
1	
	

Genomic	and	transcriptomic	determinants	of	therapy	resistance	and	immune	landscape	evolution	

during	anti-EGFR	treatment	in	colorectal	cancer	

	

Andrew	Woolston1,&,	Khurum	Khan2,&,	Georgia	Spain1,&,	Louise	J	Barber1,&,	Beatrice	Griffiths1,	Reyes	

Gonzalez-Exposito1,	Lisa	Hornsteiner1,	Marco	Punta3,	Yatish	Patil3,	Alice	Newey1,	Sonia	Mansukhani1,	

Matthew	N	Davies1,	Andrew	Furness5,	 Francesco	 Sclafani2,	 Clare	Peckitt2,	Mirta	 Jiménez1,	 Kyriakos	

Kouvelakis2,	Romana	Ranftl6,	Ruwaida	Begum2,	 Isma	Rana2,	Janet	Thomas2,	Annette	Bryant2,	Sergio	

Quezada5,	 Andrew	 Wotherspoon2,	 Nasir	 Khan7,	 Nikolaos	 Fotiadis7,	 Teresa	 Marafioti8,	 Thomas	

Powles9,	 Stefano	 Lise3,	 Fernando	 Calvo6,	 Sebastian	 Guettler10,	 Katharina	 von	 Loga1,	 Sheela	 Rao2,	

David	Watkins2,	 Naureen	 Starling2,	 Ian	 Chau2,	 Anguraj	 Sadanandam4,	 David	 Cunningham2,#,	Marco	

Gerlinger1,2,#,*	

1	Translational	Oncogenomics	Lab,	The	Institute	of	Cancer	Research,	London,	SW3	6JB,	UK	

2	GI	Cancer	Unit,	The	Royal	Marsden	Hospital,	London,	SW3	6JJ,	UK	

3	Centre	for	Evolution	and	Cancer	Bioinformatics	Team,	The	Institute	of	Cancer	Research,	London,	

SW3	6JB,	UK	

4	Systems	and	Precision	Cancer	Medicine	Lab,	The	Institute	of	Cancer	Research,	London,	SW3	6JB,	

UK	

5	Cancer	Institute,	University	College	London,	WC1E	6AG,	UK	

6	Tumour	Microenvironment	Lab,	The	Institute	of	Cancer	Research,	London,	SW3	6JB,	UK	

7	Department	of	Radiology,	The	Royal	Marsden	Hospital,	SW3	6JJ,	UK	

8	Departments	of	Pathology	and	Histopathology,	University	College	Hospital,	London,	NW1	2PG,	UK	

9	Barts	Cancer	Institute,	Queen	Mary	University,	London,	EC1M	6BQ,	UK	

10	Division	of	Structural	Biology,	The	Institute	of	Cancer	Research,	London,	SW3	6JB,	UK	

&	these	authors	contributed	equally,	#	senior	authors,	*	corresponding	author	

Corresponding	author	and	Lead	Contact:	

	

Dr	Marco	Gerlinger	

Translational	Oncogenomics	Lab	

The	Institute	of	Cancer	Research	

237	Fulham	Road	

London	SW3	6JB	

United	Kingdom	

email:	marco.gerlinger@icr.ac.uk	

Tel:	+44	2071535234	 	



2	
	

SUMMARY	

Despite	biomarker	stratification,	the	anti-EGFR	antibody	cetuximab	is	only	effective	against	a	

subgroup	 of	 colorectal	 cancers	 (CRC).	 This	 genomic	 and	 transcriptomic	 analysis	 of	 the	 cetuximab	

resistance	 landscape	 in	 35	 RAS	 wild-type	 CRCs	 identified	 associations	 of	 NF1	 and	 non-canonical	

RAS/RAF-aberrations	 with	 primary	 resistance	 and	 validated	 transcriptomic	 CRC-subtypes	 as	 non-

genetic	 predictors	 of	 benefit.	 64%	 of	 biopsies	 with	 acquired	 resistance	 harbored	 no	 genetic	

resistance	drivers.	Most	of	these	had	switched	from	a	cetuximab-sensitive	transcriptomic	subtype	at	

baseline	 to	 a	 fibroblast-	 and	 growth	 factor-rich	 subtype	 at	 progression.	 Fibroblast-supernatant	

conferred	cetuximab	resistance	 in	vitro,	confirming	a	major	role	for	non-genetic	resistance	through	

stromal	 remodelling.	 Cetuximab	 treatment	 increased	 cytotoxic	 immune	 infiltrates	 and	 PD-L1	 and	

LAG3	 immune-checkpoint	 expression,	 potentially	 providing	 opportunities	 to	 treat	 cetuximab-

resistant	CRCs	with	immunotherapy.	

SIGNIFICANCE	

	 Only	43%	of	patients	had	prolonged	benefit	 from	cetuximab	 in	 this	 trial	despite	treatment	

stratification	 by	 RAS	mutations.	 The	 identified	 associations	 of	NF1,	 non-canonical	KRAS	 and	BRAF	

aberrations	with	primary	resistance	and	of	CMS2/TA	transcriptomic	subtypes	with	prolonged	benefit	

may	 enable	 more	 effective	 treatment	 allocation	 and	 avoid	 toxicities	 from	 ineffective	 therapy.	

Genetic	 resistance	 drivers	 were	 not	 identified	 in	 the	 majority	 of	 metastases	 that	 had	 acquired	

resistance.	 Most	 of	 these	 had	 switches	 from	 the	 cetuximab	 sensitive	 CMS2/TA-subtype	 to	 a	

fibroblast-	 and	 growth	 factor-rich	 subtype.	 This	 challenges	 the	 paradigm	 that	 genetic	 drivers	

predominate	 at	 acquired	 resistance	 and	 suggests	 therapeutic	 approaches	 by	 targeting	 fibroblasts.	

Increased	 T	 cell	 infiltration	 and	 immune	 checkpoint	 upregulation	 following	 cetuximab	 responses	

warrant	trials	of	checkpoint	inhibitors.	
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INTRODUCTION	

Anti-epidermal	growth	factor	receptor	(EGFR)	antibodies	(anti-EGFR-Ab)	are	effective	in	a	

subgroup	of	patients	(pts)	with	metastatic	colorectal	cancer	(CRC).		Activating	KRAS	or	NRAS	

mutations	in	codons	12,	13,	59,	61,	117	and	146	have	been	associated	with	primary	resistance	in	

randomized	trials	and	anti-EGFR-Ab-treatment	should	only	be	administered	for	tumors	that	are	wild-

type	(WT)	at	these	loci	(Allegra	et	al.,	2016;	Amado	et	al.,	2008;	Bokemeyer	et	al.,	2012;	Douillard	et	

al.,	2013;	Tejpar	et	al.,	2016).	In	spite	of	this	stratification,	many	pts	do	not	benefit,	indicating	

additional	resistance	mechanisms.	BRAF	V600E	(Loupakis	et	al.,	2009),	MAP2K1	(encodes	for	MEK1)	

(Bertotti	et	al.,	2015)	or	PIK3CA	(Sartore-Bianchi	et	al.,	2009)	mutations,	amplifications	(amp)	of	

KRAS	(Valtorta	et	al.,	2013)	and	of	the	receptor	tyrosine	kinases	(RTKs)	genes	ERBB2,	MET	and	FGFR1	

(Bertotti	et	al.,	2015)	have	been	suggested	as	further	drivers	of	primary	resistance	but	are	not	

recommended	for	routine	use	due	to	insufficient	validation	in	clinical	trials.	Moreover,	a	recent	

transcriptomic	classification	of	CRCs	into	distinct	subtypes	found	an	association	of	the	transit	

amplifying	(TA)-subtype	with	cetuximab	(CET)	sensitivity	(Sadanandam	et	al.,	2013),	suggesting	that	

non-genetic	molecular	characteristics	also	influence	anti-EGFR-Ab	sensitivity.	

Anti-EGFR-Ab	acquired	resistance	(AR)	almost	invariably	occurs	in	pts	who	initially	benefit	

and	this	has	predominantly	been	studied	retrospectively	in	circulating	tumor	DNA	(ctDNA)	

(Bettegowda	et	al.,	2014;	Diaz	et	al.,	2012;	Misale	et	al.,	2012).	KRAS	and	NRAS	(herein	RAS)	

mutations,	as	well	as	EGFR-exodomain	mutations	that	alter	the	binding	epitope	for	the	anti-EGFR-Ab	

CET	have	been	found	in	ctDNA	from	a	large	proportion	of	pts	with	AR.	Amp	of	MET	or	KRAS	evolved	

in	some	pts	(Bardelli	et	al.,	2013;	Mohan	et	al.,	2014;	Siravegna	et	al.,	2015).	The	high	prevalence	of	

RAS	mutations	supports	the	notion	that	mechanisms	of	primary	and	acquired	resistance	are	often	

similar.	A	small	number	of	studies	assessed	anti-EGFR-Ab	AR	in	tumor	biopsies	(Misale	et	al.,	2012;	

Van	Emburgh	et	al.,	2016).	These	also	identified	RAS	and	EGFR	mutations	but	their	retrospective	

nature	and	the	analysis	of	only	a	small	number	of	candidate	genes	may	have	biased	the	results.	
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Ligands	for	the	RTKs	EGFR	and	MET	(Hobor	et	al.,	2014;	Liska	et	al.,	2011)	confer	anti-EGFR-Ab	

resistance	in	vitro	but	their	clinical	relevance	remains	unknown.	Detailed	insights	into	resistance	

mechanisms	may	enable	more	precise	therapy	allocation	to	pts	who	are	likely	to	respond	and	open	

therapeutic	opportunities	for	CET-resistant	CRCs.	

RESULTS	

40/45	pts	treated	with	single	agent	CET	could	be	assessed	for	treatment	response	and	had	

sufficient	biopsy	material	available	for	molecular	analyses.	Sequencing	of	baseline	(BL)	biopsies	

failed	in	5	cases,	leaving	35	for	study	(Figure	1A;	Table	S1	and	Table	S2).	The	median	progression	free	

survival	(PFS)	and	overall	survival	of	this	cohort	were	2.6	and	8.5	months,	respectively	(Figure	1B).	20	

pts	showed	primary	progression	at	or	before	the	first	per-protocol	CT	scan	(scheduled	at	week	12).	

The	remaining	15	were	classified	as	pts	with	prolonged	clinical	benefit	(Figure	1C).	As	expected	for	

CRC,	TP53	and	APC	mutations	were	common	and	one	tumor	showed	mismatch	repair	(MMR)	

deficiency	(Figure	2A).	The	mutation	burden	did	not	significantly	differ	between	tumors	with	

prolonged	benefit	(median=134)	and	primary	progressors	(median=120,	Figure	2B).	Progressive	

disease	(PD)	biopsies	were	taken	after	radiological	progression	(median	14	days	after	CET	cessation)	

from	25/35	cases	and	24	were	successfully	exome	sequenced.	Sufficient	RNA	for	RNA-seq	was	

obtained	from	25	BL	and	15	matched	PD	biopsies.	

Genetic	drivers	of	primary	resistance	

We	first	aimed	to	identify	resistance	drivers	in	BL	biopsies	from	20	primary	progressors	

(Figure	2C).	Oncogenic	BRAF	V600E	mutations	were	present	in	6	pts,	one	in	combination	with	IGF1R	

amp	(C1035BL,	Data	S1).	No	radiological	response	occurred	in	any	of	these	and	PFS	was	short,	

supporting	prior	data	that	BRAF	V600E	confers	resistance	to	CET	(Pietrantonio	et	al.,	2015).	C1011BL	

harbored	a	non-canonical	BRAF	D594F	mutation,	disrupting	the	DFG	motif	of	the	kinase	site.	This	is	

predicted	to	lead	to	a	kinase-impaired	BRAF	variant	(Moretti	et	al.,	2009),	which	has	been	shown	to	
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paradoxically	hyperactivate	downstream	ERK	phosphorylation	(pERK)	when	combined	with	

oncogenic	RAS	alterations	(Heidorn	et	al.,	2010).	C1011BL	indeed	harbored	a	concomitant	KRAS	L19F	

mutation,	which	has	an	attenuated	phenotype	compared	to	canonical	KRAS	mutations	(Smith	et	al.,	

2010).	Stable	expression	of	BRAF	D594F	or	KRAS	L19F	in	the	CET	sensitive	DiFi	CRC	cell	line	

confirmed	that	each	was	individually	able	to	maintain	a	moderate	level	of	pERK	despite	CET	

treatment	(Figure	3A),	supporting	a	mechanistic	role	in	resistance.	It	is	conceivable	that	together	

both	mutations	further	increase	pERK	signalling	leading	to	fitness	advantages	that	may	explain	co-

occurrence	in	C1011BL.	Another	KRAS	mutation	(A18D),	which	confers	an	attenuated	phenotype	in	

vitro	(Scholl	et	al.,	2009),	was	encoded	on	all	7	copies	of	the	polysomic	chr12p	in	C1033BL	(Data	S2),	

likely	explaining	resistance	in	this	case.	Introduction	of	KRAS	A18D	into	DiFi	cells	promoted	strong	

pERK	during	CET	exposure	(Figure	3A),	providing	biochemical	support	for	its	role	in	resistance.	A	

KRAS	G12D	mutation	was	identified	in	C1032BL,	which	had	been	found	to	be	KRAS	WT	prior	to	study	

entry,	indicating	either	a	false	negative	result	of	the	clinical	assay	or	intratumor	heterogeneity.	A	

KRAS	amp	was	present	in	C1028BL	and	an	ERBB2	amp	in	C1022BL	(Data	S1).	C1019BL	harbored	a	

canonical	activating	MAP2K1	mutation	(K57N)	and	a	concomitant	MAP2K1	mutation	(S228A)	that	

did	not	influence	kinase	activity	in	a	previous	study	(Pages	et	al.,	1994).	Two	tumors	carried	

disrupting	mutations	in	NF1	(C1021BL:	frameshift,	C1045BL:	nonsense).	Both	showed	loss	of	

heterozygosity	of	the	NF1	locus	(Data	S2),	constituting	biallelic	inactivation	of	this	tumor	suppressor	

gene.	NF1	encodes	for	a	negative	regulator	of	KRAS	and	inactivation	leads	to	EGFR	inhibitor	

resistance	in	lung	cancer	(de	Bruin	et	al.,	2014).	siRNA	and	CRISPR/Cas9	inactivation	of	NF1	in	CET	

sensitive	LIM1215	cells	rescued	a	moderate	level	of	pERK	during	CET	treatment	(Figure	3B-D).	

CRISPR/Cas9	engineered	NF1	deficiency	furthermore	maintained	cancer	cell	growth	despite	CET	

treatment	(Figure	3E).	These	data	suggest	NF1	inactivation	as	a	driver	of	primary	CET	resistance	in	

CRC.	ERBB3	was	mutated	(P590L)	in	C1017BL	but	this	codon	change	had	no	impact	on	in	vitro	

growth	in	a	previous	study	(Liang	et	al.,	2012),	questioning	whether	it	confers	CET	resistance.	
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In	contrast	to	prior	studies	(Bertotti	et	al.,	2015;	Sartore-Bianchi	et	al.,	2009),	neither	PIK3CA	

nor	FGFR1	aberrations	clearly	associated	with	resistance	(Figure	2C):	4/20	pts	(20%)	with	primary	

progression	harbored	activating	PIK3CA	mutations	(2xE545K,	G364R,	and	H1047R	concomitant	with	

PIK3CA	amp;	Data	S2)	but	also	3/15	pts	(20%)	with	prolonged	benefit	(2xV344G,	H1047R).	A	tumor	

with	a	high	level	FGFR1	amp	(C1037BL)	and	one	with	an	FGFR1	R209H	mutation	(C1007BL),	

previously	reported	in	Kallmann	syndrome	(Laitinen	et	al.,	2011),	had	partial	responses	and	

prolonged	benefit.	An	EGFR	amp	was	found	in	one	tumor	(C1030BL)	and	this	associated	with	

prolonged	benefit	as	described	(Bertotti	et	al.,	2015).	

Together,	oncogenic	aberrations	of	RAS/RAF	pathway	genes	or	RTKs	that	could	explain	

resistance	were	identified	in	14/20	pts	(70%)	with	primary	progression.	

Validation	of	transcriptomic	subtypes	as	non-genetic	predictors	of	CET	benefit	

BL	biopsies	for	which	RNA-seq	could	be	performed	(n=25)	were	next	assigned	to	

transcriptomic	CRC	subtypes	using	the	CRCassigner	(Sadanandam	et	al.,	2013)	and	the	Consensus	

Molecular	Subtype	(CMS)		classifications	(Guinney	et	al.,	2015)	(Figure	S1A).	There	are	strong	

similarities	between	subtypes	of	both	classifications	and	21/25	cases	(84%)	were	assigned	to	

matching	subtypes,	confirming	robust	performance	(Figure	4A).	The	TA	subtype	has	previously	been	

associated	with	CET	sensitivity	(Sadanandam	et	al.,	2013)	and	was	3.4-fold	enriched	(p=0.017)	

among	cases	with	prolonged	benefit.	The	TA	subtype	is	most	similar	to	the	CMS2	subtype,	and	was	

2.9-fold	enriched	(p=0.015)	among	pts	with	prolonged	CET	benefit.	This	validates	the	TA/CMS2	

subtypes	as	non-genetic	predictors	of	single-agent	CET	benefit.	As	described	(Khambata-Ford	et	al.,	

2007),	tumors	with	CET	benefit	also	expressed	higher	levels	of	the	EGFR	ligands	AREG	and	EREG	

(Figure	S1B).	

Pts	with	right-sided	colon	cancers	do	not	benefit	from	first-line	combination	therapy	with	

CET	and	chemotherapy	even	if	they	are	RAS/RAF	WT,	but	whether	right-sided	tumors	benefit	from	



7	
	

CET	beyond	first-line	remains	a	matter	of	debate	(Weinberg,	2018).	3	pts	with	right-sided	tumors	

showed	prolonged	benefit	from	single	agent	CET	in	this	trial	(Figure	4B).	CMS	subtype	information	

was	available	for	2	of	these	and	both	displayed	the	CET	sensitive	CMS2.	CMS	subtype	may	be	more	

relevant	than	sidedness	for	response	prediction	to	single	agent	CET	beyond	the	first-line	setting.	

Genetic	drivers	of	AR	

PD	biopsies	from	14	metastases	(mets)	that	radiologically	progressed	after	prolonged	clinical	

benefit	were	successfully	exome	sequenced	(Figure	5A),	including	biopsies	from	2	different	

progressing	mets	in	C1027.	We	first	investigated	genes	with	a	known	role	in	CET	resistance.	Only	one	

KRAS	mutation	was	acquired	among	these	PD	biopsies	(C1005PD:	G12C).	This	clonally	dominant	

mutation	(Data	S2)	was	accompanied	by	an	EGFR	mutation	(G322S),	which	has	not	previously	been	

described	and	whose	relevance	is	uncertain	in	the	context	of	a	well-characterized	CET	resistance	

mutation	in	KRAS.	One	biopsy	acquired	a	KRAS	amp	(C1037PD).	C1024PD	acquired	a	clonally	

dominant	EGFR	mutation	that	has	not	previously	been	described	(D278N),	locating	to	the	EGFR	

extracellular	domain	II	(Schmiedel	et	al.,	2008)	but	not	affecting	CET	binding	epitopes.	Expression	of	

EGFR	D278N	in	the	LIM1215	cells	did	not	confer	CET	resistance	and	introduction	into	3T3	fibroblasts	

showed	no	evidence	of	constitutive	EGFR	phosphorylation	(Figure	S2A,	S2B),	suggesting	that	this	is	a	

passenger	mutation.	No	other	RAS,	EGFR,	BRAF	or	ERK	mutations	or	amps	were	detected	in	PD	

biopsies.	

Two	further	RTK	genes	acquired	mutations	at	PD:	FGFR3	in	C1030PD	(P418L)	(Figure	5A)	and	

ALK	in	C1024PD	(D626H)	(Table	S2).	Neither	is	located	to	the	well-defined	mutational	hotspots	in	

these	genes	or	has	been	reported	in	the	COSMIC	cancer	mutation	database	(Forbes	et	al.,	2010),	

indicating	that	these	may	be	passenger	mutations.	Computational	prediction	showed	a	high	driver	

score	for	FGFR3	P418L	(Tamborero	et	al.,	2018)	but	functional	analysis	showed	no	rescue	of	pERK	

during	CET	treatment	(Figure	S2C).		C1024PD	acquired	an	FGFR1	amp	(Data	S1).	However,	the	

presence	of	an	FGFR1	amp	in	C1037BL,	who	subsequently	responded	to	CET	(Figure	2C),	questions	
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whether	this	is	sufficient	to	establish	resistance.	C1027PD1	acquired	a	narrow	amp	(1.58	Mbp,	60	

DNA	copies)	encompassing	FGF10	(Figure	S2D).	FGF10	encodes	a	ligand	of	the	FGFR2	RTK	which	is	

expressed	in	most	CRCs	(Otte	et	al.,	2000).	Recombinant	FGF10	rescued	growth	and	pERK	in	CRC	cell	

lines	treated	with	CET,	supporting	the	notion	that	the	acquired	FGF10	amp	drives	resistance	in	

C1027PD1	(Figure	S2E).	FGF10-induced	resistance	could	be	reversed	by	treatment	with	a	pan-FGFR-

inhibitor	(FGFRi)	(Figure	S2F,	S2G).	Different	contributions	of	FGFR1	and	FGFR2	to	CET	resistance	

may	result	from	differences	in	downstream	signalling	events	(Pearson	et	al.,	2016).	

We	also	investigated	genes	that	recurrently	acquired	mutations	in	PD	biopsies	to	identify	

potential	drivers	of	AR	beyond	the	RAS/RAF	pathway.	Five	genes	had	each	acquired	mutations	in	2	

PD	biopsies	(Table	1).	All	genes	were	large	and	we	found	no	evidence	of	biallelic	inactivation,	which	

would	be	expected	for	tumor	suppressor	genes,	nor	for	recurrence	of	mutations	in	specific	

functional	domains	or	amino	acid	positions,	which	would	indicate	gain	of	function	mutations	either	

in	our	samples	or	in	the	COSMIC	mutation	database.	Thus,	none	of	these	genes	were	considered	

likely	to	confer	CET	resistance	(Table	S3).	

Genetic	drivers	of	AR	are	undetectable	in	most	PD	biopsies	despite	ultra-deep	sequencing	

CET	AR	is	often	polyclonal	(Bettegowda	et	al.,	2014)	and	sequencing	of	PD	biopsies	with	a	

mean	depth	of	158x	may	have	failed	to	detect	resistance	mutations	in	small	subclones.	We	hence	re-

sequenced	known	CET	driver	hotspots	in	KRAS,	NRAS,	BRAF,	MEK1	and	EGFR	by	deep	(2179x)	

amplicon	sequencing	in	order	to	call	mutations	with	variant	allele	frequencies	(VAFs)	as	low	as	0.5%	

(Figure	5B,	Table	S4).	This	revealed	a	KRAS	Q61H	mutation	in	C1025PD	(VAF:	4.9%)	and	an	EGFR	

exodomain	S492R	mutation	in	C1027PD1	(VAF:	2.1%).	Both	are	known	to	confer	CET	AR	and	were	

subclonal	in	these	PD	samples	(Data	S2).	

Taken	together,	we	identified	known	and	not	previously	described	CET	resistance	drivers	in	

4	PD	biopsies.	One	case	acquired	an	FGFR3	mutation	with	unlikely	relevance	and	one	an	FGFR1	amp	
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with	unclear	relevance	for	resistance.	Importantly,	no	drivers	of	AR	were	found	in	9/14	(64%)	

biopsied	mets	despite	each	radiologically	progressing	(Figure	S3).	

Genetic	drivers	of	AR	in	ctDNA	

The	low	prevalence	of	CET	resistance	drivers	in	PD	biopsies	was	striking	as	it	contrasts	with	

results	of	ctDNA	analyses	of	this	trial	and	others	that	reported	the	evolution	of	RAS	and	EGFR	

aberrations	in	the	majority	of	pts	at	the	time	of	CET	AR	(Bettegowda	et	al.,	2014;	Khan	et	al.,	2018).	

To	assess	the	prevalence	and	clonality	of	resistance	drivers	in	ctDNA,	we	applied	a	ctDNA-

sequencing	assay	targeting	CET	resistance	and	CRC	driver	genes	(Table	S5),	which	simultaneously	

infers	genome-wide	copy	number	profiles	(Mansukhani	et	al.,	2018).	This	enabled	us	to	correct	VAFs	

for	the	influence	of	copy	number	states	and	to	then	quantify	the	proportion	of	the	cancer	cells	that	

harbored	resistance	drivers	by	comparison	against	TP53	mutations	which	are	usually	truncal	in	CRC	

(Brannon	et	al.,	2014).	Available	ctDNA	from	9	pts	that	progressed	after	prolonged	CET	benefit	(5	

BL/PD	pairs,	4	PD	only)	was	deep	sequenced	(1048x).	Known	CET	resistance	mutations	in	RAS,	BRAF	

or	EGFR	were	identified	in	7/9	cases	(78%)		at	PD	(Figure	5C,	Table	S5).	A	kinase-impairing	BRAF	

mutation	(D594N)	was	detected	in	6.8%	of	the	cancer	cell	fraction	in	ctDNA	at	BL	and	this	increased	

to	37.4%	at	PD	in	C1030	(Table	S5).	BRAF	D594N	rescued	pERK	in	DiFi	cells	during	CET	treatment	

(Figure	3A).	Together	with	the	identification	of	a	kinase-impairing	BRAF	mutation	in	a	primary	

resistant	tumor	(C1011BL),	this	substantiates	a	role	of	BRAF	D594	mutations	in	CET	resistance.	DNA	

copy	number	profiles	generated	from	ctDNA	at	PD	furthermore	identified	amps	of	MET	and	KRAS	in	

3	and	2	cases,	respectively	(Figure	5C	and	Data	S3).	The	FGF10	amp	found	in	the	C1027PD1	biopsy	

was	also	identified	at	PD.	Overall,	ctDNA-seq	revealed	genetic	drivers	of	AR	in	8/9	pts	(89%)	and	

frequent	polyclonal	resistance,	similar	to	published	ctDNA	results	(Bettegowda	et	al.,	2014).	We	next	

used	TP53	mutations,	detected	in	all	ctDNA	samples,	to	estimate	the	fraction	of	the	cancer	cell	

population	represented	in	the	ctDNA	that	harbored	AR	mutations	at	PD	(Table	S5).	All	detected	AR	

driver	mutations	taken	together	in	each	tumor	were	confined	to	a	median	21%	of	the	cancer	cells	in	
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the	population	(Figure	5D).	The	fraction	of	cancer	cells	that	harbor	an	amp	cannot	be	estimated	

from	ctDNA	data	as	the	absolute	number	of	DNA	copies	in	such	subclones	are	unknown.	Thus,	only	

considering	the	5	cases	without	concurrent	AR	amps	in	ctDNA,	we	still	found	a	resistance	gap	with	

no	detectable	resistance	mechanism	in	49-100%	of	cancer	cells	sampled	by	ctDNA	(Figure	5D).	

Although	ctDNA	and	amplicon	deep-sequencing	may	not	identify	very	small	subclones	with	genetic	

resistance	drivers	due	to	sensitivity	limits,	we	hypothesized	based	on	the	ctDNA	results	and	the	

inability	to	define	genetic	AR	drivers	in	64%	of	biopsies	from	radiologically	progressing	mets,	that	

non-genetic	resistance	mechanisms	may	exist.	

Transcriptomic	characteristics	and	their	association	with	AR	

Based	on	the	observation	that	mechanisms	of	AR	are	often	similar	to	those	conferring	

primary	resistance,	we	investigated	whether	transcriptomic	subtypes	have	a	role	in	AR.	We	first	

analysed	PD	biopsies	from	tumors	with	prolonged	benefit	in	which	no	genetic	aberrations	of	CET	

resistance	genes	had	been	found.	Strikingly,	5/7	cases	(71%)	showed	a	switch	from	the	CET	sensitive	

CMS2	subtype	to	the	CMS4	subtype	(CMS2>4)	and	4/7	(57%)	showed	a	TA	to	Stem-Like	(SL)	subtype	

switch	(TA>SL;	Figure	6A,	Figure	S1A).	No	CMS2/TA>CMS4/SL	switches	occurred	in	6	pts	with	primary	

PD.		CMS2>4	switching	in	the	majority	of	PD	biopsies	without	identifiable	genetic	resistance	

mechanisms	suggested	that	this	contributes	to	AR.	

	Transforming	growth	factor	beta	(TGFβ)	expression	is	a	defining	characteristic	of	the	

CMS4/SL	subtypes.	TGFβ1	and	TGFβ2	RNA	expression	significantly	increased	(3.1-	and	2.9-fold	

increase	in	the	means)	following		a	CMS2>4	switch	(Figure	6B).	TGFβ3	mean	expression	increased	

7.2-fold	at	PD	but	this	did	not	reach	significance.	A	high	level	of	TGFβ	activity	in	these	samples	was	

confirmed	by	the	upregulation	of	a	transcriptomic	TGFβ signature	and	of	an	epithelial	to	

mesenchymal	transition	(EMT)	signature	which	can	be	induced	by	TGFβ (Figure	6C).	
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CMS4	CRCs	are	enriched	with	cancer-associated	fibroblasts	(CAFs),	which	are	a	major	source	

of	TGFβ	and	of	mitogenic	growth	factors	(GF)	(Becht	et	al.,	2016a).	Applying	the	MCP-counter	

algorithm	(Becht	et	al.,	2016b)	to	RNA-seq	data	bioinformatically	confirmed	a	significant	increase	in	

CAF	abundance	in	PD	biopsies	that	had	undergone	a	CMS2>4	switch	(Figure	6D).	Correspondingly,	

CMS2>4	subtype	switches	increased	the	expression	of	several	GF	(Figure	6B),	including	FGF1	and	

FGF2	(2.3-	and	3.1-fold	increase	in	the	means,	respectively),	which	activate	multiple	FGFRs	and	of	

the	MET	ligand	HGF	which	increased	8.3-fold,	although	the	latter	was	not	significant.	In	contrast,	the	

mean	expression	of	the	EGFR	ligands	AREG	and	EREG	decreased	2.4-	and	2.3-fold	after	subtype	

switching	but	this	was	not	significant.	

Conditioned	media	(CM)	from	CAFs	can	confer	CET	resistance	in	CRC	stem-like	cells	(Luraghi	

et	al.,	2014).	We	questioned	whether	CAFs	also	promote	resistance	in	well-described	CET-sensitive	

CRC	cell	lines.	Treatment	with	CM	from	immortalized	CRC	CAFs	indeed	rescued	growth	and	

maintained	pERK	in	DiFi	and	LIM1215	cells	during	CET	treatment	(Figure	6E	and	6F).	RNA-seq	

showed	that	CAFs	expressed	FGF1,	FGF2,	HGF,	TGFβ1	and	-2	and	low	levels	of	TGFβ3	and	that	the	

corresponding	receptors	were	expressed	in	DiFi	and	LIM1215	cells	(Figure	6G).	Treatment	of	these	

cell	lines	with	recombinant	FGF1,	FGF2	or	HGF	maintained	growth	and	pERK	during	CET	exposure	

(Figure	6H	and	6I)	whereas	TGFβ1-3	had	no	consistent	impact.	We	next	assessed	whether	inhibitors	

of	the	corresponding	GF	receptors	in	combination	with	CET	can	reverse	the	resistance	induced	by	

CAF	CM	(Figure	6J	and	6K).	Combination	of	CET	with	FGFRi	had	minimal	impact	on	pERK	and	cancer	

cell	growth	whereas	combination	with	a	MET	inhibitor	(METi)	showed	a	clear	reduction	of	both.	

However,	only	the	triple	combination	of	CET	with	FGFRi	and	METi	effectively	repressed	pERK	and	

achieved	the	largest	decrease	in	cancer	cell	growth	during	CAF	CM	treatment.	Thus,	FGF	and	HGF	

both	contribute	to	CAF-mediated	CET	resistance.	

Although	these	results	support	CMS2>4	switches	and	the	associated	increase	in	CAFs	and	

mitogenic	GF	as	a	mechanism	of	CET	AR,	BL	biopsies	from	2	pts	that	subsequently	achieved	



12	
	

prolonged	benefit	from	CET	also	displayed	the	CMS4	subtype.	Thus,	CMS4	identity	does	not	

invariably	confer	resistance.	RNA-seq	data	from	BL	and	PD	biopsies	was	available	from	one	of	these	

cases	(C1020)	and	showed	that	TGFβ2	(4.4-fold),	TGFβ3	(4.2-fold),	HGF	(2.7-fold)	and	FGF2	(1.6-fold)	

all	increased	from	BL	to	PD	(Table	S6).	This	suggests	a	model	where	a	gradual	increase	in	GF	

expression	in	a	process	associated	with	CAF	infiltration	and	the	acquisition	of	the	CMS4	subtype	

promotes	resistance.		

This	can	evolve	concurrently	with	genetic	resistance	in	distinct	subclones	within	the	same	pt,	

as	demonstrated	for	cases	that	acquired	CMS4	in	a	biopsy	while	ctDNA	showed	the	evolution	of	

genetic	resistance	drivers,	including	RAS/RAF	mutations,	in	subclones	(C1027,	C1041,	C1044).	As	

anticipated,	the	triple	combination	of	CET,	METi	and	FGFRi	could	not	suppress	the	growth	of	RAS	or	

BRAF-mutant	cell	lines	(Figure	S4).	The	parallel	evolution	of	molecularly	diverse	resistance	

mechanisms	within	pts,	including	currently	undruggable	RAS	mutations,	hinders	the	development	of	

signalling	pathway-targeting	strategies	to	prevent	or	reverse	resistance.	The	identification	of	new	

therapeutics	that	apply	distinct	selection	pressures	is	hence	a	major	need.	

Cetuximab	impacts	the	cancer	immune	landscape	

CET	triggered	immunogenic	cell	death	and	increased	CRC	immunogenicity	in	murine	models	

(Pozzi	et	al.,	2016).	Yet,	whether	CET	promotes	CRC	immune	responses	in	pts	is	unclear.	We	

investigated	this	to	explore	potential	opportunities	to	target	CET	resistant	CRCs	with	

immunotherapy.	

We	first	applied	the	cytolytic	activity	(CYT)	signature	(Rooney	et	al.,	2015),	which	estimates	

the	abundance	of	cytotoxic	immune	cells	from	RNA-seq	data	(Figure	7A).	The	CYT	did	not	differ	

between	BL	biopsies	from	tumors	with	prolonged	benefit	vs.	those	with	primary	progression	(Figure	

7A).	However,	the	mean	CYT	increased	5.9-fold	from	BL	to	PD	in	CRCs	with	prolonged	benefit	but	not	

in	those	with	primary	progression,	demonstrating	that	effective	CET	treatment	increased	cytotoxic	
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immune	infiltrates.	CYT	remained	low	in	2	tumors	with	prolonged	benefit	that	showed	no	

radiological	shrinkage	(C1018,	C1030),	suggesting	that	cancer	cell	death	induction	is	required	to	

stimulate	cytotoxic	infiltrates.	The	largest	CYT	increases	occurred	in	cases	that	switched	from	the	

CMS2	to	the	CMS4	subtype,	which	is	associated	with	an	inflamed	phenotype	(Guinney	et	al.,	2015).	

However,	the	median	CYT	in	PD	biopsies	of	the	5	cases	that	switched	to	the	CMS4	subtype	was	still	

3-fold	higher	than	in	the	5	BL	biopsies	classed	as	CMS4	prior	to	CET	exposure.	Hence,	increased	CYT	

after	CET	therapy	cannot	be	attributed	to	transcriptomic	subtype	changes	alone.	

Next,	we	bioinformatically	inferred	the	abundance	of	28	immune	cell	types	from	RNA-seq	

data	(Charoentong	et	al.,	2017).	A	significant	increase	of	T	cells	that	promote	and	execute	adaptive	

immune	responses,	including	all	assessed	CD8+	T	cell	subtypes,	effector-memory	CD4+	and	Th1	cells,	

was	observed	in	PD	biopsies	taken	after	CET	responses	(Figure	7B).	Some	immune	cell	types	that	can	

dampen	effective	cancer	immune	responses,	including	regulatory	T	cells	(Treg)	and	myeloid-derived	

suppressor	cells	(MDSCs),	also	significantly	increased.	In	contrast,	immune	cell	infiltrates	did	not	

change	in	primary	progressors.	The	presence	of	BATF3+	dendritic	cells	(DCs),	which	cross-present	

antigens	from	dying	cancer	cells	to	CD8+	T	cells,	is	critical	for	immunotherapy	efficacy	in	melanoma	

(Spranger	et	al.,	2015).	Applying	a	BATF3+	DC	score	(Spranger	et	al.,	2017)	showed	a	1.7-fold	increase	

(p=0.035)	at	PD	in	tumors	that	had	responded	to	CET	but	no	change	in	primary	progressors	(p=0.68,	

Figure	7C).	Thus,	several	critical	cell	types	for	effective	recognition	of	tumors	by	the	adaptive	

immune	system	are	enriched	in	tumors	that	responded	to	CET.	

To	ascertain	changes	in	immune	infiltrates,	we	stained	CD8+	and	CD4+	T	cells,	and	Tregs	

(FOXP3+CD4+)	in	paired	BL	and	PD	formalin-fixed	paraffin-embedded	(FFPE)	biopsies	available	from	5	

pts	with	prolonged	benefit	and	from	5	primary	progressors	(Figure	7D).	CD8+	T	cell	densities	

increased	significantly	at	PD	compared	to	BL	(2.0-fold	change	in	means,	p=0.047)	in	pts	who	

responded	to	CET.	CD4+	and	Treg	numbers	increased	but	this	was	not	significant	(1.9-fold,	p=0.057	

and	2.2	fold,	p=0.063),	possibly	because	of	the	small	number	of	cases	in	this	analysis.	Thus,	CET	
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treatment	promotes	T	cell	infiltration	of	CRCs	that	respond	and	these	are	present	at	the	time	of	

progression.	

We	furthermore	assessed	the	number	and	diversity	of	rearranged	T	cell	receptor	beta	chains	

(TCRβ)	in	RNA-seq	data.	A	significant	increase	in	the	total	number	of	TCRβ	sequences	and	of	distinct	

TCRβ	clonotypes	was	apparent	in	PD	samples	of	CET	responders	(Figure	7E),	further	validating	the	

enrichment	of	T	cells.	The	frequency	of	TCRβ	clonotypes	could	only	be	assessed	in	3	PD	biopsies	

from	CET	responders	as	all	other	samples	had	insufficient	total	numbers	of	TCRβ	sequences	(<100).	

Although	this	needs	to	be	interpreted	with	caution	because	of	the	small	number	of	biopsies	and	

TCRβ	reads,	the	frequencies	of	the	most	abundant	clonotype	were	between	8-10%,	which	may	

indicate	that	an	oligoclonal	T	cell	expansion	occurred.	B	cell	receptor	chains	showed	a	numerical	

increase	at	PD	in	CET	responders	but	this	was	not	significant	(Figure	S5A).	

Taken	together,	our	results	show	an	increase	in	Th1	and	CD8+	T	cell	infiltrates	and	CYT	

despite	the	high	TGFβ	levels	in	tumors	that	had	undergone	a	CMS2>4	switch.	This	appears	to	

contradict	observations	that	show	an	important	role	of	TGFβ	in	preventing	T	cell	activation	and	

differentiation	in	CRCs	(Tauriello	et	al.,	2018),	and	T	cell	migration	into	other	tumor	types	

(Mariathasan	et	al.,	2018).	To	elucidate	this	further,	we	applied	an	approach	similar	to	the	CRC	

Immunoscore	(Angelova	et	al.,	2018)	that	assesses	T	cell	infiltrates	separately	at	the	margin	and	in	

the	tumor	center.	The	tumor	center	could	be	identified	in	all	paired	biopsies	from	Figure	7D	and	

margins	were	present	in	3	paired	biopsies	from	responders	and	in	1	from	a	primary	progressor.	CD8+	

T	cell	infiltrates	had	specifically	increased	in	the	tumor	center	whereas	their	density	at	the	margin	

remained	largely	unchanged	(Figure	7F,G).		CD4+	T	cells	and	Treg	also	predominantly	increased	in	the	

tumor	center,	but	this	was	not	significant	(Figure	S5B).	Comparison	of	immune	cell	infiltrates	

furthermore	showed	that	activated	CD8+,	effector	memory	T	cells	and	Th1	cells	most	strongly	

increase	and	that	Th2	subtype	T	cells	are	among	the	most	strongly	decreased	in	biopsies	that	

switched	from	CMS2	to	CMS4	compared	to	those	showing	the	TGFβ-rich	CMS4	subtype	at	BL	(Figure	
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7H).	Together,	this	suggests	that	the	immune	inhibitory	effects	of	a	TGFβ-rich	environment	may	be	

less	impactful	following	CET	treatment	than	in	untreated	tumors	(Tauriello	et	al.,	2018).	Importantly,	

tumor	mutation	load	and	neoantigen	burden	did	not	significantly	differ	between	BL	and	PD	biopsies,	

suggesting	that	the	increase	in	T	cell	infiltrates	was	not	the	result	of	an	increased	antigenicity	

following	CET	exposure	(Figure	7I).	

	 We	furthermore	applied	a	signature	of	T	cell	associated	inflammation	that	is	predictive	for	

immune	checkpoint	inhibitor	benefit	in	several	cancer	types	(Ayers	et	al.,	2017).	This	significantly	

increased	from	BL	to	PD	in	responders	but	not	in	primary	progressors	(Figure	7J).	Effective	CET	

therapy	hence	not	only	augments	immune	infiltrates	including	cytotoxic	T	cells,	but	also	T	cell	

associated	inflammation	which	may	indicate	enhanced	T	cell	recognition	of	cancer	cells.	We	finally	

questioned	whether	changes	in	immune	infiltrates	were	accompanied	by	altered	expression	of	

immune	checkpoints	or	chemokine	receptors	that	can	be	targeted	by	current	immunotherapy	

agents.	The	immune	checkpoint	proteins	LAG3,	PD-L1,	TIM3	and	GITR	and	the	chemokine	receptor	

CXCR2,	which	promotes	myeloid	cell	infiltration,	were	significantly	upregulated	(Figure	7K).	The	up-

regulation	of	immune-checkpoints	may	restrain	T	cell	infiltrates	and	could	provide	opportunities	to	

develop	novel	therapeutic	strategies	following	CET	failure.	
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DISCUSSION	

This	prospective	trial	revealed	associations	of	biallelic	NF1	loss	and	of	non-canonical	

RAS/RAF	aberrations	with	primary	resistance	to	single	agent	CET.	While	KRAS	A18D	and	L19F,	and	

BRAF	mutations	other	than	V600E	were	rare	in	large	CRC	cohorts	(each	<1%)	(Giannakis	et	al.,	2016;	

TCGA,	2012),	NF1	mutations	have	been	reported	in	~5%	of	cases	and	successful	validation	as	a	

predictive	marker	in	randomized	trials	could	spare	these	pts	ineffective	treatment.	Our	results	are	

supported	by	a	study	describing	an	association	of	NF1	mutations	with	poor	PFS	with	CET	in	

combination	with	chemotherapy	(Mei	et	al.,	2018),	although	3/4	were	missense	mutations	with	

unknown	effects	on	NF1	function	and	there	was	no	testing	for	loss	of	heterozygosity.	

In	contrast	to	previous	reports	(Bertotti	et	al.,	2015;	De	Roock	et	al.,	2010),	neither	PIK3CA	

mutations	nor	FGFR1	aberrations	clearly	associated	with	primary	resistance.	PIK3CA	exon	20	

mutations	have	been	particularly	described	to	confer	resistance	to	anti-EGFR-Ab	in	combination	with	

chemotherapy,	however	we	found	the	exon	20	mutation	H1047R	in	a	responder	but	also	in	

combination	with	a	PIK3CA	amp	in	a	primary	progressor.	Concomitant	copy	number	aberrations	or	

the	use	of	single	agent	CET	may	explain	these	differences.		The	small	sample	size	furthermore	

warrants	cautious	interpretation	of	these	results.	

We	found	a	strikingly	lower	frequency	of	AR	driver	mutations	in	RAS	and	EGFR	in	PD	biopsies	

than	anticipated	based	on	the	pervasive	detection	of	these	drivers	in	ctDNA	from	CET	treated	pts	

(Bettegowda	et	al.,	2014).	The	absence	of	CET	resistance	driver	gene	aberrations	in	64%	of	PD	

biopsies	was	corroborated	by	ctDNA	analysis	which	did	not	detect	AR	drivers	in	49-100%	of	the	

sampled	cancer	cell	population.	This	challenges	the	current	paradigm	that	CET	AR	is	almost	

exclusively	mediated	by	genetic	mechanisms.	The	majority	of	PD	biopsies	without	identifiable	

genetic	resistance	drivers	no	longer	displayed	the	CET-sensitive	CMS2/TA	subtype	found	before	

treatment	initiation	but	rather	the	CMS4/SL	subtype,	which	is	rich	in	fibroblast	and	in	GF	that	

conferred	CET	resistance	in	vitro.	This	strongly	suggests	that	subtype	switching	and	associated	



17	
	

stromal	remodelling	is	a	mechanism	of	AR	to	single	agent	CET.	This	could	explain	similar	genetic	

results	in	a	series	of	37	PD	biopsies	that	found	no	aberrations	in	RAS,	BRAF	or	EGFR	in	46%	of	

biopsies	with	anti-EGFR-Ab	AR	(Arena	et	al.,	2015)	and	in	a	study	of	22	pts	where	no	genetic	AR	

driver	was	found	in	41%	of	biopsies	and	those	detected	in	the	remaining	biopsies	were	frequently	

subclonal	(Pietrantonio	et	al.,	2017).	

These	data	demonstrate	the	limitations	of	ctDNA	analysis,	which	is	restricted	to	the	

identification	of	genetic	resistance	mechanisms	and	the	importance	of	parallel	tissue	analyses	with	

multi-omics	approaches.	They	furthermore	portray	a	CET	resistance	landscape	resembling	that	of	

EGFR	inhibitors	in	lung	cancer	or	BRAF	inhibitors	in	melanoma	where	non-genetic	resistance	can	

occur.	Lung	cancers	can	upregulate	GF	that	activate	bypass	signalling	pathways	or	EMT	as	non-

genetic	resistance	mechanisms	(Sequist	et	al.,	2011;	Soucheray	et	al.,	2015;	Zhang	et	al.,	2012)	and	

fibroblast-mediated	stromal	remodelling	can	confer	AR	to	BRAF	inhibitors	in	melanoma	(Hirata	et	al.,	

2015).	

We	showed	that	resistance	induced	by	CAF	CM	or	by	FGF10	can	be	reversed	through	drug	

combinations	in	vitro.	However,	combinatorial	drug	treatments	are	challenging	in	pts,	due	to	likely	

toxicities	when	attempting	to	combine	multiple	signalling	pathway	inhibitors	and	because	of	the	

inability	to	effectively	target	RAS	mutant	clones	that	evolved	in	4/9	pts.	However,	strategies	to	delay	

resistance	by	preventing	subtype	switching,	for	example	by	inhibiting	TGFβ,	a	master-regulator	of	

the	CMS4/SL	subtype,	or	by	targeting	CAFs	(Kalluri,	2016)	could	be	assessed.	

Our	analysis	of	the	immune	landscape	in	CRCs	that	responded	to	CET	and	then	progressed	

shows	significantly	increased	cytotoxic	T	cells	but	also	of	immune-suppressive	cells,	such	as	Treg	and	

MDSC.	This	was	accompanied	by	the	upregulation	of	a	signature	that	has	been	predictive	of	

checkpoint	inhibitor	success	in	other	cancer	types,	potentially	indicating	a	role	for	immunotherapy.	

The	significant	upregulation	of	immune-suppressive	checkpoints	such	as	PD-L1	and	LAG3	defines	

testable	strategies.	
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The	paradoxical	increase	in	immune	infiltrates	following	CMS2>4	switches	despite	the	TGFβ-

rich	CMS4	phenotype	may	be	explained	by	the	context-dependent	effects	of	TGFβ	and	by	the	timing	

of	events:	TGFβ	has	been	well	documented	to	prevent	differentiation	of	naïve	CD4+	T	cells	into	Th1	

and	Th2	cells,	and	naïve	CD8+	T	cells	into	cytotoxic	T	cells	(Li	and	Flavell,	2008;	Li	et	al.,	2006).	

However,	our	data	shows	low	TGFβ	expression	in	pre-treatment	biopsies.	It	is	likely	that	

immunogenic	cell	death	fosters	T	cell	activation,	priming	and	infiltration	before	resistance-

associated	stromal	remodelling	and	the	associated	increase	in	TGFβ occur.	The	observed	increase	of	

CYT	in	tumors	that	underwent	a	CMS2>4	switch	suggests	that	T	cells	remain	active	in	the	tumor.	This	

can	be	explained	by	prior	work	demonstrating	that	TGFβ	has	little	effect	on	activated	T	cells	(Cottrez	

and	Groux,	2001;	Kim	et	al.,	2005;	Sung	et	al.,	2003).	Nevertheless,	combining	checkpoint	and	TGFβ	

inhibitors	in	clinical	trials	would	be	a	rational	strategy	to	test	if	inhibitory	effects	of	TGFβ	(Tauriello	et	

al.,	2018)	still	play	a	role.	

Investigating	how	CET	modulates	CRC	immune	landscapes	in	additional	trials	is	desirable	as	

tissue	attrition,	which	is	typical	in	biopsy	studies,	limited	the	number	of	cases	amenable	to	

immunophenotyping	in	this	trial.	Assessing	larger	series	of	CET	treated	CRCs	with	multi-parametric	

immunofluorescence	imaging	could	furthermore	define	the	spatial	distribution	of	various	immune	

cell	subtypes	and	the	relationship	to	cells	producing	immune	inhibitory	cytokines	in	greater	detail.		A	

key	result	of	our	study	is	that	drugs	that	are	in	routine	clinical	use	can	have	a	major	impact	on	cancer	

immune	landscapes.	Mouse	models	such	as	those	described	by	Tauriello	(Tauriello	et	al.,	2018)	offer	

the	opportunity	to	systematically	investigate	such	interactions	further	and	to	delineate	the	role	of	

cytokines	and	cell	subtypes	that	are	currently	difficult	to	target	in	pts,	such	as	Treg	or	MDSCs.	

Exploring	immunotherapies	in	CET	resistant	CRCs	may	circumvent	the	limited	clinical	opportunities	

to	directly	target	the	frequently	polyclonal	and	heterogeneous	CET	resistance	mechanisms.	
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Figure	legends:	

Figure	1.	CONSORT	diagram	and	survival	data.	

(A)	CONSORT	diagram	of	patients	(pts)	included	and	biopsy	samples	analysed.	BL=	baseline,	PD=	

progressive	disease.	

(B)	Kaplan-Meier	survival	analysis	of	35	pts	whose	samples	were	subjected	to	molecular	analysis.	

(C)	Swimmer	plot	of	progression	free	survival	(PFS)	data	and	separation	into	pts	with	prolonged	

benefit	and	with	primary	progression.	

See	also	Table	S1	and	S2.	

Figure	2.	Molecular	profiles	of	BL	biopsies	categorized	into	cases	with	prolonged	cetuximab	

benefit	and	primary	progressors.		

(A)	TP53	and	APC	mutations	and	MSI	status.	

(B)	Non-silent	mutation	load.	The	p	value	was	calculated	using	the	Student’s	t-test.	

(C)	Waterfall	plot	of	best	radiological	response	and	genetic	aberrations	of	RAS/RAF	pathway	

members	or	regulators	and	PIK3CA.	Amp=amp,	Mut=mutation.	PR=partial	response,	PD=progressive	

disease	as	per	RECSIT	criteria.	

See	also	Data	S1	and	S2.	

Figure	3.	Functional	impact	of	RAS/RAF	mutations	and	NF1	inactivation	on	cetuximab	sensitivity.	

(A)	Western	blot	of	BRAF	and	KRAS	mutants	in	DiFi	cells.		Quantification	of	pERK	signal	relative	to	

total	ERK	as	a	loading	control,	and	normalized	to	luciferase	control.	

(B)	Western	blot	following	NF1	(siNF1)	or	control	(siCON)	siRNA	in	LIM1215	cells.	Quantification	of		

pERK	signal	relative	to	total	ERK,	and	normalized	to	untreated	control.	

(C)	Sanger	sequencing	of	LIM1215	cells	transduced	with	two	CRISPR	guide	RNAs	against	NF1.	Guide	
sequences	are	highlighted	by	a	black	bar.	

	(D)	Western	blot	of	CRISPR-inactivated	NF1	and	Cas9	control	cells	with/without	24	h	cetuximab	

treatment.	Quantification	of	pERK	signal	relative	to	total	ERK	and	normalized	to	untreated	Cas9	

control.	

(E)	Growth	of	CRISPR-inactivated	NF1	and	Cas9	control	cells	by	crystal	violet	staining	(left)	and	
quantification	(right).	

Figure	4.	Transcriptomic	subtypes	of	BL	biopsies	categorized	into	cases	with	prolonged	cetuximab	

benefit	and	primary	progressors.		
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(A)	Transcriptomic	subtype	assignment.	The	figure	legend	for	the	transcriptomic	subtypes	is	

arranged	to	show	the	most	similar	CMS	and	CRCassigner	subtypes	next	to	each	other.	Significance	

was	assessed	by	the	Fisher’s	exact	test.	

(B)	Association	of	clinical	benefit	with	tumor	sidedness	and	CMS	subtype.	

See	also	Figure	S1.	

Figure	5.	Genetic	alterations	in	RAS/RAF	pathway	members	and	regulators	at	AR.	

(A)	Mutations/amps	identified	by	exome	sequencing	(158x)	of	biopsies.	

(B)	Mutations	identified	by	deep	amplicon	(2179x)	sequencing	of	KRAS,	NRAS,	BRAF	and	EGFR	in	
biopsies.	

(C)	Mutations/amps	identified	by	circulating	tumor	DNA	(ctDNA)	sequencing	(1048x).	

(D)	Fraction	of	cancer	cells	sampled	by	ctDNA	that	harbored	a	resistance	driver	mutation	at	PD.		

BL=baseline,	PD=progressive	disease	

See	also	Figures	S2,	S3,	Data	S3,	and	Tables	S3,	S4	and	S5.	

Figure	6.	Transcriptomic	CRC	subtypes	and	CAFs	as	drivers	of	AR	to	cetuximab.	

(A)	Transcriptomic	subtypes	in	BL	and	PD	biopsy	pairs.	TA=Transti-Amplifying,	SL=Stem-like.	

(B)	Volcano	plot	showing	differential	expression	of	growth	factors	in	5	cases	from	(A)	undergoing	

CMS2>4	switches.	Significance	was	assessed	by	paired	t-test.	

(C)	Changes	in	TGFβ	and	EMT	transcriptomic	signatures	through	CMS2>4	switches.	

(D)	Changes	in	fibroblast	abundance	through	CMS2>4	switches	based	on	MCP-counter	analysis.	

(E)	Impact	of	CAF	conditioned	medium	(CM)	on	the	growth	of	DiFi	(left	panel)	and	LIM1215	(right	

panel)	treated	with	50	µg/mL	CET	for	5	days.	All	error	bars:	standard	deviation	of	6	replicates.	

(F)	Western	blot	analysis	showing	CAF	CM	rescue	of	pERK	in	DiFi	(left	panel)	and	LIM1215	(right	

panel)	treated	with	200	µg/mL	CET	for	2	hr.	

(G)	mRNA	expression	(normalized	counts)	of	growth	factors	(GF)	(left	panel)	and	their	receptors	

(right	panel)	in	CAF,	DiFi	and	LIM1215	cells.	

(H)	Growth	assay	with	200	µg/mL	CET	and	recombinant	GF	at	a	concentration	of	20	ng/mL	(FGF1/2),	

10	ng/mL	(TGFβ)	and	50	ng/mL	(HGF)	for	5	days	in	DiFi	(top	panel)	and	LIM1215	(bottom	panel).	

(I)	Western	blot	analysis	of	pERK	with	and	without	recombinant	GF	treatment	in	the	presence	or	

absence	of	200	µg/mL	CET	in	DiFi	(top	panel)	and	LIM1215	(bottom	panel).	

(J)	Growth	assay	with	CAF	CM	and	combinations	of	CET,	FGFR-	and	MET-inhibitor	for	5	days	in	DiFi	

(top	panel)	and	LIM1215	(bottom	panel).	
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(K)	Western	blot	analysis	of	pERK	after	2	hr	treatment	with	CAF	CM	and	combinations	of	CET,	FGFR-	

and	MET-inhibitor	in	DiFi	(top	panel)	and	LIM1215	(bottom	panel).	

See	also	Figure	S4	and	Table	S6.	

Figure	7.	Impact	of	CET	on	the	tumor	immune	landscape.		

(A)	Cytolytic	activity	(CYT)	change	in	paired	BL	and	PD	biopsies.		

(B)	ssGSEA	enrichment-score	change	for	28	immune	cell	subtypes	from	BL	to	PD	.	

(C)	Transcriptomic	score	estimating	the	abundance	of	BATF3+	dendritic	cells	(BATF3-DC).	

(D)	Immuno-histochemical	quantification	of	immune	cell	densities	in	FFPE	specimens.		

(E)	Changes	in	the	number	of	T	cell	receptor	beta	chain	(TCRβ)	sequences	(left)	and	of	clonotypes	

(right)	from	BL	to	PD.	Percentages	indicate	the	abundance	of	the	largest	TCRβ	clonotype	in	samples	

with	≥100	TCRβ sequences.		

(F)	Analysis	of	immune	cell	densities	in	the	tumor	center	and	at	the	margin	in	slides	from	7D.		

(G)	Example	of	immune	infiltrates	before	and	after	CMS2>4	subtype	switches	(red:	CD8,	brown:	CD4,	

blue:	FOXP3,	C=cancer	cell	area,	S=stroma).		

(H)	Differences	in	immune	cell	abundance	in	biopsies	that	acquired	CMS4	following	a	subtype	switch	

and	biopsies	showing	CMS4	at	BL.	Values	were	generated	by	subtracting	median	enrichment	scores	

between	the	2	groups.	Higher	abundance	following	CMS2>4	switch	in	red,	lower	abundance	in	green	

(color	scale:	Figure	5B).		

(I)	Median	mutation	and	neoantigen	loads	(based	on	NetMHC	rank	<0.5%)	at	BL	and	PD.		

(J)	Expression	of	a	28-gene	T	cell	associated	inflammation	signature.	

(K)	RNA	expression	changes	of	targetable	immune	checkpoints	and	cytokine	receptors.		

Statistical	significance	was	assessed	with	the	Mann-Whitney	test	followed	by	FDR	correction	in	panel	

B	and	with	the	paired	Student’s	t-test	in	all	other	panels.	

See	also	Figure	S5.



23	
	

STAR	Methods:		

CONTACT	FOR	REAGENT	AND	RESOURCE	SHARING		

Further	information	and	requests	for	resources	and	reagents	should	be	directed	to	and	will	be	

fulfilled	by	the	Lead	Contact,	Marco	Gerlinger	(marco.gerlinger@icr.ac.uk).	DNA	and	RNA	sequencing	

data	have	been	deposited	in	the	European	Genome	Phenome	short	read	archive	and	access	can	be	

obtained	after	signing	a	material	transfer	agreement	which	protects	patient	confidentiality	and	

prohibits	any	attempts	to	re-identify	patients.		

	

EXPERIMENTAL	MODELS	AND	SUBJECT	DETAILS		

Trial	design	and	samples	

The	Prospect-C	trial	is	a	prospective	translational	study	investigating	biomarkers	of	response	

or	resistance	to	anti-EGFR-Ab-therapy	in	KRAS	WT	chemo-refractory	metastatic	CRC.	No	NRAS	

mutant	cases	were	enrolled	as	the	licensed	cetuximab	(CET)	indication	changed	to	KRAS	and	NRAS	

WT	CRC	during	the	trial.	Pts	who	were	at	least	18	years	old	and	had	a	World	Health	Organization	

performance	status	of	0-2,	were	eligible	if:	all	conventional	treatment	options	including	fluorouracil,	

irinotecan,	oxaliplatin	were	exhausted	or	pts	were	intolerant/had	contraindications	for	

oxaliplatin/irinotecan-based	chemotherapy;	they	had	metastatic	cancer	amenable	to	biopsy	and	

repeat	measurements	with	computed	tomography	(CT)	scanning.	See	Table	S1	for	pts	characteristics	

including	gender	and	age.		

Written	informed	consent	was	obtained	from	all	pts.	The	study	was	carried	out	in	

accordance	with	the	Declaration	of	Helsinki	and	approved	by	the	national	UK	ethics	committee	(UK	

Research	Ethics	Committee	approval:	12/LO/0914).	All	participants	were	required	to	have	

mandatory	image-guided	pre-treatment	biopsies	(targeted	to	the	CT	identified	index	lesion),	and	

mandatory	biopsies	at	the	time	of	RECIST-defined	progression	(from	one	or	2	suitable	progressing	
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metastatic	sites).	Treatment	consisted	of	single-agent	CET	at	a	dose	of	500	mg/m2	administered	

every	other	week	until	progression	or	intolerable	side	effects.	

The	identification	of	biomarkers	of	primary	and	acquired	resistance	to	CET	therapy	in	DNA	

and	RNA	from	CRC	tumor	biopsies	was	the	primary	endpoint	of	the	study.	The	study	recruited	to	the	

recruitment	target	of	30	pts	that	had	been	treated	and	had	BL	and	PD	samples	available	for	genetic	

analyses.	After	removing	cases	with	insufficient	DNA	yield	or	tumor	content	based	on	sequencing	

results,	data	from	24	paired	BL	and	PD	samples	was	available	for	mutation	and	copy	number	

analysis.	11	cases	from	which	only	a	BL	biopsy	was	available	were	included	in	the	analysis.	Secondary	

endpoints	included	the	identification	and	validation	of	biomarkers	for	resistance	and	response	to	

CET	in	RNA	and	ctDNA.	The	trial	protocol	also	permitted	further	exploratory	molecular	analyses.		

The	efficacy	parameters	including	partial	response	and	stable	disease	were	measured	using	

RECIST	v1.1	criteria.	Progression	free	survival	(PFS)	was	measured	from	start	of	treatment	to	date	of	

progression	or	death	from	any	cause.	Overall	survival	(OS)	was	defined	as	time	from	start	of	

treatment	to	death	of	any	cause.	Pts	without	an	event	were	censored	at	last	follow	up	before	PFS	

and	OS	were	estimated.		

The	cohort	was	dichotomized	into	primary	progressors	who	had	PD	before	or	on	the	first	per	

protocol	CT	scan,	scheduled	at	12	weeks	from	the	start	of	CET	treatment.	This	was	performed	at	a	

median	of	12	weeks	with	a	range	of	9-16	weeks	on	treatment.	Pts	with	prolonged	benefit	were	

defined	as	those	who	remained	progression	free	at	the	time	of	this	scan.	Samples	from	healthy	

donors	were	collected	for	ctDNA	sequencing	after	obtaining	written	informed	consent	through	the	

‘Improving	Outcomes	in	Cancer’	biobanking	protocol	at	the	Barts	Cancer	Centre	(PI:	Powles),	which	

was	approved	by	the	UK	national	ethics	committee	(Research	Ethics	Committee	approval:	

13/EM/0327).	

Cell	lines	
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DiFi	and	LIM1215	cell	lines	were	a	gift	from	the	Valeri	Lab	at	ICR.	Mouse	NIH-3T3	cells	were	

a	gift	from	the	Huang	Lab	at	ICR.	HT29,	SW480	and	SW620	were	obtained	from	ATCC.	DiFi	cells	were	

cultured	in	RPMI-1640	(Gibco),	GlutaMax	(Gibco),	5%	FBS.	LIM1215	cells	were	cultured	in	RPMI-

1640,	10%	FBS,	hydrocortisone	(Gibco),	1-thioglycerol	(Sigma)	and	insulin	(Gibco).	NIH-3T3	and	HT29	

cells	were	cultured	in	DMEM	(Gibco),	GlutaMax	(Gibco)	and	10%	FBS.	SW480	and	SW620	were	

cultured	in	L15	(Gibco),	GlutaMax	(Gibco)	and	10%	FBS.	Human	fibroblasts	from	rectal	carcinomas	

which	have	been	immortalized	using	hTERT	virus	(pCSII	vector	backbone,	RC11)	were	a	gift	from	

Fernando	Calvo,	initially	provided	by	Danijela	Vignjevic	(Institute	Curie,	France)(Glentis	et	al.,	2017).	

Fibroblasts	were	cultured	in	DMEM	(Sigma),	GlutaMax	(Gibco),	10%	FBS,	1%	insulin-selenium-

transferrin.		All	cell	lines	were	grown	at	37	°C.	RC11	was	cultured	at	10%	CO2,	DiFi,	LIM1215,	HT29	

and	NIH-3T3	were	all	cultured	in	5%	CO2	and	SW480	and	SW620	were	cultured	in	0%	CO2.	Human	

cell	lines	have	been	authenticated	by	STR	profiling	using	the	GenePrint	10	kit	(Promega).	The	DiFi	cell	

line	has	no	available	STR	profile,	but	the	cells	were	confirmed	as	identical	at	start	and	end	of	this	

study.	DiFi	and	HT29	cell	lines	are	female.	LIM1215,	SW480,	SW620	and	NIH-3T3	cell	lines	are	male.	

	

METHOD	DETAILS	

Sample	preparation	

DNA	and	RNA	were	extracted	simultaneously	from	snap	frozen	biopsies	using	the	Qiagen	All	

Prep	DNA/RNA	Micro	Kit	following	the	manufacturer’s	instructions.	Matched	normal	DNA	was	

extracted	from	blood	samples	using	the	Qiagen	DNA	Blood	Mini	Kit.	DNA	concentration	was	

measured	using	the	Qubit	dsDNA	Broad	Range	Assay	Kit,	and	integrity	checked	by	agarose	gel	

electrophoresis.	A	minimum	quantity	of	500	ng,	and	where	available	2	µg	of	DNA,	was	used	for	next	

generation	sequencing.	RNA	from	biopsies	which	were	successfully	DNA	sequenced	was	subjected	to	

RNA-Sequencing	if	a	sufficient	quantity	(>125	ng)	and	quality	(RIN>5.5)	was	confirmed	by	

electrophoresis	on	the	Agilent	2100	Bioanalyzer.	Blood	for	circulating	tumor	DNA	analysis	was	
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collected	in	EDTA	tubes	and	centrifuged	within	2	hours	(10	min,	1600g)	to	separate	plasma,	which	

was	stored	at	-80°C.	Upon	thawing,	samples	were	further	centrifuged	(10	min,	16000g,	4°C).	ctDNA	

was	extracted	from	up	to	4	mL	plasma	per	patient	and	from	2x4	mL	from	healthy	donors	using	the	

Qiagen	QIAamp	Circulating	Nucleic	Acid	Kit.	ctDNA	was	quantified	on	the	Agilent	2100	Bioanalyzer.	

Whole	exome/genome	DNA	sequencing		

Biopsy	samples	were	sequenced	by	the	NGS-Sequencing	facility	of	the	Tumour	Profiling	Unit	

at	the	Institute	of	Cancer	Research	(ICR)	or	at	the	Beijing	Genome	Institute	(BGI).	Exome	sequencing	

libraries	were	prepared	from	a	minimum	of	500	ng	DNA	using	the	Agilent	SureSelectXT	Human	All	

Exon	v5	kit	according	to	the	manufacturer’s	protocol.	Paired-end	sequencing	was	performed	on	the	

Illumina	HiSeq	2000	or	2500	platform	with	a	target	depth	of	100X	for	exomes	(BGI/ICR)	and	on	the	

Illumina	HiSeq	X10	platform	with	70X	for	genomes	(BGI).		

Bioinformatics	analysis	of	DNA	sequencing	data	

BWA-MEM	(Li	and	Durbin,	2009)	(v0.7.12)	was	used	to	align	the	paired-end	reads	to	the	

hg19	human	reference	genome	to	generate	BAM	format	files.	Picard	Tools	

(http://picard.sourceforge.net)	(v2.1.0)	MarkDuplicates	was	run	with	duplicates	removed.	BAM	files	

were	coordinate	sorted	and	indexed	with	SAMtools	(Li	et	al.,	2009)	(v0.1.19).	BAM	files	were	quality	

controlled	using	GATK	(McKenna	et	al.,	2010)	(v3.5-0)	DepthOfCoverage,	Picard	

CollectAlignmentSummaryMetrics	(v2.1.0)	and	fastqc	

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/)	(v0.11.4).	

Somatic	mutation	analysis	

Tumor	and	germline	DNA	sequencing	results	were	assessed	for	matching	SNP	profiles	to	

check	for	potential	sample	swaps.	This	identified	one	case	where	germline	DNA	and	tumor	DNA	SNP	

profiles	differed	and	this	was	removed	from	the	analysis.	For	single	nucleotide	variant	(SNV)	calls	we	
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used	both	MuTect	(Cibulskis	et	al.,	2013)	(v1.1.7)	and	VarScan2	(Koboldt	et	al.,	2012)	(v2.4.1).	

SAMtools	(v1.3)	mpileup	was	run	with	minimum	mapping	quality	1	and	minimum	base	quality	20.	

The	pileup	file	was	inputted	to	VarScan2	somatic	and	run	with	a	minimum	variant	frequency	of	5%.	

The	VarScan2	call	loci	were	converted	to	BED	file	format	and	BAM-readcount	

(https://github.com/genome/bam-readcount)	(v0.7.4)	run	on	these	positions	with	minimum	

mapping	quality	1.	The	BAM-readcount	output	allowed	the	VarScan2	calls	to	be	further	filtered	using	

the	recommended	fpfilter.pl	accessory	script	(Koboldt	et	al.,	2013)	run	on	default	settings.	MuTect	

was	run	on	default	settings	and	post-filtered	for	minimum	variant	allele	frequency	5%.	Indel	calls	

were	generated	using	Platypus	(Rimmer	et	al.,	2014)	(v.0.8.1)	callVariants	run	on	default	settings.	

Calls	were	filtered	based	on	the	following	FILTER	flags	-	‘GOF,	‘badReads,	‘hp10,’	MQ’,	‘strandBias’,’	

QualDepth’,’	REFCALL’.	We	then	filtered	for	somatic	indels	with	normal	genotype	to	be	homozygous,	

minimum	depth	≥10	in	the	normal,	minimum	depth	≥20	in	the	tumor	and	≥5	variant	reads	in	the	

tumor.	Exonic	regions	were	analyzed	in	whole	genome	sequenced	samples	to	assure	comparability	

to	the	whole	exome	sequenced	samples.	Mutation	calls	were	further	filtered	with	a	cross-normal	

filter	by	running	bam-readcount	on	the	bed	file	of	merged	variants	for	all	sequenced	matched	

normal	(blood)	samples.	For	both	SNV	and	Indel	calls	we	used	a	threshold	of	≥2%	of	the	total	

number	of	reads	at	the	call	loci.	If	the	alternate	allele	count	is	equal	to	or	greater	than	this	threshold	

the	variant	is	flagged	as	present	in	the	normal	sample.	A	call	is	rejected	if	the	variant	is	flagged	in	5%	

or	more	of	the	normal	samples	in	our	cohort	to	remove	common	alignment	artifacts	or	those	arising	

recurrently	at	genomic	positions	that	are	difficult	to	sequence.	

Mutation	calls	were	merged	and	annotated	using	annovar	(Wang	et	al.,	2010)	(v20160201)	

with	hg19	build	version.	The	allele	counts	were	recalculated	using	bam-readcount	with	minimum	

base	quality	5	(in	line	with	minimum	default	settings	of	the	joint	SNV	callers).	The	calls	were	then	

filtered	on	minimum	variant	allele	frequency	≥5%,	minimum	depth	≥20	in	a	called	sample	and	a	

maximum	of	2	variant	alleles	in	the	matched	normal	sample.	
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DNA	copy	number	aberration	analysis	

CNVKit	(Talevich	et	al.,	2016)	(v0.8.1)	was	run	in	non-batch	mode	for	copy	number	

evaluation.	We	first	identified	high	confidence	SNP	locations	using	bcftools	call	(Li	et	al.,	2009)	(v1.3)	

with	snp137	reference	and	SnpEff	SnpSift	(Cingolani	et	al.,	2012)	(v4.2)	to	filter	heterozygous	loci	

with	minimum	depth	50.	We	further	extracted	positions	spaced	500	bp	apart	in	the	whole	genome	

samples.	VarScan2	was	used	to	call	the	tumor	sample	BAMs	at	these	locations	to	generate	B-Allele	

Frequency	(BAF)	data	as	input	for	CNVKit.	

We	generated	basic	access	and	antitarget	files	to	indicate	the	accessible	sequence	regions.	

This	excluded	blacklisted	regions	suggested	by	CNVKit	and	the	HLA	region.	We	then	generated	a	

pooled	normal	sample	and	used	the	winsorize	and	pcf	functions	within	copynumber	(Nilsen	et	al.,	

2012)	to	identify	further	outlier	positions	and	regions	of	highly	uneven	coverage.	These	regions	were	

merged	to	ensure	consistency	across	all	data.	

CNVKit	was	run	with	matched	normals	along	with	the	adjusted	access	and	antitarget	files.	

For	the	segmentation	step	we	ran	pcf	from	the	R-package	copynumber.	Breakpoints	from	this	

segmentation	step	were	then	fed	into	Sequenza	(Favero	et	al.,	2015)	(v2.1.2)	to	calculate	estimates	

of	purity/ploidy	and	these	values	were	used	as	a	guide	to	recenter	and	scale	the	LogR	profiles	in	

CNVKit.	BAF	and	LogR	profiles	were	also	manually	reviewed	by	2	researchers	to	determine	their	

likely	integer	copy	number	states.	Adjustments	were	made	in	cases	where	both	manual	reviews	

identified	a	consensus	solution	that	differed	from	the	bioinformatically	generated	integer	copy	

number	profile.	Furthermore,	BL/PD	sample	pairs	where	the	ploidy	of	one	sample	was	close	to	

double	the	ploidy	of	the	other	sample	and	copy	number	profiles	were	highly	similar	(suggestive	of	a	

genome	doubling	event),	the	sample	with	lower	ploidy	was	adjusted	to	the	likely	genome-doubled	

higher	state	to	facilitate	a	direct	comparison	of	copy	number	changes,	unless	clear	evidence	of	BAF	
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and	LogR	profiles	suggested	otherwise.	These	adjustments	were	made	in	samples	C1004PD,	

C1022PD,	C1025PD,	C1027PD1,	C1030PD,	and	C1043BL	where	both	manual	reviews	supported	a	

different	solution	to	Sequenza.		

Analysis	of	gene	amps	

Amps	were	defined	as	a	3-fold	or	greater	increase	on	the	ploidy	of	a	sample,	a	substantial	

loss	event	as	a	3-fold	or	greater	decrease	on	the	ploidy	state	and	a	homozygous	deletion	as	CN=0.	

Amp	and	loss	threshold	values	were	rounded	to	the	nearest	integer	copy	number	state.	Ploidy	was	

estimated	as	follows,	

Ploidy	=	(CNAbsolute	x	SegmentLength)	/	Σ(SegmentLength)	

with	CNAbsolute	representing	the	unrounded	copy	number	estimate	and	SegmentLength	the	genomic	

length	between	segment	break	points.	BL	and	PD	biopsy	pairs	were	compared	to	identify	which	

cases	had	acquired	amps	at	PD	that	were	absent	at	BL.	

Deep	amplicon	sequencing	

Ampliseq	libraries	were	prepared	by	the	ICR-TPU	using	the	Ion	Chef	from	800	ng	DNA	

extracted	from	BL/PD	biopsies,	and	from	matched	germline	samples.	A	custom	amplicon	panel	

comprising	a	single	pool	of	77	amplicons	(Table	S4	for	amplicon	positions)	was	designed	to	cover	

mutational	hotspots	and	known	CET	resistance	drivers	in	KRAS,	NRAS,	BRAF,	EGFR	and	MAP2K1	and	

several	mutations	identified	by	exome	sequencing	in	each	sample	(including	any	TP53	and	APC	

mutations)	to	enable	subclonality	estimates.	Up	to	32	samples	were	pooled	and	sequenced	on	PGM	

318	chips	(v2)	with	500	flows.	Deep	amplicon	sequencing	data	was	aligned	and	somatic	mutations	

were	called	using	the	Ion	Torrent	Suite	software	(v5.2.2).	run	with	a	minimum	variant	frequency	of	

0.5%	and	3	supporting	variant	reads.		

ctDNA-sequencing	
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Ultra-deep	circulating	tumor	DNA	(ctDNA)	sequencing	with	molecular	barcode	error	

correction	(Mansukhani	et	al.,	2018)	was	applied	to	cases	with	prolonged	benefit	from	CET	and	

which	had	at	least	25	ng	of	ctDNA.	Libraries	were	prepared	from	25	ng	ctDNA	using	the	Agilent	

SureSelectXT-HS	kit	and	hybridized	to	a	CRC	panel	targeting	up	to	40	genes	(Table	S4)	using	our	

optimized	protocol	(Mansukhani	et	al.,	2018).	Libraries	were	pooled	and	sequenced	on	an	Illumina	

HiSeq2500	in	75	bp	paired-end	mode,	generating	a	median	of	125.7	M	reads/sample.	

The	resulting	data	was	aligned	and	molecular	barcode-deduplicated	in	order	to	reduce	false	

positive	sequencing	errors	using	Agilent	SureCall,	with	variants	called	using	the	integrated	SNPPET	

caller.	To	call	very	low	frequency	variants,	bam-readcount	was	used	to	interrogate	targeted	hotspot	

positions	in	KRAS,	NRAS,	BRAF,	MAP2K1	and	EGFR	(Table	S4).	In	order	to	maximize	the	sensitivity	for	

the	detection	of	resistance	mutations,	these	were	called	if	at	least	2	independent	variant	reads	were	

identified	at	a	mutational	hotspot	position	and	encoded	for	a	recurrently	observed	amino	acid	

change	in	the	specific	gene.	Genome-wide	copy	number	profiles	were	constructed	using	CNVKit	run	

in	batch	mode	with	Antitarget	average	size	30	kb	as	described	(Mansukhani	et	al.,	2018).	ctDNA	

sequenced	from	healthy	donors	(Mansukhani	et	al.,	2018)	was	used	as	the	normal	reference	dataset.	

Copy	number	profiles	generated	from	ctDNA	were	aligned	with	copy	number	profiles	showing	

absolute	copy	numbers	from	matched	biopsies	and	the	closest	integer	copy	number	was	assigned	to	

TP53	and	mutated	CET	resistance	driver	genes	for	the	subclonality	analysis.		

RNA-sequencing	of	biopsies	

NEB	polyA	kit	was	used	to	select	the	mRNA.	Strand	specific	libraries	were	generated	from	

the	mRNA	using	the	NEB	ultra	directional	kit.	Illumina	paired-end	libraries	were	sequenced	on	an	

Illumina	HiSeq2500	using	v4	chemistry	acquiring	2	x	100	bp	reads.	Bcl2fastq	software	(v1.8.4,	

Illumina)	was	used	for	converting	the	raw	basecalls	to	fastq	format	and	to	further	demultiplex	the	

sequencing	data.	
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Tophat2	spliced	alignment	software	(Kim	et	al.,	2013)	(v2.0.7)	was	used	to	align	reads	to	the	

GRCh37	(hg19)	release-87	human	reference	genome	in	combination	with	Bowtie2	(Langmead	and	

Salzberg,	2012)	(v2.1.0).		FeatureCounts	(Liao	et	al.,	2014)	was	used	to	perform	read	summarization.	

Sample	QC	was	performed	using	Picard	Tools	CollectRnaSeqMetrics.	We	excluded	2	samples	

(C1006BL	and	C1007BL)	with	fewer	than	10%	of	reads	aligning	to	exonic	regions.	Lowly	expressed	

genes	were	filtered	using	a	cpm	threshold	equivalent	to	10/L,	where	L	is	the	minimum	library	size	in	

millions	(Chen	et	al.,	2016).	Sample	batch	effects	were	assessed	using	principal	component	analysis	

and	did	not	require	corrective	action.	Counts	were	normalized	for	library	size	using	

estimateSizeFactors	in	Deseq2	(Love	et	al.,	2014).	FPKM	data	were	generated	using	the	fpkm	

function	in	Deseq2.	For	downstream	analysis	all	data	were	filtered	for	protein	coding	genes	using	the	

GTF	annotation	file	and	filtering	on	the	gene_biotype	column.	

RNA	sequencing	of	cell	lines	and	CAFs	

	 RNA	was	extracted	using	the	Qiagen	RNeasy	kit	and	quantified	using	Qubit	RNA	High	

Sensitivity	kit.	224	ng	RNA	was	used	as	input	for	Lexogen	QuantSeq	3’	mRNA-Seq	Library	Preparation	

kit	for	Illumina	(FWD),	and	libraries	were	prepared	according	to	the	manufacturer’s	protocol,	with	

optimal	15	cycles	of	PCR	determined	by	qPCR.	Final	libraries	were	quantified	with	both	Qubit	and	

Bioanalyzer	DNA	High	Sensitivity	kits	and	equimolar	pools	were	sequenced	on	an	Illumina	HiSeq2500	

in	Rapid	100	bp	single-end	mode	with	dual	indexing,	generating	a	median	of	7.2	M	reads	per	sample.	

Sequencing	data	was	analysed	using	the	FWD	Human	(GRCh38)	Lexogen	QuantSeq	2.2.3	and	

Lexogen	QuantSeq	DE	1.3.0	pipelines	on	the	BlueBee	cloud	platform.	

Cancer	cell	content	analysis	

The	cancer	cell	content	of	each	sequenced	sample	was	assessed	based	on	the	variant	allele	

frequency	(VAF)	of	somatic	mutations	and	samples	with	an	estimated	cancer	cell	content	below	10%	

were	removed	from	the	analysis	as	the	sequencing	depth	was	insufficient	to	accurately	detect	



32	
	

mutations	in	these	samples	(Cibulskis	et	al.,	2013).	As	the	majority	of	mutations	are	heterozygous	

and	hence	present	in	half	of	the	DNA	copies	of	the	cancer	cells,	2xVAF	can	be	used	to	approximation	

the	fraction	of	cancer	cells	in	a	sample.	This	led	to	the	exclusion	of	4	samples	(C1001BL,	C1009BL,	

C1010BL,	C1042BL)	as	shown	in	the	CONSORT	diagram	(Figure	1A).	The	median	estimated	cancer	cell	

content	across	the	remaining	60	samples	was	41%	(Table	S1).	

Subclonality	analysis	exome	sequencing	data	

The	clonal	status	of	mutations	was	assessed	using	the	allele	specific	copy	number	generated	

in	the	CNVKit	solution.	We	estimated	the	cancer	cell	fraction	(CCF)	using	the	phyloCCF	method	as	

described	(Jamal-Hanjani	et	al.,	2017).	We	then	inferred	the	mutation	copy	number	(i.e.	the	number	

of	alleles	harboring	the	mutation)	and	assigned	clonal/subclonal	status	to	each	variant	using	the	

criteria	described	by	McGranahan	et	al.	(McGranahan	et	al.,	2015).	

Subclonality	analysis	in	ctDNA	and	amplicon	sequencing	data	

Variant	allele	frequencies	of	TP53	mutations,	of	hotspot	resistance	driver	mutations	in	KRAS,	

NRAS,	BRAF	and	EGFR	and	of	the	EGFR	mutation	D278N	were	extracted	from	ctDNA	BAM	files.	TP53	

mutation	VAFs	were	used	to	calculate	what	fraction	of	the	ctDNA	was	of	cancer	cell	origin	by	

correcting	for	the	influence	of	copy	number	aberrations	using	the	following	formula:	

CCF	=2*VAF/(Copiesmutated	+	2*VAF	–VAF*Copiestotal)	

with	CCF	indicating	the	cancer	cell	fraction,	Copiesmutated	the	number	of	copies	that	harbored	the	

TP53	mutation	and	Copiestotal	the	absolute	copy	number	of	the	TP53	locus.	Clonality	analysis	of	TP53	

mutation	showed	clonal	mutations	and	loss	of	heterozygosity	of	the	TP53	locus	for	all	tumor	

biopsies	with	the	exception	of	C1027	which	harbored	2	TP53	mutations,	one	present	on	4	copies	of	

chromosome	17p	and	one	on	2	copies,	suggesting	biallelic	inactivation	through	2	distinct	mutation	

events.	TP53	Copiesmutated	and	Copiestotal	were	equal	for	tumors	with	TP53	LOH	and	in	1027	the	VAFs	
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of	both	TP53	mutations	were	taken	together	and	the	sum	of	all	chromosome	17p	copies	were	used	

to	estimate	CCF.		

The	same	formula	was	then	resolved	to	calculate	the	expected	VAF	of	a	clonal	mutation	

given	the	CCF	of	the	ctDNA	sample	and	the	local	copy	number	state	of	this	mutation:		

VAF	=(CCF*Copiesmutated)/(CCF*Copiestotal+2-2*CCF)	

Copiestotal	for	all	mutations	were	inferred	from	ctDNA	copy	number	profiles	that	had	been	close	

matched	to	the	integer	copy	number	states	of	biopsies	(Data	S3).	For	subclonality	calculation,	we	

furthermore	assumed	that	resistance	drivers	were	only	mutated	on	a	single	gene	copy	(i.e.	

Copiesmutated=1,	which	is	likely	as	they	are	thought	to	have	a	dominant	effect).	This	assumption	

furthermore	maximized	the	estimated	fraction	of	cancer	cells	that	harbor	a	resistance	driver	

mutation,	hence	providing	a	conservative	measure	of	the	resistance	gap.	The	fraction	of	the	total	

CCF	in	ctDNA	that	harbors	an	observed	resistance	driver	mutation	was	then	calculated	by	dividing	

the	observed	VAF	by	the	expected	VAF	for	a	mutation	that	is	100%	clonal.	We	then	estimated	the	

maximum	fraction	of	all	cancer	cells	that	harbored	resistance	driver	mutations	in	a	sample	as	the	

sum	of	the	CCF	values	of	all	individual	resistance	driver	mutations	in	that	sample.		

Colorectal	cancer	subtyping	

Consensus	Molecular	Subtypes	(Guinney	et	al.,	2015)	were	assigned	using	CMScaller	(Eide	et	

al.,	2017).	The	CMScaller	function	was	run	with	raw	count	data	and	setting	‘RNASeq=TRUE’.	Each	

sample	was	assigned	the	subtype	with	the	shortest	distance	according	to	the	inbuilt	nearest	

template	prediction	(NTP)	(Hoshida,	2010).	The	CMScaller	classification	was	considered	low	

confidence	if	FDR	>0.01.	Samples	were	also	assigned	to	the	molecular	CRC	subtypes,	as	described	

(Sadanandam	et	al.,	2013).	To	minimize	technical	differences	in	subtype	assignment	we	generated	

data	normalized	using	the	same	approach	as	CMScaller	(limma::normalizeQuantiles(log2(x+.25))).	

The	data	were	then	row	median	centered	and	correlated	with	the	PAM	centroids,	as	defined	by	the	
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published	786-gene	CRCassigner	signature.	Each	sample	was	then	assigned	to	the	CRC	subtype	with	

the	highest	correlation.	If	the	correlation	coefficient	is	<0.15	or	the	difference	with	the	second	

highest	coefficient	is	<0.06	then	the	sample	is	considered	low	confidence	(Guinney	et	al.,	2015).	The	

EMT	and	TGFβ	expression	signatures	were	generated	by	the	Camera	Gene	Set	Analysis	in	CMScaller	

for	each	sample.	

The	subtyping	showed	a	high	level	of	agreement	between	the	classification	approaches.	This	

was	true	even	of	assignments	considered	low	confidence	by	the	published	criteria.	

Immune	cell	infiltrate	analysis	

The	cytolytic	activity	(CYT)	was	calculated	as	the	geometric	mean	of	the	GZMA	and	PRF1	

genes	(normalized	expression	values	as	input,	offset	by	1.0).	The	BATF3-DC	signature	was	calculated	

as	the	mean	of	the	normalized	expression	values	of	the	genes	in	this	signature.	FPKM	normalized	

RNA	sequencing	data	and	published	immune	cell	metagenes	(Charoentong	et	al.,	2017)	were	used	as	

input	into	the	single	sample	gene	set	enrichment	analysis	(ssGSEA)	algorithm	using	default	settings	

to	determine	immune	cell	enrichments	in	each	sample	as	described	(Barbie	et	al.,	2009).		

The	Microenvironment	Cell	Populations	(MCP)-counter	algorithm	(Becht	et	al.,	2016b)	was	

used	as	an	independent	bioinformatics	tool	to	assess	immune	cell	enrichment.	Data	were	

normalized	using	limma	voom	(Ritchie	et	al.,	2015)	and	the	MCP-counter	function	run	with	

HUGO_symbols	chosen	as	featuresType.	

Quantifying	clonotypes	for	T	and	B	cell	populations	

	 MiXCR	(v3.0.5)	(Bolotin	et	al.,	2015)	was	used	to	extract	B	and	T	cell	receptor	repertoire	data	

from	RNA-seq	data	using	the	‘analyze	shotgun’	command,	selecting	for	‘--starting-material	rna’,	‘—

species	hs’	and	‘–only-productive’.	Data	were	exported	for	T	cell	receptor	β	and	B	cell	heavy	(IGH)	

and	light	(IGL)	chain	clonotypes.	
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Neoantigen	prediction	

Our	protocol	for	annotating	neoantigens	requires	germline	and	somatic	variant	calls	and	

prediction	of	pts’	HLA-types.	A	similar	protocol	has	been	described	before	(Heindl	et	al.,	2018),	

however,	both	for	completeness	and	because	of	some	differences,	we	summarize	it	again	in	the	

following.			

We	take	our	somatic	variant	list	as	shown	in	Table	S2.	Germline	variants	are	called	using	

Platypus	(Rimmer	et	al.,	2014)	(using	ucsc.hg19.fasta	as	reference	file	and	default	parameters).	

We	retain	only	those	variants	that	have	a	PASS	in	the	FILTER	column	of	the	Platypus	output,	

genotype	quality	GQ≥10,	germline	sample	genotype	different	from	“0/0”,	germline	coverage ≥10	

and	at	least	one	germline	variant	read.	If	more	than	one	alternative	variant	satisfies	these	

conditions	and	appears	in	the	Platypus-assigned	genotype,	we	consider	only	the	one	with	the	

highest	allele	frequency.	We	filter	out	variants	found	in	segmental	duplication	regions	(as	found	

in	the	genomicSuperDups.bed.gz	file	(Bailey	et	al.,	2002)	(Bailey	et	al.,	2001)	downloaded	from	

the	UCSC	Genome	Browser	website).	Somatic	mutation	annotation	was	as	described	in	the	

‘Somatic	mutation	analysis’	methods.	Germline	variants	are	annotated	running	VEP	(McLaren	et	

al.,	2016)	on	the	cache	refseq	file	homo_sapiens_refseq_vep_84_GRCh37	(updated	2016-02-26).	

Transcript	sequences	for	both	somatic	and	germline	variants	are	taken	from	the	refseq_cds.txt	

file	(GRCh37/hg19	Feb	2009).	Note	that	we	discard	approximately	1.5%	of	all	variants	because	of	

inconsistencies	between	the	variant	annotation	and	the	refseq_cds.txt	file	sequences	(either	the	

variant’s	transcript	ID	is	missing	altogether	or	the	variant	annotation	is	not	consistent	with	the	

sequence	found	in	the	refseq_cds.txt	file).	

For	neopeptide	generation,	we	consider	the	following	protein–modifying	germline	and	

somatic	variants:	missense	variants,	in-frame	deletions,	in-frame	insertions,	frameshift,	start	lost,	

stop	lost,	stop	gained	and	synonymous	variants.	Synonymous	variants	are	only	considered	for	their	
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potential	effect	on	other	protein	modifying	mutations	e.g.	upstream	frameshift	mutations.	When	

the	genomic	positions	of	2	variants	overlap	we	retain	only	one	of	the	2.	For	each	transcript	T	

carrying	at	least	one	somatic	variant	of	the	type	above	(transcripts	with	only	synonymous	variants	

are	excluded	for	obvious	reasons),	we	produce	2	mutated	CDS	files,	one	carrying	all	germline	

variants	(germline	transcript,	Tgerm)	and	the	other	carrying	all	germline	and	somatic	variants	(tumor	

transcript,	Ttum).	Note	that,	for	simplicity,	we	consider	all	germline	and	somatic	variants	to	be	in-

phase.	We	then	translate	the	CDS	sequences	into	amino	acid	sequences	Sgerm	and	Stum,	respectively,	

and	generate	all	associated	peptides	of	length	8	to	11.	Neopeptides	associated	to	variants	in	T	are	all	

those	generated	by	Stum	that	are	not	generated	by	Sgerm.	Note	that	since	we	work	with	CDS	

sequences	(i.e.,	no	UTR	regions),	start	and	stop	lost	variants	are	equivalent	to	missense	variants	that	

change	the	first	and	last	amino	acid	of	the	protein	sequence,	respectively.	The	in-house	python	

scripts	that	we	use	to	generate	neopeptides	are	available	upon	request.	

We	predict	the	pts’	HLA	class	I	types	by	running	the	program	Polysolver	(Shukla	et	al.,	

2015)	(version	1.0d)	on	normal	samples	(we	set	race=Unknown,	includeFreq=1	and	insertCalc=0).		

Finally,	we	predict	neopeptide	likelihood	of	binding	to	HLA	complexes	using	the	program	

netMHCpan4.0	(Jurtz	et	al.,	2017).	For	each	sample,	we	run	netMHCpan-4.0	against	the	

corresponding	neopeptide	list	as	many	times	as	the	number	of	different	HLA-types	of	the	patient.	

We	then	collect	the	neopeptides’	HLA-specific	eluted	ligand	likelihood	percentage	rank	scores	

and	the	associated	interaction	core	peptides.	The	interaction	core	peptide	(Icore	in	the	

netMHCpan	output)	is	the	portion	of	the	neopeptide	that	is	predicted	by	netMHCpan	to	span	the	

full	length	of	the	HLA	binding	site	and	thus	represents	the	peptide	most	likely	to	be	presented	to	

T-cells.	About	12.6%	of	all	our	neopeptides	are	predicted	to	have	a	core	peptide	that	is	shorter	

than	the	original	neopeptide.	For	each	core	peptide,	we	store	only	the	best	(i.e.,	lowest)	HLA	

percentage	rank	observed	in	the	sample.	Finally,	we	calculate	the	neoantigen	burden	in	a	sample	

as	the	number	of	core	peptide	high	binders	(%rank<0.5).	Note	that	core	peptide	binders	that	are	
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shorter	than	their	corresponding	neopeptides	may	be	devoid	of	mutated	amino	acids,	i.e.	they	

may	correspond	to	wild	type	peptides;	these	cases	are	excluded	from	the	above	binders’	counts.	

Immunohistochemistry	 

5	µm	slides	were	cut	from	FFPE	blocks	and	triple	stained	as	described	(Gerlinger	et	

al.,	2013).	5	representative	tumor	areas	of	0.05	mm2	were	identified	per	slide	and	CD8+,	

FOXP3+	CD4+	cells,	and	CD4+	FOXP3-		T	cells	were	quantified	in	each	of	the	selected	areas	at	

40x	magnification	using	ImageJ	software.	Densities	were	calculated	as	cells/mm2.	Immune	

cell	scoring	was	performed	blinded.	For	center	and	margin	analysis	representative	areas	

were	selected	per	slide,	2	areas	from	the	invasive	margin	and	the	other	2	from	the	center	of	

the	tumor.	Invasive	margin	was	identified	as	the	border	region	separating	normal	tissue	

from	the	malignant	tumor	cells.		

Testing	for	Mismatch	Repair	Deficiency	(dMMR)	/	Microsatellite	Instability	(MSI)	

Immunohistochemistry	had	been	performed	on	18	BL	biopsies	to	test	for	loss	of	expression	

of	the	MMR	proteins	MLH1,	MSH2/6	and	PMS2.	None	of	these	18	biopsies	showed	evidence	for	

dMMR.	In	addition,	we	considered	mutation	load,	somatic	mutation	status	of	the	MMR	genes	and	

the	presence	of	COSMIC	MSI	signatures	(Sig.6,	Sig.15,	Sig.20	and	Sig.26).	Mutation	signature	analysis	

was	run	using	the	R	package	‘deconstructSigs’	(Rosenthal	et	al.,	2016)	(v1.8.0).	Evidence	of	MSI	was	

found	only	for	C1013	based	on	a	high	mutation	load	and	dominance	of	MSI	mutational	signatures.		

		

Drug	Assays	

Growth	Factor	rescue	experiments	were	performed	in	DiFi	and	LIM1215	colorectal	cancer	

cell	lines	treated	with	CET	(provided	by	Merck	KG),	AMG-337	and	BGJ-398	(Selleckchem),	FGF1,	

FGF2,	TGFβ1,	TGFβ2	and	TGFβ3	(RnD	Systems)	and	HGF	and	FGF10	(Peprotech)	for	5	days	(7	days	for	
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FGF10).	Treatments	were	replenished	with	fresh	media	after	3	days	in	7	day	assays.	EGFR	mutant	

experiments	were	performed	in	LIM1215	cells.	Cells	were	treated	with	CET	for	5	days.	DiFi	and	

LIM1215	cells	were	seeded	in	standard	media	or	CAF	CM	and	treated	with	CET	for	5	days.	All	

experiments	were	performed	in	6	replicates.	Viability	was	assessed	using	CellTiter	Blue	reagent	

(Promega)	for	all	assays.	

DNA	constructs	and	site	directed	mutagenesis	

The	Gateway	Entry	clones	R777-E053-Hs.EGFR,	R777-E015-Hs.BRAF	and	R777-E087-HsFGFR3	

(Addgene	plasmids	#70337,	#70299,	#70371	respectively)	were	a	gift	from	Dominic	Esposito.	Entry	

clone	pDONR223_BRAF_p.D594H	(Addgene	#82816)	was	a	gift	from	Jesse	Boehm,	Matthew	

Meyerson	and	David	Root.	RC201958	KRAS	TrueORF	gold	clone	was	purchased	from	Origene	and	

subcloned	into	the	Gateway	entry	vector	pENTR1A	(Invitrogen)	using	a	BamH1/EcoRV	double	digest.	

Site	directed	mutagenesis	was	performed	using	QuikChange	Lightning	(Agilent)	and	custom	designed	

primers	(Table	S7)	to	generate	the	following	mutants:	EGFR	D278N,	FGFR3	P418L,	BRAF	D549N,	

BRAF	D594F,	KRAS-STOP	(to	remove	the	C-terminal	tag),	KRAS	A18D,	KRAS	L19F.	The	full-length	

sequence	of	each	clone	was	assessed	using	Sanger	sequencing	to	confirm	presence	of	the	intended	

mutation	and	that	no	other	mutations	had	been	inserted.	LR	Gateway	recombination	was	used	to	

generate	expression	constructs	using	the	following	destination	vectors:	the	lentiviral	expression	

construct	pLX304	(Addgene	#25890,	a	gift	from	David	Root),	the	lentiviral	expression	construct	

pLenti-CMV-Puro-DEST	(Addgene	#17452,	a	gift	from	Eric	Campeau	and	Paul	Kaufman)	and	the	

transient	expression	vector	pEZY3	(Addgene	#18672,	a	gift	from	Yu-Zhu	Zhang).	pLX304-LacZ	(a	gift	

from	Steven	Whittaker),	pLenti-CMV-Puro-LUC	(Addgene	#17477,	a	gift	from	Eric	Campeau	and	Paul	

Kaufman),	and	pEZYegfp	(Addgene	#18671,	a	gift	from	Yu-Zhu	Zhang)	were	used	as	control	vectors.		

Transfection	and	Transduction	

HEK293T	cells	were	transfected	with	pLX304	or	pLenti-CMV-Puro-DEST	lentiviral	constructs	
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in	combination	with	packaging	plasmids	psPAX	and	pMD2.G	(a	gift	from	Didier	Trono,	Addgene	

#12260	and	#12259	respectively)	using	TransIT-LT1	(Mirus).	DiFi,	LIM1215	and	NIH-3T3	cells	were	

transduced	with	the	resultant	viral	supernatants	in	the	presence	of	Polybrene	(8	µg/mL),	and	

selected	with	5	µg/mL	Blasticidin	(pLX304)	or	5	µg/mL	Puromycin	(pLenti).	DiFi	and	LIM1215	cells	

were	transiently	transfected	with	pEZY	constructs	using	Lipofectamine2000	(Invitrogen)	according	to	

the	manufacturer’s	protocol	and	selected	with	0.5	µg/mL	Neomycin.	

siRNA	mediated	knockdown	of	NF1	in	DiFi	and	LIM1215	cells	was	performed	using	Dharmacon	

siGenome	pool	and	Lipofectamine	RNAiMAX	(Invitrogen)	according	to	the	manufacturer’s	

recommended	protocol.	

CRISPR	mediated	NF1	inactivation		

LIM1215	cells	were	transduced	with	Cas9	viral	particles	(a	gift	from	Feifei	Song,	Stephen	

Pettitt	and	Chris	Lord,	derived	from	lentiCas9-Blast	(Addgene	#	52962,	a	gift	from	Feng	Zhang))	in	

the	presence	of	Polybrene	(8	µg/mL)	and	selected	with	5	µg/mL	Blasticidin	to	create	constitutively	

expressing	Cas9	lines,	confirmed	by	Western	blotting	using	Cas9	(7A9-3A3)	antibody	(Cell	Signalling	

Technologies	#14697).	To	produce	lentiviral	guide	RNAs	targeting	NF1,	HEK293T	cells	were	

transfected	with	pLentiguide-NF1#1	and	pLentiguide-NF1#2	(a	gift	from	Stephen	Pettitt	and	Chris	

Lord,	customized	from	pLentiguide-Puro	(Addgene	#52963,	a	gift	from	Feng	Zhang))	in	combination	

with	packaging	plasmids	psPAX	and	pMD2.G.	LIM1215-Cas9	cells	were	transduced	with	the	resultant	

viral	gRNA	supernatants	in	the	presence	of	Polybrene	(8	µg/mL).	

Western	Blotting	

Total	cell	lysates	were	prepared	using	NP-40	buffer	supplemented	with	protease	and	

phosphatase	inhibitors	(Sigma).	Samples	were	resolved	by	electrophoresis	on	SDS-PAGE	gels	for	

Western	blotting.	Primary	antibodies	used	were	p-ERK	(Cell	Signalling	Technologies	#9101),	ERK	(Cell	

Signalling	Technologies	#9102),	p-EGFR	(Cell	Signalling	Technologies	#2236),	EGFR	(Cell	Signalling	
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Technologies	#2232)	and	NF1	(Cell	Signalling	Technologies	#14623).	HRP-conjugated	anti-beta	

Tubulin	antibody	(Abcam	#ab21058)	was	used	as	a	loading	control.	Bands	were	detected	using	HRP-

labelled	secondary	antibodies	and	ECL	Prime	(GE	Healthcare),	followed	by	visualisation	on	an	Azure	

Biosystems	C300	detection	system.	

	

QUANTIFICATION	AND	STATISTICAL	ANALYSIS 

Statistical	analyses	were	performed	using	R	(v3.4.0)	and	STATA13.	The	Fisher’s	exact	test	

was	used	to	examine	association	of	categorical	variables	in	2x2	contingency	tables.	The	Student’s	t-

test	was	applied	to	examine	means	of	continuous	data	(e.g.	normalized	RNA-Sequencing	counts,	

cytolytic	activity	scores,	median	expression	values	of	the	T	cell	associated	inflammation	signature,	

immunohistochemical	immune	cell	densities	and	MCP-counter	(Becht	et	al.,	2016b)	fibroblast	

infiltrate	scores	from	non-paired	sample	groups).	The	paired	Student’s	t-test	was	applied	to	these	

datasets	when	comparing	paired	(BL	and	PD)	data.	p	values	≤0.05	were	considered	statistically	

significant.	The	Kaplan-Meier	method	was	used	to	estimate	OS	and	PFS	probability.	The	Mann-

Whitney	statistical	test	was	applied	to	compare	ssGSEA	rank	scores	of	28	immune	cell	populations	

followed	by	False	Discovery	Rate	correction	and	a	q	value	≤	0.1	was	considered	statistically	

significant.		

	

DATA	AVAILABILTY	

Sequencing	data	deposition	in	public	repositories	

Exome/genome	sequencing	data	and	RNA-seq	data	have	been	deposited	in	the	European	

Genome	Phenome	short	read	archive	(Accession	number:	EGAS00001003367).	Datasets	are	

password	protected	and	will	be	shared	with	researchers	subject	to	signing	a	data	sharing	agreement.		
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ADDITIONAL	RESOURCES	

	

Prospect-C	trial	information	on	ClinicalTrials.gov	identifier:	clinicaltrials.gov/ct2/show/NCT02994888	
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SUPPLEMENTAL	TABLES	AND	DATA	SETS	

Table	S1:	Patient	Characteristics	and	sample	data.	Related	to	Figure	1		

Table	S2:	Somatic	Mutations	identified	for	each	patient.	Related	to	Figure	1		

Table	S3:	Data	supporting	the	classification	of	recurrently	mutated	genes	in	progression	biopsies	as	

likely	passengers.	Related	to	Table	1.		

Table	S4:	Amplicon	sequencing	of	tissue	biopsies:	panel	design,	depth	of	coverage	and	called	

somatic	mutations.	Related	to	Figure	5.		

Table	S5:	Targeted	sequencing	of	ctDNA:	panel	design,	depth	of	coverage	and	called	hotspot	

mutations.	Related	to	Figure	5.	

Table	S6:	RNA	sequencing	gene	expression	counts	(TGFβ1-3,	HGF	and	FGF1-2)	for	C1020.	Related	to	

Figure	6.		

Table	S7:	Custom	designed	primer	sequences	for	QuikChange	mutagenesis.	Related	to	STAR	

Methods.		

Data	S1:	Genome	wide	DNA	copy	number	profiles	of	BL	and	PD	biopsies.	Related	to	Figure	2.	

Data	S2:	Mutation	Clonality	Assessment.	Related	to	Figures	2	and	5.	

Data	S3:	Copy	number	profile	comparison	of	biopsy	and	ctDNA	samples.	Related	to	Figure	5.		
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