimental models 

does allow for direct comparison, both at the morphological/behavioral and potentially 
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the genetic level, though additional research is necessary. The evidence provided here 

also provides encouragement that more nuanced approaches to laboratory trophic niche 

exposure experiments could elucidate further evidence on the nature of phenotypic 

plasticity. 
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CHAPTER 1 

INTRODUCTION 

Four billion years of evolution on planet earth has induced a prodigious quantity 

of phenotypic variation within the tree of life. Broadly, it is understood phylogenies owe 

this diversity to the interplay between variation of genomic content within populations, 

and developmental responses to environmental perturbation (Zimmer/et al. 2013). These 

responses, controlled by gene regulatory networks that modulate expression, allow traits 

to vary their phenotype within one organism in response to selective pressures through 

pathways of developmental restructuring (Moczek/et al. 2011).  

While earlier models of evolution placed more emphasis upon ultimate, 

population-level allele sorting among individuals as an explanation for divergence 

(Gilbert/et al. 1996), it has become apparent (largely due to an improved understanding 

of any given gene’s ability to be expressed according to external signaling) that the latter 

half of a Gene x Environment interaction should, in regard to speciation and 

morphological diversification, be carefully examined (Bateson & Gluckman 2011). 

Because the plasticity of phenotypic expression is adaptive, it is likely to fall under 

selection as well. Additionally, as a result of conserved patterns of gene regulation that 

make use of ‘die-cast’ chemical mechanisms, we may see a proliferation of similar 

patterns in genes selected for increased plasticity or robustness (Feinberg & Irizarry 

2010). Thus, the various phenotypes of one organism may become repeatedly and 

differently canalized, both within one lifetime, or across a lineage (Westneat/et al. 2015). 

This, it has been postulated, is vital to linking proximate and ultimate mechanisms of 

evolution and better describing exactly how species originate. However, since the time of 
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Darwin, this window of evolutionary change i.e.: the inception of new species via 

divergence, has been difficult conceptualize (Laland/et al. 2015). Natural selection, for 

instance, has long been understood to act on trait variation, but what leads traits to vary? 

Why do we see disparity in the development of phenotypes within one generation?  

These are the questions that have led evolutionary theorists to a more 

‘Environment First’ model of speciation. Essentially, this revision is not radically 

dissimilar from the modern synthesis, rather it simply explicitly accounts for the interplay 

between phenotypic disparity induced by development, and ultimate pathways of 

evolution. To expand, plasticity in a phenotype may enable different individuals within a 

population to excel at exploiting different niches, or different aspects of social behavior. 

Consequently, this may cause populations to begin sorting themselves according to 

aspects of individual fitness prior to the existence of any technical ‘barrier’ to gene flow 

(Smith/et al. 2016). So rather than become completely isolated, a fully interbreeding 

population may find selection toward divergence favors individuals who exploit specific 

niches within an ecosystem. Those who remain generalists experience lower fecundity 

proportional to energetic investment in any one ecotype. Over time, this results in 

isolation of sub-populations that is circumstantial to the diversity of the local 

environment. If the variables remain static over a long enough time-span, this may form 

the basis for reproductive isolation and more concrete barriers back toward introgression. 

Such sorting of the population is especially obvious when examining adaptive 

radiations of organisms. Lake Malawi African cichlids, a collection of hundreds of fish 

species that diverged from few ancestors in less than 2 million years, are one of the most 

frequently studied of such evolutionary events (Seehausen 2006), and their degree of 
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morphological divergence, despite no obvious barriers to introgression beyond behavioral 

divergence/color morphs, is both well documented and extensive. Being that many of 

these fish exhibit highly plastic phenotypes as well, it has been hypothesized a low 

degree of canalization has enabled a veritable explosion of novelties to evolve (Gavrilets 

& Losos 2009).  This attribute has led cichlids to enjoy more recent attention as an 

evolutionary model (particularly generalist “mbuna” cichlids from Lake Malawi) (Genner 

& Turner 2005). However, while some advancements have been made in tying these 

phenotypes to developmental restructuring of specific genes and genetic pathways, the 

newer, less familiar genomic environment of this system means much of the detected 

variation in cichlids cannot, as Robinson and Parsons (2002) put it, easily be declared 

either a, ‘…cause or a consequence of divergence”. As a result, there is some desire to 

reconcile the morphological diversity of the cichlid model with a second, more 

genetically accessible one, and, our taxonomic neighborhood being the ray-finned fish, 

few would seem more appropriate to utilize than the versatile laboratory familiar, Danio 

rerio (Dahm & Geisler 2006). The Albertson lab has integrated studied in these two 

systems for well over a decade (e.g., Albertson/et al. 2005; Conith/et al. 2018). Though, 

as the meristem of this multi-model approach grows outward, it is imperative to raise the 

question of whether the marriage of cladistically distinct subjects bears any compatibility. 

Does the genetic toolbox availed to us in zebrafish apply to cichlids, and does 

documented phenotypic plasticity in cichlids apply to zebrafish? It would be prudent to 

identify the overlap of both development and genetics between each taxon. Ideally, in the 

process, we may also conform that plasticity in each is the result of conserved genetic 

mechanisms.  



 4 

A conserved, or at least consistent, mechanism of plasticity could have broad 

implications for fish diversity in that it would suggest that morphological divergence in 

species that use disparate environments is facilitated by plastic responses within single 

populations reared under similar disparity (Robinson & Parsons 2002). In short, if this is 

found to be so, not only does ‘ontogeny recapitulate phylogeny’, but ‘development 

dictates divergence’ as well. Already, there is some evidence supporting such a notion. 

Studies in select species have suggested that trophic generalists (food acquisition is 

thought to be a strong selective pressure for fish, especially in the context of craniofacial 

interactions) can be induced toward genetically traceable behavioral or morphological 

accommodation when placed in alternate feeding ecologies (Parsons/et al. 2016) 

(Hayden/et al. 2014). Alternatively, populations bearing more specialized feeding 

regimes show a more limited response when exposed to novel trophic niches, showing 

the signature of trait assimilation under selective pressures from similar conditions 

(Parsons/et al. 2014) (Navon 2018). 

Within this larger context, my research first set out to examine the cross 

compatibility of two models at a morphological level and expand the realm of 

possibilities when experimenting with novel ecology exposure (a lá (Parsons/et al. 

2016)). Feeding was deemed an appropriate variable to manipulate, in part because it is 

thought to be a limiting factor in recruitment of fish to novel environments (as the 

physical requirements of energy acquisition, along with associated costs/risks may vary 

and disparately apply selective pressures in disparate ecosystems) (Walters & Juanes 

1993), and partially as a follow up to recent publications (e.g., Parsons/et al. 2018) and 

(Parsons/et al. 2016) that suggest craniofacial plasticity may be prominent in each taxon. 
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Additionally, due to the inclusion of third experimental trophic niche (a novel approach 

for this method) the subsequent work may provide the basis for more detail examinations 

of more extensive feeding behaviors in the future. 
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CHAPTER 2 

MATERIALS AND METHODS 

2.1 Trophic Niche Exposure 

Albertson Laboratory-raised lines of both F4/F5 Metraclima zebra (a pelagic-

leaning “mbuna” trophic generalist (Streelman/et al. 2007)), bred from a wild-caught 

population, and AB/EW laboratory lines of Danio rerio were utilized. All treatments 

were balanced for sex differences. M. zebra were housed in identical 190 Liter, 

rectangular glass tanks. D. rerio were housed in identical 10-Liter, rectangular, synthetic 

polymer tanks. Both species were connected to a respective recirculating water 

conditioning system, and all tanks were stored within the same temperature-controlled 

space (lit by full spectrum halogen lights timed to a 14hr light, 10hr dark cycle), ensuring 

the quality of the environment was identical treatment-to-treatment. 

During the course of each experiment, all zebrafish were fed 2mm ‘New Life 

Spectrum Float’ pellets (34% Crude Protein Min, 5% Crude Fat Min, 5% Crude Fiber 

Max) that were prepared disparately depending upon treatment. The first group was fed 

un-modified pellets (i.e., “pellet treatment”), which floated for a few minutes before 

sinking. The second group was fed with a finely pulverized version (accomplished with a 

conventional kitchen coffee grinder, i.e., “powder treatment”). The third was fed by 

mixing the feed powder with 1% Agarose, spreading the homogenous solution over 

ceramic ‘lava rocks’ of the variety frequently used to decorate aquaria, and allowing the 

food to fully dry and harden before setting at the bottom of aquaria (i.e., “rock 

treatment”). The treatments were identical for cichlids, however the feed utilized was a 
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generic 1.25cm diameter vegetable wafer (30% Crude Protein min, 7.5% Fat min, 4.0% 

Fiber max) marketed under multiple brands including ‘Ken’s Premium Veggie Wafers’ 

(being that it bore more appropriate blend of nutrients for cichlids (Erdogan/et al. 2012)).  

Functionally, the pellet treatment was intended to engage the pharyngeal jaw of 

each species. Bearing no oral jaw teeth, zebrafish process most food with their 

ceratobranchials, suggesting accommodations for any feeding behavior may heavily 

involve restructuring of these bones. Cichlids, although not toothless at the anterior, do 

possess fused ceratobranchials, and it has been specifically hypothesized this represents 

an adaptation for processing harder prey (Mabuchi/et al. 2007). However, it is less clear 

how canalized this apparatus is, and it may be differently so in disparate populations. The 

rock treatment, conversely, was designed to force each fish to feed in a manner that 

imparted more force from their oral jaws, back (by comparison to feeding in the water 

column). Given that oral jaw shape is thought to heavily influence the tradeoff between 

strength and speed of jaw closure (Albertson/et al. 2003), it was expected this would 

induce noticeable consistent deformation in both clades. The powder fed treatment was 

intended to bias fish toward speed in this functional tradeoff, specifically toward 

generating suction as a means of gathering food. 

Zebrafish, being more behaviorally canalized toward feeding in the water column, 

necessitated an entrainment period where benthic groups were fed and then monitored to 

ensure active and vigorous feeding. Care was taken to remove the lava rocks before the 

Agarose-food mixture delaminated (After about 10 minutes) to ensure the treated fish 

would only utilize the desired feeding behavior. Once all fish in the tank began readily 

feeding in a benthic manner, the practice of removing food was ceased and the lava rocks 
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were left to be removed later in the day after feeding behavior had ceased. For the pellet 

treatment, D. rerio were fed approximately 0.007g/individual daily, whereas M. zebra 

received roughly 0.2g/individual/day. Whole pellets used to feed cichlids were broken 

into smaller pieces to reduce effects of competition. Feeding quantities were adjusted up 

or downward depending on apparent growth rate and behavior (if fish in a particular 

experiment did not consume all food in a timely manner, less was added subsequently, 

etc.). This was done in an effort to control for both size and to reduce the possibility of 

food waste which would likely lead to confounding feeding behaviors. Prior to 

experimentation, all fish were fed a lab-standard diet (Gemma Micro 300 pellets for 

Zebrafish and a 3/1 dried spirulina/egg yolk flake mixture for cichlids). 

Each experimental period lasted ~90 days, and two iterations of the experiment 

were conducted six months apart, one in the spring of 2018, another in the following 

autumn. The first cichlid round consisted of 10 rock fed, 9 powder fed, and 9 pellet fed 

fish. The first zebrafish round consisted of 28 rock fed, 30 powder fed, and 33 pellet fed 

fish. The second round of cichlid experimentation consisted of 11 fish in all treatments, 

though one pellet fed fish was later removed as an outlier. The second round of zebrafish 

experimentation began with 20 fish in each treatment but was subject to unexpectedly 

high mortality and only 7 from each treatment completed the experiment. Additionally, a 

single lower pharyngeal jaw in the pellet group was damaged before it could be analyzed. 
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2.2 Whole Body Clearing and Staining 

 Following treatment, all experimental fish were euthanized ethically according to 

IACUC approved practices outlined in (Silverman/et al. 2014), before ocular dissection 

and evisceration. Each specimen was then fixed in a 4% Paraformaldehyde/PBST 

solution before being prepared for imaging via Trypsin-KOH digest tissue clearing, 

Alizarin Red bone staining, and Glycerol clearing/storage following (Albertson & Yelick, 

2007). The final specimens were stored in an 80%/PBST mixture.  

 

2.3 Imaging, Dissection, and Morphometrics 

 The full head of each zebrafish, viewed laterally, was imaged in backlit 80% 

glycerol via a Leica M165 FC dissection microscope mounted with a Leica DFC 450 C 

digital camera. A stand-mounted Olympus, EOS DSLR camera was used to accomplish 

the same task for M. zebra. Following lateral imaging, all cichlids and 60 randomly 

selected zebrafish were dissected for their lower-right pharyngeal jaw (though the lower 

pharyngeal jaws are fused in cichlids, meaning this dissection often resulted in the full 

extraction of the apparatus), which were all also imaged (from the dorsal/anterior 

perspective) via the Leica M165 FC/DFC 450 C. Images were converted to high quality 

jpegs and digitized with continuous, morphologically distinct semi-landmark curves via 

the R package ‘StereoMorph’ (Olsen 2017). These curves were placed around the opercle 

(including subopercle in D. rerio), hyomandibula/interopercle, premaxilla, orbitals, and 

the skull profile from the anterior end of the ethmoid to the tip of the supraocccipital 

crest. An additional curve was placed on D. rerio specimens that spanned the 
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parasphenoid as it traversed the orbital diameter. Lateral landmarks, with the exception of 

the orbital bones around the eye and dorsal crest, were chosen because the bones 

involved play important roles in feeding mechanics. For example, the opercle, 

hyomandibula, interopercle, and premaxilla each represent constituent bones of the four 

bar linkage system responsible for the operation of jaw protrusion/closure in both 

zebrafish and cichlids (Diogo/et al. 2008)(Westneat 1990). The dorsal crest was 

landmarked to ascertain the degree of head depth and angle, as the morphology of benthic 

feeding groups should, at least in cichlids, feature deeper, more downward facing heads 

which are comparatively larger to general features (Liem & Osse 1975). Orbitals, 

meanwhile, were marked to provide an estimate of eye size/position, as water-column 

prey feeders require better distance acuity (Baxter 1980). Additionally, possibly because 

of improved benefits for energetic cost, eye size may also increase with prey size, thus it 

might be expected pellet fed groups possess larger orbital regions (Aksnes & Giske 

1993). Finally, benthic foragers tend to have eyes positioned dorsally in the head, 

compared to pelagic foragers (Otten 1983) Pharyngeal jaws were selected due to their 

obvious relevance when it comes to prey processing for both zebrafish and cichlids. 

Zebrafish possess no oral jaw teeth, necessitating any actual mastication be done at the 

rear of their feeding apparatus (Huysseune & Sire 1998). Cichlids, in particular possess a 

unique, fused lower pharyngeal jaw and muscle complex specific to their morphology. It 

has been theorized this trait is key to their overall morphological diversity, as it has 

allowed for a mechanical decoupling of the oral and pharyngeal jaws (Liem 1973).  

The placed morphometric curves were converted to x,y coordinates. First, 

Procrustes distance ANOVAs were conducted on non-size-adjusted data to assess the 
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relative effects of size (i.e., log(CS)), experimental round, and treatment on craniofacial 

and pharyngeal jaw shape. Because size typically had a significant effect on shape, the 

data were then corrected for allometry via a regression of shape on the log of Centroid 

Size (CS). Residuals from this analysis were used for all subsequent analyses. Allometry 

corrected shape data were utilized to conduct Procrustes distance ANOVAs for shape 

differences in both the pharyngeal jaw and lateral head between treatments, as well as 

between experimental replicates. Additionally, principal component analyses were 

conducted and 1-4 were plotted on cartesian planes, forming polygon plots. Since it is 

possible that diet treatments could influence not just shape means but also variation, 

morphological disparity between treatment groups was calculated. Statistical modelling 

made use of R’s ‘geomorph’ package (Adams/et al. 2019), alongside the separate 

function ‘polygon.plot’ developed by Michael Collyer (Gilbert 2018). 
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CHAPTER 3 

RESULTS 

 The foraging treatments employed here were intended to engage different 

functional units of the fish feeding apparatus and challenge each region to mount a plastic 

response. It was expected that M. zebra would be capable of more pronounced plasticity 

than D. rerio, but that each would likely exhibit some degree of accommodation for novel 

feeding behaviors. Due to the zebrafish’s lack of oral (and upper pharyngeal) dentition 

and unique anatomy of the cichlid pharyngeal jaw, it was unclear how much variation 

would be directly shared between species, as each phenotype undoubtedly requires the 

employment of distinct feeding behaviors. Furthermore, the kinematics of oral jaw 

protrusion, which is typically involved in suction feeding, is largely distinct in these 

species. Protrusion in cichlids is enabled by a relatively long ascending arm of the 

premaxilla, which slides over the rostral cartilage as the jaw extends anteriorly (Otten 

1983). Zebrafish, on the other hand, possess relatively short ascending arms, and 

protrusion is instead driven by the kinethmoid, which sits under and is connected to the 

ascending arm via a complex series of ligaments, and pushes the upper jaw anteriorly as 

the kinethmoid rotates forward (Hernendez/et al. 2007). How each action loads the oral 

jaw apparatus is largely unclear. In spite of the obvious differences in craniofacial 

anatomy and function between cichlid and zebrafish, we make the following generally 

predictions: In the benthic treatment, there should be some degree of compaction of the 

oral jaw in both species. To accommodate this mechanical load jaws and faces should 

become shorter, with a more steeping sloping skull profile. In both water column feeding 

treatments, the development of larger eyes is expected. In the powder treatment, we 
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expect to observe more gracile oral jaws. Finally, the pellet treatment groups are expected 

to develop robust pharyngeal jaws and perhaps deeper heads to accommodate the 

musculature associated with the functional apparatus. 

 

3.1 Lateral Craniofacial Morphometrics 

 Among zebrafish treatments little difference in shape was detected (Procrustes 

distance ANOVA, f=1.486, z=1.4602, r2=0.027, p=0.0712) suggesting differences due to 

random chance cannot be ruled out at 95% confidence. Its relative proximity to the 

threshold of p=0.05 can be attributed to a significant difference in shape between benthic 

and pelagic treatment groups (p=0.0138), while all other differences between treatments 

were found to be well above 95%. Of the first six axes, only PCs 4 and 5 approached 

significance in an ANOVA (p=0.0595 and p=0.0684, respectively), with each explaining 

<10% of morphological variation. Visual analysis of morphospace via polygon plots of 

the first four principal component axes indicated strong overlaps between all specimens, 

except for a slight, yet observable divergence between benthic and pellet fed groups 

along PC axes 2-4.  

Visual analysis of mean consensus shapes for each treatment group suggested 

benthic fish developed a deeper and more steeply descending head, and somewhat larger 

interopercle/preopercle region. The opercle and subopercle region of the two water-

column-feeding groups appeared relatively large. In pellet fish, eye size is somewhat 

larger and dorsally positioned, and the parasphenoid appears to be displaced ventrally 

within the orbit. While statistical support for these differences are low, aspects of shape 
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that do differ between groups are largely consistent with our predictions. Due to large 

differences in survivorship between experimental rounds, and differences in sample size, 

we did not test for between experiment effects on the data. A test for outliers revealed 

two specimens that crossed the threshold by only a slim margin, thus they were not 

discounted. 

In contrast to zebrafish, Procrustes distance ANOVA on size-corrected, lateral M. 

zebra landmark data revealed strong differences between treatments (f=2.408, z=3.0577, 

r2=0.0792, p=0.0011), with differences (p<0.05) observed between all treatments as well. 

Of the first six PC axes, differences were predominately observed in the 1st axis 

(p=0.05123), which accounted for 25.2% of the total variation, and the 4th axis 

(p=0.00027), which explained 8% of the variation. In a test for morphological disparity, 

differences between pellet and benthic were larger, but still were not statistically 

significant. This was somewhat corroborated by visual analysis of morphospace along the 

first four PC axes (made possible with polygon plotting), which suggested there may be a 

slight expansion in morphological disparity from benthic, to pelagic, to pellet.  

Visual analysis of mean consensus shapes per treatment showed a number of 

notably trends. In the benthic fish, the oral jaws were short, and the skull was steeply 

descending. This was accompanied by a more dorsal-posteriorly positioned orbital 

position and larger hyomandibula/preopercle/interopercle complex. In the pelagic group, 

animals possess larger and more ventrally positioned eyes. In addition, these fish 

appeared to have longer jaws and larger opercles. All in all, these differences were 

consistent with our expectations and similar to changes observed in other cichlid species 

in response to similar diet challenges (Parsons/et al. 2014).  Notably, the pellet treatment 
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resulted in fish with a mosaic of benthic/pelagic skull morphologies, such as longer jaws 

and larger eyes and opercles similar to pelagic fish, and dorsally positioned eyes and 

large hyomandibula/preopercle/interopercle complexes like benthic fish.  

An ANOVA estimating the relative contribution of variation from experimental 

round and treatment found both were significant factors, but that treatment had a greater 

impact (f=2.5370, z=4.1680, p=0.0001, compared to f=1.5265, z=3.2623, p=0.01). A test 

for outliers revealed only one individual that was not discounted from the dataset due to 

its proximity to the outlier threshold. 

 

3.2 Pharyngeal Jaw Morphometrics 

 A Procrustes distance ANOVA for shape difference between treatments in D. 

rerio returned significance (f=2.7668, z=2.9005, r2=0.09, p=0.0013), including pairwise 

differences (p<0.05) between all treatments. Of the first six PC axes, 2-4 were significant 

at P<0.05, and 1 fell close at p=0.07374. No differences in morphological disparity were 

detected. This was reflected in relatively little difference in the size of morphospace 

occupied by polygon plots along PC axes 1-4. However, all three seem fairly segregated 

with respect to treatment when plotting x=PC 2 to y=PC 3, while the benthic group is 

more morphologically variable along PC 4 than its counterparts, as is the pelagic group 

along PC 2. Visual analysis of mean consensus shape per treatment indicated pelagic and 

pellet groups possessed relatively larger tooth plates compared to the benthic group. In 

addition, each treatment possessed a dorsal muscular process which angles inward toward 

the concave edge of the tooth plate, and a ventral process which angles away from the 
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concave edge. The case is the opposite for benthic treatment fish. All of the randomly 

selected pharyngeal jaws were sourced from the first replicate, so no testing for 

differences due to experiment was conducted. Upon analyses for outliers, no specimens 

were returned. 

 For M. zebra, the Procrustes distance ANOVA by of size-corrected data by 

treatment was not significant (f=0.9802, z=0.14732, r2=0.0333, p=0.4471), neither were 

any single treatment comparisons. Only PC Axis 3 approached significance at 

p=0.05747, and there were no differences in morphological disparity. There were also no 

obvious differences in mean consensus shapes per treatment, and polygon plots of the 

first four PC Axes only suggested a mild increase in occupied shape space in pelagic fish 

versus other groups. An ANOVA to estimate the relative contribution of variation from 

experimental round versus treatment found no significance for either but a greater effect 

due to treatment (f=1.0589, z=0.35966, p=0.3636, opposed to f=0.6994, z-0.16156, 

p=0.5735). An outlier test revealed one individual that was not discounted due to extreme 

proximity to the threshold. 
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CHAPTER 4 

DISCUSSION 

The results garnered from repeat trophic niche exposure experiments within D. 

rerio and M. zebra suggest both species do indeed exhibit some degree of morphological 

plasticity in the face of disparate feeding regimes. However, the patterning of this 

restructuring is inconsistent between species. There is considerable change in the gross 

cranial morphology of M. zebra in the lateral view. In fish reared in the benthic treatment, 

the head angles downward and the premaxilla is shorter and more concave (possibly due 

to compaction), while they bear smaller eyes that are displaced dorsally. Notably, these 

anatomical changes predict functional shifts to accommodate the generation of greater 

bite force while feeding, and are similar to cichlid species that are adapted to the benthic 

foraging niche (Waingwright & Richard 1995)(Hulsey/et al. 2013). In opposition to this, 

M. zebra exhibit almost no morphological changes in the pharyngeal jaw in response to 

foraging treatments. This is somewhat surprising given how well documented plasticity 

in the cichlid pharyngeal is in the literature. Muschick/et al. (2011), for example, 

identifies differences in pharyngeal jaw due to diet. Multiple factors were measured, 

including geometric morphometrics which found significant differences in shape (though 

weight measurements were more significantly different by feeding treatment). However, 

the feed employed in experiment was hard-shelled snails vs. no-shell snails, which 

represents an arguably greater disparity in mechanotransduction than the pellets utilized 

here. Additionally, landmarking was conducted on the whole fused lower jaw, and made 

use of 8 fixed points across the shape. Methodologically, this is distinct from the 

previously discussed methods of this study, as only 2-3 fixed landmarks were assigned to 
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each specimen and these were connected via continuous, curves containing more than 8 

equidistant semi-landmarks.  

The application of these continuous curves was enabled via the R package 

‘StereoMorph’, which allows the statistician the ability to draw a line on an organic shape 

and then retroactively apply evenly spaced semi-landmarks to it. This represents a 

putative analytical improvement over previous digitizing methods, as more organic shape 

variation is captured by comparison to previously developed methods, which require all 

landmarks to be individually placed by hand and then retroactive demarcation of ‘fixed’ 

or ‘semi’.  The result is a theoretically more evenly balanced analysis of shape across a 

region in question, but this greater fidelity may also produce a ‘coastline paradox’ effect 

on more disparately shaped datasets. Akin to the apparent inverse proportionality of a 

coastline’s distance to the rule of measure employed (Pant & Pant 2013), the process of 

increasing landmark number per distance may reduce the ability to capture whole shape 

variation, as more minor variation is subsequently considered. Based upon apparent 

detectable differences in D. rerio, it is unclear this is the only factor involved, though it 

may play a role, and regardless may suggest greater benefit in utilizing gross measures. 

For example, Chapman/et al. (2008) noted plasticity of morphology in the lower 

pharyngeal jaw, by examining keel depth, a measurement with comparatively low 

dimensionality. Given the degree of methodological distinction between this approach, 

the previously discussed, and those documented in this research, it seems reasonable all 

conclusions may be accepted without conflict. 

Notably, zebrafish exhibit the opposite trend compared to cichlids, with the 

plastic responses localized to the pharyngeal jaw. In fish from the pellet/pelagic 
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treatments, there is an apparent expansion overall size, accompanied by larger, more 

anterior facing muscular processes compared to benthic fed fish. Both treatments appear 

to exhibit a morphology that is associated with increased mechanotransduction due to 

chewing and subsequent bone deposition. It would be valuable to complement these 

anatomical findings with molecular data. For instance, are genes involved in 

mechanosensing and/or bone deposition upregulated in some treatments over others? It is 

difficult to determine the functional significance of these shape changes, and transcript 

data could provide insights. 

Plastic responses in D. rerio thus far appear to be limited to the region of the skull 

directly associated with prey processing. That zebrafish lacked a large-scale plastic 

response in the lateral view could be due to a number of factors. Lack of oral jaw 

dentition undoubtedly presents a challenge to benthic treatment specimens, as there was 

no way to chew at the anterior of their jaw apparatus. Additional landmarking, or an 

alternate landmarking schema, may have uncovered more variation between treatments, 

but to retain comparability, a similar method was used for each species. Given the 

differences in morphology and behavior between M. zebra and D. rerio, it is not 

unreasonable to think variation in shape due treatments may accumulate in different 

manners. Behavior, in turn, could be necessitated by species specific feeding kinematics. 

It has been previously suggested mechanical advantages of specific feeding apparatuses 

do not necessarily scale with body size, so it may be incorrect to assume similar gross 

morphological variance bears any relevance to comparing the biophysics of trophic 

exploitation at the interspecific level (Hernandez 2000). Additionally, this is complicated 

by explicit distinctions in the anatomy of the fish in question. Oral jaw protrusion in D. 
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rerio is driven by a bone novel to cyprinids, the kinethmoid, which is connected 

posteriorly to the articular process of the premaxilla via ligament. Other ligaments 

spanning between the kinethmoid and palantine/maxilla/neurocranium coordinate to 

rotate the small bone 90º during jaw protrusion (Hernandez/et al. 2007). This is 

mechanically distinct to jaw protrusion in cichlids, which rely upon pressure applied by 

the vomer and anterior swing of the maxilla to occur (Otten 1983). Presumably, due to 

this difference, the applied forces of each system do not directly overlap in direction or 

magnitude, and this alternate application of mechanotranduction may manifest alternate 

oral jaw phenotypes in response to similar treatment. This is also the case for the 

pharyngeal jaw, as the lack of teeth in zebrafish anywhere but the lower pharyngeal jaw-

set (Mabuchi/et al. 2007), distinguishes it from the cichlid, which possesses teeth on both 

upper and lower oral jaws, and both pharyngeal. Additionally, cichlids possess fused 

lower jaws which have necessarily been posteriorly anchored to novel processes at the 

rear of the mouth (Liem 1973). Both of these aforementioned factors represent 

divergence in form and function of the experimentally manipulated structures. However, 

in addition to the physical limitations at the morphological level, these differences may 

also be the product of differently canalized patterns of regulation surrounding jaw 

development at the molecular level. Subsequently these morphologies may be differently 

canalized in M. zebra and D. rerio, directing differences in the pattern or magnitude of 

the plastic response between species. 

Thus, these results permit the proposition that not only do the distinctions in 

plasticity between these two species bear origins which are behavioral, anatomical, or 

genetic in nature, but each origin undoubtedly contributes in part to various trait labilities. 
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Behaviorally, for instance, M. zebra appears a much better fit for exploiting novel trophic 

niches. They do not require training to learn exploitation of experimental trophic niches 

and each fish appears independently capable of learning novel feeding behaviors. 

Conversely zebrafish, do not easily take to new regimes, and purportedly exhibit high 

degrees of variability in their learning proficiency (Bilotta/et al. 2005). As a result, a 

lower number of D. rerio can be expected to acclimate to new feeding behaviors on their 

own, and group learning is likely necessary to encourage rapid uptake of novel methods 

for trophic niche exploitation. Indeed, it was noted in a pilot study that ~1/3 of zebrafish 

reared on a benthic diet in isolation became malnourished from lack of feeding before 

they learned how to feed benthically. However, this apparent behavioral distinction 

between species is additionally complicated because it is difficult to differentiate the 

degree to which behavior is divorced from morphology. As has been previously 

discussed, each species bears distinct characteristics. Between the lack of oral jaw teeth 

on D. rerio, the fused ceratobranchials of cichlids, the general difference in body depth 

and the disparate gross morphology of each species’ head, there are many aspects of the 

morphologies in question that could recursively inform behavior. 

While the relative contribution of different plasticities remains in question, the 

evolutionary basis of overall differences between species may become clearer if we look 

beyond the laboratory back toward the wild evolutionary landscape occupied by each 

organism. From this perspective, it seems differences in localization of plasticity might 

be due to distinctions in canalization of phenotypes between the lineages, because 

selection has favored the conservation of specific developmental pathways within the 

disparate phylogenies (Siegal & Bergman 2002). For instance, evolution has seemingly 
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reduced the zebrafish’s craniofacial lability in response to mechanotransduction. Given 

that the laboratory and wild environment of this small fish tends to be slow moving pools 

of water with little to no rocky substrate, we might understand why (Engeszer/et al. 

2007). Such environments present little opportunity for excessive mechanical input, and 

requires a small body due to low fluid volume of habitats (reducing both nutritional 

availability and physical space). After generations, the D. rerio’s ability to accommodate 

for these stresses is reduced. M. zebra, conversely, evolved in a highly dynamic, deep-

water rift lake environment with great a disparity in exploitable ecologies (Ribbink/et al. 

1983). Because this represents a recent environmental factor in their phylogeny, it 

follows this species’ gross morphology would be more plastic, as this would enable 

greater degrees of alternate habitat exploitation during colonization. An interesting topic 

of future investigation would be to determine whether plasticity in M. zebra evolved 

within this lineage of Malawi cichlid, or represents the retention of an ancestral feature. 

Despite some degree of disparity in level of manifestation between species, it 

seems reasonable to consider the deformation visible here as accommodations for the 

applied experimental feed regimes. Accommodations, theoretically, represent flexibilities 

an organism exercises in the face of environmental challenges. Characterized initially as 

an organism’s ability to utilize developmental plasticity to overcome pathologies or 

unique morphology, we can also extend accommodations to include wild-type organisms 

experiencing novel inputs as well. Generally, if a novel behavior or morphology not only 

accommodates for the challenges of a new environment, but also improves fecundity 

despite it, then the ability to develop the trait more efficiently, the plasticity itself, should 

propagate through the population in question (West Eberhard 2005). Given the 
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differences due to treatment suggested here, it seems possible such a scheme would be 

corroborated by phylogenetic evidence, or perhaps multi-generational studies in 

invertebrates with shorter generation times. 

From what can be interpreted here, it seems the plasticities of zebrafish and 

cichlids do bear some comparability in the laboratory setting. While the individual 

response of each species remains disparate at the level of craniofacial versus pharyngeal 

jaw shape, there is concrete evidence the restructuring of bones occurs in each fish in 

response to treatment. Based upon this we may hypothesize that the responses bear 

homology at the genetic level and thus share phylogenetic history, as the bones in 

question are subject to long-conserved mechanically sensitive osteogenic pathways 

(Witten & Hall 2015).  

This too requires further exploration to confirm, but the results presented here do 

establish suggestions on which tissues may be ripe for molecular analyses of 

transcriptional similarity. Already, there is some evidence that signaling in the Hedgehog 

pathway precedes divergent phenotypes in the cichlid feeding apparatus (Hu & Albertson 

2014) and may play a role in mechanically induced morphological plasticity (Navon 

2019). Additionally, they provide evidence that alternate trophic regime studies may be 

augmented via the addition of a third feeding parameter in hard pellet feeding. Statistical 

differences were found for both species subjected to this treatment, suggesting additional 

exploration of methodological permutations may allow for a more nuanced picture of the 

landscape for teleost craniofacial plasticity. The novel three-pronged feeding approach 

may be of even further benefit in interspecies studies such as the previously discussed, as 

differences between species manifested at alternate levels of morphological organization, 
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one of which (the pharyngeal jaw) was expected to be particularly stimulated via pellet 

feeding treatments. That being said, based upon the methods of other studies on 

ceratobranchial plasticity, it may be prudent to also explore alternate analyses of similar 

data, as some of this disparity might be due to the measurement employed, especially 

considering confirmation of plasticity in each species via new metrics would only stand 

to improve the case for regularly including pellet treatments in the experimental model. 

In addition, it may be useful to fine-tune food-type or delivery methods, as the 

pharyngeal jaw apparatus, especially in cichlids, may require food which induces more 

forceful processing than what was used here to induce a plastic response. Overall and in 

spite of whatever methodological challenge, the takeaway of this study represents a good 

prognosis for the analytical power of alternative trophic niche studies, past and future. 

 

 

 

 

 

 

 

 

 



 25 

CHAPTER 5 

CONCLUSIONS 

 Both D. rerio and M. zebra are capable of mounting morphological/behavioral 

plastic responses in the face of novel feeding environments, though each is different and 

can largely be accounted for once form and function relationships are considered. 

Broadly, this means they do bear comparison in laboratory settings when keeping 

disparity of canalized traits of feeding apparatuses in mind. Additionally, the results of 

the previously discussed research show promise for both the application of three-part 

alternative trophic niche experimentation and the possibility of deep genetic homologies 

for craniofacial restructuring in fish, but confirmation of these notions would 

undoubtedly require further examination of the subject (for example, in Navon 2019). 

Molecular analyses and alternate measures of physical properties are especially 

recommended for future study. 
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APPENDIX: TABLES AND FIGURES 

 

Lateral Data Tables and Figures 

 

 

 

 

                                 
 

 
 

Figure 1: M. zebra lateral morphometric mean shape per treatment. Each panel 

represents deformation from standard mean of all fish regardless of treatment. 

Pictured left to right, benthic treatment, pelagic treatment, and pellet treatment 

groups. 
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Figure 2: Polygon plots of Principal Component axes 1-4 for M. zebra lateral 

morphometric data. Benthic treatments are colored in cyan, pelagic in black, pellet 

in red. 
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Advanced Procrustes D Linear Model ANOVA (By Treatment) 

 DF RSS SS R-squared F-value Z-

score 

P-

value 

 56 0.1163

8 

0.010000

0 

0.079195 2.4082 3.0577 0.0015 

P-values/Effect Sizes (b/t Treatments) Morphological Disparity P-values/Abs. 

Diff. 

 Benthic Pelagic Pellet  Benthi

c 

Pelagi

c 

Pellet 

Benthi

c 
1/0 3.9254

5 

1.958990 Benthic 1/0 0.0008 0.0006 

Pelagic 0.0010 1/0 2.050589 Pelagic 0.0442 1/0 0.0002

2 

Pellet 0.0384 0.0357 1/0 Pellet 0.1455 0.6088 1/0 

ANOVA of PC Axes ANOVA Treat. Effect vs Exp. Effect vs 

Size 

 Mean 

Sq. 

F-

value 

P-value  F-score Z-

score 

P-

value 

1 0.00142 3.0239 0.03704 Log(CS) 20.3731 6.5294 0.0001 

2 0.00011

2 

0.3099 0.8182 Treatment 2.5370 4.1680 0.0001 

3 0.00036 1.5799 0.2047 Experimen

t 

1.5265 3.2623 0.0002 

4 0.00070 4.5772 0.00617     

5 0.00025 1.7746 0.1625     

6 0.00041 4.4528 0.00710     

 

Table 1: Numerical returns for all statistical testing on M. zebra lateral 

morphometric data. Divided tables are labelled in the respective order they are split. 
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Fig. 3: Results of an outlier test on M. zebra lateral morphometric data. The 

proximity of the lone outlier to the threshold led to its retention in the data set. 
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Figure 4: D. rerio lateral morphometric mean shape per treatment. Each panel 

represents deformation from standard mean of all fish regardless of treatment. 

Pictured left to right, benthic treatment, pelagic treatment, and pellet treatment 

groups. 
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Figure 5: Polygon plots of Principal Component axes 1-4 for D. rerio lateral 

morphometric data. Benthic treatments are colored in cyan, pelagic in black, pellet 

in red. 
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Advanced Procrustes D Linear Model ANOVA (By Treatment) 

 DF RSS SS R-

squared 

F-value Z-score P-value 

 107 0.44139 0.01226 0.027026 1.486 1.4602 0.0712 

P-values/Effect Sizes (b/t Treatments) Morphological Disparity P-values/Abs. 

Diff. 

 Benthic Pelagic Pellet  Benthic Pelagic Pellet 

Benthic 1/0 0.862593 2.646113 Benthic 1/0 0.00077 0.00092 

Pelagic 0.1840 1/0 -0.29114 Pelagic 0.1151 1/0 0.00015 

Pellet 0.0138 0.5738 1/0 Pellet 0.0524 0.7485 1/0 

ANOVA of PC Axes No Testing for Experimental Effects in 

Danio 

 0.00076 F-value P-value     

1 0.00041 0.8021 0.4511     

2 0.00046 0.7487 0.4754     

3 0.00095 2.3367 0.1015     

4 0.00061 2.8971 0.0595     

5 0.00018 2.7495 0.0684     

6 0.00018 0.8921 0.4128     

 

Table 2: Numerical returns for all statistical testing on D. rerio lateral 

morphometric data. Divided tables are labelled in the respective order they are split. 
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Figure 6: Results of an outlier test on D. rerio lateral morphometric data. The 

proximity of the outliers to the threshold led to their retention in the data set. 
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Pharyngeal Jaw Data Tables and Figures 

 

 

 

 

                 
 

 

 

 

 

 

Figure 7: M. zebra 

pharyngeal jaw 

morphometric mean 

shape per treatment. 

Each panel represents 

deformation from 

standard mean of all fish 

regardless of treatment. 

Pictured top to bottom: 

benthic treatment, 

pelagic treatment, and 

pellet treatment groups. 
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Figure 8: Polygon plots of Principal Component axes 1-4 for D. rerio pharyngeal jaw 

morphometric data. Benthic treatments are colored in cyan, pelagic in black, pellet 

in red. 
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Advanced Procrustes D Linear Model ANOVA (By Treatment) 

 DF RSS SS R-squared F-value Z-score P-value 

 57 0.06571 0.002260 0.03325 0.9802 1.4732 0.4471 

P-values/Effect Sizes (b/t Treatments) Morphological Disparity P-values/Abs. 

Diff. 

 Benthic Pelagic Pellet  Benthic Pelagic Pellet 

Benthic 1/0 0.01001 0.01072 Benthic 1/0 0.00003 0.00023 

Pelagic 0.4528 1/0 0.01098 Pelagic 0.8993 1/0 0.00020 

Pellet 0.3799 0.3523 1/0 Pellet 0.4323 0.5185 1/0 

ANOVA of PC Axes ANOVA Treat. Effect vs Exp. Effect vs 

Size 

 Mean 

Sq. 

F-value P-value  F-score Z-score P-value 

1 0.00022 0.4582 0.6347 Log(CS) 1.4893 0.91384 0.1834 

2 0.00019 0.7355 0.4837 Treatment 1.0589 0.35966 0.3636 

3 0.00037 3.0019 0.0575 Experiment 0.6994 -0.1616 0.5735 

4 0.00012 1.5711 0.2165     

5 0.00021 0.3730 0.6903     

6 0.00080 2.0235 0.1414     

 

Table 3: Numerical returns for all statistical testing on M. zebra pharyngeal jaw 

morphometric data. Divided tables are labelled in the respective order they are split. 
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Figure 9: Results of an outlier test on M. zebra pharyngeal jaw morphometric data. 

The proximity of the outlier to the threshold led to its retention in the data set. 
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Figure 10: M. zebra 

pharyngeal jaw 

morphometric mean shape 

per treatment. Each panel 

represents deformation 

from standard mean of all 

fish regardless of treatment. 

Pictured top to bottom: 

benthic treatment, pelagic 

treatment, and pellet 

treatment groups. 
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Figure 11: Polygon plots of Principal Component axes 1-4 for D. rerio pharyngeal 

jaw morphometric data. Benthic treatments are colored in cyan, pelagic in black, 

pellet in red. 
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Advanced Procrustes D Linear Model ANOVA (By Treatment) 

 DF RSS SS R2 F-value Z-

score 

P-

value 

 56 0.0953

4 

0.009421

8 

0.089929 2.7668 2.9005 0.0013 

P-values/Effect Sizes (b/t Treatments) Morphological Disparity P-values/Abs. 

Diff. 

 Benthic Pelagic Pellet  Benthi

c 

Pelagic Pellet 

Benthic 1/0 3.3210

4 

2.49836 Benthic 1/0 0.0002

0 

0.0003

4 

Pelagic 0.0041 1/0 2.12813 Pelagic 0.4524 1/0 0.0001

3 

Pellet 0.0156 0.0293 1/0 Pellet 0.1993 0.6050 1/0 

ANOVA of PC Axes No Testing for Experimental Effects in 

Danio 

 Mean 

Sq. 

F-value P-value     

1 0.00072 2.7301 0.07374     

2 0.00039 3.357 0.04185     

3 0.00042 3.7989 0.02826     

4 0.00020 4.9886 0.01008     

5 0.00017 0.9843 0.3799     

6 0.00076 1.4329 0.2471     

 

Table 4: Numerical returns for all statistical testing on D. rerio pharyngeal jaw 

morphometric data. Divided tables are labelled in the respective order they are split. 
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Figure 12: Results of an outlier test on M. zebra pharyngeal jaw morphometric data. 

The were no statistical outliers detected. 
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