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Abstract 
Immunotherapeutics have revolutionized the management of solid malignancies over the last 

few years.  Nevertheless, despite relative successes of checkpoint inhibitors in numerous 

solid tumour types, success in tumours of the central nervous system (CNS) has been 

lacking. There are several possible reasons for the relative lack of success of 

immunotherapeutics in this setting, including the immune microenvironment of glioblastoma, 

lymphocyte tracking through the blood-brain barrier (BBB) into the central nervous system 

and impairment of drug delivery into the CNS through the BBB.  This review utilizes the 

cancer-immunity cycle as a conceptual framework through which the specific challenges 

associated with the development of immunotherapeutics for CNS malignancies can be 

viewed. 

 
  



Introduction:  
The recent development of immune checkpoint inhibitors and the corresponding efficacy 

shown by inhibitors of the CTLA-4-B7 (1) and PD-1/PD-L1 checkpoints (2-7) in multiple 

tumour types has resulted in substantial investment by the pharmaceutical industry in clinical 

development of immunotherapeutics across tumour types and indications.  Although, in 

particular, the efficacy of inhibitors of the PD-1/PD-L1 checkpoint has been consistent across 

tumour types, the single agent activity of these drugs has been lacking in tumours of the 

central nervous system (CNS).  In particular, several studies have shown less promising 

results in glioblastoma compared with other tumour types (8, 9). Glioblastoma, however, 

poses unique challenges to the immunotherapy treatment paradigm, as traditionally the CNS 

has been regarded as an immune-privileged site (10); the frequent concomitant 

administration of immunosuppressive medications such as corticosteroids in this patient 

population is an additional consideration.   Although these recent trials have cast doubts 

over the role, if any, of immunotherapeutics in CNS malignancies, they may also serve as an 

opportune time to evaluate the nuances of the emerging biology surrounding the cancer-

immunity cycle and the specific challenges relating to drug development in primary brain 

tumours. 

 

The cancer-immunity cycle was first proposed by Chen and Mellman (11) as a paradigm for 

the interaction between the immune system and cancer.  They argue that a series of step-

wise events must occur for effective anti-tumour immunity and coined the cycle to describe 

these events.  Cancer cells and cancer cell death initially results in the release of 

neoantigens, which are then presented to dendritic cells. Priming and activation 

subsequently occurs, leading to trafficking of T cells to tumours, and subsequent infiltration 

of effector cells into tumours. There is then recognition of cancer cells by effector T cells, 

which results in cancer cell death which reiterates the cycle.  This review evaluates the 

challenges of developing successful immunotherapeutics for glioblastoma through the lens 

of the cancer-immunity cycle.  We initially describe the current understanding of the immune 

system in the central nervous system and subsequently address unique aspects of the 

immune system in the brain.  We then describe current clinical development of CNS 

immunotherapeutics and the relative lack of efficacy of immune checkpoint inhibition to date.  

Finally we provide a conceptual framework through which the development of effective 

immunotherapeutic strategies in the CNS can be viewed, and specific considerations for 

clinical trial design for CNS immunotherapeutics. 

 

The immune system and the brain – biological challenges and immune privilege 



Historically, the CNS has been considered an immune-privileged site for a triumvirate 

number of reasons (12). Firstly, histological absence of observable lymphatics disputed 

lymphatic circulation in the brain, theoretically impeding functional immunity. Secondly, the 

blood-brain barrier (BBB) has been a major limitation since it was first described by Paul 

Elrlich in the late 19th century (13). The BBB comprises a physical barrier due to complex 

tight junctions between adjacent endothelial cells, which requires transcellular passage of 

molecules trafficking into brain tissue compared to typical paracellular trafficking in other 

tissue sites (14).  Practically this results in limited penetration of antibodies, immune 

mediators and immune cells through the BBB from the systemic circulation into the CNS 

(15). The third pillar of immune privilege was the disparity between the CNS immune system 

compared to the rest of the body, “apparent immune absence”, supported by observations 

such as the paucity of dendritic cells in the brain parenchyma (16), the seminal work of 

Lampson demonstrating the lack of major histocompatibility complex (MHC) class I on 

neuronal and glial tissue, the relative paucity of MHC class II expression in resections of 

brain tumour patients (17) and the  tight regulation of the expression of T cell co-stimulatory 

molecules within the brain (18). A large body of emerging work is now challenging the 

traditional assumptions underlying this concept of relative CNS immune privilege with good 

evidence indicating that the CNS is both immune competent and actively interacts with the 

peripheral immune system.    

 

Challenging lymphatic circulation as a pillar of immune privilege 

Firstly, we now have clear evidence of lymphatic circulation within the brain (19).  Louveau 

and colleagues used sensitive imaging techniques to neatly show that the cerebrospinal fluid 

circulation leads to lymphatic drainage of the brain via the cervical and nasal lymphatics (20) 

suggesting that immune cells and tumour antigens may pass through the cerebrospinal fluid 

to the draining cervical lymphatics to meet with the antigen processing and presenting 

machinery and thereby stimulating the development of a systemic immune anti-tumour 

response (Figure 1). Although naive antigen-inexperienced T cells tend not to enter the 

healthy CNS and remained located in perivascular, subarachnoid, or meningeal spaces (24), 

activated CNS-specific CD4+ T cells are able to apparently chaperone naive non-CNS-

specific T cells across the BBB into the CNS (25).   

Challenging the BBB as a pillar of immune privilege 

Importantly, it is increasingly recognised that the BBB is dynamic, with its phenotype 

developing from complex cell-cell interactions from adjacent astrocytes (14, 26) and with its 

permeability varying based upon the functional requirements of signalling systems in the 

brain.  For instance the fenestrated endothelial wall at the hypothalamus allows diffusion of 

hormones into the systemic circulation, whereas the absence of the BBB at the area 



postrema allows relative free perfusion of molecules from the blood into brain tissue (13).  Of 

particular relevance in brain tumours, the tight junctions of the BBB can be disrupted in the 

setting of cerebral oedema (27), pro-inflammatory cytokines, such as interferon-γ and tumor 

necrosis factor-α (13), anatomical disruption from direct tumour extension, as well as 

downregulation of tight junction proteins such as claudins 1,3 (14) (28).   These observations 

gel with histopathological findings in brain tumour series, which have consistently 

demonstrated significant quantities of infiltrating immune cells in glioblastoma specimens, 

both macrophages but also CD4+ and CD8+ lymphocytes (29), as well as dynamic markers 

of the immune response such as PD-L1 (30).  Taken together, these factors demonstrate 

that the BBB is a relative rather than an absolute barrier, when considering implications for 

the trafficking of immune cells or the delivery of cancer therapeutics.   

 
Challenging apparent immune absence as a pillar of immune privilege 

Finally, although there are definite difference in the immune system of the brain compared to 

other sites, this does not definitively preclude functional CNS immunity.  Systemically, it is 

widely recognised that the critical components of the antitumour immune response are 

cytotoxic T cells and the adaptive immune system, and that overactivation of the innate 

immune system can paradoxically promote tumorigenesis (31).  Nevertheless, some degree 

of innate immune activation is a requisite for functional anticancer immunity.  Critical 

components of the systemic anticancer immune response include immune recognition cells 

such as dendritic cells, immune effector cells such as cytotoxic CD8+ T cells and the 

supporting apparatus of CD4+ helper T cells.   In the brain, microglia serve as the functional 

antigen presenting cells, having been shown by sensitive assays to avidly express MHC 

class II molecules, particular in the setting of inflammation, and are now thought to be able to 

directly present tumour antigens to T cells within the brain  (21-23).  Although preclinical 

models of healthy mice suggested that the CNS parenchyma lacks a potent innate immune 

response (32), resident microglia are able to recognize “pathogen associated molecular 

patterns” and “danger associated molecular patterns”, which include heat shock proteins, 

uric acid, high-mobility group box 1 protein (HMGB1), and other structures available during 

tissue damage, inflammation and cell death (33). Heat shock proteins released from tumor 

cells may be particularly effective chaperones for tumor-specific peptide antigens and may 

both activate dendritic cells and serve as antigen couriers (34, 35).  Thus there appears to 

be sufficient innate immune system activation in the CNS to generate an antitumour immune 

response. 

 

It has been challenging to identify how the innate immune system activates the adaptive 

antitumour immune response in the brain, but preclinical models suggests that activated 



dendritic cells carry antigens and transit to the cervical lymph nodes where a systemic 

immune response is stimulated (36). Additionally CNS-derived soluble tumour antigens may 

directly drain to the lymphatics where they are presented by peripheral antigen-presentation 

machinery (37) .  

A CNS-specific T-cell trafficking programme is yet to be identified, but preclinical work in 

auto-immune murine models suggests that activation of T cells within the cervical lymph 

nodes have a direct role for the neuro-inflammation seen (38). Three potential immune entry 

sites into the CNS have been described, localizing to the superficial leptomeningeal vessels, 

parenchymal vessels and the choroid plexus (39). In agreement with these findings, immune 

cell infiltrates are found in tumor tissue derived from brain cancers consisting of both 

macrophages and CD4+ and CD8+ lymphocytes (29, 40).  Furthermore, antibodies are able 

to penetrate into the CNS, albeit at lower concentrations than in the systemic circulation (41), 

providing evidence of the humoral component of the adaptive immune system in the brain.  

These factors suggest that there is a functional cellular and humoral immune response in the 

brain, the key components of which are demonstrated in Figure 1.  Counteracting this 

functional adaptive immunity is the increasing recognition of a particularly 

immunosuppressive tumour microenvironment in the archetypal primary CNS tumour, 

glioblastoma. 

 

The immunosuppressive tumour microenvironment of glioblastoma has been well 

documented  (42) and characterized by the myriad anti-inflammatory cytokines secreted by 

glioma cells. Cytokines such as tumor growth factor-β (TGF-β), interleukin (IL)-6, IL-10 and 

prostaglandin E2 actively suppress the expression of MHC on microglia, thereby limiting 

antigen presentation and diminishing the cytotoxic T cell response (43, 44). The infiltrating T 

cell population is over-represented by regulatory T cells (Tregs) (45), which are regulated by 

factors such as the enzyme indoleamine 2,3-dioxygenase (IDO) (46) and serve functionally 

in brain tumors to suppress the immune system (47). This diminished response is further 

exacerbated by the promotion of the alternative M2 macrophage phenotype in glioblastoma 

(48).  There is a substantial body of literature demonstrating that phenotype switching of 

tumour-associated macrophages from M1 to M2 promotes tumorigenesis in diverse ways 

(48). In glioblastoma, the presence of M2 macrophages has been correlated with increasing 

histological grade, which is thought to be driven in some part by tumoral expression of 

macrophage colony-stimulating factor (45, 49).  Thus, the development of clinically 

efficacious immunotherapeutics in the brain has to both consider the unique aspects of the 

CNS immune system and the historical pillars of immune privilege as well as offsetting 

contribution of the immunosuppressive microenvironment in glioblastoma. 

 



Current clinical developments in CNS immunotherapeutics 
The use of the PD-1/PD-L1 immune checkpoint inhibitors to unleash the T cell response  has 

been most studied immunotherapeutic strategy in glioblastoma, but has proved mostly 

disappointing in single agent studies presented thus far (8, 50, 51)  (Table 1). Checkmate-

143 was a Phase 3 study exploring nivolumab in comparison to bevacizumab in the setting 

of recurrent glioblastoma and demonstrated a tolerability profiles consistent with 

observations in other tumor types. Disappointingly however, CheckMate-143 did not meet its 

primary endpoint of improved overall survival, as presented by Reardon et al at World 

Federation of Neurooncology Societies  2017 with lower documented response rates in the 

nivolumab arm in spite of a hint of more durable responses in the responding patients (8, 

52).   

Registration 
number 

Treatment Overall response rate* 
(%), (N) 

Comments 

 

NCT02017717 

Nivolumab 8% (n=153) (8) Longer duration of response 
(11.1 mo compared to 5.3 
mo for bevacizumab). 

Median PFS 1.5 mo. 

12 month OS 42%. 

 
NCT02054806 

Pembrolizumab 

 

4% (n=26) (53) Median OS 14.4 mo. 

Median PFS 2.8 mo. 

 

NCT02336165 Durvalumab 

 

13.3% (n=31) (9) 

 

12 month OS 44.4% 

6 month OS 59.0% 

6 month PFS 20.0% 

* Overall response rate according to RANO criteria 
PFS- progression-free survival 
OS- overall survival 
 
Table 1: Reported results of single agent checkpoint inhibitors trials in recurrent 
glioblastoma 
 

Of note however, are the case reports of therapeutic successes in specific pediatric patients 

with biallelic mismatch repair deficiencies (54) suggesting that these antibodies do cross the 

BBB and penetrate into the tumour microenvironment, and are able to release a tumour 

specific cytotoxic T cell response. Given that these patients have hypermutated tumours with 

significantly high mutational load and therefore a significant immunogenic burden and thus a 

larger repertoire of tumor antigen-specific T cells  (55, 56), the inclusion of a selected subset 



of glioma patients with high mutational burden into clinical trials of checkpoint inhibitors is 

one strategy currently being pursued (for example, in NCT02628067).  As a population 

however, the mutational load in primary malignant brain tumours is low, approximately 10-

fold lower than in melanoma and lung cancer (57, 58) with the mutational load  being 

associated with tumour grade (59).  And although the currently available standard treatments 

of radiation and temozolomide are themselves mutagenic (60), and one may extrapolate that 

in cells that survive, the neoantigen load is likely to rise, thereby diversifying epitopes 

available for recognition by T cells, this has been insufficient in isolation to stimulate an 

adaptive immune response as demonstrated by the limited sensitivity to single agent 

immune checkpoint inhibition in the recurrent setting (Table 1). As such, consideration of 

other nodes in the CNS immunity cycle to be targeted with combinatorial strategies are 

urgently needed and discussed in detail in the following sections (Figure 2).  

 

The CNS cancer-immunity cycle- a framework for immunotherapeutic strategies in 
CNS tumour 
 
Cancer Cell Death- DNA damaging agents and immunogenic cell death  

Initiaiting the cancer immunity cycle is cell death and immunogenic cell death refers to 

activation of the immune system by apoptotic cells or pre-apoptotic cells resulting in tumor 

cell death (61).  DNA damaging agents including radiation and temozolomide can cause 

immunogenic cell death and the release of danger signals including “damage-associated 

molecular patterns” that stimulate the recruitment of APCs where they process and present 

tumour neoantigens, thereby priming an adaptive immune response (62). It is worth noting 

that to date there does not appear to be any evidence that immunogenic cell death is 

affected by mutational load (62). In preclinical murine glioma models, combined PD-1 

blockade and stereotactic radiosurgery (SRS) have been shown to improve antitumor 

immunity and produce long-term survivors (63, 64) and this concept is now in early clinical 

testing in patients with malignant brain tumours. The focus on augmenting immunogenic cell 

death in glioblastoma to negate the limited single agent efficacy of PD-1 inhibition is 

translating into ongoing early phase clinical trials.  Sahebjam et al recently presented 

preliminary findings from one such phase I study evaluating the concomitant use of 

hypofractionated SRS, pembrolizumab, and bevacizumab for recurrent, high-grade gliomas 

noting that all patients tolerated the regimen, and and an impressive durable response rate 

(response for ≥ 6 months) of 53% was noted (65, 66). Numerous other combination trials of 

immunotherapy in combination with DNA damaging agents for CNS malignancies are 

ongoing including with temozolomide (e.g. NCT02311920), radiotherapy (NCT02617589, 

NCT02336165) and the combination of temozolomide and radiation (NCT02667587).  



 

Antigen presentation- oncolytic Virotherapy and vaccine strategies 

Cell death can kickstart the cancer-immunity cycle in the brain by activating the adaptive 

immune system via antigen presentation.  There are several complementary therapeutic 

strategies that are focussing upon this component of the cancer-immunity cycle in the the 

brain.  Oncolytic virotherapy makes use of non-pathogenic viruses to selectively invade or 

specifically express proteins in brain tumor cells that can directly kill cancer cells or 

otherwise stimulate an immune response, therefore marrying both the concepts of 

immunogenic cell death with antigen presentation. The oncolytic polio virus utilizes the 

aberrant expression of the poliovirus receptor, CD155, in solid tumours to mediate viral cell 

entry (67).  In humans, infection of tumor macrophages and dendritic cells is sublethal and 

eventually leads to induction of MHC class II expression and the stimulation of a tumor 

antigen-specific T cell response (67) (68). A Phase I clinical trial of a poliovirus chimera, 

PVSRIPO for recurrent glioblastoma produced overall showed that this approach was safe, 

with initial promising results, with 10 out of the initial 13 patients treated still alive at the end 

of the trial (69). To overcome the attenuated immune responses within the brain, groups are 

attempting to engineer virotherapy with inducible inflammatory cytokines, for example the 

Ad-RTS-hIL-12, an inducible adenoviral vector that expresses IL12 in the presence of an 

orally-administered activator ligand, veledimex. This early phase trial showed evidence of 

systemic increases of IL-12, IFNγ as well as increased number of CD8+T-cells in circulation, 

with an impressive 100% 6-month survival for the 13 patients thus far (70). The challenge 

here is that virotherapy for brain tumors relies heavily on viral migration to the tumor site and 

has mostly been explored by intratumoural injection which is not always achievable. Efforts 

are therefore underway to explore the feasibility of systemic intravenous delivery approaches 

to overcome this (e.g. REOGLIO ISRCTN70044565). 

 

Apart from tumour cell lysis mediated by oncolytic viruses, there are complementary 

methods of targeting antigen presentation in the brain.  In particular, the identification of a 

growing number of potentially unique immunoreactive tumor-associated antigens expressed 

by human gliomas make cancer vaccines including peptide, dendritic cell, tumor cell, and 

neoantigen vaccines a very exciting strategy. Moreover, this approach can be utilized 

peripherally, bypassing the logistically challenges of delivering therapeutics directly 

intracranially. Peptide vaccines induce a T-cell response at the tumor site by releasing 

peptides specific to tumor-associated antigens. These are commonly coupled with carrier 

proteins and adjuvants, are taken up by APCs and presented on the cell surface by MHC 

molecules. APCs navigate the lymphatic system to prime T-cells, which then recognize the 

tumor cell from its antigen (71). Glioblastoma represents an attractive therapeutic target for 



peptide vaccination as the unique epidermal growth factor receptor (EGFR) variant, 

EGFRvIII,is expressed in approximately 30% of patients with glioblastoma (72).  The most 

advanced therapeutic candidate peptide vaccine  is rindopepimut, which targets a 

neoepitope created by a 13 amino-acid sequence unique to EGFRvIII, chemically 

conjugated to KLH which serves as an immune adjuvant (73).  Although initially heralded as 

a major breakthrough on the back of positive early phase studies (74), recent published 

large phase three studies have failed to show a survival benefit and argue against 

rindopepimut’s efficacy (75), and this may be largely due to the heterogenous nature of 

glioblastoma.  To address this issue of heterogeneously-expressed tumor-associated 

antigens, multi-peptide vaccine strategies such as the IMA950 vaccine which contains 11 

human leukocyte antigen (HLA)-restricted tumor-associated peptides are being explored 

with some initial hints of benefit, particularly in a sub-group of patients with marked injection 

site reactions (76). Other candidate peptide vaccines are also showing initial promise in early 

phase clinical trials (77, 78) and the results of larger studies are eagerly waited.   

The alternative vaccine strategy is of dendritic cell vaccination. Instead of injecting a peptide 

that is presented to an APC, autologous dendritic cells sourced from peripheral blood 

monocytes are primed with tumour lysate from the patients’ own tumour in the presence of 

growth factors such as interleukin-4 and granulocyte macrophage colony stimulating factor, 

(79). Immature dendritic cells can uptake and process tumour-associated antigens, and 

mature ex vivo, thus becoming capable of proper antigen presentation for T-cell recognition 

in a MHC-restrictive manner (80). These pools of dendritic cells are subsequently 

autologously transplanted into patients. Studies performed in glioblastoma patients have 

typically involved injection intradermally (79, 81) in proximity to the draining cervical lymph 

nodes, or occasionally in patients with Ommaya reservoirs, directly into the cerebrospinal 

fluid (81).  In these studies, although unarguable clinical benefit could not be observed, there 

was clear evidence of increases in tumour-lysate specific T cells in the periphery (81) and 

tumour lysate specific memory T cells and cytotoxic T cells intratumorally (79).  One 

example is the ICT-107 autologous dendritic cell vaccine pulsed with six tumor-associated 

antigens for which ten-year follow-up data is available for the initial Phase I vaccine trial. 

19% of 16 patients remained disease free for 8 years with a median overall survival of 38.4 

months (82). These durable responses have fueled combination studies with checkpoint 

inhibitors which are ongoing (for example NCT02529072).   

 

T cell activation 

Antigen presentation is followed by T cell activation in the cancer immunity cycle, which 

represents another potentially target of immunotherapeutic strategies in the brain.  The 

inhibitory cell surface protein CLTA4 primarily regulates the amplitude of the early stages of 



T cell activation (83) and is expressed solely by T-cells localized primarily within secondary 

lymphoid tissues. It binds preferentially to CD80/CD86 on the surface of APCs, thus 

preventing their binding to the T-cell co-stimulatory receptor CD28, leading to decreased T-

cell activation and proliferation in the context of antigen-presenting MHC class (84-87). 

CTLA-4 also contributes to immune modulation by enhancing the suppressor functions of 

Tregs (88). 

 

The combination of anti-CTLA-4 plus anti-PD-1 has demonstrated encouraging activity in 

preclinical murine models of orthotopic transplanted gliomas(45, 63, 64, 89, 90), however 

this has failed to translate substantial clinical benefit (8). In the Phase I CheckMate-143 

study, 90% of patients who received combination therapy had grade 3 or 4 treatment-related 

adverse events , and 50% of patients in that arm had to discontinue treatment early due to 

intolerability leading to the exclusion of this combination in the subsequent phase II/III study 

(52).  In patients with an overall poor prognosis, this limited efficacy combined with 

significant toxicity is unacceptable and as such, needs tweaking to deliver tangible clinical 

benefits to patients.  One approach to minimize the risk of increased systemic toxicity from 

these combination is to use intra-tumoral delivery of anti-CTLA-4 following the resection of 

the recurrent glioblastoma which is currently ongoing (NCT03233152).  

 

Lymphocyte-trafficking into the CNS: BBB 

Following T cell activation, the CNS cancer immunity cycle needs to consider trafficking into 

the CNS and crossing the BBB.  The therapeutic strategy most advanced in glioblastoma 

that may theoretically affect the BBB is anti-angiogenic therapy.  Although, initially uptake of 

anti-angiogenics was met by optimism due to unprecedented response rates (91), 

subsequent large randomised trials have failed to demonstrate evidence of benefit (92) (93) 

and a large meta-analysis has shown no overall survival benefit for these agents (94).  

Nevertheless, emerging data support a strong rationale for combining therapies targeting 

vessel normalization with immunotherapies (95).  In particular, abnormal tumour vasculature 

promotes the production of cytokines which preferentially recruit immunosuppressive 

lymphoid populations (95) and polarize tumor associated macrophages to the 

immunosuppressive M2 phenotype (48). As such, combinations of anti-angiogenics together 

with checkpoint inhibitors are actively being pursued in early phase clinical trials 

(NCT02336165, NCT02337491).  It is however, worth noting that glioblastoma is a highly 

invasive tumour, and that anti-angiogenic agents may paradoxically promote invasiveness 

(96, 97) thus impeding the efficacy of this combination. 

 

Other ingenious out-of-the-box solutions are being explored to overcome the impediment of 



the BBB in drug delivery. Armed with the knowledge that some of the activity of radiotherapy 

in brain tumours is due to disruption of tight junctions and therefore vessel permeability (98), 

the hypotheses that low dose radiotherapy could increase drug delivery to the CNS was 

recently tested (99). Preliminary results in a cohort of resected brain metastases patients 

has demonstrated substantially (~20x) higher tissue afatinib concentrations compared to 

plasma, thereby validating this hypothesis.  Other viable strategies to disrupt the BBB 

undergoing clinical evaluation include the combination of microbubble injections with pulsed 

ultrasound, which has been shown to functionally disrupt the BBB on serial contrast-

enhanced MRI (100).  These trials provide proof-of-principle that augmentation of drug 

delivery into the CNS could be achieved and is likely to be used in combination strategies in 

the near future.  

 

 

Infiltration and recognition of tumour- adoptive cell therapy 

Once lymphocytes have been trafficked to the tumour, the effector components of the 

immune system have to infiltrate into the tumour and recognise the tumour to propagate the 

CNS cancer immunity cycle.  One strategy targeting this component of the cycle is adoptive 

cell therapy.  Instead of relying on the afferent of the neuro-immune system, adoptive cell 

therapy aims to engineer and directly activate T cells which are then able to home back to 

the tumour (Figure 2). This technology, first developed by Gross et al (101) (CAR) utilizes a 

chimeric construct consisting of a single-chain variable fragment of a high affinity antibody 

recognizing a tumour antigen fused to one/multiple co-stimulatory domains that directly 

activate T cells (CART) in a non-MHC restricted manner (101) They have exhibited striking 

activity in hematological malignancies and the first CART therapy recently being approved 

by the FDA for use in relapsed B cell precursor acute lymphoblastic leukemia (102).  Efforts 

in solid tumours are ongoing (see Table 2), but suffer from lack of well described cell surface 

targets which are solely expressed on tumour cells and absent from normal tissue (103). In 

some ways, glioblastoma is relatively fortunate compared to other solid malignancies, with 

the well described truncating EGFRvIII variant (72) exhibiting characteristics of an opportune 

target – high frequency aberration in target disease and absence in normal tissue.  

Consequently, CART cells targeting this variant are undergoing clinical development (104). 

The first-in-human Phase I study of CART-EGFRvIII cells demonstrated the safety of this 

approach, without evidence of off-target toxicity or cytokine release syndrome with one 

patient having stable disease at 18 months (105).  

 

Other antigens being targeted in current clinical trials include Eph-A2 and IL13Rα2 (see 

Table 2). Preliminary results from a Phase I trial of a first-generation CART cells targeting 



the glioblastoma tumor antigen IL13Rα2 reported safe intracranial delivery of the CART-cells 

with one particular patient exhibiting a 79% regression of recurrent tumour mass  (106). 

Building on this, a 2nd generation CART incorporating a 4-1BB (CD137) costimulatory 

domain and a mutated IgG4-Fc linker to reduce off-target Fc-receptor interaction is in testing 

with a dramatic transient clinical response in a patient with recurrent multifocal glioblastoma 

(107). Two important lessons can be drawn from this study – firstly, the challenge of T cell 

homing as this patient did not respond to the initial intercavitary delivery of CART cells, but 

responded dramatically when this was switched to an interventricular mode of delivery. And 

secondly, despite the incredible radiological response, the patient relapsed with tumours that 

had significantly decreased IL13Rα2 expression suggesting that antigenic heterogeneity 

may be a significant hurdle to the success of this approach. Technical advances in cellular 

engineering may help overcome some of these challenges, for example a recent preclinical 

study has shown that trivalent CART cells targeting commonly expressed glioma antigens 

including HER-2, IL13Rα2 and Eph-A2 can overcome tumour heterogeneity and target 

nearly all tumour cells in patient-derived xenograft models compared to bispecific or single-

epitope targeting CARs (108).   

  



NCT number Tumour type Target Mode of delivery 
NCT02331693 Advanced Glioma EGFR Systemic infusion (IV) 
NCT02209376 Glioblastoma Multiforme EGFRvIII Systemic infusion (IV) 
NCT02844062 Glioblastoma Multiforme EGFRvIII Systemic infusion (IV) 

NCT01454596 Glioblastoma Multiforme EGFRvIII 
Systemic infusion with 
aldesleukin (IL-2) (IV) 

NCT02937844 Glioblastoma Multiforme PD-L1 
Systemic infusion (three-
day split) (IV) 

NCT02575261 Glioma EphA2  Systemic infusion (IV) 

NCT02664363 Glioblastoma Multiforme EGFRvIII 

Systemic infusion (IV) 
Companion imaging 
study. 

NCT01082926 Brain tumours IL13Rα2 Intratumoral 
NCT02208362 High grade glioma IL13Rα2 Intratumoral 
NCT02442297 Glioblastoma Multiforme Her2 Intratumoral 

NCT01109095 Glioblastoma Multiforme 
Her2 (CMV specific T 
cells) 

Systemic infusion (IV) 

 

Table 2: Ongoing trials of CART cells in glioblastoma   

 

Overcoming the suppressive immune microenvironment 

Finally, for ongoing cell death to perpetuate the CNS cancer immunity cycle, the 

immunosuppressive microenvironment must be overcome.  The challenge of the 

immunosuppressive microenvironment has been particularly highlighted by the early phase 

CART trials. O’Rourke and colleagues found evidence of trafficking of CART-EGFRvIII cells 

to regions of active glioblastoma, with antigen decrease in five of these seven patients who 

proceeded to surgery, but in all cases in situ evaluation of the tumour microenvironment 

demonstrated increased and robust expression of inhibitory molecular and infiltration by 

regulatory T cells after CART-EGFRvIII infusion, compared to pre-infusion specimens (105). 

As such, novel strategies targeting  the immune microenvironment are urgently required. 

Components of the immunosuppressive microenvironment include Tregs, monocytes as well 

as signaling molecules, all of which could theoretically be targeted to enhance anti-cancer 

immunity in glioblastoma. 

In particular, given the prominence of the M2 macrophage phenotype in glioblastoma (49), 

strategies aiming to switch macrophage polarization are being explored. Preclinical models 

implicate the macrophage colony stimulating factor 1 receptor (CSF-1R) in 

macrophage/monocyte polarization to the pro-tumorigenic M2 phenotype and antagonists to 

this are in clinical testing (NCT02526017). Other signaling molecules including the 

phosphoinositide 3-kinase (PI3K) signaling pathway also have a role in directly polarization 

of macrophages to the M2 phenotype (109) and despite limited single agent activity of 

multiple PI3K pathway inhibitors in glioblastoma (110), these may have value 

combinatorially.   



TGFβ, secreted by tumour cells in an autocrine loop is a potent immunosuppressive cytokine 

and inhibits the efficacy of immune effector cells (111).  A bispecific antibody targeting PD-

L1 and TGFβR2 has shown preclinical evidence of enhancing antibody-dependent cellular 

cytotoxicity mediated by both PD-L1 and TGFβR2 preclinically (111) and is now in clinical 

trials including a glioma cohort of patients (112) (NCT02517398). Other ongoing trials 

include combinations with the TGFβR1 inhibitor galunersertib (NCT02423343).  

 

The immunoregulatory enzyme IDO has been heavily associated with immune tolerance 

(113) and has been specifically associated with controlling the functional status of Tregs in 

response to inflammatory stimuli (46).  Inhibitors of this enzyme are amongst the most 

advanced novel immunotherapeutics in clinical development with multiple clinical trials 

ongoing in numerous tumour types including in glioblastoma (NCT02052648).  Although 

single agent activity of IDO inhibitors have not been promising in solid tumours (114), recent 

reports of significantly higher response rates in combination with PD-1 inhibitors have 

prompted excitement (115) and this strategy may have utility in combinations for 

glioblastoma.  

 

Cancer immunity 
cycle component 

Possible therapeutic strategy Examples of current trials  

Cell death • Combination with DNA 

damaging agents 

• Combination with 

stereotactic radiosurgery 

• NCT02311920, 

NCT02617589, 

NCT02336165 

NCT02667587 

• NCT02313272 

Antigen presentation • Oncolytic viruses 

• Vaccines 

• ISRCTN70044565 

• NCT02529072 

T cell activation • Intratumoural CTLA-4 

combination 

• NCT03233152 

Lymphocyte trafficking • Combination with 

antiangiogenic agents 

• NCT02336165, 

NCT02337491 

Infiltration and 

recognition of tumour 
• CART cells/ adoptive cell 

therapy 

• NCT02209376 

Overcoming the 

suppressive immune 

microenvironment 

• Macrophage polarization 

• Bispecific antibodies 

• Immunoregulatory 

inhibitors 

• NCT02526017 

• NCT02517398 

• NCT02052648 



 
Table 3: Current strategies targeting the cancer-immunity cycle in glioblastoma 
 

Considerations for CNS drug development 
In this review, we have presented a framework for understanding the CNS-cancer immunity 

cycle in order to effectively develop immunotherapeutics for CNS tumours. Table 3 

summarises the components of the cancer immunity cycle and current strategies targeting 

these components.  Rational strategies backed by strong preclinical data for combinations 

must be developed in order to optimize efficacy.  In particular, specific challenges unique to 

brain tumours must be considered.  One of the major hurdles in developing preclinical 

insights is the lack of biologically relevant models for hypothesis testing.  Moreover, although 

in other solid tumours sequential tumour biopsies are increasingly used to compress clinical 

development timelines and improve pharmacodynamic studies (116), given the relative 

importance of brain tissue and associated difficulty with tissue sampling, this strategy is 

simply not feasible in CNS tumours.  Nevertheless, there are ways to combat this specific 

issue.  In particular, having optional research biopsy components in patients who are 

undergoing re-resections for clinical reasons can bypass this problem.  Pharmacokinetic 

information can also be established with cerebrospinal fluid samples, which has previously 

added useful information to pharmacokinetic profiles (117).  

 

Other specific challenges unique to the CNS include the aforementioned BBB, which is an 

impediment to effective CNS penetration of numerous drugs.  There are a number of 

approaches that that may mitigate this problem.  Firstly, a number of trials are currently 

being performed on small molecule inhibitors, with the compound being delivered 

immediately in the pre-operative period prior to re-resection, thus allowing for a more 

substantial study of pharmacodynamic endpoints.  Secondly, given a substantial component 

of the cancer-immunity cycle occurs peripherally, there is no reason why therapeutics 

targeting the periphery cannot have central activity.   

 

There are also some unique clinical considerations in glioblastoma patients that can impede 

effective drug delivery and drug development.  Many patients with brain tumours have 

uncontrolled seizures requiring numerous anti-epileptic medications.  These represent a 

challenge in early phase clinical trials, as typically the use of such drugs is prohibited due to 

the uncertain pharmacokinetic profiles that they result in, particularly in the development of 

drugs predicted to be metabolized by the hepatic cytochrome p450 system.  However, it is 

important to note that second and third generation anti-epileptic medications are typically not 

enzyme inducing and therefore limit the risks of adverse drug-drug interactions and eligibility 



for participation in early phase clinical trials.  

 

Additionally, there is specific concern regarding the use of immunotherapeutics.  A major 

impediment to effective in vivo activity in patients with primary brain tumours is the oft-

needed baseline use of corticosteroids to control intra-cerebral edema.  It is well known that 

corticosteroids diminish immune activity and therefore their presence at baseline could 

impair the robustness of any anti-tumour immune response.  In this respect, combination 

strategies with drugs such as bevacizumab which may have a steroid sparing effect (118) 

may augment anti-tumour immunity.  Moreover, if a response was nevertheless to occur, 

there remains concern that tumour flare may present with mass effect like symptoms, which 

can be quite significant in a patient population already suffering from cerebral edema, or 

auto-immune neurotoxicity. Caution must continue, though it is reassuring that most reported 

studies of checkpoint inhibitors in glioblastoma to date have not shown an adverse event 

profile substantially dissimilar to other solid tumours which mitigates the latter point (8, 119).   

 

Finally, although the various immune combination strategies described in this review hold 

promise due to their underlying biological rationale, implementation of any of these 

strategies needs to take into account the cost of these technologies with a keen focus on the 

ultimate value delivered to be patients (120). 

 

Conclusion 

In conclusion, despite the disappointing results of single agent immunotherapeutics to date, 

there remain reasons to be not only be optimistic, but excited. Understanding the CNS 

cancer immunity cycle provides a suitable framework upon which the various approaches 

and challenges to CNS drug development can be expounded and will be the foundation for 

the development of rational combination strategies to improve patient outcomes in this 

disease.   

  



Figure legends  
Figure 1: The afferent and efferent arms of the CNS immune system 
Dashed line indicates the blood-brain-barrier. Lymphatics are shown in green, and 

vasculature in red. Antigen release triggers recognition of antigens by antigen presenting 

cells, which are channelled via CNS lymphatics to the cervical lymph nodes.  Antigen 

presentation and T cell priming occur peripherally in the cervical lymph nodes before 

trafficking back to the CNS to recognise and kill tumour cells.  

 

Figure 2: The Cancer-Immunity Cycle in CNS malignancies 

T lymphocytes are shown in purple, with CAR-T modified T lymphocytes highlighted with a 

glow. The orange half of the circle marks out steps that can be targeted systemically, while 

the purple indicates steps that require intra-cranial delivery/mode of action. Abbreviations: 

CAR Chimeric antigen receptors; RT radiotherapy; CTLA-4 cytotoxic T-lymphocyte-

associated protein 4; PD-1 Programmed cell death protein 1; PD-L1 Programmed death-

ligand 1; IDO Indoleamine-pyrrole 2,3-dioxygenase; TGF-b Transforming growth factor beta 
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