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A B S T R A C T

We have adapted the methodology of Berry et al. (2012) for Intensity Modulated Radiotherapy (IMRT) and Volumetric Modulated Arc Therapy (VMAT) treatments at
a fixed source to imager distance (SID) based on the manufacturer’s through-air portal dose image prediction algorithm. In order to fix the SID a correction factor was
introduced to account for the change in air gap between patient and imager. Commissioning data, collected with multiple field sizes, solid water thicknesses and air
gaps, were acquired at 150 cm SID on the Varian aS1200 EPID. The method was verified using six IMRT and seven VMAT plans on up to three different phantoms. The
method’s sensitivity and accuracy were investigated by introducing errors. A global 3%/3mm gamma was used to assess the differences between the predicted and
measured portal dose images. The effect of a varying air gap on EPID signal was found to be significant – varying by up to 30% with field size, phantom thickness, and
air gap. All IMRT plans passed the 3%/3mm gamma criteria by more than 95% on the three phantoms. 23 of 24 arcs from the VMAT plans passed the 3%/3mm
gamma criteria by more than 95%. This method was found to be sensitive to a range of potential errors. The presented approach provides fast and accurate in-vivo
EPID dosimetry for IMRT and VMAT treatments and can potentially replace many pre-treatment verifications.

1. Introduction

Intensity Modulated Radiotherapy (IMRT) and Volumetric
Modulated Arc Therapy (VMAT) enable the delivery of highly con-
formal and uniform dose distributions to planning target volume (PTV)
whilst sparing organs at risk (OARs) [1]. While this enhanced delivery
capability has been shown to be advantageous with respect to im-
proving patient outcome [2,3], it does introduce new challenges for the
quality assurance (QA) of treatments in term of additional linac QA as
well as patient-specific QA, which is recommended to be carried out
prior to, or within the first few fractions of treatment [4,5]. In vivo
dosimetry is a form of patient-specific QA that offers certain advantages
over pre-treatment QA, namely that it actually verifies what is really of
interest: the dose delivered to the patient. Within 4 years at the Neth-
erland Institute of Cancer Research, more than 4000 plans were verified
using an in-vivo dosimetry system. Of the 17 serious errors detected, 9
would not have been detected with pre-treatment verification [6]. The
same conclusion was obtained from another study by the same institute
carried out on more than 15,000 plans. 35 serious errors were detected
that would not have been detected with pre-treatment verification due
to mainly changes in patients anatomy [7].

EPID dosimetry can offer advantages in terms of the ease and speed
with which in vivo dosimetry can be performed, the extra information
afforded by sampling the entire radiation field rather than just a single

point (as by using thermo-luminescent detectors (TLDs) or diodes), and
the additional scope it offers for detecting changes in patient anatomy
[8–10]. EPID dosimetry can be performed in many different ways, an
overview of which is given in the literature review by Van Elmpt et al.
[11]. Within the subcategory of in vivo EPID dosimetry several im-
plementations have been developed each of which verifies the dose to
the patient in different ways. Several in-vivo EPID software solutions
have been commercially available recently and have been assessed in a
number of studies [12,13]. However, the solutions thus far have mainly
been developed in house by academic centres, resulting in a wide
variety of methodologies. These methodologies can be divided into: a
point dose verification in the patient, 2D transit dose verification at the
level of the EPID, 2D transit dose verification in a plane in the patient or
3D transit dose verification in the patient [14–19]. A recent study by
Bedford et al. (2017) investigated the agreement between the forward
and back-projection transit EPID dosimetry for prostate radiotherapy.
They found a fairly similar response from both methods and they
concluded that both of them can be used to verify the dose delivered to
the patient [20].

Van Elmpt et al. (2005) developed a system that predicted a transit
portal dose image using a through air portal dose image and the radi-
ological thickness of the path of the beam through the patient [21].

Berry et al. (2012) used a similar technique, but rather than using a
measured through air portal dose image, they used the image predicted
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by the Varian Portal Dosimetry software, which is based on the work of
Van Esch et al. [15,22]. However, in their model, a fixed air gap of
35 cm was used between the phantom exit and EPID. The fixed air gap
causes several problems. Firstly, it increases the treatment time for each
patient as the EPID needs to be moved for each beam in order to keep a
constant air gap which has several consequences including increased
risk of intra-fraction motions and reduced patient throughput. Sec-
ondly, it increases the generation time of the portal dose images
through air since each beam requires a verification plan with a different
source to imager distance (SID) to be created in the Eclipse treatment
planning system (TPS). Finally, it is not suitable for VMAT treatments as
EPID needs to be at a fixed SID while the gantry rotates. Another lim-
itation of the original methodology used by Berry et al. was that they
did not include the couch model in their calculations, and consequently
reported a decrease in the mean gamma pass rate for fields that transit
the couch [23].

The aim of this work is to extend the methodology of Berry et al.
(2012) to be used for both IMRT with a fixed SID and VMAT treatments.
This is achieved by introducing a correction factor which takes into
account the change in air gap between the patient exit and EPID for a
fixed SID. To improve the accuracy of the system, the couch model was
included in our calculation to take into account the couch attenuation
at any gantry angle. In addition, a new approach to calculate IMRT and
VMAT equivalent square field size is presented.

2. Materials and methods

2.1. Equipment

Portal dose images were delivered on a Varian TrueBeam linac
which is equipped with the Varian portal imager aS1200. This imager
has a sensitive area covering a 40× 40 cm2

field size at a 100 cm SID
and high resolution (1190×1190 pixels) in the dosimetry mode. In
addition, it has a backscatter shield to remove the effect of uneven
backscatter from the support arm [24]. Portal dose images were ac-
quired at dose rate up to 600MU/min (the max dose rate for 6MV
beam) on this machine.

The imager was calibrated according to the manufacturer's re-
commendation and the central pixel value calibrated to equal 0.444 CU
(calibrated unit) when irradiated with 100MU and a 10× 10 cm2

field
at 150 cm SID. All measured portal dose images (mIs) in our experi-
ments were acquired at a 150 cm SID. Three phantoms were used in the
verification: A 30×30×19 cm3 water-equivalent “solid water (SW)”
phantom, the RT01 phantom and the BrainLab pelvis phantom
(BrainLab Medical Systems, Westchester, IL) (see Fig. 1) [25]. In ad-
dition, slabs of tissue-equivalent materials (water, bone and lung) were
used to create phantoms with a range of complexities in order to test the
accuracy of the presented model.

The predicted portal dose images through air (pIsair) were created
using Eclipse v13.7. For an in-depth description of how pIsair are cal-
culated, see the paper by Van Esch et al. [22]. The RT plan, RT

structure, CT images and pIsair are imported to in-house software
written in Python v3.5.1 in order to calculate the predicted images
through patient (pIsp).

2.2. Predicted images through patient model

The pIp for any field size (FS), thickness (t), air gap (g) and fixed SID
can be calculated from the pIsair at any position (x, y) on the EPID using
the following equation:

= ∙ ∙ ∙pI pI T x y FS t OAR x y t G x y FS t g( , , , ) ( , , ) ( , , , , )p air (1)

Each of the terms in Eq. (1) is briefly described in Table 1 below.

2.2.1. Transmission correction factor model
In the implementation used by Berry et al. (2012), two terms were

used to account for the two primary causes of attenuation of the beam
through the phantom: the attenuation of the primary beam, which was
modelled in narrow beam conditions using Monte Carlo (MC) simula-
tions, and the effect of scattered and secondary radiation, which was
empirically derived by measuring the EPID response for several field
sizes and SW block thicknesses [15]. In this work, both terms are
combined into one empirically derived correction factor dependent on
attenuator thickness and field size. A series of images were acquired
with the EPID for different field sizes and thicknesses of SW blocks to
determine the equation that defines this correction factor. The data
were fitted using a nonlinear least squares method to the following
equation:

=
+

− −

T t FS A FS e C FS e
S FS

( , ) ( ) ( )
(0, )

B FS t D FS t( ) ( )

(2)

where = +
−A FS a e a( ) a FS

1 32 , =B FS b FS( ) b
1 2, = +

−C FS c e c( ) c FS
1 32 ,

=D FS d( ) FS1
d2.

S FS(0, ) is the mean signal in the 4× 4 pixels at the EPID centre
produced by the beam with no attenuation for a given field size.
a a a b b c c c d d, , , , , , , , ,1 2 3 1 2 1 2 3 1 2 are empirically determined fitting para-
meters. Table 2 summarises the commissioning measurements per-
formed to determine the T factor. The model was then verified with a
mix of field sizes and SW thicknesses.

Fig. 1. Phantoms used to verify our method: (a) a 19 cm solid water phantom, (b) the RT01 phantom and (c) the BrainLab pelvis phantom.

Table 1
A brief summary of each term in Eq. (1).

Parameter Description

T Transmission factor which takes into account the attenuation of the
beam through the phantom

OAR The off-axis pixel response function, that accounts for the fact that
the off axis spectrum of the incident beam varies as a function of
radial distance from the central axis

G The air gap factor which corrects the EPID response due to change in
the distance between the patient exit and EPID
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2.2.2. Off-axis pixel response factor model
This correction factor is derived empirically, using a similar set of

data as for the T correction factor, but with only a field size that fully
covers the EPID at 150 cm SID (27× 27 cm2). A third-degree poly-
nomial is used to fit the OAR factor for each individual pixel as a
function of the attenuator thickness as described in the following
equation:

= + + +OAR i j α i j t i j α i j t i j α i j t i j α i j( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )1
3

2
2

3 4

(3)

For a given pixel at the ith row and jth column
α i j α i j α i j α i j( , ), ( , ), ( , ), ( , )1 2 3 4 are empirically determined fitting
parameters and t i j( , ) is the equivalent radiological path length traced
through the CT scan to the pixel.

Table 3 summarises the commissioning measurements performed to
determine the OAR factor.

2.2.3. Air gap correction factor model
A series of portal dose images were acquired with the EPID for

different field sizes, thicknesses of SW blocks and air gaps to determine
the correct model for this factor. In this work, the G factor is divided
into two terms:

=G x y t FS g G t FS g G x y g( , , , , ) ( , , ) ( , , )c o (4)

where G t FS g( , , )c is the air gap factor at the centre region (the 4× 4
pixels at EPID centre) of the EPID which is a function of thickness, field
size and air gap.G x y g( , , )o is the air gap off-axis pixel response function
which takes into account the change in off-axis pixel response due to
the change in air gap distance. Both factors were normalised to a 40 cm
air gap. A multi-dimensional look-up table to interpolate between field
sizes, thicknesses, and air gaps is used to model the Gc factor. The Go
factor was fitted using a nonlinear least squares method to the following
equation:

=
−G x y g e( , , )o

g x yΔ( ).Ω( , ) (5)

where: = − + − +g β g g β g g βΔ( ) ( ) ( )1 0
2

2 0 3, =
+x yΩ( , ) γ x y

γ
( )1

2 2

2
.

where β β β γ γ, , , ,1 2 3 1 2are the empirically determined fitting para-
meters and g0 is the default air gap at which the other correction factors
were modelled. In this work, =g cm400 . Table 4 summarises the com-
missioning measurements used to determine the G factor.

2.2.4. The equivalent thickness map
In order to predict the effect of patient (phantom) attenuation on

pIair, information about the radiological path length for each photon
beam arriving at the EPID is required. The patient CT scan is used along
with a calibration table which converts from Hounsfield Units (HU) to
electron density to calculate electron density at each voxel in the CT
scan. The body outline from the structure set is used to restrict the

calculated voxels to just those within the body. The couch structure,
generated in the Eclipse TPS, is also included in the calculation so that
the attenuation through the couch at any gantry angle is included. The
radiological path length is then calculated for each ray arriving at a
pixel at the EPID using the method reported by Siddon [26]. The ray
tracing algorithm was verified using virtual phantoms with known
geometries and densities as well as comparing the equivalent thickness
at the central axis for each verification plan to that obtained from
Eclipse TPS. The calculated equivalent thicknesses were found to agree
with those calculated in Eclipse to within±1mm.

2.2.5. Equivalent square field size for dynamic fields
To assess the impact of both the collimator and MLC positions on the

estimation of the equivalent square field size, we investigated if the
equivalent square field size for a given dynamic field can be calculated
from only the field formed by X and Y secondary collimators. Several
dynamic fields with the same X and Y secondary collimator (i.e.
10× 10 cm2) opening but different fluence map were delivered
through a 20 cm thick SW phantom at three different air gaps: 20, 30
and 40 cm. Fig. 2 shows the fluence map for each dynamic field. It was
found that the correction factors depend on both total fluence and open
area and not only on the X and Y collimator size. The equivalent square
field size FS, which gives the best agreement with our measurements,
was found to be calculated using the following empirical equation:

=FS FS
A

AOF
f

OF (6)

where FSOF is the equivalent square field size calculated from X and Y
collimators, Af is the area in the field where the fluence is larger than
zero, and AOF is the area within the field formed by X and Y collimators.

2.3. Predicted images through patient model verification

Six IMRT plans and seven VMAT plans were used to verify the
presented method. The IMRT plans were clinical prostate and seminal
vesicle plans; two were planned according to the CHHiP trial protocol,
two to the PACE protocol, and two according to the pre-CHHiP clinical
standard at RMH [27,28]. The VMAT plans consisted of prostate bed
(n= 2), prostate and nodes (n= 2), larynx bed (n=2), and vagina
(n= 1) plans. Each plan was delivered on up to three different phan-
toms described in Section 2.1. In total, 15 IMRT fields were delivered to
the RT01 phantom, 15 IMRT fields and 12 VMAT arcs were delivered to
the 19 cm solid water phantom, and 30 IMRT fields and 12 VMAT arcs
were delivered to the BrainLab pelvis phantom. pIsp and mIs were
compared using a global 3%/3mm gamma evaluation with 10% dose
threshold as it is the most common gamma criteria used in dosimetric
QA [29].

In addition, pIsp and mIs were compared using a local 2%/2mm
Gamma criteria to test the sensitivity of the system [29].

All plans used were independently verified using PTW OCTAVIUS
1500 ionisation chamber array (PTW, Freiburg, Germany) and/or
Varian pre-treatment verification (Portal Dosimetry) software. All plans
passed the local 3%/3mm gamma evaluation by more than 98% on the
PTW array and by more than 99% on Varian pre-treatment verification

Table 2
The commissioning measurements used to model the T factor.

Field size (cm2) Solid water
thickness (cm)

Air gap
(cm)

Gantry
(deg)

MUs

3×3, 5× 5, 8×8,
10× 10, 15× 15,
20× 20, 25× 25

0, 5, 10, 15, 20,
25, 30, 35, 40

40 270 100

Table 3
The commissioning measurements used to model the OAR factor.

Field size (cm2) Slabs thickness (cm) Air Gap
(cm)

Gantry (deg) Mus

27×27 0, 1, 2, 3, 5, 10, 15, 20, 25,
30, 35, 40

40 0 100

Table 4
The acquisition parameters used to model the G factor.

Field size (cm2) Slabs thickness
(cm)

Air gap (cm) Gantry
(deg)

MUs

5×5, 10× 10,
15× 15, 20× 20

0, 10, 15, 20, 25,
30, 35, 40

20, 25, 30, 35,
40, (45, 50,
55)*

0 100

* If possible due to machine interlock for large air gaps and solid water
blocks.
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software.

2.3.1. The effect of heterogeneity
To investigate the ability of our model to predict accurate portal

dose images in the presence of heterogeneities, an anterior IMRT field
from one of the six prostate plans was delivered on several phantoms

(shown in Fig. 3). These phantoms were made of tissue-equivalent
materials; water (WT1, relative electron density= 1.0), cortical bone
(SB5, relative electron density= 1.73) and lung (LN10, relative elec-
tron density= 0.3) [30] with a range of complexities similar to what
was presented by the work of Berry et al. [15].

The following geometries and material configurations were

Fig. 2. The fluence maps used to determine the equivalent square field size for a dynamic field.

Fig. 3. Diagrams of the slab phantoms used to test our model using a range of homogeneous and inhomogeneous geometries, with materials of varying electron
densities. a, c, d: A field pointing directly at a 10 cm thick slab of WT1, 5 cm thick slab of SB5, 5.5 cm thick slab of LN10, respectively. b: A field pointing directly and
beam passing through part of a 10 cm thick slab of WT1. e, f: A field pointing directly and passing through multiple materials (WT1-LN10-WT1 and WT1-SB5-WT1,
respectively) with tissue boundaries along the ray path. g, h, i: A field pointing directly and passing through multiple materials (WT1-[WT1-SB5]-WT1, WT1-[WT1-
LN10]-WT1 and WT1-[SB5-LN10]-WT1, respectively) with tissue boundaries along the ray path and perpendicular to the treatment field.
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measured with the field pointing directly at the phantom: single ma-
terials (Fig. 3a–d), single material with a beam passing through part of
the phantom only (Fig. 3b), multiple materials with tissue boundaries
along the ray path (Fig. 3b–f), multiple materials with tissue boundaries
both along the ray path and perpendicular to the treatment field
(Fig. 3g–i)

2.4. Model sensitivity

2.4.1. Error detection
In order to test the sensitivity of our model to detect dose delivery

errors in the patient, several types of errors were deliberately in-
troduced either into the plan itself or the phantom setup. This was done
using a single IMRT verification plan and followed an approach similar
to that of Bedford et al. [14]. The pIsp for the unaltered plan and setup
were compared to the mIs for the delivery containing the errors, to test
whether the dose discrepancy is greater than that observed for the
unaltered IMRT plan and therefore determine whether the error can
actually be detected.

The deliberate errors were all introduced to a prostate IMRT plan,
created in accordance with the CHHiP trial protocol. The error plans
were all delivered to the BrainLab pelvis phantom apart from in the
case of the change in phantom size, which was done using SW blocks.
The errors introduced were:

1. Dose errors: The number of monitor units for all fields in the plan
was altered by −5%, +1%, +3%, +5% and +10%, creating five
new plans with deliberate errors in. All other aspects of the plan
were kept the same.

2. Gantry angle error: Two plans were created, identical to the original
plan on the BrainLab pelvis phantom, except with gantry angle
offsets of +5° and +10° introduced.

3. Patient set-up errors: One field from the original plan (the left
anterior oblique field, at a gantry angle of 35°) was delivered to the
BrainLab pelvis phantom, but with the phantom offset by 0.5 cm,
1 cm, 1.5 cm and 2 cm laterally towards the patient’s right, and by
the same offsets in the anterior direction, resulting in 8 deliveries of
one field.

4. Change in phantom size: For this sensitivity test, the posterior field
(180°) from the original plan was delivered to the CT scanned 19 cm
solid water block, with 0.5 cm, 1 cm, 2 cm and 3 cm of solid water
added on top; only the posterior field was measured to save time, as
this was the field that would be most affected by a change in depth
of the phantom.

5. MLC errors: new versions of the original plan were created with
MLC errors introduced by altering the MLC plan file using a python
script. The MLC files were then imported back into Eclipse, and the
plan was calculated again using the new MLC positions. The type of
MLC errors and the fields which they were applied to is detailed in

Table 5.

3. Results

3.1. Transmission correction factor

The T factor was fitted successfully using Eq. (2). The R2 value of the
fitted equation was found to be 0.9998. The fitting parameters are listed
in Table 6. Fig. 4 shows the measured and modelled T factor as a
function of SW thickness for several field sizes. A comparison of the
measured and modelled T factors for several field sizes and SW thick-
nesses is shown on Table 7.

3.2. Off-axis pixel response factor

All measured and modelled OAR model images passed the 0.5%/
0.5 mm 2D gamma by 100%. Fig. 5 shows the measured and modelled
OAR factors as a function of SW thickness at different positions on the
EPID.

3.3. Air gap correction factor

Fig. 6a shows the measured and modelled Gc factors for a
15× 15 cm2

field size as a function of SW thickness at different air
gaps. Fig. 6b shows Gc factor for 30 cm solid water thickness as a
function of field size for different air gaps.

A comparison of the measured and modelled Gc factors for several
field sizes, SW thicknesses and air gaps is shown in Table 8.

Table 5
The MLC errors that were deliberately introduced into each field of one of IMRT
plans in order to test the sensitivity of portal dosimetry to different types of
MLC error.

Error Field (Gantry angle
[deg])

MLC error

E1 All fields Both banks shifted in the same direction by 5mm
E2 POST (180°) Shift both leaf banks in by 2mm
E3 LPO (100°) Shift the leaves of bank B that are within the field

in by 5mm
E4 LAO (35°) Shift one leaf in bank A that is close to the centre

of the field in by 1 cm
E5 RAO (325°) Open all leaf pairs that are within the field out by

5mm
E6 RPO (260°) Shift four leaves from bank A at the superior edge

of the treatment field by 1 cm

Table 6
T factor fitting parameters.

= −a 0.95801 =a 0.01852 =a 0.95293 =b 0.41431 = −b 0.70292
= −c 50.27171 = −c 0.00022 =c 50.66473 =d 0.05481 = −d 0.16752

Fig. 4. The measured (circles) and modelled (lines) T factors as a function of
solid water thicknesses for different field sizes.

Table 7
The modelled and measured T factors for different field sizes and SW thick-
nesses.

Field Size (cm) Thickness (cm) Measured (CU) Modelled (CU) Diff (%)

25× 25 2.84 0.419 0.4191 0.0
7× 18 17 0.187 0.1865 −0.3
13× 13 17 0.197 0.1968 −0.1
7× 14 23.84 0.134 0.1337 −0.2
15× 15 0.84 0.438 0.4385 0.1
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Fig. 7a and b show the Go factor along the x-axis at 30 cm air gap for
a 15×15 cm2

field size and different SW thicknesses and 20 cm solid
water thickness and different field sizes, respectively. Fig. 7c shows the
measured and modelledGofactor along the x-axis as a function of air gap
for a 20×20 cm2

field size and 20 cm SW thickness. Fig. 7d shows the
difference between the modelled and measured Go factor for different
air gaps. Table 9 lists the fitting parameters used to fit Eq. (5). The R2

value of the fitted equation was found to be 0.9994.

3.4. Verification results

3.4.1. IMRT plans
All IMRT fields (60 fields in total) passed the 3%/3mm gamma

criteria by more than 95%. The average gamma pass rate was
99.8 ± 0.3(1SD), 99.9 ± 0.3(1SD) and 99.3 ± 1.2(1SD) for 19 cm
SW, RT01 and BrainLab pelvis phantoms, respectively. Fig. 8 shows a
histogram of gamma pass rate for all IMRT fields on the three phan-
toms. The average gamma pass rate for beams which do and do not pass
through the couch was found to be the same (99.6 ± 0.9(1SD)). 45 of
60 fields passed the local 2%/2mm gamma criteria by more than 95%.
The overall global 3%/3mm and local 2%/2mm gamma pass rate and
mean gamma for all IMRT fields are listed in Table 10.

3.4.2. VMAT plans
For VMAT plans, 23 of the 24 arcs passed the 3%/3mm gamma

criteria by more than 95%. However, the 3%/3mm gamma pass rate of
the failed arc was 94.6%. The mean 3%/3mm gamma pass rate was
98.7 ± 1.8(1SD) and 98.9 ± 1.5(1SD) for the 19 cm SW and BrainLab
pelvis phantoms, respectively. Fig. 9 shows a histogram of gamma pass
rate for all VMAT fields on the 19 cm SW and BrainLab pelvis phantoms.

None of the VMAT plans passed the local 2%/2mm gamma criteria
by more than 95%. The overall global 3%/3mm and local 2%/2mm
gamma pass rate and mean gamma for all VMAT arcs are listed in
Table 10. Fig. 10 shows the pIp and mIs images and global 3%/3mm and
local 2%/2mm gamma maps for a VMAT field delivered on the
BrainLab pelvis phantom.

3.4.3. The effect of heterogeneity
All beams, delivered on phantoms shown in Fig. 3, passed the 3%/

3mm gamma criteria by more than 99.5% (see Fig. 1 in the
Supplementary material).

3.5. Model sensitivity

3.5.1. Error detection
Table 11 shows the 3%/3mm gamma pass rate for the plans with

errors deliberately introduced that were delivered on the BrainLab
pelvis phantom.

Table 12 shows the 3%/3mm gamma pass rate and mean gamma,
mean dose difference and the dose difference at the centre of the EPID
between the measured and predicted images for errors plans delivered
on a 19 cm SW phantom.

4. Discussion

As can be seen in Fig. 4, the modelled T factor was in a good
agreement with measured values. The difference between the measured
and modelled T factor for different field sizes and SW thicknesses was

Fig. 5. The measured (circle) and modelled (line) OAR factors as a function of
solid water thicknesses at different locations on the EPID. Note the error bars
illustrate a 0.5% difference in OAR value at each point.

Fig. 6. The measured (circle) and modelled (line) Gc factor at different air gaps as (a) a function of attenuator thickness for a 15×15 cm2
field size and (b) as a

function of field size for a 30 cm solid water thickness.

Table 8
The modelled and measured Gc factors for different field sizes, SW thicknesses
and air gaps.

FS (cm2) t (cm) g (cm) Measured Modelled Diff (%)

13 20.84 35 1.024 1.024 0.0
13 20.84 30 1.054 1.052 −0.2
13 20.84 20 1.151 1.149 −0.1
13 20.84 37 1.012 1.014 0.2
7.9 30.46 35 1.019 1.013 −0.6
7.9 30.46 30 1.029 1.032 0.4
10 9.34 35 1.011 1.010 −0.1
10 9.34 30 1.022 1.022 0.0
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found to be less than 0.5% as seen Table 7. Berry et al. (2012) used two
terms to model this factor and carried out several MC simulations to
calculate the mass attenuation factor for a 6 MV photon beam [15].

However, we found that using one term to model this factor was suf-
ficient and easier to implement since no MC simulations are required.

With regards to OAR factor, the third-degree polynomial model at
each individual pixel was found to accurately fit this factor (Fig. 5). All
commissioning images passed by 100% the 0.5%/0.5 mm 2D gamma
evaluation. The third-degree degree polynomial model was found to
give better agreement in our work compared with the Gaussian model
introduced by Berry et al. (2012). This difference could be due to the

Fig. 7. The measured Go factor at a 30 cm air gap for (a) a 15×15 cm2
field size and different thickness and (b) for a 20 cm solid water thickness and different field

sizes. (c) The measured (dashed line) and modelled (solid line) Go factor along the x-axis for a 20×20 cm2
field size, 20 cm SW thickness and several air gaps. (d) The

percentage difference between the measured and modelled Go factor along the x-axis for different air gaps.

Table 9
The fitting parameters of Go factor.

=
−β 7.5902 101

8 =β 1.02112 =β 40.12473 = −γ 28.68661 =γ 26.77422

< 95% 95% -96% 96% - 97% 97% - 98% 98% - 99% 99% - 100%

RT01 0 0 0 0 6.7 93.3

SW19cm 0 0 0 0 6.7 93.3

Pelvis 0 3.3 3.3 3.3 16.7 73.4
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Fig. 8. Gamma pass rate histogram for IMRT fields delivered on the three phantoms.
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Table 10
The overall global 3%/3mm and local 2%/2mm gamma pass rate and mean gamma for all IMRT and VMAT plans.

Global 3%/3mm gamma Local 2%/2mm Gamma

Pass rate [%] Mean gamma Pass rate [%] Mean gamma

IMRT 99.6 ± 0.9(1SD) 0.22 ± 0.07(1SD) 96.1 ± 5.5(1SD) 0.33 ± 0.11(1SD)
VMAT 98.8 ± 1.7(1SD) 0.30 ± 0.05(1SD) 84.5 ± 6.7(1SD) 0.82 ± 0.32(1SD)

< 95% 95% -96% 96% - 97% 97% - 98% 98% - 99%
99% -
100%

SW19cm 7.1 7.1 0.0 7.1 0.0 64.3

Pelvis 0.0 14.3 0.0 0.0 14.3 57.1
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Fig. 9. 3%/3mm gamma pass rate histogram for VMAT fields delivered on the 19 cm SW and BrainLab phantoms.

Fig. 10. The (a) Measured, (b) Predicted, (c) global 3%/3mm gamma map and (d) local 2%/2mm gamma map for a VMAT field delivered on the BrainLab pelvis
phantom.
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EPID model (aS1000) that they used in their study. In addition, Berry
et al. used a field size specific backscatter correction that was pre-
viously developed for portal dosimetry by the same group [31]. In this
work, no backscatter correction was used with the aS1200 since this
EPID model has backscatter shield to remove the effect of uneven
backscatter from the support arm [24].

It can be found from Fig. 6a and b that the effect of air gap is not
negligible and the EPID signal can vary by up to 30% for the smallest air
gap and largest field size and SW thickness. The Gc factor was found to
increase as the field size and thickness increases and as the air gap
decreases. This could be due to the increase in secondary (scattered)
photons that reach the EPID. We used a multi-dimensional look-up
table to calculate theGc factor for a given field size, attenuator thickness
and air gap as no fitting equation was found to model this factor ac-
curately. The difference between the measured and calculated values
for several images with a range of field sizes, SW thicknesses and air
gaps was found to be less than 1% as seen in Table 8.

As seen in Fig. 7a–c, the Go factor is relatively independent of field

size and thickness, and is only affected by distance between the patient
exit and EPID. Eq. (5) was found to accurately model this factor with R2

equal to 0.9994 as can be seen in Fig. 7c. The difference between the
measured and modelled factor was found to be less than 1% at any
point as seen in Fig. 7d.

Even though the effect of air gap on EPID central axis dose was
studied by Talamonti et al. (2006) for pre-treatment IMRT verification
[32], to the authors' knowledge, no one has introduced a model to
correct the EPID in-axis and off-axis pixel response due to the change in
the air gap between the patient and the imager.

The introduced model verified successfully for several IMRT and RA
plans on up to three different phantoms. Most IMRT and RA fields
passed the 3%/3mm gamma criteria by more than 99% as can be seen
in Figs. 8 and 9 which is similar or superior to results published in
previous studies [14,15,33].

Berry et al. (2014) evaluated their model on 11 patients. They found
that the average 5%/3mm gamma pass rate was increased from 89.1%
to 95.7% by excluding all beams that interfere with the couch [23].
Since the couch structure was included in our model, no difference was
noticed in gamma pass rate between beams that interfere and do not
interfere with the couch. Therefore, the evaluation of the portal dose
images in our model should not be influenced by beams transmission
through the couch.

In order to determine the specificity and sensitivity of the system we
both introduced deliberate errors and varied the gamma criteria. The
high failure rate with a 2%/2mm gamma criteria (see Sections 3.4.1
and 3.4.2), when no deliberate errors were presented, means that the
specificity at this gamma criteria is too low for the system to be clini-
cally useful. At 3%/3mm, the specificity is sufficient for the test to be
useable. The sensitivity at this level is discussed below. The low spe-
cificity of the system at 2% 2mm gamma may be due to our not ac-
counting for higher-order scattering components [34]. In addition, the
effect of penumbra and inter-leaf leakage is more pronounced in the
highly modulated treatments such as VMAT treatments [35]. It may be
possible to improve the accuracy of the system by taking further mea-
surements in order to produce a scatter kernel that, when convolved
with the predicted image, will improve agreement with measurements.
However, the 3% 3mm gamma criteria used compares favourably to
other published work. For example, Bedford et al. (2014) reported an
average 3%/3mm global gamma pass rate from 9 VMAT plans equals to
93.7 ± 3.0 [14]. In addition, the 3%/3mm gamma pass rate in our
method is considerably more than the action level of 90% per treatment
field that was recommended in AAPM TG-119 for pre-treatment ver-
ification [36]. The differing patterns of failure for different beams
shown in Table 11, discussed in more detail below, demonstrates that
the failures are not due to systematic high or low predictions.

The predicted portal dose images for IMRT fields through different
heterogeneous phantoms can be calculated accurately by our method,
achieving 3%/3mm gamma pass rate of more than 99.5% on all the
phantoms tested, as shown in Fig. 3. The geometries were simple, but
featured large discontinuities and materials with different electron
densities. Diagram b in Fig. 3 indicates that the presented method could
be used for treatments where part of the field extends beyond the pa-
tient (e.g. breast treatments).

From the results reported in Table 11, the introduced method
should be sensitive to dosimetric errors, the level of which is dependent
on the gamma criteria used. The higher the dose criteria, the less sen-
sitive the method will be to dose errors, as expected. Increasing the MUs
by more than 3% caused all fields to have passing rates at 3%/3mm
gamma criteria of less than 95%. These results agreed with the results
reported by Bedford et al. (2014) as all plans in their study fail the
gamma evaluation when they increase the number of MUs by 10% [14].

The results in Table 11 demonstrate that in principle, our method
should be sensitive to gantry angle errors, as the passing rates for some
of the fields delivered in the prostate plans, for both 5° and 10° shifts,
change markedly. For smaller angular rotations it is less likely to cause

Table 11
The 3%/3mm gamma pass rate for the error plans (see Section 2.4.1) that were
delivered on the BrainLab pelvis phantom.

Error 3%/3mm Gamma pass rate [%]

POST LPO LAO RAO RPO

No error (original plan) 99.9 98.2 100.0 99.9 98.1
Dose MUs increased by 1% 97.9 97.9 99.6 99.3 97.7

MUs increased by 3% 79.8 82.6 94.9 95.5 93.6
MUs increased by 5% 62.5 59.5 79.0 76.5 73.3
MUs increased by 10% 44.3 48.7 55.3 53.2 51.5
MUs decreased by 5% 97.9. 94.7 83.1 71.3 84.0

Gantry angle Offset by +5° 97.8 99.0 94.1 91.3 98.6
Offset by +10° 98.1 94.7 79.6 68.8 97.8

Set-up error Offset by 0.5 cm (right) 100.0
Offset by 1.0 cm (right) 100.0
Offset by 1.5 cm (right) 99.7
Offset by 2.0 cm (right) 97.8
Offset by 0.5 cm (ant) 100.0
Offset by 1.0 cm (ant) 100.0
Offset by 1.5 cm (ant) 99.9
Offset by 2.0 cm (ant) 99.6

MLC E1, Table 5 (not aligned) 61.3 51.4 46.4 62.8 59.0
E2, Table 5 79.5
E3, Table 5 47.9
E4, Table 5 98.3
E5, Table 5 14.5
E6, Table 5 94.3

Table 12
The gamma pass rate and mean gamma at 3%/3mm, mean dose difference and
the dose difference at the centre of the EPID between the measured and pre-
dicted images for errors plans delivered on a 19 cm SW phantom.

Error 3%/3mm Gamma
test

Mean dose
difference
[%]

Dose
difference at
the centre of
EPID [%]Pass

rate
[%]

Mean
Gamma

No Error (Original
plan)

100 0.12 0.3 0.7

Phantom size Increased
by 0.5 cm

100.0 0.26 −1.7 −1.6

Increased
by 1.0 cm

95.1 0.5 −2.9 −3.7

Increased
by 2.0 cm

48.2 1.03 −5.5 −8.1

Increased
by 3.0 cm

33.8 1.62 −7.8 −12.1
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a noticeable drop in passing rates, as the smaller the rotation from the
planned position the difference in the geometry that the beam transits.
The precise level of gantry error that will be detected will depend on
several factors including the specific patient anatomy and the location
of fields with respect to the anatomy. This shows that our method
should provide a way of detecting such an error, if a significant one
were to occur.

The reported results from Table 11 show that, as might be expected,
set-up errors of up to 2 cm shifts of the patient in one direction do not
result in passing rates that would indicate that an error has occurred.
This result agrees with the results reported by Bedford et al. [14]. While
these set-up errors would result in significant errors for the patient in
terms of dose localisation, the differences in the measured portal dose
images are small because the anatomy that the beam passes through, for
a prostate field shifted by 2 cm relative to the patient, does not change
drastically. The sensitivity of the system to geometrical shifts will de-
pend on the anatomy of the patient, for example, the presence of sig-
nificant inhomogeneities in and around the treatment field, where
greater inhomogeneity increases the likelihood of detecting positional
errors. Our model was not intended to detect such set-up errors how-
ever, therefore the current protocols for treatment that are in place to
produce the correct set-up of the patient, such as kV imaging, should be
maintained in order to ensure this.

The results of the verification measurements performed on plans
containing deliberate MLC errors, described in Table 11, demonstrate
that the current method is sensitive to a range of MLC errors. This is
consistent with the results reported by Bedford et al. [14]. The varied
MLC errors introduced to the individual fields (E2 to E6 in Table 5) all
produced distinct features in the gamma maps, making our model
sensitive to these errors. However, the MLC errors introduced are un-
likely to occur during treatment and more subtle MLC errors may not be
detected by the presented model at all.

Table 12 reports the results of the field verification measurements
performed with additional slabs of solid water added to the solid water
slab phantom to simulate changes to the patient outline: they demon-
strate that a change in water equivalent path length of 1 cm for an
original path length of roughly 20 cm should be detectable for IVED.
This type of error was not included in the study by Bedford et al. [14].

The precise thickness change that will result in a significant drop in
the gamma passing rate will depend on the gamma criteria used, and
the original path length of the beam through the patient; the larger the
patient, the less changes in equivalent thickness will affect the mea-
sured dose at the EPID. Although the gamma pass rate did not drop
enough to indicate an error for an additional 1 cm of SW, the error
could be indicated via changes in the mean gamma, mean dose differ-
ence within the radiation field and the dose difference at the centre of
the EPID between mIs and pIsp. Whilst patient weight changes can be
detected during CBCT scans, our system has the benefit of being ap-
plicable to patients treated on a linac with an EPID, can be used for
every fraction and does not result in an additional dose to the patient.

Although in-vivo EPID dosimetry has the potential to detect in-
cidents which occur during treatments, many types of errors cannot be
detected such as incorrect prescription and contouring. Therefore, it
should be combined with other types of rules-based verification [37].

Using a fixed SID instead of a fixed air gap reduces the total treat-
ment time since the EPID does not need to be moved for each beam to
maintain the same air gap. In addition, it reduces the generation time of
pIsair on Eclipse as only one verification plan is required to generate the
pIsair .

The presented method is very simple to implement and can flag a
number of significant errors for further assessment (one of the re-
commendations in “Toward Safer Radiotherapy” [5]). It has the po-
tential to replace the pre-treatment verification for treatment plans with
fields or arcs that can be fit on the portal imager and do not have a large
couch rotation that restricts the use of the imager.

5. Conclusion

A model was introduced to perform in-vivo EPID dosimetry for
IMRT, at fixed SID, and VMAT plans by adapting the methodology of
Berry et al. (2012). A new correction factor was introduced to account
for the change in air gap between the patient exit and EPID at each
radiation field. To improve the sensitivity of the system, the couch
model was included in the calculation of the equivalent thickness map,
so the couch effect does not influence the gamma results. The in-
troduced method was verified successfully on several IMRT and VMAT
plans. The majority of fields/arcs passed the 3%/3mm gamma criteria
by more than 95%. Furthermore, relative to the methodology of Berry
et al. (2012), our approach reduces the total treatment time and the
time to generate portal dose images through air in Eclipse. These factors
highlight the potential benefit of such a system as part of the radio-
therapy pathway. Work is now in progress to evaluate the introduced
model in the clinic.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the
online version, at https://doi.org/10.1016/j.ejmp.2018.07.010.
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