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Title: Compartmental model for 223Ra-Dichloride in patients with 

metastatic bone disease from castration-resistant prostate cancer 

Short title: 223Ra-Dichloride compartmental model 

Abstract 

Purpose: 223Ra-Dichloride is used for treatment of patients with metastatic bone 

disease from castration-resistant prostate cancer. The uptake and mechanism of 

action of 223Ra-Dichloride is not well understood. The aim of this work was to develop 

a compartmental model for 223Ra-Dichloride in patients to improve understanding of 

the underlying mechanisms. 

Methods and material: A compartmental model was developed based on activity 

retention data from six patients (two treatments of 110 kBq/kg 223Ra-Dichloride) for 

plasma, bone surfaces, small intestines, large intestines and excretion data. Rate 

constants were extracted. Rate constant variability in-between patients and treatments 

was assessed. A population model was proposed and compared to the established 

ICRP-67 compartmental model. 

Results: A single bone compartment cannot accurately describe activity retention in 

the skeleton. The addition of a second bone compartment improved the fit to skeleton 

retention data and Akaike information criterion decreased. Mean rate constants of 4.0 

(Range: 1.9–10.9) and 0.15 (0.07-0.39) h-1 were obtained for transport from plasma to 

first bone compartment and vice versa. Rate constants from first to second bone 

compartment and back of 0.03 (0.02–0.06) and 0.008 (0.003-0.011) h-1 were 



calculated. Rate constants for individual patients showed no significant difference 

between patients and treatments.   

Conclusions: The developed compartmental model suggests that 223Ra-Dichloride 

initially locates at the bone surface and is then incorporated into the bone matrix 

relatively quickly. This observation could have implications for dosimetry and 

understanding of the effects of alpha radiation on normal bone tissue. Results suggest 

that a population model based on patient measurements is feasible.  

 

 

 

 

 

 

 

 

 

 

 



Introduction 

223Ra-Dichloride is used for the treatment of metastatic castration resistant prostate 

cancer (mCRPC) [1-4]. Skeletal-related events caused by bone metastases are often 

serious and can reduce the quality of life of patients [5]. Bone-seeking radionuclides 

such as 32P-orthophosphate, 89Sr-chloride and 153Sm-EDTMP have been shown to 

reduce bone pain and have been used to assist in the treatment of bone metastases 

[6]. The bone marrow absorbed dose is a limiting factor in treatment with beta- and 

conversion electron emitting radionuclides. 

Alpha emitters have a short range and high linear energy transfer (LET) which results 

in localised energy deposition [7]. 223Ra is an alpha emitter with a half-life of 11.4 days. 

The mean path length of the alpha-particle emitted by 223Ra is smaller than 0.1 mm in 

soft tissue [5,8]. An improvement in overall survival [9,10] and quality of life [11] 

compared to placebo has been shown when using 223Ra-Dichloride, although the 

uptake and mechanism of action of 223Ra-Dichloride in mCRPC patients is still not well 

understood.  

223Ra-Dichloride clears fast from the blood with only 0.5% remaining 24 hours after 

administration [1]. Transit from blood to the small intestine was first shown by 

Carrasquillo et al. [12] with subsequent excretion in faeces. Chittenden et al. [13] 

confirmed those findings with only 1.1% of administered activity remaining in the blood 

after 24 hours and a large amount (61% at 4 hours) taken up in the skeleton.  

Pre-clinical studies have shown that 223Ra-Dichloride localises to bone and is retained 

[14, 15]. Both 223Ra-Dichloride and 89Sr concentrate on bone surfaces and little release 

of 223Ra-Dichloride from the bone in the first 14 days after injection was observed. 

Results from pre-clinical studies using mouse models provided first evidence that 



radium is incorporated into the bone matrix [16-18]. While it has been suggested that 

the target of 223Ra-Dichloride is the hydroxyapatite of newly created bone [19] and 

radium is often referred to as a calcium analogue [20], to our knowledge no human 

studies have shown conclusive evidence for this. 

Results from clinical trials have shown a lack of haematotoxicity. Hobbs et al. [21] 

developed a bone marrow toxicity model for 223Ra-Dichloride and concluded that cell 

level-based dosimetry is necessary to explain the low bone marrow toxicities clinically 

observed. Moreira et al. [22] modelled growth and radiation response of bone 

metastases and showed that the exposure scenario is essential to reproduce clinical 

survival data. They concluded that only a small fraction of cells might be irradiated by 

223Ra. With the limited spatial resolution of planar 223Ra gamma camera images, it is 

not feasible to address questions such as the micro-distribution of 223Ra-Dichloride in 

bone. 

Compartmental modelling of the biodistribution and kinetics of 223Ra-Dichloride can 

potentially allow the clear limitations of 223Ra quantitative imaging to be overcome. 

Available models for radium have only been developed for healthy (reference) humans 

and animals [20,23,24]. Lassmann et al. [25] used the International Commission on 

Radiological Protection (ICRP) model for radium [23] to calculate absorbed doses for 

25 organs and tissues. It remains unclear how the biodistribution is affected in 

diseased subjects.  

The aim of this study was to develop a compartmental model for 223Ra-Dichloride in 

patients with mCRPC based on patient data to improve understanding of the 

underlying mechanisms. Rate constants were determined for each patient and 

treatment individually to assess inter- and intra-patient variability. Results were used 



to create a population compartmental model for mCRPC patients, based on mean 

patient rate constants. The model was compared to the ICRP model [23].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Methods and Materials 

The dataset was taken from a Phase 1, Open-Label Study (NCT00667537) of the 

Biodistribution, Pharmacokinetics, and Dosimetry of 223Ra-Dichloride [13]. Inclusion 

and exclusion criteria for participation in the study are summarised in Supplementary 

Table T.1. Informed consent was obtained from all participants in the study and all 

procedures performed were in accordance with the ethical standards of the 

institutional and/or national research committee and with the 1964 Helsinki Declaration 

and later amendments. Six patients were injected twice (six weeks apart) with 110 kBq 

per kg of body-mass. Activity retention data were available for blood, plasma, skeleton, 

small intestines (SI), upper large intestines (ULI), lower large intestines (LLI) and the 

whole-body (WB).  

Activity retained in the blood was measured at 0, 15, 30 and 45 minutes post injection. 

Further blood samples were taken at 1, 2, 4, 24, 48, 96 and 144 hours. At each time 

point, 3 ml of blood were withdrawn using a venous catheter positioned in the arm 

contralateral to the injection site. A 1 ml whole blood sample, a 1 ml plasma sample 

and a 1 ml calibration standard with a known activity concentration of 223Ra were 

measured in an automated gamma counter for 300 seconds per sample to determine 

whole blood and plasma activity concentrations.  

Whole-body (WB) measurements were performed using a low-sensitivity scintillation 

counter comprising a 2” diameter by 2” depth NaI crystal coupled to a photomultiplier 

tube and preamplifier. The detector, with a lead collimator attached, was fixed at a 

distance of 2 m above the patient bed. Signal was processed using a PC-based 

multichannel analyser with 1024 channels, calibrated to 2 keV per channel. Integral 

counts obtained for 300 seconds with an 82 keV (±20%) energy window were obtained 



with the patient lying supine under the detector. Background correction was performed 

using identical acquisitions without the patient present. A measurement immediately 

after administration and prior to any patient voiding was used to convert measured 

patient counts to injected activity. Optimisation of the equipment and methodology for 

whole-body activity retention measurements was performed according to Chittenden 

et al.  [26] and guidelines published by Hindorf et al. [27].  Regular measurements 

were performed every 2 hours on day 1, and additional (twice per day) readings were 

taken until the patient was discharged at approximately 48 hours post administration. 

Further measurements were performed at 96 and 144 hours post administration.  

Quantitative 223Ra imaging was performed on a Philips Forte gamma-camera 

equipped with medium-energy general-purpose collimators according to the protocol 

outlined by Hindorf et al. [28]. A single energy window positioned at 82 keV (±20%) 

was applied to encompass the 81- and 84-keV transitions of the 223Ra decay. Planar 

whole body images (matrix size 256x1024) and spot views (256x256) were acquired 

for approximately 30 minutes each. Due to the low counting rate (<1 kcps) no system 

dead-time correction was required. 

Image quantification was performed by calculating the geometric mean counts of 

anterior and posterior views using a pre-determined sensitivity calibration factor, and 

correcting for patient specific attenuation. Patient thickness was measured using 

recent CT scans and attenuation correction was accomplished based on an effective 

mass attenuation coefficient according to Hindorf et al [28]. Measurements with a 

phantom containing spherical inserts were used to estimate sensitivity of the gamma 

camera. [28] 



Retention in the skeleton was extrapolated from activity measurements within ROIs 

placed on the skull, left leg and right leg. 99mTc-MDP scans of the patients were used 

as a reference to outline bone uptake. Skeletal activity within the torso was not 

assessed due to overlying activity within the intestines. Conversion of measured 

counts to activity per unit mass was performed assuming the masses of the skull, right 

and left legs from ICRP publication 70 [29]. Activity per unit mass was multiplied by 

the reference mass of the whole skeleton also taken from ICRP 70 to give the total 

activity in the skeleton. Additional ROIs around the small intestines (SI), upper large 

intestines (ULI) and lower large intestines (LLI) were used to measure activity within 

these organs. No specific uptake was seen in kidneys or liver. 

Further information on data collection and processing has been described by 

Chittenden et al. [13] and Hindorf et al. [28]. For all organs the activity retention data 

are reported here as the fraction of injected activity. Activity concentration in plasma 

was converted to fraction of injected activity with the assumption of a total plasma 

volume of 3000 ml [30].  Activity retention data were decay corrected back to the 

administration time to exclude the physical decay. Two patients were previously 

identified as super scan patients [13] with widespread skeletal metastases. 

Development of the compartmental model 

SAAM II v2.3. [31] was used for compartmental modelling. All rate constants were set 

to adjustable with lower and higher boundaries of 0.0001 h-1 and 1000 h-1, respectively. 

Uncertainties for each data point were estimated from the count statistics in the ROIs 

(SI, LLI, ULI, Skeleton) and of the blood samples, respectively.  

The compartmental model consists of a central plasma compartment, skeleton sub-

model and gastro-intestinal (GI) sub-model with clearance in faeces. A rest-of-body 



(ROB) compartment was added to account for other organs/tissues not explicitly 

included in the model (Supplementary Figure A.1). Urinary excretion was found to be 

negligible (2±2% at approximately 48h) [13] and was omitted from the model to reduce 

complexity. 

Model development was performed using the forcing function approach. The multi-

compartmental model was decoupled into two separate independent models of the 

skeleton and the GI tract. In each case, input from a fixed “forcing” function described 

the activity in the central blood plasma compartment and an optimal model for each of 

the sub-models was identified. The forcing function was obtained via linear 

interpolation between sequential plasma activity data points for each patient and 

treatment individually. Sub-models are finally recombined to the full compartmental 

model [32,33]. Fits of sub-models were compared by visual inspection and via the 

Akaike information criterion (AIC) [34].    

For the skeletal activity, sub-models with either one, two or three compartments 

(Supplementary Figure A.1) were fitted to the skeletal activity retention observed for 

each patient and treatment individually. In the case of sub-models with two and three 

compartments, the measured skeletal activity retention in patients was taken to be the 

sum of the activity in the two and three bone compartments, respectively.   

The optimal GI sub-model was chosen from sub-models with one and three 

compartments (Supplementary Figure A.1). The single-compartment GI sub-model 

was fitted to the sum of measured activity retention in SI, ULI and LLI. The three 

compartment sub-model was fitted by assigning the measured activity retention in SI, 

ULI and LLI to the SI, ULI and LLI compartments, respectively, for each patient and 

treatment individually.  



Sub-models were recombined to form the final structure of the model and the plasma 

forcing function was removed. Rate constants from and to the ROB compartment were 

determined by fitting the model to the full dataset including skeleton, SI, ULI, LLI, 

plasma and whole-body activity retention per patient and treatment. The full 

compartmental model was fitted simultaneously to the data-sets of activity retention in 

different organs and whole-body activity retention was taken to be the sum of all 

compartments in the body and, therefore, excluding the faeces compartment. 

Inter- and intra-patient variability and population model 

The set of rate constants for the full compartmental model for each patient and 

treatment was used to determine inter- and intra-patient variability of rate constants. 

Paired t-tests were employed to identify any significant differences between rate 

constants of first and second treatments. Paired t-tests were performed using IBM 

SPSS v23 and distributions were tested for normality using the Shapiro-Wilk test. 

Mean rate constants were calculated, excluding two super-scan patients, to form the 

population model. Predicted activity retention in the skeleton was compared to the 

ICRP 67 model [23]. Skeleton activity retention in the ICRP 67 model was calculated 

as the sum of the surface compartment, the non-exchangeable volume compartment 

and the exchangeable volume compartment for trabecular and cortical bone. 

 

 



Results 

The compartmental model 

A single-compartment model underestimates the retention in the skeleton at later time 

points (t > 30 hours) and predicts a faster wash-out from the skeleton than observed 

in patients (Figure 1a). A fit with two compartments (Figure 1b) shows a better 

agreement (Mean AIC = 1.5, Range: 0.6-16.6) in comparison to the initial single 

compartment model (Mean AIC = 40.4, Range: 10.8 – 98.6). The addition of a third 

compartment did not result in a further fit improvement (Mean AIC = 2.5, Range: 1.5 – 

18.1). The fits of the remaining skeleton datasets using a two-compartment skeleton 

model are shown in Figure 2. Overall a good agreement between fit and activity 

retention data is found. Notably, the activity retention in patient 3 has a different 

appearance, most likely because patient 3 is a super scan patient. Super scan patients 

were therefore not included when calculating the population model rate constants. 

 A three-compartment model with individual compartments for SI, ULI and LLI was 

found to best describe the available data in all patients (Figure 3). The model is not 

able to describe the fast uptake into the small intestine. AIC of the three-compartment 

fit was on average a factor of 19.3 lower compared to the one-compartment fit.  

The final model structure is shown in Figure 4. The predictions of the full 

compartmental model for activity retention in the different compartments for individual 

patients were found to be largely consistent with activity retention measured in patients 

(Supplementary Figure A.2). Agreement between plasma activity retention model 

predictions and patient measurements is good (Supplementary Figure A.3). This 

indicates that the model complexity is adequate to describe the movement of 223Ra-

Dichloride through the human body. 



Inter- and intra-patient variability and population model 

Rate constants obtained from the individual patient fits are summarised in Table 1. All 

skeleton sub-model and GI sub-model rate constants were found to be largely 

consistent between patients. The coefficient of variation (CoV) of rate constants from 

and to the second bone compartment (kB2B1 and kB1B2) of 25.7% and 44.9% is slightly 

lower than the CoV of the two rate constants from and to plasma (kB1P and kPB1) of 

55.1% and 60.4%. CoV of rate constants kPS and kSU was found to be 41.8% and 

43.9% and was therefore lower than the CoV of rate constants from ULI to LLI and LLI 

to excretion (kUL and kLF) of 70.3% and 68.0%. 

The difference in rate constants kPB1, kB1P, kB1B2,  kB2B1, kPS, kSU, kUL, kLF, kPR and kRP from 

treatment 1 to treatment 2 was tested for normality using the Shapiro-Wilk test and all 

are approximately normally distributed. Paired t-tests showed no significant difference 

between rate constants of the first and the second treatment of patients (p > 0.05 in 

all cases). 

Rate constants for a population model of 223Ra-Dichloride in mCRPC patients are 

presented in Table 1 as well.  Comparison of activity retention in the skeleton predicted 

by the present model and the ICRP model showed that the present model predicts a 

higher uptake into the skeleton with a significant wash out in the first 50 hours 

(Supplementary Figure A.4). 

 

 



Discussion 

The results presented here show that for 223Ra-Dichloride in mCRPC patients, two 

bone compartments are essential to describe the data. The possibility for two or more 

compartments was already introduced in the ICRP model where they are described 

as bone surface and bone volume compartments. The first compartment has a very 

fast uptake and activity then slowly passes over into the second compartment which 

has a very slow release rate. The very different rate constants of the two compartments 

could potentially mean that 223Ra-Dichloride is found in different locations in the bone. 

The uptake and mechanism of action of 223Ra-Dichloride in mCRPC patients is still not 

well understood and only limited pre-clinical data are available. Pre-clinical mouse 

models have shown first evidence that radium gets incorporated into the bone matrix 

[17, 18]. The similarity between the ICRP and the model developed indicate that these 

experimental data could be seen as a first indication that 223Ra-Dichloride is 

incorporated into the bone matrix in humans. 

Initial results from the ERA-223 study (NCT02043678) have shown evidence that a 

higher fracture rate is observed in patients who have been treated with abiraterone 

acetate + prednisone/prednisole (AAP) and 223Ra-Dichloride compared to patients 

treated with AAP and placebo [3]. This increased rate of fractures in the 223Ra-

Dichloride arm of the study is to-date not well understood but the European Medicines 

Agency (EMA) has subsequently recommended restrictions on the use of 223Ra-

Dichloride [35]. Fractures appeared to develop delayed with respect to the treatment 

of 223Ra-Dichloride and AAP. Furthermore fractures typically occurred at sites not 

involved with bone metastases. Therefore the model described in this study could form 



the basis of further work investigating the effect of 223Ra-Dichloride in normal bone 

tissue.  

Incorporation into the bone matrix also raises the question about adequacy of bone 

marrow dosimetry models that do not take into account the exact position of 223Ra-

Dichloride in the bone. 223Ra has a high LET and a very short range in tissue. 

Dosimetry models that assume a uniform distribution of 223Ra-Dichloride in the 

skeleton possibly overestimate the bone-marrow toxicity. Hobbs et al. [21] presented 

results using a marrow cavity model with the activity located on trabecular bone 

surfaces or endosteal layers. They showed that their model provided markedly 

different results than standard absorbed fraction calculation. Chittenden et al. [13] 

hypothesised that marrow toxicity is mainly influenced by the activity circulating in 

blood and to a lesser extent by the activity on the bone surfaces due to the short range 

of the alpha particles. This hypothesis is in agreement with the findings made in the 

present work but further investigations are needed to identify the importance of the 

exact location of 223Ra-Dichloride on the bone marrow absorbed dose and toxicity and 

more data are required. It is hypothesised that the bone marrow absorbed dose from 

alpha-particles in the bone matrix is smaller than from alpha-particles located on the 

bone surface. 

While the present dataset and the compartmental model cannot be used to clarify the 

unknown uptake mechanism, it is clear that this question must be addressed by further 

clinical studies. 

It has been shown that the development of a compartmental model for 223Ra-

Dichloride in patients with mCRPC is feasible and rate constants between treatments 

and in between patients are comparable. The limited dataset with only 6 patients and 



two treatments is a factor that must be taken into account and further studies with a 

larger patient cohort are necessary to improve the population model. Nevertheless, 

similar pharmacokinetic profiles have been observed in the study by Yoshida et al. 

[36]. They showed fast uptake in the bone (52% within 2 hours and maximum uptake 

was observed within 2 hours of injection. The model proposed here predicts a 

maximum uptake in the skeleton of 49% at 4 hours. To our knowledge no studies with 

larger patient cohorts have collected detailed pharmacokinetic data. 

In the current study activity administered was higher compared to the standard clinical 

dosing of 55 kBq/kg. Nevertheless, results obtained here are expected to be applicable 

to the standard clinical dosing as the model development does not include any 

saturation effects and was performed as fraction of injected activity. Yoshida et al. [36] 

showed that activity retention in the skeleton and plasma are similar in patients 

injected with 55 kBq/kg and 110 kBq/kg. Furthermore Carrasquillo et al. [12] have 

shown that plasma pharmacokinetics parameters are comparable for activity levels of 

50, 100 and 200 kBq/kg. 

The higher initial uptake compared to the ICRP 67 model is an important finding that 

shows that development of compartmental models using actual patient data is 

important to verify the use of published models that have been developed for healthy, 

reference, humans or animals. 

 

 

 

 



Conclusions 

A compartmental model was developed for 223Ra-Dichloride in mCRPC patients. The 

model suggests that 223Ra-Dichloride retention in the human skeleton requires two 

compartments for the bone surface and incorporation into the bone matrix. Further 

research into the mechanisms of uptake and action of 223Ra-Dichloride in mCRPC 

patients is necessary.  
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Figure captions 

Figure 1: Example for the comparison of fits with a) a single bone compartment and 

b) two bone compartments. Circles indicate the skeleton activity retention 

measurements for the first treatment of patient 4 (P4 T1) as activity fraction of injected 

activity. The solid line shows the best fit using the sub-model with one and two bone 

compartments, respectively, while using a forcing function for the plasma 

compartment. Dashed and dotted lines in b) represent the model predictions of activity 

fraction in bone compartment 1 and compartment 2, respectively. 

 Figure 2: Measured activity fraction in the skeleton of patients is shown as circles. 

The solid line shows the best fit using the two compartment sub-model while using a 

forcing function for the plasma compartment. Dashed and dotted lines represent the 

model predictions of activity fraction in bone compartment 1 and compartment 2, 

respectively. The six patients are labelled 1 to 6. P1 T1 for example  denotes the first 

administration for patient 1, while P1 T2 represents the second administration of 

patient 1. 

Figure 3: Measured activity fraction of injected activity in the SI, ULI and LLI of 

patients is shown as circles, squares and triangles, respectively. The solid, dashed 

and dotted lines show the best fit for SI, ULI and LLI, respectively, using the three 

compartment sub-model while using a forcing function for the plasma compartment. 

Figure 4: Proposed compartmental model for 223Ra-Dichloride in patients with 

metastatic bone disease from castration resistant prostate cancer in the present study. 

 

 



 



 

 



 

 



 

 



Table captions 

Table 1: Mean, minimum and maximum rate constants from the fits to individual 

patient data including the two super-scan patients. Population model rate constants 

are excluding the two super-scan patients. All fits were performed using activity 

fraction of injected activity decay corrected back to injection time, excluding physical 

decay.  
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Rate 
constant 

Mean of 
individual 
patient fits 

[1/h] 

Minimum of  
individual 
patient fits 

[1/h] 

Maximum of  
individual 
patient fits 

[1/h] 

Population 
Model [1/h] 

kPB1 3.990 1.928 10.936 3.041 

kB1P 0.152 0.071 0.386 0.158 

kB1B2 0.027 0.017 0.057 0.025 

kB2B1 0.008 0.003 0.011 0.008 

kPS 1.423 0.749 2.734 1.519 

kSU 0.156 0.075 0.257 0.143 

kUL 0.028 0.006 0.080 0.035 

kLF 0.040 0.012 0.108 0.047 

kPR 41.812 4.651 163.276 26.403 

kRP 5.221 1.387 9.904 5.072 



Supplementary Data 

 

Supplementary Figure A.1: Compartmental model of 223Ra-Dichloride in mCRPC 

patients with a central plasma compartment, a rest-of-body compartment and 

skeleton and gastro-intestinal (GI) sub-models. During the model development 

process three skeleton sub-models were compared consisting of a) one, b) two and 

c) three bone compartments. Two GI sub-models were assessed in the process with 

a) a single GI compartment and b) three compartments for small intestines (SI), 

upper large intestines (ULI) and lower large intestines (LLI). 



 

Supplementary Figure A.2: Activity fraction of injected activity excreted from the 

body in faeces, estimated from the whole-body measurements, is shown as the 

circles. The solid lines represent the model predictions for activity excreted in faeces 

when using the full compartmental model. The activity retention in the ROB 

compartment has been added to the graphs as the dashed lines. 



 

Supplementary Figure A.3: Activity fraction of injected activity in plasma, estimated 

from the blood samples and assuming a plasma volume of 3000 ml [27], is shown as 

the circles. The solid lines represent the model predictions for activity fraction in the 

plasma when using the full compartmental model. Only the first 5 hours after 

administration are shown. 

 

 

 

 



 

Supplementary Figure A.4: A comparison of the model predictions of total activity 

fraction in the skeleton for the ICRP 67 model (dashed line) and the model 

developed in the present study (solid line). 

 

 

 

 

 

 

 

 

 

 



 

Supplementary Table T.1: Summary of the inclusion and exclusion criteria for the 

participation in the Phase 1, Open-Lable Study (NCT00667537). [13] 

 

Inclusion criteria Exclusion criteria 

Confirmed adenocarcinoma of the prostate;  

hormone-refractory disease with evidence 

of rising prostate-specific antigen;  serum 

testosterone level ≤ 50 ng/dL; skeletal 

metastases confirmed by bone scintigraphy; 

Eastern Cooperative Oncology Group 

performance status of 0–2; life expectancy 

≥ 6 months; neutrophils ≥ 1.5 × 109/L; 

platelets ≥ 100 × 109/L; hemoglobin ≥ 95 

g/L; normal total bilirubin; aspartate 

aminotransferase and alanine 

aminotransferase ≤ 2.5 times the upper limit 

of the reference range (ULN); S-creatinine ≤ 

1.5 × ULN 

Received investigational product within 4 

weeks before 223Ra or was scheduled to 

receive during course of treatment; prior 

chemotherapy, immunotherapy, or external 

radiotherapy within 4 weeks prior to 223Ra; 

recovering from adverse events due to prior 

therapy; prior regimen of cytotoxic 

chemotherapy or hemibody radiotherapy or 

patient required immediate radiotherapy; 

prior systemic radiotherapy with 223Ra, 89Sr, 
153Sm, 186Re, or 188Re; bisphosphonates 

started within 3 months of 223Ra (unless 

dosage stable for ≥ 12 weeks before 223Ra); 

any changes in systemic steroids within one 

week before 223Ra or during study; other 

active malignancies (except nonmelanoma 

skin cancer), visceral metastases from 

prostate cancer, lymph node metastases 

with short-axis diameter > 2 cm; bulky 

locoregional disease; and any other serious 

illness or medical condition. 


