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Abstract
Background: BEECH investigated the efficacy of capivasertib (AZD5363), an oral inhibitor of AKT 

isoforms 1–3, in combination with first-line weekly paclitaxel for advanced or metastatic oestrogen 

receptor-positive (ER+)/human epidermal growth factor receptor 2-negative (HER2−) breast cancer, 

and in a phosphoinositide 3-kinase, catalytic, alpha polypeptide mutation sub-population (PIK3CA+).

Patients and methods: BEECH consisted of an open-label, phase 1b safety run-in (Part A) in 38 

patients with advanced breast cancer, and a randomised, placebo-controlled, double-blind, phase 2 

expansion (Part B) in 110 women with ER+/HER2− metastatic breast cancer. In Part A, patients 

received paclitaxel 90 mg/m² (Days 1, 8 and 15 of a 28-day cycle) with capivasertib taken twice daily 

(BID) at two intermittent ascending dosing schedules. In Part B, patients were randomly assigned, 

stratified by PIK3CA mutation status, to receive paclitaxel with either capivasertib or placebo. The 

primary endpoint for Part A was safety to recommend a dose and schedule for Part B; primary 

endpoints for Part B were progression-free survival (PFS) in the overall and PIK3CA+ sub-population.

Results: Capivasertib was well tolerated, with a 400 mg BID 4 days on/3 days off treatment schedule 

selected in Part A. In Part B, median PFS in the overall population was 10.9 months with capivasertib 

versus 8.4 months with placebo (hazard ratio [HR] 0.80; P = 0.308). In the PIK3CA+ sub-population, 

median PFS was 10.9 months with capivasertib versus 10.8 months with placebo (HR 1.11; P = 

0.760). The most common Grade ≥3 adverse events in the capivasertib group were diarrhoea, 

hyperglycaemia, neutropoenia and maculopapular rash. Dose intensity of paclitaxel was similar in 

both groups.

Conclusions: Capivasertib had no apparent impact on the tolerability and dose intensity of paclitaxel. 

Adding capivasertib to weekly paclitaxel did not prolong PFS in the overall population or PIK3CA+ 

sub-population of ER+/HER2− advanced/metastatic breast cancer patients.

Word count: 299/300

ClinicalTrials.gov
NCT01625286.
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Key message

BEECH is the first randomised clinical trial assessing safety and efficacy of an AKT inhibitor in 

combination with paclitaxel in patients with ER+/HER2− metastatic breast cancer with or without a 

PIK3CA mutant. Capivasertib was well tolerated and had no marked impact on dose intensity of 

paclitaxel. Adding capivasertib to first-line weekly paclitaxel did not prolong PFS in either population. 

Character count (including spaces): 395/400

Introduction

The PI3K/AKT/mTOR (phosphoinositide 3-kinase/AKT/mechanistic target of rapamycin) signalling 

pathway is critical for controlling cell metabolism, proliferation and survival, and is the most 

frequently dysregulated pathway in cancer [1]. Activating phosphoinositide 3-kinase, catalytic, alpha 

polypeptide (PIK3CA) mutations are the most common genetic alterations in oestrogen 

receptor-positive (ER+) breast cancers [2–4] and have been implicated in cancer therapy resistance 

[5]. Taxanes are among the most active agents against metastatic breast cancer [6], and have 

significantly improved response rate and progression-free survival (PFS) [7]. However, in some 

disease settings, exposure to cytotoxic agents, including taxanes, activates AKT signalling [8–10], 

which may initiate survival pathways that limit chemotherapy effectiveness [11].

Capivasertib (AZD5363), a potent, selective oral inhibitor of AKT isoforms 1– 3, is under investigation 

for a range of therapeutic indications [12, 13]. Capivasertib inhibits the growth of various breast 

cancer cell lines (including ER+ and human epidermal growth factor receptor 2 [HER2]-amplified cell 

lines) and HER2+ breast xenograft models, and sensitises breast cancer xenografts to docetaxel [14]. 

Cancer models with a PIK3CA mutation, phosphatase and tension homolog (PTEN) loss or 

inactivating mutation have increased sensitivity to capivasertib [14].

In breast cancer xenograft models, capivasertib intermittent and continuous dosing schedules were 

both active, although higher intermittent schedules induced apoptosis while a lower continuous 

schedule only inhibited proliferation [14, 15]. The preclinical models suggested the importance of 

sequence: docetaxel administered before capivasertib improved efficacy, while docetaxel 
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administered after capivasertib was antagonistic [15]. This collective evidence provided the rationale 

to conduct the phase 1/2 randomised BEECH study evaluating capivasertib in combination with first-

line weekly paclitaxel in patients with advanced or metastatic ER+/HER2– breast cancer. Weekly 

paclitaxel was chosen as the combination therapy because of superior tolerability to docetaxel [16, 

17]. 

Patients and methods

Study design and participants

BEECH was an international, multicentre study comprising two parts: Part A was an open-label, 

safety run-in of capivasertib in combination with paclitaxel, in patients with advanced/metastatic 

breast cancer, to identify the recommended dosing schedule for Part B. Part B was a double-blind, 

randomised expansion phase of capivasertib in combination with paclitaxel versus placebo plus 

paclitaxel, in patients with ER+ advanced breast cancer with or without a PIK3CA mutation receiving 

chemotherapy for the first time in the advanced setting. 

The study protocol was approved by an institutional review board or independent ethics committee 

at each site. Signed informed consent was obtained from each patient (ClinicalTrials.gov identifier: 

NCT01625286). The study was carried out in accordance with the principles of the International 

Conference on Harmonisation Guidelines for Good Clinical Practice, the Declaration of Helsinki, and 

all applicable national and local laws.

Procedures

In Part A, multiple ascending doses of two intermittent dosing schedules of capivasertib were 

combined with weekly paclitaxel. Paclitaxel was given at 90 mg/m2 in 4-weekly cycles (3 weeks on 

and 1 week off treatment), while capivasertib was taken orally as capsules or dose-equivalent tablets 

(40 mg to 200 mg) twice daily (BID), each week paclitaxel was received. Two intermittent dosing 

schedules of Schedule 1 (2 days on then 5 days off treatment, starting at a dose of 560 mg BID) and 

Schedule 2 (4 days on then 3 days off treatment, starting at a dose of 360 mg BID) were investigated. 

For both schedules, three to six evaluable patients were enrolled into each dose cohort. The decision 

to escalate dose was determined by safety evaluation and, if available, pharmacokinetic (PK) data. If 

two or more of the six patients experienced a dose-limiting toxicity (DLT), this was considered the 

non-tolerated dose (NTD), and dosing escalation ceased. The maximum tolerated dose (MTD) was 

defined as the highest last dose assessed below the NTD.
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In Part B, patients were randomly assigned double-blind (1:1), stratified by PIK3CA mutation status, 

to receive paclitaxel with either capivasertib or placebo, at a dosing schedule identified from Part A. 

Enrolment was capped to ensure 50 patients each with PIK3CA+ and PIK3CA– disease were included. 

PIK3CA mutation status was determined from the most recent archival tumour tissue (derived from 

the diagnostic tumour or a metastatic site) and/or circulating tumour DNA (ctDNA) using the 

validated cobas® PIK3CA Mutation Test RUO [18]. Patients were allocated to the PIK3CA+ stratum if 

a mutation was identified in tissue or ctDNA. 

In both parts, capivasertib dosing continued until disease progression (Response Evaluation Criteria 

In Solid Tumors [RECIST] v1.1), unacceptable toxicity, death or patient withdrawal. Adverse events 

(AEs) were assessed and graded according to Common Terminology Criteria for Adverse Events 

(CTCAE) 4.0. For patients experiencing hyperglycaemia (post-dose plasma glucose level ≥8·9 mmol/L 

[≥160 mg/dL]), metformin was recommended on the days of capivasertib administration. 

Endpoints

In Part A, the primary objective was to assess safety and tolerability, to recommend a dose and 

schedule for Part B. In Part B, the primary objective was to assess the efficacy of capivasertib when 

combined with paclitaxel by assessment of PFS in the overall population and in the PIK3CA+ sub-

population. PFS was defined as the time from randomisation until objective disease progression. 

Secondary endpoints are described in supplementary material.

Statistical analysis

For Part B, the planned sample size was 100 patients with 76 PFS events for primary analysis of the 

overall population. This was required to detect a hazard ratio (HR) of 0.61 with 80% power at the 

one-sided 10% level, which corresponded to an increase in median PFS from 5.0 to 8.2 months for 

the overall population. This sample size would also enable detection of an improvement in PFS from 

9.0 to 14.8 months (in case of superior performance of the control arm). In the PIK3CA+ sub-

population, 38 events were required to detect a HR of 0.5, using the same power and significance 

levels.

For Part A, the efficacy analysis set included all patients who received at least one dose of study 

treatment, and for Part B, this was defined as all randomised patients on an intention-to-treat basis. 

PFS for Part B was analysed using Cox proportional-hazards models. The model for the overall study 
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effect was stratified by PIK3CA mutation status, along with 80% confidence intervals (CI) and two-

sided P-values. The safety analysis set for both parts of the study was defined as all patients who 

received at least one dose of study treatment. 

More details on Patients and Methods are found in supplementary material. 

Results

Part A: Safety run-in phase

Between 3 October 2012 and 1 December 2014, 44 patients were assessed for eligibility, of whom 

20 received dosing Schedule 1 and 18 received dosing Schedule 2 (Figure 1a). The data cut-off was 

23 February 2015. Baseline characteristics of Part A patients are shown in Supplementary Table S1.

In Part A, the most common AEs, irrespective of causality, were diarrhoea, nausea and asthenia 

(Supplementary Table S2). Diarrhoea and neutropoenia were DLTs in Schedule 1 (occurring in the 

640 mg BID dose cohort), and allergic reaction and skin rash were DLTs in Schedule 2 (occurring in 

the 480 mg BID dose cohort; Supplementary Figure S3). 

The capivasertib MTD for Schedule 1 was 560 mg BID in combination with 90 mg/m2 paclitaxel; for 

Schedule 2 was 400 mg BID in combination with 90 mg/m2 paclitaxel. Schedule 2 (4 days on/3 days 

off) at capivasertib 400 mg BID was selected as the recommended dosing schedule for Part B. This 

dose was also supported by safety data from the phase 1 monotherapy study [13] and preclinical 

PK–pharmacodynamic-efficacy mathematical modelling [15], which predicted that the capivasertib 

MTD of Schedule 1 was not sufficiently high enough to compensate for the shorter treatment 

duration. The efficacy data for Part A are summarised in Supplementary Table S4.

Part B: Randomised phase

For Part B, patients were enrolled from 6 February 2014 to 1 March 2016, with a data cut-off of 28 

January 2017. Of the 194 patients screened, 110 were randomised: 54 to the paclitaxel plus 

capivasertib arm and 56 to the paclitaxel plus placebo arm (Figure 1b).

Baseline characteristics for Part B were well balanced between treatment groups and within each 

PI3KCA+/– stratum, with respect to demographic and other clinical characteristics. There was no 

evidence of a baseline characteristic sub-group effect (Supplementary Table S5; Supplementary 

Figure S6). Fifty-one (46%) patients were PIK3CA+ and 59 (54%) were PIK3CA– (Supplementary 
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Tables S1, S8; Supplementary Figure S7). Further details on baseline characteristics and PIK3CA 

mutation data are described in supplementary results.

In the overall population, median PFS was 10.9 months (95% CI 8.3–12.4) on capivasertib plus 

paclitaxel and 8.4 months (95% CI 8.2–10.8) on placebo plus paclitaxel (HR 0.80; 80% CI 0.60–1.06; P 

= 0.308; Figure 2a). In the PIK3CA+ sub-population, the median PFS was 10.9 months (95% CI 8.7–

11.5) on capivasertib plus paclitaxel compared with 10.8 months (95% CI 8.3–14.3) on placebo plus 

paclitaxel (HR 1.11; 80% CI 0.73–1.68; P = 0.760; Figure 2b). Exploratory analysis including efficacy in 

the PIK3CA– sub-population and secondary efficacy endpoints are described in supplementary 

results (Supplementary Figures S9–S11; Supplementary Table S12).

The most common AEs of any grade in patients who received capivasertib plus paclitaxel were 

diarrhoea (n = 41; 76%), alopecia (n = 28; 52%), and nausea (n = 21; 39%). Thirty-two (59%) patients 

in the capivasertib arm, and 17 (31%) patients in the placebo arm had an AE of Grade ≥3 

(Supplementary Table S13). Per investigator opinion, causally related AEs of Grade ≥3 occurred in 28 

(52%) patients receiving capivasertib and 11 (20%) receiving placebo. The most common Grade ≥3 

AEs causally related to either treatment group (capivasertib vs placebo) were diarrhoea (22% vs 2%), 

hyperglycaemia (13% vs 0%), neutropoenia (11% vs 9%) and maculopapular rash (9% vs 0%; 

Supplementary Table S13). Overall, 96 (87.3%) patients discontinued study treatment: 47 (87.0%) in 

the capivasertib group and 49 (87.5%) in the placebo group. Capivasertib/placebo discontinuations 

were mostly due to disease progression (35/47 patients in the capivasertib group and 35/49 in the 

placebo group), with only 2 (3.7%) patients discontinuing treatment due to AEs causally related to 

capivasertib/placebo only. The relative dose intensity (RDI) of capivasertib/placebo was lower in the 

capivasertib group (86.1%) than in the placebo group (95.4%). The mean paclitaxel RDI was similar in 

the capivasertib group (91.5%) and in the placebo group (92.5%; Supplementary Table S14). Further 

safety assessments are described in supplementary safety data.

In line with previous clinical data [13], significant decreases of GSK3β phosphorylation (a biomarker 

for capivasertib activity [19]) in platelet-rich plasma (PRP) were observed in the capivasertib plus 

paclitaxel arm compared with the placebo plus paclitaxel arm, with a nadir of –50% at 4 hours after 

the first dose (Supplementary Figures S15, S16). The median pGSK3β values decreased with 

increasing capivasertib plasma concentration, but the maximum reduction in pGSK3β was observed 

approximately 2 hours after the peak plasma concentration. On Cycle 1, Week 3, Day 2 (3 days after 

the latest dose), pre-dose pGSK3β had returned to baseline, and at 4 hours post dose the reduction 

was similar to that after the first dose.
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Discussion
In this phase 1/2 trial, capivasertib was well tolerated, with a low discontinuation rate and no 

apparent marked impact on tolerability and dose intensity of paclitaxel. Toxicity appeared to be well 

managed with dose modifications and supportive care. 

No statistically significant differences in primary or secondary endpoints between capivasertib and 

placebo were demonstrated in the overall population or in the PIK3CA+ sub-population. This is 

despite strong preclinical data [14] and a phase 1 study [13] showing PIK3CA+ cancers are associated 

with a response to capivasertib monotherapy. Similarly, other studies have demonstrated a lack of 

preclinical translation into a clinical setting, with PIK3CA+ tumours failing to show a significant 

benefit from PI3K-targeted therapies when combined with paclitaxel in the ER+ breast cancer setting 

[20–22]. It is unclear whether this is a failure of the pre-clinical hypothesis or an inability to 

sufficiently inhibit PI3K/AKT signalling while maintaining paclitaxel exposure in ER+ breast cancer 

patients. Two AKT inhibitors (capivasertib and ipatasertib) in combination with paclitaxel have now 

independently shown improved PFS and overall survival compared with placebo plus paclitaxel in 

unselected triple-negative breast cancers (PAKT and LOTUS trials, respectively), with more 

pronounced benefit in patients with PIK3CA/AKT1/PTEN-altered tumours [23, 24]. In LOTUS, an even 

larger improvement in PFS was shown in the PIK3CA/AKT1-mutant sub-population, although efficacy 

in this sub-group should be interpreted with caution because of limited sample size [25]. This 

demonstrates efficacy of AKT inhibition in combination with paclitaxel in triple-negative breast 

cancers. Of note, approximately half of triple-negative breast cancers have deficient expression of 

the tumour suppressor PTEN, which is associated with a higher degree of AKT pathway activation 

[26, 27], as well as frequent loss of expression of the pathway phosphatase INPP4B [28]. BEECH was 

conducted in ER+ breast cancer patients, and no concomitant endocrine therapy was allowed during 

the study. Inhibition of the PI3K pathway results in enhanced ER function and dependence in ER+ 

breast cancer, suggesting that combinations of PI3K pathway and ER inhibitors may be required [29]. 

Several mechanisms could drive ER expression following PI3K/AKT inhibition, including FOXO3a-

driven transcription and the epigenetic regulator histone-lysine N-methyltransferase 2D [30]. This is 

also supported by the complex nature of the cross-talk between ER and AKT, where increased AKT 

signalling may lead to ligand-independent ER activity. Alternatively, AKT signalling can suppress ER 

expression, circumventing the need for ER-driven transcription. In this setting, 

perturbation/suppression of PI3K/AKT signalling induces ER-dependent transcriptional activity, 

which may be reversed with ER targeted therapies [28]. Of note, inhibition of AKT with monotherapy 

capivasertib in the HBCx22OvaR xenograft model modestly increased ER expression and activated 
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ER-dependent genes, which was ameliorated by combination with fulvestrant [31]. Therefore, 

although BEECH was not designed to address the question, the lack of ER blockade may have played 

a role in the inability of capivasertib to improve outcome in combination with paclitaxel.

Limitations to this study include the relatively small number of patients in each sub-group. BEECH 

investigated a specific schedule of capivasertib administration. The current study did not consider 

other molecular aberrations of the PI3K/AKT/mTOR pathway as part of patient selection. Further 

analyses of ctDNA are underway that may reveal other potential biomarkers that could be evaluated 

in future trials. In a previous phase 1 study of capivasertib in patients with advanced, solid tumours 

[11], retrospective analysis of archival tumour tissue from the two patients who achieved partial 

responses revealed AKT1 (E17K) mutation. The predictive role of AKT1 (E17K) mutation in the 

present study cannot be assessed due to the rarity of this aberration and therefore the expected 

small numbers of mutant cases. This remains a question of interest, also in view of the activity of 

capivasertib in patients whose tumours harbour this aberration [12, 32, 33].

Capivasertib is being investigated further in combination with paclitaxel in triple-negative breast 

cancer patients, and in combination with fulvestrant in ER+/HER– breast cancer patients either 

unselected and resistant to aromatase inhibitors, or in AKT1/PTEN-mutant segments.
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Figure titles and legends

Figure 1
Title: Trial profile

a) Part A

b) Part B

Legend/Footnote:

Screen failure was largely attributable to patients with no PIK3CA mutations identified after 25 
September 2015 when enrolment of PIK3CA– patients had ceased because the target number of 
PIK3CA– patients had been reached. All randomised patients received paclitaxel and all but one, 
randomised to the placebo group, received either capivasertib or matching placebo as assigned per 
the randomisation schema.

BID, twice daily; PIK3CA, phosphoinositide-3-kinase, catalytic, alpha polypeptide.
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Figure 2
Title: Progression-free survival in Part B

a) PFS in the overall population of Part B 

b) PFS in the PIK3CA+ sub-population of Part B

Legend/Footnote: 

● indicates a censored observation, assessed using RECIST v1.1 criteria.

HR, hazard ratio; PFS, progression-free survival; PIK3CA, phosphoinositide-3-kinase, catalytic, alpha 
polypeptide; RECIST, Response Evaluation Criteria In Solid Tumours Version 1.1.

Page 18 of 51Annals of Oncology



 

Figure 1a. Trial profile. a) Part A. Screen failure was largely attributable to patients with no PIK3CA 
mutations identified after 25 September 2015 when enrolment of PIK3CA– patients had ceased because the 
target number of PIK3CA– patients had been reached. All randomised patients received paclitaxel and all but 
one, randomised to the placebo group, received either capivasertib or matching placebo as assigned per the 
randomisation schema. BID, twice daily; PIK3CA, phosphoinositide-3-kinase, catalytic, alpha polypeptide. 
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Figure 1b. Trial Profile. b) Part B. Screen failure was largely attributable to patients with no PIK3CA 
mutations identified after 25 September 2015 when enrolment of PIK3CA– patients had ceased because the 
target number of PIK3CA– patients had been reached. All randomised patients received paclitaxel and all but 
one, randomised to the placebo group, received either capivasertib or matching placebo as assigned per the 
randomisation schema. BID, twice daily; PIK3CA, phosphoinositide-3-kinase, catalytic, alpha polypeptide. 
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Figure 2. Progression-free survival in Part B. a) PFS in the overall population of Part B. ● indicates a 
censored observation, assessed using RECIST v1.1 criteria. HR, hazard ratio; PFS, progression-free survival; 

PIK3CA, phosphoinositide-3-kinase, catalytic, alpha polypeptide; RECIST, Response Evaluation Criteria In 
Solid Tumours Version 1.1. 
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Figure 2. Progression-free survival in Part B. b) PFS in the PIK3CA+ sub-population of Part B. ● indicates a 
censored observation, assessed using RECIST v1.1 criteria. HR, hazard ratio; PFS, progression-free survival; 

PIK3CA, phosphoinositide-3-kinase, catalytic, alpha polypeptide; RECIST, Response Evaluation Criteria In 
Solid Tumours Version 1.1. 
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