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Background: Dynamic changes in circulating tumour DNA (ctDNA) levels may predict long-term outcome. We utilised
samples from a phase I/II randomised trial (BEECH) to assess ctDNA dynamics as a surrogate for progression-free survival (PFS)
and early predictor of drug efficacy.

Patients and methods: Patients with estrogen receptor-positive advanced metastatic breast cancer (ERþ mBC) in the BEECH
study, paclitaxel plus placebo versus paclitaxel plus AKT inhibitor capivasertib, had plasma samples collected for ctDNA analysis
at baseline and at multiple time points in the development cohort (safety run-in, part A) and validation cohort (randomised, part
B). Baseline sample ctDNA sequencing identified mutations for longitudinal analysis and mutation-specific digital droplet PCR
(ddPCR) assays were utilised to assess change in ctDNA abundance (allele fraction) between baseline and 872 on-treatment
samples. Primary objective was to assess whether early suppression of ctDNA, based on pre-defined criteria from the
development cohort, independently predicted outcome in the validation cohort.

Results: In the development cohort, suppression of ctDNA was apparent after 8 days of treatment (P¼ 0.014), with cycle 2 day 1
(4 weeks) identified as the optimal time point to predict PFS from early ctDNA dynamics. In the validation cohort, median PFS was
11.1 months in patients with suppressed ctDNA at 4 weeks and 6.4 months in patients with high ctDNA (hazard ratio¼ 0.20, 95%
confidence interval 0.083–0.50, P< 0.0001). There was no difference in the level of ctDNA suppression between patients randomised to
capivasertib or placebo overall (P¼ 0.904) nor in the PIK3CA mutant subpopulation (P¼ 0.071). Clonal haematopoiesis of indeterminate
potential (CHIP) was evident in 30% (18/59) baseline samples, although CHIP had no effect on tolerance of chemotherapy nor on PFS.

Conclusion: Early on-treatment ctDNA dynamics are a surrogate for PFS. Dynamic ctDNA assessment has the potential to
substantially enhance early drug development.

Clinical registration number: NCT01625286.
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Introduction

Dynamic changes in the level of circulating tumour DNA

(ctDNA) early on treatment have the potential to act as a surro-

gate for treatment response across multiple tumour types [1–3].

The level of ctDNA is principally a function of two factors, tu-

mour bulk and tumour cell turnover [4–8], which results in the

level of ctDNA falling rapidly in tumours responding to treat-

ment. Prior research has shown that early changes in ctDNA
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levels may predict response and progression-free survival (PFS)

[9–11], including targeted therapies encompassing CDK4/6

inhibitors [12], human epidermal growth factor receptor 2

(HER2)-targeted therapies [13], and chemotherapy [14]. The as-

sessment of early ctDNA dynamics is to potentially identify, be-

fore radiographic change in tumour size, which cancers are not

responding adequately to therapy and allow adaption of treat-

ment to avoid symptomatic progression [15–17]. Dynamic as-

sessment may also facilitate early drug development, providing

an early assessment of drug efficacy and identification of bio-

markers of response [7, 18, 19].

Predicting the outcome of therapy early would allow adaptive

changes to treatment to improve outcome. Prior work using cir-

culating tumour cells (CTC) counts, applying a fixed cut-off [20],

failed to identify a patient population who would benefit from a

change in chemotherapy [21]. Interrogating ctDNA gives sub-

stantially greater dynamic range and sensitivity than CTC enu-

meration [1] allowing more exact definition of which patients are

resistant to therapy, in part allowing comparison of on-treatment

levels with baseline to allow for the substantial variation in base-

line ctDNA levels.

Here, we assessed the potential of dynamic ctDNA change in a

randomised placebo-controlled phase II study. In the develop-

ment cohort, we identified the optimal early time-point and cut-

off to predict PFS on the first-line paclitaxel chemotherapy given

in combination with the AKT inhibitor capivasertib (AZD5363).

We subsequently validated these criteria in the randomised part

of the study, demonstrating that early ctDNA dynamics was a

strong surrogate for PFS and that early ctDNA change analysis

predicted there was no difference between the treatment arms

reported by Turner et al. [22].

Materials and methods

Study design

The BEECH study (NCT01625286) was a phase I/II trial consisting of
part A, a safety run in of capivasertib in combination with paclitaxel in
women with advanced or metastatic breast cancer and part B, a rando-
mised double-blind phase II study of capivasertib or placebo in combin-
ation with paclitaxel in women with advanced or metastatic ERþ/HER2-
breast cancer receiving chemotherapy for the first time in the metastatic
setting. Maintenance endocrine therapy was not allowed. Treatment regi-
mens are reported in the related article by Turner et al. [22]. Patients
were allocated to the PIK3CAþ stratum if a mutation was identified ei-
ther in tissue or ctDNA by the cobas

VR

PIK3CA mutation test (Roche
Diagnostics, Basel, Switzerland, Basel, Switzerland).

Sample collection 1 processing

Five millilitre blood was collected for exploratory ctDNA analysis at des-
ignated timepoints throughout the study (Figure 1). Plasma was sepa-
rated within 2 hours of venesection and stored at�80�C. Extracted DNA
was quantified by digital droplet PCR (ddPCR) using a Taqman copy
number reference assay for RNAse P (Thermo Scientific, UK) as
described previously [17] and stored at�20�C before analysis.

Baseline plasma mutation identification

Baseline samples [screening and/or cycle 1 day 1 (C1 D1) and/or cycle 1
day 2 (C1 D2)] from patients who consented to ctDNA analysis was

subject to sequencing for mutations to subsequently track in plasma sam-
ples on treatment. Sequencing also validated PIK3CA mutations identi-
fied by the cobas

VR

PIK3CA mutation test with high agreement
(supplementary Table S1, available at Annals of Oncology online). Full
sequencing methodology available in supplementary Methods, available
at Annals of Oncology online along with the targeted panel details for part
A (supplementary Table S2, available at Annals of Oncology online) and
the targeted capture panel details for part B (supplementary Table S3,
available at Annals of Oncology online).

Personalised digital PCR assay design and tracking

From baseline ctDNA sequencing, we identified likely somatic driver
mutations and designed primers and probes for digital PCR analysis. Full
assay design details (supplementary Table S4, available at Annals of
Oncology online) and digital PCR methods available in supplementary
Methods, available at Annals of Oncology online.

Circulating tumour DNA ratio analysis

For on-treatment digital PCR, the circulating tumour DNA ratio (CDR).
Between on-treatment mutation fraction and baseline/screening muta-
tion allele fraction was calculated for all timepoints. In part A, the optimal
time-point to predict PFS within the first 4 weeks of treatment was estab-
lished (supplementary Methods, available at Annals of Oncology).

The primary analysis of the study was, in the independent part B valid-
ation cohort, to compare PFS between patients with CDR28 (CDR at
cycle 2 day 1, 28 days on treatment identified in part A) greater than the
cut-off identified in part A (high ctDNA) and those with CDR28 lower
than the cut-off (suppressed ctDNA). Analysis was conducted by
Kaplan–Meier survival, with median comparison using the log rank test
and hazard ratios from Cox proportional hazards model. Additional sec-
ondary analyses were to compare CDR28 between treatment arms, over-
all and in the PIK3CA mutant sub-population, with Mann–Whitney U
test.

Lead-time on on-treatment ctDNA tracking

We established a ‘rise from nadir’ criteria to assess lead time by ctDNA
from on-treatment tracking in patients who had initial ctDNA suppres-
sion. Patients defined as CDR28 high were determined to have a lead
time from day 28 as they did not experience ctDNA suppression. A ‘rise
towards baseline’ criteria was also devised. Full details for both criteria
are available in supplementary Methods, available at Annals of Oncology.

Results

Development of criteria for early assessment of
response

To develop criteria for the early dynamic ctDNA assessment, we

intensively sampled 16 patients during the first 4 weeks of therapy

on paclitaxel and capivasertib in part A of the BEECH trial

(Figure 1). Suppression of ctDNA in patients with long PFS be-

came apparent after only 8 days of treatment (Figure 2A), and

C2D1 was identified as the optimal time-point for ctDNA change

to discriminate patients with a long versus short PFS (Figure 2A).

In the part A development cohort, using a CDR threshold of 0.25

(established in Methods), the patients with a CDR <0.25 had a

substantially improved PFS compared with those without sup-

pressed ctDNA (Figure 2B, P¼ 0.0003 log rank test). Tracking

mutations through sequential samples, in patients with ctDNA

suppression, at the start of each cycle demonstrated further falls
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to a nadir that was frequently undetectable, before a rise with

lead-time over clinical progression (Figure 2C). Conversely, in

patients without ctDNA suppression, ctDNA remains high across

the tracking samples before clinical progression, which occurred

before the 12-week scan (Figure 2D).

Validation of ctDNA ratio to predict PFS

We independently validated early prediction of outcome from

ctDNA dynamics, in the randomised part B of the BEECH study

in 42 patients. Samples for ctDNA analysis were taken at screen-

ing and at C2D1, identified in part A as the optimal time point

for early response assessment using ctDNA (CDR28). Mutation-

specific ddPCR had excellent correlation with AZ300 panel allele

fractions for mutations identified by sequencing (supplementary

Figure S1, available at Annals of Oncology). In the independent

validation cohort, patients with a suppressed CDR28 had a me-

dian PFS 11.1 months and patients with a high CDR28 has a me-

dian PFS 6.4 months (hazard ratio ¼ 0.20, 95% confidence

interval 0.083–0.50, P< 0.0001, log rank test, Figure 3A). We sep-

arately investigated patients randomised to paclitaxel and pla-

cebo, and paclitaxel and capivasertib, with no evident difference

in prediction of PFS between both groups (Figure 3B).

Early ctDNA change predicted outcome of
treatment randomisation

We next assessed the effect of capivasertib on CDR28, and the

interaction with PIK3CA mutation status. Overall there was no

difference in ctDNA suppression CDR28 between patients rando-

mised to capivasertib and placebo, in the overall population (me-

dian CDR28 0.08 versus 0.12 respectively, P¼ 0.904), nor in the

PIK3CA mutant sub-population (CDR28 0.14 versus 0.06 re-

spectively, P¼ 0.071) (Figure 3C, supplementary Table S5, avail-

able at Annals of Oncology online). Similarly, there was no

difference in PFS between patients randomised to capivasertib

and placebo, overall and in the PIK3CA mutant subpopulation

(reported in the related article by Turner et al.).

38 patients
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Figure 1. Overview of BEECH study exploratory analysis. (A) Schema of plasma collection during the BEECH trial for both development part
A and validation part B cohorts. Red arrows indicate part A sampling only, blue part B sampling only and purple part A and B shared time-
point sampling. Tracking samples were collected on day 1 of each treatment cycle. (B) CONSORT diagrams of part A and part B exploratory
plasma baseline analysis.
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Lead-time of sequential ctDNA tracking

Sequential ctDNA tracking through treatment may identify, in

patients with initial treatment response, the time at which the tu-

mour develops resistance to treatment anticipating clinical pro-

gression. In 50 patients in the part B randomised study, with

sequential samples available for analysis, we tracked ctDNA

mutations every 4 weeks throughout treatment to progression

(Figure 4A–C). Diverse dynamics were observed through treat-

ment. In several patients ctDNA fell to a nadir at or below the

limit of detection, before a clear rise in ctDNA occurred marking

the development of resistance, with substantial lead-time over

clinical progression (Figure 4A). However, ctDNA dynamics

were not easy to interpret in other patients, including patients

with fluctuations around the nadir that made identification of

the true rise challenging (‘bumping along the bottom’,

Figure 4B), and patients who had a slow rise from nadir making

identification of the exact point of rise challenging (‘slow rise’,

Figure 4C). The ‘bumping along the bottom’ pattern likely

reflected stochastic sampling issues with only relatively minor

differences in total plasma DNA between timepoints (supple-

mentary Table S6, available at Annals of Oncology online).

We defined criteria for ctDNA progression incorporating both

‘rise from nadir’ (Figure 4) and ‘rise towards baseline’ (supple-

mentary Figure S2, available at Annals of Oncology online) criteria

(see Materials and methods). The rise from nadir criteria identi-

fied a median 3.1-month lead-time, whereas the alternative rise

towards baseline formula identified a 2.6 median month lead

time (supplementary Figure S2, available at Annals of Oncology

online). A lead-time over clinical progression was apparent in the

majority of patients 74% (26/35) (Figure 4D, supplementary

Figure S3, available at Annals of Oncology online), although it did

not report a lead-time over relapse in 26% (9/35) patients.

Clonal haematopoiesis of indeterminate potential
is frequent in advanced breast cancer

To identify mutations to track in the validation cohort, plasma

was sequenced with the AZ300 assay. Using this approach, 30%
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Figure 2. Identification of optimal circulating tumour DNA (ctDNA) early timepoint for prediction of progression-free survival (PFS) length in the
development cohort. (A) Circulating tumour DNA ratios (CDRs) at designated timepoints in the first 4 weeks of study treatment, separated by short
and long PFS in study part A. Differing numbers in the long and short groups reflect missed sample collection timepoints in some patients. Long
and short PFS was determined by a scan at 12 weeks on study, the time-point of the first scan in part A. C2D1 (CDR28) was the strongest predict-
ive timepoint P ¼ 0.0007, P value Mann–Whitney U test. (B) PFS for development part A patients split by CDR28 suppressed (CDR28<0.25) versus
CDR28 high. P value log rank test. (C) Longitudinal tracking of a PIK3CA c.1624G>A (p.E542K) mutation in a patient classified as a long PFS by
ctDNA demonstrating successful suppression of ctDNA before rise before progression. (D) Longitudinal tracking of a TP53 c.815T>C (p.V272A) mu-
tation in a patient classified as a short PFS by ctDNA demonstrating failure to suppress ctDNA in the first 4 weeks of treatment.
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(18/59) of patients were classified as having evidence of detect-

able clonal haematopoiesis of indeterminate potential (CHIP)

(Figure 5A). CHIP was strongly suspected if a mutation

was identified in the following genes: DNMT3A, ASXL1, TET2,

JAK2, SF3B1, CBL, GNAS, and IDH2 [23–25]. TP53 was

not included in this analysis as this gene is commonly mutated

in breast cancer, despite also being CHIP associated (supple-

mentary Figure S4, available at Annals of Oncology online).

Buffy coat germline DNA was not available to validate

the CHIP variants. We investigated the clinical factors that

associated with detection of potential CHIP, with prior anthra-

cycline chemotherapy showing limited evidence of being posi-

tively associated with detection of CHIP (odds ratio 2.5; 95%

confidence interval 0.69–8.9, Figure 5B, P¼ 0.155). The pres-

ence of CHIP had no effect on on-treatment nadir leukocytes

(CHIP detected median 3.71 versus CHIP not detected me-

dian 3.05, P¼ 0.12) nor nadir neutrophil count (CHIP

detected median 1.63 versus CHIP not detected median 1.70

P¼ 0.27). In a PIK3CA mutation-positive patient, we tracked a

DNMT3A CHIP mutation through treatment demonstrating

no change in allele fraction during treatment (Figure 5C), des-

pite a clear response in the PIK3CA mutation. PFS was similar

in patients with baseline CHIP and without detected CHIP

(Figure 5D).

Discussion

Circulating tumour DNA dynamics may present a more rapid

way to assess efficacy of treatment than conventional cross-

sectional imaging [1–3, 18, 19]. In this study, we prospectively

validated early ctDNA dynamics as a marker of treatment effi-

cacy, demonstrating that early dynamics is a surrogate for PFS.

We subsequently show that early ctDNA assessment predicted

the results of the randomised phase II trial and correctly pre-

dicted that PIK3CA mutations did not identify ERþ/HER2- can-

cers that were sensitive to AKT inhibition with capivasertib when

combined with paclitaxel.
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Figure 3. Early ctDNA dynamics are a surrogate for progression-free survival (PFS) in the independent validation cohort. (A) PFS for validation
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We show patients who suppress ctDNA after 4 weeks of treat-

ment with paclitaxel with or without capivasertib have substan-

tially improved PFS (Figure 3A, supplementary Figure S5,

available at Annals of Oncology online). For patients with high

ctDNA, this allows the identification of those patients who may

benefit from an adaption in treatment. A few (approximately 9%

4/42) patients derived longer benefit from paclitaxel (>200 days)

despite high on-treatment ctDNA (high CDR28). In these

patients, stopping paclitaxel on the basis of high CDR28 could

conceivably be detrimental, and adaption to add in additional

treatment may be more appropriate. Prospective randomised tri-

als are required to assess whether early on-treatment treatment

adaption has clinical utility.

Our data suggest that early ctDNA dynamics also represent a

surrogate of targeted therapy efficacy when added to standard

therapy. The BEECH study demonstrated that capivasertib added

to paclitaxel did not improve PFS reported by Turner et al. [22]

in this population, and equally capivasertib did not result in

greater early ctDNA suppression than placebo. In contrast, early

ctDNA assessment in the PALOMA3 phase III study of fulves-

trant and palbociclib or placebo demonstrated substantially

improved PFS and ctDNA suppression with the addition of pal-

bociclib. Therefore, early ctDNA dynamics has the potential to

considerably improve decision making in early drug develop-

ment, evaluating drug efficacy early, and assessing whether a bio-

marker (here PIK3CA mutation) predicts for targeted therapy

efficacy.

Tracking ctDNA through treatment identifies a diversity of

patterns of ctDNA progression. Patients with a sharp initial drop

in ctDNA often demonstrate a clear rise that would appear to sig-

nify an event in the tumour that promotes resistance. However,

identifying the rise in other patients is challenging due to vari-

ation along the nadir in responding tumours, largely reflecting

stochastic sampling issues, or a slow rise from the nadir in other

tumours. Developing a robust criterion to predict ctDNA rise

and molecular resistance, essential for interventional studies trig-

gered by ctDNA rise, was challenged by this diversity of ctDNA

tracking patterns. Although the tracked mutations in this study

are commonly clonal, we cannot account for the possibility that

we tracked sub-clonal mutations that may show divergent dy-

namics during treatment compared with clonal mutations.

Tracking multiple mutations could potentially resolve this but

availability of material for further mutational analysis is limiting

in this study [8, 12, 26, 27].

Our work identified frequent clonal haematopoiesis through

ctDNA sequencing and identified prior adjuvant anthracycline

chemotherapy exposure as a factor for the high prevalence in

advanced breast cancer. Tolerance of chemotherapy was unaffect-

ed by CHIP, as was PFS [28], suggesting that CHIP had no clinic-

al consequence in these patients. Age was not a significant factor

in our cohort, likely reflecting the dominant effect of prior

chemotherapy in this cohort, in contrast with the effect of age in

healthy volunteers reports [23, 24]. CHIP mutations remained

constant tracking throughout treatment (Figure 5C), emphasis-

ing the importance of not inadvertently tracking the dynamics of

a CHIP mutation in an individual patient.

In summary, we show that early ctDNA dynamics is a strong

surrogate end point for PFS and also provide a surrogate
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Figure 4. Circulating tumour DNA (ctDNA) dynamics during treatment and lead-time over clinical progression. (A) Longitudinal tracking of a
PIK3CA c.1633G>A (p.E545K) mutation in a patient who demonstrates a clear fall to a sustained nadir and a clear rise before clinical progres-
sion. (B) Longitudinal tracking of a PIK3CA c.3140 A>G (p.H1047R) mutation in a patient who demonstrates a fall in ctDNA which then fluctu-
ates at a low level across multiple timepoints. (C) Longitudinal tracking of a PIK3R1 DelCTGAGA (p.L573_R574del) deletion in a patient who
demonstrates a clear fall in ctDNA but a gradual rise over subsequent cycles before clinical progression. (D) Distribution of lead-time of calcu-
lated molecular progression before confirmed clinical progression (range 0–329 days).
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assessment of efficacy of add-on targeted therapies. Early ctDNA

dynamics have the potential to inform individual treatment deci-

sions and improve early drug development due to the potential to

act as a surrogate of trial outcome.
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