
Genomic correlates of clinical outcome in advanced
prostate cancer
Wassim Abidaa,1, Joanna Cyrtab,c,1,2, Glenn Hellerd,1, Davide Prandie, Joshua Armeniaf,3, Ilsa Colemang, Marcin Cieslikh,
Matteo Benellie,4, Dan Robinsonh, Eliezer M. Van Alleni,j, Andrea Sbonerb, Tarcisio Fedrizzie, Juan Miguel Mosquerab,
Brian D. Robinsonb, Navonil De Sarkarg, Lakshmi P. Kunjuh, Scott Tomlinsh, YiMiWuh, Daniel Nava Rodriguesk,l, Massimo Lodab,m,
Anuradha Gopalann, Victor E. Reutern, Colin C. Pritchardg, Joaquin Mateok,l,5, Diletta Bianchinik,l, Susana Mirandak,l,
Suzanne Carreirak,l, Pasquale Rescignok,l, Julie Filipenkoo, Jacob Vinsono, Robert B. Montgomeryg, Himisha Beltrani,p,
Elisabeth I. Heathq,r, Howard I. Schera, Philip W. Kantoffa, Mary-Ellen Taplini,6, Nikolaus Schultzd,6, Johann S. deBonok,l,6,
Francesca Demichelise,6, Peter S. Nelsong,6,7, Mark A. Rubinb,c,6,7, Arul M. Chinnaiyanh,s,6,7, and Charles L. Sawyersf,t,6,7

Contributed by Charles L. Sawyers, March 27, 2019 (sent for review February 19, 2019; reviewed by Samuel Aparicio, John T. Isaacs, and Nandita Mitra)

Heterogeneity in the genomic landscape of metastatic prostate cancer
has become apparent through several comprehensive profiling efforts,
but little is known about the impact of this heterogeneity on clinical
outcome. Here, we report comprehensive genomic and transcriptomic
analysis of 429 patients with metastatic castration-resistant prostate
cancer (mCRPC) linked with longitudinal clinical outcomes, integrating
findings from whole-exome, transcriptome, and histologic analysis. For
128 patients treatedwith a first-line next-generation androgen receptor
signaling inhibitor (ARSI; abiraterone or enzalutamide), we examined
the association of 18 recurrent DNA- and RNA-based genomic alter-
ations, including androgen receptor (AR) variant expression, AR tran-
scriptional output, and neuroendocrine expression signatures, with
clinical outcomes. Of these, only RB1 alteration was significantly asso-
ciated with poor survival, whereas alterations in RB1, AR, and TP53
were associatedwith shorter time on treatmentwith anARSI. This large
analysis integrating mCRPC genomics with histology and clinical out-
comes identifies RB1 genomic alteration as a potent predictor of poor

outcome, and is a community resource for further interrogation of
clinical and molecular associations.
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Several studies have described the genomic landscape of pri-
mary and metastatic castration-resistant prostate cancer

(mCRPC), revealing distinct genomic subtypes in primary local-
ized disease, including ETS fusion-positive and SPOP-mutated
prostate cancer (1–5), and subsets of patients with advanced dis-
ease who harbor potentially clinically actionable alterations in
their tumor or in the germline (4–6). Based on these findings,
prospective trials are currently enrolling patients with defined
genomic alterations, including PARP inhibitor studies for patients
with alterations in BRCA2/1, ATM, and other DNA repair genes
(NCT02952534, NCT02987543, NCT02854436), and AKT inhibitor
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studies for men with PI3K pathway alterations (NCT02525068,
NCT03310541).
In addition, various genomic and histologic features of prostate

cancer have been described as conferring a worse prognosis. Among
these are the presence of neuroendocrine or small-cell characteris-
tics in tumors, sometimes referred to as aggressive variant prostate
cancer or neuroendocrine prostate cancer (7–9), the detection of
androgen receptor (AR) splice variant 7 in circulating tumor cells
(10, 11), and the presence of genomic alterations in TP53, RB1,
DNA repair genes, AR, and PI3K pathway genes in circulating tu-
mor DNA (12, 13). However, studies that comprehensively examine
all of these characteristics—histology, genomics, and transcriptomics—
and their association with outcomes in mCRPC are lacking.
Here, we expand a foundational genomic resource of mCRPC

tumors (5) from 150 to 429 patients (444 tumors), and integrate
the analysis of whole-exome sequencing, gene expression, and

histopathology with clinical outcomes, including survival and time
on treatment with the next-generation androgen signaling inhibi-
tors (ARSIs) enzalutamide and abiraterone acetate to identify the
most important prognostic markers in mCRPC within a single
large multiinstitutional genomic dataset, with tumor- and patient-
level data made available for additional correlative analyses.

Results
Clinical and Histopathologic Parameters. A total of 429 patients
were enrolled at one of seven international consortium centers,
all of whom underwent biopsy for the collection of mCRPC
tissue as well as collection of blood for matched normal DNA
extraction. Whole-exome sequencing was successfully performed
on 444 tumors (some patients underwent multiple biopsies), and
RNA sequencing (RNA-seq) was successfully performed on a
subset of these (332 tumors from 323 patients). Of the 444 bi-
opsies, 37% were lymph node, 36% were bone, and 14% were
liver (Fig. 1A). Samples underwent central histopathologic review
(Fig. 1B), revealing neuroendocrine (NE) or small-cell features in
11.2% (41 of 366) of evaluable cases, including from patients who
were enrolled on a trial of the Aurora kinase A inhibitor alisertib
(14). Median age at diagnosis with prostate cancer was 61 y,
median age at biopsy of the profiled sample was 67 y, and median
overall survival from the time of biopsy was 16 mo (SI Appendix,
Table S1). Samples were balanced for exposure status to ARSIs
(47% ARSI naive, 46% previously exposed) (Fig. 1C). Sixty-three
percent of samples were acquired before exposure to a taxane.
Patients who were naive to both ARSI and taxane at the time of
biopsy had the longest median overall survival from the date of bi-
opsy, whereas patients previously treated with both an ARSI and a
taxane had the shortest (Fig. 1D), consistent with their more ad-
vanced disease state at the time of tissue acquisition. Of note, time
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Fig. 1. Overview of sample and patient characteristics for 444 tumors from 429 patients with mCRPC. (A) Site of mCRPC tumors profiled. (B) Histopathologic
classification of profiled tumors. Tumors were classified by central review as adenocarcinoma, pure small-cell/neuroendocrine cancer, adenocarcinoma with
neuroendocrine features (also included mixed acinar/neuroendocrine carcinoma), or could not be classified due to scant material or no tumor visible on the
slides that were available for review despite successful sequencing. (C) Patient exposure status to next-generation AR signaling inhibitors (abiraterone ac-
etate, enzalutamide, or ARN509) and to taxanes at the time of biopsy for the 444 profiled tumors. (D) Overall survival (OS) from the date of biopsy of the
profiled tumor. OS was longer for tumors from ARSI- and taxane-naive patients compared with patients who had received an ARSI before the biopsy (P < 0.01,
log-rank test). Survival was shortest when the patient had received both an ARSI and taxane chemotherapy at the time of biopsy.

Significance

The genomic landscape of metastatic castration-resistant prostate
cancer (mCRPC) has been well-defined, but the association of
genomic findings with patient clinical outcomes and with other
characteristics including histology and transcriptional pathway
activity remains poorly understood. Here, we describe com-
prehensive integrative analysis of genomic and transcriptomic
profiles, histology, and clinical outcomes for 429 patients with
mCRPC. Of all the molecular factors we examined, alterations
in RB1 had the strongest association with poor outcome. Our
study identifies molecularly defined groups of patients who
may benefit from a more aggressive treatment approach, with
the genomic and outcome data made available to the research
community for further interrogation.
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on treatment with a first-line ARSI was highly associated with overall
survival from the start of first-line therapy (Kendall’s τ = 0.65).

Landscape of Genomic Alterations. The frequency of genomic al-
terations was similar to that reported in prior cohorts (4, 5, 15), with
AR, ETS family transcription factors including ERG and ETV1,
TP53, and PTEN and RB1 emerging as the most commonly altered
genes (Fig. 2A). Likewise, alterations in biological pathways (SI
Appendix, Table S2) were also consistent with prior reports, with a
significant (>20%) subset of patients harboring at least one alter-
ation in a PI3K, cell-cycle, epigenetic, or DNA repair pathway gene.
Single-nucleotide variants (SNVs) in the most frequently altered
genes were found to be likely oncogenic (16) in the majority of
cases (Fig. 2B), with a high fraction of oncogenic mutations in AR,
TP53, PIK3CA, BRCA2, PTEN, APC, and CDK12. Mutations in
ATM were predicted to be likely oncogenic in nearly 60% of cases,
with the rest being missense mutations of unknown significance.
The large size of the dataset allowed for a comprehensive search

for genomic alterations that are co-occurring or mutually exclusive
(Fig. 2C). As expected, we found mutual exclusivity between alter-
ations in genes of the ETS family (e.g., ERG andETV1), and between
alterations in ERG and SPOP or FOXA1, which represent distinct
genomic subsets of prostate cancer (1, 3). Alterations in ERG and
PTEN were co-occurring, in line with their synergistic role in pro-
moting oncogenesis in mouse models of prostate cancer (17). We also
confirmed co-occurrence between alterations in TP53 and RB1,
known to occur at high frequency in neuroendocrine cancers (7, 9),
and to confer aggressive behavior in prostate cancer models (18, 19).
Interestingly, RB1 alteration had a tendency toward mutual exclusivity
with alterations in AR. CHD1 alterations also tended to co-occur with
SPOP mutations (3). We found strong co-occurrence of loss-of-
function alterations in CDK12, a gene implicated in the control of
genomic stability (20) whose inactivation in prostate cancer is asso-
ciated with focal tandem duplications (21–23), with amplification of
the cell-cycle genes CCND1 and CDK4, raising the possibility of
vulnerability to CDK4/6 inhibitors for CDK12-mutated tumors.
Conversely, while genomic alterations in RB1 and BRCA2, both

located on chromosome 13q, 16 Mb apart, had a tendency toward co-
occurrence, this association did not reach statistical significance.

Association of Genomic Alterations with Clinical Outcomes. A key
novelty of this dataset is the opportunity to correlate contempo-
raneously obtained comprehensive genomic profiles with clinical
outcome. We focused our analysis on 18 of the most commonly
altered genes and pathways. For clinical outcome, we restricted
the analysis to those patients who were taxane-naive and initiating
therapy with a first-line ARSI for mCRPC (n = 128).
We examined the association of genomic alterations with

overall survival from the start of a first-line ARSI (n = 128) and
time on treatment with a first-line ARSI (subset of n = 108 pa-
tients who received the ARSI without another concurrent ther-
apy) in univariate analysis (Table 1). In this analysis, genomic
alterations in the PI3K pathway and its component genes (Fig.
3A) were not significantly associated with either time on therapy
with ARSIs or with overall survival (Fig. 3 B and C), unlike prior
cell-free DNA (cfDNA)-based analysis (13). Furthermore, we
explored the association of genomic alterations in the DNA repair
genes BRCA2, BRCA1, and ATM (Fig. 3D) with clinical outcomes,
given prior conflicting reports of prognostic significance of these
alterations (13, 24–26). We again found no association be-
tween alterations in these genes and time on treatment or overall
survival (Fig. 3E and Table 1). Notably, we found an association
between SPOP mutation and longer time on treatment with a
first-line ARSI (SI Appendix, Fig. S1), consistent with prior data
showing enrichment of SPOP mutations in earlier disease
relative to mCRPC (1, 4) and favorable prognosis of SPOP-
mutated tumors (27, 28), though this did not translate into a
survival benefit. Alterations in AR and TP53 were associated
with a shorter time on an ARSI (Figs. 4D and 5C), though
there was no association with overall survival (Table 1).
Overall, genomic alterations in RB1 showed the strongest dis-
crimination for a shorter time on an ARSI and survival, with
concordance probability estimates (CPEs) of 0.82 and 0.77, re-
spectively (Fig. 5 A and B and Table 1). Aneuploid chromosomal
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status was associated with worse overall survival and time on
treatment compared with diploid status (SI Appendix, Fig. S2).

Androgen Receptor Alterations. We confirmed a high frequency of
genomic alterations in AR, namely amplifications and mutations,
consistent with prior reports (5, 12) (Fig. 2A). Using RNA-seq
data, we also identified splice variants in AR, most commonly AR
splice variant 7 (AR-V7) and variant 3 (AR-V3), both a product
of splicing with cryptic exons, similar to our prior report (5) (Fig.
4A). Genomic alterations (amplification and mutation) were
associated with an increased AR expression score, consistent with
increased AR output (Fig. 4B). Furthermore, genomic alter-
ations in AR were detected at higher frequency postexposure to
the ARSIs compared with ARSI-naive tumors (Fig. 4C), sug-
gesting an association with resistance to these next-generation
AR-targeting agents. Consistent with this, we found an associa-
tion of AR genomic alterations with a shorter time on treatment
with a first-line ARSI (Fig. 4D) but not with overall survival from
the start of a first-line ARSI (Table 1). Given prior data showing
a strong association between AR-V7 expression in circulating
tumor cells (CTCs) and clinical outcomes (10, 11), we examined
the association of AR-V7 expression and outcomes in our tumor
dataset. AR-V7 levels were increased in tumors exposed to
taxanes and to ARSI therapy (SI Appendix, Fig. S3). However,
there was no association between AR-V7 expression in tumors
with either time on a first-line ARSI or overall survival (Fig. 4E

and Table 1). This was true even when deriving an AR-V7
expression cutpoint that produced the maximum log-rank test
(AR-V7 cutpoint for survival 1.92, P = 0.62). Similar results were
observed for time on treatment, AR-V7/AR promoter 1:2 ratio,
and AR-V3 (Table 1).

Integrative Analysis of Histopathology, Genomics, and Expression.
There is growing recognition that a subset of CRPC patients
have a more fulminant clinical course—typically characterized by
rapidly progressive visceral metastasis (versus bone), relatively
low serum prostate-specific antigen (PSA) levels, and variable
expression of neuroendocrine markers such as synaptophysin or
chromogranin (29). However, there is a lack of consensus on how
to precisely define this clinical state, particularly since the fre-
quency of histologically defined neuroendocrine prostate cancer
varies widely in different cohorts. Furthermore, there is increasing
recognition that patients can develop AR-negative (PSA-low)
disease that is histologically negative for neuroendocrine marker
expression (30). RNA-based expression signatures have been
proposed as a potential alternative diagnostic strategy to define
this distinct clinical state (8, 30, 31). The availability of matched
histology, whole-exome, and RNA-seq data from this cohort
provides an opportunity to explore this question through an
unbiased integrative approach.
As previously noted, 11.2% of tumors in our dataset had ev-

idence of NE features on histopathologic review (Fig. 1D).
Among patients who received treatment with an ARSI during
their disease course, tumors with histopathologic NE features
were enriched postexposure to an ARSI (10.5%) compared with
ARSI-naive tumors (2.3%) (Fig. 5D). Transcript-based NE score
was not significantly different between the two groups, but a
subset of tumors in the post-ARSI setting displayed a higher
NE expression score (Fig. 5E). Of note, unsupervised gene
expression clustering identified a distinct cluster of tumors with
higher NE expression score, in line with prior reports and in-
dependent of site of metastasis (SI Appendix, Fig. S4) (31).
We performed an integrative analysis incorporating histology,

expression-based AR signaling and NE scores, and RB1/TP53
genomic status (7, 32) in all tumors where RNA-sequencing data
were available (Fig. 5F). As expected, there was an inverse cor-
relation between cases with a high AR signaling score and cases
with a high NE score. We identified three groups based on the
expression signatures. The first and largest group, characterized by
high AR signaling and low NE score, consisted predominantly
(86%) of adenocarcinomas without NE histologic features (Fig.
5G). The second group, demonstrating intermediate NE and AR
scores (n = 17), included cases classified histologically as adeno-
carcinoma (59%) and cases that were “inadequate for diagnosis”
(41%). The third group, demonstrating high NE score and low AR
signaling, consisted predominantly (74%) of tumors harboring
histologic NE features (Fig. 5H).
Although there was an association between NE expression

score, histologic NE features, and RB1/TP53 loss (SI Appendix,
Fig. S5), concordance between these characteristics was imperfect
(Fig. 5F). We posited that some cases with discrepancy between
pathology and transcriptomic classification may demonstrate a
distinct morphology. To address this, a second consensus review
of those cases was performed by three study pathologists. We
confirmed that all discrepant cases from group 3 (high NE score
but showing adenocarcinoma histology) and all cases from
group 2 (intermediate AR and NE scores) displayed adeno-
carcinoma features. However, we noted distinct nuclear fea-
tures in about half of these cases, including various degrees of
nuclear pleomorphism, irregular nuclear membrane contours,
and/or high mitotic activity (Fig. 5 I and J). Of note, within group
2, 10 cases (3% of total; Fig. 5F, box) had low AR and low NEPC
expression scores. Of these, all histologically evaluable cases

Table 1. Association of common genomic alteration with overall
survival and time on treatment with first-line ARSI

Gene/pathway
alteration

Univariate P value
for survival from
first-line ARSI

(CPE, n = 128 or
as indicated)

Univariate P value
for time on

treatment with
first-line ARSI

(CPE, n = 108 or
as indicated)

RB1 0.002 (CPE 0.768) <0.001 (CPE 0.818)
TP53 0.072 (CPE 0.605) 0.046 (CPE 0.609)
WNT pathway 0.115 0.153
ETS fusion 0.159 0.206
APC 0.255 0.167
CTNNB1 0.274 0.448
ATM 0.331 0.850
BRCA2 0.327 0.418
BRCA2/BRCA1/ATM 0.495 0.611
AKT1 0.558 0.053
RNF43 0.614 0.844
AR 0.658 0.005 (CPE 0.651)
PTEN 0.676 0.412
PI3K pathway 0.699 0.138
PIK3CA 0.716 0.165
PIK3R1 0.752 0.892
PIK3CB 0.799 0.277
BRCA1 0.809 0.998
NEPC score 0.218 (n = 99) 0.930 (n = 80)
AR signaling score 0.847 (n = 99) 0.847 (n = 80)
RB1 loss score <0.001 (n = 99) 0.014 (n = 80)
CCP score 0.002 (n = 99) 0.045 (n = 80)
AR-V7 SRPM 0.524 (n = 75) 0.329 (n = 56)
AR-V7/ARpromoter1-2 0.475 (n = 75) 0.378 (n = 56)
AR-V3 SRPM 0.444 (n = 75) 0.077 (n = 56)

Univariate log-rank analysis for association of common genomic alterations
with survival from the start of a first-line ARSI for mCRPC (n = 128), and with
time on treatment with a first-line ARSI for mCRPC (n = 108 patients who
received a first-line ARSI as monotherapy). Where indicated, analysis was lim-
ited to a subset of patients who had RNA-sequencing data either from polyA
libraries or both polyA and capture libraries. P < 0.05 are highlighted in bold.
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showed adenocarcinoma histology, and the majority harbored
atypical nuclear features.
Given incomplete concordance between these histopathologic,

genomic, and expression characteristics, we asked which of these
features was most associated with clinical outcome. While there
were insufficient histopathologic NE cases to make this de-
termination, NE transcriptional score was not significantly as-
sociated with time on a first-line ARSI or overall survival (Table
1 and SI Appendix, Fig. S6). Of all molecular characteristics ex-
amined in a multivariate analysis, RB1 alteration emerged as the
only variable strongly associated with survival (relative risk 3.31)
and with time on treatment with a first-line ARSI (relative risk
6.56) (Table 2). Consistent with this, expression scores for RB1
loss and cell-cycle progression (CCP) were both associated with
worse survival and time on treatment with a first-line ARSI
(Table 1 and SI Appendix, Fig. S7).

Discussion
The landscape of genomic alterations in mCRPC has been
established, with a subset of patients harboring potentially ac-
tionable alterations that are currently being explored in targeted
prospective clinical trials. However, the majority of genomic al-
terations in prostate cancer do not yet have clear clinical appli-
cability. Some studies have associated specific genomic or
molecular features with clinical outcomes, though this has gen-
erally been performed in cell-free DNA or circulating tumor
cells. Here, we present an integrative analysis of genomic alter-
ations with expression and histologic assessment in tumors from
patients with mCRPC, representing the clinical spectrum of
advanced disease, with tissue collected pre- and posttreatment
with ARSIs and taxanes.
Importantly, we find that RB1 loss is the only genomic factor

that is significantly associated with both survival and time on
ARSI therapy in mCRPC. It is worth noting that the association

was strong despite likely underestimation of RB1 loss by exam-
ining genomic homozygous loss alone, as RB1 loss has also been
shown to occur epigenetically, through structural genomic events
like tandem duplication of partial exons, and focally, by immuno-
histochemistry (33). TP53 and AR alteration were also associated
with shorter duration of ARSI therapy, though the association was
not as strong as for RB1 loss and did not extend to survival. The AR
findings suggest that AR targeting with the ARSIs abiraterone ac-
etate and enzalutamide may be incomplete, and that further tar-
geting of the protein may be clinically beneficial in patients who
develop resistance to these agents.
We found no association between alterations in PI3K pathway

genes or alterations in the DNA damage repair genes BRCA2,
BRCA1, and ATM with overall survival and time on treatment with
an ARSI. This is in contrast to a prior study that found an asso-
ciation between alterations in BRCA2, BRCA1, and ATM detected
in cfDNA with both response to ARSIs and with survival (13). The
differing conclusions may be related to differences between tumor
and cfDNA profiling, potential difficulty in detecting homozygous
loss in cfDNA relative to a tumor, and a possible bias introduced by
requiring detectable cfDNA, though the authors accounted for
cfDNA detection in a multivariate analysis. Furthermore, data for
the prognostic role for BRCA2, BRCA1, and ATM alterations were
previously conflicting, with another study showing better prognosis
for tumors with alterations in these genes (25) and a third study
showing no impact for the presence of germline DNA repair gene
alterations on outcomes in mCRPC (26). Notably, we also found
no association between AR-V7 in tumors and clinical outcomes, in
contrast to prior CTC-based studies (10, 11). This finding requires
further exploration of the concordance between AR-V7 expression
in tissue versus CTCs, and the biological significance of AR-
V7 detection in these contexts. Our findings suggest that AR-V7
RNA detection in tumors may have limited clinical utility. Overall,
while profiling of cfDNA and CTCs offers advantages over tumor
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profiling, including ease of access and the ability to capture
genomic heterogeneity (34, 35), blood-based profiling may be
limited by lower sensitivity of detection and may reflect the
fact that CTCs and cfDNA are generally detectable in patients
with more advanced or aggressive disease. We recognize that
association with clinical outcomes was performed in a subset
of 128 patients who were initiating first-line therapy for
mCRPC with an ARSI, and that a larger cohort could reveal
additional associations. Nonetheless, the size of our cohort
meets or exceeds previously reported datasets, and it is un-
clear if smaller differences in outcomes would be considered
clinically meaningful.

We found that neuroendocrine histology, generally viewed as
conferring more aggressive clinical behavior, is more frequent
postexposure to ARSIs (10.5%), though at a lower frequency
than recently reported in another study (17%) (8), despite in-
clusion in our cohort of patients with neuroendocrine features
from a clinical trial of alisertib (14). Prostate cancers with his-
tologic neuroendocrine differentiation (36) typically have alter-
ations in TP53 and/or RB1, high neuroendocrine expression
score, and low AR signaling score, though concordance is not
complete. This is not surprising, given the complexity of defining
histologic neuroendocrine differentiation, which relies on the
identification of a variety of characteristic features (29). Some
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tumors with discordant histologic and molecular classification
may be in transition from adenocarcinoma to NE differentiation,
and displayed distinct nuclear features that may suggest such a
transition. In such cases, paraffin-embedded tissue may aid in the
classification by allowing for further examination of histomorpho-
logic features and immunohistochemical staining of markers.
The size of our whole-exome sequencing dataset allows for

genomic association analysis that was not previously possible.
Through this analysis, we identified co-occurrence of alterations
in CDK12, recently shown to confer immunogenic potential, and
alterations in cell-cycle genes CDK4 and CCND1 (23), pointing
toward a possible role for combination immune checkpoint
blockade and CDK4/6 inhibition in clinical trials. Further labo-
ratory studies will be needed to explore this and other potential
biological interactions identified through genomic analysis.
In summary, we present an integrative analysis of genomic

alterations, gene expression, histopathology, and clinical out-
comes in the largest single mCRPC dataset to date, with the data
made available to the research community for interrogation of
genomic features in relation to outcomes. We find that RB1 loss
is the molecular factor most strongly associated with poor clinical
outcomes in a contemporary cohort, highlighting the need for
further investigation into mechanisms of resistance to AR ther-
apies induced by loss of RB, and potential therapeutic strategies
targeting this mechanism.

Methods
Patients and Samples. Subjects with mCRPC who were receiving standard-of-
care therapy or treatment in a clinical trial [including trials combining AR
therapies with other agents, a trial of the PARP inhibitor olaparib (37), and a
trial of the Aurora kinase A inhibitor alisertib in patients with neuroendo-
crine features (14)] and who had disease amenable to biopsy under radio-
graphic guidance were considered for inclusion at one of seven SU2C-PCF
(Stand Up to Cancer/Prostate Cancer Foundation) International Prostate
Cancer Dream Team consortium sites (Dana-Farber Cancer Institute,
Karmanos Cancer Institute, Memorial Sloan Kettering Cancer Center, Royal
Marsden, University of Michigan, University of Washington, and Weill
Cornell Medicine) (5). All subjects included in this study provided written
consent for research use of tumor tissue with institutional review board
approvals or appropriate waivers (Office of Human Research Studies at the
Dana-Farber Cancer Institute, Wayne State University Institutional Review
Board, Memorial Sloan Kettering Cancer Center Institutional Review Board/
Privacy Board, Royal Marsden Ethics Committee, University of Michigan
Medical School Institutional Review Board, University of Washington In-
stitutional Review Board, and Weill Cornell Medicine Institutional Review
Board). Clinical data, including treatment history, duration of therapy, and
survival, were collected using a web-based electronic data capture. All
samples and clinical data were deidentified.

Histopathology. Pathology for all available cases was reviewed centrally by
three board-certified pathologists with expertise in prostate cancer pathology,
whowere blinded to clinical and genomic data. Reviewwas conducted onH&E-
stained frozen sections, allowing for review of the exact material that was
used for nucleic acid extraction. Each slide was assessed for the ability to make

a diagnosis based on the quality of the sample and presence of tumor cells;
cases in which a specific pathology diagnosis could not be called were classified
as inadequate for diagnosis. The remaining cases (n = 366) were classified
according to a previously published system (36), by consensus in the event that
all three pathologists did not agree. There was no additional material for
paraffin embedding, immunohistochemistry, or other confirmatory studies.

Sequencing and Analysis. Flash-frozen needle biopsies and matched normal
samples underwent nucleic acid extraction as previously described (5).
Extracted DNA underwent whole-exome library construction and somatic
mutation analysis as previously described. BAM files were aligned to the
hg19 human genome build. Copy-number aberrations were quantified and
reported for each gene as previously described (38, 39). Amplifications and
homozygous deletions for a set of 20 genes previously implicated in prostate
cancer (SI Appendix, Table S3) underwent further confirmatory review of
segmentation files. Annotation of known or likely oncogenic SNVs was
performed using the OncoKB platform (16).

Transcriptome libraries were prepared as previously described (5), using
polyA+ RNA isolation, or captured using Agilent SureSelect Human All Exon
V4 reagents, or in some cases using both polyA and capture methods. Library
quality assessment and sequencing were performed as previously described.
Paired-end transcriptome-sequencing reads were aligned to the human
reference genome (GRCh38) using STAR (40). Gene expression as fragments
per kilobase of exon per million fragments mapped (FPKMs) was determined
using featureCounts against protein-coding genes from the Gencode
v26 reference. Fusions in ETS genes (ERG, ETV1, ETV4, ETV5, FLI1) and RAF1/
BRAF were detected using CODAC (41) and assessed manually in all cases
where RNA-sequencing data were available. In addition, the presence of AR
splice variants was quantified as the number of reads across specific splice
junctions in splice reads per million (SRPMs) and as the ratio of reads across a
specific splice junction to the sum of AR promoter 1 and promoter 2 reads (a
surrogate of total AR expression), separately for polyA and capture libraries.

NEPC and AR signaling scores were computed by the Pearson’s correlation
coefficient between the log2-transformed FPKM values of each score’s gene
list and a reference gene expression vector, as previously described (7, 32).
CCP and RB loss scores were computed by the average (i.e., mean) Z score-
transformed expression levels across each score’s gene list, as previously
described (42, 43). A high correlation (R ≥ 0.95, P < 0.001, Pearson’s corre-
lation test) was noted between scores derived from polyA versus capture
RNA-sequencing libraries (SI Appendix, Fig. S8), allowing for joint analysis of
samples sequenced with either library construction method.

All data from SNV, copy-number, and expression analysis as well as clinical
characteristics and outcomes measures (Dataset S1) have been made available
in cBioPortal (44) (www.cbioportal.org), and have been deposited in GitHub,
https://github.com/cBioPortal/datahub/tree/master/public/prad_su2c_2019.

Statistics and Genomic Association with Outcomes. Fisher’s exact tests and
unpaired t tests were performed in R (3.5.0) and GraphPad Prism software as
indicated. For the analysis shown in Fig. 2B, enrichment analysis using a bi-
nomial distribution test was performed as previously described (45) to
identify genes that had a significant fraction of known or likely oncogenic
alterations (as defined by OncoKB) among all identified SNVs. Multiple hy-
pothesis test correction was applied using the Benjamini–Hochberg method,
with q values of <0.05 considered significant for enrichment of oncogenic
mutations among all SNVs identified for a gene. Kaplan–Meier analysis was
performed from time of biopsy to death for all samples. Overall survival
analysis was performed for the n = 128 subjects who received an ARSI
(abiraterone, enzalutamide, or apalutamide) in the first-line setting before a
taxane, either alone or in combination with another agent in a clinical trial,
and where the profiled tissue was obtained before the start of therapy or
within 90 d after starting first-line therapy. Time on treatment analysis was
evaluated for a subset of n = 108 patients (of the 128 above), who received
an ARSI in the first-line setting without another agent, so as not to confound
the interpretation of response to the ARSI. P values for individual (univari-
ate) association tests between genomic status and survival/time on treat-
ment were generated from the log-rank statistic. In cases where a data-
driven threshold value was used to determine the genomic status, the P
value was computed from the maximum log-rank statistic. When a genomic
class contained a small number of events, the P value was produced using a
permutation log-rank test. A concordance probability estimate provided a
metric to assess the level of separation between the Kaplan–Meier curves
and is reported in relevant cases. Multivariate analyses were performed for
the association of common genomic characteristics shown in Table 1 with
overall survival and time on a first-line ARSI, with relative risk reported
based on the Cox proportional hazards model. Kendall’s tau, derived from

Table 2. Multivariate analysis evaluating the association of
common genomic alterations with overall survival and time on
treatment with first-line ARSI

Clinical outcome
Gene

alteration(s)
Multivariate relative risk

(95% CI for RR)

Overall survival from start
of first-line ARSI

RB1− 1
RB1+ 3.31 (1.64, 6.67)

Time on treatment with
first-line ARSI

RB1− and AR− 1
RB1− and AR+ 1.86 (1.18, 2.95)

RB1+ 6.56 (2.94, 14.62)

Common genomic alterations listed in Table 1 were included in this anal-
ysis. Only significant associations are shown. CI, confidence interval; RR, rel-
ative risk.
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the Clayton copula, was used to evaluate the level of association between
the time on therapy end point and overall survival.
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