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Abstract: After emerald ash borer (EAB), Agrilus planipennis Fairmaire, was discovered in the United
States, a classical biological control program was initiated against this destructive pest of ash trees
(Fraxinus spp.). This biocontrol program began in 2007 after federal regulatory agencies and the state
of Michigan approved release of three EAB parasitoid species from China: Tetrastichus planipennisi
Yang (Eulophidae), Spathius agrili Yang (Braconidae), and Oobius agrili Zhang and Huang (Encyrtidae).
A fourth EAB parasitoid, Spathius galinae Belokobylskij (Braconidae) from Russia, was approved for
release in 2015. We review the rationale and ecological premises of the EAB biocontrol program,
and then report on progress in North American ash recovery in southern Michigan, where the
parasitoids were first released. We also identify challenges to conserving native Fraxinus using
biocontrol in the aftermath of the EAB invasion, and provide suggestions for program improvements
as EAB spreads throughout North America. We conclude that more work is needed to: (1) evaluate the
establishment and impact of biocontrol agents in different climate zones; (2) determine the combined
effect of EAB biocontrol and host plant resistance or tolerance on the regeneration of North American
ash species; and (3) expand foreign exploration for EAB natural enemies throughout Asia.

Keywords: Fraxinus; ash regeneration; Agrilus planipennis; biocontrol; natural enemy introductions;
parasitoids; invasive pests

1. Introduction

The movement of forest insects and plant pathogens, caused by the rapidly expanding global
economy, poses one of the greatest threats to the ecological sustainability of forested ecosystems
throughout the world [1–3]. Despite efforts to combat this problem through improved regulatory controls
in international trade, the accidental introduction of non-native forest pests in wood packaging materials
such as pallets and dunnage, as well as commodities such as nursery stock, lumber, and manufactured
goods, continues [4–7]. Although a relatively small proportion of these introduced species become serious
invasive pests in their invaded regions, increasing numbers of forest insects and diseases are devastating
natural and urban forests worldwide [8,9].

The most recent and notable example of a destructive invasive insect damaging forests in North
America is the emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae),
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introduced from Asia during the 1990s [10–14]. This phloem-feeding beetle attacks ash trees (Fraxinus;
Oleaceae) and was discovered as the cause of ash tree mortality in southeast Michigan, USA and nearby
Ontario, Canada in 2002. Over the next several years, EAB was discovered throughout the region and
well beyond, being spread primarily by human-mediated transport of infested ash materials such as
firewood, nursery stock, and lumber [15–17]. Consequently, early attempts to eradicate EAB in North
America were abandoned, and research, development, and implementation of EAB-management
strategies were expanded.

Biological control is now the primary management tool developed to suppress EAB densities in
forested ecosystems, thereby conserving or protecting the surviving and regenerating ash trees [18–20],
whereas systemic insecticides are available to protect high-value ash, mainly landscape trees in urban
forests [21,22]. Long-term sustainability of native ash species may also require the development
of EAB-resistant or tolerant ash genotypes [23,24]. An earlier review article described progress in
developing EAB biocontrol program in the U.S such as foreign exploration for natural enemies in EAB’s
native range Asia, host specificity testing and risk assessment for the introduced biocontrol agents,
the basic biology of both introduced biocontrol agents and native North American natural enemies,
and an overview of EAB biocontrol releases and research through 2014 [20]. The focus of the present
paper is an overview of progress and challenges in developing, implementing, and evaluating efforts
to manage EAB in forested areas using biological control. Specifically, this paper first discusses the
rationale for selecting EAB as a target and the ecological premises for biocontrol, and then highlights
not only recent progress made in EAB biocontrol, but also the challenges in implementing biocontrol
as an EAB management tool for the conservation of North American ash species. Finally, it proposes
potential solutions to overcome these challenges, including the need for expanded long-term research
on EAB biocontrol as this pest continues spreading throughout North America.

2. Rationale for Selection of Emerald Ash Borer as Target for Biological Control

Emerald ash borer is a specialist herbivore attacking primarily species of Fraxinus in Asia including
China, the Korean Peninsula, and the Russian Far East [25]. Asian ash species are more resistant to
EAB than are North America species [24]. The high densities of EAB feeding in the phloem of North
American ash cause tree mortality within five to seven years of EAB’s invasion of new locations [26–32].
As EAB spreads further south in the United States, it was also found attacking another native tree
species in the family Oleaceae, the white fringetree (Chionanthus virginicus L.), which is commonly
planted as an ornamental in eastern states [33].

Ash trees are widely distributed and highly valued in the deciduous forests of North America [34];
however, the arrival of EAB from Asia has greatly reduced the abundance of many species of ash trees in
the invaded regions in the U.S. [35]. There are 16 species of Fraxinus native to North America, each species
adapted to different ecological habitats across a range of climates zones, soil types, and moisture gradients,
with many species in western states having limited geographical distributions [36–38]. Ash trees serve
as food, cover, nesting sites, and habitat for mammals, birds, arthropods, and other organisms [39,40].
The earliest infestation of EAB in southeast Michigan resulted in mortality of 99% of healthy overstory
ash trees in some infested forests, demonstrating the potential of EAB to functionally extirpate ash trees
from the continent [29]. Emerald ash borer has since spread to 32 states and three Canadian provinces
and killed hundreds of millions of ash trees in both urban and forested areas [41,42]. As a consequence,
the six species of Fraxinus endemic to eastern North America are listed as critically endangered by the
International Union for Conservation of Nature: white ash F. americana L., Carolina ash F. caroliniana Mill.,
black ash F. nigra Marshall, green ash F. pennsylvanica Marshall, pumpkin ash F. profunda (Bush) Bush,
and blue ash F. quadrangulata Michx [43]. The loss of ash diversity and abundance in natural forests in the
earliest-invaded regions (e.g., Midwestern and Mid-Atlantic States, USA) has already harmed native plants
and ash-dependent invertebrates, and altered nutrient cycling and other ecological processes [40,44–48].

Although the environmental and ecological impacts of EAB on the diverse forested ecosystems
of North America are not fully understood, several estimates of its economic impacts have been



Forests 2018, 9, 142 3 of 17

made. In natural forests and timberlands of the United States, more than 7.55 billion timber-sized
ash trees were valued at more than $282 billion [35]. Moreover, ash trees were widely planted as
landscape trees in urban forests, and an estimate for the undiscounted value of these trees in the
United States ranged from $20–60 billion soon after EAB’s discovery [11]. A cost projection of EAB
in just 25 northeastern communities of the United States for only one decade (2009–2019) to treat,
remove, and replace landscape ash was $25 billion [49], making EAB the most destructive and costly
wood-boring insect to invade the United States [50].

All evidence associated with the invasion of the United States and Canada by EAB demonstrates
that this invasive insect is driving ecological degradation in the forests of North America, and taking no
action against EAB is not a sensible or responsible option. Initial efforts by regulatory agencies focused
on the eradication of incipient EAB populations by the creation of an ash-free zones in and around
newly detected infestations [51], while imposing quarantine regulations to restrict the movement of
firewood of all hardwood species and materials of the genus Fraxinus [52,53]. Although EAB- and
ash-quarantine regulations remain in place, efforts to eradicate EAB were abandoned as regulatory
agencies in the United States and Canada determined that eradication of EAB was not possible [13,54].
Subsequently, efforts have shifted to developing biological control-based pest management tools and
strategies to slow the spread and reduce densities of EAB using conventional and biological controls,
and to develop varieties of Fraxinus tolerant or resistant to EAB [24,55–57].

3. The Role of Natural Enemies in Suppressing EAB in Its Native Range

Little was known about the biology and natural enemy complexes of EAB in Asia before the foreign
exploration work for development of a classical biological control program against EAB in the United
States [18–20]. In 2003, researchers began foreign exploration for EAB natural enemies in northeastern
China, resulting in the discovery of four hymenopteran parasitoid species: (1) Sclerodermus pupariae
Yang and Yao (Bethylidae), an ectoparasitoid of larvae, prepupae, and pupae [58,59]; (2) Spathius agrili
Yang (Braconidae), an ectoparasitoid of late-instar larvae [26,60]; (3) Tetrastichus planipennisi Yang
(Eulophidae), an endoparasitoid of late-instar larvae [26,61]; and (4) Oobius agrili Zhang and Huang
(Encyrtidae), an egg parasitoid [62]. Subsequent EAB natural enemy surveys in the Russian Far
East from 2008 to 2012 led to the discovery of three additional species of hymenopteran parasitoid:
(5) Spathius galinae Belokobylskij and Strazanac (Braconidae), an ectoparasitoid of late-instar larvae [63,64];
(6) Atanycolus nigriventris Vojnovskaja-Krieger (Braconidae), an ectoparasitoid of late-instar larvae [63,64];
and (7) Oobius primorskyensis Yao and Duan (Encyrtidae), an egg parasitoid [65]. In a more recent EAB
natural enemy survey in northeastern China, two species of predacious Coleoptera were found attacking
late-instar larvae and pupae of EAB: (8) Tenerus sp. (Cleridae); and (9) Xenoglena quadrisignata Mannerheim
(Trogossitidae) [66].

Ecological studies at field sites in northeast China and the Russian Far East revealed these insect
natural enemies cause high mortality of EAB eggs and larvae and play a critical role in suppressing
EAB densities in forested areas of Asia [26,64,66,67]. The abundance and contribution of individual
species to EAB control varied by geographic region (Table 1). For example, S. galinae is the dominant
EAB larval parasitoid in the Russian Far East, causing up to 63% larval parasitism in some stands,
but it has not been observed in China [64]. In contrast, T. planipennisi, is the dominant EAB larval
parasitoid in northeast China, causing an average of 40% larval parasitism, but it is observed less
frequently in the Russian Far East and further south in Beijing, but never in our most southern survey
site in Tianjin, China where S. agrili is more abundant [26,64,66,67]. To date, O. agrili is the only EAB
egg parasitoid collected consistently in China where it was found parasitizing 12–62% of EAB eggs [67].
Oobius primorskyensis, the only parasitoid found attacking EAB eggs in the Russian Far East, caused
about 23–44% egg parasitism (JJD, unpublished data). Currently, studies are lacking on the ecological
factors that determine the structure of EAB parasitoid assemblages and dominance of different species
in different regions of the beetles’ native range. We suspect that climatic factors such as temperature
and photoperiod, as well as synchronization of EAB and parasitoid phenology in different geographic
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regions, may have led to differences in the parasitoid assemblages and dominance. Nevertheless,
our current knowledge of EAB parasitoid complexes in Asia strongly indicates that the success of
EAB biological control in North America will require the introduction and successful establishment of
a variety of species and genotypes of EAB parasitoids collected from different climatic regions of Asia.

Table 1. Natural enemy complexes and their observed attack rates on the emerald ash borer (EAB) in
different regions of its native range in northeastern Asia.

Geographic Region Natural Enemies EAB Stage(s) Attacked Rate of Attack
(Parasitism or Predation) References

Northeast China:
Heilongjiang, Jilin,

and Liaoning provinces

Oobius agrili eggs 12–62% [26,62,66]

Oencyrtus sp. eggs 1–2% [19]

Tetrastichus planipennisi 3rd and 4th instars 3–44% [26,61,66,67]

Spathius agrili 3rd and 4th instars 0–13% [26,60,66]

Atanycolus spp. Foerster
(Hymenoptera: Braconidae) 3rd and 4th instars 0–23% [66]

Xorides sp. Latreille
(Hymenoptera: Ichneumonidae) 3rd and 4th instars 0–11% [66]

Tenerus sp. Laporte
(Coleoptera: Cleridae) JLand pupae 0–21% [66]

Xenoglena quadrisignata
Mannerheim
(Coleoptera: Trogossitidae)

JL and pupae 0–1.2% [66]

Northcentral China:
Beijing and Tianjin cities

Oobius agrili eggs 0–4.0% [62,66]

Tetrastichus planipennisi 3rd and 4th instars 0–7% [26,61,66,67]

Spathius agrili 3rd and 4th instars 44–67% [61,66]

Atanycolus sp. 3rd and 4th instars 0–5% [66]

Metapelma sp. Westwood
(Hymenoptera: Eupelmidae) 3rd and 4th instars 0–4% [66]

Sclerodermus pupariae Yang and
Yao (Hymenoptera: Bethylidae) 3rd and pupae 1–1.3% [66]

Russia: Primorsky Kray

Oobius primorskyensis egg 23–44% JJD (unpublished data)

Tetrastichus planipennisi 3rd and 4th instars 0–7% [64]

Spathius galinae 3rd and 4th instars 0–78% [64]

Atanycolus nigriventris
Vojnovskaja-Krieger
(Braconidae: Braconinae)

3rd and 4th instars 0–55% [64]

Atanycolus sp. 3rd and 4th instars 0–1% [64]

4. Development of an EAB Biological Control Program in North America

To facilitate implementation of environmentally sound biological control programs, the North
American Plant Protection Organization (NAPPO), with members from Canada, Mexico, and the United
States, provides guidelines to petition for the release of non-indigenous entomophagous biocontrol agents
in member countries [68]. The NAPPO regional standards, developed to analyze the risks and benefits of
implementing a biocontrol program, are based on those developed by the International Plant Protection
Convention of the Food and Agriculture Organization of the United Nations [69]. Petitions for the release
of biocontrol agents are currently reviewed by Agriculture & Agri-Food Canada’s (AAFC) Biological
Control Review Committee (BCRC). With experts from each member country, BCRC evaluates biocontrol
petitions and makes release recommendations to United States Department of Agriculture, Animal and
Plant Health Inspection Service (USDA APHIS) in the United States and to Canadian Food Inspection
Agency (CFIA) in Canada. Authority to release biocontrol agents in the United States may be granted
by USDA APHIS after posting on the federal register, consideration of public comments, a risk-benefit
analysis, and state concurrence; the release of entomophagous biocontrol agents in Canada is coordinated
by AAFC and CFIA [68–70].

Of the Asiatic natural enemies discovered during foreign exploration for EAB natural enemies,
three EAB parasitoid species from China (T. planipennisi, S. agrili and O. agrili) were proposed for
introduction, and after extensive host range testing and safety evaluation, a petition for their release
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was approved in the United States in 2007 [71]. In Canada, releases of T. planipennisi and S. agrili were
approved by CFIA in 2013 and of O. agrili in 2015. However, S. agrili has not been released in Canada
because its sustained establishment is not confirmed in the United States. Two additional species of
insect natural enemy collected from EAB in the Russian Far East were proposed for release in the United
States in 2014: the larval ectoparasitoid S. galinae [72] and the egg parasitoid O. primorskyensis (JJD,
unpublished data). While the petition for release of S. galinae as an EAB biocontrol agent was approved
by USDA APHIS in the United States in 2015 and by CFIA in Canada in 2017 [53], BCRC recommended
O. primorskyensis not be approved for release in the United States until reconsideration of the petition
after additional research, risk-benefit analysis, and resubmission. The introduction of A. nigriventris
from the Russian Far East was also considered, but difficulties in maintaining a viable colony of this
species under quarantine laboratory conditions prevented researchers from conducting host range
studies for further evaluation (JJD, unpublished data). The host ranges of the hymenopteran parasitoid
S. pupariae and the two species of predacious beetle (Tenerus sp. and X. quadrisignata), were deemed by
researchers as too broad, and they were not considered further as potential biocontrol agents.

The safety of Asiatic parasitoids petitioned for environmental releases in North America was assessed
with data collected from both field surveys of other wood-boring insects in the parasitoids’ native ranges
(China and Russian Far East) and laboratory testing with Asian and North American wood-boring and
other insects. Data from these studies show that host specificity of the released Asiatic parasitoids is highly
constrained by the close phylogenetic proximity of potential nontarget hosts to EAB [19,71–74]. Field data
from China and the Russian Far East show that these parasitoids do not attack other wood-boring insects
in ash, such as bark beetles (Scolytidae) or longhorned beetles (Cerambycidae) [73,74]. However, host
specificity studies in the laboratory further show that three of these introduced parasitoids—O. agrili,
S. agrili, and S. galinae—do attack some Asian and North American species of Agrilus (Table 2). In contrast
to the attack on EAB, however, their attack rate is lower on these potentially susceptible non-target
Agrilus spp., even under laboratory conditions, which promote maximum parasitism [19,64,71–74].
Based on both laboratory and field host- range studies, the predicted non-target impact from introduction
of these Asiatic parasitoids for EAB biocontrol, if any, would be a low level of parasitism of some
non-target Agrilus species in North America.

Table 2. Non-target insect taxa tested with the Asiatic parasitoids petitioned for environmental release
in North America as EAB biocontrol agents.

EAB Parasitoids
from Asia

Insect Orders
Tested

Insect Families
Tested

Insect Species
Tested

Agrilus Species
Tested

The Only Non-Targets
Attacked Were Agrilus Species

Oobius agrili 1 2 6 18 6 3
Tetrastichus

planipennisi 1 3 6 14 5 0

Spathius agrili 1 2 6 18 9 5
Spathius galinae 2 3 6 15 6 1
1 Data compiled from Federal Register 2007 [71]; Yang et al., 2008 [74]; Bauer et al., 2014 [19]. 2 Data compiled from
Federal Register 2015 [72]; Duan et al., 2015a [73].

There are approximately 800 Agrilus species in North America, with about 175 species in the
United States [75,76]. Based on the results of these host-range studies, it is possible that the introduced
EAB parasitoids may occasionally attack some of the non-target Agrilus species in North America;
however, recent host-finding studies show that some EAB parasitoids are attracted to volatiles from ash
trees [74,77], indicating a strong affinity to Fraxinus, their host’s food plants. Thus, it can be reasonably
predicted that the level of attack on non-ash feeding Agrilus species, if any, would be limited. Field
surveys of non-target insects associated with ash trees following field releases of introduced EAB
parasitoids in Michigan and Maryland found no evidence of non-target attack from these introduced
parasitoids [45]. In contrast, arthropod diversity associated with ash trees is significantly reduced
because of the EAB invasion in Maryland [78]. The parasitoids introduced from Asia were selected for
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high EAB-host specificity, and in the aftermath of the EAB invasion of North America, the resulting
conservation of Fraxinus and recovery of forests will produce many desirable ecological benefits [79,80].

5. Introduction and Establishment of EAB Biocontrol Agents

In 2007, after USDA APHIS issued permits for the environmental release of O. agrili, S. agrili,
and T. planipennisi in Michigan, small numbers (a few hundred per species) were laboratory-reared
and released at a few sites [18,81,82]. In subsequent years, larger numbers of parasitoids were released
(tens of thousands) in additional states after USDA APHIS’ EAB biocontrol mass-rearing facility in
Brighton, Michigan became operational in 2010 [19,20,83]. To date, more parasitoid releases and data
on recovery is ongoing in regions with more ash trees, a longer history of EAB, and where researchers,
regulatory agencies, or land managers are actively involved in research or management of EAB using
biocontrol. By the end of the 2017 field season, parasitoids had been released in 27 of 32 United States
and two of three Canadian provinces invaded by EAB (Figures 1 and 2).
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Figure 1. Map showing known regions of North America invaded by EAB, and locations where
Spathius agrili and S. galinae were released by fall 2017 [84]. In the United States, releases of S. agrili and
S. galinae began in 2007 and 2015, respectively. In Canada, release of S. galinae began in 2017. In 2013,
release of S. agrili was limited to EAB infestations south of the 40th parallel due to lack of establishment
further north. No recovery sites for Spathius are shown because establishment of S. agrili was found at
only one release site, and it is too soon to confirm establishment of S. galinae.



Forests 2018, 9, 142 7 of 17

Forests 2018, 9, x FOR PEER REVIEW  7 of 17 

 

(a)

(b)

Figure 2. Maps showing known regions of North America invaded by EAB, and the release and 
recovery sites for (a) O. agrili and (b) T. planipennisi, EAB biocontrol agents introduced from China in 
North America from 2007 to 2017, using a variety of methods [83] and documented on the EAB 
biocontrol geospatial database [84]. In the United States, releases of T. planipennisi and O. agrili began 
in 2007, and in Canada, releases of these species began in 2013 and 2015, respectively. Establishment 
of these two biocontrol agents in EAB populations are confirmed at many early release sites. 

Figure 2. Maps showing known regions of North America invaded by EAB, and the release and
recovery sites for (a) O. agrili and (b) T. planipennisi, EAB biocontrol agents introduced from China
in North America from 2007 to 2017, using a variety of methods [83] and documented on the EAB
biocontrol geospatial database [84]. In the United States, releases of T. planipennisi and O. agrili began
in 2007, and in Canada, releases of these species began in 2013 and 2015, respectively. Establishment of
these two biocontrol agents in EAB populations are confirmed at many early release sites.
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In many regions of the United States, the three Chinese biocontrol agents have been recovered from
EAB larvae and eggs one year after their release, indicating successful reproduction and overwintering
in the target host. However, only O. agrili (Figure 2a) and T. planipennisi (Figure 2b) are consistently
recovered two or more years after their last release, and these two species are now considered
established and spreading naturally beyond their initial release sites [84]. By 2013, however, researchers
found that S. agrili was not establishing in northern regions of the United States, and release of this
species was subsequently restricted to EAB infestations south of the 40th parallel [83] (Figure 1).
To date, the establishment of S. agrili has been confirmed at only one site in Maryland (~38th parallel),
7 years after release and at a low rate of parasitism (JJD, unpublished data). Releases of S. galinae began
in 2015 north of the 40th parallel, and although it is too soon to confirm establishment, the results of
ongoing research on EAB natural enemies in Michigan, Connecticut, Massachusetts, and New York
suggest this parasitoid is establishing and spreading [85].

6. Impact of EAB Biocontrol Agents on Target Pest Populations

The question then arises whether populations of the established parasitoids can effectively reduce
the invasive EAB populations to a sufficiently low level to allow for ash regeneration and recovery in the
aftermath forests. The answer to this question requires long-term research and also depends on impacts
of other biotic and abiotic mortality factors of EAB in the targeted forest ecosystem. For example,
a population dynamics model parameterized with observed larval and egg parasitism rates (~60%)
in Asia, showed that natural enemies in Asia can quickly reduce EAB populations (i.e., with a net
population growth rate < 1) when accompanied by moderate to high levels of host plant resistance
with no predation from avian predators [86]. When accompanied by heavy woodpecker predation
(~60%) in North America (e.g., [87–89]), an addition of ~35% of larval parasitism rate is sufficient
to reduce the EAB population growth rate to <1, even with limited levels of host tree resistance or
tolerance [86,90]. Moreover, other factors are periodically important, such as mortality caused by
fungal entomopathogens [91,92] or cold winter temperatures [93].

In the same line of analysis, key abiotic factors such as temperature can also affect the efficacy
of EAB biocontrol. For example, there are regional differences in the EAB life cycle because of
variation of the heat accumulation in different geographic regions. In warmer climates of the southern
United States, EAB eggs and larvae develop faster, thereby reducing exposure times to egg and larval
parasitoids and causing EAB population growth rates to increase. In addition, this shortened EAB life
cycle may also result in asynchrony of EAB egg and larval stages with adult parasitoid phenology,
causing failure of establishment, or reduced impacts of natural enemies on EAB population densities.
Consequently, the population-level impact of the introduced EAB biocontrol agents, in the southern
United States, may be reduced by the climatic condition that favor a shortened (one year) EAB life
cycle. Thus, foreign exploration for EAB natural enemies is needed in southern Asia for biocontrol of
EAB in southern regions of the United States.

Data collected recently from a long-term study conducted in Michigan may provide us with
some insights into the population-level impact of these introduced biocontrol agents. The long-term
study consisted of six forested sites in southern Michigan, each comprised of a release and non-release
control plot, which were established between 2007 and 2010. At each release plot, small numbers of
adult O. agrili, S. agrili, and T. planipennisi were released, and in subsequent years, infested ash trees are
being sampled to estimate EAB egg and larval parasitism, and other causes of larval mortality [81,82].

During the first five years after release of the EAB parasitoids at these study sites, EAB egg
parasitism by O. agrili averaged ~1 to 4% from 2008–2011 and then increased to ~28% by 2014 in
release plots. The natural spread of O. agrili from the release plots to the control plots was slow and
somewhat variable between sites [82]. Overall, the impact of O. agrili in suppressing EAB population
growth, as well as the natural spread rate of this biocontrol agent, has yet to be determined, because
sampling EAB eggs (1 mm in diameter and cryptically colored) from ash bark layers and crevices is
labor intensive and difficult to standardize [82,94]. Moreover, parasitism of EAB eggs by O. agrili is
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patchy, thus more intensive sampling is needed to find this tiny parasitoid and quantify its impact on
EAB population dynamics. Despite these challenges, researchers are confirming the establishment and
relatively slow spread of O. agrili in this and other regions of North America (Figure 2a).

In contrast to the sampling of EAB eggs, sampling EAB for larval parasitism is done by debarking
live, infested ash trees, a relatively simple and reproducible method. Using this approach, average
larval parasitism by T. planipennisi was ~1 to 6% from 2008–2011 and increased to ~30% by 2014
in both the release and control plots [81,95,96]. As more recovery work is done in this and other
regions, researchers are finding a rapid spread of T. planipennisi across EAB-infested sites (Figure 2b).
More recent life table analyses after seven years of data collection from these six study sites revealed
that T. planipennisi contributed significantly to the reduction of net EAB population growth rates
approximately four years after its initial release [96]. Moreover, with additional larval mortality from
local natural enemies of wood boring insects, such as woodpeckers and native parasitoids (primarily
braconids in the genus Atanycolus) [97], the resource-adjusted EAB larval density (per m2 of live
phloem tissues) declined ~90% in infested ash trees at both the release and control plots between 2009
and 2014 [96,98]. The decline in the resource-adjusted EAB density may also be attributed in part to
the general collapse of EAB populations following widespread mortality of the overstory ash trees.
Depletion of host tree resources in a local area would cause EAB adults at some point to disperse
in search of more abundant hosts [99,100]. However, many small ash trees and saplings, ranging in
size from 2.5- to 15-cm Diameter at Breast Height (DBH)) are still abundant and susceptible to EAB
infestation in the study sites [79,86]. For the surviving ash trees, the pest pressure they now experience
is reduced, increasing prospects for their survival and reproduction [79,86].

The results from EAB field studies in the United States and Asia reveal that larval parasitism
rates by T. planipennisi are inversely correlated ash tree diameter with 95% of larval parasitism in
ash trees < 16-cm DBH [26,45,67,101]. This can be attributed to the relatively short ovipositor of
T. planipennisi (average 2- to 2.5-mm long), limiting its ability to reach EAB larvae under the thick
bark on lower boles of large-diameter ash trees [101]. In the same study, a larger parasitoid species
(Atanycolus) with a longer ovipositor (average 4- to 6-mm long), parasitized EAB larvae in ash trees up
to 57.4-cm DBH. It has been shown that T. planipennisi is important in protecting ash saplings and basal
sprouts (2- to 6-cm DBH) from EAB in post-invasion recovering forests [79,80]. However, the protection
of ash trees as they mature, will require establishment of the larger EAB biocontrol agent, S. galinae,
which has a longer ovipositor (average 4- to 6-mm long) and capable of parasitizing EAB larvae in
large-diameter ash trees [64,102]. Since releases of S. galinae began in several northern states in 2015,
it appears to be establishing and spreading, and researchers will continue monitoring its impacts on
EAB population dynamics and the health of large-diameter ash trees at study sites.

In theory, highly effective egg parasitoids from EAB’s native range may protect all size-class
ash trees against EAB, as they can kill the pest before its larvae bore into the ash phloem to feed.
However, the current level of egg parasitism by O. agrili (<29%) by itself is not sufficient to protect
ash trees. Introduction of a second species of EAB egg parasitoid, O. primorskyensis, may enhance egg
parasitism in some regions of North America and improve ash tree survival [103].

7. Ash Recovery and Regeneration after EAB invasion with Biological Control

Evidence gathered in the native range of EAB has shown that EAB outbreaks in northeastern Asia
are rare events in natural forests, and outbreaks occur primarily in isolated plantations and urban
plantings of mostly North American ash species (F. pennsylvanica, F. americana, F. velutina) [26,64,86,104].
Even if EAB can occasionally cause significant ash mortality in urban plantings or plantations of North
American ash in Asia, no widespread outbreaks comparable to those observed in North American
forests have been recorded in forested regions of Asia [26,64]. In addition, large, relatively healthy
North American ash trees, mainly F. pennyslvanica and F. americana, have been observed in forested
parks in China and urban areas in the Russian Far East [26,64,67]. It is plausible that EAB parasitoids in
these regions may be protecting the more susceptible North American ash species. This protection may
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occur at two different phases. First, saplings or trees of susceptible ash species planted in Asia maybe
colonized at low levels of EAB because there are fewer EAB founders coming from the resistant native
ash species in Asia, thereby delaying EAB population increase in these susceptible ash trees or saplings.
Second, the abundance and diversity of EAB parasitoids in their native range may facilitate a more
rapid numerical response to incipient infestations of EAB in the susceptible ash saplings or trees,
resulting in direct protection at relatively low EAB densities. In post-EAB invaded forests of North
America, ash trees are much scarcer than in forests prior to invasion, and established populations of
the introduced EAB parasitoids may conserve surviving native ash by moderating the frequency and
amplitude of future EAB outbreaks.

The EAB invasion of forests in southeast Michigan, during the 1990s, resulted in nearly 100%
mortality of overstory ash trees by 2010 [29,105]. The potential for recovery of the ash canopy was
assessed in this region from 2007 to 2009, and abundant regeneration of smaller height class ash trees,
mainly F. americana and F. pennsylvanica, were found. However, young 1–2 year ash seedlings were
much less common, and the lack of new seedlings was traced to a depleted seed bank, as few or
no nearby mature ash trees existed to provide seed [29,105]. However, the results of a more recent
study of regenerating F. pennsylvanica in this region reported abundant seed production on surviving
mature ash trees during mast years, as well as on sexually mature small ash trees and basal sprouts
regenerating from top-killed trees, suggesting a significant, though greatly reduced, pool of ash trees
in this region [106]. In a separate study in southeast Michigan where the establishment and spread of
T. planipennisi is now confirmed, densities of ash and other native saplings were higher and densities
of weedy species lower in closer proximity to study sites where more parasitoids were released [80].
These results suggest that protection of ash saplings by T. planipennisi favors the recruitment of native
woody species over weedy species in gaps as these forests recover from loss of the overstory ash
canopy in the aftermath of the EAB invasion.

Researchers also estimated the abundance and condition of ash saplings and trees at the six
long-term EAB biocontrol study sites in southern Michigan, where the sustained establishment
T. planipennisi and O. agrili have been documented for nearly a decade [79]. Results of this study showed
that healthy ash saplings (400–1600 per hectare) and young trees (200–900 per hectare) remained in
these study sites, despite formerly high EAB densities that resulted in loss of most overstory ash
trees by 2010. In addition, life table analysis of EAB population dynamics at these sites indicates that
the net population growth rate of EAB is near or below replacement levels, and that the introduced
biocontrol agent T. planipennisi reduced the pest’s net population growth rates at these sites by over 50%.
These findings strongly indicate that the introduced EAB parasitoids can provide significant biocontrol
services, enhancing ash survival, and promoting forest recovery in North America [79,80,85].

8. Conclusions

Following its accidental introduction into the United States in the 1990s, EAB continues to
spread and degrade ash communities and forested ecosystems in North America. The EAB Biocontrol
Program, which started over a decade ago via the introduction and establishment of co-evolved natural
enemies from the pest’s native range, appears to hold promise for forests of northern regions of North
America. This program has documented establishment of the egg parasitoid O. agrili and the larval
parasitoid T. planipennisi, both introduced from China, in EAB populations at most release sites in
northern United States and southern Canada, where surveys to document parasitoid establishment are
ongoing. While the role of O. agrili in reducing EAB population growth requires continued evaluation,
the larval parasitoid T. planipennisi has been shown to play a significant role in protecting ash saplings
and smaller trees (DBH < 12 cm) in aftermath forests in Michigan [79,80,96]. The suppression of EAB
densities is likely to spread geographically as populations of O. agrili and T. planipennisi increase and
spread to new areas, protecting the regenerating ash saplings and young trees. To protect growing
and surviving ash trees, however, more widespread releases and successful establishment of S. galinae,
the largest of the EAB biocontrol agents, are needed. As EAB continues spreading through the southern
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and western United States, we recommend expanding EAB biocontrol research to: (1) quantify the
impacts of EAB biocontrol on ash and other native tree species as forests recover in the aftermath
of EAB in northern regions; (2) develop parasitoid release methods for more widespread, remote,
or larger ash stands; (3) expand research on synergistic effects of EAB biocontrol and ash resistance or
tolerance to EAB in native North American ash species; (4) determine parasitoid establishment in EAB
populations in warmer climates; and (5) explore different regions of Asia for EAB natural enemies
adapted to climate zones similar to those in the southern and western United States where EAB is
invading. Over many decades, it is reasonable to assume that a diverse complex of mortality factors
and lower ash density will reduce both the frequency and intensity of EAB outbreaks, permitting the
growth, survival, reproduction, and conservation of Fraxinus species.
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