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BACKGROUND. Understanding the integrated immunogenomic landscape of advanced
prostate cancer (APC) could impact stratified treatment selection.

METHODS. Defective mismatch repair (dMMR) status was determined by either loss of
mismatch repair protein expression on IHC or microsatellite instability (MSI) by PCR in 127
APC biopsies from 124 patients (Royal Marsden [RMH] cohort); MSI by targeted panel next-
generation sequencing (MSINGS) was then evaluated in the same cohort and in 254 APC
samples from the Stand Up To Cancer/Prostate Cancer Foundation (SU2C/PCF). Whole
exome sequencing (WES) data from this latter cohort were analyzed for pathogenic MMR
gene variants, mutational load, and mutational signatures. Transcriptomic data, available for
168 samples, was also performed.

RESULTS. Overall, 8.1% of patients in the RMH cohort had some evidence of dMMR,
which associated with decreased overall survival. Higher MSINGS scores associated with
dMMR, and these APCs were enriched for higher T cell infiltration and PD-L1 protein
expression. Exome MSINGS scores strongly correlated with targeted panel MSINGS scores
(r = 0.73, P < 0.0001), and higher MSINGS scores associated with dMMR mutational
signatures in APC exomes. dMMR mutational signatures also associated with MMR gene
mutations and increased immune cell, […]
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Introduction
Understanding the relationship between tumor genomics and the 
immune response in advanced prostate cancer (APC) has acquired 
major therapeutic relevance with the advent of immunotherapy, 
especially after the failure of anti-CTLA4 (ipilimumab) in 2 large 
phase III trials in unselected patients (1, 2). Of paramount impor-
tance, recent studies indicate that mismatch repair–defective 
(dMMR) cancers may benefit from immune checkpoint–inhib-
iting therapies (3), regardless of tissue of origin. Initial clinical 

data suggest that 5%–12% of patients with metastatic castration- 
resistant prostate cancer (mCRPC) may benefit from immune 
checkpoint blockade (4, 5). A variable prevalence (12%–22%) of 
dMMR machinery has been reported in different APC studies, 
and this could be related to technical limitations of distinct assays 
available to detect these genomic aberrations (6, 7).

The mismatch repair (MMR) system is a post-replicative, 
high-fidelity, single-strand repair mechanism that recognizes and 
reverses DNA base mismatches and insertion/deletion (indel) 
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Results
dMMR mCRPC. Given the clinical need to identify and charac-
terize dMMR tumors in APCs, we analyzed 127 mCRPC biopsies 
from a cohort of 124 mCRPC patients. For 85 patients, we had 
matched HNPC and CRPC samples (Figure 1). We first analyzed 
orthogonal assays for dMMR; these tests evaluated dMMR by (i) 
immunohistochemistry (dMMR_IHC); (ii) MSI by PCR (dMMR_
MSI; Promega MSI Assay v1.2); (iii) targeted NGS of MMR path-
way gene coding sequences (dMMR_MUT); (iv) MSI by NGS 
(dMMR_MSINGS). Overall, 10 patients had at least 1 tumor biop-
sy identified as having dMMR by IHC and/or MSI (8.1%, 10/124), 
and considered biomarker positive, with some patients having dis-
cordant results. Patient characteristics in the dMMR group and the 
comparator group were not dissimilar (Table 1).

In view of concerns regarding discordance between dMMR_
IHC and dMMR_MSI, we then evaluated 698 unstable (of 3,214) 
microsatellites present in our previously published targeted gene 
sequencing panel consisting of the coding regions of 113 genes 
(0.6-Mb panel) and estimated MSINGS (14, 15). These analyses 
revealed that prostate cancers with dMMR_IHC or dMMR_MSI 
often, but not always, have higher mutational loads and higher 
dMMR_MSINGS scores, with our data indicating overall that 
the dMMR_MSI Promega assay was most likely to give discor-
dant, presumed false-positive, results. Comparisons between 
the different assays are presented in Figure 2A (cases ranked by 
MSINGS score). Critically, there was no easily defined cutoff for 
the MSINGS data dividing tumors that were definitely dMMR 
from other cancers. However, a cutoff of 0.0244 with this targeted 
MSINGS panel had an AUC of 0.79, a sensitivity of 60%, and a 
specificity of 98% to predict MMR cases defined positive by IHC 
and/or MSI (Figure 2B).

Impact of mismatch DNA repair defects on outcome from pros-
tate cancer. The median overall survival (OS) for the dMMR_IHC/
dMMR_MSI group was shorter than in the MMR-proficient 
(pMMR) group in univariate and multivariate analysis (3.8 vs. 
7.0 years from start of luteinizing hormone–releasing hormone 
[LHRH]; adjusted hazard ratio (aHR), 4.09; 95% CI, 1.52–10.94;  
P = 0.005) as shown in Figure 2C and Table 2. Patients with pMMR 
and dMMR diseases were balanced in terms of clinical features, 
and no statistically significant differences were observed between 
the 2 groups in terms of radical treatments received, Gleason score, 
presence of metastatic disease at diagnosis, prostate-specific  
antigen (PSA), age, and stage at diagnosis (Table 1). Importantly, 
in this cohort of clinically aggressive tumors, 56% of the patients 
had metastatic disease at diagnosis.

Intrapatient dMMR heterogeneity in primary disease. Overall, for 
85 patients we had both (matched, same patient) HNPC and CRPC 
samples available for analyses. Of these 85, 5 patients (5.88%) 
had evidence of IHC-negative foci within their primary disease 
samples acquired at diagnosis; 4 of these 5 (80%) had diffusely 
negative dMMR_IHC in mCRPC biopsies, with 1 patient progress-
ing with MMR IHC–normal disease at mCRPC biopsy. Two of the 
5 hormone treatment–naive prostate cancer (HSPC) samples with 
IHC-negative foci demonstrated the coexistence of IHC-positive 
prostate cancer, i.e., heterogeneous staining (Supplemental Fig-
ures 1 and 2; supplemental material available online with this arti-
cle; https://doi.org/10.1172/JCI121924DS1). In contrast, a single 

loops; compromised MMR results in microsatellite instability and 
a hypermutator phenotype that has been associated with chemo-
therapy resistance but immunotherapy sensitivity (8). Immuno-
therapy-sensitive cancers such as melanomas tend to harbor high 
mutational loads (9, 10), which have been positively correlated 
with neoantigen burden (11). Conversely, mCRPCs on average 
have lower detectable mutation loads of approximately 4 muta-
tions/megabase (12).

Multiple approaches have been developed to leverage molec-
ular tumor profiling data toward that end, including mutational 
signatures associated with dMMR (10) and evaluation of micro-
satellite instability (MSI) using next-generation sequencing (NGS) 
(MSI-NGS) (13). Here we conducted an integrated characteriza-
tion of clinical, pathologic, genomic, and immunologic features of 
2 large APC cohorts. By analyzing a cohort of 124 Royal Marsden 
patients with non-indolent prostate cancer, with 85 hormone-
naive prostate cancer (HNPC) and 127 mCRPC tissue samples 
available, and 254 mCRPC tumors from the Stand Up To Cancer/
Prostate Cancer Foundation (SU2C/PCF) database, we aimed to 
characterize: (a) differences in clinical behavior between dMMR 
and non-dMMR prostate cancers; (b) sensitivity, specificity, accu-
racy, and agreement between different assays identifying dMMR 
tumors; (c) lymphocytic infiltration in mCRPC samples; (d) muta-
tional signatures and mutational load in metastatic prostate can-
cer; (e) the immune microenvironment in mCRPC; and (f) puta-
tive actionable immunotherapy targets in this disease. Our aim 
was to demonstrate that identification of dMMR with clinically 
available assays has limitations, and we hypothesized that a mul-
tipronged approach is necessary to adequately stratify mCRPC 
patients who could potentially benefit from immunotherapy with 
immune checkpoint–blocking drugs.
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(n = 2), soft tissue metastases (n = 1), and 1 sample from transure-
thral resection of the prostate (TURP; the last sample was excluded 
from this analysis, as it was not metastatic). T cell infiltration was 
strikingly heterogeneous, ranging from 0 to 828 lymphocytes/mm2 
(e.g., Supplemental Figure 3, B and C). Ranking tumors by T cell 
density showed that 5 of the 9 (55.5%) dMMR_IHC/dMMR_MSI 
cases were allotted to the upper quartile of D-TILs in this cohort 
and 3 of these 5 cases had more than 10 mutations (>90th percen-
tile; 113-gene panel). The remaining 4 dMMR_IHC/dMMR_MSI 
cases, however, did not show increased D-TILs relative to this 
cohort. These data suggest that some, but not all, mCRPC with 
dMMR_IHC/dMMR_MSI have higher D-TIL levels than tumors 
without dMMR (Figure 3A). Of the remaining pMMR samples in 
the upper quartile of D-TILs, none had pathogenic DNA repair 
defects by our targeted NGS panel; 2 pMMR samples in this group 
with high D-TIL levels showed deleterious mutations in other 
pathways (PIK3CA E542K; JAK1 E1051*). Overall, in this cohort 
of tumors analyzed for D-TILs, PD-L1 expression was associated 
with increased T cell infiltration in mCRPC samples (incidence 
rate ratio [IRR], 3.91; 95% CI, 1.45–10.53; P = 0.007; Figure 3C).

CRPC sample had MMR protein IHC heterogeneity, these biopsies 
having been acquired from a large pelvic mass arising from a previ-
ously irradiated prostate. These data indicate that dMMR can be 
focal in primary disease, but that having dMMR in primary disease 
strongly associates with developing dMMR CRPC.

PD-L1 expression and tumor-infiltrating lymphocytes in dMMR 
CRPC. We next evaluated whether dMMR mCRPC is enriched for 
programmed death ligand 1 (PD-L1) (CD274) protein expression, 
given the key role of this protein in regulating anticancer immune 
responses. We performed PD-L1 IHC with a validated antibody to 
the PD-L1 carboxy terminal domain (Cell Signaling Technology) 
on 51 mCRPC biopsies, with a pathologist blinded to dMMR sta-
tus scoring membranous staining in tumor cells (Supplemental 
Figure 3). Five of 10 (50%) dMMR mCRPC samples were scored 
as PD-L1 positive (Figure 3B), while 4 of 41 (9.8%) pMMR tumors 
had some positive PD-L1 staining. Although the optimal staining 
cutoff and optimal assay for determining PD-L1 expression as it 
pertains to therapeutic responses remain controversial, these data 
indicate a higher likelihood of PD-L1 positivity in dMMR mCRPC 
(mixed-effects logistic regression model odds ratio [OR], 14; 95% 
CI, 2–84; P = 0.005), providing further evi-
dence for dMMR as a potential predictive 
biomarker for immune checkpoint inhibi-
tion in lethal prostate cancer.

We next quantified the density of tumor-
infiltrating T lymphocytes (D-TILs) in biop-
sies from patients in this cohort for whom we 
had sufficient tumor tissue. D-TILs was here 
defined as numbers of CD4+ cells, with and 
without FOXP3, and CD8+ lymphocytes per 
mm2 of tumor determined through 180 mul-
tispectral, multicolor immunofluorescence 
(IF) image cubes (×200 magnification; 
median of 3 images per case; n = 51 selected 
CRPC biopsies). Tissue sites included lymph 
node biopsies (n = 35), bone (n = 12), liver  

Figure 1. Consort diagram. Assays per-
formed on 2 different cohorts of sample 
patients from the Royal Marsden Hospital 
(RMH) and the Stand Up To Cancer/
Prostate Cancer Foundation (SU2C/PCF) 
database. ML, mutational load; QC, quality 
control.

Table 1. Demographic and clinical characteristics of patients (n = 124) in the RMH cohort

Characteristics pMMR (n = 114) dMMR (n = 10) P value
Gleason score at diagnosis (>7), n (%) 69/92 (75%) 7/9 (78%) 0.61A

Stage at diagnosis (≥T3), n (%) 58/69 (84%) 4/5 (80%) 0.60A

Nodal involvement at diagnosis, n (%) 35/59 (59%) 1/2 (50%) 0.66A

Metastatic disease at diagnosis, n (%) 56/101 (55%) 5/8 (63%) 0.50A

Prostatectomy, n (%) 16/114 (14%) 1/10 (10%) 0.59A

Radiotherapy, n (%) 40/114 (35%) 3/10 (30%) 0.52A

Age at diagnosis, median (Q1–Q3) 62.2 (58.4–65.8) 62.9 (55.3–68.6) 0.71B

PSA at diagnosis, median (Q1–Q3) 75 (17–200) 76 (45–155) 0.68B

Q1, quartile 1. AFisher’s exact test. BWilcoxon’s rank sum test. P < 0.05 was considered statistically 
significant.
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Beyond mutations in canonical MMR genes, we hypothesized 
that signatures of mutational processes in individual tumors 
would shed light on DNA repair deficiencies (10, 16, 17) that may 
associate with distinct immunologic subtypes. To assess this, two 
independent groups from our team applied two different math-
ematical models to identify the mutational signatures present in 
each mCRPC biopsy utilizing either (i) Bayesian non-negative 
matrix factorization (NMF) (18) or (ii) non-Bayesian NMF (19). We 
identified 4 dominant mutational signatures that matched known 
Catalogue of Somatic Mutations in Cancer (COSMIC) mutational 
signatures, including dMMR-associated signatures (MMR6 and 

DNA mutation signatures and mutation load (SU2C/PCF cohort): 
DNA repair defects. We next evaluated the genomic and immuno-
logical features of mCRPC by analyzing exomes acquired from 
mCRPC biopsies by the SU2C/PCF International Prostate Cancer 
Dream Team (Figure 1). We first demonstrated that MSINGS gener-
ated by targeted panel analyses correlated with MSINGS acquired 
by analyzing exome sequencing data (r = 0.73, P < 0.0001) (Figure 
4A). Surprisingly, in 254 exomes, as with the targeted NGS efforts, 
there was no clear MSINGS cutoff for MMR tumors, although 
tumors with detected MMR gene mutations frequently had the 
highest MSINGS score (Figure 4B).

Figure 2. Comparative orthogonal analyses of dMMR in mCRPC. (A) Methods for detecting dMMR in 127 CRPC tumors from 124 patients with NGS 
available (samples sorted by MSINGS). From top to bottom: MSI by NGS (dMMR_MSINGS); mutational load per panel after SNP filtration; IHC for 
MLH1, PMS2, MSH2, MSH6 (blue marks absence of the protein); dMMR_MSI by PCR in blue. White indicates samples not assessable for analysis. 
Results for 1 dMMR patient are not shown, since MSINGS for this samples failed QC. (B) MSINGS score cutoff of 0.024 had sensitivity (SE) of 60% 
and specificity (SP) of 98% for predicting dMMR_IHC or dMMR_MSI, with an area under the ROC curve (AUC) of 0.79. ML ≥5.5 mutations had SE = 
78% and SP = 72% for predicting dMMR_IHC or dMMR_MSI (AUC = 0.75). (C) Kaplan-Meier survival curves from diagnosis (left) according to MMR 
status (median OS [mOS], 8.5 years; interquartile range [IQR], 5.5–13.5 years for pMMR vs. 4.1 years; IQR, 2.9–8.0 years for dMMR; log-rank test P = 
0.07). Kaplan-Meier survival curves from LHRH initiation (right), according to MMR status (mOS, 7.0 years; IQR, 5.3–13.5 years for pMMR vs. 3.8 years; 
IQR, 2.5–5.8 for dMMR; log-rank test, P = 0.003).
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ingly, inferred immune infiltrate also correlated with PD-L1 (Pear-
son’s r = 0.31; P = 5.1 × 10–5) and PD-L2 (Pearson’s r = 0.69; P = 1 × 
10–24) mRNA expression (Figure 6, A and B).

Immune transcript landscape in dMMR CRPC transcriptomes 
(SU2C/PCF cohort). We next examined the expression levels of 
a curated set of genes associated with immune checkpoints (21)  
(n = 32; see Methods). The overall geometric mean of expression of 
these transcripts strongly correlated with CD8A expression (Fig-
ure 6C) in these mCRPC biopsies. We next correlated the expres-
sion of these 32 immune checkpoint–related genes with dMMR-
associated mutational signature activity. To examine consistent 
associations of dMMR signatures with immune checkpoint gene 
expression independent of biopsy site (distribution in Supplemen-
tal Table 2), we focused our primary analysis on genes that passed 
multiple hypothesis testing (FDR < 0.1) in the overall analysis as 
well as statistical significance testing (P < 0.05) when stratified 
by biopsy site. This approach filtered out genes associated only 
in specific metastatic settings. Only 2 genes met these stringent 
criteria: the immune checkpoint molecule BTLA and the cytolytic 
molecule PRF1 (Figure 7, A–C). In bone metastases, the inhibitory 
myeloid receptor CD200R1 and the CD8+ T cell molecules CD8A 
and GZMA were also associated with dMMR signature activ-
ity, while CD276 (also known as B7-H3) was strongly negatively 
associated (FDR, <0.1) (Figure 7B). Interestingly, CD276 expres-
sion was the only immune gene strongly positively associated with 
the HRD mutational signature (FDR, <0.1). This association of 
B7-H3 expression with HRD was confirmed at a protein level by 
IHC (data not shown). When significance in each biopsy site was 
not required, the expression of 12 immune checkpoint genes was 
correlated with dMMR mutational signature activity (FDR, <0.1): 
CD28, CD200R1, BTLA, PRF1, TNFRSF9 (4-1BB), ADORA2A 
(A2A receptor), PDCD1LG2 (PD-L2), CD8A, IL10, CD80 (B7-H1), 
HAVCR2 (TIM-3), and CD274 (PD-L1).

We then applied this approach to an exploratory analysis of 
762 immune-related genes (22) (Figure 7, D–F) in order to discov-
er transcripts differentially overexpressed or underexpressed in 
dMMR tumors. We hypothesized that such transcripts might have 
a key role to play in anticancer inflammation and, if rigorously vali-
dated, could yield not only a better understanding of these process-

MMR26 matching to COSMIC signatures 6 and 26), homolo-
gous recombination deficiency–associated (HRD-associated) 
signatures (HRD3 matching to COSMIC signature 3), and aging-
associated signatures (Aging1 matching to COSMIC signature 1), 
with cosine similarities of 0.96, 0.88, 0.89, and 0.99, respectively. 
Patients with germline mutations (n = 1), nonsynonymous somat-
ic mutations (n = 6), or biallelic events (n = 7) in canonical MMR 
genes (total n = 14) had higher dMMR-associated DNA mutational 
signature activity (Supplemental Figure 4, A–C), which correlat-
ed with higher dMMR-associated mRNA expression signatures 
(Supplemental Figure 5, A and B). Patients with high MSINGS 
had predominant dMMR DNA mutation signatures (Figure 4C), 
and there was a strong correlation between dMMR mutational 
signature activity and MSINGS score (Figure 4B). Interestingly, 
however, some tumors without variants in MMR genes and with 
low MSINGS scores also had some evidence of dMMR-associated 
DNA mutation signatures. The significance of these dMMR signa-
tures in such tumors is unclear.

Immune transcripts in metastatic prostate cancer (SU2C/PCF 
cohort). To interrogate the relationship between cancer genom-
ics and the immune landscape, we next analyzed matched tran-
scriptomes from 168 tumors (Figure 1) using CIBERSORT (20), a 
method developed to deconvolute immune cell populations from 
bulk transcriptome data using immune cell–associated signatures. 
From these data, we inferred overall immune infiltrate and rela-
tive immune cell populations in mCRPC biopsies (Figure 5A), and 
observed substantial variation in overall immune infiltrate–related 
transcripts among tumor biopsy sites, as well as heterogeneity in 
inferred immune cell populations. Overall, monocytes and macro-
phages were the most common inferred immune cell populations, 
with higher levels of M2-polarized versus M1-polarized macro-
phages. These relationships persisted when we examined bone 
and lymph node metastases separately (data not shown). Notably, 
the proportion of dMMR mutational signature activity, but not 
overall mutation load or MSINGS score, was positively associated 
with inferred total immune infiltrate based on transcriptome data 
(Pearson’s r = 0.24; P = 0.002; Figure 5, B–D). This association per-
sisted when stratifying by biopsy site (bone metastases, r = 0.36,  
P = 0.008; lymph node metastases, r = 0.24, P = 0.05). Interest-

Table 2. Multivariate Cox’s regression analyses for OS for 124 patients in the RMH cohort

Variable OS from diagnosis OS from LHRHa
Univariable HR  

(95% CI)
P value Multivariable HR  

(95% CI)
P value Univariable HR  

(95% CI)
P value Multivariable HR  

(95% CI)
P value

dMMR 1.96 (0.94–4.10) 0.08 3.48 (1.36–8.91) 0.009 2.98 (1.41–6.32) 0.004 4.09 (1.52–10.94) 0.005
Metastatic disease at diagnosis 2.02 (1.23–3.31) 0.005 1.62 (0.76–3.45) 0.21 1.47 (0.90–2.39) 0.12 1.35 (0.64–2.85) 0.43
Nodal involvement at diagnosis 1.63 (0.81–3.29) 0.17 1.73 (0.74–4.02) 0.20 1.44 (0.77–2.67) 0.25 1.75 (0.80–3.84) 0.16
Stage at diagnosis (≥T3) 1.92 (0.87–4.20) 0.11 1.32 (0.43–4.09) 0.63 1.41 (0.64–3.11) 0.39 1.05 (0.34–3.30) 0.93
Gleason score at diagnosis (>7) 2.53 (1.29–4.95) 0.007 1.55 (0.63–3.85) 0.34 2.30 (1.17–4.53) 0.02 1.67 (0.65–4.28) 0.28
Previous treatment 
(prostatectomy or radiotherapy)

0.46 (0.28–0.75) 0.002 0.63 (0.29–1.34) 0.23 0.64 (0.39–1.05) 0.08 0.76 (0.36–1.59) 0.47

PSA at diagnosis (log10 ng/ml) 1.34 (0.99–1.82) 0.06 0.87 (0.58–1.32) 0.52 1.21 (0.90–1.64) 0.21 0.91 (0.62–1.35) 0.64
Age (10 yr, from diagnosis  
or LHRH)

1.66 (1.15–2.39) 0.007 1.71 (1.12–2.61) 0.01 1.59 (1.10–2.30) 0.01 1.78 (1.14–2.77) 0.01

LHRHa, LHRH analog; HR, hazard ratio. P < 0.05 was considered statistically significant.
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es, but novel anticancer therapeutic strategies. Overall, 89 genes 
were associated with dMMR signature activity after adjustment for 
multiple hypothesis testing when considering all biopsy sites (Fig-
ure 7D and Supplemental Table 3); 55 and 36 genes were associated 
in bone metastases and lymph node metastases, respectively (Fig-
ure 7, E and F, and Supplemental Tables 4–6). With the rigorous fil-
ters described above applied, 24 genes were consistently correlated 
with dMMR signature activity (Figure 7, D–F). This broader analy-
sis suggested that dMMR may be associated with a more complex 
immune infiltrate; upregulated transcripts included genes gener-

ally associated with dendritic cells (FLT3), macrophages/myeloid 
cells (PIK3CG), and T cells (CD8A, BTLA).

Discussion
Linking genomics to the immunologic features of tumors is of major 
interest in the field of immunooncology. In May 2017, the FDA 
granted accelerated approval for the anti-PD1 monoclonal anti-
body pembrolizumab — the first tissue-agnostic antitumor agent to 
be approved for solid malignancies underpinned by dMMR (3, 23). 
However, emerging clinical data show that (a) dMMR cancers do 

Figure 3. Tumor-infiltrating lymphocytes, molecular features, and PD-L1 expression of CRPC samples from RMH cohort. (A) Tumor-infiltrating T lym-
phocyte quantitation in 50 mCRPC biopsies, with MMR status according to the different orthogonal assays (MSI_MUT; MSI_IHC; MSI_MSINGS; mutation 
load), ordered from left to right by T cell infiltration score. A sample from 1 dMMR patient was not used for this analysis since it was a TURP sample taken 
at time of CRPC. Blue squares mark altered biomarker. (B) Stacked bar chart depicts proportion of PD-L1 immunohistochemical positivity (e.g., Supple-
mental Figure 3A) in samples reviewed by pathologists blinded to dMMR results in 51 mCRPC samples (n = 10 dMMR, n = 41 pMMR). (C) Dot plot showing 
the correlation between PD-L1 expression and T cell infiltration in mCRPC biopsies (n = 29). The y axis depicts total T cell infiltration defined as n of T 
cells/mm2 using a negative binomial regression model; there was an IRR of 3.91 (95% CI, 1.45–10.53; P = 0.007) for patients with PD-L1 > 0. Filled circles 
represent pMMR; open circles represent dMMR.
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not always respond to immunotherapy; and (b) cancers respond-
ing to immune checkpoint targeting are not necessarily dMMR 
as defined per conventional IHC and PCR assays (3, 23, 24). To 
improve the understanding of dMMR in prostate cancer, our work 
provides the first integrated analyses to our knowledge of genom-
ic, transcriptomic, and clinical data of large cohorts of advanced, 
castration-resistant prostate cancer. Among the clinically impor-
tant findings, we demonstrate (a) that dMMR prostate cancer 

represents a clinically aggressive phenotype; and (b) substantial 
discordance between orthogonal approaches to detecting dMMR, 
including clinical assays that are standard in other disease settings. 
To overcome the limitations presented by these assays, we lever-
aged NGS data from WES and mapped the genomic consequences 
of dMMR. We show that 2 distinct dMMR-associated mutational 
signatures can be robustly derived from exomes and that these sig-
natures predominate in cancers with MMR gene mutations, and 

Figure 4. Immune and mutational signature characterization of mCRPC in the SU2C/PCF dataset (n = 254). (A) Correlation between MSINGS by targeted 
panel and by exome sequencing. (B) Association between MSINGS score and dMMR signature activity. (C) MSINGS score (top), MMR gene mutations 
(middle), and DNA mutational signature activity (bottom). MMR-dominant indicates tumors with >50% dMMR-related mutations. Biallelic loss-of- 
function (LOF) events (homozygous deletions, nonsynonymous mutations + LOH, or multiple nonsynonymous mutations) (n = 7), single-allele nonsynony-
mous mutations (n = 6), or germline mutations (n = 1) in canonical MMR genes (MSH2/6, MLH1, PMS2) are indicated (for details, see Supplemental Table 1).
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Using NGS data, hundreds of microsatellites can be queried 
at a time, potentially improving the chances of MSI detection. 
Using MSINGS analysis of all satellites in exomes, we show that 
a high MSINGS score associates with a high proportion of dMMR 
signatures. Next, by delineating satellites for MSINGS analysis 
in our targeted sequencing panel, we show a strong correlation 
between MSINGS score from exomes and MSINGS score from 

associate with higher MSINGS and previously described transcrip-
tomic signatures of MMR-defective disease. Although mutational 
signatures are powerful alternate readouts for dMMR, these data 
need to be interpreted cautiously, since limitations to use include 
the similarities/overlapping of dMMR signatures with other signa-
tures, limited precision in low-mutational load tumors, and limited 
feasibility for most targeted sequencing approaches.

Figure 5. CIBERSORT analyses quantifying 22 immune cell subtypes and overall inferred immune infiltrate in mCRPC tumors with available transcrip-
tomes from the SU2C/PCF dataset (n = 168). (A) The y axis is an absolute quantification. We observed overall increased levels of M2-like macrophage sig-
nature relative to M1-like macrophages. (B) Association of dMMR mutational signature activity (proportion) with inferred immune infiltrate; the inferred 
Pearson’s correlation coefficient is 0.24 (P = 0.0017). (C) Association of mutational load with inferred immune infiltrate (Pearson’s ρ = 0.02, P = 0.77). (D) 
Association of MSINGS scores with immune infiltrate (Pearson’s ρ = 0.0066, P = 0.93).
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score that determines the presence of a dMMR tumor. Our data 
indicate that a cutoff that clearly discriminates dMMR cancers 
may be difficult to define.

Finally, using transcriptomic analysis, we conducted a com-
prehensive study of the immunological consequences of dMMR 
in mCRPC. Our data showed that prostate cancers with prominent 
dMMR mutational signatures have higher inferred immune cell 
infiltration. Qualitatively, dMMR mutational signatures associ-
ated with increased T cell–related transcripts, as well as immune 
checkpoint–related transcripts including PD-L1 and PD-L2. Inter-
estingly, dMMR tumors had higher expression of factors involved 
in T (and NK) cell recruitment (CCRs and CXCRs) and function 
(PRF1, BTLA, and TNFRSF9/CD137), with multiple genes related 
to immune checkpoints, including CD200R1 and the metabolic 
immune checkpoint adenosine receptor 2A (ADORA2A), also 
being upregulated (Supplemental Table 6). Our detailed analysis 
of immune-related genes in dMMR tumors also revealed promi-
nent expression of markers attributable to myelomonocytic cells 
(Supplemental Table 6), including VCAM1, NLRP3, and JAK2, 
described to mediate the accumulation and expansion of myeloid-
derived suppressor cells (MDSCs). Our results also identified as 
relevant the expression of CD36, a protein reported to be critical 
for M2 macrophage activation, and PI3Kγ, which was recently 
reported to be involved in the immunomodulatory activity of 
tumor-associated myeloid subsets. Indeed, inhibition of PI3Kγ in 
myeloid cells has been reported to reverse resistance to checkpoint 
blockade therapy in preclinical models. These mRNA data sug-
gest that in some dMMR mCRPCs, the efficacy of immune check-
point blockers may be enhanced through combination strategies 
aimed at depleting myeloid tumor subsets. The metabolic target 
ADORA2A is also of interest, as it is relatively overexpressed on 
both suppressive myeloid cells and Tregs. Determining the relative 
roles of these potential targets in dMMR mCRPC now requires rig-
orous translational evaluation in biology-driven therapeutic trials.

In conclusion, our data show that a subset of lethal prostate 
cancers is underpinned by dMMR defects. We show that dMMR 
is usually present at diagnosis, and our data indicate that these 
tumors constitute a discrete subtype with decreased survival time, 
with only a proportion of cases having high mutation load and 
PD-L1 IHC staining. dMMR exome mutational signatures and high 
MSINGS scores are associated with complex immune mRNA pro-
files that may require further sub-classification based, for example, 
on the degree of myeloid cell infiltration, which can affect clinical 
behavior and responses to immune checkpoint therapies.

Methods

Patients
We analyzed data from 2 cohorts of men with CRPC: (i) an updated com-
bined cohort of men with mCRPC from multiple institutions comprising 

targeted sequencing, indicating that MSINGS scores can be reli-
ably obtained from these and can provide a robust tool for identi-
fying prostate cancer underpinned by dMMR. A major challenge, 
however, remains determining the cutoff point in the MSINGS 

Figure 6. Analyses of immune cell and immune checkpoint transcripts 
from the SU2C/PCF dataset (n = 168). Correlation between inferred 
immune infiltrate and (A) PD-L1 and (B) PD-L2 expression in mCRPC 
transcriptomes. (C) Strong correlation between CD8A expression and the 
geometric mean of the other 31 immune checkpoint-related genes (Pear-
son’s ρ = 0.81, P = 8.2 × 10–40).
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IHC
FFPE samples were cut in 3-μm sections onto charged glass slides. 
Immunostaining was performed with antibodies against MSH2, 
MSH6, MLH1, PMS2 (M3639, clone FE11, 1:50; M3646, clone EP49, 
1:500; M3640, clone ES05, 1:100; and M3647, clone EP51, 1:100; 
Dako, Agilent Technologies), and PD-L1 (catalog 13684, clone E1L3N, 
1:200; Cell Signaling Technology). Heat-induced antigen retrieval 
was performed using Tris-EDTA buffer, pH 8.1, in a MenaPath Anti-
gen Access Unit at 125°C for 2 minutes to detect MSH2, MSH6, MLH1, 
and PMS2 or microwave oven for 18 minutes for the detection of 
PD-L1. Endogenous peroxidase was inactivated using 3% H2O2, and 
nonspecific staining was blocked using protein block serum-free solu-
tion (X0909, Dako, Agilent Technologies). Detection by diaminoben-
zidine reaction was performed using a Dako REAL EnVision Detec-
tion System (K5007, Agilent Technologies).

the SU2C/PCF Prostate Cancer Dream Team and (ii) a cohort of men 
with CRPC referred to the Royal Marsden, whose diagnostic samples 
and/or mCRPC biopsies were molecularly characterized between January  
2015 and June 2016 at the Institute of Cancer Research (London, United 
Kingdom). Patients were included in this study if they had available for-
malin-fixed, paraffin-embedded (FFPE) tissue samples from metastatic 
sites or primary tumors for MMR panel testing by IHC. Diagnostic tissue 
was obtained from prostate needle biopsy, TURP, or prostatectomy pro-
cedures. CRPC tissue was obtained from metastases within bone, lymph 
node, soft tissues, or visceral organs. All tissue blocks were sectioned and 
only considered for IHC analyses if adequate material was present (≥50 
tumor cells; reviewed by a pathologist in our group). Patients with his-
tologic features supporting a diagnosis of pure neuroendocrine or small  
cell cancer were not included. Demographics and clinical data were  
retrospectively collected from hospital electronic patient records.

Figure 7. Immune transcripts associated with dMMR mutation signature activity in mCRPC tumors from the SU2C/PCF dataset (n = 168). (A) Expression 
of immune checkpoint–related genes associated with dMMR mutation signature activity (32 immune checkpoint genes analyzed; Overall). (B) Expression 
of immune checkpoint–related genes associated with dMMR mutation signature cancers (32 immune checkpoint genes analyzed; Bone Metastases). (C) 
Expression of immune checkpoint–related genes associated with dMMR mutation signature activity (32 immune checkpoint genes analyzed; Lymph Node 
Metastases). (D) Discovery of immune mRNA transcripts associated with, in RNA-Seq analyses, dMMR mutation signature activity (762 immune transcript 
NanoString panel; Overall). (E) Discovery of immune mRNA transcripts associated with, in RNA-Seq analyses, dMMR mutation signature activity (762 
immune transcript NanoString panel; Bone Metastases). (F) Discovery of immune mRNA transcripts associated with, in RNA-Seq analyses, dMMR muta-
tion signature activity (762 immune transcript NanoString panel; Lymph Node Metastases).
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and EpCAM+ tumor cells. All tissue segmentation, cell segmentation, 
and phenotype determination maps were reviewed by a pathologist in 
our group. For each image, the tumor area (in mm2) and the number of 
CD4+FOXP3–, CD4+FOXP3+, and CD8+ cells were determined to cal-
culate the lymphocytic D-TILs (LD-TIL) determined as: (∑ T lympho-
cytes from all images)/(∑ of areas from all images).

MSI status
DNA (1 ng) was amplified using the MSI Analysis System (Promega) 
according to the manufacturer’s protocol. The MSI Analysis System 
is composed of 7 fluorescently labeled microsatellites including 5 
mononucleotide repeat markers (BAT-25, BAT-26, NR-21, NR-24, and 
MONO-27) for detecting MSI and 2 pentanucleotide repeat markers 
(Penta C and Penta D) for sample identification. The PCR products 
were run in an ABI 3730 DNA Analyzer and subsequently analyzed 
using GeneMapper 4.0 software (Thermo Fisher Scientific). Samples 
with microsatellite instability in 2 or more loci were defined as MSI-
high, whereas samples with a single locus were defined as MSI-low; 
samples were microsatellite-stable (MSS) if no instability at any of the 
loci tested was detected. For the purpose of statistical analysis, cases 
were dichotomized between MSI-high and MSS/MSI-low.

Sequencing and bioinformatics
Mutation load and calls. WES analysis was performed using stan-
dard analytical pipelines (29), including human genome alignment 
(30), somatic mutation analysis (31), and quality control (12). For 
panel testing data, the mutation load was extracted from targeted 
NGS panel data after spurious and germline changes were filtered 
out using previously described methods (32). Genetic variants were 
called using the GATK pipeline (30). Low-quality variants were 
removed (haplotype score >200, mapping quality <40, coverage 
depth <60, alternative allele <5% of reads, multiallelic calls, indels, 
known poorly sequenced sites). Variants were then annotated using 
Oncotator (version 1.8.0) (33). Germline variants were defined when 
the allele frequency was more than 5% in our cohort (n = 127) or in 
2 or more public databases (ExAC, ref. 34; 1000 Genomes, ref. 35; 
and dbSNP, ref. 36) or with more than 99.9% of the reads being the 
alternate allele. These germline variants were filtered out. Finally, 
point mutations described as somatic in the COSMIC database (37) 
at least 10 times were then “added” back into the mutation count. 
For small indels the same filtering was used, and copy number infor-
mation was obtained using CNVkit v0.3.5 (38); these were combined 
with filtered SNPs to find samples with somatic gene loss for MMR, 
DSB, NER, and BER genes.

MSINGS. MSINGS software (13) was used to score samples for 
an MSI-like phenotype by assessing targeted next-generation DNA-
sequencing data; due to batch-related exome sequencing variability, 
we were unable to utilize MSINGS on these data. In brief, the algo-
rithm functions by (a) identifying possible DNA repeat regions; (b) 
examining the frequencies of these alleles bearing varying repeat 
lengths; and (c) comparing these values with a baseline reference 
from MMR-intact specimens. Our targeted panel contained 3,214 pos-
sible loci. Tumor and normal samples were used produce an enriched 
reference set of 698 loci that could be utilized to predict MSI status 
computationally. We also used the default setting to derive MSINGS 
from WES data (tumor-normal paired), which were scaled by a factor 
of 0.209 for comparison with targeted panel scores.

Scoring of MSH2, MSH6, MLH1, and PMS2 was achieved by seg-
regating cases in a binary fashion between positives and negatives 
using College of American Pathologists criteria for biomarker report-
ing in colorectal carcinomas (25). In brief, nuclear staining–positive 
tumors, regardless of intensity, were called positive, and cases with 
absent nuclear staining were called negative. A comment on heteroge-
neity of staining was made when juxtaposition between positive and 
negative areas was observed with adequate internal controls. PD-L1 
staining was done using a PD-L1 monoclonal antibody (rabbit, clone 
E1L3N, 1:200; Cell Signaling Technology), which has recently been 
shown to be comparable with other, FDA-approved IHC assays (26). 
Heat-based antigen unmasking was achieved by microwaving the 
slides in Tris-EDTA buffer, pH 8.1. The antibody was diluted at 1:200 
and incubated at room temperature for 1 hour. Reactions were visual-
ized using the Dako REAL EnVision Detection System (Agilent Tech-
nologies). Partial or complete membrane staining was considered a 
signal and cases were evaluated as a tumor proportion score, i.e., num-
ber of signal positive viable tumor cells/total number of viable tumor 
cells as previously described (27).

IF
Multiplex sequential IF staining was performed on 3-μm sections from 
FFPE tissue. Antigen retrieval was performed using CC1 buffer (950-
224, Ventana Medical Systems) at 98°C for 36 minutes in a water bath. 
Endogenous peroxidase was inactivated in 3% H2O2 for 10 minutes. 
Tissue sections were incubated for 60 minutes at room tempera-
ture with antibodies against CD4 (104R-16, clone SP35, 1:100, Cell 
Marque) and CD8 (M7103, clone C8/144B, 1:200, Dako, Agilent Tech-
nologies). A second layer of antibodies using Alexa Fluor 555–conju-
gated IgG (H+L) goat anti-rabbit (A21429, Invitrogen) and Alexa Fluor 
488–conjugated IgG (H+L) goat anti-mouse (A-11029, Invitrogen) was 
used to detect CD4 and CD8, respectively. Tissue sections were treat-
ed with an avidin/biotin blocking kit according to the manufacturer’s 
protocol (ab64212, Abcam) and rabbit/mouse normal serum at 5% for 
30 minutes. Next, tissue sections were incubated for 60 minutes with 
antibodies against FOXP3 conjugated to biotin (13-4777-82, clone 
236A/E7, 1:100, eBioscience) and EpCAM conjugated to Alexa Fluor 
647 (5447S, clone VU1D9, 1:200, Cell Signaling Technology). Tissue 
sections were incubated with streptavidin peroxidase (HRP) (K5001, 
Dako, Agilent Technologies) for 15 minutes, followed by a TSA Cou-
marin detection system (NEL703001KT, PerkinElmer) for 10 min-
utes. Nuclei were counterstained with DRAQ7 (DR71000, BioStatus), 
and tissue sections were mounted with ProLong Gold antifade reagent 
(P36930, Molecular Probes). After staining, slides were scanned using 
a multispectral camera provided by the Vectra (PerkinElmer) system 
(28). Whenever possible, more than one nonoverlapping micrograph 
at ×20 magnification was collected.

Digital image analysis
Linear unmixing of multispectral images was done using inForm Cell 
Analysis software version 2.1.1. A tissue segmentation algorithm was 
developed using EpCAM positivity as a tumor mask to separate neo-
plastic cells from adjacent stroma. A cell segmentation algorithm was 
developed using DRAQ7 as nuclear marker and phenotype determi-
nation was based on staining for EpCAM, CD4, FOXP3, and CD8. 
Cells in tumor areas selected by the algorithm were separated into 
bins as follows: CD4+FOXP3– cells, CD4+FOXP3+ cells, CD8+ cells, 
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BTLA, TIGIT, CD8A, PRF1, IL10, CD80, GZMA, CD86, IFNG, and 
LAG3 (21). We calculated a geometric mean of expression levels across 
the 32 genes to generate an overall measure of immunomodulatory 
gene expression. For comparison of overall immunomodularity gene 
expression with CD8A (Figure 6C), the geometric mean of the other 
31 genes was calculated.

Statistics
OS was measured from the date of diagnosis, and date of start of 
LHRH agonist alone or with anti-androgen for metastatic or advanced 
disease, to the date of date of death from any cause. The relationship 
between dMMR_IHC and MMR_MSI tumors and OS was analyzed 
using univariate and multivariate Cox’s regression modeling, adjust-
ing for radical treatment (prostatectomy or radiotherapy), Gleason 
score, age, PSA and nodal status, stage, and presence of metastatic 
disease at diagnosis. One or more factors were missing in approxi-
mately 16% of patients, and these were considered to be missing at 
random. Multiple imputation by chained equations with the above 
coefficients was used to generate 20 imputations; per-imputation esti-
mates were combined using Rubin’s rules. Youden’s statistic (45) was 
used to determine the optimal cutoff for MSI by NGS and mutational 
load. To determine the statistical association between PD-L1 staining 
and dMMR, we applied a mixed effects logistic regression model with 
a random intercept effect per patient, which accounts for the correla-
tion between samples from the same patient. All statistical tests were 
2-sided. A P value less than 0.05 was considered significant.

Study approval
All SU2C/PCF study individuals provided written informed consent 
for collection of fresh tumor biopsies and for comprehensive molecu-
lar profiling of tumor and germline samples. All Royal Marsden Hospi-
tal patients gave written informed consent and were enrolled in insti-
tutional protocols approved by the Royal Marsden NHS Foundation 
Trust Hospital (London, UK) ethics review committee (reference no. 
04/Q0801/60).
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Targeted NGS. Targeted sequencing was performed as previously 
described (15). Libraries were constructed from 40 ng DNA using Gene-
Read Mix-n-Match V2 (QIAGEN) customized 113 genes panel, and 
pooled libraries were sequenced on the MiSeq (Illumina). FASTQ files 
were generated using Illumina MiSeq Reporter v2.5.1.3. Sequence align-
ments were performed using Burrows-Wheeler Aligner (BWA) tools and 
the Genome Analysis Toolkit (GATK) variant annotator by the QIAGEN 
GeneRead Targeted Exon Enrichment Panel Data Analysis portal.

Exome mutational signatures. Mutational signatures were derived 
by assessing types of somatic mutation and the nucleotides immedi-
ate upstream and downstream of the mutations (96 base substitutions 
in trinucleotide sequence contexts) using 2 methods analyzed inde-
pendently: (i) Mutation Signature Profiling (a Bayesian non-negative 
matrix factorization [NMF] method) using default parameters (18) 
(http://software.broadinstitute.org/cancer/cga/msp); and (ii) a non-
Bayesian approach using multiplicative updates (19) with the Brunet 
method (39). The optimal rank (number of mutational signatures) was 
inferred after manually examining cophenetic coefficients, residuals, 
and residual sum of squares for 50 NMF runs at ranks 2–8, as well as 
comparing discovered signatures with previously discovered signa-
tures using a cosine similarity measure. High cophenetic coefficients, 
low residuals, low residual sum of squares, and high cosine similarity to 
previous signatures were preferred. We used the R-packages Somatic-
Signatures (40) V2.6.1 and NMF (41). Since NMF is nondeterministic, 
we performed 200 independent NMF runs for a given rank and chose 
the resulting mutational signatures and signature activity per tumor 
from the NMF run with the minimum residual error. Linear regression 
was used to assess the mutational signature–associated gene expres-
sion. The correlation coefficient was used for Gene Set Enrichment 
Analysis (GSEA) (pre-ranked gene list; http://software.broadinstitute.
org/gsea/) with the default parameters.

RNA-Seq analysis
Available RNA-Seq data from the SU2C combined cohort (12) were ana-
lyzed. Expression data were examined and adjusted for batch effects 
using ComBat (42) via the R Bioconductor package “sva” V3.22.0 (43). 
Data in BAM format have been deposited into the NCBI’s dbGaP data-
base (phs000915.v1.p1; see methods in ref. 12 and ref. 44 for details).

Correlations and associated P values between immunomodulato-
ry gene expression, mutational load, and mutational signature activ-
ity were calculated using Pearson’s correlation. A Benjamini-Hoch-
berg FDR of 0.1 was used to identify significantly correlated genes. 
For significant correlations, individual scatterplots were manually 
examined, outliers were removed, and the significance of the correla-
tion was verified.

Tumor sample immune infiltrate was quantified using CIBER-
SORT (20), which was run using the CIBERSORT interface (https://
cibersort.stanford.edu) set to absolute quantification output. Gene-
level transcripts per million (TPM) was used as input, and LM22 (20) 
(leukocyte gene signature matrix) was used to deconvolve 22 immune 
cell subset populations. Correlations between immune cell subsets, 
mutational load, and mutational signatures were calculated as above.

Immune checkpoint genes along with other markers of T cell infil-
trate and activity (n = 32 total) whose gene expressions we examined 
were CD28, ICOSLG, ICOS, TNFRSF9, TNFSF9, TNFSF4, TNFRSF4, 
CD70, CD27, CTLA4, PDCD1, CD274, PDCD1LG2, CD47, HAVCR2, 
LGALS9, ADORA2A, CD200, CD200R1, CD276, VTCN1, TNFSF14, 
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