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Abstract  28 

Background 29 

Several thousand breast cancer patients develop resistance to aromatase inhibitors (AIs) 30 

each year in the UK. Rational treatment requires an improved molecular characterisation of 31 

resistant disease. 32 

Materials and methods 33 

The mutational landscape of 198 regions in 16 key breast cancer genes and RNA expression 34 

of 209 genes covering key pathways was evaluated in paired biopsies before AI treatment 35 

and at progression on AI from 48 patients. Validity of findings was assessed in another five 36 

ESR1-mutated tumours progressing on AI  37 

Results 38 

Eighty-nine mutations were identified in 41 matched pairs (PIK3CA in 27%; CDH1 in 20%). 39 

ESR1 (n=5), ERBB2 (n=1) and MAP2K4 (n=1) had mutations in the secondary sample only. 40 

There was very high heterogeneity in gene expression between AI-resistant tumours with 41 

few patterns apparent. However, in the ESR1-mutated AI-resistant tumours, expression of 42 

four classical oestrogen-regulated genes (ERGs) was 7-fold higher than in ESR1 wild-type 43 

tumours, a finding confirmed in the second set of ESR1-mutated tumours. In ESR1 wild-type 44 

AI-resistant tumours ERG expression remained suppressed and was uncoupled from the 45 

recovery seen in proliferation. 46 

Conclusions 47 

Major genotypic and phenotypic heterogeneity exists between AI resistant disease. ESR1 48 

mutations appear to drive oestrogen-regulated processes in resistant tumours. 49 

Keywords: breast cancer, aromatase inhibitor, ESR1, mutations 50 
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Background 52 

Aromatase inhibitors (AIs) are the standard of care as first-line treatment for 53 

postmenopausal women with oestrogen receptor positive (ER+) advanced breast cancer 54 

(BC)1. However, the objective response rate to AIs in the metastatic setting is between 20%-55 

40% and virtually all patients eventually relapse with AI-resistant disease2,3. It is critical to 56 

understand the molecular drivers of the resistance to allow rational use of subsequent or 57 

concurrent therapy. Several potential mechanisms of resistance have been described 58 

including changes in the expression of ER or its coregulators, as well as the ESR1 mutational 59 

status. ESR1 mutations in the ligand-binding domain of ER lead to constitutive activity in 60 

model systems4 and have been detected in 15-20% of patients with metastatic ER+ 61 

endocrine resistance BC5-10; up to 40% of patients have been reported to have ESR1 62 

mutated circulating tumour (ct) DNA11. Other potential mechanisms of resistance to 63 

endocrine therapy include the activation of signalling pathways such as the PI3K/mTOR 64 

pathway12.  65 

Paired tumour biopsies before and at recurrence or progression on AIs are infrequently 66 

available. However, in our previous report of 55 such pairs we found a highly variable 67 

immunohistochemical phenotype of several candidate markers between pre-AI and AI-68 

resistant biopsies13. Others14 have reported similar observations that indicate that multiple 69 

mechanisms of resistance occur to AI. While loss of ER occurred in some cases, others 70 

recurrences showed enhanced expression of ER suggesting persistent ER functioning but 71 

downstream markers of such functioning were not measured to confirm or refute this. 72 

Other biopsy pairs showed loss of PTEN or HER2 gain, which are consistent with 73 

experimental studies of resistance to oestrogen deprivation15,16.  74 
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To further investigate the range of molecular changes that are associated with AI-resistance, 75 

we analysed the same sample set13 using a targeted NGS panel to identify somatic mutation 76 

in 16 key genes and a Nanostring panel of 209 genes to identify changes in gene expression 77 

in major signalling pathways. We found that the majority of mutations in the AI-resistant 78 

tumour were shared with their paired pre-AI sample, but almost half of the pairs showed at 79 

least one private mutation. ESR1, ERBB2 and MAP2K4 had mutations in the secondary 80 

sample only, while there was no systematic difference between the primary and secondary 81 

sample for the other analysed genes. The expression of classically oestrogen-dependent 82 

genes that are down-regulated in almost all AI-treated tumours17 supported a significant 83 

phenotypic impact of ESR1 mutations providing further evidence for the likely benefit from 84 

some therapeutic interventions. 85 

Materials and Methods 86 

Patient selection and characteristics 87 

Samples used in this study have been described previously13. In brief, 55 ER+ breast cancer 88 

patients from The Royal Marsden Hospital were retrospectively selected if they had 89 

relapsed or progressed during AI treatment in the locally advanced or metastatic setting 90 

(Discovery cohort, Figure 1). Patient characteristics and clinical management are 91 

summarised in Table 1. 37/48 (77%) of patients received endocrine therapy prior to 92 

treatment with an AI, with 31/48 (65%) receiving tamoxifen. 5/48 (10%) patients received 93 

both tamoxifen and an AI. Paired tissue blocks, pre and post AI treatment, from 48 patients 94 

were available for DNA and RNA extraction. Of these 48 patients, a total of 21 patients 95 

received tamoxifen prior to the pre AI sample being collected. 96 
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To assess the validity of observations made in the discovery cohort on the phenotype of 97 

tumours with ESR1 mutations, a set of biopsies from 5 patients with recurrent disease 98 

already known to have ESR1 mutations post AI treatment was obtained from the ABC-BIO 99 

study (Validation cohort, Figure 1). The ABC-BIO study recruits patients at the Royal 100 

Marsden Hospital with advanced breast cancer with accessible metastatic deposits for DNA 101 

sequencing using the Breast NGS v1.1 probe set including probes to capture ESR1. Biopsies 102 

from three other patients in the ABC-BIO study that were known to harbour ESR1 mutations 103 

but had ceased AI treatment for at least 4 weeks prior to biopsy were excluded because of 104 

the potential impact on gene expression. 105 

Essential details of molecular analysis are stated below and fully detailed in the 106 

supplementary materials.  107 

DNA and RNA extraction 108 

Patients had an FFPE tumour biopsy pre- and post-AI treatment. Tissue sections were 109 

microdissected and DNA and RNA were co-extracted using the AllPrep DNA/RNA FFPE Kit 110 

(Qiagen, Hilden, Germany), with an extended overnight digestion for the DNA extraction 111 

being the only modification from the manufacturer’s instructions. Quantification was done 112 

using high sensitivity RNA and DNA Qubit assays (Thermo Fisher Scientific, Carlsbad, CA) and 113 

on a Bio-Rad QX200 droplet digital PCR (ddPCR) using RNAseP (Thermo Fisher Scientific) 11. 114 

Samples from the validation cohort were also extracted following the same protocol; 115 

however, only one of five cases had a pre-AI treatment block available. 116 

Ion PGM sequencing 117 

DNA from the discovery cohort was amplified using a custom panel targeting 198 regions 118 

within 16 genes. These genes represent the most mutated genes in breast cancer. Five 119 
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genes (CDH1, GATA3, MAP2K4, MAP3K1, PTEN) were covered between 73 and 100%, while 120 

for the other 11 genes (AKT1, BRAF, ERBB2, ESR1, KIT, KRAS, PIK3CA, PIK3R1, RUNX1, SF3B1, 121 

TP53), amplicons for known hotspot regions were designed, resulting in a 100% coverage, 122 

except for ERBB2 (90%) and RUNX1 (5%). Libraries were prepared with 10ng of DNA and 123 

sequenced to a median depth of 782X using the Ion Ampliseq Library Kit v2.0 (Thermo Fisher 124 

Scientific).  125 

MiSeq and NextSeq sequencing 126 

DNA from 5 tumours from the discovery cohort that were unsuccessful with Ion Torrent and 127 

8 from the validation cohort were run on the Miseq or NextSeq (Illumina, San Diego, CA) 128 

using the Breast NGS v1.1 probe set. Protocol and analysis details are described in 129 

supplementary materials. For the purposes of this report only ESR1 mutational data was 130 

extracted.  131 

Mutational validation 132 

Selected ESR1, TP53, HER2, MAP2K4, MAP3K1 and PIK3CA mutations were validated by 133 

droplet digital PCR (ddPCR) on a QX200 ddPCR system (Bio-Rad, Hercules, CA), with primers 134 

(900nM) and probes (250nM) and annealing temperatures described in Table S1. Cycling 135 

conditions and calculation of mutant concentration were described previously11,18.  136 

PIK3CA C420R and E418K and GATA3 K358fs mutations were validated by cycle sequencing.  137 

Nanostring gene expression analysis 138 

RNA was run on a NanoString nCounter™ with 2 custom gene expression panels that 139 

comprised of 194 genes in CodeSet 1 and 70 genes in CodeSet 2, according to 140 

manufacturer’s guidelines. These were comprised of reference genes, the PAM50 gene set 141 

and genes involved in steroid hormone synthesis, ER targets, receptor tyrosine kinases, cell 142 
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cycle/proliferation, apoptosis, cell signalling, mTOR and APOBEC (Table S2A and S2B). 143 

Intrinsic subtypes were identified by NanoString Technologies using a proprietary algorithm. 144 

NanoString was performed for39 pairs and 2 post-AI samples from the discovery cohort and 145 

1 pair and 2 post-AI from the validation cohort. 146 

Statistical Analysis 147 

Statistical tests were performed as indicated using either R v3.2.3 or Graphpad Prism v7. P 148 

value <0.05 was considered statistically significant. Were appropriate paired analyses were 149 

performed. 150 

Results 151 

Discovery Cohort 152 

Population 153 

A consort diagram showing the sample availability in the population is provided in Figure 1. 154 

The clinicopathological characteristics of the 48 sample pairs with adequate either DNA 155 

and/or RNA data are shown in Table 1. In summary, the first tissue sample (pre-AI) was 156 

taken most frequently (62%) from the primary BC or from a local recurrence (35%). At the 157 

time of this sample, 50% of patients had early disease, 42% had loco regional relapsed 158 

disease and 8% had metastatic BC. The second, post-AI tissue was most frequently (54%) 159 

from a site of local recurrence. At the time of the post-AI tissue, 58% of patients had 160 

metastatic disease, 36% had loco regional recurrence and for 6% of patients the post-AI 161 

tissue represented progression in the primary after neoadjuvant AI.  162 
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IonTorrent mutational landscape 163 

Using stringent criteria (see supplementary material), we identified a total of 89 somatic 164 

mutations (47 unique genomic positions) among the 41 pairs of sample with adequate DNA 165 

and that passed QC, Table S3). The mutations are shown for individual patients in Figure 2 166 

along with data on PAM50 subtype and previously reported IHC status for ER, PgR, PTEN, 167 

Ki67 and HER2 (FISH as necessary). Across all samples, 36 mutations were found in both the 168 

primary and secondary samples (shared mutations) whilst 18 mutations were private to one 169 

sample of the pair (Figure S1). For the mutations that were identified in both paired 170 

samples, there was no significant difference in variant allele frequency (VAF) between the 171 

samples (data not shown). For many pairs we found at least one mutation with high VAF in 172 

both samples suggesting a common founding clone. There was no significant difference 173 

between the total number of mutations identified on the pre and post samples. The most 174 

frequently mutated gene was PIK3CA (27%) followed by CDH1 (20%). Three genes: ERBB2 175 

(L755S), MAP2K4 (located at Intron 9-10) and ESR1 (D538G and E380Q) were mutated 176 

exclusively in the post sample and were exclusive of each other. Mutations were validated 177 

by ddPCR and cycle sequencing (Table S4) with identified VAFs similar to those found by 178 

sequencing, demonstrating high reproducibility of the data. Of the 12 sample pairs with no 179 

mutations detected, three were HER2 positive and four had a marked decrease of ER 180 

staining in the post-AI sample. Both of these phenotypes might lead to less selective 181 

pressure for the acquisition of mutations.  182 

ESR1 mutations 183 

To complement the ESR1 mutational analysis five further samples from the discovery cohort 184 

that were unsuccessful with Ion Torrent were run with an NGS Breast v1.1 panel 185 
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(Supplementary materials). This identified one additional ESR1 mutation in a post-AI sample. 186 

This mutation was a previously unreported substitution followed by an insertion at the 187 

aa536 hot-spot of known mutations (L536indelGV). In all of the five patients with ESR1 188 

mutations the resistant biopsy was in the metastatic setting (Figure S2). In one of these 189 

cases (patient 23) an intermediate sample taken after 5 years of tamoxifen in the metastatic 190 

setting and before AI treatment was available and was found to be ESR1 wild type.  191 

Gene Expression 192 

For five genes both IHC and gene expression data (Table S5) were available and for all of 193 

these there was a strong significant correlation between the 2 measurements (Table S6)19.  194 

Two-way hierarchical clustering of the global gene expression in the pre- and post-AI groups 195 

showed 38% (15/39) of pairs clustered together (Figure 3A). Thirty-six pairs (plus two pre- 196 

and two post-AI samples) had PAM50 subtype calculated (Table S7). Only 56% of sample 197 

pairs maintained their PAM50 subtype at progression after AI treatment (Table S8). Of 198 

particular note only one case was classified as basal-like at baseline but six were classified as 199 

basal-like at resistance. Low expression of oestrogen response genes were a consistent 200 

feature of this group.  The clustering shows some distinct patterns with three major 201 

branches labelled A, B and C in Figure 3A. Branch A consists largely of luminal A and luminal 202 

B samples with substantial heterogeneity between them. Branch B consists mainly of HER2-203 

enriched samples and some luminal B. In contrast branch C contains all of the basal-like 204 

samples, most of which were unpaired post-treatment samples. The proliferation group of 205 

genes appeared to be the dominant feature in clustering the samples most notably into 2 206 

sub-clusters of branch C.  207 
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Figure 3B shows 2-way hierarchical clustering of just the AI-resistant samples. While 4 main 208 

clusters can be recognised, the very wide heterogeneity in gene expression in these samples 209 

is evident with few groupings due to consistent patterns of expression across the gene set. A 210 

small group of tumours with basal-like features (branch A) again segregated from the others 211 

based mainly on low expression of oestrogen-regulated genes and high expression of genes 212 

in the immune cluster. The central 2 clusters (B and C) in Figure 3B differ from the others 213 

mainly by their higher expression of oestrogen-regulated genes and contain the ESR1 214 

mutated tumours (see below). The segregation of clusters B and C from one another is then 215 

related mainly to proliferation-associated genes. Notably, those with the relatively high 216 

proliferation were associated with relatively high signal transduction and immune signalling. 217 

The segregation of the cluster classified as HER2-enriched was unexpectedly not dependent 218 

on high levels of genes associated with signal transduction but rather on either relatively 219 

high proliferation or relatively low expression of immune-related genes. 220 

Eighteen genes were significantly (FDR 5%) downregulated and one (TBP) was upregulated 221 

at progression after AI (Figure 4). Ten of the 13 most markedly down-regulated were known 222 

to be subject to regulation by oestrogen signalling. After exclusion of ER negative samples 223 

13/18 genes were significantly differentially expressed. The five genes no longer significantly 224 

different were TFF3, SCUBE2, SLC39A6, TBP, PIK3R2 and GATA3. This indicates that 225 

suppression of a major axis of oestrogen regulation is maintained despite these tumours 226 

demonstrating clinical resistance to AI. Further, expression of ESR1 and ERa show a strong 227 

correlation with the significantly differentially expressed genes (Figure S3A). The discovery 228 

cohort is phenotypically heterogeneous, yet unsupervised clustering of the 18 differentially 229 

expressed genes reveals robust downregulation of ERGs in the majority of tumours (Figure 230 

S3B).  231 
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 Twenty-one patients with paired samples, of which 16 have expression data, had received 232 

tamoxifen prior to the pre-AI sample being collected and conceivably this could have 233 

impacted on the expression of these 18 differentially regulated genes in the pre-AI sample. 234 

However there was no significant difference in gene expression for any of the genes 235 

according to prior tamoxifen treatment (Figure S4). This lack of effect of prior tamoxifen 236 

may be due to the drug’s partial agonist activity which is marked in postmenopausal 237 

women20. 238 

ESR1 Mutation and Gene Expression  239 

There was no significant difference in expression of four oestrogen-regulated genes (TFF1, 240 

GREB1, PDZK1 and PgR) that we have previously used as markers of oestrogenic signalling17, 241 

in the pre-AI samples from the 5 patients in the discovery cohort that went on to acquire an 242 

ESR1 mutation compared with those that did not (Figure S5). In four of the five cases it was 243 

notable however that oestrogen regulated gene expression was is in the upper range of that 244 

in all samples. Expression of the four oestrogen-regulated genes in post-AI samples with 245 

ESR1 mutations was on average more than 2-fold higher than in ESR1 wildtype samples for 246 

individual genes, and the average expression of these genes in post-AI samples with ESR1 247 

mutations was more than 6-fold higher than in post-AI samples with wildtype ESR1 (Mann 248 

Whitney P=0.006, Figure S5).  249 

We used the validation cohort to assess the consistency of these observations of a 250 

relationship between oestrogen-regulated gene expression and ESR1 mutations. This cohort 251 

consisted of an additional five metastatic samples with previously described ESR1 mutation 252 

in a sample taken after AI treatment increasing the number of ESR1 mutated cases with 253 

gene expression data to 10. The clinicopathological characteristics of the samples (1 pair and 254 
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4 Post-AI samples) are shown in Table S9 and the treatment chronology from diagnosis to 255 

death is shown in Figure S6.  256 

Gene expression of 33 genes was significantly different in the progression sample between 257 

ESR1 wild-type and the 10 mutated tumours (Figure S7). FOXO3a was the only gene 258 

observed to have lower expression in ESR1 mutant post-AI samples. Using Fisher’s exact 259 

test, the remaining 32 genes with higher expression in ESR1 mutant post-AI samples were 260 

significantly enriched for annotations associated with proliferation and most markedly with 261 

oestrogen regulation. Five of the genes are part of the 11-gene proliferation signature in 262 

PAM5021(p = 0.02, fisher exact test), and 11 are oestrogen-regulated (GSEA Molecular 263 

Signature Database Hallmark of Estrogen Response Early/Late22, p = 0.01, fisher exact test). 264 

In addition, two of these genes (MELK and BIRC5) are associated with worse outcome or 265 

metastasis23,24. After exclusion of ER negative samples, 25/33 genes were significantly 266 

differentially expressed, including 8/10 ERGs and the 5 genes from the PAM50 proliferation 267 

signature. The eight genes no longer significantly different were IL6ST, PGR, FOXO3A, FKBP4, 268 

HRAS, KIF2C, CXXC5 and RPLP0.   269 

Figure 5A shows the associations between oestrogen regulated gene (ERG) expression and 270 

ESR1 mutational status between all 10 ESR1 mutated cases and the non-mutated cases 271 

according to baseline or post-treatment status. Post-AI samples with ESR1 mutations had 272 

more than 7-fold higher ERG expression than post-AI wild-type samples (Mann Whitney P= 273 

1.7e-6). Figure 5B shows no significant differences in the PAM50 proliferation genes 274 

between the post treatment samples according to ESR1 mutation status. A linear scale plot 275 

emphasizes the magnitude of the difference in ERG expression between post-AI samples 276 

with or without ESR1 mutation (Figure S8) and the separation in the samples according to 277 

ERG expression is particularly clear when shown in a waterfall plot (Figure 5C). It is notable 278 



Page 14 of 26 
 

that the post-AI ESR1-mutated tumour with the lowest oestrogen regulated expression 279 

carried an E380Q mutation and was also HER2-positive though this is the only ESR1 mutated 280 

sample with HER2 overexpression making the importance of its association with low ERG 281 

expression uncertain. 282 

 283 

Discussion 284 

Several thousand women diagnosed with ER+ breast cancer recur each year with endocrine 285 

resistant disease. The majority are postmenopausal and almost all will have received an AI 286 

before or after their recurrence and will require management of their AI-resistant disease. 287 

Many potential mechanisms have been reported in model systems but few of these have 288 

been confirmed as being associated with AI-resistance in the clinic. To a large degree this is 289 

because tissues are difficult to acquire in which to study such associations. The collection of 290 

paired pre-AI and AI-resistant tissues assessed here for mutational status and expression 291 

levels of BC associated genes although modest in size is therefore an uncommon cohort. 292 

Our earlier report revealed very marked heterogeneity between resistant tumours in key 293 

IHC biomarkers12. Of note, ER expression was maintained or enhanced in the majority of 294 

tumours and was felt to be consistent with a potential for oestrogen signalling in the face of 295 

AI to be a driver of resistance, a mechanism that is supported in only a minority of ER+ 296 

resistant tumours in the current study. 297 

Our data support those from more wide-ranging studies of metastatic breast cancer, in that 298 

there was an absence of observed major increases in the acquisition of driver mutations in 299 

metastases10,25,26 at least among the selected panel of frequently-mutated genes assessed. 300 

The only gene that differed substantially was ESR1 in which mutations have been described 301 
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to be markedly enriched in metastases after AI-treatment5,7-10. In this study we identified 302 

ESR1 mutations in 11% of patients, which is at lower end of the reported frequency. This 303 

may be due to many of our samples being local recurrences.  304 

ESR1 mutated recurrent breast cancer has become a focus of attention in the possible 305 

development of new agents, such as selective oestrogen receptor degraders but very little 306 

has been reported on the phenotype of the ESR1-mutated tumours. Evidence from model 307 

systems indicates the ligand-independent activity of the hot-spot ESR1 mutations4,27-29. Our 308 

clinical data on the significantly higher expression of ERGs when ESR1 mutations were 309 

present, despite the on-going treatment with AI, supports this supports this being valid in 310 

clinical tissues. While our observation was made on a relatively small number of samples, it 311 

was validated by examination of another cohort from an on-going study of the clinical 312 

importance of mutations in metastatic breast cancer. The co-association of the high ERG 313 

expression and high proliferation genes in the ESR1 mutated tumours is consistent with the 314 

tumour progression being at least partly driven by the mutations. In contrast, the continued 315 

suppression of the ERG expression in tumours in which mutations were not detected implies 316 

a disconnect between proliferation and oestrogen signalling. Persistent suppression of ERG 317 

expression is clearly not a signal for continued anti-tumour effectiveness of the AI: 318 

assessment of these genes as a pharmacodynamics marker in this instance would likely be 319 

misleading. 320 

We observed small numbers of other mutations that could underpin resistance in individual 321 

patients. These included a MAP2K4 mutation which likely disrupts splicing and potentially 322 

leads to not recognising exon 9 by the spliceosome or retaining the intron downstream of 323 

exon 9 and the ERBB2 L755S which has been previously associated with lapatinib 324 
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resistance30 but has also been associated with response to the alternative HER2 tyrosine 325 

kinase inhibitor, neratinib31. 326 

PIK3CA and TP53 are the most commonly mutated genes in BC with over 30% of patients 327 

carrying mutations in either of these genes (IntOgen database32). In our study we found that 328 

27% of the patients had mutations in one or both of their samples in PIK3CA, but only 15% 329 

had a TP53 mutation (likely due to targeting of TP53 hotspots in our targeted panel). We 330 

also found many patients with a CDH1 mutation (20%). Loss of CDH1 is a common feature of 331 

lobular breast cancer which is almost always ER+. CDH1 controls the cellular adhesion 332 

dynamics33 and its loss has been associated with increased cancer invasion34. These features 333 

might explain the unusually high frequency in this selection of patients, all of whom 334 

relapsed after AI treatment. 335 

There was little consistency other than marked down-regulation of ERGs in most patients in 336 

recurrent samples. PAM50 subtypes were maintained in >55% of patients in agreement with 337 

the 61% recently described in matched primary and metastatic pairs5. The meaning of the 338 

intrinsic subtypes in metastatic disease is however unclear particularly when, as in this 339 

study, transcriptional features that underpin the subtyping are impacted by medical 340 

therapy.  341 

The most notable feature of the gene expression analyses was the very high degree of 342 

heterogeneity between recurrent tumours; this was apparent even within the three or four 343 

main clusters identified. This does not necessarily imply that gene expression profiling of 344 

recurrent tumours is without value. Rather it supports the need for individualised 345 

interpretation of profiles for individual tumours. This is especially so with regard to features 346 

such as oestrogen regulation, that might imply the likely benefit or not of alternative 347 
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targeting of oestrogen signalling, or individual signal transduction pathways that align with 348 

particular inhibitors. 349 

Some weaknesses in the current study need to be considered. Many patients had received 350 

chemotherapy or tamoxifen prior to the pre-AI sample and then progressed after being 351 

treated with an AI. Although prior treatment with tamoxifen might have been expected to 352 

impact on gene expression, particularly of known oestrogen-regulated genes, our analyses 353 

revealed no significant effect of this prior treatment on the main gene changes noted. Our 354 

mutational and transcriptional characterisation was based around features known to be of 355 

relevance in breast cancer. An assessment at a more genome-wide level would require a 356 

much larger sample set to have confidence in novel observations. 357 

In summary, there is major inter-tumour heterogeneity of genotypic and phenotypic 358 

features that may drive resistance to AIs in recurrent breast cancer, requiring highly 359 

individualised interpretation of likely dominant pathways in particular cases. Mutational 360 

analysis of recurrent disease is of value in identifying targetable abnormalities. Mutations in 361 

ESR1 gene are frequently acquired in recurrent disease, having enhanced ERG expression 362 

alongside high proliferation-associated genes provides a strong rationale for their targeting 363 

with novel agents targeted at the degradation of ligand-independent ER.  364 
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Figure Legends 500 

Figure 1: Consort Diagram of the 55 AI paired samples (discovery cohort, left) and 5 ESR1 501 

mutant samples from the ABCBIO study. 502 

Figure 2: Mutation matrix. All somatic mutations in the coding sequence (CDS) are shown 503 

together with IHC expression, clinicopathological parameters and PAM50 subtypes. 1 and 2 504 

indicate the number of mutations identified. 505 

Figure 3: A) Hierarchical clustering of the 39 sample pairs and two unpaired post samples by 506 

gene expression.  ESR1 mutational status, pair pre- and post-AI status (together with pair 507 

clustering) and PAM50 subtypes are indicated at the top of the cluster. Five gene (row) 508 

clusters are annotated by most significant terms generated from compute overlaps analysis 509 

in Broad Institute GSEA website 510 

(http://software.broadinstitute.org/gsea/msigdb/annotate.jsp). B) Hierarchical clustering of 511 

the 41 post samples by gene expression.  ESR1 mutational status and PAM50 subtypes are 512 

indicated at the top of the cluster. Five gene (row) clusters were taken from clustering used 513 

in Figure 2. 514 

Figure 4: A) Arrow plot of 18 genes that changed significantly pre- and post-AI. Red arrows 515 

identify increase of expression in the paired post sample and blue arrows a decrease in 516 

expression. FDR values for Student’s t-test are shown. B) Box plots of the same 18 genes 517 

with mean and 95% confidence interval of log2 difference between paired pre and post 518 

samples. Genes coloured in black are ERG genes. 519 

Figure 5: A) ESR1 mutations and avERG expression. Box plots of the average expression of 520 

TFF1, GREB1, PgR and PDZK1 are shown in the Pre- and Post-AI samples in ESR1 WT and 13 521 

MUT samples (5 from AI study and 8 from additional cohort). B) ESR1 mutations and PAM50 522 

proliferation gene expression. Box plots of the average expression of the PAM50 523 

http://software.broadinstitute.org/gsea/msigdb/annotate.jsp
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proliferation genes are shown in the Pre- and Post-AI samples. C) Waterfall plot of ESR1 524 

mutational status and ERG expression. The Dashed line represents the mean of all Pre 525 

samples. *Indicates a Post-AI ESR1 mutant sample that is HER2 positive. 526 

  527 
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Table 1: Patient demographics. The clinical characteristics of 48 patients with mutational 528 

and/or gene expression data. 529 

Clinical characteristics n (%) 

Diagnosis 

Age (years) 
Mean 54 
Range 27-86 

Disease status  
EBC 41 (85) 
Locally advanced 5 (10) 
Metastatic 2 (5) 

Age at start of AI treatment (years) 
Mean 62 
Range 33-88 

Pre-AI biopsy 

Site 
Primary 30 (62) 
Local recurrence 17 (35) 
Distant recurrence 1 (2) 

Disease Status 
EBC 24 (50) 
Locoregional recurrence 20 (42) 
MBC 4 (8) 

AI therapy b/w 1st and 2nd biopsy 

Type 
Letrozole 25 (52) 
Anastrozole 21 (44) 
Exemestane 2 (5) 

Disease setting for AI therapy 
Adj/neoadj 9 (19) 
Local recurrence 25 (52) 
Metastatic 14 (30) 

Post-AI biopsy 

Site 
Primary 7 (15) 
Local recurrence 26 (54) 
Distant recurrence 15 (31) 

Disease Status 
EBC 3 (6) 
Locoregional recurrence 17 (36) 
MBC 28 (58) 

Endocrine therapy prior AI treatment 

None 11 (23) 
Tamoxifen 31 (65) 
Tamoxifen + AI 5 (10) 
Grosrelin 1 (2) 

Endocrine therapy after PD on AI 
AI 31 (65) 
Tamoxifen 7 (15) 
Fulvestrant 5 (10) 

HER2 status of either tissues 
HER2 positive§ 7 (15) 
Trastuzumab received 6 (13) 

Overall survival$ (years) 
Median 8.75 
Range 2-33 

EBC, early breast cancer; MBC, metastatic breast cancer; AI, aromatase inhibitor; PD, progressive disease; 530 
§either 1st or 2nd tissue sample; $defined as time from first breast cancer diagnosis to death (alive patients 531 
censored) 532 
  533 
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Supplementary Figure and Table Legends 534 

Figure S1: Scatter plot showing the VAFs of mutations per sample pair.  535 

Figure S2: Treatment history of the 5 patients from discovery cohort with ESR1 mutation. 536 

The therapy timeline from pre-AI tissue to deceased status are shown for the 5 patients with 537 

ESR1 mutations. 538 

Figure S3: A) Spearman correlation of 18 significant differentially expressed between Pre 539 

and Post samples, ESR1 mRNA expression (Pre, Post and Post – Pre) and ER IHC (Pre, Post 540 

and Post – Pre). From 39 paired samples and colored by spearman rho values, *<0.05, 541 

**<0.01 and ***<0.001. Red gene expression, black IHC. B) Unsupervised clustering of 18 542 

significant differentially expressed genes (Log2 Post-Pre) and sample pairs with ERa and 543 

HER2 expression by IHC. 544 

Figure S4: Effect of prior tamoxifen treatment on 18 significantly differentially expressed 545 

genes. Box plots with mean and 95% confidence interval of log2 difference between paired 546 

pre and post samples. Top panel, pairs with prior tamoxifen treatment (n=16) and bottom 547 

panel pairs without prior tamoxifen treatment (n=23). Genes coloured in black are ERG 548 

genes. 549 

Figure S5: Box plots of the average expression of TFF1, GREB1, PgR and PDZK1 are shown in 550 

the Pre- and Post-AI samples in ESR1 WT and five MUT samples from the AI study. 551 

Figure S6: Treatment history of the 5 patients with ESR1 mutations from the validation 552 

cohort. The therapy timeline represents from diagnosis to deceased status. 553 

Figure S7: ESR1 mutational status and gene expression. Thirty three genes whose expression 554 

is significantly associated to ESR1 mutational status. Purple coloured labels are ERGs and 555 

Red coloured labels are part of the PAM50 11-gene proliferation signature. 556 
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Figure S8: Linear scale plot of avERG expression and ESR1 mutational status. Green “x” 557 

identify Post-AI unpaired samples. 558 

 559 

Table S1. Primers used for sequencing. 560 

Table S2. Two gene panels selected for NanoString. 561 

Table S3. All mutations identified in the Ion Torrent analysis and their variant allele 562 

frequencies. 563 

Table S4. ddPCR and sequencing validation results. 564 

Table S5. Nanostring normalised log2 expression data 565 

Table S6. Correlation between Immunohistochemistry and Nanostring data. 566 

Table S7. PAM50 data calls for each sample. 567 

Table S8. PAM50 pre- and post-AI contingency table  568 

Table S9. Demographics of 8 ABC-BIO samples 569 
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