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Abstract  

 

Synthetic lethality has long been proposed as an approach for targeting 

genetic defects in tumours. Despite a decade of screening efforts, relatively 

few robust synthetic lethal targets have been identified. Improved genetic 

perturbation techniques, especially those based on CRISPR-Cas9 gene 

editing, have resulted in renewed enthusiasm for searching for synthetic lethal 

effects that operate in cancer [1]. An implicit assumption behind this 

enthusiasm is that the lack of reproducible targets identified can be attributed 

to the limitations of RNA interference technologies. Here, we argue that a 

bigger hurdle is that most synthetic lethal interactions are not highly penetrant, 

i.e. are not robust in the face of the extensive inter- and intra- molecular 

heterogeneity seen in tumours. We outline strategies for identifying and 

prioritising those synthetic lethal interactions most likely to be highly 

penetrant.  
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Highlights (900 characters, including spaces to be submitted as separate 

word doc) 

 

 The development of CRISPR-Cas9 technologies has caused renewed 

enthusiasm for identifying synthetic lethal effects that operate in cancer 

 Whilst some of this enthusiasm is warranted, we highlight the one 

factor limits the utility of synthetic lethal interactions as cancer 

treatments – most synthetic lethal effects are private to individual 

model systems and display incomplete penetrance 

 Experimental and computational methods for defining synthetic lethal 

penetrance are discussed  

 We predict the biological principles that might determine the extent of 

synthetic lethal penetrance 

 

The search for synthetic lethality in cancer  

 

Searching for “synthetic lethality” and “cancer” in Pubmed will reveal a 

plethora of review articles that detail how a genetic phenomenon first 

observed in model organisms has led to the development of novel therapeutic 

approaches in cancer. ‘Synthetic lethality’ (see Glossary) was initially used to 

describe an incompatibility between pairs of alleles in fruit flies, but has 

broadly come to indicate any instance where perturbation of two genes 

individually is well tolerated but in combination results in cell death. The first 

clinical application of this concept led to the regulatory approval of a drug 

class, known as PARP inhibitors, for the treatment of breast or ovarian 

cancers with mutations in the BRCA1 or BRCA2 tumour suppressor genes [2]. 

The potential of exploiting synthetic lethality to target tumours has been such 

that many papers have been published identifying synthetic lethal effects 

associated with individual cancer ‘driver’ genes. These ‘gene centric’ efforts 

have been complemented by near industrial scale ‘unbiased’ efforts to map 

the genetic dependencies of large panels of tumour cell lines [3-6]. These 

studies provide an overview of the genes necessary for the growth of 

individual cell lines and, in combination with genotype information, can be 
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used to identify synthetic lethal effects. The ultimate goal of these efforts is to 

identify vulnerabilities in human cancers that can be exploited using drugs. 

 

Mapping out the various synthetic lethal effects that operate in human cancer 

is clearly a worthwhile pursuit. Despite some major advances in developing 

treatments that target specific vulnerabilities in cancers, the vast majority of 

patients are still treated with approaches that could be grouped into one of 

three categories; remove the tumour (surgery), poison it slightly more than 

normal tissue is harmed (chemotherapy) or irradiate the tumour 

(radiotherapy), hoping that any deleterious effect on normal tissue is limited. 

The relative paucity of targeted treatment approaches (i.e. those that are 

based on an understanding of the molecular biology of the individual’s 

disease) is such that new targets are sorely needed. There was much hope 

that the exploitation of synthetic lethality would deliver some of these targets 

[7, 8]. Of course, the gap between hope and reality has been somewhat 

greater than many imagined - but why? Why, after a decade or so of 

concerted effort aimed at developing synthetic lethal treatments for cancer, 

have we only a handful of successful examples? 

 

Much of the blame has been attributed to technical problems – especially 

those associated with RNA interference (RNAi), until very recently the primary 

workhorse technology used to identify synthetic lethal effects. RNAi 

approaches are limited by “off-target” effects, where the RNAi reagent inhibits 

additional genes to the target gene of interest (GoI), as well as silencing 

efficiency issues, where the RNAi reagent does not appear to inhibit the GoI 

to any great extent. Both of these issues have almost certainly led to a series 

of false positives and false negatives in synthetic lethal experiments [9]. Much 

enthusiasm has thus been attributed to newer technologies that exploit 

CRISPR-Cas9 gene editing, where targeting efficiency is often greater and 

where off-target effects have somewhat less impact [1]. 

 

However, we would argue that the technical aspects of approaches such as 

RNAi, whilst somewhat limiting, are not necessarily the greatest factor that 

has limited the search for SL effects with clinical utility. Perhaps of greater 
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importance is the issue of penetrance, described below, which will remain a 

key issue, even with the application of CRISPR based approaches. 

 

The problem with synthetic lethality: incomplete penetrance  

 

In 2011, we and others highlighted that one factor limiting the utility of 

synthetic lethal interactions as cancer treatments is the extent to which these 

effects are dependent upon the genetic background in which they are 

measured [10]. We proposed that the synthetic lethal effects that are readily 

abrogated by changes in additional genes (soft synthetic lethal effects 

Figure 1) would not be as ideal as cancer therapy targets when compared to 

synthetic lethal interactions that are relatively resilient to additional molecular 

changes (hard synthetic lethal effects [10]) (Figure 1C). These concepts of 

hard and soft synthetic lethality are really an extension of the concept of 

penetrance. When used in population genetics, penetrance describes the 

fraction of individuals carrying a particular genetic marker who also exhibit an 

associated phenotype. When applied to synthetic lethality in cancer, we 

propose the term synthetic lethal penetrance (SLP, see Glossary) be used 

to describe the fraction of tumour cell clones with a specific genetic alteration 

(e.g. a cancer driver gene mutation) that undergo cell death when a synthetic 

lethal target is inhibited. Ideally, synthetic lethal treatments should have 

complete penetrance (Figure 1D) with the presence of the driver gene and 

inhibition of its synthetic lethal partner always leading to tumour cell death, 

regardless of the rest of the molecular composition of the tumour cell (the 

reverse of this scenario is incomplete penetrance). What is perhaps more 

realistic is that we only select highly penetrant effects for clinical assessment 

and disregard SL effects with low penetrance before these reach the clinic. 

 

Despite the importance of assessing the penetrance of synthetic lethal 

interactions, it is clear that this issue has received far less attention than 

improvements in gene perturbation approaches. Even in model organisms 

such as budding yeast, where large scale synthetic lethal screens have been 

performed for over a decade, most screens are performed in a single defined 
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genetic background. This means that we have relatively little idea of how 

dependent synthetic lethal effects are upon their genetic background, or how 

penetrant they might be across different backgrounds [11]. 

 

In cancer, the oncogene KRAS is perhaps the gene most widely screened for 

SL interactions (reviewed in [12]). Despite the large number of screens 

performed, there are very few examples of KRAS SLs that replicate across 

multiple, distinct, studies [12, 13]. As most screens have been performed 

using RNAi based approaches, much of the lack of reproducibility has been 

attributed to the limitations of this technology and to variations in the 

experimental approaches used [9, 13]. However, a recent study suggests this 

might not be the key issue. Elledge and colleagues performed genome-wide 

CRISPR synthetic lethal screens in two pairs of colorectal tumour cell lines to 

identify KRAS SLs [14]; despite the use of CRISPR and the similarity of the 

experimental approach, most SLs identified were private to a single cell line. 

This suggests that neither the limitations of RNAi nor differences in screening 

approaches are sufficient to explain the variation in identified SLs. 

 

Recently two groups have developed pipelines to identify genetic interactions 

through combinatorial CRISPR screening (i.e. inhibiting two genes 

simultaneously) and applied these approaches to the analysis of multiple 

tumour cell lines (TCLs) [15, 16]. In both cases, many observed SLs were 

cell-line specific, with Shen and colleagues noting that only ~10% of the SLIs 

identified were observed in more than one TCL [15]. To get a more accurate 

picture of the cell-type specificity of SLs, statistical approaches that take into 

account experimental reproducibility are required, similar to those developed 

to estimate condition specific genetic interactions in yeast [17]. Nevertheless, 

it seems that many SLs are TCL specific.  

 

Consistent with these preliminary observations in TCLs are results in model 

organisms, where it has been shown that many pairwise genetic interactions 

(including SLs) are modified by the deletion of additional genes [18-20] and 

many genetic interactions are only observed in a specific genetic background 

[21, 22]. 
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Reasons for incomplete penetrance (Figure 1E) 

Cell type specific networks. The extensive variation in the gene-regulatory 

and signalling networks that are active in different cell types is a likely 

explanation for some of the tissue specificity of targeted agents in cancer. A 

well-established example involves addiction to the BRAF oncogene - 

melanoma cells with activating mutations of BRAF are highly sensitive to its 

inhibition but colorectal cancer cells with the same mutation are relatively 

insensitive [23]. This has been attributed to differential wiring of the signalling 

networks in the two cancer types. Such differences in cell-type specific 

networks likely impact synthetic lethal interactions also. A recent screen 

identified a SL between PREX1 and RAS in a panel of acute myeloid 

leukemia (AML) cell lines but not in other cell types [24]. The authors 

attributed this to differential expression of PREX1 and its paralogs in different 

cell types - AML cell lines express PREX1 but not its paralog TIAM1, which 

was expressed in other cell types. Inducing expression of TIAM1 in AML cell 

lines partially rescued the RAS/PREX1 SLI suggesting differential expression 

patterns may explain cell-type specific SLs. 

Genetic and epigenetic heterogeneity. Even amongst cells from ostensibly 

the same tissue type there can be major genetic and epigenetic heterogeneity 

within and between tumours, which may also account for the variation in 

synthetic lethal effects observed in different tumour cells. A pair of tumour 

cells that share an alteration in a common driver gene may differ in the status 

of many other genes and some SLIs might be abrogated by these additional 

alterations. For example, a recent study identified a SLI between XPO1 and 

KRAS in many lung cancer cell lines, an effect that was reversed by alteration 

of FSTL5, another gene frequently altered in lung adenocarcinomas [25]. 

Such 'synthetic rescue' effects can also be identified in the context of acquired 

resistance to synthetic lethal treatments, e.g. loss of 53BP1 can result in 

resistance of BRCA1 mutated tumours to PARP inhibitors [26]. In contrast to 

the situation where alteration of a specific gene may result in resistance to an 

SL, some SLIs may only be evident in cells with very specific combinations of 
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mutations, e.g. lung cancers cell lines with KRAS mutation and loss-of-

function alterations of KEAP1 are sensitive to inhibition of glutaminase [27].  

Experimental approaches to identify highly-penetrant 

synthetic lethal interactions  

 

Several approaches exist for empirically defining the penetrance of SL effects. 

Most SL screens are initially carried out in single isogenic model systems 

(Figure 3A), which, when used in isolation, merely indicate that the identified 

effects operate in one particular genetic background. They do not provide any 

indication of the penetrance of the effects. An alternative approach is to 

perform screens in a large number of non-isogenic models, classified 

according to the status of the gene of interest (GoI) (Figure 3B), and identify 

those genes whose inhibition selectively inhibits the growth of cell lines with 

alterations in the GoI [13]. The advantage of this approach is that the 

molecular heterogeneity present across the cell line panel used can provide: 

(i) a rigorous test of whether a SL effect is highly penetrant; and (ii) an 

assessment of the SL phenotype in the setting of different co-occurring driver 

mutations (e.g. KRAS & APC, BRCA2 & TP53) that might not be found in 

single model screens.  

 

However, performing and interpreting large-scale non-isogenic screens 

comes at some cost, in both economic and logistic terms. Moreover, the 

associations identified between GoI and SL partners are often artefacts 

caused by some other, often unknown, molecular feature that segregates with 

the driver gene mutation, making a causal association between the GoI and 

the identified effects difficult to establish. This issue could be resolved by the 

use of isogenic screens alongside non-isogenic systems. Alternatively, 

penetrance could be assessed by the use of multiple different isogenic 

systems for the GoI, with each isogenic cell pair being derived from a different 

cell lineage (Figure 3C). This could prove powerful, assuming there is a 

requisite level of molecular heterogeneity between the parental cell lines 

used. To ensure an extreme degree of genetic heterogeneity, such 

approaches could also incorporate isogenic screens from distinct species 
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(e.g. mouse-derived cell). An SL effect that is conserved between distinct 

species is by definition, resilient to the large-scale molecular re-wiring that 

accompanies speciation Finally, one additional method to assessing the 

penetrance of an SL effect might be to carry out synthetic rescue screens in 

isogenic model systems to see how many different molecular mechanisms 

there are of abrogating an SL (Figure 3D).  

 

The idea of exploiting model organisms to identify and validate human SL 

interactions is not new [8] and is still commonly used. Recently, a number of 

groups have successfully mined SL interactions from yeast, which 

encompasses the most comprehensive delineation of SL interactions, to 

identify candidate therapeutic targets in human cancer [28-33]. However, the 

reverse situation, where model organisms are used to assess the resilience of 

a SL interaction identified in human cells, to molecular change, seems an 

approach far less used. There are of course significant issues to consider 

when using a comparative approach. The most obvious is whether model 

organisms have clear orthologs of the human GoI and/or whether molecular 

processes that are specific to human cells exist in model organisms. For 

example, it is difficult to imagine the relevance of modelling metazoan specific 

signalling pathways or cell-cell communication networks, in non-metazoan, 

unicellular yeast. In this case, the use of other metazoans (e.g. C. elegans or 

Drosophila melanogaster), might be more appropriate [34-36]. 

 

Understanding the extent to which SL interactions are conserved across 

species at a global level would be advantageous when evaluating the utility of 

model organisms [30, 37-41]. For example, recent studies have demonstrated 

that only SL interactions involved in particular processes are conserved 

between yeast and human cancer cell lines, notably those involved in 

chromosomal instability [28], limiting the utility of such analysis. Other SL 

interactions that tend to be highly conserved include those whose protein 

products physically interact [37] or function in the same biological process 

(e.g. chromosome segregation) [42], suggesting these might be characteristic 

features of highly penetrant SLs.  
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Using computational approaches that identify highly 

penetrant SL interactions (Figure 4) 

Whilst it is now relatively straightforward to identify potential SLs from LoF 

screens, the steps we have outlined above to distinguish highly penetrant 

from less penetrant SLs are both labour- and time intensive. Computational 

tools to prioritise the most promising candidates would therefore be of great 

value.  

Filtering using prior knowledge. One approach to identifying highly 

penetrant SLs from a set of candidate interactions (e.g those identified in an 

isogenic screen) is to prioritise or filter these SL interactions using prior 

knowledge. Perhaps the simplest approach is to prioritise those candidate 

SLs previously observed in a different context - either with orthologous genes 

in a model organism [30, 42] or in distinct TCLs, as discussed above. The 

BioGRID database describes over half a million genetic interactions observed 

in non-human species [43], while the CancerGD resource details putative SLs 

identified in the majority of large-scale cell line panel screens published to 

date [44]. Such SLs, observed in different cell line panels or across different 

species, are likely to be strong candidates for highly penetrant SLs.  

An attractive alternative to relying on existing genetic screen data is to use the 

wealth of 'omics' profiling data of tumours to identify or prioritise SLs. A 

number of methods have been developed to predict SLs from tumour 

molecular profiles and these could be extended to the task of identifying 

prioritising highly penetrant SLs. Perhaps the best-known approaches involve 

the identification of mutually exclusive genetic alterations - pairs of genes that 

are individually recurrently altered but altered in combination significantly less 

than expected by chance (Figure 3A). One interpretation of such mutually 

exclusive mutations is that the two genes may result in similar phenotypic 

outcomes when mutated and consequently there is no selective advantage to 

both genes being altered simultaneously. An alternative explanation is that the 

pair of genes are not mutated simultaneously because they display a 

synthetic lethal interaction. Although many computational approaches have 
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been developed to identify such mutually exclusive events [45], very few 

examples of mutually exclusive pairs have been experimentally demonstrated 

to reflect SLs [46].  

A limitation to this approach is that both genes must be mutated at a relatively 

high frequency for the results to have any statistical significance. This makes 

it difficult to identify significant mutual exclusivity between genes that are not 

themselves driver genes. Jerby-Arnon et al [47] took an alternative approach 

and focussed on pairs of genes that were rarely both under-expressed in the 

same tumours, thus significantly expanding the set of genes for which 

mutually exclusive alterations could be identified. The recent availability of 

proteomic profiling data for tumours [48] opens up opportunities for the 

identification of mutually exclusive events using protein expression, e.g. 

searching for proteins whose expression is high when a tumour suppressor is 

defective [49]. 

Finally, it may be possible to develop heuristics to prioritise highly penetrant 

SLIs using our knowledge of the functions of individual genes and the physical 

and regulatory interactions between cellular components. These are 

discussed in Text Box 1.  

Modelling approaches to predict SLs. A number of computational and 

mathematical approaches have been developed to model various cellular 

subsystems such as metabolism or signalling. These include flux balance 

analysis (FBA - used to model metabolic networks [50]) and approaches that 

describe regulatory and signalling networks using differential equations or 

boolean logic models [51].  In theory, all of these methods can be used to 

model the consequences of perturbations in individual genes as well as the 

effects of combined gene inhibition. However, in general, methods that are 

based on differential equations or logic models tend to describe the effect of 

gene perturbation on internal cellular states (e.g. the phosphorylation of a set 

of proteins, the expression of a particular gene) rather than cellular 

phenotypes such as proliferation or survival. In contrast, FBA has been used 

extensively to predict the impact of perturbations, including double gene 

deletions, on growth in a variety of systems [50, 52, 53]. To our knowledge it 
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is the only modelling approach that has been used to predict synthetic lethal 

interactions in human cancer (reviewed in [52]). A notable success in this 

regard was the identification of Haem oxygenase as a synthetic lethal partner 

of tumour suppressor fumarate hydratase [53]. 

FBA makes use of curated mathematical representations of cellular 

metabolism that describe the enzymes responsible for each metabolic 

reaction along with the metabolites produced and consumed by it. By making 

a number of assumptions, FBA can calculate the flow of metabolites through 

the represented network and ultimately predict the growth rate of a cell [50]. It 

is especially promising for the identification of highly penetrant SLIs because it 

can be used to model large numbers of combinatorial perturbations but also 

can be adapted to model different genetic backgrounds [54]. However, there 

are some major limitations of FBA. First, only a limited number of genes can 

be modelled using FBA (those whose function can be described in terms of 

reactions catalysed) and consequently predictions have not as yet been made 

for the majority of cancer driver genes. Secondly, the accuracy of the models 

when predicting SLIs is quite limited even for well characterised model 

organisms [50]. However, as our knowledge of metabolic networks expands 

so will the accuracy of the resulting predictions.  

Extending the applications of highly penetrant SLs using guilt-by-

association. One of the most striking observations from genetic interaction 

screens in model organisms has been the tendency of members of the same 

complex or pathway to display similar genetic interactions [55]. This suggests 

that if one member of a complex/pathway is a highly penetrant synthetic lethal 

effect with a particular gene, then there is a high probability that other 

members of the complex will be too. Computational approaches based on this 

'guilt-by-association' principal have been widely exploited to predict SLIs in 

model organisms [56]. As many distinct members of a pathway can be altered 

in different tumours, similar approaches could be applied to expand the 

applications of any highly penetrant SLs identified to additional driver genes. 

For example, the initial identification of synthetic lethality between defects in 

the BRCA1/BRCA2 tumour suppressors and PARP inhibitors led to the 
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subsequent identification of SLs between PARP inhibitors and other tumour 

suppressor proteins that act in concert with BRCA1/BRCA2 in DNA repair [2, 

57]. Similarly, the identification of a SLI between the SWI/SNF complex 

tumour suppressor ARID1A and the DNA repair kinase ATR, led to SLs 

between ATR and other SWI/SNF tumour suppressor genes being identified 

[58, 59] suggesting potential pathway level defects. 

2D or not 2D - that, is the question 
 

Many large-scale screens for synthetic lethality focus on the use of in vitro 

tissue culture (TC) approaches where cells are grown on an adherent surface. 

These “two-dimensional” in vitro TC approaches are often the preferred 

method as they provide a reproducible experimental workflow that is scalable 

to, for example, multi-well plate formats. What is not clear is how well these 

experimental formats replicate the complex, three-dimensional, structure of a 

tumour in situ, including cell-cell interactions that exist in a three-dimensional 

(3D) structure but not in two-dimensional (2D) TC. It seems possible therefore 

that some synthetic lethal effects identified in a 2D setting might be reversed 

in a 3D format (and vice versa), especially those that rely on mechanisms that 

involve cell-cell communication. One might think that those SL effects that 

operate in both 2D and 3D settings might be preferable to those that are 

private to either system. Likewise, for very pragmatic reasons, most large-

scale synthetic lethal screens are in vitro screens and only involve one cell 

type. Again, it is possible that synthetic lethal interactions might be abrogated 

by, for example, tumour cell/stromal cell interactions. With these issues in 

mind, it is clear why all serious target validation efforts include an assessment 

of an in vivo model system that in some way attempts to replicate both the 

three-dimensional structure of a human tumour as well as an interaction with 

the stroma. In most cases, these types of in vivo analysis, such as the use of 

patient derived tumour xenografts (PDX), aren’t yet routinely scalable to be 

used in the large-scale discovery of synthetic lethal effects, but the technical 

barriers preventing this will no doubt be rapidly overcome as improvements in 

in vivo CRISPR-Cas9 mutagenesis, mature. However, the use of these in vivo 

systems do play a key role in the assessment of penetrance. Furthermore, 
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where synthetic lethal interactions fail to be replicated in these models, some 

thought might be given to whether these stromal or three-dimensional 

synthetic rescue effects inform an understanding of the effects of cell-cell 

interaction. 

 

Concluding remarks 

 

The enthusiasm for exploiting the synthetic lethal principle to identify novel 

therapeutic targets in cancer is as high now as it has ever been. Many of the 

advances in gene manipulation technology have fuelled this enthusiasm, as 

has the large-scale delineation of essential gene lists in human tumour cells. 

However, we caution that technologies such as CRISPR-Cas9 screening will 

not be a panacea and an increased focus on discriminating highly penetrant 

synthetic lethal effects from those that are less penetrant is still required. 

Some methods already exist for estimating the penetrance of synthetic lethal 

effects and these could be enhanced by learning and then applying the 

principles that determine penetrance. Computational approaches to this 

question are emerging, which when combined with experimental methods, 

could be very effective.  

 

Outstanding Questions (2000 characters, including spaces, required as 

separate word file using the designated heading) 

 Which biological principles determine whether a synthetic lethal effect 

has complete or incomplete penetrance? 

 Can these principles be determined and used to predict highly 

penetrant synthetic lethal effects? 

 Can refined isogenic systems be developed that better model the 

spectrum of mutations present in human tumours? 

 Can methods be developed that allow high-throughput perturbation 

screens to be performed in vivo at similar scale as in vitro perturbation 

screens? 
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 Can computational approaches replace or compliment empirical 

approaches for defining the penetrance of synthetic lethal effects? 
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Glossary (alphabetical) 

Robustness: the extent to which a phenotype (e.g. synthetic lethality) 

persists in the face of other perturbations in a biological system 

Stromal synthetic rescue effects: Where the activity of non-cancerous 

stromal cells reverses a synthetic lethal effect in a tumour cell, for example, by 

providing a cell survival signal to tumour cells 

Synthetic lethality: where a combination, or synthesis, of gene defects 

causes cell death, but where individual gene defects do not 

Synthetic lethal penetrance (SLP): the fraction of tumour cell clones with a 

specific genetic alteration (e.g. a cancer driver gene mutation) that undergo 

cell death when a synthetic lethal target is inhibited 

Synthetic rescue: where a synthetic lethal effect is reversed, often via an 

additional molecular change 

Three-dimensional synthetic rescue effects: Where the growth of tumour 

cells in a three-dimensional context reverses a synthetic lethal effect 

previously observed in two-dimensional tissue culture 
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Text Box 1. What features might highly penetrant synthetic 

lethal interactions have? 

 

Analyses of genetic interactions in model organisms have identified that SLs 

with certain molecular properties are more likely to be conserved across 

species [38, 42, 60, 61]. For example, SLIs involving kinases and transcription 

factors are more poorly conserved across species than SLIs involving other 

gene types [61]. In contrast, SLIs involving pairs of genes whose protein 

products physically interact tend to be highly conserved [38, 42, 60]. These 

features have been used to develop computational models that predict 

conserved synthetic lethal interactions [42]. It may be possible to develop 

similar heuristics that distinguish highly penetrant effects from those that are 

less penetrant. The below characteristics are largely based upon first 

principles (and might at first glance appear self-evident), but where possible, 

we have exploited existing data to define what might characterise highly 

penetrant effects. 

 

Characteristic 1 – inhibited process must be broadly essential. For a 

highly penetrant SLI, we predict that the combined perturbation of both genes 

disrupts a process that is essential for growth across many cell types (e.g. 

translation, protein degradation, DNA replication). If a process is only required 

in specific cell types than it is very unlikely that a SL which disrupts it will be 

highly penetrant. Alternatively, the process that is perturbed by a highly 

penetrant SL might not be essential in all cell types, but a commonly acquired 

characteristic (or hallmark [62]) of cancer, such as resistance to apoptosis. 

 

Characteristic 2 – genes involved must function in related pathways. For 

a highly penetrant SL, we predict that the two genes involved in the SL should 

function in related biological processes. Often SLs identified in screens 

involve gene pairs with no obvious functional connection between them. 

Anecdotally these SLs seem less likely to replicate across multiple TCLs than 

SLs between gene pairs with a clear functional relationship (e.g. members of 

the same pathway). The closeness of the functional relationship between a 
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gene pair could be calculated as the shortest path between them on an 

integrated molecular interaction network, such as a protein-protein interaction 

network [4]. Such an approach would prioritise SLs involving pairs functioning 

in the same complex (i.e. those most conserved across species) or pathway 

over those functioning in distal processes. 

 

Characteristic 3 – targeted genes must have not have highly cell type 

specific functions. For a highly penetrant SL, we predict that the targeted 

genes should have relatively constant functions across cell types, otherwise 

their perturbation is likely to have very variable phenotypic consequences 

across different tumour cell clones. Many transcription factors regulate the 

expression of different genes in different cell-types, suggesting that perturbing 

a transcription factor may not have similar phenotypic consequences across 

TCLs. In contrast, most subunits of the proteasome complex tend to form part 

of the proteasome in all cell types, suggesting their perturbation may have 

more fixed consequences across cell types. Distinguishing those genes that 

have fixed or variable functions across cells is non-trivial, but recent work 

suggests that analysing the transcriptional consequences of gene perturbation 

in different contexts may prove a useful proxy. Niepel et al [63] analysed the 

transcriptional profiles of multiple breast TCLs in response to perturbations 

and found that while the transcriptional response to certain drug classes 

(HSP90 inhibitors, cell cycle kinases) was relatively constant, other drug 

classes (MAPK inhibitors, PI3K inhibitors) caused cell-type specific 

transcriptional responses. There was some correspondence between the 

variability of the transcriptional response across cell lines and the variability of 

the phenotypic response.  

 

Characteristic 5 –  target genes should have few close paralogs. The 

protein to target therapeutically should have relatively few paralogs (gene 

duplicates) that might otherwise take over its role when its function is 

inhibited. Alternatively, the means of inhibiting the target (e.g. small molecule) 

should inhibit all of the target's paralogs also. 
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Characteristic 6 – synthetic lethal interactions should be conserved 

across species. It seems reasonable to think that SLs that are conserved 

across species barriers and are thus robust in the face of the extensive 

molecular re-wiring that accompanies speciation might be highly penetrant. 

Notably the BRCA/PARP synthetic lethality was observed in hamster, mouse 

and human cell lines [64-66].   

 

Characteristic 7 – Mutual exclusive characteristics. It seems reasonable 

to think that when viewed in a large number of tumours, alterations in highly 

penetrant SL genes in tumours should be mutually exclusive. This mutual 

exclusivity could reflect an absence of synthetic rescue mechanisms and thus 

a highly penetrant SL.  

 

Acknowledgements 

We thank Cancer Research UK and Breast Cancer Now for funding the work 

in the lab of CJL and XXXX and YYYYY for funding work in the lab of CJR. 

 

  



Synthetic lethality in cancer                                                                                                                  20 

References 

1. Mullard, A. (2017) Synthetic lethality screens point the way to new cancer 
drug targets. Nat Rev Drug Discov 16 (9), 589-591. 
2. Lord, C.J. and Ashworth, A. (2017) PARP inhibitors: Synthetic lethality in 
the clinic. Science 355 (6330), 1152-1158. 
3. Tsherniak, A. et al. (2017) Defining a Cancer Dependency Map. Cell 170 
(3), 564-576 e16. 
4. Campbell, J. et al. (2016) Large-Scale Profiling of Kinase Dependencies in 
Cancer Cell Lines. Cell Rep 14 (10), 2490-501. 
5. Meyers, R.M. et al. (2017) Computational correction of copy number effect 
improves specificity of CRISPR-Cas9 essentiality screens in cancer cells. Nat 
Genet 49 (12), 1779-1784. 
6. McDonald, E.R., 3rd et al. (2017) Project DRIVE: A Compendium of Cancer 
Dependencies and Synthetic Lethal Relationships Uncovered by Large-Scale, 
Deep RNAi Screening. Cell 170 (3), 577-592 e10. 
7. Kaelin, W.G., Jr. (2005) The concept of synthetic lethality in the context of 
anticancer therapy. Nat Rev Cancer 5 (9), 689-98. 
8. Hartwell, L.H. et al. (1997) Integrating genetic approaches into the 
discovery of anticancer drugs. Science 278 (5340), 1064-8. 
9. Kaelin, W.G., Jr. (2012) Molecular biology. Use and abuse of RNAi to study 
mammalian gene function. Science 337 (6093), 421-2. 
10. Ashworth, A. et al. (2011) Genetic interactions in cancer progression and 
treatment. Cell 145 (1), 30-8. 
11. Gasch, A.P. et al. (2016) The Power of Natural Variation for Model 
Organism Biology. Trends Genet 32 (3), 147-154. 
12. Downward, J. (2015) RAS Synthetic Lethal Screens Revisited: Still 
Seeking the Elusive Prize? Clin Cancer Res 21 (8), 1802-9. 
13. Brough, R. et al. (2011) Searching for synthetic lethality in cancer. Curr 
Opin Genet Dev 21 (1), 34-41. 
14. Martin, T.D. et al. (2017) A Role for Mitochondrial Translation in Promotion 
of Viability in K-Ras Mutant Cells. Cell Rep 20 (2), 427-438. 
15. Shen, J.P. et al. (2017) Combinatorial CRISPR-Cas9 screens for de novo 
mapping of genetic interactions. Nat Methods 14 (6), 573-576. 
16. Najm, F.J. et al. (2018) Orthologous CRISPR-Cas9 enzymes for 
combinatorial genetic screens. Nat Biotechnol 36 (2), 179-189. 
17. Bean, G.J. and Ideker, T. (2012) Differential analysis of high-throughput 
quantitative genetic interaction data. Genome Biol 13 (12), R123. 
18. Haber, J.E. et al. (2013) Systematic triple-mutant analysis uncovers 
functional connectivity between pathways involved in chromosome regulation. 
Cell Rep 3 (6), 2168-78. 
19. Kuzmin, E. et al. (2018) Systematic analysis of complex genetic 
interactions. Science 360 (6386). 
20. Billmann, M. et al. (2018) Widespread Rewiring of Genetic Networks upon 
Cancer Signaling Pathway Activation. Cell Syst 6 (1), 52-64 e4. 
21. Filteau, M. et al. (2015) Evolutionary rescue by compensatory mutations is 
constrained by genomic and environmental backgrounds. Mol Syst Biol 11 
(10), 832. 



Synthetic lethality in cancer                                                                                                                  21 

22. Chari, S. and Dworkin, I. (2013) The conditional nature of genetic 
interactions: the consequences of wild-type backgrounds on mutational 
interactions in a genome-wide modifier screen. PLoS Genet 9 (8), e1003661. 
23. Prahallad, A. et al. (2012) Unresponsiveness of colon cancer to 
BRAF(V600E) inhibition through feedback activation of EGFR. Nature 483 
(7387), 100-3. 
24. Wang, T. et al. (2017) Gene Essentiality Profiling Reveals Gene Networks 
and Synthetic Lethal Interactions with Oncogenic Ras. Cell 168 (5), 890-903 
e15. 
25. Kim, J. et al. (2016) XPO1-dependent nuclear export is a druggable 
vulnerability in KRAS-mutant lung cancer. Nature 538 (7623), 114-117. 
26. Jaspers, J.E. et al. (2013) Loss of 53BP1 causes PARP inhibitor 
resistance in Brca1-mutated mouse mammary tumors. Cancer Discov 3 (1), 
68-81. 
27. Romero, R. et al. (2017) Keap1 loss promotes Kras-driven lung cancer 
and results in dependence on glutaminolysis. Nat Med 23 (11), 1362-1368. 
28. van Pel, D.M. et al. (2013) An evolutionarily conserved synthetic lethal 
interaction network identifies FEN1 as a broad-spectrum target for anticancer 
therapeutic development. PLoS Genet 9 (1), e1003254. 
29. McManus, K.J. et al. (2009) Specific synthetic lethal killing of RAD54B-
deficient human colorectal cancer cells by FEN1 silencing. Proc Natl Acad Sci 
U S A 106 (9), 3276-81. 
30. Deshpande, R. et al. (2013) A comparative genomic approach for 
identifying synthetic lethal interactions in human cancer. Cancer Res 73 (20), 
6128-36. 
31. Costanzo, M. et al. (2010) The genetic landscape of a cell. Science 327 
(5964), 425-31. 
32. Pearl, L.H. et al. (2015) Therapeutic opportunities within the DNA damage 
response. Nat Rev Cancer 15 (3), 166-80. 
33. Tosti, E. et al. (2014) Evolutionarily conserved genetic interactions with 
budding and fission yeast MutS identify orthologous relationships in mismatch 
repair-deficient cancer cells. Genome Med 6 (9), 68. 
34. Lehner, B. et al. (2006) Systematic mapping of genetic interactions in 
Caenorhabditis elegans identifies common modifiers of diverse signaling 
pathways. Nat Genet 38 (8), 896-903. 
35. Byrne, A.B. et al. (2007) A global analysis of genetic interactions in 
Caenorhabditis elegans. J Biol 6 (3), 8. 
36. Horn, T. et al. (2011) Mapping of signaling networks through synthetic 
genetic interaction analysis by RNAi. Nat Methods 8 (4), 341-6. 
37. Ryan, C.J. et al. (2012) Hierarchical modularity and the evolution of 
genetic interactomes across species. Mol Cell 46 (5), 691-704. 
38. Roguev, A. et al. (2008) Conservation and rewiring of functional modules 
revealed by an epistasis map in fission yeast. Science 322 (5900), 405-10. 
39. Dixon, S.J. et al. (2008) Significant conservation of synthetic lethal genetic 
interaction networks between distantly related eukaryotes. Proc Natl Acad Sci 
U S A 105 (43), 16653-8. 
40. Tischler, J. et al. (2008) Evolutionary plasticity of genetic interaction 
networks. Nat Genet 40 (4), 390-1. 
41. Plata, G. et al. (2015) Long-term phenotypic evolution of bacteria. Nature 
517 (7534), 369-72. 



Synthetic lethality in cancer                                                                                                                  22 

42. Srivas, R. et al. (2016) A Network of Conserved Synthetic Lethal 
Interactions for Exploration of Precision Cancer Therapy. Mol Cell 63 (3), 514-
25. 
43. Chatr-Aryamontri, A. et al. (2017) The BioGRID interaction database: 
2017 update. Nucleic Acids Res 45 (D1), D369-D379. 
44. Bridgett, S. et al. (2017) CancerGD: A Resource for Identifying and 
Interpreting Genetic Dependencies in Cancer. Cell Syst 5 (1), 82-86 e3. 
45. Ciriello, G. et al. (2012) Mutual exclusivity analysis identifies oncogenic 
network modules. Genome Res 22 (2), 398-406. 
46. Etemadmoghadam, D. et al. (2013) Synthetic lethality between CCNE1 
amplification and loss of BRCA1. Proc Natl Acad Sci U S A 110 (48), 19489-
94. 
47. Jerby, L. and Ruppin, E. (2012) Predicting drug targets and biomarkers of 
cancer via genome-scale metabolic modeling. Clin Cancer Res 18 (20), 5572-
84. 
48. Rodriguez, H. and Pennington, S.R. (2018) Revolutionizing Precision 
Oncology through Collaborative Proteogenomics and Data Sharing. Cell 173 
(3), 535-539. 
49. Eguren, M. et al. (2014) A synthetic lethal interaction between APC/C and 
topoisomerase poisons uncovered by proteomic screens. Cell Rep 6 (4), 670-
83. 
50. Orth, J.D. et al. (2010) What is flux balance analysis? Nat Biotechnol 28 
(3), 245-8. 
51. Le Novere, N. (2015) Quantitative and logic modelling of molecular and 
gene networks. Nat Rev Genet 16 (3), 146-58. 
52. Yizhak, K. et al. (2015) Modeling cancer metabolism on a genome scale. 
Mol Syst Biol 11 (6), 817. 
53. Frezza, C. et al. (2011) Haem oxygenase is synthetically lethal with the 
tumour suppressor fumarate hydratase. Nature 477 (7363), 225-8. 
54. Schultz, A. and Qutub, A.A. (2016) Reconstruction of Tissue-Specific 
Metabolic Networks Using CORDA. PLoS Comput Biol 12 (3), e1004808. 
55. Ye, P. et al. (2005) Gene function prediction from congruent synthetic 
lethal interactions in yeast. Mol Syst Biol 1, 2005 0026. 
56. Lee, I. et al. (2010) Predicting genetic modifier loci using functional gene 
networks. Genome Res 20 (8), 1143-53. 
57. McCabe, N. et al. (2009) Targeting Tankyrase 1 as a therapeutic strategy 
for BRCA-associated cancer. Oncogene 28 (11), 1465-70. 
58. Williamson, C.T. et al. (2016) ATR inhibitors as a synthetic lethal therapy 
for tumours deficient in ARID1A. Nat Commun 7, 13837. 
59. Jones, S.E. et al. (2017) ATR is a therapeutic target in synovial sarcoma. 
Cancer Res. 
60. Ryan, C.J. et al. (2017) A Compendium of Co-regulated Protein 
Complexes in Breast Cancer Reveals Collateral Loss Events. Cell Syst 5 (4), 
399-409 e5. 
61. Beltrao, P. et al. (2009) Evolution of phosphoregulation: comparison of 
phosphorylation patterns across yeast species. PLoS Biol 7 (6), e1000134. 
62. Hanahan, D. and Weinberg, R.A. (2000) The hallmarks of cancer. Cell 
100 (1), 57-70. 



Synthetic lethality in cancer                                                                                                                  23 

63. Niepel, M. et al. (2017) Common and cell-type specific responses to anti-
cancer drugs revealed by high throughput transcript profiling. Nat Commun 8 
(1), 1186. 
64. Farmer, H. et al. (2005) Targeting the DNA repair defect in BRCA mutant 
cells as a therapeutic strategy. Nature 434 (7035), 917-21. 
65. Edwards, S.L. et al. (2008) Resistance to therapy caused by intragenic 
deletion in BRCA2. Nature 451 (7182), 1111-5. 
66. Bryant, H.E. et al. (2005) Specific killing of BRCA2-deficient tumours with 
inhibitors of poly(ADP-ribose) polymerase. Nature 434 (7035), 913-7. 
 

 

  



Synthetic lethality in cancer                                                                                                                  24 

Figure legends 

 

Figure 1. Synthetic lethality and synthetic lethal penetrance. A. Synthetic 

lethality. A synthetic lethal interaction, depicted by arrows, operates between 

two genes, A and B. Inactivation of either gene in isolation is compatible with 

cell viability and survival, whereas the combination, or synthesis, in defects in 

A and B causes cell death. B. Soft synthetic lethality. A synthetic lethal 

interaction exists between genes A and B but can be reversed by defects in 

either gene C, D or E. C. Hard synthetic lethality. In contrast to the soft 

synthetic lethality between A and B, the synthetic lethal interaction between 

genes F and G is only reversed by inactivation of H and is relatively resilient in 

the face of additional molecular alterations. D. Synthetic lethal penetrance. 

Genes A and B are synthetic lethal. The effect on cell inhibition caused by 

inactivation of gene B is shown for a fully penetrant effect (left) and an 

incomplete penetrant effect (right). E. Reasons for incomplete penetrance  

 

Figure 2. Experimental approaches for the identification of synthetic 

lethal effects for a genotype of interest. There are three most common 

experimental approaches for identifying synthetic lethal effects using cell line 

models. A. High-throughput perturbation screens on a single isogenic system 

can be utilized for a given genotype of interest where Gene A is wild type 

(blue) or mutant (orange). B. Perturbation screens as in A could be performed 

on a panel of cell lines with extensive molecular heterogeneity annotated 

according to the status of the GoI where Gene A is wild type (blue, n = 10) or 

mutant (orange, n = 10). C. High-throughput perturbation screens on multiple 

isogenic system using different lineages and/or species representing 

extensive molecular heterogeneity, could be utilized for a given genotype of 

interest where Gene A is wild type (blue) or mutant (orange). D. Following the 

identification of a series of synthetic lethal effects (e.g. between Gene A and 

either B, C, D or E) iterative synthetic rescue screens could be performed 

where Gene A and B are simultaneously perturbed and high throughput 

functional screens could be performed to reverse the synthetic lethal effect 

between Gene A and B. The same approach is taken to rescue the synthetic 
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lethal effects between Gene A and C, D or E.  The penetrance of a synthetic 

lethal effect is established by counting the number of molecular routes to 

synthetic rescue with the synthetic lethal effect between Gene A and E being 

demonstrated to be the most penetrant.  

 

Figure 3. Computational methods to identify synthetic lethal effects. A. 

Mutually exclusive mutations may identify potential SLs. Genes A and C are 

mutated in a mutually exclusive fashion, suggesting a potential SL B. Flux 

balance analysis can be used to model metabolic activity. SLs can be 

identified by modelling how pairwise gene knockouts impact growth (centre), 

while synthetic rescue effects can be identified by modelling higher order 

gene knockouts (right) C. Guilt by Association. A hard SL (solid red line) 

involving subunits of distinct protein complexes potentially indicates additional 

SLs between other members of the two complexes (dashed red line) D. 

Shortest Path. SLs between genes with close functional relationships (e.g. 

genes A and B, which physically interact) may be more penetrant than those 

between genes with only indirect connections (e.g. A and E, which are 3 hops 

apart on the protein-interaction network). 

 

 

 


