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ABSTRACT 

  

PURPOSE  

The high attrition rate of cancer drug development programs is a barrier to realising the 

promise of precision oncology. We have examined if the genetic insights from genome-wide 

association studies (GWAS) of cancer can guide drug development and repurposing in 

oncology. 

  

MATERIALS AND METHODS  

Across 37 cancers we identified 955 genetic risk variants from the NHGRI-EBI GWAS Catalog. 

We linked these variants to target genes using strategies based on information on linkage-

disequilbrium, DNA 3D-structure and integration of predicted gene function and expression. 

Using the Informa Pharmaprojects database we identified genes that are targets of unique 

drugs and assessed the level of enrichment that would be afforded by incorporation of 

genetic information in pre-clinical and Phase II studies. For targets not under development 

we implemented machine learning approaches to assess druggability. 

 

RESULTS 

For all pre-clinical targets incorporation of genetic information a 2.00-fold enrichment of a 

drug being successfully approved could be achieved (95% confidence interval (CI): 1.14-3.48, 

P= 0.02). For Phase II targets a 2.75-fold enrichment was shown (95% CI: 1.42-5.35, P= 

4.2x10-3). Application of genetic information suggested potential repurposing of 15 

approved non-oncology drugs.   

 

CONCLUSION 

Our findings serve to illustrate the value of using insights from the genetics of inherited 

cancer susceptibility discovery projects as part of a data-driven strategy to inform drug 

discovery. Supporting cancer germline genetic information for prospective targets is 

available from https://cansar.icr.ac.uk/. 
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INTRODUCTION 

 

The high attrition rate of drug development programs represents a significant barrier to fully 

realising the vision of precision oncology1. The failure of preclinical model systems to 

adequately predict efficacy in humans is leading drug developers to seek additional sources 

of evidence to inform decisions about which targets to pursue2,3. 

 

Following completion of the Human Genome Project there has been rapid progress in 

identifying inherited genetic variants influencing cancer risk through genome-wide 

association studies (GWAS) and large-scale sequencing projects4. Genome-wide association 

studies have now have been performed for most common malignancies and many rare 

tumor types, and over 900 genetic variants have been robustly demonstrated to influence 

risk4.  

 

The insights from these GWAS potentially offer an additional mechanism for selecting drug 

targets and indications, both key requirements in drug discovery. Risk single-nucleotide 

polymorphisms (SNPs) in or near a gene that may associate with the activity or expression of 

the encoded protein therefore can be used as a tool to infer the effect of pharmacological 

action on the same protein in a trial. Specifically, by extension, disease-associated SNPs 

identified by GWAS can be explicitly interpreted as a source of randomized human evidence 

to aid drug target identification and validation. 

 

Several examples serve to illustrate the application of human genetics to inform drug 

discovery by utilising knowledge of variation in genes associated with disease risk. These 
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include the targeting of 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR) by 

statins for treatment of coronary heart disease5 and ustekinumab, a monoclonal inhibitor of 

interleukin-12 (IL-12) and IL-23 used to treat inflammatory bowel disease6. 

 

Here we have, using GWAS association data for 37 cancers, examined the potential for 

human genetics to guide cancer drug development and repurposing of current approved 

drugs.  
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MATERIALS AND METHODS 

 

Compiling GWAS data 

To curate cancer risk SNPs identified by GWAS we queried the National Human Genome 

Research Institute (NHGRI) GWAS catalogue7 (https://www.ebi.ac.uk/gwas/; accessed July 

2017). We imposed a number of quality control metrics, filtering by association P-value < 5 × 

10-8 and including only SNPs associated with the cancer rather than another cancer-related 

phenotype such as progression. We additionally manually added SNPs from recent cancer 

GWAS that had not yet been added to the catalog (Supplementary Table 1). We considered 

GWAS associations irrespective of their ethnicity. Gene transcript information, including 

gene annotations and transcript start sites for human build 37 were obtained from Ensembl 

biomart Genes 89 dataset (http://grch37.ensembl.org/biomart/martview/). 

 

Linking risk SNPs to target genes 

To the extent that they have been deciphered, most GWAS risk SNPs map to non-coding 

regions of the genome and influence gene regulation. Since spatial proximity between 

specific genomic regions and chromatin looping interactions are central for the regulation of 

gene expression the 3D structure of DNA means that gene proximity to the risk SNP does 

always necessarily equate to target gene. It is however, the case that regulatory effects and 

hence target genes are generally confined within topologically associated domains (TADs) of 

the genome. To link risk SNPs to target genes we therefore adopted three strategies. 

 

For linkage disequilibrium (LD) based annotation, an approach similar to that adopted by 

Finan et al., 20178 was undertaken. For each cancer risk SNP, correlated SNPs were obtained 
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for European (CEU), east Asian (CHB) and African (YRI) populations from 1000 Genomes 

Project Phase 3 using the LDlink9 web application (https://analysistools.nci.nih.gov/LDlink/). 

LD boundaries were designated by the smallest and largest genomic location of SNPs 

correlated (r2 values 0.1 to 0.9) with the reported cancer risk SNP. For SNPs where LD 

information could not be obtained, the boundaries were taken as 2.5kb on either side of the 

SNP genomic position. Gene transcription start sites were then mapped to these LD 

boundaries. 

 

Topologically associating domain boundaries encompassing each risk locus were based on 

H1 Human Embryonic Stem Cells were obtained from Schmitt et al., 201610. These data 

makes use of Hi-C data described in Dixon et al., 201511. TAD boundaries were identified 

using the insulation score approach proposed by Crane et al., 201512 at 40kb resolution. 

 

To further explore target gene prioritisation, we used DEPICT13  

(https://data.broadinstitute.org/mpg/depict/); an  integrative tool, which based on 

predicted gene function, prioritizes the most likely target genes of risk SNPs uses gene 

expression data from multiple sources. SNP associations were pruned to a set of 

independent signals by r2>0.05 in YRI, CEU and CHB populations additionally retaining SNPs 

for which LD metrics could not be obtained. We considered all target genes with a FDR 

Q<0.05 as well as the top gene per SNP. 

 

Finally, as an adjunct to our GWAS-based analysis, we also considered the classical cancer 

susceptibility genes (CSGs) whose mutation in the germline is responsible for the various 
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Mendelian forms of cancer. These were obtained from the COSMIC Cancer Gene Census14 

(https://cancer.sanger.ac.uk/census; accessed February 2018). 

 

Genetic association enrichment for approved drugs  

Data on the status of drug-target combinations along the various stages of drug 

development from pre-clinical through to regulatory approval were obtained by 

interrogation of the Informa Pharmaprojects database 

(https://pharmaintelligence.informa.com/; accessed January 2018). In addition to drugs 

assessed by Pharmaprojects, cancer drugs approved for use in cancer susceptibility gene 

carriers were also considered. Drugs with a specific indication for symptom control only, 

were excluded. Records were retained if target genes could be unambiguously mapped to 

HUGO Gene Nomenclature Committee at the European Bioinformatics Institute (HGNC; 

https://www.genenames.org) identifiers. We assessed whether drug targets with 

supporting genetic evidence were more likely to be approved in the drug development 

pipeline, by constructing a two by two table of genes and counts corresponding to whether 

a gene product has genetic support as a drug target at respective stages of development 

(e.g. comparing approved drugs with those only reaching preclinical stages). Test of 

association was Fisher’s exact test, with the Wald test used to quantity effect size and 95% 

confidence intervals. A P-value of 0.05 (two-sided) was considered as statistically significant. 

All statistical calculations were performed using R version 3.2 software. 

 

Druggability annotation of target genes 

Targets of FDA-approved drugs were obtained from Santos et al., 201715. Genes were 

filtered for  protein-coding genes and canSAR v4 Cancer Protein Annotation Tool (CPAT)16 
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used to identify proteins with >95% sequence homology to existing drug targets. CPAT was 

also used to extract structure- and ligand-based druggability assessments from canSAR 

(https://cansar.icr.ac.uk/; accessed 2018). Network-based druggability scores for proteins 

were  based on Mitsopoulos et al., 201517. 

 

Finally, we assessed all 355,305 active compounds identified by canSAR against their targets 

using Probe Miner18, which catalogues >1.8 million compounds for their suitability as 

chemical tools against 2,220 Uniprot-defined human targets 

(http://probeminer.icr.ac.uk/#/download). 
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RESULTS 

 

Linking risk SNPs to target genes 

Across 37 cancers we identified 955 risk loci. To link sentinel risk SNPs to respective target 

gene(s), we first considered genes within regions of LD to which risk SNPs mapped, imposing 

a range of r2 thresholds. After which, we considered all genes localising within the risk SNP-

defined TAD boundaries. Finally, we based linkage on the  gene prioritisation approach 

implemented in DEPICT13. These three approaches yielded between 394 and 7,379 protein-

coding target genes (Fig. 1, Supplementary Tables 1-3).  

 

Genetic association enrichment for approved drugs  

By interrogating the Informa Pharmaprojects database, we identified 1,706 unique genes 

that were the target of 3,435 unique therapeutic agents for cancer (Supplementary Table 

4). These were grouped according to the furthest point reached across five stages of drug 

development pipeline: (1) Pre-clinical (i.e. in vitro and in vivo dosing and toxicity 

assessment), (2) Phase I (safety and dosage), (3) Phase II (efficacy and side effects), (4) Phase 

III and pre-registration (efficacy and monitoring of adverse reactions), (5) Approved.  

 

We first considered all targets from the Pre-clinical stage and assessed the level of 

enrichment for being successfully approved conferred by genetic information. All of the 

methods linking SNPs to target genes provided evidence for enrichment. For the LD-based 

assessment enrichment was strongly correlated with r2 values; imposing a r2 value >0.9 

resulted in 2.00-fold improvement in targeting of Pre-clinical drugs (95% CI: 1.14-3.48, 
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P=0.02, Fig. 2A, Table 1). The comparative enrichment associated with COSMIC catalogued 

CSGs was 6.61-fold (95% CI: 3.17-13.78, P = 2.23 x 10-6, Fig. 2A, Table 1).   

 

We reasoned that a target’s failure to progress along the Pre-clinical and Phase I stages is 

often for reasons unrelated to efficacy, and therefore next considered all targets from Phase 

II and above, and assessed the degree of enrichment for approval conferred by genetic 

information. As with the analysis of pre-clinical targets incorporating genetic association 

information led to enrichment for approval (Fig. 2B, Table 2). The strongest enrichment 

from the LD-based approach was attained after imposing an r2 value >0.9 which was 

associated with a significant 2.75-fold difference (95% CI: 1.42-5.35, P = 4.2 x 10-3, Fig. 2B). 

The comparative enrichment associated with COSMIC catalogued CSGs was 5.72-fold (95% 

CI: 2.35-13.89, P = 8.41 x 10-5).   

 

Potential for re-purposing non cancer drugs 

To explore the application of genetics to inform drug re-purposing we first identified 

approved drugs used in the treatment of non-oncological disease. We then examined 

discordant pairing of drug indications and cancer associations. We identified 15 genes for 

which an approved drug is currently available with genetic support (Table 3). Notable 

examples included: (1) TGFB1 at 19q13.2, where a targeted drug is used in the treatment of 

rheumatoid arthritis and is the site of an association with colorectal cancer risk19; (2) VDR at 

12q13.11, which is targeted by drugs treating osteoporosis and is a risk locus for prostate 

cancer20;  (3) At 11q14.3 TYR is the target of an approved drug used in the treatment of skin 

disorders, which is also the site of a risk locus for melanoma21, squamous cell carcinoma22 

and basal cell carcinoma23; (4) PTGIR at 19q13.32 which is targeted by a drug used in the 
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treatment of transplant rejection and peripheral vascular disease, and is the site of a chronic 

lymphocytic leukaemia risk locus24.  

 

Availability of cancer germline genetic information 

Supporting cancer germline genetic information for prospective targets is available from 

https://cansar.icr.ac.uk/ (Figure 3). For each uniprot identifier, a report has been generated 

detailing whether the given gene has been annotated as containing cancer-causing germline 

mutations by the COSMIC germline cancer gene census14, as well as whether any variants 

from cancer genome-wide association studies map to the gene (Figure 3).  
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DISCUSSION 

 

Our findings support the potential of human genetics to guide the identification of drug 

targets, addressing a productivity-limiting step in drug development and a bottleneck to 

realising the vision of precision oncology. Specifically, we have demonstrated that 

knowledge of cancer susceptibility genes identified by GWAS can be used to maximise 

discovery of likely Pre-clinical and Phase II targets, thereby empowering drug development 

programs. Our analysis benefits from the larger of risk loci for cancer that have been 

identified over recent years thereby providing greater power than earlier studies1.  

 

Significant enrichment of pre-clinical and phase II targets was also shown by incorporating 

information on the classical CSGs. Given that many of the CSGs are somatically mutated 

these targets may have already directly influenced recent drug development programs. 

Indeed, we observed a highly significant enrichment for CSGs being selected for pre-clinical 

validation per se (OR=11.37; CI=7.44-17.37; P=5.19 × 10-20), which is greater than that 

afforded to genes simply implicated by GWAS (r2>0.9 targets (OR=1.44; CI=1.14-1.81; 

P=0.003).  

 

We employed a number of methods to map target genes to cancer risk SNPs, incorporating 

LD blocks, TAD regions and gene expression. We found that genes implicated by LD r2>0.9 

method showed the greatest enrichment for drug approval. While compatible with the 

functional basis of many GWAS associations being due to the most proximal gene(s), this 

does not preclude the possibility of longer-range tissue-specific mechanisms that are less 

amenable to detection by our approach. Therefore future endeavours of this kind will likely 
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benefit from more detailed experimental investigation of the biological mechanism 

underpinning cancer risk loci. While the TAD-based strategy is likely to be always beset by 

the issue of capturing too many genes, strategies based on integration of GWAS and multi-

omics as per DEPICT13 are likely to improve making them attractive sources of genetic 

information. To investigate regulatory interactions across all cancer risk loci we made use of 

publicly available Hi-C data from human embryonic stem-cells, noting the observation of 

Dixon et al., 201225 that TAD boundaries are relatively stable across cell types. However, the 

increasing availability of tissue- and cancer-specific Hi-C data is likely to improve efforts to 

identify target genes of specific cancer risk regions. 

 

In concert with our primary analysis we identified a number of possible opportunities for 

drug re-purposing, informed by cancer germline genetics. These extend the potential of pre-

existing therapies and highlight that pathways subverted by cancers may also be altered in 

other diseases.  

 

For pragmatic purposes we considered all cancers assuming generic effects exist at least 

across some cancers in order to maximise study power. We do however acknowledge that 

this is in essence crude since certain cancer subtypes can show specific associations with risk 

SNPs, reflective of differences in their biology. For example, ER-positive and negative breast 

cancers26,27 as well as combinations of 1p/19q co-deletion, TERT promoter and IDH mutation 

in glioma28,29. The future availability of larger datasets which will afford the identification of 

additional risk SNPs will open up the possibility of fine-tuned analyses. In addition we make 

the assumption that cancer risk variants act directly to influence cancer initiation or 

progression. However, this does not preclude the existence of a limited subset which may 
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have indirect mechanisms, such as at 15q25.1 where the association with lung cancer is 

likely due to smoking30. 

 

One caveat to using all forms of germline genetics as a mechanism for prioritisation of drug 

development is the assumption that susceptibility per se is also reflective of progression, 

which may not always be the case. As with other studies, we have used drug approval as a 

surrogate for drug efficacy. This assumption will only however serve to make our estimates 

conservative. We additionally acknowledge our lack of inclusion of generic drugs, however 

as the vast majority of these have a broad range of targets we do not regard this as 

significantly impacting our findings. Considering the extent to which cancer genes 

implicated by GWAS that are not currently in the drug development pipeline might 

represent good candidates we performed multi-faceted druggability analyses incorporating 

assessments of the 3D structures of the target protein and any associated protein 

complexes, chemical properties of known ligands of the target, and the target’s position and 

role within the human interactome. Ranking target-indication pairings by criteria including 

novelty relative to existing targets and predicted attrition risk (Supplementary Tables 5 and 

6). Of 1,292 genes annotated to GWAS SNPs by r2>0.9; 977, 486 and 1,287 had druggability 

assessments by network, structure and ligand-based prediction respectively. Of note is the 

observation that 29 of these can be targeted by existing high-quality probes and thus 

represent good candidates for being prioritised in for future studies. 

 

In conclusion, we have demonstrated enrichment for targets implicated by cancer risk 

variants being more successful in the drug development pipeline, providing a rationale for 

germline genetics empowering cancer drug discovery. Mapping approved drug targets back 
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to cancer GWAS signals enables identification of both novel drug targets and patient 

populations. To benefit the wider community the cancer germline information used in this 

study is available at https://cansar.icr.ac.uk. Collectively our findings show the value of 

incorporating information from germline cancer genetics as part of interdisciplinary, data-

driven approaches to inform drug discovery in oncology. 
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FIGURE AND SUPPLEMENTARY TABLE LEGENDS 

 

Figure 1: Summary of analytical strategy.  

 

Figure 2: Enrichment of approved cancer drug targets incorporating genetic evidence 

relative to pre-clinical (A) and phase II (B) targets.  TAD, topologically associating domain; 

N, number; DEPICT, Data-driven expressed prioritised integration for complex traits. Data 

based on Tables 1-2. 

 

Figure 3: Integration of cancer germline genetics information into canSAR. Available 

germline genetic evidence can be searched for by target on cansar.icr.ac.uk or directly at 

https://cansar.icr.ac.uk/cansar/molecular-targets/P23458/germline_genetics/ where 

P23458 is the uniprot identifier for the target of interest.  

 

Supplementary Table 1: Cancer risk SNPs. 

 

Supplementary Table 2: Mapping cancer risk SNPs to gene transcripts by LD- and TAD-

based approaches. 

 

Supplementary Table 3: DEPICT gene prioritization of cancer risk SNPs 

 

Supplementary Table 4: Number of unique genes targeted by cancer therapies at the last 

recorded stage of development.  

 

Supplementary Table 5: Summary of canSAR druggability assessments of target genes 

implicated by cancer germline genetics. Druggability assessments were obtained from 

canSAR (https://cansar.icr.ac.uk/) and high-quality probe annotations obtained from 

ProbeMiner (http://probeminer.icr.ac.uk/). 

 

Supplementary Table 6: CanSAR druggability assessments for target genes implicated by 

cancer germline genetics.
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 Pre-clinical drug Enrichment (pre-clinical vs approved) 

Method Approved with 

genetic support (N) 

Not approved with 

genetic support (N) 

Approved with no 
genetic support (N) 

Not approved with no 

genetic support (N) 

P-value OR (95% CI) 

TAD 49 264 66 457 0.22 1.28 (0.86-1.92) 

r
2
 > 0.1 36 186 79 535 0.21 1.31 (0.85-2.01) 

r
2
 > 0.2 28 141 87 580 0.26 1.32 (0.83-2.11) 

r
2
 > 0.3 26 125 89 596 0.19 1.39 (0.86-2.25) 

r
2
 > 0.4 24 109 91 612 0.13 1.48 (0.90-2.42) 

r
2
 > 0.5 22 92 93 629 0.08 1.62 (0.97-2.70) 

r
2
 > 0.6 21 89 94 632 0.10 1.59 (0.94-2.67) 

r
2
 > 0.7 19 77 96 644 0.08 1.65 (0.96-2.86) 

r
2
 > 0.8 19 69 96 652 0.03 1.87 (1.08-3.25) 

r
2
 > 0.9 19 65 96 656 0.02 2.00 (1.14-3.48) 

COSMIC Germline 15 16 100 705 2.23 × 10
-6

 6.61 (3.17-13.78) 

DEPICT 8 33 107 688 0.25 1.56 (0.70-3.46) 

 

Table 1: Enrichment of approved cancer drug targets supported by genetic evidence relative to pre-clinical targets. OR, odds ratio; CI, 

confidence interval; TAD, topologically associating domain; N, number; DEPICT, Data-driven expressed prioritised integration for complex 

traits. Enrichment was calculated by constructing a two by two table of genes and counts corresponding to whether a gene product has 

genetic support at the respective stages of drug development (i.e. approved compared with pre-clinical). Test of association was Fisher’s exact 

test, with the Wald test used to quantity effect size and 95% confidence intervals. A P-value of 0.05 (two-sided) was considered as statistically 

significant.
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 Phase II drug Enrichment (phase II vs approved) 

Method Approved with 

genetic support (N) 

Not approved with 

genetic support (N) 

Approved with no 
genetic support (N) 

Not approved with no 

genetic support (N) 

P-value OR (95% CI) 

TAD 49 100 66 213 0.04 1.58 (1.02-2.45) 

r
2
 > 0.1 36 72 79 241 0.10 1.53 (0.95-2.45) 

r
2
 > 0.2 28 50 87 263 0.07 1.69 (1.00-2.85) 

r
2
 > 0.3 24 46 89 267 0.06 1.70 (0.99-2.90) 

r
2
 > 0.4 22 40 91 273 0.05 1.80 (1.03-3.15) 

r
2
 > 0.5 21 32 93 281 0.02 2.08 (1.15-3.75) 

r
2
 > 0.6 19 30 94 283 0.02 2.11 (1.15-3.86) 

r
2
 > 0.7 19 26 96 287 0.02 2.18 (1.16-4.12) 

r
2
 > 0.8 19 23 96 290 9.2 × 10

-3
 2.50 (1.30-4.78) 

r
2
 > 0.9 19 21 96 292 4.2 × 10

-3
 2.75 (1.42-5.35) 

COSMIC Germline 15 8 100 305 8.41 × 10
-5 

5.72 (2.35-13.89) 

DEPICT 8 9 107 304 0.09 2.52 (0.95-6.71) 

 

Table 2: Enrichment of approved cancer drug targets supported by genetic evidence relative to phase II targets. OR, odds ratio; CI, 

confidence interval; TAD, topologically associating domain; N, number; DEPICT, Data-driven expressed prioritised integration for complex 

traits. Enrichment was calculated by constructing a two by two table of genes and counts corresponding to whether a gene product has 

genetic support at the respective stages of drug development (i.e. approved compared with phase II). Test of association was Fisher’s exact 

test, with the Wald test used to quantity effect size and 95% confidence intervals. A P-value of 0.05 (two-sided) was considered as statistically 

significant. 
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Gene Entrez Additional genes targeted by drug Disease/s Locus Cancer type 

ALOX5 240  Asthma, Chronic obstructive pulmonary disease 10q11.21 Prostate Cancer 

CFTR 1080  

Cystic fibrosis, Diarrhoea, short-bowel 
syndrome, Irritable bowel syndrome, 
diarrhoea-predominant infection, GI tract 
infection, HSV infection, HIV/AIDS 7q31.2 

Barrett's esophagus/esophageal 
adenocarcinoma 

CLCN2 1181  
Chronic constipation, Irritable bowel syndrome, 
GI motility dysfunction,  3q27.1 Esophageal adenocarcinoma 

CRHR1 1394 CRHR2 (1395) Anxiety, unspecified insomnia 17q21.31 Ovarian cancer in BRCA1 carriers 
DDC 1644  Parkinson's disease 7p12.1 Childhood ALL 

GABBR1 2550  
Spasticity, Multiple sclerosis, Alcohol addiction, 
Cerebral palsy, Spinal cord injury, Dystonia 6p22.1 

Barrett's esophagus/esophageal 
adenocarcinoma 

GBA 2629  Gaucher's disease 1q22 Gastric adenocarcinoma 

INSR 3643  Diabetes Type 1, Diabetes Type 2 19p13.2 
Renal Cell Carcinoma/Differentiated 
Thyroid Cancer 

PDE4D 5144 
PDE4A (5141)/PDE4B (5142)/PDE4C 
(5143) 

COPD, Asthma, Non-alcoholic steatohepatitis, 
Eczma, Alzheimer's disease, Schizophrenia, 
Rhinitis, Psoriasis 5q12.1 Esophageal cancer/Breast cancer 

PLG 5340  
Venous thrombosis, Myocardial infarction, 
Pulmonary thrombosis 6q26 Prostate Cancer 

PTGIR 5739  
Pulmonary hypertension, Transplant rejection, 
Peripheral vascular disease, Limb ischaemia 19q13.32 CLL 

SLC6A3 6531  Depression, CNS diagnosis, ADHD 5p15.33 Pancreatic cancer 

TGFB1 7040  

Wound healing, conjunctivitis, Asthma, Eczema, 
Rhinitis, Rheumatoid arthritis, Hyperuricaemia, 
Multiple Sclerosis, Restenosis 19q13.2 Colorectal cancer 

TYR 7299  Skin disorder 11q14.3 
Melanoma/Squamous cell 
carcinoma/Basal cell carcinoma 

VDR 7421  

Osteoperosis, Keratosis, Secondary 
hyperparathyroidism, Psoriasis, 
Osteodystrophy, Hypophosphataemia, 
Palmoplantar pustulosis, Ichthyosis 12q13.11 Prostate Cancer 

 

Table 3: Opportunities for drug re-purposing informed by germline cancer genetics. Targets annotated to cancer risk SNPs by r2>0.8 were 

assessed for overlap with approved non-oncology drugs.
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