Genome-wide association analysis identifies a meningioma risk locus at 11p15.5

Elizabeth B. Claus ${ }^{1,2,{ }^{,}, \dagger}$, Alex J. Cornish ${ }^{3,{ }^{*}}$, Peter Broderick ${ }^{3,{ }^{3},}$, Joellen M. Schildkraut ${ }^{4,{ }^{, *} \text {, Sara }}$ E. Dobbins ${ }^{3}$, Amy Holroyd ${ }^{3}$, Lisa Calvocoressi ${ }^{1}$, Lingeng Lu ${ }^{1}$, Helen M. Hansen ${ }^{5}$, Ivan Smirnov ${ }^{5}$, Kyle M. Walsh ${ }^{5}$, Johannes Schramm ${ }^{6}$, Per Hoffmann ${ }^{7,8}$, Markus M. Nöthen ${ }^{8,9}$, Karl-Heinz Jöckel ${ }^{10}$, Anthony Swerdlow ${ }^{3,11}$, Signe Benzon Larsen ${ }^{12}$, Christoffer Johansen ${ }^{12}$, Matthias Simon ${ }^{6,13^{* *}}$, Melissa Bondy ${ }^{14,{ }^{* *}}$, Margaret Wrensch ${ }^{5,15,{ }^{* *}}$, Richard Houlston ${ }^{3,{ }^{* *}, \dagger}$, Joseph L. Wiemels ${ }^{\text {5,15,16,** }}$

1. School of Public Health, Yale University, New Haven, Connecticut, USA.
2. Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts, USA.
3. Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK.
4. Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia, USA.
5. Division of Neuroepidemiology, Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA.
6. University of Bonn Medical School, Bonn, Germany.
7. Human Genomics Research Group, Department of Biomedicine, University of Basel, Basel, Switzerland.
8. Department of Genomics, Life \& Brain Center, University of Bonn, Bonn, Germany.
9. Institute of Human Genetics, University of Bonn School of Medicine \& University Hospital Bonn, Bonn, Germany.
10. Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
11. Division of Breast Cancer Research, The Institute of Cancer Research, London, UK.
12. Unit of Survivorship, The Danish Cancer Society Research Center, Copenhagen, Denmark.
13. Department of Neurosurgery, Bethel Clinic, Bielefeld, Germany.
14. Section of Epidemiology and Population Sciences, Department of Medicine and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA.
15. Institute for Human Genetics, University of California San Francisco, San Francisco, California, USA.
16. Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA.
*. These authors contributed equally to this work.
**. These authors jointly supervised the work.
\dagger. Correspondence to: Elizabeth B. Claus, Laboratory of Epidemiology and Public Health, 60 College Street, Ste 205, New Haven, Connecticut, USA, 06510. Tel: 203.785.6415; Fax: 203.785.6912; Email: elizabeth.claus@yale.edu. Richard S Houlston, Division of Genetics and Epidemiology, The Institute of Cancer Research, 15 Cotswold Road, London, UK, SM2 5NG. Tel: +44 (0) 208722 4175; Fax: +44 (0) 722 4365; E-mail: richard.houlston@icr.ac.uk.

RUNNING TITLE: Genome-wide association study of meningioma risk

FUNDING

This work was supported by Cancer Research UK (C1298/A8362 supported by the Bobby Moore Fund), who provided principal funding for the study in the UK. The UK and Danish

INTERPHONE studies were supported by the European Union Fifth Framework Program "Quality of life and Management of Living Resources" (contract number QLK4-CT-199901563), and the International Union against Cancer. The UICC received funds for this purpose from the Mobile Manufacturers' Forum and Global System for Mobile Communications Association. Provision of funds via the UICC was governed by agreements that guaranteed INTERPHONE's complete scientific independence. These agreements are publicly available at http://www.iarc.fr. The UK centers were also supported by the Mobile Telecommunications and Health Research Programme and the Northern UK center was supported by the Health and Safety Executive, Department of Health and Safety Executive and the UK Network Operators (O2, Orange, T-Mobile, Vodafone, and ' 3 ').

In Germany, funding was provided to M.S. and J.S. by the Deutsche Forschungsgemeinschaft (Si 552, Schr 285), the Deutsche Krebshilfe (70-2385-Wi2, 70-3163-Wi3, 10-6262) and BONFOR.

The German-GWAS made use of genotyping data from the population based HNR study. The HNR study is supported by the Heinz Nixdorf Foundation (Germany). Additionally, the study is funded by the German Ministry of Education and Science and the German Research Council (Project SI 236/8-1, SI236/9-1, ER 155/6-1). The genotyping of the HNR subjects was financed by the German Centre for Neurodegenerative Disorders, Bonn.

In the United States, funding was provided by the Brain Science Foundation, the Meningioma Mommas and by NIH R01 grants CA109468, CA109461, CA109745, CA108473, CA109475, CA052689 and CA151933, and P50CA097257.

CONFLICT OF INTEREST

The authors declare no competing financial interests.

AUTHORSHIP

R.H. and E.B.C. developed the project and provided overall project management; A.J.C., S.E.D., and R.H. drafted the manuscript. A.J.C. and S.E.D. performed bioinformatic and statistical analyses; P.B. performed project management and supervised genotyping; A.H. performed genotyping. Within the United States, E.B.C. obtained funding and managed the overall project; E.B.C., J.L.W., M.W., M.B., and J.M.S. oversaw IRB approval, patient recruitment and sample acquisition; L.C. supervised data collection and project management; L.L. and H.M.H. oversaw specimen storage and DNA isolation; J.L.W. and H.M.H. performed all genotyping; I.S. and K.M.W. performed bioinformatic and statistical analyses. Within Germany, M.S., J.S. and A.S. obtained funding, and were responsible for patient recruitment and sample acquisition, P.H. and M.M.N. oversaw DNA isolation and genotyping of the HNR controls and obtained funding for this, K.-H.J. provided samples. Within Denmark, S.B.L. and C.J. conducted subject recruitment and sample collection. All authors contributed to the final manuscript.

WORD COUNT: 5,440

This is a pre-copyedited, author-produced version of an article accepted for publication in Neuro-Oncology following peer review.

Abstract

BACKGROUND: Meningioma are adult brain tumors originating in the meningeal coverings of the brain and spinal cord, with significant heritable basis. Genome-wide association studies (GWAS) have previously identified only a single risk locus for meningioma, at 10p12.31.

METHODS: To identify a susceptibility locus for meningioma, we conducted a metaanalysis of two GWAS, imputed using a merged reference panel of 1,000 Genomes and UK10K data, with validation in two independent sample series totaling 2,138 cases and 12,081 controls.

RESULTS: We identified a new susceptibility locus for meningioma at 11 p 15.5 (rs2686876, odds ratio $=1.44, P=9.86 \times 10^{-9}$). A number of genes localize to the region of linkage disequilibrium encompassing rs2686876, including RIC8A, which plays a central role in the development of neural crest-derived structures, such as the meninges.

CONCLUSIONS: This finding advances our understanding of the genetic basis of meningioma development and provides additional support for a polygenic model of meningioma.

KEYWORDS: Genome-wide association study; Meningioma; Risk; Single-nucleotide polymorphism; Polygenic

IMPORTANCE OF STUDY

Meningioma are adult tumors arising in the meninges and account for around a third of all primary brain tumors. Evidence for common genetic variation contributing to meningioma predisposition has been provided by a genome-wide association study, which identified a risk locus at chromosome 10p12.31. To gain further insight into the inherited susceptibility of meningioma, we performed a meta-analysis of two genome-wide association studies and two independent validation series comprising 2,138 cases and 12,081 controls, and report the identification of a new risk locus for meningioma at 11 p15.5. A number of genes localize to this locus, including RIC8A, which plays a central role in the development of neural crestderived structures, such as the meninges. This is only the second study, and the largest, to robustly associate common genetic variation as a risk factor for meningioma.

INTRODUCTION

Meningioma are adult tumors arising in the membranous layers surrounding the brain and spinal cord and account for around a third of all primary brain tumors ${ }^{1-3}$. The incidence of meningioma is two-fold higher in females than in males, and the disease is more common in individuals with African ancestry ${ }^{1}$. Although mortality rates are relatively low, meningioma is associated with substantial morbidity.

Compared with malignant glial tumors, meningioma has been relatively understudied with regard to etiologic risk factors. Indeed, excluding exposure to ionizing radiation, no environmental factor has consistently been associated with tumor risk ${ }^{2,3}$. Evidence for an inherited predisposition to meningioma is provided by the elevated risk seen in neurofibromatosis ${ }^{4}$ and Gorlin syndrome ${ }^{5}$. While the risk of meningioma associated with these disorders is high, they are rare and collectively contribute little to the three-fold increased risk of the tumor in the relatives of meningioma patients ${ }^{6,7}$. Evidence for common genetic variation contributing to meningioma predisposition has been provided by a genomewide association study (GWAS) ${ }^{8,9}$, which identified a risk locus at chromosome 10 p 12.31 10,11

To gain a further insight into inherited susceptibility to meningioma, we performed a metaanalysis of a previously published GWAS ${ }^{10}$ and a new unpublished GWAS, thereby providing increased study power to identify new risk loci and reduce the likelihood of falsepositives ${ }^{12}$. Following replication genotyping in two additional independent series we report the identification of a new risk locus for meningioma mapping to chromosome 11p15.5.

METHODS

Ethics

Collection of patient samples and associated clinicopathological information in this study was completed with written informed consent and relevant ethical review board approval at the respective centers in accordance with the tenets of the Declaration of Helsinki. Specifically, these centers are for the German-GWAS: the ethics committees of the Medical Faculty of the University of Bonn and University Hospital Essen; USA-GWAS: the institutional review boards at Yale University School of Medicine, Brigham and Women’s Hospital, University of California at San Francisco, MD Anderson Cancer Center, Duke University School of Medicine, the Kaiser Foundation Research Institute and the State of Connecticut Department of Public Health Human Investigation Committee; UK-replication: the South East Multicentre Research Ethics Committee and the Scottish Multicentre Research Ethics Committee; Danish-replication: the Danish ethical committee system, the Danish Data Protection Board and the Danish Ministry of Justice.

Genome-wide association studies

This meta-analysis was completed based on two GWAS data sets (Supplementary Table 1). The diagnosis of meningioma (ICD-10 D32/C70) was established in accordance with World Health Organization (WHO) guidelines.

The German-GWAS comprised 834 cases (250 male) and 2,103 controls (1,047 male). The German-GWAS case-control study has been described previously ${ }^{10}$. Cases subjects were patients who underwent surgery for meningioma at the University of Bonn Medical Center between 1996 and 2008. Controls subjects were healthy individuals with no past history of
malignancy from the Heinz Nixdorf Recall (HNR) study ${ }^{13}$. DNA was extracted from samples using conventional methodologies and quantified using PicoGreen (Invitrogen, Carlsbad, USA). Genotyping of cases and controls was conducted using either Illumina Infinium HD Human660w-Quad or OmniExpress Beadchips according to the manufacturer's protocols (Illumina, San Diego, USA).

The USA-GWAS comprised 772 cases (217 male) and 7,720 controls (2,966 male). Case patients eligible for the study included all persons diagnosed between 2006 and 2013 with a histologically confirmed intracranial meningioma among residents of the states of California, Connecticut, Massachusetts, North Carolina and Texas. Case patients were diagnosed between the ages of 20-79 and were identified through the Rapid Care Ascertainment systems and state tumor registries at their respective study site. Controls were obtained through random-digit dialing performed by an outside consulting firm (Kreider Research and Consulting) ($n=689$) or are from The Resource for Genetic Epidemiology Research on Aging (GERA) cohort $(n=7,031)^{14,15}$. Controls obtained through random-digit dialing were frequency matched with case patients by 5-year age interval, sex, and state of residence. Patients with a prior history of meningioma and/or a brain lesion of unknown pathology were not eligible for inclusion. The GERA cohort is comprised of 110,266 adult members of the Kaiser Permanente Medical Care Plan, Northern California Region (KPNC). Participants were enrolled through participation in a mailed study conducted in 2007 of all KPNC adult members who had been members for more than two years. Respondents who completed consent forms were mailed saliva collection kits (Oragene). We sampled 7,031 individuals from 56,848 non-Hispanic white individuals whose data passed quality control for inclusion in the control group, to ensure 1:10 matching between cases and controls in the USA-GWAS thereby optimizing study power, since there is little benefit of additional controls thereafter
${ }^{16}$. Genotyping of cases and controls of all USA-GWAS subjects was completed using Affymetrix Axiom EUR arrays according to the manufacturer's protocols (Santa Clara, California, USA).

Statistical analysis

The quality control procedure described by Anderson et al. ${ }^{17}$ was applied to each of the GWAS individually (Supplementary Table 1). To identify samples with discordant sex information, the mean homozygosity rate across X-chromosome markers was computed and samples were excluded if this rate contradicted the reported sex or was inconclusive (a rate between 0.2 and 0.8). We next excluded individuals if they exhibited an elevated genotype failure rate ($>3 \%$) or an outlying heterozygosity rate (± 3 standard deviations from the mean). To identify duplicated or related individuals, the degree of shared ancestry between pairs of individuals was computed (using identity by descent, IBD). If a pair of individuals had an IBD score >0.185, then the individual with the lowest variant call rate was excluded. Individuals with a non-European ancestry were identified by merging data from three HapMap version II populations (CEU, JPT/CHB and YRI) and conducting principal component analysis on the merged individuals. Individuals with a second principal component score less than 0.072 were excluded. Variants were excluded if they had a high missing data rate ($>5 \%$), if the genotyping call rates differed between the cases and the controls ($P<10^{-5}$ using Fisher's exact test), if they had a minor allele frequency (MAF) <0.01 or if they deviated significantly from Hardy-Weinberg equilibrium (HWE, $P<10^{-5}$). Individuals were phased using SHAPEIT version $2 . \mathrm{r} 837$ software ${ }^{18}$ and a merged reference panel (EGAD00001000776, the European Genome-phenome Archive) containing data from the 1000 Genomes Project ${ }^{19}$ (Phase 3) and the UK10K ${ }^{20}$. GWAS data were imputed to more than 10 million single nucleotide polymorphisms (SNPs) using IMPUTE version 2.3.0 ${ }^{21}$ and
the same reference panel. Imputation was conducted separately for each of the studies. In each data set, the data were pruned to the set of variants common to the cases and controls before imputation. Tests of association between the directly genotyped and imputed SNPs and meningioma were performed using logistic regression under an additive genetics model using SNPTEST version 2.5.2 ${ }^{22}$. Poorly imputed SNPs (information measure <0.8), SNPs with a low MAF (<0.005) and SNPs that deviated from $\operatorname{HWE}\left(P<10^{-5}\right)$ were excluded. To evaluate the possibility of differential genotyping of cases and controls and the adequacy of the case-control matching, quantile-quantile (Q-Q) plots of the test statistics were generated (Supplementary Fig. 1). The computed inflation factor λ is based on the 90% least significant SNPs ${ }^{23}$. In each study, the effects of population stratification were limited by including in the analysis the first two and three principal components for the German and USA series respectively. Eigenvectors for each of the GWAS data sets were computed using EIGENSOFT version 4.2^{24}.

Meta-analyses of the individual GWAS were completed using the β estimates and standard errors from each study and the fixed-effects inverse-variance method implemented in META version 1.7^{25}. Cochran's Q-statistic and the I^{2} statistic were used to test for heterogeneity and estimate the proportion of the total variation that is due to heterogeneity ${ }^{26}$. Meta-analysis was only completed for a SNP if it passed the quality thresholds in all considered GWAS. SNPTEST was used to perform conditional association analysis. SNP associations at $P<5 \times$ 10^{-8} in the meta-analyses are considered genome-wide significant ${ }^{27}$. Despite imposing a stringent significance threshold of $P<5 \times 10^{-8}$ for declaring a GWAS association as being significant it is possible that some such associations might still be false positives. To further assess the robustness of an association, Wakefield has proposed the application of an
approximate Bayes factor to calculate the Bayes false discovery probability (BFDP) ${ }^{28}$. We estimated the BFDP based on a plausible OR of 1.2 and a prior probability of $0.0001{ }^{29}$.

Replication studies

Ten promising SNP associations from the meta-analysis of the two GWAS were taken forward for de novo replication (Supplementary Table 2). Promising associations were prespecified as loci with SNP association P-values $<10^{-5}$, which also had support from additional correlated SNPs mapping to the same genetic region (i.e. $r^{2}>0.5$ and $P<10^{-3}$). The UKreplication series comprised 439 cases (ICD10 D32/C70) from the INTERPHONE study ${ }^{30}$ and 1,865 population-based controls with no past history of any malignancy, ascertained through the National Study of Colorectal Cancer Genetics ${ }^{31}$. The Danish-replication series comprised 115 cases (ICD-O 9530-9537) from the INTERPHONE study and 411 controls with no past history of cancer, ascertained through the Danish Central Population Registry. Replication genotyping of UK and Danish samples was performed using allele-specific PCR KASP chemistry (LGC, UK). Primers are detailed in Supplementary Table 3. 34 samples were excluded from the UK-replication series for having three or more failed calls. Call rates for each genotyped SNP were $>98 \%$ in the remaining UK samples. Six samples were excluded from the Danish-replication series due to the failed call of the genotyped SNP.

Sequencing

To assess the fidelity of imputation of rs7124615, a subset of 126 cases and 56 controls from the German-GWAS series, selected to be enriched for the presumptive T allele, were sequenced using BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, MA, USA) in conjunction with ABI 3700xl semi-automated sequencers (Applied Biosystems). We did not detect the presence of the T allele in any of the samples. rs 7124615 maps to a highly
repetitive region, suggesting this SNP may be incorrectly annotated to this region. Primer sequences are detailed in Supplementary Table 3.

Heritability analysis

We used Genome-wide Complex Trait Analysis (GCTA) to estimate the heritability ascribed to the genotyped SNPs across all autosomes and each individual autosome ${ }^{32}$. SNPs were excluded based on high missing rate ($>5 \%$), low MAF (MAF <0.01) or evidence of deviation from HWE ($P<0.05$). Individuals identified as being closely related were also excluded. Restricted maximum likelihood analysis was run using a genetic relationship matrix for each pair of samples. The lifetime risk of meningioma was used to transform the estimated heritability to the liability scale, as previously advocated when calculating the heritability of common lethal diseases such as cancer ${ }^{33}$. The lifetime risk of brain and nervous system tumors is $0.62 \%{ }^{34}$ and meningioma account for 36% of primary brain tumors ${ }^{35}$ and we therefore estimated the lifetime risk of meningioma to be 0.224%. We followed the methodology of Yang et al. ${ }^{36}$ to adjust for incomplete linkage disequilibrium between the genotyped and causal SNPs at a range of MAF thresholds between 0.1 and 0.5 . Heritability was estimated for the German and USA series individually and a meta-analysis of the results completed under a fixed-effects model. We additionally used the phenotype correlationgenotype correlation (PCGC) regression method to estimate the heritability ascribed to the genotyped SNPs across all autosomes ${ }^{37}$, using the genetic relationship matrix and lifetime risk estimate that was used with GCTA. We adjusted for population structure when estimating heritability using the GCTA and PCGC regression approaches by including as covariates the first two and three principal components for the German and USA series respectively. Estimates of individual variance in risk associated with meningioma risk SNPs was carried out using the method described in Pharoah et al. ${ }^{38}$.

Expression quantitative trait loci analysis

Publicly available data from 47 tissues from the Genotype-Tissue Expression (GTEx) project ${ }^{39}$ v7 release were used to examine the relationship between SNP genotype and gene expression. We set a significance threshold for the expression quantitative trait loci (eQTL) analysis of $P<2.01 \times 10^{-5}$, corresponding to a Bonferroni correction for 2,491 tests (53 genes across 47 tissues).

Summary-level Mendelian randomization analysis

To examine the relationship between meningioma risk loci and gene expression we performed a summary-level Mendelian randomization (SMR) analysis, as per Zhu et al. ${ }^{40}$. Briefly, GWAS summary statistics files were generated from the meta-analysis. Reference files were generated using data from the 1000 Genomes Project (Phase 3) and UK10K. As previously advocated, only probes with at least one eQTL P-value of $<5.0 \times 10^{-8}$ were considered for SMR analysis. We set a threshold for the SMR test of $\mathrm{P}_{\text {SMR }}<1.01 \times 10^{-4}$, corresponding to a Bonferroni correction for 496 tests (496 probes with a top eQTL $P<5.0 \times$ 10^{-8} across 47 tissues). HEIDI test P-values <0.05 were taken to indicate significant heterogeneity.

Data availability

Genotype data from GERA are available from dbGaP (accession phs000674.v2.p2). 1000 Genomes Project and UK10K imputation panel data are available from EGA (accession EGAD00001000776). Remaining data are available from the authors upon request.

RESULTS

Association analysis

We analyzed GWAS SNP data passing quality control for 1,606 cases and 9,823 controls of European ancestry from two studies: a previously reported GWAS of 834 cases and 2,103 controls (German-GWAS) ${ }^{10}$ and a new GWAS of 772 cases and 7,720 controls (USAGWAS) from Yale University, Brigham and Women's Hospital, MD Anderson Cancer Center, Duke University School of Medicine, and The University of California, San Francisco (Supplementary Tables 1 and 4). To increase genomic resolution, we used data from the 1000 Genomes Project and UK10K to impute >9 million SNPs. Q-Q plots for SNPs with a MAF $>1 \%$ post imputation did not show evidence of substantive over-dispersion (λ between 0.99 and 1.04; Supplementary Fig. 1). We computed joint odds ratios (ORs) and 95% confidence intervals (CIs) under a fixed-effects model for each SNP and associated per allele principal component corrected P-values for all cases versus controls from the two series (Fig. 1, Supplementary Fig. 2).

The strongest association was provided by SNP rs530000334 $\left(P=1.41 \times 10^{-11}\right)$, which maps to the previously identified risk locus at 10p12.31 (Fig. 1). Excluding the poorly imputed SNP rs7124615 at 11p15.5 no other association was genome-wide significant. We sought independent validation of promising associations (i.e. $P<10^{-5}$) at ten loci where support was provided by SNPs in linkage disequilibrium ($r^{2}>0.5$ and $P<10^{-3}$) by genotyping additional case-control series from the UK and Denmark (Supplementary Table 2). In a combined analysis of the GWAS and replication datasets for these select SNPs the only genome-wide association was shown by rs2686876, also at 11 p15.5 $\left(P=9.86 \times 10^{-9}\right.$; Table 1; Fig. 2; Supplementary Table 2). The BFDP for this association was 1.8%, thereby supporting the
robustness of the association. At both 11 p15.5 and 10p12.31, a conditional analysis of SNP genotypes provided no evidence for additional independent signals at either risk locus.

Most meningioma ($>80 \%$) are WHO grade I tumors with the remainder grade II (atypical, 15%) and grade III (anaplastic) meningioma ${ }^{41}$; males are more likely than females to have atypical or aggressive lesions. We assessed the relationship between 11p15.5 genotype and WHO grade, sex and age at diagnosis by case-only analysis. WHO grade was not available for all USA-GWAS, UK-replication and Danish-replication cases and therefore the WHO grade case-only analysis was restricted to the German-GWAS cases. Case-only analyses of sex and age at diagnosis were conducted in all series. These analyses provided no evidence for association between rs2686876 and WHO grade, sex or age at diagnosis, consistent with a generic effect of genotype on meningioma risk (Supplementary Table 5).

A number of genes localize to the region of linkage disequilibrium encompassing rs2686876 (Fig. 3). They include RIC8A, a homolog of C. elegans Ric8/synembryn that encodes a highly conserved G protein regulator. Intriguingly RIC8A plays a central role in the development of neural crest-derived structures including the meninges ${ }^{42}$. To gain insight into the biological basis underlying the 11 p 15.5 association we first evaluated each of the risk SNPs as well as the correlated variants $\left(r^{2}>0.8\right)$ using the online resources HaploReg v4 ${ }^{43}$, RegulomeDB ${ }^{44}$ and SeattleSeq ${ }^{45}$ for evidence of functional effects (Supplementary Table 6). These data revealed active chromatin states overlapping SNPs correlated with rs 2868676 .

We explored whether there were any associations between rs2686876 genotype and the transcript levels of genes within 1 Mb using eQTL data on 47 tissues generated by the GTEx project ${ }^{39}$ (Supplementary Table 7). After accounting for multiple testing (53 genes across

47 tissues; $P<2.01 \times 10^{-5}$), significant eQTL for $A N O 9$ were observed in brain caudate basal ganglia $\left(P=8.30 \times 10^{-7}\right)$ and brain putamen basal ganglia $\left(P=2.58 \times 10^{-6}\right)$, for BET1L in esophagus mucosa $\left(P=9.03 \times 10^{-6}\right)$ and for $P S M D 13$ in brain anterior cingulate cortex $(P=$ 1.36×10^{-5}). ANO9 upregulation has been observed in colorectal cancer ${ }^{46}$ and has been associated with poor prognosis in pancreatic cancer ${ }^{47}$. The rs2686876 meningioma risk allele was however conversely associated with lower ANO9 expression at the two eQTLs. Whilst the risk allele of rs2686876 is associated with higher RIC8A expression at nominal significance levels $(P<0.05)$ in 15 of the 47 tissues, the associations were not significant after correction for multiple testing.

We used SMR analysis to test for a concordance between signals from GWAS and cis eQTL for genes within 1 Mb of the sentinel and correlated SNPs $\left(r^{2}>0.8\right)$ at the 11 p 15.5 locus and derived $b_{X Y}$ statistics, which estimate the effect of gene expression on meningioma risk (Supplementary Table 8). After accounting for multiple testing, the SMR analysis failed to provide overwhelming evidence to implicate a specific gene.

DISCUSSION

We have provided the first evidence that implicates variation at 11 p15.5 as a determinant of meningioma risk. To our knowledge this is only the second study, and the largest, to robustly associate common genetic variation as a risk factor for meningioma.

Although functional studies will be required, dysregulation of RIC8A provides an attractive basis of the 11 p15.5 association a priori. RIC8A has an essential role in the development of the mammalian central nervous system, maintaining the integrity of pial basement membrane and modulating cell division ${ }^{42}$. Intriguingly, conditional Ric8a knockout mice have been reported to exhibit defects in meningeal layer formation ${ }^{42}$.

Thus far, variation at only two loci have been robustly shown to affect meningioma risk ${ }^{10}$. To estimate the potential heritability of meningioma attributable to all common variation we applied GCTA ${ }^{32}$ and PCGC regression ${ }^{37}$ to the GWAS datasets (Supplementary Table 9). Combining data from the two GWAS indicates that the heritability associated with common variation is $27.9 \%(\pm 4.4 \%)$.

The identification of risk variants at 11 p15.5 provides further evidence for common genetic variation influencing meningioma risk and suggests the involvement of specific genes in tumor development. Since variation at 10 p12.31 and 11 p15.5 only account for approximately 4% of the familial risk of meningioma (Supplementary Table 10) it is likely that further risk variants for meningioma will be identified through additional and larger GWAS.

ACKNOWLEDGEMENTS

We are grateful to all patients and individuals for their participation and we would also like to thank the clinicians and other hospital staff, cancer registries and study staff in respective centers who contributed to sample and data collection. We are indebted to R. Mahlberg (Bonn) who provided technical support.

REFERENCES

1. Kohler BA, Ward E, McCarthy BJ, et al. Annual report to the nation on the status of cancer, 1975-2007, featuring tumors of the brain and other nervous system. J Nat/ Cancer Inst. 2011; 103(9):714-736.
2. Braganza MZ, Kitahara CM, Berrington de Gonzalez A, Inskip PD, Johnson KJ, Rajaraman P. lonizing radiation and the risk of brain and central nervous system tumors: a systematic review. Neuro Oncol. 2012; 14(11):1316-1324.
3. Wiemels J, Wrensch M, Claus EB. Epidemiology and etiology of meningioma. J Neurooncol. 2010; 99(3):307-314.
4. Evans DG. Neurofibromatosis type 2 (NF2): a clinical and molecular review. Orphanet J Rare Dis. 2009; 4:16.
5. Lo Muzio L. Nevoid basal cell carcinoma syndrome (Gorlin syndrome). Orphanet J Rare Dis. 2008; 3:32.
6. Cahill KS, Claus EB. Treatment and survival of patients with nonmalignant intracranial meningioma: results from the Surveillance, Epidemiology, and End Results Program of the National Cancer Institute. Clinical article. J Neurosurg. 2011; 115(2):259-267.
7. Claus EB, Calvocoressi L, Bondy ML, Schildkraut JM, Wiemels JL, Wrensch M. Family and personal medical history and risk of meningioma. J Neurosurg. 2011; 115(6):1072-1077.
8. Bush WS, Moore JH. Chapter 11: Genome-wide association studies. PLoS Comput Biol. 2012; 8(12):e1002822.
9. Sud A, Kinnersley B, Houlston RS. Genome-wide association studies of cancer: current insights and future perspectives. Nat Rev Cancer. 2017; 17(11):692-704.
10. Dobbins SE, Broderick P, Melin B, et al. Common variation at 10p12.31 near MLLT10 influences meningioma risk. Nat Genet. 2011; 43(9):825-827.
11. Egan KM, Baskin R, Nabors LB, et al. Brain tumor risk according to germ-line variation in the MLLT10 locus. Eur J Hum Genet. 2015; 23(1):132-134.
12. Chapman K, Ferreira T, Morris A, Asimit J, Zeggini E. Defining the power limits of genome-wide association scan meta-analyses. Genet Epidemiol. 2011; 35(8):781789.
13. Schmermund A, Mohlenkamp S, Stang A, et al. Assessment of clinically silent atherosclerotic disease and established and novel risk factors for predicting myocardial infarction and cardiac death in healthy middle-aged subjects: rationale and design of the Heinz Nixdorf RECALL Study. Risk Factors, Evaluation of Coronary Calcium and Lifestyle. Am Heart J. 2002; 144(2):212-218.
14. Banda Y, Kvale MN, Hoffmann TJ, et al. Characterizing Race/Ethnicity and Genetic Ancestry for 100,000 Subjects in the Genetic Epidemiology Research on Adult Health and Aging (GERA) Cohort. Genetics. 2015; 200(4):1285-1295.
15. Kvale MN, Hesselson S, Hoffmann TJ, et al. Genotyping Informatics and Quality Control for 100,000 Subjects in the Genetic Epidemiology Research on Adult Health and Aging (GERA) Cohort. Genetics. 2015; 200(4):1051-1060.
16. Mukherjee S, Simon J, Bayuga S, et al. Including additional controls from public databases improves the power of a genome-wide association study. Hum Hered. 2011; 72(1):21-34.
17. Anderson CA, Pettersson FH, Clarke GM, Cardon LR, Morris AP, Zondervan KT. Data quality control in genetic case-control association studies. Nat Protoc. 2010; 5(9):1564-1573.
18. Delaneau O, Marchini J, Zagury JF. A linear complexity phasing method for thousands of genomes. Nat Methods. 2011; 9(2):179-181.
19. Genomes Project C, Auton A, Brooks LD, et al. A global reference for human genetic variation. Nature. 2015; 526(7571):68-74.
20. Huang J, Howie B, McCarthy S, et al. Improved imputation of low-frequency and rare variants using the UK10K haplotype reference panel. Nat Commun. 2015; 6.
21. Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 2009; 5(6):e1000529.
22. Marchini J, Howie B, Myers S, McVean G, Donnelly P. A new multipoint method for genome-wide association studies by imputation of genotypes. Nat Genet. 2007; 39(7):906-913.
23. Clayton DG, Walker NM, Smyth DJ, et al. Population structure, differential bias and genomic control in a large-scale, case-control association study. Nat Genet. 2005; 37(11):1243-1246.
24. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet. 2006; 38(8):904-909.
25. Liu JZ, Tozzi F, Waterworth DM, et al. Meta-analysis and imputation refines the association of $15 q 25$ with smoking quantity. Nat Genet. 2010; 42(5):436-440.
26. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002; 21(11):1539-1558.
27. Pe'er I, Yelensky R, Altshuler D, Daly MJ. Estimation of the multiple testing burden for genomewide association studies of nearly all common variants. Genet Epidemiol. 2008; 32(4):381-385.
28. Wakefield J. A Bayesian measure of the probability of false discovery in genetic epidemiology studies. Am J Hum Genet. 2007; 81(2):208-227.
29. Phelan CM, Kuchenbaecker KB, Tyrer JP, et al. Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer. Nat Genet. 2017; 49(5):680691.
30. Cardis E, Richardson L, Deltour I, et al. The INTERPHONE study: design, epidemiological methods, and description of the study population. Eur J Epidemiol. 2007; 22(9):647-664.
31. Penegar S, Wood W, Lubbe S, et al. National study of colorectal cancer genetics. Br J Cancer. 2007; 97(9):1305-1309.
32. Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet. 2011; 88(1):76-82.
33. Lee SH, Harold D, Nyholt DR, et al. Estimation and partitioning of polygenic variation captured by common SNPs for Alzheimer's disease, multiple sclerosis and endometriosis. Hum Mol Genet. 2013; 22(4):832-841.
34. Hankey BF, Ries LA, Edwards BK. The surveillance, epidemiology, and end results program: a national resource. Cancer Epidemiol Biomarkers Prev. 1999; 8(12):11171121.
35. Ostrom QT, Gittleman H, Farah P, et al. CBTRUS statistical report: Primary brain and central nervous system tumors diagnosed in the United States in 2006-2010. Neuro Oncol. 2013; 15 Suppl 2:ii1-56.
36. Yang J, Benyamin B, McEvoy BP, et al. Common SNPs explain a large proportion of the heritability for human height. Nat Genet. 2010; 42(7):565-569.
37. Golan D, Lander ES, Rosset S. Measuring missing heritability: inferring the contribution of common variants. Proc Natl Acad Sci U S A. 2014; 111(49):E52725281.
38. Pharoah PD, Antoniou AC, Easton DF, Ponder BA. Polygenes, risk prediction, and targeted prevention of breast cancer. N Engl J Med. 2008; 358(26):2796-2803.
39. Consortium GT. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science. 2015; 348(6235):648-660.
40. Zhu Z, Zhang F, Hu H, et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat Genet. 2016; 48(5):481-487.
41. Mawrin C, Perry A. Pathological classification and molecular genetics of meningiomas. J Neurooncol. 2010; 99(3):379-391.
42. Kask K, Ruisu K, Tikker L, et al. Deletion of RIC8A in neural precursor cells leads to altered neurogenesis and neonatal lethality of mouse. Dev Neurobiol. 2015; 75(9):984-1002.
43. Ward LD, Kellis M. HaploReg v4: systematic mining of putative causal variants, cell types, regulators and target genes for human complex traits and disease. Nucleic Acids Res. 2016; 44(D1):D877-881.
44. Boyle AP, Hong EL, Hariharan M, et al. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res. 2012; 22(9):1790-1797.
45. $\quad \mathrm{Ng}$ SB, Turner EH, Robertson PD, et al. Targeted capture and massively parallel sequencing of 12 human exomes. Nature. 2009; 461(7261):272-276.
46. Li C, Cai S, Wang X, Jiang Z. Identification and characterization of ANO9 in stage II and III colorectal carcinoma. Oncotarget. 2015; 6(30):29324-29334.
47. Jun I, Park HS, Piao H, et al. ANO9/TMEM16J promotes tumourigenesis via EGFR and is a novel therapeutic target for pancreatic cancer. Br J Cancer. 2017.
48. Scales M, Jager R, Migliorini G, Houlston RS, Henrion MY. visPIG--a web tool for producing multi-region, multi-track, multi-scale plots of genetic data. PloS one. 2014; 9(9):e107497.
49. Roadmap Epigenomics C, Kundaje A, Meuleman W, et al. Integrative analysis of 111 reference human epigenomes. Nature. 2015; 518(7539):317-330.
50. Ernst J, Kellis M. ChromHMM: automating chromatin-state discovery and characterization. Nat Methods. 2012; 9(3):215-216.
51. Zhou X, Maricque B, Xie M, et al. The Human Epigenome Browser at Washington University. Nat Methods. 2011; 8(12):989-990.

Figure 1: Manhattan plot of association \boldsymbol{P} values. Shown are the genome-wide P values (two-sided) of >9 million successfully imputed single nucleotide polymorphisms (SNPs) in 1,606 cases and 9,823 controls. Text labeled in red are previously identified risk loci and text labeled in blue are newly identified risk loci. Imputation of rs7124615 was not supported by sequencing and this SNP is therefore not represented.
rs2686876 (11p15.5)

Figure 2: Forest plot of effect size and direction for the single nucleotide polymorphism (SNP) from the newly reported locus associated with meningioma risk.

Figure 3: Regional plot of the $\mathbf{1 1 p 1 5 . 5}$ association. Plot (drawn using visPig ${ }^{48}$) shows association results of both genotyped (triangles) and imputed (circles) single nucleotide polymorphisms (SNPs) in the genome-wide association study (GWAS) samples and recombination rates. $-\log _{10} P$ values (y axes) of the SNPs are shown according to their chromosomal positions (x axes). The sentinel SNP is shown as a large circle and is labeled by its rsID. The color intensity of each symbol reflects the extent of linkage disequilibrium with the top genotyped SNP, white ($r^{2}=0$) through to dark red $\left(r^{2}=1.0\right)$. Genetic recombination rates, estimated using 1000 Genomes Project samples ${ }^{19}$, are shown with a light blue line. Physical positions are based on NCBI build 37 of the human genome. Also shown are the chromatin-state segmentation tracks for 127 cell types and tissues from ENCODE and the Roadmap Epigenomics Consortium ${ }^{49}$, generated using ChromHMM ${ }^{50}$ and the Wash U Epigenome Browser ${ }^{51}$, and the positions of genes and transcripts mapping to the region of association. ANO9 is located 128 kb centromeric of the plotted region.

Table 1: Summary results for the single nucleotide polymorphism (SNP) from the newly reported locus associated with meningioma risk.

SNP	Locus	Position	Risk			Control	
rs2686876	11 p 15.5	258909	allele	Study	Case RAF	RAF	OR (95\% CI)

RAF, risk allele frequency; OR, odds ratio; CI, confidence interval; * Position is based on NCBI build 37.

Supplementary Figure 1: Quantile-Quantile ($Q-Q$) plots of observed and expected χ^{2} values of association between meningioma risk and SNP genotype. German-GWAS (adjustment carried out on first two principle components): a) genotyped and b) imputed SNPs. USA-GWAS (adjustment carried out on the first three principle components): c) genotyped and d) imputed SNPs. Red line represents the null hypothesis of no true association.

Supplementary Figure 2: PCA plots of the GWAS data sets. Cases and controls from each series were merged with three HapMap version II populations and PCA was conducted on the merged individuals. German-GWAS showing a) cases, controls and three HapMap populations and b) cases, controls and only the CEU HapMap population. USA-GWAS showing c) cases, controls and three HapMap populations and d) cases, controls and only the CEU HapMap population.

Study	Status	Sample-level QC							SNP-level QC (completed on cases and controls combined) गNF Tlumivers				
		Sample numbers preQC	Sample numbers removed by filtering stages					Sample numbers post-QC	Platform				SNPs post-QC
			Sex discordance	Missing rate	Heterozygosity rate	Relatedness	Divergent ancestry			Case/control call rate ${ }^{\text {b }}$	Call rate	MAF \& HWE P values	
German-GWAS	Cases	961	24	15	13	11	64	834	Illumina 660w-Quad and Illumina OmniExpress	1,979	2	11,752	291,378
	Controls	2,132	2	3	15	4	5	2,103					
USA-GWAS									Affymetrix Axiom Western				
	Cases	935	0	4	12	0	147	772	European Panel	15,170	0	7,866	395,907
	Controls	57,646	31	188	894	526	6,512	7,720 ${ }^{\text {a }}$					

[^0]${ }^{\mathrm{b}}$ SNPs excluded if call rate differs between cases and controls ($P<10^{-5}$)
${ }^{\text {c }}$ SNPs excluded if call rate $<95 \%$

Supplementary Table 2: Summary statistics from all data sets for SNPs taken forward to the replication phase.

SNP details					German-GWAS				Case RAF
SNP	Locus	Position (bp)	Risk allele	Other allele	Case RAF	Control RAF	OR (95\% CI)	P value	
rs749917	1p36.13	18503402	C	T	0.745	0.720	1.17 (1.02-1.34)	$2.51 \mathrm{E}-02$	0.767
rs62248541	3 p 22.3	34365349	T	G	0.067	0.050	1.54 (1.16-2.05)	2.82E-03	0.072
rs2105297	6 q 21	105668048	G	C	0.296	0.256	1.30 (1.13-1.49)	2.14E-04	0.303
rs117837262	9 p 21.2	26564699	A	C	0.085	0.067	1.34 (1.06-1.68)	$1.34 \mathrm{E}-02$	0.096
rs2686876	11p15.5	258909	T	A	0.927	0.902	1.29 (1.05-1.59)	$1.69 \mathrm{E}-02$	0.938
rs2240941	11p14.3	22881687	A	C	0.140	0.111	1.43 (1.18-1.73)	3.00E-04	0.147
rs1017602	11p14.2	26792264	T	G	0.939	0.909	1.46 (1.18-1.82)	5.79E-04	0.929
rs12428241	13q14.11	42127834	A	G	0.082	0.065	1.35 (1.07-1.71)	$1.18 \mathrm{E}-02$	0.101
rs1941941	18q12.2	35097335	A	T	0.229	0.210	1.19 (1.03-1.37)	2.03E-02	0.250
rs11090280	22q11.23	24028412	C	T	0.519	0.486	1.21 (1.07-1.36)	$2.10 \mathrm{E}-03$	0.556

Positions are reported for hg19. RAF: risk allele frequency; OR: odds ratio derived with respect to the risk allele.

USA-GWAS			Meta analysis prior to replication				UK-replicat	
Control RAF	OR (95\% CI)	P value	OR (95\% CI)	P value	1^{2}	$\mathrm{P}_{\text {het }}$	Case RAF	Control RAF
0.722	1.28 (1.13-1.45)	$7.30 \mathrm{E}-05$	1.23 (1.12-1.35)	$9.24 \mathrm{E}-06$	2.98	3.10E-01	0.734	0.736
0.049	1.64 (1.29-2.08)	$5.73 \mathrm{E}-05$	1.60 (1.33-1.92)	6.19E-07	0.00	7.50E-01	0.070	0.071
0.264	1.23 (1.09-1.39)	6.71E-04	1.26 (1.15-1.38)	6.74E-07	0.00	5.90E-01	0.262	0.276
0.070	1.50 (1.22-1.84)	$1.34 \mathrm{E}-04$	1.43 (1.22-1.66)	7.33E-06	0.00	$4.77 \mathrm{E}-01$	0.074	0.073
0.910	1.46 (1.21-1.77)	$1.09 \mathrm{E}-04$	1.38 (1.20-1.59)	8.19E-06	0.00	$4.01 \mathrm{E}-01$	0.955	0.921
0.121	1.29 (1.09-1.52)	$2.69 \mathrm{E}-03$	1.35 (1.19-1.53)	$4.21 \mathrm{E}-06$	0.00	$4.32 \mathrm{E}-01$	0.131	0.132
0.906	1.32 (1.10-1.59)	$2.83 \mathrm{E}-03$	1.38 (1.20-1.58)	7.76E-06	0.00	$4.80 \mathrm{E}-01$	0.893	0.913
0.069	1.64 (1.33-2.03)	3.92E-06	1.51 (1.29-1.77)	$3.17 \mathrm{E}-07$	30.08	2.32E-01	0.050	0.055
0.205	1.32 (1.16-1.50)	3.19E-05	1.26 (1.14-1.38)	3.53E-06	10.44	2.91E-01	0.241	0.225
0.505	1.23 (1.10-1.37)	$1.80 \mathrm{E}-04$	1.22 (1.12-1.32)	$1.41 \mathrm{E}-06$	0.00	$8.41 \mathrm{E}-01$	0.541	0.522

SNP	Allele 1 primer ${ }^{\text {a }}$	Allele 2 primer ${ }^{\text {b }}$	Common primer
rs749917	TGTGCTATTAGTAGCCTTGCCCAC	AGTGCTATTAGTAGCCTTGCCCAT	CATCCAGAAAAATTATAGGAAGCGCTGTA
rs62248541	CATACATAAAGCACCAAAAGTATGATGG	ACATACATAAAGCACCAAAAGTATGATGT	TTTCTCAGCATGTGATCCAACATTGGAAT
rs2105297	TTTGTCATAATCTGATTCAGAGAGACG	TGTCATAATCTGATTCAGAGAGACC	GGACCAATGTGATATATTGTGGAAGTGAA
rs117837262	TTTCTTCCTCTGCCTGGAGTAAAG	CTTCCTCTGCCTGGAGTAAAG	TCCTTACCCTCAAGATCTGAAATAGCTAT
rs2686876	CCTGTGCGACAGAGCAAGACA	CCTGTGCGACAGAGCAAGACT	GTTTTTATGTGACATGAAGATGGTATTCAA
rs2240941	TGTCAGGTACATCACCTGTATGTTG	GGTCAGGTACATCACCTGTATGTTT	CTTCTGTAATTTCСACTCСACCTCCTA
rs1017602	TAGTGAGATTCTTTGACAGACCTACAT	GTGAGATTCTTTGACAGACCTACA	AATAATTCCTTCTACTTCTTTTTCTCTT
rs12428241	TGGCACCAGACCTGGCCAGTT	GCACCAGACCTGGCCAGTC	AACTTACATCGTGGGACATCCCAAATTTT
rs1941941	TGTCTTGCAAGCAGGTGTTTGGC	GTCTTGCAAGCAGGTGTTTGGC	TGCCCAAAAGCCACCCTGGGAA
rs11090280	TTCCTATGACTTATTTGTAGTCCTTT	ACTTCCTATGACTTATTTGTAGTCCTTT	CCCACAGAGAGGGTCTGTAGAAAT

${ }^{\text {a }}$ Allele 1 primers have a 5' FAM label - GAAGGTGACCAAGTTCATGC. ${ }^{\text {b }}$ Allele 2 primers have a 5^{\prime} VIC label - GAAGGTCGGAGTCAACGGATT.

Primers used for sequencing.		
SNP	Left primer	Right primer
rs7124615	TGATGTGTTGAGACCGGAAA	CCATTCTGATTTTGCCTGCT

Stage	Study	Final sample numbers		\% Male		Imputed SNPs
		Cases	Controls	Cases	Controls	
Discovery	German-GWAS	834	2,103	29.98	49.79	9,213,034
	USA-GWAS	772	7,720	28.11	38.42	9,084,775
Replication	UK-replication	418	1,852	27.03	36.88	NA
	Danish-replication	114	406	30.70	59.85	NA

Successfully imputed SNPs in each discovery series GWAS were those with info score ≥ 0.80, case and control MAF >0.01 and $P_{H W E}>1 \times 10^{-5}$.

Supplementary Table 5: Association between SNP genotype and tumor grade, sex and age at diagnosis in meningioma cases

Age at diagnosis													
SNP details					German-GWAS				USA-GWAS				< 57 years
SNP	Locus	Position (bp)	Risk allele	Genotypes	< 57 years	≥ 57 years	OR (95\% CI)	P value	< 57 years	≥ 57 years	OR (95\% CI)	P value	
rs2686876	11p15.5	258909	T	T T	266	449			281	376			120
				TA	50	61	0.76 (0.52-1.10)	$1.32 \mathrm{E}-01$	48	51	0.86 (0.58-1.26)	4.01E-01	8
				A A	2	3			2	4			0

Positions are reported for hg19. OR: odds ratio derived with respect to the risk allele.

UK-replication		Danish-replication							
Tumor WHO grade data unavailable		Tumor WHO grade data unavailable							
UK-replication		Danish-replication				Meta analysis			
Female OR (95\% CI)	P value	Male	Female	OR (95\% CI)	P value	OR (95\% CI)	P value	1^{2}	$\mathrm{P}_{\text {het }}$
273		33	68						
26 1.58 (0.68-3.65)	$2.95 \mathrm{E}-01$	2	11	2.54 (0.55-11.79)	$2.03 \mathrm{E}-01$	1.03 (0.78-1.34)	8.57E-01	37.25	$1.89 \mathrm{E}-01$
2		0	0						
UK-replication		Danish-replication				Meta analysis			
≥ 57 years \quad OR (95\% Cl)	P value	< 57 years	≥ 57 years	OR (95\% CI)	P value	OR (95\% CI)	P value	$1{ }^{2}$	$\mathrm{P}_{\text {het }}$
255		37	64						
$25 \quad 1.68$ (0.76-3.73)	2.12E-01	5	8	0.93 (0.29-2.94)	8.98E-01	0.87 (0.68-1.12)	$2.84 \mathrm{E}-01$	10.36	$3.41 \mathrm{E}-01$
2		0	0						

Supplementary Table 6: Genomic annotation of new meningioma risk locus.

SNP	Position	r^{2} (rs2686876)	D' (rs2686876)	Gene	Annotation	RegulomeDB	GERP	CADD
rs1045502	252818	0.97	0.99	PSMD13	3'-UTR	5	4.28	10.55
rs1045577	252942	0.97	0.99	PSMD13	3'-UTR	6	-0.66	5.03
rs2686878	253958	0.97	0.99			4	0.21	1.37
rs143265326	256110	0.96	0.99			No data	-1.28	0.69
rs532483	257030	1.00	1.00			5	1.34	5.64
rs939924	257308	0.99	1.00			4	-1.03	10.75
rs2734242	258646	1.00	1.00			No data	0.47	1.12
rs200015280	258741	1.00	1.00			No data	0.50	1.94
rs2686876	258909	1.00	1.00			6	0.14	1.34
rs151035694	262106	0.97	0.99			6	NA	0.74

Data are shown for the sentinel SNP (in bold) and its proxies ($r^{2}>0.8$ in 1000 Genomes EUR Phase 1 data) with RegulomeDB scores reflecting evidence of histone marks, DNase hypersensitivity sites or transcription factor occupancy. Also indicated are genomic evolutionary rate profiling (GERP) scores and combined annotation dependent depletion (CADD) scores. RegulomeDB scores: 4: TF binding + DNase peak; 5: TF binding or DNase peak; 6: other binding or DNase peak

Tissue	Number of samples	ANO9	AP2A2	B4GALNT4	BET1L	CD151	CDHR5	CEND1	CHID1	CICP23	CRACR2B	DEAF1	DRD4	EPS8L2	GATD1	HRAS
Adipose Subcutaneous	385	3.50E-01	9.85E-01	3.78E-03	6.60E-01	8.67E-01	2.74E-02	$1.34 \mathrm{E}-01$	4.13E-01	NA	$2.68 \mathrm{E}-01$	3.80E-02	4.68E-01	4.70E-01	6.95E-01	5.63E-01
Adipose Visceral Omentum	313	8.25E-01	6.48E-01	$8.80 \mathrm{E}-02$	$3.20 \mathrm{E}-01$	6.79E-03	3.37E-01	2.98E-01	8.48E-01	NA	$2.53 \mathrm{E}-01$	6.27E-01	4.28E-01	4.12E-01	3.18E-01	$1.56 \mathrm{E}-01$
Adrenal Gland	175	7.19E-01	6.13E-01	$9.75 \mathrm{E}-02$	7.95E-01	7.63E-01	$1.02 \mathrm{E}-01$	4.17E-01	$4.85 \mathrm{E}-01$	NA	$4.34 \mathrm{E}-01$	$5.20 \mathrm{E}-01$	$4.72 \mathrm{E}-03$	6.01E-03	4.16E-01	$2.66 \mathrm{E}-01$
Artery Aorta	267	7.01E-01	9.30E-01	$1.71 \mathrm{E}-01$	7.21E-01	5.04E-01	4.17E-01	6.09E-01	$2.64 \mathrm{E}-01$	NA	7.14E-01	5.05E-01	7.89E-01	8.60E-01	5.19E-01	$1.48 \mathrm{E}-01$
Artery Coronary	152	$2.60 \mathrm{E}-01$	8.05E-01	6.68E-01	$4.49 \mathrm{E}-04$	3.45E-01	$4.00 \mathrm{E}-02$	6.88E-01	8.85E-01	NA	$1.19 \mathrm{E}-01$	7.01E-01	5.25E-01	4.58E-01	2.08E-01	8.32E-01
Artery Tibial	388	$9.52 \mathrm{E}-02$	7.45E-01	$7.38 \mathrm{E}-01$	6.48E-02	8.30E-02	3.37E-01	2.16E-01	9.47E-01	NA	2.28E-01	$8.79 \mathrm{E}-01$	4.02E-01	6.95E-01	3.40E-02	$1.87 \mathrm{E}-01$
Brain Amygdala	88	9.15E-01	1.80E-02	$5.72 \mathrm{E}-03$	2.50E-02	7.19E-01	6.27E-01	8.36E-01	$3.95 \mathrm{E}-01$	NA	4.84E-01	$1.69 \mathrm{E}-01$	3.58E-01	4.61E-01	9.98E-01	8.80E-01
Brain Anterior Cingulate Cortex BA24	109	8.07E-01	3.79E-01	$7.98 \mathrm{E}-01$	1.40E-03	$2.66 \mathrm{E}-01$	6.74E-01	4.86E-01	$8.48 \mathrm{E}-01$	NA	5.99E-01	7.69E-01	8.45E-01	$1.55 \mathrm{E}-03$	$1.68 \mathrm{E}-01$	$1.76 \mathrm{E}-01$
Brain Caudate Basal Ganglia	144	8.30E-07	6.56E-01	7.93E-01	$2.58 \mathrm{E}-02$	7.60E-01	$2.92 \mathrm{E}-02$	6.96E-01	$2.21 \mathrm{E}-01$	NA	7.47E-01	$5.62 \mathrm{E}-02$	4.40E-01	8.90E-01	$2.22 \mathrm{E}-01$	6.25E-01
Brain Cerebellar Hemisphere	125	4.91E-01	2.22E-01	5.90E-01	7.87E-01	3.13E-01	$3.04 \mathrm{E}-01$	7.45E-01	4.16E-01	NA	7.50E-01	$3.66 \mathrm{E}-02$	3.39E-01	4.79E-01	$4.14 \mathrm{E}-01$	7.63E-01
Brain Cortex	136	$3.70 \mathrm{E}-01$	3.30E-01	$2.92 \mathrm{E}-01$	6.08E-03	3.59E-01	2.51E-01	$1.33 \mathrm{E}-01$	$4.35 \mathrm{E}-01$	NA	$4.28 \mathrm{E}-01$	$1.46 \mathrm{E}-01$	8.29E-01	2.37E-01	$3.48 \mathrm{E}-01$	$8.32 \mathrm{E}-01$
Brain Frontal Cortex BA9	118	3.08E-01	1.84E-01	6.01E-01	1.01E-02	6.31E-01	$3.49 \mathrm{E}-01$	9.43E-02	6.83E-01	NA	5.73E-01	$2.29 \mathrm{E}-02$	7.99E-01	$3.25 \mathrm{E}-01$	7.13E-01	3.62E-01
Brain Hippocampus	111	$6.86 \mathrm{E}-01$	9.82E-01	7.21E-01	5.96E-01	6.70E-01	$9.54 \mathrm{E}-02$	$1.78 \mathrm{E}-01$	$6.25 \mathrm{E}-01$	NA	$8.54 \mathrm{E}-01$	$4.77 \mathrm{E}-02$	6.77E-01	$8.44 \mathrm{E}-01$	$9.69 \mathrm{E}-01$	$8.58 \mathrm{E}-01$
Brain Hypothalamus	108	$9.41 \mathrm{E}-01$	3.19E-01	$4.61 \mathrm{E}-01$	7.19E-01	6.25E-01	6.00E-01	4.70E-01	$1.31 \mathrm{E}-01$	NA	7.11E-01	$8.02 \mathrm{E}-01$	8.20E-01	6.89E-01	7.33E-01	$1.72 \mathrm{E}-01$
Brain Nucleus Accumbens Basal Ganglia	130	3.68E-01	1.02E-01	$9.10 \mathrm{E}-01$	$1.12 \mathrm{E}-02$	2.25E-01	$2.96 \mathrm{E}-01$	6.45E-01	7.46E-02	NA	8.10E-01	$8.69 \mathrm{E}-01$	7.69E-01	9.92E-01	$1.76 \mathrm{E}-01$	7.15E-01
Brain Putamen Basal Ganglia	111	$2.58 \mathrm{E}-06$	7.04E-01	$2.42 \mathrm{E}-01$	6.22E-03	6.89E-01	$8.40 \mathrm{E}-01$	$1.50 \mathrm{E}-01$	$3.59 \mathrm{E}-01$	NA	2.18E-01	$8.90 \mathrm{E}-01$	3.58E-01	5.16E-01	5.01E-01	9.46E-01
Brain Spinal Cord Cervical c-1	83	7.59E-01	7.22E-01	$1.40 \mathrm{E}-01$	3.46E-01	8.90E-01	$5.30 \mathrm{E}-01$	$2.83 \mathrm{E}-02$	9.65E-01	NA	$1.79 \mathrm{E}-01$	$1.63 \mathrm{E}-01$	8.32E-01	6.08E-01	$5.74 \mathrm{E}-01$	8.62E-02
Brain Substantia Nigra	80	$1.09 \mathrm{E}-01$	6.03E-02	6.10E-01	6.93E-01	6.59E-01	$1.80 \mathrm{E}-01$	7.28E-01	5.23E-01	NA	$9.86 \mathrm{E}-01$	$4.89 \mathrm{E}-01$	7.87E-01	3.20E-01	$2.82 \mathrm{E}-01$	5.15E-01
Breast Mammary Tissue	251	6.74E-01	7.99E-01	$1.74 \mathrm{E}-01$	2.22E-01	5.09E-01	3.51E-01	4.70E-01	6.30E-01	NA	6.67E-01	$4.37 \mathrm{E}-02$	9.58E-01	3.47E-02	9.60E-01	9.77E-01
Cells EBV Transformed Lymphocytes	117	$8.98 \mathrm{E}-01$	5.79E-01	$6.23 \mathrm{E}-01$	7.39E-01	9.05E-01	5.82E-01	5.19E-01	$2.49 \mathrm{E}-01$	NA	9.27E-01	$2.69 \mathrm{E}-01$	6.14E-01	8.20E-01	$1.73 \mathrm{E}-01$	8.56E-01
Cells Transformed Fibroblasts	300	$9.44 \mathrm{E}-01$	5.76E-01	$3.06 \mathrm{E}-01$	$1.53 \mathrm{E}-01$	1.01E-02	$4.63 \mathrm{E}-01$	6.79E-01	$5.79 \mathrm{E}-01$	NA	3.01E-02	4.15E-01	7.19E-01	9.63E-02	$1.23 \mathrm{E}-01$	1.40E-02
Colon Sigmoid	203	$3.78 \mathrm{E}-01$	2.05E-01	5.90E-01	$2.71 \mathrm{E}-01$	9.05E-01	8.04E-01	$2.56 \mathrm{E}-01$	$8.19 \mathrm{E}-01$	NA	7.34E-01	$2.77 \mathrm{E}-01$	7.82E-01	1.80E-01	6.40E-02	5.10E-01
Colon Transverse	246	$1.71 \mathrm{E}-01$	5.35E-01	9.93E-01	$1.05 \mathrm{E}-01$	6.30E-01	$8.72 \mathrm{E}-01$	9.86E-03	9.47E-01	NA	$3.78 \mathrm{E}-01$	$5.57 \mathrm{E}-02$	5.54E-01	2.02E-01	$5.74 \mathrm{E}-01$	6.59E-01
Esophagus Gastroesophageal Junction	213	$8.63 \mathrm{E}-02$	4.48E-01	$1.09 \mathrm{E}-01$	3.18E-01	6.02E-01	$1.01 \mathrm{E}-01$	$2.32 \mathrm{E}-01$	4.67E-01	NA	8.57E-01	6.63E-01	8.60E-01	8.88E-01	8.69E-01	3.77E-01
Esophagus Mucosa	358	6.10E-01	$1.71 \mathrm{E}-01$	5.43E-01	$2.95 \mathrm{E}-02$	8.78E-01	$2.95 \mathrm{E}-01$	$1.78 \mathrm{E}-02$	6.17E-02	NA	7.87E-01	$4.73 \mathrm{E}-01$	$4.55 \mathrm{E}-02$	$3.84 \mathrm{E}-01$	$9.54 \mathrm{E}-01$	5.20E-01
Esophagus Muscularis	335	5.42E-01	8.79E-01	$7.83 \mathrm{E}-01$	9.03E-06	6.34E-01	7.99E-01	6.51E-01	7.02E-01	NA	7.10E-01	$1.69 \mathrm{E}-01$	3.56E-01	6.55E-02	$3.13 \mathrm{E}-01$	4.96E-01
Heart Atrial Appendage	264	7.10E-03	7.67E-01	$3.35 \mathrm{E}-01$	$2.04 \mathrm{E}-02$	$1.88 \mathrm{E}-01$	7.17E-01	5.57E-01	8.28E-01	NA	8.85E-01	$2.99 \mathrm{E}-01$	3.75E-02	7.90E-01	$2.92 \mathrm{E}-01$	6.43E-02
Heart Left Ventricle	272	6.89E-02	4.73E-01	$1.66 \mathrm{E}-01$	2.69E-01	6.09E-01	NA	2.96E-01	7.85E-01	NA	8.26E-01	6.22E-01	5.28E-01	7.27E-01	1.09E-01	5.33E-01
Liver	153	6.84E-01	6.41E-01	$5.09 \mathrm{E}-01$	7.49E-01	5.18E-01	$1.88 \mathrm{E}-01$	3.09E-01	$2.33 \mathrm{E}-01$	NA	5.99E-01	$2.61 \mathrm{E}-01$	2.37E-01	4.23E-02	$1.82 \mathrm{E}-01$	7.83E-01
Lung	383	$2.71 \mathrm{E}-01$	7.07E-02	$3.15 \mathrm{E}-01$	7.30E-01	$2.27 \mathrm{E}-01$	$4.05 \mathrm{E}-01$	$1.18 \mathrm{E}-01$	9.17E-01	NA	8.62E-01	$1.71 \mathrm{E}-01$	$1.25 \mathrm{E}-01$	9.17E-01	6.46E-01	$1.45 \mathrm{E}-01$
Minor Salivary Gland	85	6.40E-01	$4.78 \mathrm{E}-01$	$2.54 \mathrm{E}-01$	7.00E-01	$9.84 \mathrm{E}-01$	8.20E-01	4.36E-01	$4.85 \mathrm{E}-01$	NA	$5.48 \mathrm{E}-01$	5.16E-02	6.88E-01	3.93E-01	2.98E-01	2.13E-01
Muscle Skeletal	491	7.18E-01	$2.52 \mathrm{E}-01$	$9.85 \mathrm{E}-01$	$2.64 \mathrm{E}-03$	4.15E-01	$1.85 \mathrm{E}-01$	9.11E-01	5.17E-01	NA	$9.47 \mathrm{E}-01$	$1.58 \mathrm{E}-01$	7.41E-01	7.78E-01	7.08E-01	4.36E-01
Nerve Tibial	361	$9.54 \mathrm{E}-01$	4.68E-01	$1.54 \mathrm{E}-01$	3.48E-01	9.75E-01	6.13E-01	3.77E-01	6.32E-01	NA	6.21E-01	6.64E-01	9.48E-01	9.86E-01	6.91E-01	9.96E-02
Ovary	122	3.07E-01	2.67E-01	$3.07 \mathrm{E}-01$	6.38E-02	2.81E-01	$2.49 \mathrm{E}-01$	9.81E-01	5.85E-01	NA	$3.06 \mathrm{E}-01$	7.47E-01	$4.28 \mathrm{E}-01$	5.24E-01	$9.56 \mathrm{E}-01$	3.85E-01
Pancreas	220	$2.33 \mathrm{E}-01$	1.72E-01	$5.21 \mathrm{E}-01$	$1.49 \mathrm{E}-01$	$2.44 \mathrm{E}-01$	$4.04 \mathrm{E}-01$	5.93E-01	3.63E-02	NA	7.30E-01	$6.80 \mathrm{E}-01$	7.41E-01	$3.32 \mathrm{E}-01$	8.02E-01	9.29E-02
Pituitary	157	5.55E-02	6.32E-01	$1.38 \mathrm{E}-01$	$3.78 \mathrm{E}-01$	3.05E-01	9.20E-01	$4.56 \mathrm{E}-01$	3.56E-01	NA	5.55E-01	7.13E-01	8.36E-01	$2.54 \mathrm{E}-02$	5.65E-01	5.80E-02
Prostate	132	7.29E-03	4.76E-01	$1.65 \mathrm{E}-01$	$9.96 \mathrm{E}-01$	6.58E-01	7.04E-01	8.42E-01	8.82E-01	NA	8.16E-01	$3.47 \mathrm{E}-01$	$1.96 \mathrm{E}-01$	7.05E-01	$5.24 \mathrm{E}-01$	$4.41 \mathrm{E}-01$
Skin not Sun Exposed Suprapubic	335	$8.75 \mathrm{E}-01$	5.86E-02	$4.66 \mathrm{E}-01$	6.27E-01	$1.18 \mathrm{E}-01$	6.47E-01	3.16E-02	5.69E-01	NA	$1.62 \mathrm{E}-01$	7.06E-01	$1.01 \mathrm{E}-01$	5.77E-01	6.86E-01	5.41E-01
Skin Sun Exposed Lower Leg	414	$9.81 \mathrm{E}-01$	6.58E-01	$2.19 \mathrm{E}-01$	3.08E-01	6.43E-01	7.01E-01	$1.13 \mathrm{E}-01$	5.31E-01	NA	5.98E-01	$1.64 \mathrm{E}-01$	$1.64 \mathrm{E}-01$	7.37E-01	8.42E-01	$1.49 \mathrm{E}-01$
Small Intestine Terminal Ileum	122	3.91E-01	5.06E-01	$2.61 \mathrm{E}-01$	4.57E-01	$1.73 \mathrm{E}-01$	8.81E-02	5.23E-01	$2.82 \mathrm{E}-03$	NA	5.72E-01	$1.40 \mathrm{E}-01$	5.99E-02	7.69E-03	7.79E-02	6.69E-01

Spleen	146	7.92E-02	$1.02 \mathrm{E}-01$	9.69E-01	8.44E-01	$1.55 \mathrm{E}-01$	1.05E-01	6.32E-02	5.25E-02	NA	$1.11 \mathrm{E}-01$	2.89E-01	2.09E-01	8.68E-02	8.31E-01	2.19E-01
Stomach	237	$1.15 \mathrm{E}-01$	2.98E-02	$4.30 \mathrm{E}-01$	$8.36 \mathrm{E}-01$	$3.20 \mathrm{E}-01$	6.77E-01	$1.15 \mathrm{E}-01$	8.85E-01	NA	7.43E-01	3.73E-01	$3.28 \mathrm{E}-01$	8.19E-01	9.29E-01	7.34E-01
Testis	225	9.63E-01	$2.04 \mathrm{E}-01$	8.60E-01	5.14E-01	8.21E-01	4.38E-02	$2.26 \mathrm{E}-01$	2.36E-01	7.23E-03	3.69E-01	6.63E-01	7.93E-01	4.86E-02	$1.52 \mathrm{E}-01$	8.36E-01
Thyroid	399	$8.48 \mathrm{E}-01$	4.41E-01	6.07E-02	9.65E-01	6.09E-01	5.54E-01	7.79E-01	8.32E-01	NA	$1.42 \mathrm{E}-01$	$1.86 \mathrm{E}-01$	$4.47 \mathrm{E}-01$	4.47E-01	4.47E-01	4.66E-01
Uterus	101	$8.83 \mathrm{E}-01$	$5.76 \mathrm{E}-01$	$6.58 \mathrm{E}-01$	8.50E-01	8.97E-01	8.97E-01	$2.30 \mathrm{E}-01$	$1.04 \mathrm{E}-01$	NA	9.54E-01	$1.38 \mathrm{E}-01$	3.31E-01	$1.33 \mathrm{E}-01$	4.96E-01	8.70E-01
Vagina	106	$8.69 \mathrm{E}-01$	7.64E-01	$5.73 \mathrm{E}-01$	$4.73 \mathrm{E}-01$	$1.31 \mathrm{E}-01$	$1.62 \mathrm{E}-02$	$2.58 \mathrm{E}-01$	9.27E-01	NA	$1.46 \mathrm{E}-01$	3.17E-01	8.86E-01	9.01E-01	7.18E-02	2.41E-01
Whole Blood	369	$8.22 \mathrm{E}-01$	$2.82 \mathrm{E}-01$	$2.43 \mathrm{E}-01$	$1.02 \mathrm{E}-01$	$3.26 \mathrm{E}-01$	$1.61 \mathrm{E}-01$	$8.72 \mathrm{E}-03$	5.85E-01	9.65E-01	$3.95 \mathrm{E}-01$	$2.72 \mathrm{E}-01$	$5.45 \mathrm{E}-01$	$1.00 \mathrm{E}+00$	5.81E-01	2.71E-01

[^1]Cells marked NA if data not available

Nominal P value																				
IFITM1	IFITM2	IFITM3	IFITM5	IRF7	LINC01001	LMNTD2	LRRC56	MIR210	MIR210HG	MUC2	MUC5AC	MUC5B	MUC6	NLRP6	ODF3	PGGHG	PHRF1	PIDD1	PKP3	PNPLA2
9.93E-01	5.20E-01	9.22E-01	7.05E-01	$2.86 \mathrm{E}-01$	$3.14 \mathrm{E}-01$	4.95E-01	5.65E-01	NA	$5.60 \mathrm{E}-03$	9.05E-01	NA	NA	$7.75 \mathrm{E}-01$	1.35E-01	NA	5.42E-02	5.49E-02	9.37E-01	$1.35 \mathrm{E}-01$	2.12E-01
$4.67 \mathrm{E}-01$	1.79E-01	$9.89 \mathrm{E}-01$	NA	$5.40 \mathrm{E}-01$	$4.13 \mathrm{E}-01$	4.22E-01	3.03E-01	NA	$7.55 \mathrm{E}-01$	6.59E-01	5.25E-01	NA	$4.44 \mathrm{E}-01$	8.11E-01	NA	5.08E-01	5.18E-01	$2.24 \mathrm{E}-01$	$6.71 \mathrm{E}-01$	$1.37 \mathrm{E}-01$
$8.09 \mathrm{E}-01$	7.03E-01	3.67E-01	NA	$9.71 \mathrm{E}-01$	$4.73 \mathrm{E}-01$	$2.73 \mathrm{E}-01$	6.14E-01	NA	$6.78 \mathrm{E}-01$	6.89E-01	4.47E-01	NA	$1.79 \mathrm{E}-01$	7.29E-01	NA	3.22E-01	$2.20 \mathrm{E}-02$	3.06E-01	$6.36 \mathrm{E}-01$	$2.46 \mathrm{E}-01$
$8.29 \mathrm{E}-01$	$3.85 \mathrm{E}-01$	6.56E-01	3.93E-01	$1.15 \mathrm{E}-02$	$9.42 \mathrm{E}-01$	$1.45 \mathrm{E}-01$	$2.45 \mathrm{E}-02$	NA	$3.93 \mathrm{E}-01$	9.58E-01	$4.85 \mathrm{E}-01$	NA	$3.98 \mathrm{E}-01$	$4.38 \mathrm{E}-01$	NA	$1.98 \mathrm{E}-01$	$4.40 \mathrm{E}-01$	2.18E-01	3.70E-01	$5.40 \mathrm{E}-01$
$4.71 \mathrm{E}-01$	8.79E-01	3.97E-01	$4.24 \mathrm{E}-01$	$5.32 \mathrm{E}-02$	$2.69 \mathrm{E}-01$	7.17E-01	6.79E-01	NA	$8.72 \mathrm{E}-01$	6.64E-01	NA	NA	$3.27 \mathrm{E}-01$	$9.48 \mathrm{E}-01$	NA	$3.75 \mathrm{E}-01$	$6.34 \mathrm{E}-01$	$5.84 \mathrm{E}-01$	$2.80 \mathrm{E}-01$	$2.77 \mathrm{E}-01$
$1.41 \mathrm{E}-02$	8.36E-01	$2.21 \mathrm{E}-01$	NA	$8.03 \mathrm{E}-01$	7.47E-01	$7.74 \mathrm{E}-01$	2.29E-01	7.93E-01	$9.79 \mathrm{E}-01$	5.09E-01	NA	NA	$3.68 \mathrm{E}-01$	6.82E-02	NA	$8.73 \mathrm{E}-01$	$6.54 \mathrm{E}-01$	9.97E-02	$4.08 \mathrm{E}-01$	$4.98 \mathrm{E}-01$
$4.65 \mathrm{E}-01$	2.69E-01	$2.86 \mathrm{E}-01$	NA	$8.26 \mathrm{E}-01$	$5.78 \mathrm{E}-01$	$2.18 \mathrm{E}-02$	$1.52 \mathrm{E}-01$	NA	$6.44 \mathrm{E}-01$	NA	NA	NA	$8.08 \mathrm{E}-01$	2.80E-01	NA	$5.28 \mathrm{E}-01$	6.06E-02	$1.48 \mathrm{E}-01$	$4.93 \mathrm{E}-01$	$9.49 \mathrm{E}-01$
$6.13 \mathrm{E}-01$	$3.52 \mathrm{E}-01$	$3.83 \mathrm{E}-01$	NA	$5.54 \mathrm{E}-01$	$2.90 \mathrm{E}-01$	2.97E-01	1.90E-01	NA	$2.00 \mathrm{E}-01$	NA	NA	NA	$3.50 \mathrm{E}-01$	NA	NA	$2.85 \mathrm{E}-01$	6.15E-01	5.98E-01	7.91E-01	$6.45 \mathrm{E}-01$
$3.33 \mathrm{E}-01$	3.70E-01	$1.14 \mathrm{E}-01$	NA	$8.40 \mathrm{E}-01$	$2.08 \mathrm{E}-01$	$1.59 \mathrm{E}-01$	8.54E-01	NA	$7.33 \mathrm{E}-02$	NA	NA	NA	$3.56 \mathrm{E}-01$	NA	NA	1.35E-01	$3.39 \mathrm{E}-01$	7.55E-01	4.36E-01	7.05E-01
5.19E-01	7.06E-01	6.95E-01	NA	$1.25 \mathrm{E}-01$	2.26E-01	8.76E-01	$1.81 \mathrm{E}-01$	NA	$8.20 \mathrm{E}-01$	NA	NA	$3.18 \mathrm{E}-01$	$2.92 \mathrm{E}-01$	NA	$3.29 \mathrm{E}-02$	7.05E-01	4.70E-01	$1.02 \mathrm{E}-01$	4.37E-01	$1.63 \mathrm{E}-01$
5.19E-01	3.60E-01	5.42E-01	NA	$8.86 \mathrm{E}-01$	$1.22 \mathrm{E}-02$	$7.84 \mathrm{E}-01$	6.61E-01	NA	$8.35 \mathrm{E}-01$	NA	NA	$3.52 \mathrm{E}-01$	$4.07 \mathrm{E}-01$	$2.48 \mathrm{E}-01$	NA	3.03E-01	4.61E-01	3.25E-01	$6.45 \mathrm{E}-01$	$1.60 \mathrm{E}-01$
$7.36 \mathrm{E}-01$	$1.77 \mathrm{E}-01$	7.97E-01	NA	$8.45 \mathrm{E}-01$	$3.66 \mathrm{E}-01$	$9.10 \mathrm{E}-01$	4.46E-01	NA	3.67E-01	NA	NA	8.46E-01	$7.17 \mathrm{E}-01$	NA	NA	$8.04 \mathrm{E}-01$	$7.74 \mathrm{E}-01$	$2.37 \mathrm{E}-01$	$5.70 \mathrm{E}-02$	$2.95 \mathrm{E}-01$
$2.94 \mathrm{E}-01$	8.40E-01	9.20E-01	NA	$8.88 \mathrm{E}-01$	$6.67 \mathrm{E}-01$	$6.51 \mathrm{E}-01$	6.51E-01	NA	$5.17 \mathrm{E}-01$	NA	NA	NA	$8.21 \mathrm{E}-01$	4.59E-01	NA	8.17E-01	6.90E-01	8.03E-01	$1.31 \mathrm{E}-01$.46E-01
$6.74 \mathrm{E}-01$	7.88E-01	5.33E-01	NA	$4.19 \mathrm{E}-01$	$4.66 \mathrm{E}-01$	$9.20 \mathrm{E}-01$	9.65E-01	NA	$3.43 \mathrm{E}-01$	NA	NA	NA	$1.77 \mathrm{E}-01$	1.01E-02	NA	5.15E-01	9.37E-01	7.97E-01	$3.38 \mathrm{E}-01$	$8.03 \mathrm{E}-01$
6.94E-02	7.10E-01	$2.33 \mathrm{E}-01$	NA	$4.00 \mathrm{E}-01$	$2.53 \mathrm{E}-01$	$6.05 \mathrm{E}-01$	$2.79 \mathrm{E}-01$	NA	$5.77 \mathrm{E}-02$	NA	NA	NA	$3.71 \mathrm{E}-01$	NA	NA	3.52E-01	6.95E-01	9.35E-01	$1.07 \mathrm{E}-01$	1.02E-01
$1.00 \mathrm{E}+00$	9.05E-01	$8.24 \mathrm{E}-01$	NA	$2.64 \mathrm{E}-01$	$1.66 \mathrm{E}-01$	3.47E-01	5.04E-01	NA	$7.42 \mathrm{E}-01$	NA	NA	NA	$5.13 \mathrm{E}-01$	NA	NA	9.16E-01	$9.25 \mathrm{E}-01$	5.21E-01	6.10E-01	7.87E-01
3.10E-01	5.39E-01	$3.55 \mathrm{E}-01$	NA	$4.41 \mathrm{E}-01$	$1.76 \mathrm{E}-01$	5.28E-01	$1.68 \mathrm{E}-01$	NA	$7.39 \mathrm{E}-01$	NA	NA	NA	$1.12 \mathrm{E}-01$	$3.86 \mathrm{E}-02$	NA	7.40E-01	$2.57 \mathrm{E}-01$	6.83E-01	$3.18 \mathrm{E}-01$	$3.41 \mathrm{E}-01$
7.65E-01	$8.58 \mathrm{E}-01$	$6.13 \mathrm{E}-01$	NA	7.53E-01	$3.19 \mathrm{E}-01$	$6.48 \mathrm{E}-01$	$2.46 \mathrm{E}-01$	NA	$8.38 \mathrm{E}-01$	NA	NA	NA	$9.63 \mathrm{E}-02$	4.59E-01	NA	$7.96 \mathrm{E}-01$	$2.11 \mathrm{E}-01$	3.52E-01	9.02E-01	$8.61 \mathrm{E}-01$
$1.84 \mathrm{E}-01$	9.22E-01	6.76E-01	8.49E-01	$3.45 \mathrm{E}-01$	$4.90 \mathrm{E}-02$	$2.42 \mathrm{E}-01$	2.31E-01	NA	6.91E-01	4.43E-01	8.07E-02	8.43E-01	$6.40 \mathrm{E}-02$	5.28E-01	NA	5.87E-01	$3.14 \mathrm{E}-01$	$2.18 \mathrm{E}-01$	5.50E-01	$8.96 \mathrm{E}-01$
$2.60 \mathrm{E}-01$	8.85E-01	$1.74 \mathrm{E}-01$	NA	3.87E-01	$7.43 \mathrm{E}-01$	3.28E-01	3.87E-01	$3.46 \mathrm{E}-01$	$1.37 \mathrm{E}-01$	NA	2.13E-01	NA	$4.85 \mathrm{E}-01$	7.11E-01	NA	2.82E-01	8.87E-01	9.93E-01	$1.67 \mathrm{E}-01$	8.10E-01
$3.60 \mathrm{E}-01$	2.77E-01	$4.25 \mathrm{E}-01$	NA	$5.84 \mathrm{E}-01$	$2.40 \mathrm{E}-01$	3.69E-01	$3.09 \mathrm{E}-01$	$1.33 \mathrm{E}-02$	$2.74 \mathrm{E}-03$	$6.53 \mathrm{E}-02$	NA	NA	$6.11 \mathrm{E}-01$	NA	NA	$1.69 \mathrm{E}-01$	$1.84 \mathrm{E}-01$	9.71E-01	$4.36 \mathrm{E}-02$	$3.65 \mathrm{E}-01$
$4.64 \mathrm{E}-02$	5.84E-01	$2.73 \mathrm{E}-01$	NA	6.69E-01	$2.79 \mathrm{E}-01$	5.11E-02	6.55E-01	NA	$6.26 \mathrm{E}-01$	9.26E-01	NA	$3.23 \mathrm{E}-01$	$3.91 \mathrm{E}-01$	1.33E-01	NA	6.52E-01	$1.52 \mathrm{E}-01$	8.66E-01	$3.43 \mathrm{E}-01$	$3.65 \mathrm{E}-01$
$2.61 \mathrm{E}-01$	2.96E-01	5.54E-01	NA	$9.25 \mathrm{E}-02$	8.90E-01	9.39E-01	1.30E-01	NA	7.80E-01	6.55E-01	4.22E-01	9.25E-01	$2.64 \mathrm{E}-01$	4.92E-01	NA	8.55E-02	$4.56 \mathrm{E}-01$	7.64E-01	7.35E-01	$8.10 \mathrm{E}-01$
$3.03 \mathrm{E}-01$	6.09E-01	$9.73 \mathrm{E}-01$	NA	$5.69 \mathrm{E}-01$	5.06E-02	8.55E-01	4.06E-01	NA	$1.87 \mathrm{E}-01$	7.12E-01	2.22E-01	NA	$4.62 \mathrm{E}-01$	6.80E-01	NA	$1.07 \mathrm{E}-01$	5.41E-01	6.27E-01	$2.80 \mathrm{E}-01$	$4.89 \mathrm{E}-01$
$4.09 \mathrm{E}-01$	6.75E-01	7.83E-01	NA	$9.06 \mathrm{E}-01$	$4.59 \mathrm{E}-01$	1.60E-01	1.03E-01	9.42E-01	9.00E-01	4.31E-01	5.22E-01	5.24E-01	$1.42 \mathrm{E}-01$	9.05E-01	NA	$1.34 \mathrm{E}-02$	6.17E-01	8.72E-01	7.20E-01	$3.91 \mathrm{E}-01$
$9.09 \mathrm{E}-01$	6.21E-01	4.04E-01	NA	$8.24 \mathrm{E}-01$	$4.24 \mathrm{E}-01$	3.31E-01	$3.29 \mathrm{E}-01$	NA	8.68E-01	6.54E-02	1.90E-01	NA	$4.29 \mathrm{E}-01$	5.33E-01	NA	6.92E-02	7.01E-01	$2.59 \mathrm{E}-01$	$3.35 \mathrm{E}-01$	$6.78 \mathrm{E}-02$
$9.50 \mathrm{E}-01$	6.67E-01	$1.05 \mathrm{E}-01$	NA	$2.23 \mathrm{E}-01$	$8.54 \mathrm{E}-02$	3.18E-01	$1.68 \mathrm{E}-01$	NA	$7.17 \mathrm{E}-01$	NA	NA	NA	$8.74 \mathrm{E}-01$	2.29E-01	NA	1.27E-02	3.91E-01	9.87E-01	4.64E-01	5.63E-01
$1.74 \mathrm{E}-02$	6.87E-01	6.51E-02	NA	$1.13 \mathrm{E}-01$	$4.01 \mathrm{E}-01$	7.37E-01	8.34E-01	NA	$1.51 \mathrm{E}-01$	NA	NA	NA	$9.63 \mathrm{E}-02$	4.65E-01	NA	$1.50 \mathrm{E}-01$	$2.68 \mathrm{E}-01$	2.73E-01	$1.46 \mathrm{E}-01$	$2.48 \mathrm{E}-01$
$8.52 \mathrm{E}-01$	$4.31 \mathrm{E}-01$	8.22E-01	7.79E-01	8.71E-01	$9.06 \mathrm{E}-01$	8.91E-01	3.23E-01	NA	$9.66 \mathrm{E}-01$	6.17E-01	1.07E-01	7.80E-01	$1.71 \mathrm{E}-01$	3.61E-01	NA	4.30E-01	9.05E-01	$2.42 \mathrm{E}-01$	$5.72 \mathrm{E}-01$	$7.95 \mathrm{E}-01$
7.80E-01	$4.67 \mathrm{E}-01$	7.87E-01	4.92E-01	$7.81 \mathrm{E}-01$	$8.71 \mathrm{E}-02$	3.19E-01	8.96E-01	NA	2.20E-01	$2.85 \mathrm{E}-01$	2.52E-01	6.62E-01	$5.54 \mathrm{E}-01$	$1.83 \mathrm{E}-01$	NA	$2.90 \mathrm{E}-01$	3.16E-01	$2.14 \mathrm{E}-01$	$4.81 \mathrm{E}-01$	$5.75 \mathrm{E}-01$
$4.75 \mathrm{E}-01$	5.44E-01	$1.01 \mathrm{E}-01$	3.59E-01	$3.11 \mathrm{E}-02$	6.66E-01	$7.89 \mathrm{E}-02$	4.18E-01	4.19E-01	9.58E-01	9.09E-01	8.71E-01	8.01E-01	$6.06 \mathrm{E}-01$	4.68E-01	NA	3.90E-01	9.25E-01	$2.19 \mathrm{E}-01$	$4.65 \mathrm{E}-01$	$4.13 \mathrm{E}-01$
2.12E-02	4.96E-01	$1.08 \mathrm{E}-01$	NA	7.67E-01	$3.53 \mathrm{E}-02$	$9.26 \mathrm{E}-01$	5.52E-01	NA	8.85E-01	NA	NA	NA	$7.99 \mathrm{E}-01$	NA	NA	$9.55 \mathrm{E}-01$	4.90E-01	$8.19 \mathrm{E}-01$	$3.25 \mathrm{E}-01$	7.66E-02
$4.48 \mathrm{E}-01$	$1.54 \mathrm{E}-01$	4.81E-02	$2.41 \mathrm{E}-01$	9.10E-01	1.17E-02	5.30E-01	6.34E-01	NA	$2.02 \mathrm{E}-01$	3.00E-01	4.50E-01	7.34E-01	$7.61 \mathrm{E}-01$	4.98E-01	NA	7.29E-01	5.20E-01	3.01E-01	8.04E-01	5.78E-01
6.20E-01	7.60E-01	$1.31 \mathrm{E}-01$	NA	3.91E-02	$3.69 \mathrm{E}-01$	7.30E-01	9.00E-02	NA	$8.22 \mathrm{E}-01$	5.21E-01	8.02E-01	5.20E-01	$4.96 \mathrm{E}-01$	5.81E-01	NA	$5.86 \mathrm{E}-01$	$4.59 \mathrm{E}-01$	3.06E-01	3.62E-01	3.13E-01
$1.93 \mathrm{E}-01$	6.86E-01	$3.45 \mathrm{E}-01$	$2.55 \mathrm{E}-01$	$3.91 \mathrm{E}-01$	7.04E-01	7.09E-01	6.07E-01	NA	$2.40 \mathrm{E}-01$	8.01E-01	3.16E-02	5.50E-01	3.20E-01	6.31E-01	NA	5.47E-01	5.48E-01	$1.41 \mathrm{E}-01$	8.07E-01	$2.92 \mathrm{E}-01$
$5.40 \mathrm{E}-01$	6.10E-01	7.92E-01	NA	$2.91 \mathrm{E}-01$	3.86E-01	6.91E-01	2.80E-01	NA	$1.87 \mathrm{E}-01$	7.12E-01	$8.55 \mathrm{E}-01$	$2.28 \mathrm{E}-01$	6.24E-01	$1.79 \mathrm{E}-01$	NA	5.26E-01	$9.53 \mathrm{E}-01$	9.52E-01	2.18E-01	$1.21 \mathrm{E}-01$
$4.22 \mathrm{E}-01$	9.26E-02	$1.88 \mathrm{E}-01$	1.08E-01	$3.36 \mathrm{E}-01$	$1.40 \mathrm{E}-01$	1.29E-01	$2.21 \mathrm{E}-01$	NA	2.93E-01	7.68E-01	$1.47 \mathrm{E}-01$	6.07E-01	5.81E-01	$1.42 \mathrm{E}-01$	NA	7.55E-01	$2.09 \mathrm{E}-01$	$1.74 \mathrm{E}-01$	7.77E-01	8.37E-01
8.18E-01	5.31E-01	$9.85 \mathrm{E}-01$	NA	$1.43 \mathrm{E}-01$	1.10E-01	1.69E-01	6.49E-01	5.17E-01	$8.35 \mathrm{E}-01$	9.26E-01	2.59E-01	$2.94 \mathrm{E}-01$	8.78E-01	$3.24 \mathrm{E}-01$	NA	6.85E-01	8.61E-02	$2.14 \mathrm{E}-01$	$2.72 \mathrm{E}-01$	7.13E-01
$9.59 \mathrm{E}-02$	8.08E-02	$4.48 \mathrm{E}-01$	NA	$8.77 \mathrm{E}-01$	5.11E-04	$1.82 \mathrm{E}-01$	8.64E-02	$2.75 \mathrm{E}-01$	$4.90 \mathrm{E}-01$	6.87E-01	NA	$3.14 \mathrm{E}-01$	$3.22 \mathrm{E}-01$	$9.95 \mathrm{E}-01$	NA	9.30E-01	6.51E-01	4.55E-01	2.87E-01	5.68E-01
3.07E-01	5.07E-01	$4.59 \mathrm{E}-01$	5.91E-01	$6.54 \mathrm{E}-01$	$9.83 \mathrm{E}-01$	$1.86 \mathrm{E}-02$	8.24E-01	$6.35 \mathrm{E}-01$	$5.73 \mathrm{E}-01$	1.97E-01	$3.18 \mathrm{E}-01$	9.23E-01	7.81E-01	7.98E-01	NA	$9.11 \mathrm{E}-02$	$9.69 \mathrm{E}-01$	9.57E-01	4.79E-03	$9.94 \mathrm{E}-01$

46E-01	8.63E-01	3.53E-01	6.01E-01	7.58E-02	6.09E-01	$7.40 \mathrm{E}-01$	1.28E-01	NA	8.22E-01	$5.89 \mathrm{E}-01$	$1.33 \mathrm{E}-01$	NA	$6.96 \mathrm{E}-01$	3.95E-01	NA	$6.39 \mathrm{E}-01$	$9.84 \mathrm{E}-01$	5.29E-01	$9.36 \mathrm{E}-01$	8E-01
$3.54 \mathrm{E}-01$	$1.58 \mathrm{E}-01$	9.56E-01	NA	8.67E-01	3.66E-02	$2.75 \mathrm{E}-01$	6.17E-01	NA	5.33E-01	5.90E-01	6.05E-01	7.55E-01	$9.71 \mathrm{E}-02$	6.27E-01	NA	7.57E-01	$4.99 \mathrm{E}-01$	$6.83 \mathrm{E}-01$	6.85E-01	7.51E-01
$4.88 \mathrm{E}-01$	$2.39 \mathrm{E}-01$	8.08E-01	7.54E-02	5.67E-01	4.02E-04	20E-01	8.51E-01	NA	$9.66 \mathrm{E}-01$	6.66E-02	9.51E-01	7.56E-01	$8.65 \mathrm{E}-01$	9.70E-02	$9.35 \mathrm{E}-02$	6.73E-01	3.82E-01	$2.04 \mathrm{E}-01$	$5.38 \mathrm{E}-01$	6.66E-01
$5.05 \mathrm{E}-01$	$1.65 \mathrm{E}-01$	8.05E-02	$2.71 \mathrm{E}-01$	3.77E-01	.72E-01	$3.53 \mathrm{E}-01$	7.89E-01	NA	6.46E-01	3.97E-01	NA	NA	$6.88 \mathrm{E}-01$	5.26E-01	NA	E-02	7.60E-01	$4.94 \mathrm{E}-01$	$4.06 \mathrm{E}-02$.85E-01
$6.86 \mathrm{E}-01$	$2.86 \mathrm{E}-01$	8.19E-01	NA	$8.41 \mathrm{E}-01$	1.17E-01	$2.41 \mathrm{E}-01$	3.13E-01	NA	$2.11 \mathrm{E}-01$	4.62E-01	$2.36 \mathrm{E}-0$	$3.30 \mathrm{E}-01$	3.37E-01	3.31E-01	N	$9.88 \mathrm{E}-02$	$1.14 \mathrm{E}-01$	$8.58 \mathrm{E}-01$	9.29E-01	$5.03 \mathrm{E}-01$
$1.29 \mathrm{E}-01$	$1.94 \mathrm{E}-01$	4.13E-01	NA	$4.19 \mathrm{E}-01$	5.90E-01	6.87E-01	8.64E-01	7.82E-01	9.85E-01	7.00E-02	7.94E-02	$8.65 \mathrm{E}-0$	$2.56 \mathrm{E}-02$	4.12E-02	NA	$4.58 \mathrm{E}-01$	$5.27 \mathrm{E}-01$	$3.59 \mathrm{E}-01$	9.77E-01	$5.82 \mathrm{E}-01$
$5.57 \mathrm{E}-01$	4.26E-02	6.82E-01	$2.05 \mathrm{E}-01$	$2.08 \mathrm{E}-01$	$5.49 \mathrm{E}-01$	8.83E-01	$6.41 \mathrm{E}-01$	NA	8.90E-01	NA	NA	NA	$2.97 \mathrm{E}-01$	3.10E-01	NA	$6.99 \mathrm{E}-01$	$6.04 \mathrm{E}-01$	$9.39 \mathrm{E}-01$	$6.55 \mathrm{E}-01$	8.72E-01

POLR2L	PSMD13	PTDSS2	RASSF7	RIC8A	RN7SL838P	RNH1	RPLP2	SCGB1C1	SCT	SIGIRR	SIRT3	SLC25A22	SNORA52	TALDO1	TMEM80	TSPAN4
9.39E-01	1.11E-01	8.58E-01	5.91E-02	3.65E-03	NA	3.54E-03	5.56E-01	NA	NA	4.31E-03	6.76E-01	$1.51 \mathrm{E}-01$	6.41E-01	1.52E-01	9.38E-01	6.75E-01
6.86E-01	3.25E-01	3.49E-01	6.99E-01	1.80E-02	NA	9.50E-01	$1.83 \mathrm{E}-01$	NA	NA	$1.28 \mathrm{E}-01$	4.07E-01	$3.33 \mathrm{E}-01$	$1.96 \mathrm{E}-01$	$1.44 \mathrm{E}-02$	$9.54 \mathrm{E}-01$	6.39E-01
$3.83 \mathrm{E}-01$	6.61E-01	5.78E-01	2.61E-02	$1.28 \mathrm{E}-02$	NA	$1.48 \mathrm{E}-01$	$5.94 \mathrm{E}-01$	NA	NA	6.77E-01	2.04E-01	$2.63 \mathrm{E}-02$	$6.29 \mathrm{E}-01$	7.69E-01	8.58E-01	3.61E-01
$7.05 \mathrm{E}-01$	$2.81 \mathrm{E}-01$	7.34E-01	3.30E-03	9.00E-01	NA	$5.34 \mathrm{E}-01$	8.13E-01	NA	NA	$1.20 \mathrm{E}-01$	6.09E-01	$1.14 \mathrm{E}-01$	$1.98 \mathrm{E}-01$	8.95E-01	8.93E-01	2.13E-01
$9.59 \mathrm{E}-01$	3.05E-01	7.84E-01	6.21E-01	7.11E-02	NA	5.57E-02	5.77E-01	NA	NA	3.80E-01	3.36E-01	8.68E-01	$1.51 \mathrm{E}-01$	$1.74 \mathrm{E}-01$	$9.84 \mathrm{E}-01$	3.25E-02
$7.89 \mathrm{E}-01$	3.17E-02	2.73E-02	9.90E-02	6.23E-03	NA	8.84E-01	$9.76 \mathrm{E}-01$	NA	NA	$5.63 \mathrm{E}-04$	6.49E-01	8.15E-01	$1.28 \mathrm{E}-01$	4.21E-01	$1.87 \mathrm{E}-01$	9.07E-01
$6.03 \mathrm{E}-01$	5.33E-02	1.13E-01	4.31E-01	1.09E-03	NA	9.39E-02	$2.41 \mathrm{E}-01$	NA	NA	9.36E-01	7.84E-01	$2.44 \mathrm{E}-02$	$3.92 \mathrm{E}-01$	8.62E-01	2.82E-01	97E-02
$9.53 \mathrm{E}-01$	1.36E-05	4.97E-02	4.24E-01	8.88E-03	NA	2.00E-02	$4.42 \mathrm{E}-01$	NA	7.66E-01	3.63E-02	9.61E-01	3.69E-01	9.92E-01	$4.80 \mathrm{E}-01$	$4.93 \mathrm{E}-01$	-02
8.06E-01	2.52E-02	5.02E-01	6.15E-01	2.16E-02	NA	2.80E-01	$1.83 \mathrm{E}-01$	NA	8.03E-01	4.16E-01	3.62E-01	$5.52 \mathrm{E}-01$	$8.25 \mathrm{E}-01$	8.69E-01	9.18E-01	4.21E-02
$1.47 \mathrm{E}-01$	$1.75 \mathrm{E}-01$	2.25E-01	7.88E-01	1.62E-02	NA	5.96E-01	$5.53 \mathrm{E}-01$	1.91E-01	4.08E-01	5.81E-01	$1.00 \mathrm{E}+00$	7.93E-01	$7.41 \mathrm{E}-01$	4.79E-01	4.11E-01	7.03E-01
$1.00 \mathrm{E}+00$	5.16E-03	9.62E-01	3.19E-01	$1.62 \mathrm{E}-01$	NA	9.96E-01	$9.29 \mathrm{E}-01$	NA	NA	$3.84 \mathrm{E}-01$	7.82E-01	$7.03 \mathrm{E}-01$	$3.98 \mathrm{E}-01$	8.65E-01	$1.33 \mathrm{E}-01$	$2.51 \mathrm{E}-01$
6.91E-01	2.32E-02	1.23E-01	9.68E-01	5.08E-01	NA	$6.64 \mathrm{E}-01$	$2.19 \mathrm{E}-01$	NA	NA	$1.60 \mathrm{E}-01$	5.19E-01	3.62E-01	5.76E-01	$1.53 \mathrm{E}-01$	4.53E-01	$1.97 \mathrm{E}-01$
$6.13 \mathrm{E}-01$	5.10E-03	6.57E-01	8.80E-01	8.03E-03	NA	$8.53 \mathrm{E}-01$	$3.84 \mathrm{E}-01$	NA	2.96E-01	8.68E-02	7.52E-02	$8.53 \mathrm{E}-01$	6.25E-01	9.53E-01	6.56E-01	5.66E-01
$9.22 \mathrm{E}-01$	7.06E-03	$4.75 \mathrm{E}-01$	$4.35 \mathrm{E}-01$	3.19E-01	NA	$2.53 \mathrm{E}-01$	$3.45 \mathrm{E}-01$	NA	7.27E-01	2.62E-01	3.46E-01	$2.33 \mathrm{E}-01$	$1.34 \mathrm{E}-01$	5.28E-01	4.97E-01	5.45E-01
$4.89 \mathrm{E}-01$	5.78E-05	9.27E-01	9.47E-01	1.92E-04	5.46E-01	$3.98 \mathrm{E}-01$	8.93E-01	NA	NA	$1.46 \mathrm{E}-01$	6.65E-01	5.70E-01	$1.06 \mathrm{E}-01$	2.26E-01	$4.78 \mathrm{E}-01$	18E-01
$1.78 \mathrm{E}-01$	4.22E-03	2.15E-01	7.81E-01	4.13E-01	NA	$1.01 \mathrm{E}-01$	$4.75 \mathrm{E}-02$	NA	NA	2.20E-01	3.05E-01	$4.45 \mathrm{E}-01$	2.97E-01	7.87E-01	2.10E-01	2.15E-02
$4.59 \mathrm{E}-01$	1.35E-01	4.15E-01	7.23E-01	$4.78 \mathrm{E}-02$	NA	7.84E-01	$7.32 \mathrm{E}-01$	NA	8.09E-01	3.07E-01	2.97E-02	$2.65 \mathrm{E}-01$	$4.98 \mathrm{E}-01$	2.78E-01	7.65E-02	4.57E-01
5.93E-01	9.37E-02	2.08E-01	7.40E-01	2.51E-01	NA	4.80E-01	$5.32 \mathrm{E}-01$	NA	NA	$9.53 \mathrm{E}-01$	9.25E-01	8.37E-01	$8.71 \mathrm{E}-01$	8.07E-01	9.65E-01	6.80E-01
7.13E-01	7.31E-01	1.17E-01	3.38E-01	2.49E-01	3.89E-01	9.93E-01	7.01E-01	NA	NA	6.63E-01	3.82E-01	9.13E-01	$9.83 \mathrm{E}-01$	2.73E-01	6.00E-01	8.91E-01
$2.31 \mathrm{E}-01$	2.53E-01	5.75E-01	2.32E-02	5.81E-01	NA	$8.69 \mathrm{E}-01$	$3.61 \mathrm{E}-01$	NA	$1.34 \mathrm{E}-01$	7.94E-01	4.84E-01	8.65E-01	$1.06 \mathrm{E}-01$	$1.36 \mathrm{E}-01$	6.46E-01	9.67E-01
$3.56 \mathrm{E}-01$	6.04E-02	2.81E-01	2.20E-02	$3.74 \mathrm{E}-01$	NA	4.08E-01	$3.61 \mathrm{E}-01$	NA	NA	7.85E-02	9.81E-01	$8.31 \mathrm{E}-01$	$7.71 \mathrm{E}-01$	$1.61 \mathrm{E}-01$	4.81E-01	6.87E-01
$1.95 \mathrm{E}-02$	5.83E-01	4.27E-01	5.81E-02	3.05E-04	NA	$8.14 \mathrm{E}-01$	$1.82 \mathrm{E}-01$	NA	5.97E-01	5.81E-01	4.19E-01	$8.02 \mathrm{E}-01$	$7.68 \mathrm{E}-01$	9.65E-01	$9.54 \mathrm{E}-01$	8.58E-02
$3.82 \mathrm{E}-01$	6.31E-01	7.69E-01	9.28E-01	3.25E-01	NA	$2.42 \mathrm{E}-02$	3.61E-01	NA	$1.15 \mathrm{E}-01$	9.32E-01	9.08E-03	4.16E-01	$3.17 \mathrm{E}-02$	7.39E-01	3.32E-01	3.89E-01
$7.58 \mathrm{E}-01$	8.28E-02	8.30E-01	1.28E-01	2.62E-01	NA	$9.76 \mathrm{E}-01$	7.50E-01	NA	4.15E-01	1.15E-01	8.26E-01	5.67E-01	$2.99 \mathrm{E}-01$	6.04E-02	3.53E-01	5.29E-01
$5.03 \mathrm{E}-01$	$1.25 \mathrm{E}-01$	$1.84 \mathrm{E}-01$	8.24E-01	5.72E-02	NA	$9.65 \mathrm{E}-01$	$1.75 \mathrm{E}-01$	NA	7.85E-01	8.17E-01	4.00E-01	$3.47 \mathrm{E}-01$	6.27E-01	3.06E-01	2.87E-01	6.44E-01
7.60E-01	3.93E-01	6.70E-01	4.56E-01	4.14E-02	NA	$5.34 \mathrm{E}-01$	$4.77 \mathrm{E}-01$	NA	$3.14 \mathrm{E}-01$	$1.22 \mathrm{E}-01$	9.43E-01	$9.16 \mathrm{E}-01$	$8.12 \mathrm{E}-02$	8.80E-01	3.87E-01	$5.64 \mathrm{E}-01$
$6.10 \mathrm{E}-01$	$1.87 \mathrm{E}-01$	4.49E-02	4.54E-02	5.58E-03	NA	6.63E-01	$2.65 \mathrm{E}-01$	NA	6.86E-01	3.25E-01	$1.55 \mathrm{E}-01$	$5.75 \mathrm{E}-01$	$5.52 \mathrm{E}-01$	5.15E-02	$2.66 \mathrm{E}-01$	8.67E-01
$2.22 \mathrm{E}-01$	6.56E-01	6.81E-02	4.88E-01	9.40E-02	NA	$4.74 \mathrm{E}-01$	3.53E-01	NA	NA	$1.92 \mathrm{E}-01$	8.91E-01	$8.44 \mathrm{E}-01$	$1.37 \mathrm{E}-01$	4.12E-01	8.35E-01	9.43E-01
$1.48 \mathrm{E}-01$	5.08E-01	1.23E-01	3.81E-01	1.35E-01	NA	$8.31 \mathrm{E}-01$	$5.44 \mathrm{E}-01$	NA	$2.62 \mathrm{E}-01$	9.75E-01	$1.69 \mathrm{E}-01$	6.78E-01	$5.38 \mathrm{E}-01$	7.77E-01	4.03E-01	6.38E-01
$5.22 \mathrm{E}-01$	6.29E-01	4.33E-01	1.69E-01	$1.78 \mathrm{E}-01$	$4.66 \mathrm{E}-02$	$4.15 \mathrm{E}-01$	$1.39 \mathrm{E}-01$	NA	4.39E-02	6.31E-02	3.25E-01	$2.88 \mathrm{E}-02$	$6.97 \mathrm{E}-01$	5.86E-01	5.22E-01	6.29E-01
7.19E-01	8.28E-01	2.11E-01	6.91E-01	5.18E-01	NA	$4.38 \mathrm{E}-01$	$7.40 \mathrm{E}-01$	NA	NA	7.70E-01	4.20E-01	5.59E-01	$1.20 \mathrm{E}-02$	2.16E-01	$1.82 \mathrm{E}-01$	$3.76 \mathrm{E}-03$
$2.17 \mathrm{E}-01$	6.25E-03	6.70E-02	7.00E-01	2.30E-01	NA	$5.71 \mathrm{E}-01$	$1.43 \mathrm{E}-01$	NA	8.46E-01	$2.31 \mathrm{E}-01$	5.62E-01	$9.74 \mathrm{E}-01$	8.95E-01	5.36E-01	$9.95 \mathrm{E}-01$	8.90E-01
$5.67 \mathrm{E}-01$	4.31E-01	1.24E-02	4.75E-02	8.86E-02	3.55E-01	$2.41 \mathrm{E}-01$	$6.53 \mathrm{E}-01$	NA	NA	3.29E-02	3.90E-01	$1.89 \mathrm{E}-02$	3.40E-02	5.81E-01	6.83E-01	$3.49 \mathrm{E}-01$
$7.75 \mathrm{E}-01$	7.11E-02	9.79E-01	6.99E-01	5.39E-02	NA	7.46E-01	$6.32 \mathrm{E}-01$	NA	9.13E-01	1.89E-01	6.24E-01	2.56E-01	4.88E-01	7.19E-01	8.22E-01	7.24E-01
$8.65 \mathrm{E}-01$	6.22E-03	8.16E-01	$3.85 \mathrm{E}-01$	9.59E-02	NA	4.00E-01	$9.95 \mathrm{E}-01$	5.91E-03	NA	$1.54 \mathrm{E}-04$	4.91E-02	6.07E-01	$9.50 \mathrm{E}-01$	5.00E-01	$1.67 \mathrm{E}-01$	7.43E-01
$1.95 \mathrm{E}-01$	$2.95 \mathrm{E}-01$	9.26E-01	7.76E-01	6.44E-02	NA	6.66E-02	$9.88 \mathrm{E}-01$	NA	1.80E-01	$1.93 \mathrm{E}-01$	5.95E-01	$2.84 \mathrm{E}-01$	$9.97 \mathrm{E}-01$	8.06E-01	$1.31 \mathrm{E}-01$	$1.95 \mathrm{E}-01$
7.04E-01	2.41E-01	5.55E-01	8.64E-01	2.23E-01	$1.07 \mathrm{E}-01$	$3.89 \mathrm{E}-01$	$5.21 \mathrm{E}-01$	NA	$1.24 \mathrm{E}-02$	4.38E-01	$1.39 \mathrm{E}-01$	$9.86 \mathrm{E}-01$	$2.12 \mathrm{E}-01$	3.01E-01	7.85E-01	1.07E-01
5.37E-01	7.85E-03	6.52E-01	9.64E-01	6.34E-01	NA	$4.97 \mathrm{E}-01$	$2.84 \mathrm{E}-01$	NA	NA	2.12E-01	2.83E-01	$6.41 \mathrm{E}-01$	$1.94 \mathrm{E}-01$	$1.67 \mathrm{E}-01$	9.44E-01	2.15E-02
$2.67 \mathrm{E}-02$	$3.40 \mathrm{E}-03$	7.79E-01	8.72E-01	2.22E-01	NA	7.37E-02	$2.67 \mathrm{E}-01$	NA	NA	$1.01 \mathrm{E}-01$	7.69E-01	$8.45 \mathrm{E}-01$	9.29E-01	2.51E-02	8.07E-01	8.34E-01
$1.79 \mathrm{E}-01$	4.13E-01	8.33E-01	$1.28 \mathrm{E}-01$	7.34E-01	$9.06 \mathrm{E}-01$	7.23E-01	$1.04 \mathrm{E}-02$	NA	1.92E-01	5.03E-01	6.73E-01	$9.03 \mathrm{E}-01$	4.80E-01	6.82E-01	$1.18 \mathrm{E}-01$	4.80E-01

01	2.40E-01	1.11E-01	2.88E-01	3.90E-02	.89E-01	1.10E-01	$2.54 \mathrm{E}-01$	$1.52 \mathrm{E}-0$	5.83E-01	3.40E-01	$2.97 \mathrm{E}-01$	6.51E-01	$9.03 \mathrm{E}-01$	$4.19 \mathrm{E}-01$	7.30E-01	7.36E-01
4.17E-01	$3.72 \mathrm{E}-03$	4.67E-01	7.96E-01	2.42E-01	NA	5.36E-01	9.06E-01	NA	$7.29 \mathrm{E}-01$	9.61E-01	$2.64 \mathrm{E}-01$	8.24E-01	$2.26 \mathrm{E}-02$	$5.54 \mathrm{E}-01$	$8.74 \mathrm{E}-01$	8.92E-01
5.07E-01	9.82E-01	2.26E-01	$1.73 \mathrm{E}-01$	2.65E-01	7.06E-01	7.58E-01	6.58E-01	7.91E-01	$9.89 \mathrm{E}-01$	9.85E-01	$1.52 \mathrm{E}-02$	$2.89 \mathrm{E}-01$	5.56E-01	$4.29 \mathrm{E}-02$	8.81E-01	9.57E-01
9.98E-01	5.81E-01	$1.59 \mathrm{E}-02$	$2.79 \mathrm{E}-02$	8.56E-01	$4.88 \mathrm{E}-0$	$8.49 \mathrm{E}-01$	$2.59 \mathrm{E}-01$	NA	$5.79 \mathrm{E}-01$	3.63E-01	7.37E-01	8.84E-01	2.53E-01	3.58E-01	4.40E-01	$2.76 \mathrm{E}-0$
$8.69 \mathrm{E}-02$	1.20E-01	4.26E-01	3.82E-01	7.32E-01	NA	6.18E-01	2.03E-01	NA	$9.91 \mathrm{E}-01$	7.86E-01	5.20E-01	$4.88 \mathrm{E}-01$	2.19E-01	1.33E-01	$1.01 \mathrm{E}-01$	9.59E-01
$7.88 \mathrm{E}-01$	9.16E-01	$2.81 \mathrm{E}-01$	$3.46 \mathrm{E}-01$	5.60E-01	NA	$8.72 \mathrm{E}-0$	9.23E-02	NA	$9.36 \mathrm{E}-0$	6.26E-0	5.28E-01	$9.79 \mathrm{E}-01$	$9.71 \mathrm{E}-01$	6.35E-01	8.16E-01	$1.40 \mathrm{E}-01$
$5.30 \mathrm{E}-01$	7.64E-01	5.97E-01	7.74E-01	9.50E-01	NA	2.00E-01	$1.20 \mathrm{E}-01$	$3.74 \mathrm{E}-01$	NA	$1.00 \mathrm{E}-02$	$8.71 \mathrm{E}-01$	$9.46 \mathrm{E}-01$	$9.90 \mathrm{E}-02$	$6.41 \mathrm{E}-01$	4.60E-01	9.07E-01

										Strongest associated cis-eQ1			SMR analysis			
Tissue	Gene	SNP	SNP bp	A1	A2	Freq (A1)	$b_{\text {GWAS }}$	SE ${ }_{\text {GWAs }}$	$\boldsymbol{P}_{\text {gwas }}$	$b_{\text {eatl }}$	$\mathrm{SE}_{\text {eatl }}$	$P_{\text {eatl }}$	$b_{\text {SMR }}$	SE ${ }_{\text {SMR }}$	$P_{\text {SMR }}$	$\boldsymbol{P}_{\text {HEIII }}$
Muscle Skeletal	BET1L	rs12226698	213740	T	C	0.041	-0.424	0.109	$1.02 \mathrm{E}-04$	0.727	0.082	5.52E-19	-0.584	0.164	3.70E-04	$1.59 \mathrm{E}-05$
Adipose Subcutaneous	SIRT3	rs4758633	219538	G	A	0.524	-0.148	0.041	2.68E-04	0.393	0.037	$1.14 \mathrm{E}-25$	-0.377	0.109	$5.78 \mathrm{E}-04$	1.60E-02
Esophagus Mucosa	SIRT3	rs4758633	219538	G	A	0.524	-0.148	0.041	2.68E-04	0.318	0.036	4.62E-19	-0.464	0.138	7.42E-04	$1.60 \mathrm{E}-02$
Skin Sun Exposed Lower leg	SIRT3	rs4758633	219538	G	A	0.524	-0.148	0.041	2.68E-04	0.266	0.036	8.53E-14	-0.557	0.170	$1.06 \mathrm{E}-03$	4.04E-02
Artery Aorta	BET1L	rs79902640	202835	G	A	0.041	-0.428	0.110	1.01E-04	0.703	0.119	3.49E-09	-0.608	0.187	$1.16 \mathrm{E}-03$	8.34E-01
Lung	SIRT3	rs10902106	220243	C	T	0.537	-0.143	0.040	3.91E-04	0.191	0.025	9.29E-15	-0.753	0.233	$1.26 \mathrm{E}-03$	5.47E-02
Cells Transformed fibroblasts	SIRT3	rs4758633	219538	G	A	0.524	-0.148	0.041	2.68E-04	0.230	0.034	1.27E-11	-0.642	0.200	$1.33 \mathrm{E}-03$	$2.96 \mathrm{E}-02$
Skin Not Sun Exposed Suprapubic	SIRT3	rs4758633	219538	G	A	0.524	-0.148	0.041	2.68E-04	0.267	0.040	2.00E-11	-0.554	0.173	1.37E-03	$2.94 \mathrm{E}-01$
Adipose Visceral Omentum	SIRT3	rs4980325	234451	T	G	0.525	-0.142	0.040	4.39E-04	0.245	0.032	3.53E-14	-0.579	0.182	1.43E-03	1.03E-01
Nerve Tibial	SIRT3	rs4980325	234451	T	G	0.525	-0.142	0.040	4.39E-04	0.267	0.037	8.40E-13	-0.533	0.169	$1.60 \mathrm{E}-03$	$5.80 \mathrm{E}-02$
Heart Atrial Appendage	PSMD13	rs10902106	220243	C	T	0.537	-0.143	0.040	3.91E-04	-0.253	0.042	2.22E-09	0.567	0.186	$2.28 \mathrm{E}-03$	$1.93 \mathrm{E}-01$
Thyroid	SIRT3	rs4758633	219538	G	A	0.524	-0.148	0.041	2.68E-04	0.193	0.035	3.71E-08	-0.767	0.253	2.38E-03	$1.33 \mathrm{E}-01$
Colon Sigmoid	RIC8A	rs4980325	234451	T	G	0.525	-0.142	0.040	4.39E-04	-0.221	0.039	$1.51 \mathrm{E}-08$	0.642	0.215	2.82E-03	$1.32 \mathrm{E}-01$
Nerve Tibial	LRRC56	rs72841204	519077	T	C	0.180	0.133	0.054	1.41E-02	-0.752	0.066	2.99E-30	-0.176	0.073	$1.63 \mathrm{E}-02$	$5.49 \mathrm{E}-01$
Testis	RNH1	rs176939	496073	G	C	0.211	0.135	0.052	9.08E-03	-0.385	0.066	4.91E-09	-0.351	0.147	$1.72 \mathrm{E}-02$	5.74E-01
Skin Not Sun Exposed Suprapubic	RNH1	rs57195489	522022	T	A	0.184	0.132	0.054	1.42E-02	0.238	0.028	1.31E-17	0.554	0.235	$1.85 \mathrm{E}-02$	$8.28 \mathrm{E}-01$
Adipose Subcutaneous	LRRC56	rs55983230	521954	A	T	0.185	0.133	0.054	1.27E-02	-0.517	0.078	2.49E-11	-0.258	0.111	1.96E-02	$5.47 \mathrm{E}-01$
Adipose Visceral Omentum	LRRC56	rs55983230	521954	A	T	0.185	0.133	0.054	1.27E-02	-0.476	0.074	1.12E-10	-0.280	0.121	2.01E-02	$4.55 \mathrm{E}-01$
Skin Sun Exposed Lower leg	RNH1	rs55983230	521954	A	T	0.185	0.133	0.054	1.27E-02	0.153	0.025	$1.93 \mathrm{E}-09$	0.875	0.380	$2.14 \mathrm{E}-02$	6.96E-01
Esophagus Gastroesophageal Junction	LRRC56	rs55983230	521954	A	T	0.185	0.133	0.054	1.27E-02	-0.504	0.088	8.90E-09	-0.265	0.116	$2.23 \mathrm{E}-02$	3.87E-01
Adrenal Gland	RIC8A	rs760058	279214	C	G	0.292	-0.116	0.048	1.65E-02	-0.343	0.057	$1.95 \mathrm{E}-09$	0.338	0.152	2.59E-02	6.95E-03
Artery Tibial	AP2A2	rs12798548	1021099	T	C	0.087	0.268	0.113	$1.79 \mathrm{E}-02$	-0.334	0.056	2.74E-09	-0.801	0.364	$2.78 \mathrm{E}-02$	$3.59 \mathrm{E}-01$
Artery Aorta	RIC8A	rs56186913	207698	T	C	0.583	0.094	0.042	2.42E-02	-0.337	0.038	6.33E-19	-0.279	0.128	$2.89 \mathrm{E}-02$	$1.21 \mathrm{E}-04$
Esophagus Mucosa	PTDSS2	rs61876346	499583	A	G	0.233	0.118	0.051	2.20E-02	-0.270	0.040	$1.44 \mathrm{E}-11$	-0.436	0.201	3.01E-02	3.17E-01
Heart Atrial Appendage	SIRT3	rs7934919	224832	C	T	0.205	0.108	0.050	3.06E-02	0.796	0.058	1.50E-43	0.136	0.063	$3.26 \mathrm{E}-02$	$1.92 \mathrm{E}-01$
Cells Transformed fibroblasts	BET1L	rs3830001	247200	T	G	0.580	-0.091	0.041	2.68E-02	0.301	0.038	2.16E-15	-0.303	0.142	3.30E-02	9.97E-02
Esophagus Muscularis	SIRT3	rs34046183	231087	T	C	0.205	0.107	0.050	3.16E-02	0.899	0.062	6.13E-47	0.119	0.056	3.35E-02	$1.21 \mathrm{E}-02$
Esophagus Muscularis	RIC8A	rs35993711	220223	A	G	0.205	0.107	0.050	3.25E-02	0.618	0.042	2.75E-49	0.173	0.082	$3.44 \mathrm{E}-02$	4.08E-01
Heart Atrial Appendage	RIC8A	rs34046183	231087	T	C	0.205	0.107	0.050	3.16E-02	0.673	0.066	3.13E-24	0.159	0.076	$3.55 \mathrm{E}-02$	4.65E-01
Esophagus Muscularis	PSMD13	rs6598066	243185	G	A	0.731	-0.101	0.046	3.03E-02	-0.293	0.034	9.57E-18	0.344	0.164	3.57E-02	$7.49 \mathrm{E}-02$
Heart Left Ventricle	SIRT3	rs7930599	228834	G	C	0.205	0.107	0.050	3.13E-02	0.343	0.038	7.21E-20	0.313	0.149	3.61E-02	$1.38 \mathrm{E}-01$
Skin Sun Exposed Lower leg	PSMD13	rs6598066	243185	G	A	0.731	-0.101	0.046	3.03E-02	-0.225	0.027	1.32E-16	0.448	0.214	$3.61 \mathrm{E}-02$	2.16E-02
Esophagus Gastroesophageal Junction	RIC8A	rs34046183	231087	T	C	0.205	0.107	0.050	3.16E-02	0.484	0.056	5.20E-18	0.222	0.106	$3.70 \mathrm{E}-02$	4.51E-01
Esophagus Gastroesophageal Junction	SIRT3	rs34046183	231087	T	C	0.205	0.107	0.050	3.16E-02	0.650	0.077	2.43E-17	0.165	0.079	$3.72 \mathrm{E}-02$	4.09E-03
Heart Left Ventricle	RIC8A	rs12805487	229376	T	C	0.205	0.107	0.050	3.17E-02	0.379	0.046	7.66E-17	0.283	0.136	$3.75 \mathrm{E}-02$	5.75E-01
Colon Sigmoid	LRRC56	rs67092853	510980	G	A	0.184	0.118	0.053	2.62E-02	-0.530	0.093	1.12E-08	-0.223	0.108	3.83E-02	$3.46 \mathrm{E}-01$
Brain Caudate basal ganglia	SIRT3	rs3216	214421	C	G	0.205	0.109	0.050	3.05E-02	-0.468	0.068	4.57E-12	-0.232	0.112	$3.89 \mathrm{E}-02$	$4.82 \mathrm{E}-03$
Brain Nucleus accumbens basal ganglia	SIRT3	rs7930599	228834	G	C	0.205	0.107	0.050	3.13E-02	-0.400	0.058	3.91E-12	-0.269	0.131	3.97E-02	$4.96 \mathrm{E}-03$
Adipose Visceral Omentum	PSMD13	rs7124022	244964	A	G	0.738	-0.100	0.047	3.37E-02	-0.326	0.041	9.12E-16	0.305	0.149	4.00E-02	4.30E-01
Brain Cerebellar Hemisphere	PSMD13	rs1128322	244197	C	T	0.739	-0.099	0.047	3.40E-02	-0.477	0.059	4.52E-16	0.207	0.101	4.03E-02	4.33E-02

Testis	PSMD13	rs6598063	243672	A	G	0.731	-0.097	0.046	3.71E-02	-0.573	0.051	5.65E-29	0.169	0.082	$4.04 \mathrm{E}-02$	$1.14 \mathrm{E}-02$
Artery Tibial	SIRT3	rs6598071	219800	C	T	0.729	-0.097	0.046	3.63E-02	0.410	0.046	2.50E-19	-0.236	0.116	4.14E-02	1.23E-01
Adipose Subcutaneous	PSMD13	rs6598070	225466	C	T	0.730	-0.099	0.046	3.23E-02	-0.249	0.038	3.92E-11	0.398	0.195	4.17E-02	9.91E-02
Pancreas	PSMD13	rs7116130	244129	T	C	0.731	-0.097	0.046	3.58E-02	-0.436	0.058	5.04E-14	0.223	0.110	4.32E-02	2.38E-01
Stomach	PSMD13	rs6598071	219800	C	T	0.729	-0.097	0.046	3.63E-02	-0.305	0.041	6.85E-14	0.317	0.157	$4.38 \mathrm{E}-02$	9.83E-02
Esophagus Mucosa	RNH1	rs11246164	488877	T	C	0.185	0.110	0.053	3.80E-02	0.310	0.037	3.59E-17	0.355	0.176	$4.40 \mathrm{E}-02$	$1.36 \mathrm{E}-01$
Artery Aorta	SIRT3	rs6598059	244961	C	G	0.739	-0.099	0.047	$3.47 \mathrm{E}-02$	0.399	0.060	$2.12 \mathrm{E}-11$	-0.248	0.123	$4.40 \mathrm{E}-02$	4.32E-01
Lung	PSMD13	rs1533825	214163	A	G	0.269	0.095	0.046	4.05E-02	0.274	0.027	9.92E-24	0.346	0.172	$4.47 \mathrm{E}-02$	3.40E-02
Brain Spinal cord cervical c-1	PSMD13	rs6598071	219800	C	T	0.729	-0.097	0.046	3.63E-02	-0.693	0.100	4.03E-12	0.140	0.070	4.50E-02	3.07E-02
Colon Transverse	SIRT3	rs7481993	237875	T	C	0.731	-0.095	0.046	4.08E-02	0.390	0.041	9.39E-22	-0.244	0.122	4.54E-02	9.50E-02
Whole Blood	RIC8A	rs1533825	214163	A	G	0.269	0.095	0.046	4.05E-02	0.234	0.026	1.48E-19	0.405	0.203	4.57E-02	4.31E-02
Skin Sun Exposed Lower leg	PTDSS2	rs72851107	450987	C	G	0.185	0.111	0.054	3.92E-02	-0.284	0.038	4.84E-14	-0.391	0.196	4.67E-02	1.29E-01
Liver	PSMD13	rs7124022	244964	A	G	0.738	-0.100	0.047	3.37E-02	-0.356	0.063	$1.77 \mathrm{E}-08$	0.280	0.141	4.69E-02	$1.67 \mathrm{E}-01$
Nerve Tibial	RIC8A	rs6421986	221659	G	A	0.729	-0.093	0.046	4.39E-02	-0.416	0.036	8.06E-31	0.223	0.113	4.71E-02	1.01E-02
Brain Nucleus accumbens basal ganglia	PSMD13	rs10400248	247029	T	C	0.730	-0.095	0.047	4.21E-02	-0.751	0.082	3.38E-20	0.126	0.064	4.71E-02	3.53E-01
Brain Cortex	PSMD13	rs10400248	247029	T	C	0.730	-0.095	0.047	4.21E-02	-0.780	0.088	7.01E-19	0.121	0.061	4.75E-02	7.29E-02
Esophagus Mucosa	PSMD13	rs7481993	237875	T	C	0.731	-0.095	0.046	4.08E-02	-0.210	0.027	5.36E-15	0.453	0.229	$4.78 \mathrm{E}-02$	1.21E-01
Pituitary	PSMD13	rs10400248	247029	T	C	0.730	-0.095	0.047	4.21E-02	-0.534	0.064	5.94E-17	0.177	0.090	$4.82 \mathrm{E}-02$	3.70E-02
Esophagus Gastroesophageal Junction	PSMD13	rs7128044	244115	A	G	0.731	-0.097	0.046	$3.71 \mathrm{E}-02$	-0.233	0.040	5.64E-09	0.415	0.212	$4.96 \mathrm{E}-02$	3.02E-01
Lung	LRRC56	rs55768561	450763	G	T	0.185	0.110	0.054	4.14E-02	-0.281	0.039	6.13E-13	-0.391	0.199	$4.98 \mathrm{E}-02$	$1.82 \mathrm{E}-01$
Brain Caudate basal ganglia	PSMD13	rs511744	219089	C	T	0.702	-0.090	0.045	4.55E-02	-0.660	0.068	3.67E-22	0.136	0.069	5.02E-02	3.11E-01
Artery Tibial	PSMD13	rs1045288	237087	G	A	0.732	-0.094	0.046	4.24E-02	-0.187	0.026	6.00E-13	0.504	0.258	5.08E-02	$2.56 \mathrm{E}-02$
Artery Aorta	PSMD13	rs10400248	247029	T	C	0.730	-0.095	0.047	4.21E-02	-0.216	0.031	4.00E-12	0.438	0.224	5.11E-02	3.89E-02
Esophagus Muscularis	LRRC56	rs55768561	450763	G	T	0.185	0.110	0.054	4.14E-02	-0.518	0.077	2.35E-11	-0.212	0.109	5.11E-02	1.51E-01
Whole Blood	PSMD13	rs3829998	230751	G	A	0.730	-0.092	0.046	4.55E-02	-0.211	0.024	3.93E-18	0.439	0.225	5.13E-02	3.24E-02
Esophagus Mucosa	B4GALNT4	rs34084668	362872	A	G	0.284	-0.143	0.071	$4.36 \mathrm{E}-02$	0.397	0.053	$1.18 \mathrm{E}-13$	-0.360	0.185	5.15E-02	2.95E-01
Whole Blood	IFITM1	rs6598043	324630	C	G	0.694	-0.148	0.073	4.38E-02	0.200	0.028	9.41E-13	-0.742	0.382	5.24E-02	7.90E-01
Brain Frontal Cortex BA9	RIC8A	rs7395328	242624	A	T	0.731	-0.095	0.046	4.01E-02	-0.455	0.078	5.95E-09	0.209	0.108	5.29E-02	4.42E-02
Adipose Subcutaneous	RIC8A	rs511744	219089	C	T	0.702	-0.090	0.045	4.55E-02	-0.256	0.034	3.52E-14	0.350	0.181	5.32E-02	7.61E-02
Brain Hippocampus	PSMD13	rs10794304	246456	A	G	0.730	-0.093	0.047	4.58E-02	-0.459	0.062	$1.41 \mathrm{E}-13$	0.203	0.105	5.38E-02	2.84E-01
Cells Transformed fibroblasts	RIC8A	rs3825075	217140	C	T	0.709	-0.091	0.045	4.36E-02	-0.131	0.021	2.54E-10	0.696	0.362	5.45E-02	6.54E-02
Brain Amygdala	PSMD13	rs10400248	247029	T	C	0.730	-0.095	0.047	4.21E-02	-0.541	0.091	3.42E-09	0.175	0.091	5.46E-02	3.29E-01
Brain Substantia nigra	PSMD13	rs6421986	221659	G	A	0.729	-0.093	0.046	4.39E-02	-0.454	0.071	$1.55 \mathrm{E}-10$	0.205	0.106	5.46E-02	5.21E-01
Whole Blood	IFITM2	rs6598043	324630	C	G	0.694	-0.148	0.073	4.38E-02	0.091	0.016	5.02E-09	-1.633	0.857	5.67E-02	$3.49 \mathrm{E}-01$
Thyroid	PSMD13	rs12574034	212262	C	T	0.293	0.086	0.045	5.54E-02	0.318	0.026	1.62E-34	0.272	0.144	5.84E-02	4.63E-02
Nerve Tibial	PSMD13	rs3782120	206089	A	G	0.272	0.089	0.046	5.56E-02	0.396	0.033	1.40E-33	0.224	0.118	5.87E-02	2.44E-02
Heart Atrial Appendage	BET1L	rs3782123	205198	A	C	0.726	0.090	0.045	4.67E-02	0.362	0.062	5.18E-09	0.250	0.133	5.97E-02	3.51E-02
Brain Cortex	RIC8A	rs511744	219089	C	T	0.702	-0.090	0.045	4.55E-02	-0.438	0.079	3.03E-08	0.205	0.109	6.00E-02	1.70E-01
Brain Cerebellar Hemisphere	LRRC56	rs113339519	492034	T	C	0.176	0.108	0.054	4.81E-02	-0.668	0.111	1.52E-09	-0.161	0.086	6.03E-02	1.01E-01
Nerve Tibial	AP2A2	rs67927955	1034755	T	C	0.084	0.224	0.113	4.71E-02	-0.336	0.058	8.17E-09	-0.666	0.355	6.05E-02	4.26E-01
Cells Transformed fibroblasts	LRRC56	rs146730949	435463	T	A	0.184	0.108	0.055	5.15E-02	-0.417	0.062	$1.74 \mathrm{E}-11$	-0.258	0.138	6.14E-02	$1.34 \mathrm{E}-01$
Esophagus Mucosa	BET1L	rs12574034	212262	C	T	0.293	0.086	0.045	5.54E-02	-0.371	0.043	$9.78 \mathrm{E}-18$	-0.233	0.125	6.15E-02	8.24E-03
Brain Frontal Cortex BA9	PSMD13	rs3782120	206089	A	G	0.272	0.089	0.046	$5.56 \mathrm{E}-02$	0.619	0.076	5.77E-16	0.143	0.077	6.25E-02	4.06E-01
Brain Hypothalamus	PSMD13	rs12574034	212262	C	T	0.293	0.086	0.045	5.54E-02	0.488	0.062	3.00E-15	0.177	0.095	6.27E-02	4.26E-01

Skin Not Sun Exposed Suprapubic	PSMD13	rs12574034	212262	C	T	0.293	0.086	0.045	5.54E-02	0.211	0.027	4.00E-15	0.409	0.220	6.27E-02	9.64E-02
Brain Anterior cingulate cortex BA24	PSMD13	rs519592	236811	A	G	0.731	-0.089	0.047	5.64E-02	-0.610	0.072	2.80E-17	0.146	0.079	$6.28 \mathrm{E}-02$	3.34E-01
Breast Mammary Tissue	PSMD13	rs1045454	204228	A	G	0.272	0.090	0.046	5.15E-02	0.188	0.033	2.14E-08	0.481	0.261	$6.58 \mathrm{E}-02$	5.96E-02
Breast Mammary Tissue	RIC8A	rs3782120	206089	A	G	0.272	0.089	0.046	5.56E-02	0.228	0.038	2.37E-09	0.388	0.213	6.83E-02	6.69E-02
Muscle Skeletal	HRAS	rs4963198	551753	A	G	0.642	-0.123	0.068	7.10E-02	0.145	0.023	6.70E-10	-0.852	0.492	8.31E-02	2.05E-01
Testis	BET1L	rs58692051	207410	T	C	0.272	0.082	0.046	7.77E-02	-0.524	0.059	6.06E-19	-0.156	0.090	8.36E-02	$5.53 \mathrm{E}-02$
Colon Transverse	PSMD13	rs6598075	207275	G	C	0.272	0.082	0.046	7.77E-02	0.306	0.041	$1.07 \mathrm{E}-13$	0.267	0.156	8.60E-02	$1.01 \mathrm{E}-01$
Colon Sigmoid	PSMD13	rs6598075	207275	G	C	0.272	0.082	0.046	7.77E-02	0.319	0.046	$2.57 \mathrm{E}-12$	0.257	0.150	$8.71 \mathrm{E}-02$	2.32E-01
Minor Salivary Gland	PSMD13	rs58692051	207410	T	C	0.272	0.082	0.046	7.77E-02	0.382	0.069	$3.33 \mathrm{E}-08$	0.214	0.127	9.29E-02	5.49E-02
Thyroid	LRRC56	rs45453193	536052	C	G	0.218	0.131	0.077	8.95E-02	-0.328	0.046	9.83E-13	-0.401	0.242	$9.85 \mathrm{E}-02$	9.79E-01
Whole Blood	EPS8L2	rs10736901	737969	A	G	0.238	0.129	0.076	9.09E-02	-0.319	0.054	3.29E-09	-0.404	0.249	$1.04 \mathrm{E}-01$	6.12E-01
Artery Tibial	SIGIRR	rs35828848	403545	T	C	0.202	-0.138	0.086	$1.08 \mathrm{E}-01$	-0.689	0.046	$1.14 \mathrm{E}-51$	0.201	0.126	$1.10 \mathrm{E}-01$	$9.83 \mathrm{E}-01$
Testis	HRAS	rs12576769	535026	T	C	0.115	0.155	0.096	$1.06 \mathrm{E}-01$	0.947	0.093	$1.52 \mathrm{E}-24$	0.164	0.103	$1.10 \mathrm{E}-01$	$3.57 \mathrm{E}-01$
Esophagus Muscularis	SIGIRR	rs35828848	403545	T	C	0.202	-0.138	0.086	$1.08 \mathrm{E}-01$	-0.539	0.042	2.85E-37	0.257	0.161	$1.11 \mathrm{E}-01$	9.46E-01
Artery Aorta	SIGIRR	rs35828848	403545	T	C	0.202	-0.138	0.086	$1.08 \mathrm{E}-01$	-0.777	0.062	$1.38 \mathrm{E}-35$	0.178	0.112	1.11E-01	8.34E-01
Nerve Tibial	SIGIRR	rs35828848	403545	T	C	0.202	-0.138	0.086	$1.08 \mathrm{E}-01$	-0.542	0.044	2.40E-35	0.256	0.160	$1.11 \mathrm{E}-01$	7.07E-01
Adipose Subcutaneous	SIGIRR	rs35828848	403545	T	C	0.202	-0.138	0.086	$1.08 \mathrm{E}-01$	-0.467	0.042	5.14E-29	0.296	0.186	$1.12 \mathrm{E}-01$	7.81E-01
Muscle Skeletal	SIGIRR	rs35828848	403545	T	C	0.202	-0.138	0.086	$1.08 \mathrm{E}-01$	-0.479	0.048	7.35E-24	0.289	0.182	$1.12 \mathrm{E}-01$	8.82E-01
Cells Transformed fibroblasts	SIGIRR	rs35828848	403545	T	C	0.202	-0.138	0.086	$1.08 \mathrm{E}-01$	-0.505	0.053	3.32E-21	0.274	0.173	$1.13 \mathrm{E}-01$	$4.29 \mathrm{E}-01$
Adipose Subcutaneous	PKP3	rs35828848	403545	T	C	0.202	-0.138	0.086	$1.08 \mathrm{E}-01$	-0.584	0.068	6.95E-18	0.237	0.150	$1.14 \mathrm{E}-01$	3.61E-01
Adipose Visceral Omentum	SIGIRR	rs35828848	403545	T	C	0.202	-0.138	0.086	$1.08 \mathrm{E}-01$	-0.313	0.036	7.30E-18	0.442	0.280	$1.14 \mathrm{E}-01$	$9.04 \mathrm{E}-01$
Brain Frontal Cortex BA9	LRRC56	rs112687793	537469	C	T	0.117	0.159	0.097	$1.00 \mathrm{E}-01$	-0.694	0.121	8.78E-09	-0.229	0.145	$1.14 \mathrm{E}-01$	5.40E-01
Colon Sigmoid	SIGIRR	rs35828848	403545	T	C	0.202	-0.138	0.086	$1.08 \mathrm{E}-01$	-0.602	0.071	2.04E-17	0.230	0.146	$1.14 \mathrm{E}-01$	9.98E-01
Brain Cortex	SIGIRR	rs35828848	403545	T	C	0.202	-0.138	0.086	$1.08 \mathrm{E}-01$	-0.557	0.067	$1.45 \mathrm{E}-16$	0.249	0.158	$1.15 \mathrm{E}-01$	5.65E-01
Esophagus Gastroesophageal Junction	SIGIRR	rs35828848	403545	T	C	0.202	-0.138	0.086	$1.08 \mathrm{E}-01$	-0.462	0.056	$1.89 \mathrm{E}-16$	0.300	0.190	$1.15 \mathrm{E}-01$	$9.98 \mathrm{E}-01$
Heart Left Ventricle	SIGIRR	rs35828848	403545	T	C	0.202	-0.138	0.086	$1.08 \mathrm{E}-01$	-0.292	0.040	4.29E-13	0.475	0.302	1.17E-01	$6.25 \mathrm{E}-01$
Breast Mammary Tissue	SIGIRR	rs35828848	403545	T	C	0.202	-0.138	0.086	$1.08 \mathrm{E}-01$	-0.314	0.046	8.34E-12	0.441	0.282	$1.18 \mathrm{E}-01$	5.28E-01
Brain Frontal Cortex BA9	SIGIRR	rs35828848	403545	T	C	0.202	-0.138	0.086	$1.08 \mathrm{E}-01$	-0.489	0.072	1.47E-11	0.283	0.181	$1.18 \mathrm{E}-01$	$4.13 \mathrm{E}-01$
Nerve Tibial	PKP3	rs35828848	403545	T	C	0.202	-0.138	0.086	$1.08 \mathrm{E}-01$	-0.512	0.076	$1.47 \mathrm{E}-11$	0.271	0.173	$1.18 \mathrm{E}-01$	7.84E-01
Heart Atrial Appendage	SIGIRR	rs35828848	403545	T	C	0.202	-0.138	0.086	$1.08 \mathrm{E}-01$	-0.328	0.049	3.07E-11	0.422	0.270	$1.18 \mathrm{E}-01$	7.06E-01
Brain Hypothalamus	SIGIRR	rs35828848	403545	T	C	0.202	-0.138	0.086	$1.08 \mathrm{E}-01$	-0.720	0.110	5.20E-11	0.192	0.123	$1.18 \mathrm{E}-01$	8.22E-01
Brain Caudate basal ganglia	SIGIRR	rs35828848	403545	T	C	0.202	-0.138	0.086	$1.08 \mathrm{E}-01$	-0.515	0.082	2.88E-10	0.269	0.173	$1.19 \mathrm{E}-01$	9.92E-01
Colon Sigmoid	HRAS	rs4963176	538532	c	G	0.342	0.106	0.067	$1.11 \mathrm{E}-01$	-0.252	0.036	$3.73 \mathrm{E}-12$	-0.421	0.271	$1.20 \mathrm{E}-01$	$1.03 \mathrm{E}-01$
Brain Nucleus accumbens basal ganglia	SIGIRR	rs35828848	403545	T	C	0.202	-0.138	0.086	$1.08 \mathrm{E}-01$	-0.536	0.097	2.89E-08	0.258	0.167	$1.23 \mathrm{E}-01$	5.49E-01
Brain Putamen basal ganglia	SIGIRR	rs35828848	403545	T	C	0.202	-0.138	0.086	$1.08 \mathrm{E}-01$	-0.521	0.094	$2.89 \mathrm{E}-08$	0.266	0.172	$1.23 \mathrm{E}-01$	3.41E-01
Brain Putamen basal ganglia	PSMD13	rs1533824	214169	C	T	0.322	0.072	0.046	$1.21 \mathrm{E}-01$	0.452	0.067	$1.48 \mathrm{E}-11$	0.158	0.105	$1.31 \mathrm{E}-01$	6.55E-01
Cells Transformed fibroblasts	PSMD13	rs1533824	214169	C	T	0.322	0.072	0.046	$1.21 \mathrm{E}-01$	0.154	0.024	1.16E-10	0.463	0.307	$1.32 \mathrm{E}-01$	7.84E-02
Pancreas	TSPAN4	rs10902229	897692	T	C	0.160	-0.140	0.091	$1.23 \mathrm{E}-01$	0.579	0.091	2.37E-10	-0.242	0.161	$1.34 \mathrm{E}-01$	6.50E-01
Ovary	LRRC56	rs113966858	527759	G	T	0.211	0.118	0.077	$1.26 \mathrm{E}-01$	-0.807	0.111	$3.73 \mathrm{E}-13$	-0.146	0.098	$1.34 \mathrm{E}-01$	7.80E-01
Brain Substantia nigra	TMEM80	rs28575104	643109	G	T	0.589	-0.098	0.065	$1.27 \mathrm{E}-01$	-0.894	0.134	$2.64 \mathrm{E}-11$	0.110	0.074	$1.37 \mathrm{E}-01$	$4.67 \mathrm{E}-01$
Artery Coronary	SIGIRR	rs4074794	409815	A	G	0.168	-0.142	0.094	$1.29 \mathrm{E}-01$	-0.467	0.073	1.60E-10	0.305	0.207	$1.40 \mathrm{E}-01$	6.45E-01
Skin Sun Exposed Lower leg	C11orf35	rs145270051	539826	A	G	0.055	-0.228	0.151	$1.32 \mathrm{E}-01$	0.416	0.062	$1.54 \mathrm{E}-11$	-0.547	0.372	$1.41 \mathrm{E}-01$	3.16E-01
Artery Tibial	HRAS	rs12628	534242	G	A	0.340	0.098	0.066	$1.39 \mathrm{E}-01$	-0.248	0.023	1.00E-26	-0.396	0.271	$1.43 \mathrm{E}-01$	2.96E-01
Pancreas	IFITM5	rs11600194	287959	A	G	0.386	0.095	0.065	$1.43 \mathrm{E}-01$	0.698	0.085	$1.52 \mathrm{E}-16$	0.136	0.095	$1.50 \mathrm{E}-01$	6.61E-01

Testis	LRRC56	rs117967265	439699	T	C	0.043	0.222	0.152	1.45E-01	-0.554	0.081	1.08E-11	-0.401	0.281	$1.54 \mathrm{E}-01$	6.56E-01
Testis	CDHR5	rs12360820	620927	C	A	0.825	-0.116	0.080	$1.47 \mathrm{E}-01$	0.503	0.084	2.39E-09	-0.231	0.164	$1.59 \mathrm{E}-01$	1.55E-01
Testis	IFITM3	rs9666598	325386	G	C	0.840	-0.124	0.087	1.53E-01	-0.280	0.045	3.80E-10	0.445	0.319	1.63E-01	$8.49 \mathrm{E}-01$
Esophagus Muscularis	HRAS	rs12785860	531224	G	A	0.339	0.094	0.066	$1.59 \mathrm{E}-01$	-0.301	0.031	1.30E-22	-0.311	0.223	$1.64 \mathrm{E}-01$	2.61E-01
Adrenal Gland	SIGIRR	rs7935145	382480	A	G	0.205	-0.123	0.087	$1.56 \mathrm{E}-01$	-0.436	0.074	3.44E-09	0.283	0.205	$1.68 \mathrm{E}-01$	$9.76 \mathrm{E}-01$
Esophagus Mucosa	SIGIRR	rs7935145	382480	A	G	0.205	-0.123	0.087	$1.56 \mathrm{E}-01$	-0.187	0.033	1.23E-08	0.661	0.480	$1.69 \mathrm{E}-01$	2.54E-01
Pancreas	NLRP6	rs10902119	288115	C	T	0.393	0.087	0.064	$1.77 \mathrm{E}-01$	0.682	0.091	8.65E-14	0.127	0.096	$1.84 \mathrm{E}-01$	6.60E-01
Heart Atrial Appendage	LRRC56	rs12576389	433554	T	C	0.198	0.075	0.055	$1.79 \mathrm{E}-01$	-0.474	0.085	2.39E-08	-0.157	0.120	$1.92 \mathrm{E}-01$	$1.67 \mathrm{E}-01$
Whole Blood	BET1L	rs4980320	198986	C	T	0.461	-0.056	0.043	$1.88 \mathrm{E}-01$	0.374	0.040	6.06E-21	-0.151	0.116	$1.93 \mathrm{E}-01$	$1.45 \mathrm{E}-01$
Artery Aorta	HRAS	rs1870727	539744	G	A	0.347	0.087	0.066	$1.93 \mathrm{E}-01$	-0.367	0.040	6.38E-20	-0.236	0.183	$1.97 \mathrm{E}-01$	5.03E-01
Artery Aorta	PTDSS2	rs112828724	512899	G	A	0.039	0.219	0.171	2.02E-01	-0.530	0.090	4.08E-09	-0.412	0.331	2.13E-01	2.02E-01
Nerve Tibial	B4GALNT4	rs7481525	378188	C	T	0.406	-0.078	0.063	2.19E-01	-0.265	0.038	2.29E-12	0.294	0.243	$2.26 \mathrm{E}-01$	2.34E-01
Thyroid	TSPAN4	rs10492	866920	G	T	0.191	-0.100	0.083	2.27E-01	0.440	0.045	7.24E-23	-0.228	0.190	2.31E-01	8.07E-01
Cells Transformed fibroblasts	TSPAN4	rs10492	866920	G	T	0.191	-0.100	0.083	2.27E-01	0.408	0.054	$3.72 \mathrm{E}-14$	-0.246	0.206	$2.33 \mathrm{E}-01$	$2.43 \mathrm{E}-01$
Lung	TSPAN4	rs10492	866920	G	T	0.191	-0.100	0.083	2.27E-01	0.298	0.046	$1.09 \mathrm{E}-10$	-0.337	0.284	$2.35 \mathrm{E}-01$	9.60E-01
Skin Not Sun Exposed Suprapubic	TSPAN4	rs10492	866920	G	T	0.191	-0.100	0.083	2.27E-01	0.180	0.032	2.00E-08	-0.559	0.474	2.38E-01	8.66E-01
Brain Caudate basal ganglia	LRRC56	rs12574052	548603	G	A	0.673	-0.077	0.066	2.49E-01	-0.304	0.053	$1.09 \mathrm{E}-08$	0.252	0.223	2.59E-01	9.88E-01
Testis	B4GALNT4	rs11246141	387204	G	A	0.521	0.075	0.065	2.50E-01	-0.306	0.055	$2.39 \mathrm{E}-08$	-0.246	0.218	2.60E-01	7.48E-01
Thyroid	C11orf35	rs10736899	579256	A	C	0.063	-0.155	0.139	2.65E-01	0.362	0.049	9.81E-14	-0.429	0.389	2.70E-01	5.98E-01
Skin Not Sun Exposed Suprapubic	C11orf35	rs10736899	579256	A	C	0.063	-0.155	0.139	$2.65 \mathrm{E}-01$	0.453	0.078	6.08E-09	-0.343	0.313	$2.73 \mathrm{E}-01$	6.62E-01
Breast Mammary Tissue	ATHL1	rs11246057	295808	G	A	0.370	-0.074	0.067	$2.71 \mathrm{E}-01$	0.405	0.048	3.43E-17	-0.183	0.168	$2.75 \mathrm{E}-01$	$2.41 \mathrm{E}-01$
Esophagus Mucosa	C11orf35	rs11246203	590605	G	C	0.063	-0.152	0.138	2.70E-01	0.372	0.054	6.23E-12	-0.409	0.376	2.76E-01	3.05E-01
Pancreas	CHID1	rs12806927	852855	T	C	0.060	0.165	0.149	$2.71 \mathrm{E}-01$	-0.936	0.137	7.76E-12	-0.176	0.162	2.77E-01	5.34E-01
Nerve Tibial	TSPAN4	rs4074344	872529	T	C	0.298	0.081	0.074	$2.71 \mathrm{E}-01$	-0.243	0.035	5.50E-12	-0.334	0.308	$2.77 \mathrm{E}-01$	6.24E-01
Cells Transformed fibroblasts	IFITM2	rs9666295	323222	T	C	0.850	-0.102	0.093	$2.76 \mathrm{E}-01$	0.417	0.064	$1.04 \mathrm{E}-10$	-0.244	0.228	$2.83 \mathrm{E}-01$	3.43E-01
Skin Sun Exposed Lower leg	BET1L	rs1023430	224393	G	A	0.197	-0.054	0.051	2.81E-01	0.332	0.038	$4.67 \mathrm{E}-18$	-0.164	0.153	2.85E-01	8.04E-04
Artery Tibial	BET1L	rs1023430	224393	G	A	0.197	-0.054	0.051	2.81E-01	0.277	0.034	6.42E-16	-0.197	0.184	2.85E-01	1.04E-03
Esophagus Muscularis	BET1L	rs1023430	224393	G	A	0.197	-0.054	0.051	2.81E-01	0.295	0.046	$1.72 \mathrm{E}-10$	-0.185	0.174	2.88E-01	$4.23 \mathrm{E}-05$
Pituitary	BET1L	rs10902108	225256	T	C	0.197	-0.054	0.051	2.86E-01	-0.425	0.056	$2.16 \mathrm{E}-14$	0.127	0.120	2.90E-01	7.03E-04
Skin Not Sun Exposed Suprapubic	BET1L	rs10902108	225256	T	C	0.197	-0.054	0.051	2.86E-01	0.288	0.045	$2.39 \mathrm{E}-10$	-0.188	0.178	2.93E-01	$1.38 \mathrm{E}-02$
Stomach	TMEM80	rs10902182	651768	G	C	0.451	-0.064	0.062	3.01E-01	-0.522	0.061	9.78E-18	0.123	0.120	$3.04 \mathrm{E}-01$	9.94E-01
Liver	EPS8L2	rs11246280	707424	T	C	0.519	0.063	0.061	3.01E-01	0.534	0.069	7.79E-15	0.118	0.115	3.05E-01	$1.00 \mathrm{E}+00$
Nerve Tibial	HRAS	rs11246177	539080	T	G	0.324	0.067	0.068	3.22E-01	-0.248	0.028	7.34E-19	-0.272	0.277	3.25E-01	8.92E-01
Artery Aorta	EPS8L2	rs28364668	705297	C	G	0.547	0.060	0.061	3.27E-01	-0.465	0.055	1.93E-17	-0.129	0.132	3.30E-01	9.90E-01
Ovary	SIGIRR	rs10902157	394005	C	T	0.558	0.065	0.067	3.31E-01	0.779	0.102	$2.09 \mathrm{E}-14$	0.083	0.086	3.35E-01	$9.41 \mathrm{E}-01$
Testis	PKP3	rs10902157	394005	C	T	0.558	0.065	0.067	$3.31 \mathrm{E}-01$	-0.561	0.085	$4.64 \mathrm{E}-11$	-0.115	0.120	3.36E-01	8.44E-01
Nerve Tibial	TALDO1	rs186605450	729806	G	C	0.016	-0.230	0.253	3.65E-01	-0.485	0.088	3.39E-08	0.473	0.529	$3.71 \mathrm{E}-01$	8.50E-01
Esophagus Mucosa	RIC8A	rs61876177	199813	G	A	0.137	0.050	0.060	4.05E-01	0.384	0.052	$1.79 \mathrm{E}-13$	0.130	0.157	4.08E-01	2.68E-01
Artery Coronary	HRAS	rs12797431	521119	A	G	0.302	0.056	0.069	$4.12 \mathrm{E}-01$	-0.325	0.050	9.84E-11	-0.173	0.213	4.16E-01	$4.78 \mathrm{E}-01$
Thyroid	ATHL1	rs11246055	291694	G	A	0.685	0.056	0.069	4.16E-01	0.569	0.043	2.20E-40	0.099	0.122	4.17E-01	4.97E-01
Pancreas	ATHL1	rs11246055	291694	G	A	0.685	0.056	0.069	4.16E-01	0.749	0.080	5.66E-21	0.075	0.093	4.18E-01	6.21E-01
Artery Tibial	ATHL1	rs2242566	295876	T	C	0.338	-0.054	0.068	4.27E-01	0.668	0.044	8.92E-52	-0.080	0.101	$4.28 \mathrm{E}-01$	$2.86 \mathrm{E}-01$
Nerve Tibial	ATHL1	rs2242566	295876	T	C	0.338	-0.054	0.068	4.27E-01	0.610	0.047	3.64E-39	-0.088	0.111	4.28E-01	1.67E-01
Heart Left Ventricle	ATHL1	rs2242566	295876	T	C	0.338	-0.054	0.068	4.27E-01	0.441	0.038	8.77E-32	-0.122	0.154	4.28E-01	3.87E-01

Esophagus Gastroesophageal Junction	ATHL1	rs2242566	295876	T	C	0.338	-0.054	0.068	4.27E-01	0.652	0.061	2.04E-26	-0.082	0.104	4.28E-01	1.51E-01
Brain Cortex	ATHL1	rs2242566	295876	T	C	0.338	-0.054	0.068	4.27E-01	0.509	0.064	1.20E-15	-0.106	0.134	4.29E-01	$1.87 \mathrm{E}-01$
Brain Amygdala	ATHL1	rs2242566	295876	T	C	0.338	-0.054	0.068	4.27E-01	0.542	0.081	2.00E-11	-0.099	0.126	$4.30 \mathrm{E}-01$	5.54E-01
Brain Putamen basal ganglia	ATHL1	rs2242566	295876	T	C	0.338	-0.054	0.068	4.27E-01	0.602	0.094	$1.24 \mathrm{E}-10$	-0.089	0.113	$4.31 \mathrm{E}-01$	7.09E-01
Brain Frontal Cortex BA9	ATHL1	rs2242566	295876	T	C	0.338	-0.054	0.068	$4.27 \mathrm{E}-01$	0.396	0.069	8.55E-09	-0.136	0.172	$4.31 \mathrm{E}-01$	$1.71 \mathrm{E}-01$
Pituitary	RIC8A	rs3782116	223119	C	T	0.685	-0.035	0.044	4.31E-01	-0.511	0.075	7.61E-12	0.068	0.086	$4.34 \mathrm{E}-01$	4.86E-02
Skin Not Sun Exposed Suprapubic	HRAS	rs7394514	547210	C	T	0.382	0.051	0.065	$4.34 \mathrm{E}-01$	-0.133	0.023	$1.35 \mathrm{E}-08$	-0.385	0.497	$4.38 \mathrm{E}-01$	5.46E-01
Skin Not Sun Exposed Suprapubic	DRD4	rs79820513	558165	G	T	0.086	0.093	0.121	$4.42 \mathrm{E}-01$	-0.570	0.081	2.10E-12	-0.163	0.213	$4.45 \mathrm{E}-01$	8.94E-01
Esophagus Mucosa	ANO9	rs7481614	438662	G	A	0.676	0.052	0.068	$4.45 \mathrm{E}-01$	-0.330	0.040	2.69E-16	-0.157	0.207	4.47E-01	2.51E-01
Adipose Subcutaneous	TMEM80	rs11246262	680647	C	A	0.469	-0.032	0.043	$4.59 \mathrm{E}-01$	-0.667	0.041	7.75E-59	0.048	0.064	4.60E-01	9.57E-01
Muscle Skeletal	TMEM80	rs11246262	680647	C	A	0.469	-0.032	0.043	4.59E-01	-0.637	0.040	2.72E-58	0.050	0.067	$4.60 \mathrm{E}-01$	9.26E-01
Cells Transformed fibroblasts	TMEM80	rs11246262	680647	C	A	0.469	-0.032	0.043	4.59E-01	-0.571	0.043	8.75E-41	0.056	0.075	$4.60 \mathrm{E}-01$	9.49E-01
Breast Mammary Tissue	TMEM80	rs11246262	680647	C	A	0.469	-0.032	0.043	$4.59 \mathrm{E}-01$	-0.568	0.048	6.08E-32	0.056	0.076	4.60E-01	8.71E-01
Pancreas	HRAS	rs4963184	524397	C	T	0.299	0.051	0.069	4.57E-01	-0.323	0.055	3.73E-09	-0.158	0.214	4.61E-01	$9.01 \mathrm{E}-01$
Vagina	ATHL1	rs12801980	293188	C	T	0.359	-0.050	0.068	4.66E-01	0.563	0.091	7.32E-10	-0.088	0.122	$4.69 \mathrm{E}-01$	6.75E-01
Uterus	ATHL1	rs12801980	293188	C	T	0.359	-0.050	0.068	$4.66 \mathrm{E}-01$	0.418	0.075	3.01E-08	-0.119	0.164	$4.70 \mathrm{E}-01$	2.75E-01
Skin Sun Exposed Lower leg	HRAS	rs111226498	522480	G	A	0.092	0.084	0.116	4.70E-01	-0.261	0.038	1.06E-11	-0.321	0.447	4.73E-01	2.50E-01
Skin Sun Exposed Lower leg	DRD4	rs140942386	583158	A	G	0.059	-0.109	0.153	4.78E-01	-0.367	0.067	4.21E-08	0.296	0.420	$4.81 \mathrm{E}-01$	4.84E-01
Thyroid	PKP3	rs4077477	390320	T	C	0.548	0.046	0.066	4.84E-01	-0.230	0.032	6.04E-13	-0.201	0.289	4.86E-01	8.57E-01
Brain Cerebellar Hemisphere	TMEM80	rs6597995	677200	A	G	0.467	-0.030	0.043	4.85E-01	-0.804	0.086	5.84E-21	0.037	0.054	4.86E-01	8.57E-01
Brain Hypothalamus	TMEM80	rs6597995	677200	A	G	0.467	-0.030	0.043	4.85E-01	-0.814	0.105	$1.03 \mathrm{E}-14$	0.037	0.053	4.87E-01	4.21E-01
Adipose Visceral Omentum	PIDD	rs6597979	815323	T	G	0.495	-0.043	0.063	4.87E-01	0.286	0.034	$2.91 \mathrm{E}-17$	-0.152	0.220	$4.89 \mathrm{E}-01$	7.25E-01
Esophagus Gastroesophageal Junction	PIDD	rs6597979	815323	T	G	0.495	-0.043	0.063	4.87E-01	0.269	0.041	6.32E-11	-0.161	0.234	4.89E-01	5.87E-01
Thyroid	TMEM80	rs7118663	684489	T	C	0.468	-0.029	0.043	4.95E-01	-0.653	0.035	9.30E-77	0.045	0.066	$4.95 \mathrm{E}-01$	8.24E-01
Testis	TMEM80	rs7118663	684489	T	C	0.468	-0.029	0.043	$4.95 \mathrm{E}-01$	-0.870	0.065	8.97E-41	0.034	0.050	$4.95 \mathrm{E}-01$	9.39E-01
Cells EBV-transformed lymphocytes	CDHR5	rs35134589	625695	A	G	0.229	0.052	0.076	$4.94 \mathrm{E}-01$	0.886	0.147	$1.90 \mathrm{E}-09$	0.059	0.086	4.97E-01	7.51E-01
Esophagus Muscularis	TMEM80	rs12291981	681502	G	C	0.492	-0.029	0.043	4.98E-01	-0.750	0.047	3.09E-56	0.039	0.058	$4.98 \mathrm{E}-01$	9.43E-01
Skin Not Sun Exposed Suprapubic	TMEM80	rs12291981	681502	G	C	0.492	-0.029	0.043	4.98E-01	-0.666	0.051	5.54E-39	0.044	0.065	$4.98 \mathrm{E}-01$	9.50E-01
Esophagus Gastroesophageal Junction	TMEM80	rs12291981	681502	G	C	0.492	-0.029	0.043	4.98E-01	-0.739	0.059	$1.89 \mathrm{E}-35$	0.039	0.058	4.98E-01	9.52E-01
Colon Sigmoid	TMEM80	rs12291981	681502	G	C	0.492	-0.029	0.043	4.98E-01	-0.768	0.062	2.07E-35	0.038	0.056	$4.98 \mathrm{E}-01$	8.78E-01
Small Intestine Terminal Ileum	TMEM80	rs12291981	681502	G	C	0.492	-0.029	0.043	4.98E-01	-0.746	0.096	$1.03 \mathrm{E}-14$	0.039	0.058	$4.99 \mathrm{E}-01$	9.60E-01
Vagina	TMEM80	rs12291981	681502	G	C	0.492	-0.029	0.043	4.98E-01	-0.699	0.107	7.49E-11	0.042	0.062	5.00E-01	7.63E-01
Adrenal Gland	PDDC1	rs7948539	775651	A	T	0.483	-0.043	0.064	5.00E-01	0.566	0.061	$1.51 \mathrm{E}-20$	-0.076	0.113	5.01E-01	2.32E-01
Pituitary	PDDC1	rs12223324	772701	G	A	0.483	-0.042	0.064	5.05E-01	0.526	0.059	5.52E-19	-0.081	0.121	5.06E-01	$3.33 \mathrm{E}-01$
Heart Left Ventricle	CEND1	rs12223324	772701	G	A	0.483	-0.042	0.064	5.05E-01	0.540	0.070	$1.02 \mathrm{E}-14$	-0.079	0.118	5.07E-01	3.42E-01
Brain Caudate basal ganglia	ATHL1	rs12286628	297057	C	A	0.305	-0.047	0.071	5.06E-01	0.587	0.066	$3.73 \mathrm{E}-19$	-0.080	0.121	5.07E-01	2.53E-01
Brain Anterior cingulate cortex BA24	ATHL1	rs12286628	297057	C	A	0.305	-0.047	0.071	5.06E-01	0.558	0.079	$1.42 \mathrm{E}-12$	-0.084	0.127	5.08E-01	5.02E-01
Skin Sun Exposed Lower leg	PDDC1	rs10902219	758446	A	G	0.665	0.031	0.047	5.10E-01	-0.208	0.035	4.07E-09	-0.150	0.228	5.12E-01	9.92E-01
Adrenal Gland	TMEM80	rs11246253	670493	A	T	0.468	-0.028	0.043	5.12E-01	-0.710	0.066	$4.65 \mathrm{E}-27$	0.040	0.061	5.13E-01	8.91E-01
Ovary	TMEM80	rs11246253	670493	A	T	0.468	-0.028	0.043	5.12E-01	-0.558	0.074	3.81E-14	0.050	0.077	5.14E-01	8.65E-01
Artery Coronary	PIDD	rs7122416	807149	A	G	0.492	-0.041	0.063	5.13E-01	0.241	0.041	5.53E-09	-0.170	0.262	5.15E-01	7.65E-01
Nerve Tibial	NLRP6	rs11603524	268628	A	G	0.238	-0.032	0.049	5.14E-01	-0.329	0.050	3.35E-11	0.097	0.150	5.16E-01	1.01E-01
Adipose Subcutaneous	NLRP6	rs11602372	266957	T	G	0.239	-0.032	0.049	5.19E-01	-0.283	0.048	5.06E-09	0.111	0.174	5.22E-01	3.53E-01
Esophagus Mucosa	TMEM80	rs6598006	659266	T	C	0.449	-0.040	0.062	5.25E-01	-0.302	0.039	$4.15 \mathrm{E}-15$	0.131	0.207	5.26E-01	9.70E-01

Nerve Tibial	TMEM80	rs12277188	688091	T	c	0.469	-0.027	0.043	5.27E-01	-0.711	0.041	3.10E-67	0.038	0.061	5.27E-01	9.05E-01
Artery Tibial	TMEM80	rs12277188	688091	T	c	0.469	-0.027	0.043	5.27E-01	-0.711	0.044	7.30E-60	0.038	0.061	5.27E-01	9.50E-01
Skin Sun Exposed Lower leg	TMEM80	rs12277188	688091	T	c	0.469	-0.027	0.043	5.27E-01	-0.650	0.04	6.43E-57	0.0	0.066	5.27E-01	9.62E-01
Lung	TMEM80	rs12277188	688091	T	c	0.469	-0.027	0.043	5.27E-01	-0.472	0.032	3.25e-49	0.058	0.091	5.27E-01	9.73E-01
Heart Left Ventricle	TMEM80	rs12277188	688091	T	c	0.469	-0.027	0.043	5.27E-01	-0.655	0.046	8.09E-46	0.042	0.066	5.27E-01	8.55E-01
Artery Aorta	TMEM80	rs12277188	688091	T	c	0.469	-0.027	0.043	5.27E-01	-0.599	0.046	7.21E-39	0.046	0.072	5.27E-01	8.84E-01
Heart Atrial Appendage	TMEM80	rs12277188	688091	T	c	0.469	-0.027	0.043	5.27E-01	-0.671	0.054	1.65E-35	0.041	0.064	5.27E-01	8.26E-01
Artery Coronary	TMEM80	rs12277188	688091	T	c	0.469	-0.027	0.043	5.27E-01	-0.625	0.066	2.32E-21	0.044	0.069	5.28E-01	9.27E-01
Brain Spinal cord cervical $\mathrm{c}-1$	TMEM80	rs12277188	688091	T	c	0.469	-0.02	0.04	5.27E-01	-0.861	0.12	$1.07 \mathrm{E}-1$	03	0.050	5.28E-01	8.21E-01
Pituitary	TMEM80	rs12277188	688091	T	c	0.469	-0.027	0.043	5.27E-01	-0.473	0.068	4.14E-12	0.058	0.092	5.28E-01	8.97E-01
Thyroid	RIC8A	rs11604127	196944	T	c	0.231	-0.032	0.051	5.36E-01	-0.275	0.035	1.92E-15	0.115	0.187	5.37E-01	2.84E-01
Lung	NLRP6	rs58807415	268718	G	A	0.238	-0.030	0.049	5.35E-01	-0.272	0.045	2.02E-09	0.112	0.181	5.37E-01	8.24E-02
Whole Blood	SCGB1C1	rs11604127	196944	T	c	0.231	-0.032	0.051	5.36E-01	0.395	0.062	$2.23 \mathrm{E}-10$	-0.080	0.131	5.38E-01	2.37E-01
Thyroid	S88	1075	703175	G	A	0.159	0.054	0.08	5.38E-01	-0.203	0.029	28E-1	0. 267	0.435	5.39E-01	6.10e-01
Brain Caudate basal ganglia	EPS8L2	rs7107522	703175	G	A	0.159	0.054	0.088	5.38E-01	0.609	0.107	1.18E-08	0.089	0.145	5.40E-01	7.79E-01
Skin Not Sun Exposed Suprapubic	RIC8A	rs72865316	247028	A	G	0.214	-0.030	0.049	5.40E-01	-0.287	0.034	$2.33 \mathrm{E}-17$	0.106	0.173	5.41E-01	2.26E-01
Heart Atrial Appendage	ND1	rs7936322	745884	T	c	. 48	-0.039	0.06	5.44E-01	0.511	0.078	4.38E-11	-0.075	0.125	5.46E-01	2.07E-01
Skin Sun Exposed Lower leg	MUC5B	rs2735709	1252708	c	G	0.498	-0.037	0.062	5.44E-01	-0.285	0.049	8.23E-09	0.131	0.217	5.47E-01	9.61E-01
Testis	DRD4	rs11539530	609353	A	G	0.228	0.045	0.075	5.48E-01	-0.400	0.065	5.65E-10	-0.113	0.189	5.50E-01	7.31E-01
Pancreas	EFCAB4A	13871	825110	G	A	0.555	-0.038	0.063	5.50E-01	0.543	0.054	7.27E-24	-0.069	0.116	5.50E-01	8.62E-01
Adipose Visceral Omentum	HRAS	rs12420875	603776	c	T	0.229	0.043	0.075	5.71E-01	-0.225	0.038	2.28E-09	-0.189	0.335	5.72E-01	8.94E-01
Heart Left Ventricle	PKP3	rs11246147	396701	T	c	0.548	0.037	0.066	5.75E-01	-0.555	0.079	1.64E-12	-0.067	0.119	5.76E-01	8.42E-01
Whole Blood	NLRP6	rs521922	254421	G	A	0.273	-0.026	0.047	5.77E-01	-0.180	0.031	9.31E-09	0.146	0.263	5.79E-01	5.41E-02
Heart Left Ventricle	efcab4a	rs4963120	825777	T	c	0.553	-0.035	0.063	5.83E-01	0.296	0.048	7.82E-10	-0.117	0.215	5.85E-01	9.18E-01
Whole Blood	efCab4a	496312	82	T	c	0.5	. 35	0.063	5.83E-01	0.253	0.046	3.49E-08	-0.137	0.25	5.85E-01	$9.49 \mathrm{E}-01$
Brain Frontal Cortex BA9	MUC5B	rs4963050	1249536	T	G	0.305	0.037	0.068	5.84E-01	0.832	0.127	4.84E-11	0.045	0.082	5.85E-01	6.68E-01
Brain Cortex	MUC5B	rs4963059	1272858	T	c	0.303	0.037	0.068	5.89E-01	1.060	0.117	1.62E-19	0.035	0.064	5.90E-01	8.49E-01
Skin Not Sun Exposed Suprapubic	PDDC1	rs11606152	767750	T	c	0.724	0.025	0.047	5.91E-01	-0.206	0.03	4.67E-08	-0.124	0.23	5.92E-0	7.53E-01
Esophagus Muscularis	EPSSL2	rs7108216	702097	c	T	0.611	-0.034	0.063	5.95E-01	0.648	0.048	1.98E-41	-0.052	0.097	5.95E-01	9.96E-01
Artery Tibial	EPS8L2	rs7108216	702097	c	T	0.611	-0.034	0.063	5.95E-01	0.452	0.037	1.40E-34	-0.074	0.140	5.95E-01	9.83E-01
Esophagus Gastroesophageal Junction	8L2	821	702097	c	T	0.611	-0.034	0.063	5.95E-01	0.58	0.066	7.84E-19	-0.057	0.10	5.96E-01	9.77E-01
Colon Sigmoid	EPS8L2	rs7108216	702097	c	T	0.611	-0.034	0.063	5.95E-01	0.430	0.054	1.74E-15	-0.078	0.147	5.96E-01	9.90E-01
Adrenal Gland	EPS8L2	rs7108216	702097	c	T	0.611	-0.034	0.063	5.95E-01	0.527	0.091	7.51E-09	-0.064	0.120	5.97E-01	9.93E-01
Lung	PTDSS2	rs34690033	492677	c	G	0.136	-0.047	0.090	5.97E-01	-0.382	0.058	3.66E-11	0.124	0.236	5.98E-01	1.95E-01
Artery Aorta	RNH1	rs34690033	492677	C	G	0.136	-0.047	0.090	5.97E-01	-0.359	0.062	6.35E-09	0.132	0.251	5.98E-01	3.56E-01
Esophagus Muscularis	B4GALNT4	rs67542097	364795	A	G	0.504	0.035	0.066	5.98E-01	0.344	0.044	4.99E-15	0.101	0.192	5.99E-01	1.41E-01
Heart Left Ventricle	EPS8L2	rs73407148	707152	c	G	0.131	0.050	0.094	5.99E-01	0.948	0.081	9.27E-32	0.052	0.099	5.99E-01	9.66E-01
Esophagus Gastroesophageal Junction	B4GALNT4	rs67542097	364795	A	G	0.504	0.035	0.066	5.98E-01	0.348	0.055	$2.68 \mathrm{E}-10$	0.100	0.190	5.99E-01	3.41E-01
Cells EBV-transformed lymphocytes	TMEM80	rs73407148	707152	c	G	0.131	0.050	0.094	5.99E-01	0.748	0.095	$2.58 \mathrm{E}-15$	0.066	0.126	6.00E-01	9.64E-01
Heart Atrial Appendage	EPS8L2	rs73407148	707152	c	G	0.131	0.050	0.094	5.99E-01	0.449	0.067	1.42E-11	0.110	0.210	6.00E-01	9.56E-01
Testis	MUC2	rs12225760	1090101	T	c	0.086	0.056	0.110	6.13E-01	-0.552	0.094	3.69E-09	-0.101	0.200	6.14E-01	9.49E-01
Esophagus Muscularis	CEND1	rs6597984	780410	G	T	0.496	-0.032	0.064	6.22E-01	-0.259	0.041	$2.36 \mathrm{E}-10$	0.122	0.249	6.23E-01	5.65E-01
Skin Sun Exposed Lower leg	anog	rs59379217	439039	A	G	0.612	0.031	0.063	6.25E-01	-0.162	0.027	1.30E-09	-0.191	0.393	6.26E-01	3.08E-01
Artery Tibial	RIC8A	rs3782118	222620	C	T	0.697	-0.021	0.044	6.31E-01	-0.381	0.030	7.03E-36	0.056	0.116	6.32E-01	$2.83 \mathrm{E}-02$

Brain Cerebellar Hemisphere	PIDD	rs7484123	805234	A	G	0.503	-0.030	0.063	6.31E-01	0.701	0.070	9.00E-24	-0.043	0.090	6.32E-01	8.51E-01
Nerve Tibial	IFITM5	rs1060819	295527	C	T	0.744	0.034	0.070	6.32E-01	-0.881	0.072	2.17E-34	-0.038	0.080	6.32E-01	4.47E-01
Artery Tibial	PIDD	rs7484123	805234	A	G	0.503	-0.030	0.063	6.31E-01	0.213	0.02	9.07E-16	-0.141	0.295	6.32E-01	8.88E-01
Thyroid	HRAS	rs12421239	545276	T	G	0.223	0.037	0.077	6.31E-01	-0.334	0.037	6.60E-20	-0.111	0.231	6.32E-01	7.86E-01
Whole Blood	IFITM5	rs1060819	295527	c	T	0.744	0.034	0.070	6.32E-01	-0.573	0.069	7.38E-17	-0.059	0.123	6.32E-01	3.56E-01
Artery Coronary	RIC8A	rs3782118	222620	c	T	. 697	-0.021	0.04	6.31E-01	-0.350	0.052	1.20E-11	0.061	0.127	6.32E-01	5.95E-02
Esophagus Gastroesophageal Junction	HRAS	rs12421239	545276	T	G	0.223	0.037	0.077	6.31E-01	-0.315	0.044	5.85E-13	-0.117	0.245	6.32E-01	6.26E-01
Adipose Subcutaneous	HRAS	2421239	545276	T	G	223	0. 37	0.077	31E-01	. 243	0.34	8.17E-13	152	0.318	32E-01	.18E-01
Prostate	ATHL1	s1060819	29552	c	T	0.744	0.034	0.07	6.32E-01	0.63	0.09	1.96E-12	. 053	0.111	6.32E-01	5.80E-01
Brain Cerebellar Hemisphere	EPS8L2	rs11246277	706310	A	G	0.158	0.042	0.088	6.32E-01	1.024	0.127	7.78E-16	0.041	0.087	6.32E-01	9.57E-01
Colon Sigmoid	SIRT3	rs3782118	222620	C	T	0.697	-0.021	0.044	6.31E-01	0.385	0.066	5.86E-09	-0.055	0.115	6.33E-01	4.48E-02
Muscle Skeletal	ATHL1	rs7104019	295670	A	G	0.741	0.032	0.070	6.46E-01	0.697	0.044	1.96E-55	0.046	0.100	6.46E-01	2.38E-01
Adipose Subcutaneous	ATHL1	rs7104019	295670	A	G	0.741	0.032	0.070	6.46E-01	0.914	0.062	2.24E-49	0.035	0.077	6.46E-01	1.67E-01
Esophagus Mucosa	ATHL1	rs7104019	295670	A	G	0.741	0.032	07	6.46E-01	0.597	0.041	5.75E-49	0.054	0.11	6.46E-01	5.26E-01
Skin Sun Exposed Lower leg	ATHL1	rs7104019	295670	A	G	0.741	0.032	0.070	6.46E-01	0.516	0.037	9.61E-45	0.062	0.136	6.46E-01	1.64E-01
Esophagus Muscularis	ATHL1	rs7104019	295670	A	G	0.741	0.032	0.070	6.46E-01	0.708	0.053	1.03E-40	0.045	0.099	6.46E-01	$2.64 \mathrm{E}-01$
Adipose Visceral Omentum	ATHL1	rs7104019	295670	A	G	0.741	0.032	0.070	6.46E-01	0.615	0.048	3.85E-38	0.052	0.114	6.46E-01	$2.56 \mathrm{E}-01$
Lung	ATHL1	rs7104019	295670	A	G	0.741	0.032	0.070	6.46E-01	0.615	0.049	3.90E-36	0.052	0.114	6.46E-01	3.80E-01
Colon Transverse	thl1	rs7104019	295670	A	G	. 741	0.032	0.070	6.46E-01	0.692	0.056	7.07E-35	0.047	0.101	6.46E-01	4.06E-01
Breast Mammary Tissue	IFITM5	rs7104019	295670	A	G	0.741	0.032	0.070	6.46E-01	-0.956	0.080	5.61E-33	-0.034	0.073	6.46E-01	4.64E-01
Artery Aorta	ATHL1	rs7104019	295670	A	G	0.741	0.032	0.070	6.46E-01	0.797	0.068	9.97e-32	0.040	0.088	6.46E-01	$2.52 \mathrm{E}-01$
Lung	IFITM5	rs7104019	295670	A	G	. 741	0.032	0.070	6.46E-01	-0.759	0.066	2.53E-30	-0.042	0.092	6.46E-01	5.09E-01
Stomach	ATHL1	rs7104019	295670	A	G	0.741	0.032	0.070	6.46E-01	0.615	0.058	4.66E-26	0.052	0.114	6.46E-01	3.94E-01
Colon Sigmoid	ATHL1	rs7104019	295670	A	G	0.741	0.032	0.070	6.46E-01	0.620	0.059	1.56E-25	0.052	0.113	6.46E-01	4.71E-01
Artery Coronary	ATHL1	rs7104019	295670	A	G	0.741	0.032	0.070	6.46E-01	0.566	0.0	3.36E-13	0.057	0.12	6.46E-0	$2.20 \mathrm{E}-01$
Brain Cerebellar Hemisphere	ATHL1	rs7104019	295670	A	G	0.741	0.032	0.070	6.46E-01	0.655	0.090	3.89E-13	0.049	0.107	6.46E-01	2.24E-01
Adrenal Gland	ATHL1	rs7104019	295670	A	G	0.741	0.032	0.070	6.46E-01	0.488	0.068	8.53E-13	0.066	0.144	6.46E-01	4.09E-01
Brain Nucleus accumbens basal ganglia	ATHL1	40	295670	A	G	0.741	0.032	0.07	6.46E-01	0.51	0.07	1.14E-12	0.063	0.1	6.46E-01	$4.15 \mathrm{E}-01$
Whole Blood	ATHL1	rs7104019	295670	A	G	0.741	0.032	0.070	6.46E-01	0.263	0.040	5.85E-11	0.122	0.267	6.46E-01	6.95E-01
Ovary	ATHL1	rs7104019	295670	A	G	0.741	0.032	0.070	6.46E-01	0.656	0.100	6.44E-11	0.049	0.107	6.46E-01	5.01E-01
Liver	AT	rs710401	295670	A	G	0.74	0.032	0.070	6.46E-01	0.689	0.109	2.52E-10	0.04	0.102	6.46E-01	5.35E-01
Brain Hypothalamus	ATHL1	rs7104019	295670	A	G	0.741	0.032	0.070	6.46E-01	0.538	0.085	2.90E-10	0.060	0.130	6.46E-01	3.81E-01
Adipose Visceral Omentum	RIC8A	rs3782115	223272	G	A	0.698	-0.020	0.045	6.49E-01	-0.269	0.033	9.45E-16	0.075	0.166	6.50E-01	3.00E-02
Testis	ATHL1	rs7924483	297638	A	T	0.740	0.032	0.071	6.54E-01	0.755	0.063	7.04E-33	0.042	0.094	6.55E-01	2.17e-01
Esophagus Muscularis	PIDD	rs11246314	805589	A	G	0.501	-0.028	0.063	6.54E-01	0.239	0.025	3.42E-21	-0.117	0.262	6.55E-01	8.32E-01
Adipose Subcutaneous	IFITM5	rs7924483	297638	A	T	0.740	0.032	0.071	6.54E-01	-0.811	0.077	4.56E-26	-0.039	0.087	6.55E-01	4.82E-01
Breast Mammary Tissue	PIDD	rs11246314	805589	A	G	0.501	-0.028	0.063	6.54E-01	0.395	0.043	4.76E-20	-0.071	0.159	6.55E-01	7.01E-01
Nerve Tibial	PIDD	rs11246314	805589	A	G	0.501	-0.028	0.063	6.54E-01	0.227	0.028	5.60E-16	-0.124	0.277	6.55E-01	7.26E-01
Artery Aorta	IFITM5	rs7924483	297638	A	T	0.740	0.032	0.071	6.54E-01	-0.726	0.093	8.08E-15	-0.044	0.098	6.55E-01	5.84E-01
Minor Salivary Gland	IFITM5	rs7924483	297638	A	T	0.740	0.032	0.071	6.54E-01	-1.209	0.162	8.00E-14	-0.026	0.059	6.55E-01	$4.73 \mathrm{E}-01$
Brain Hippocampus	ATHL1	rs7924483	297638	A	T	0.740	0.032	0.071	6.54E-01	0.619	0.095	7.55E-11	0.051	0.114	6.55E-01	$2.58 \mathrm{E}-01$
Brain Spinal cord cervical c-1	ATHL1	rs7924483	297638	A	T	0.740	0.032	0.071	6.54E-01	0.478	0.084	1.35E-08	0.066	0.148	6.55E-01	4.81E-01
Artery Aorta	PIDD	rs11246316	805712	G	A	0.503	-0.027	0.063	6.65E-01	0.355	0.033	6.44E-27	-0.077	0.177	6.65E-01	7.06E-01
Spleen	PIDD	rs11246316	805712	G	A	0.503	-0.027	0.063	$6.65 \mathrm{E}-01$	0.462	0.057	2.79E-16	-0.059	0.136	6.65E-01	6.99E-01

Esophagus Muscularis	IFITM2	rs1058873	308178	C	T	0.244	0.033	0.078	6.73E-01	-0.258	0.036	7.62E-13	-0.128	0.303	6.74E-01	5.63E-01
Colon Sigmoid	IFITM2	rs1058873	308178	C	T	0.244	0.033	0.078	$6.73 \mathrm{E}-01$	-0.311	0.051	7.54E-10	-0.106	0.252	$6.74 \mathrm{E}-01$	NA
Artery Tibial	IFITM2	rs1058873	308178	C	T	0.244	0.033	0.078	$6.73 \mathrm{E}-01$	-0.216	0.039	3.16E-08	-0.153	0.363	$6.74 \mathrm{E}-01$	6.62E-01
Skin Sun Exposed Lower leg	SIGIRR	rs7396263	412867	G	A	0.767	0.031	0.074	$6.75 \mathrm{E}-01$	-0.233	0.030	$1.71 \mathrm{E}-14$	-0.133	0.316	$6.75 \mathrm{E}-01$	3.31E-01
Muscle Skeletal	IRF7	rs11246217	623765	G	A	0.274	0.029	0.070	6.83E-01	0.295	0.046	2.10E-10	0.097	0.239	$6.84 \mathrm{E}-01$	2.87E-01
Brain Caudate basal ganglia	CD151	rs6597977	834802	G	A	0.701	-0.028	0.069	6.84E-01	0.564	0.064	1.90E-18	-0.050	0.123	6.85E-01	9.84E-01
Lung	HRAS	rs1870726	539648	A	G	0.223	0.031	0.077	6.90E-01	-0.311	0.034	1.32E-19	-0.099	0.248	6.90E-01	5.95E-01
Colon Transverse	HRAS	rs1870726	539648	A	G	0.223	0.031	0.077	6.90E-01	-0.376	0.054	3.20E-12	-0.082	0.205	6.90E-01	7.95E-01
Esophagus Mucosa	HRAS	rs1870726	539648	A	G	0.223	0.031	0.077	6.90E-01	-0.198	0.029	1.12E-11	-0.155	0.389	6.90E-01	8.79E-01
Stomach	HRAS	rs1870726	539648	A	G	0.223	0.031	0.077	6.90E-01	-0.422	0.062	1.15E-11	-0.073	0.183	6.90E-01	8.19E-01
Brain Putamen basal ganglia	TMEM80	rs10794333	693787	G	A	0.555	-0.017	0.042	6.93E-01	-0.954	0.103	2.59E-20	0.017	0.044	6.93E-01	6.36E-01
Brain Frontal Cortex BA9	TMEM80	rs10794333	693787	G	A	0.555	-0.017	0.042	6.93E-01	-0.789	0.091	$3.14 \mathrm{E}-18$	0.021	0.053	6.93E-01	6.45E-01
Esophagus Muscularis	CHID1	rs28439945	855318	C	T	0.749	0.030	0.077	6.95E-01	-0.237	0.038	3.56E-10	-0.127	0.324	6.96E-01	9.23E-01
Lung	PIDD	rs6597981	803017	G	A	0.510	-0.024	0.063	7.00E-01	0.352	0.028	2.52E-37	-0.069	0.179	7.00E-01	8.72E-01
Thyroid	PIDD	rs6597981	803017	G	A	0.510	-0.024	0.063	7.00E-01	0.301	0.025	1.48E-32	-0.081	0.209	7.00E-01	8.66E-01
Adipose Subcutaneous	PIDD	rs6597981	803017	G	A	0.510	-0.024	0.063	7.00E-01	0.375	0.032	$1.99 \mathrm{E}-31$	-0.065	0.168	7.00E-01	8.31E-01
Skin Sun Exposed Lower leg	PIDD	rs6597981	803017	G	A	0.510	-0.024	0.063	7.00E-01	0.266	0.023	$1.82 \mathrm{E}-30$	-0.091	0.237	7.00E-01	7.73E-01
Esophagus Mucosa	PIDD	rs6597981	803017	G	A	0.510	-0.024	0.063	7.00E-01	0.283	0.027	5.42E-25	-0.086	0.223	7.00E-01	7.24E-01
Skin Not Sun Exposed Suprapubic	PIDD	rs6597981	803017	G	A	0.510	-0.024	0.063	7.00E-01	0.259	0.029	9.76E-20	-0.094	0.243	7.00E-01	8.20E-01
Whole Blood	PIDD	rs6597981	803017	G	A	0.510	-0.024	0.063	7.00E-01	0.157	0.017	1.53E-19	-0.154	0.401	7.00E-01	9.43E-01
Cells Transformed fibroblasts	PIDD	rs6597981	803017	G	A	0.510	-0.024	0.063	7.00E-01	0.248	0.034	2.80E-13	-0.098	0.254	7.00E-01	7.39E-01
Muscle Skeletal	CHID1	rs111904243	857345	A	G	0.119	-0.042	0.109	7.00E-01	0.324	0.044	2.22E-13	-0.130	0.338	7.00E-01	9.81E-01
Heart Atrial Appendage	PIDD	rs6597981	803017	G	A	0.510	-0.024	0.063	7.00E-01	0.272	0.038	$1.25 \mathrm{E}-12$	-0.089	0.232	7.00E-01	7.79E-01
Stomach	PIDD	rs6597981	803017	G	A	0.510	-0.024	0.063	7.00E-01	0.211	0.036	5.16E-09	-0.115	0.300	7.01E-01	8.57E-01
Thyroid	IFITM5	rs7110174	296203	G	A	0.732	0.027	0.071	7.04E-01	-0.834	0.067	2.01E-35	-0.032	0.085	7.04E-01	5.10E-01
Skin Not Sun Exposed Suprapubic	ATHL1	rs7110174	296203	G	A	0.732	0.027	0.071	7.04E-01	0.463	0.042	8.57E-29	0.058	0.152	7.04E-01	2.77E-01
Cells Transformed fibroblasts	ATHL1	rs7110174	296203	G	A	0.732	0.027	0.071	7.04E-01	0.304	0.032	1.23E-21	0.088	0.232	7.04E-01	2.77E-01
Small Intestine Terminal Ileum	IFITM5	rs7110174	296203	G	A	0.732	0.027	0.071	7.04E-01	-1.124	0.128	$1.38 \mathrm{E}-18$	-0.024	0.063	$7.04 \mathrm{E}-01$	6.73E-01
Spleen	IFITM5	rs7110174	296203	G	A	0.732	0.027	0.071	7.04E-01	-0.997	0.119	4.26E-17	-0.027	0.071	7.04E-01	5.54E-01
Artery Coronary	IFITM5	rs7110174	296203	G	A	0.732	0.027	0.071	7.04E-01	-0.987	0.119	1.46E-16	-0.027	0.072	7.04E-01	5.82E-01
Small Intestine Terminal Ileum	ATHL1	rs7110174	296203	G	A	0.732	0.027	0.071	7.04E-01	0.404	0.065	5.59E-10	0.066	0.175	7.04E-01	7.87E-01
Heart Atrial Appendage	ATHL1	rs2242565	295343	A	G	0.741	0.026	0.070	7.08E-01	0.492	0.049	4.10E-24	0.053	0.142	7.09E-01	$2.77 \mathrm{E}-01$
Spleen	ATHL1	rs2242565	295343	A	G	0.741	0.026	0.070	7.08E-01	0.644	0.093	3.80E-12	0.040	0.108	7.09E-01	4.40E-01
Skin Not Sun Exposed Suprapubic	ANO9	rs7394572	432436	A	G	0.604	0.023	0.063	7.11E-01	-0.205	0.032	7.91E-11	-0.113	0.307	7.12E-01	4.93E-01
Minor Salivary Gland	TMEM80	rs12287651	676668	G	C	0.550	-0.015	0.041	7.14E-01	-0.572	0.087	5.06E-11	0.026	0.072	7.14E-01	4.25E-01
Thyroid	RNH1	rs1044707	491334	C	A	0.131	-0.033	0.091	7.15E-01	-0.287	0.044	7.01E-11	0.116	0.318	7.15E-01	7.95E-01
Nerve Tibial	RPLP2	rs7479101	802115	G	A	0.672	-0.024	0.066	7.19E-01	0.155	0.020	$2.44 \mathrm{E}-14$	-0.154	0.427	7.19E-01	4.44E-01
Adipose Subcutaneous	RPLP2	rs7479101	802115	G	A	0.672	-0.024	0.066	7.19E-01	0.139	0.023	1.18E-09	-0.172	0.480	7.19E-01	7.61E-01
Cells Transformed fibroblasts	HRAS	rs79808876	465763	A	C	0.130	-0.031	0.091	7.32E-01	-0.221	0.036	$1.02 \mathrm{E}-09$	0.141	0.412	7.32E-01	4.07E-01
Adipose Visceral Omentum	PTDSS2	rs79808876	465763	A	C	0.130	-0.031	0.091	7.32E-01	-0.347	0.057	$1.48 \mathrm{E}-09$	0.090	0.262	7.32E-01	6.49E-01
Adipose Subcutaneous	RNH1	rs79808876	465763	A	C	0.130	-0.031	0.091	7.32E-01	-0.232	0.040	4.61E-09	0.134	0.392	7.32E-01	8.47E-01
Brain Anterior cingulate cortex BA24	TMEM80	rs4963169	672934	G	A	0.550	-0.014	0.041	7.36E-01	-0.827	0.096	7.61E-18	0.017	0.050	7.36E-01	6.86E-01
Brain Caudate basal ganglia	TMEM80	rs4963169	672934	G	A	0.550	-0.014	0.041	7.36E-01	-0.747	0.088	$2.54 \mathrm{E}-17$	0.019	0.055	7.36E-01	6.08E-01
Brain Amygdala	TMEM80	rs4963169	672934	G	A	0.550	-0.014	0.041	7.36E-01	-0.820	0.110	7.06E-14	0.017	0.050	7.36E-01	2.86E-01

Lung	RIC8A	rs72878027	205021	G	c	0.220	-0.017	0.050	7.36E-01
Skin Sun Exposed Lower leg	CD151	rs72847212	834389	c	T	0.212	0.026	0.078	$7.40 \mathrm{E}-01$
Skin Not Sun Exposed Suprapubic	CD151	rs72847212	834389	c	T	0.212	0.026	0.078	7.40E-01
Adipose Subcutaneous	CD151	rs72847212	834389	c	T	0.212	0.026	0.078	$7.40 \mathrm{E}-01$
Esophagus Mucosa	LRRC56	rs7131513	500278	T	c	0.300	0.023	0.070	7.42E-01
Stomach	RNH1	rs35811812	498442	A	G	0.127	-0.029	0.091	7.52E-01
Brain Cerebellar Hemisphere	RNH1	386812	493068	G	A	0.48	-0.02	0.06	$7.55 \mathrm{E}-01$
Pancreas	IRF7	rs1061502	614318	c	T	0.273	0.022	0.070	7.56E-01
Esophagus Muscularis	TSPAN4	rs12577104	843927	G	A	0.818	-0.027	0.088	7.61E-01
Artery Tibial	TSPAN4	rs12577104	843927	G	A	0.818	-0.027	0.088	7.61E-01
Whole Blood	TSPAN4	rs12577104	843927	G	A	0.818	-0.02	0.08	7.61E-01
Heart Left Ventricle	TSPAN4	rs12577104	843927	G	A	0.818	-0.027	0.088	7.61E-01
Artery Tibial	RPLP2	rs28710291	805302	A	G	0.677	-0.019	0.066	7.70E-01
Esophagus Mucosa	RPLP2	rs28710291	805302	A	G	0.677	-0.019	0.066	7.70E-01
Skin Sun Exposed Lower leg	RPLP2	rs28710291	805302	A	G	0.677	-0.019	0.066	$7.70 \mathrm{E}-01$
Whole Blood	RNH1	rs71487293	486414	A	G	0.127	-0.026	0.091	7.78E-01
Nerve Tibial	PTDSS2	rs116101630	506826	C	G	0.127	-0.026	0.091	$7.79 \mathrm{E}-01$
Brain Cerebellar Hemisphere	PTDSS2	rs116101630	506826	c	G	0.127	-0.026	0.091	7.79E-01
Spleen	RNH1	rs116101630	506826	c	G	0.127	-0.026	0.091	7.79E-01
Adipose Visceral Omentum	RNH1	rs116101630	506826	c	G	0.127	-0.026	0.091	7.79E-01
Thyroid	deaf1	10902192	690462	C	A	0.676	-0.012	0.04	7.83E-01
Esophagus Gastroesophageal Junction	PTDSS2	rs34590039	517348	T	G	0.094	-0.025	0.091	$7.85 \mathrm{E}-01$
Adipose Subcutaneous	TSPAN4	rs12577118	844057	G	c	0.694	0.020	0.073	7.86E-01
Brain Cortex	NPLA2	7925131	820268	G	A	0.731	-0.01	0.072	7.87E-0
Brain Frontal Cortex BA9	PNPLA2	rs7925131	820268	G	A	0.731	-0.019	0.072	7.87E-01
Heart Left Ventricle	PNPLA2	rs7925131	820268	G	A	0.731	-0.019	0.072	7.87E-01
Colon Sigmoid	PTDSS	rs112273746	517369	C	T	0.127	-0.024	0.092	淮E-01
Colon Transverse	RNH1	rs112273746	517369	c	T	0.127	-0.024	0.092	7.93E-01
Adipose Subcutaneous	PTDSS2	rs112273746	517369	C	T	0.127	-0.024	0.092	7.93E-01
Artery Coronary	PTDSS2	rs112273746	517369	c	T	0.127	-0.02	0.092	7.93E-01
Skin Sun Exposed Lower leg	LRRC56	rs61876335	488878	C	T	0.128	-0.023	0.091	7.96E-01
Skin Sun Exposed Lower leg	POLR2L	rs28404903	841763	c	G	0.688	0.017	0.067	7.98E-01
Skin Not Sun Exposed Suprapubic	LRRC56	rs34834607	526707	c	T	0.120	0.025	0.097	7.98E-01
Brain Cortex	HRAS	rs12421457	505780	c	T	0.127	-0.023	0.091	8.00E-01
Brain Cortex	TMEM80	rs9667500	683761	A	G	0.549	-0.010	0.041	8.01E-01
Pancreas	DEAF1	rs9667500	683761	A	G	0.549	-0.010	0.041	8.01E-01
Brain Nucleus accumbens basal ganglia	TMEM80	rs9667500	683761	A	G	0.549	-0.010	0.041	8.01E-01
Colon Transverse	TMEM80	rs9667500	683761	A	G	0.549	-0.010	0.041	8.01E-01
Brain Hippocampus	TMEM80	rs9667500	683761	A	G	0.549	-0.010	0.041	$8.01 \mathrm{E}-01$
Prostate	TMEM80	rs9667500	683761	A	G	0.549	-0.010	0.041	8.01E-01
Nerve Tibial	RNH1	rs34300336	509648	c	A	0.308	0.016	0.066	8.03E-01
Esophagus Gastroesophageal Junction	CD151	rs28681202	834098	T	c	0.691	-0.017	0.069	8.07E-01
Colon Sigmoid	CD151	rs28681202	834098	T	c	0.691	-0.017	0.069	8.07E-01
Minor Salivary Gland	CD151	rs28681202	834098	T	c	0.691	-0.017	0.069	8.07E-0

$-0.279 \quad 0.030 \quad 3.56 \mathrm{E}-20$ $\begin{array}{lll}-0.343 & 0.031 & 2.12 \mathrm{E}-28\end{array}$ $\begin{array}{llll}-0.302 & 0.034 & 9.75 \mathrm{E}-19\end{array}$ $\begin{array}{llll}-0.228 & 0.026 & 5.55 \mathrm{E}-18\end{array}$ $-0.253 \quad 0.041 \quad 8.63 \mathrm{E}-10$ $-0.334 \quad 0.059 \quad 1.16 \mathrm{E}-08$ $-0.496 \quad 0.077 \quad 1.43 \mathrm{E}-10$ $\begin{array}{lll}0.451 & 0.066 & 8.23 \mathrm{E}-12\end{array}$ $-0.305 \quad 0.042 \quad 2.97 \mathrm{E}-13$ $\begin{array}{lll}-0.227 & 0.033 & 5.31 \mathrm{E}-12\end{array}$ $-0.304 \quad 0.047 \quad 6.90 \mathrm{E}-11$ $-0.219 \quad 0.036 \quad 7.55 \mathrm{E}-10$ $\begin{array}{lll}0.151 & 0.020 & 7.63 \mathrm{E}-14\end{array}$ $\begin{array}{lll}0.168 & 0.025 & 4.01 \mathrm{E}-11\end{array}$ $\begin{array}{lll}0.113 & 0.018 & 5.29 \mathrm{E}-10\end{array}$ $-0.210 \quad 0.035 \quad 2.74 \mathrm{E}-09$ $\begin{array}{lll}-0.411 & 0.048 & 1.56 \mathrm{E}-17\end{array}$ $\begin{array}{lll}-0.562 & 0.081 & 3.13 \mathrm{E}-12\end{array}$ $\begin{array}{llll}-0.435 & 0.067 & 8.74 \mathrm{E}-11\end{array}$ $\begin{array}{llll}0.330 & 0.052 & 2.70 \mathrm{E}-10\end{array}$ $-0.187 \quad 0.025 \quad 1.07 \mathrm{E}-13$ $-0.646 \quad 0.080 \quad 7.84 \mathrm{E}-16$ $\begin{array}{lll}-0.236 & 0.033 & 1.16 \mathrm{E}-12\end{array}$ $\begin{array}{lll}-0.670 & 0.068 & 7.60 \mathrm{E}-23\end{array}$ $\begin{array}{lll}-0.826 & 0.098 & 4.13 \mathrm{E}-17\end{array}$ $-0.207 \quad 0.038 \quad 3.85 \mathrm{E}-08$ $\begin{array}{llll}-0.534 & 0.076 & 1.48 \mathrm{E}-12\end{array}$ $\begin{array}{llll}-0.396 & 0.057 & 3.08 \mathrm{E}-12\end{array}$ $\begin{array}{lll}-0.313 & 0.050 & 2.83 \mathrm{E}-10\end{array}$ $\begin{array}{lll}-0.487 & 0.077 & 2.82 \mathrm{E}-10\end{array}$ $\begin{array}{lll}0.458 & 0.057 & 8.55 \mathrm{E}-16\end{array}$ $\begin{array}{llll}0.127 & 0.020 & 3.21 \mathrm{E}-10\end{array}$ $\begin{array}{llll}0.650 & 0.073 & 3.28 \mathrm{E}-19\end{array}$ $\begin{array}{lll}-0.483 & 0.070 & 5.17 \mathrm{E}-12\end{array}$ $-0.852 \quad 0.087 \quad 1.32 \mathrm{E}-22$ $-0.707 \quad 0.073 \quad 4.05 \mathrm{E}-22$ $-0.894 \quad 0.094 \quad 1.18 \mathrm{E}-21$ $\begin{array}{lll}-0.472 & 0.053 & 2.76 \mathrm{E}-19\end{array}$ $\begin{array}{lll}-0.887 & 0.102 & 2.83 \mathrm{E}-18\end{array}$ $\begin{array}{lll}-0.657 & 0.083 & 1.88 \mathrm{E}-15\end{array}$ $\begin{array}{lll}-0.235 & 0.028 & 1.57 \mathrm{E}-17\end{array}$ $\begin{array}{lll}0.629 & 0.051 & 2.58 \mathrm{E}-35\end{array}$ $\begin{array}{lll}0.663 & 0.056 & 7.78 \mathrm{E}-33\end{array}$ $0.422 \quad 0.068 \quad 4.47 \mathrm{E}-10$
$\begin{array}{llll}0.060 & 0.180 & 7.36 \mathrm{E}-01 & 9.37 \mathrm{E}-03\end{array}$ $\begin{array}{llll}-0.076 & 0.228 & 7.40 \mathrm{E}-01 & 1.00 \mathrm{E}+00\end{array}$ $\begin{array}{llll}0.086 & 0.260 & 7.40 \mathrm{E}-01 & 9.99 \mathrm{E}-01\end{array}$ $\begin{array}{llll}-0.114 & 0.344 & 7.40 \mathrm{E}-01 & 9.95 \mathrm{E}-01\end{array}$ $\begin{array}{llll}-0.091 & 0.278 & 7.43 \mathrm{E}-01 & 1.82 \mathrm{E}-01\end{array}$ $\begin{array}{llll}0.087 & 0.274 & 7.52 \mathrm{E}-01 & 5.55 \mathrm{E}-01\end{array}$ $0.042 \quad 0.134 \quad 7.55 \mathrm{E}-01 \quad 7.12 \mathrm{E}-01$ $\begin{array}{llll}0.048 & 0.155 & 7.56 \mathrm{E}-01 & 4.62 \mathrm{E}-01\end{array}$ $\begin{array}{llll}0.088 & 0.289 & 7.61 \mathrm{E}-01 & 9.61 \mathrm{E}-01\end{array}$ $\begin{array}{llll}0.118 & 0.388 & 7.61 \mathrm{E}-01 & 9.26 \mathrm{E}-01\end{array}$ $0.088 \quad 0.290 \quad 7.61 \mathrm{E}-01 \quad 9.98 \mathrm{E}-01$ $0.123 \quad 0.403 \quad 7.61 \mathrm{E}-01 \quad 9.57 \mathrm{E}-01$ $\begin{array}{lllll}-0.128 & 0.439 & 7.70 \mathrm{E}-01 & 5.55 \mathrm{E}-01\end{array}$ $0.115 \quad 0.396 \quad 7.71 \mathrm{E}-01 \quad 6.74 \mathrm{E}-01$ $\begin{array}{llll}0.172 & 0.588 & 7.71 \mathrm{E}-01 & 4.77 \mathrm{E}-01\end{array}$ $\begin{array}{llll}0.122 & 0.434 & 7.78 \mathrm{E}-01 & 6.74 \mathrm{E}-01\end{array}$ $\begin{array}{llll}0.063 & 0.223 & 7.79 \mathrm{E}-01 & 3.96 \mathrm{E}-01\end{array}$ $\begin{array}{lllll}0.046 & 0.163 & 7.79 \mathrm{E}-01 & 5.73 \mathrm{E}-01\end{array}$ $0.059 \quad 0.210 \quad 7.79 \mathrm{E}-01 \quad 4.78 \mathrm{E}-01$ $\begin{array}{llll}0.078 & 0.277 & 7.79 \mathrm{E}-01 & 7.48 \mathrm{E}-01\end{array}$ $\begin{array}{llll}0.065 & 0.237 & 7.83 \mathrm{E}-01 & 7.10 \mathrm{E}-01\end{array}$ $0.039 \quad 0.142 \quad 7.85 \mathrm{E}-01 \quad 8.80 \mathrm{E}-01$ $\begin{array}{llll}-0.084 & 0.309 & 7.86 \mathrm{E}-01 & 9.80 \mathrm{E}-01\end{array}$ $0.029 \quad 0.107 \quad 7.88 \mathrm{E}-01 \quad 7.58 \mathrm{E}-01$ $\begin{array}{llll}0.023 & 0.087 & 7.88 \mathrm{E}-01 & 8.54 \mathrm{E}-01\end{array}$ $\begin{array}{lllll}0.094 & 0.348 & 7.88 \mathrm{E}-01 & 8.26 \mathrm{E}-01\end{array}$ $\begin{array}{llll}0.045 & 0.172 & 7.93 \mathrm{E}-01 & 6.77 \mathrm{E}-01\end{array}$ $\begin{array}{llll}0.061 & 0.232 & 7.93 \mathrm{E}-01 & 8.05 \mathrm{E}-01\end{array}$ $\begin{array}{llll}0.077 & 0.294 & 7.93 \mathrm{E}-01 & 6.87 \mathrm{E}-01\end{array}$ $\begin{array}{llll}0.050 & 0.189 & 7.93 \mathrm{E}-01 & 6.40 \mathrm{E}-01\end{array}$ $\begin{array}{llll}0.051 & 0.198 & 7.96 \mathrm{E}-01 & 1.87 \mathrm{E}-01\end{array}$ $\begin{array}{llll}0.136 & 0.529 & 7.98 \mathrm{E}-01 & 9.16 \mathrm{E}-01\end{array}$ $0.038 \quad 0.149 \quad 7.98 \mathrm{E}-01 \quad 2.85 \mathrm{E}-01$ $0.048 \quad 0.189 \quad 8.00 \mathrm{E}-01 \quad 4.58 \mathrm{E}-01$ $0.012 \quad 0.048 \quad 8.01 \mathrm{E}-01 \quad 4.00 \mathrm{E}-01$ $\begin{array}{lllll}0.015 & 0.058 & 8.01 \mathrm{E}-01 & 5.79 \mathrm{E}-01\end{array}$ $0.012 \quad 0.046 \quad 8.01 \mathrm{E}-01 \quad 3.54 \mathrm{E}-01$ $0.022 \quad 0.087 \quad 8.01 \mathrm{E}-01 \quad 7.06 \mathrm{E}-01$ $0.012 \quad 0.046 \quad 8.01 \mathrm{E}-01 \quad 5.40 \mathrm{E}-01$ $0.016 \quad 0.063 \quad 8.01 \mathrm{E}-01 \quad 4.99 \mathrm{E}-01$ $0.070 \quad 0.281 \quad 8.03 \mathrm{E}-01 \quad 9.53 \mathrm{E}-01$ $\begin{array}{llll}0.027 & 0.109 & 8.07 \mathrm{E}-01 & 1.00 \mathrm{E}+00\end{array}$ $\begin{array}{llll}-0.025 & 0.104 & 8.07 \mathrm{E}-01 & 1.00 \mathrm{E}+00\end{array}$ $-0.040 \quad 0.163 \quad 8.07 \mathrm{E}-01 \quad 1.00 \mathrm{E}+00$

Vagina	CD151	rs28681202	834098	T	C	0.691	-0.017	0.069	8.07E-01	0.436	0.075	5.09E-09	-0.039	0.158	8.07E-01	$1.00 \mathrm{E}+00$
Liver	CD151	rs1130680	838424	T	C	0.662	0.016	0.068	8.11E-01	0.628	0.067	8.01E-21	0.026	0.108	8.12E-01	9.60E-01
Adrenal Gland	PTDSS2	rs34612778	458441	C	G	0.097	-0.021	0.091	8.21E-01	-0.625	0.104	1.86E-09	0.033	0.146	8.21E-01	8.79E-01
Thyroid	ANO9	rs10794325	441806	A	C	0.613	-0.014	0.064	8.26E-01	-0.340	0.033	2.99E-25	0.042	0.190	8.26E-01	7.23E-01
Spleen	ANO9	rs10794325	441806	A	C	0.613	-0.014	0.064	8.26E-01	-0.415	0.066	3.13E-10	0.034	0.155	8.26E-01	7.31E-01
Minor Salivary Gland	ANO9	rs10794325	441806	A	C	0.613	-0.014	0.064	8.26E-01	-0.598	0.098	1.02E-09	0.024	0.108	$8.26 \mathrm{E}-01$	6.73E-01
Whole Blood	C11orf35	rs28650290	559964	T	C	0.072	-0.026	0.117	8.26E-01	0.429	0.075	$1.20 \mathrm{E}-08$	-0.060	0.273	$8.27 \mathrm{E}-01$	9.11E-01
Esophagus Mucosa	DRD4	rs12272314	590648	G	A	0.273	0.015	0.070	8.29E-01	-0.329	0.044	6.72E-14	-0.046	0.213	$8.29 \mathrm{E}-01$	5.44E-01
Whole Blood	ANO9	rs7482616	449811	G	A	0.614	-0.014	0.064	8.30E-01	-0.114	0.020	$2.44 \mathrm{E}-08$	0.121	0.565	8.30E-01	1.70E-01
Cells Transformed fibroblasts	IFITM1	rs61876261	356080	C	T	0.417	-0.014	0.066	8.33E-01	-0.311	0.034	6.90E-20	0.044	0.211	8.33E-01	4.85E-01
Nerve Tibial	IFITM1	rs61876261	356080	C	T	0.417	-0.014	0.066	8.33E-01	-0.193	0.030	7.25E-11	0.072	0.340	8.33E-01	5.95E-01
Cells Transformed fibroblasts	IFITM3	rs61876261	356080	C	T	0.417	-0.014	0.066	8.33E-01	-0.172	0.027	1.41E-10	0.081	0.382	8.33E-01	6.52E-01
Skin Not Sun Exposed Suprapubic	PHRF1	rs7101726	599313	C	T	0.272	0.015	0.070	8.33E-01	-0.191	0.034	2.25E-08	-0.077	0.367	8.33E-01	$3.25 \mathrm{E}-01$
Nerve Tibial	POLR2L	rs1130719	838760	A	T	0.687	0.014	0.067	8.37E-01	-0.131	0.020	1.09E-10	-0.106	0.513	8.37E-01	9.24E-01
Lung	RPLP2	rs1135628	823809	G	C	0.236	0.015	0.076	8.40E-01	-0.203	0.025	9.27E-16	-0.075	0.373	8.40E-01	6.56E-01
Thyroid	RPLP2	rs1135628	823809	G	C	0.236	0.015	0.076	8.40E-01	-0.170	0.025	7.08E-12	-0.090	0.446	$8.41 \mathrm{E}-01$	6.91E-01
Adipose Visceral Omentum	CD151	rs7114218	831122	T	C	0.693	-0.014	0.069	8.43E-01	0.291	0.035	8.62E-17	-0.047	0.236	8.43E-01	8.42E-01
Thyroid	IRF7	rs7933436	658511	T	C	0.551	-0.008	0.041	$8.45 \mathrm{E}-01$	-0.232	0.036	9.84E-11	0.035	0.178	$8.45 \mathrm{E}-01$	6.34E-01
Brain Putamen basal ganglia	RIC8A	rs7930823	206767	A	G	0.307	0.009	0.045	8.46E-01	0.377	0.067	1.99E-08	0.023	0.119	8.46E-01	1.38E-02
Pancreas	ANO9	rs7102822	439879	A	G	0.395	-0.012	0.064	8.49E-01	-0.463	0.064	3.96E-13	0.026	0.139	$8.49 \mathrm{E}-01$	8.28E-01
Muscle Skeletal	CD151	rs4075290	830487	T	C	0.694	-0.013	0.069	8.52E-01	0.499	0.036	6.84E-44	-0.026	0.138	8.52E-01	$1.00 \mathrm{E}+00$
Pituitary	HRAS	rs35068485	466032	T	A	0.128	-0.017	0.091	8.53E-01	-0.663	0.091	2.53E-13	0.025	0.137	8.54E-01	4.54E-01
Esophagus Muscularis	RNH1	rs35068485	466032	T	A	0.128	-0.017	0.091	8.53E-01	-0.310	0.044	$1.79 \mathrm{E}-12$	0.054	0.293	$8.54 \mathrm{E}-01$	7.63E-01
Whole Blood	TMEM80	rs7928943	698253	T	A	0.172	0.016	0.085	8.54E-01	0.371	0.033	5.24E-30	0.042	0.230	$8.54 \mathrm{E}-01$	9.92E-01
Pancreas	TMEM80	rs7928943	698253	T	A	0.172	0.016	0.085	8.54E-01	0.771	0.076	5.00E-24	0.020	0.111	8.54E-01	9.85E-01
Cells Transformed fibroblasts	RNH1	rs7480899	438459	C	T	0.801	0.014	0.078	8.59E-01	0.306	0.040	$2.75 \mathrm{E}-14$	0.045	0.256	$8.59 \mathrm{E}-01$	$3.61 \mathrm{E}-01$
Heart Atrial Appendage	HRAS	rs71487291	486027	C	T	0.116	-0.016	0.093	8.60E-01	-0.388	0.057	1.13E-11	0.042	0.241	8.60E-01	4.27E-01
Colon Transverse	PTDSS2	rs71487291	486027	C	T	0.116	-0.016	0.093	8.60E-01	-0.455	0.071	1.17E-10	0.036	0.205	8.60E-01	8.82E-01
Ovary	PNPLA2	rs12574605	885330	A	C	0.495	0.011	0.063	8.60E-01	-0.473	0.085	2.77E-08	-0.023	0.134	8.60E-01	9.09E-01
Esophagus Mucosa	PHRF1	rs7936397	577534	A	G	0.268	0.012	0.071	8.61E-01	-0.283	0.039	$4.04 \mathrm{E}-13$	-0.044	0.250	8.61E-01	3.10E-01
Uterus	TMEM80	rs11246269	698626	T	C	0.172	0.014	0.085	8.66E-01	0.918	0.127	4.87E-13	0.016	0.093	8.66E-01	9.49E-01
Esophagus Muscularis	PTDSS2	rs35996687	458595	A	G	0.116	-0.015	0.094	8.69E-01	-0.609	0.064	1.20E-21	0.025	0.154	8.69E-01	7.77E-01
Brain Putamen basal ganglia	HRAS	rs35996687	458595	A	G	0.116	-0.015	0.094	8.69E-01	-0.474	0.082	6.23E-09	0.033	0.197	8.69E-01	8.00E-01
Adrenal Gland	TSPAN4	rs9704922	842775	A	G	0.205	-0.013	0.081	8.69E-01	0.855	0.094	8.48E-20	-0.016	0.094	8.69E-01	9.99E-01
Artery Aorta	NLRP6	rs77447196	280464	G	C	0.219	-0.008	0.053	8.74E-01	-0.422	0.069	$1.12 \mathrm{E}-09$	0.020	0.127	$8.74 \mathrm{E}-01$	6.89E-02
Whole Blood	CD151	rs28648546	833327	G	A	0.738	-0.011	0.071	$8.75 \mathrm{E}-01$	0.778	0.039	$1.13 \mathrm{E}-86$	-0.014	0.092	$8.75 \mathrm{E}-01$	9.99E-01
Lung	CD151	rs28648546	833327	G	A	0.738	-0.011	0.071	8.75E-01	0.518	0.034	$1.68 \mathrm{E}-51$	-0.022	0.138	8.75E-01	9.99E-01
Testis	CD151	rs28648546	833327	G	A	0.738	-0.011	0.071	8.75E-01	0.574	0.039	3.56E-49	-0.020	0.124	8.75E-01	9.99E-01
Nerve Tibial	CD151	rs28648546	833327	G	A	0.738	-0.011	0.071	8.75E-01	0.498	0.034	4.00E-48	-0.023	0.143	8.75E-01	9.97E-01
Cells Transformed fibroblasts	CD151	rs28648546	833327	G	A	0.738	-0.011	0.071	8.75E-01	0.471	0.037	3.89E-37	-0.024	0.152	8.75E-01	9.99E-01
Ovary	CD151	rs28648546	833327	G	A	0.738	-0.011	0.071	8.75E-01	0.633	0.083	2.90E-14	-0.018	0.113	8.75E-01	9.99E-01
Brain Nucleus accumbens basal ganglia	CD151	rs28648546	833327	G	A	0.738	-0.011	0.071	8.75E-01	0.504	0.081	5.56E-10	-0.022	0.142	8.75E-01	9.88E-01
Artery Coronary	CD151	rs28648546	833327	G	A	0.738	-0.011	0.071	8.75E-01	0.279	0.050	$2.44 \mathrm{E}-08$	-0.040	0.256	$8.75 \mathrm{E}-01$	9.91E-01
Esophagus Muscularis	RPLP2	rs28360884	802902	G	T	0.677	-0.010	0.067	8.77E-01	0.186	0.028	$2.43 \mathrm{E}-11$	-0.055	0.358	8.77E-01	5.65E-01

Heart Atrial Appendage	RPLP2	rs28360884	802902	G	T	0.677	-0.010	0.067	8.77E-01
Whole Blood	PTDSS2	rs12419157	494141	C	T	0.123	-0.014	0.093	8.80E-01
Artery Tibial	CHID1	rs10794339	900929	G	C	0.546	-0.009	0.066	8.87E-01
Artery Aorta	CD151	rs28507856	833975	T	G	0.694	-0.009	0.069	8.91E-01
Uterus	CD151	rs28507856	833975	T	G	0.694	-0.009	0.069	8.91E-01
Colon Transverse	CD151	rs7127272	835719	G	A	0.259	0.010	0.071	8.93E-01
Stomach	ANO9	rs11246166	496924	C	G	0.617	0.008	0.066	$8.99 \mathrm{E}-01$
Lung	ANO9	rs11246166	496924	C	G	0.617	0.008	0.066	8.99E-01
Thyroid	PTDSS2	rs12419209	494510	C	T	0.131	-0.011	0.090	9.05E-01
Cells Transformed fibroblasts	CHID1	rs12799446	877869	C	T	0.515	-0.007	0.063	9.05E-01
Lung	CHID1	rs12799446	877869	C	T	0.515	-0.007	0.063	9.05E-01
Colon Transverse	CHID1	rs12799446	877869	C	T	0.515	-0.007	0.063	9.05E-01
Esophagus Gastroesophageal Junction	CHID1	rs72479392	897981	T	C	0.093	0.014	0.115	9.05E-01
Brain Cortex	PIDD	rs6597978	817286	C	G	0.565	0.008	0.064	9.06E-01
Artery Tibial	CD151	rs28454516	833828	A	G	0.686	-0.008	0.070	9.07E-01
Prostate	CD151	rs28454516	833828	A	G	0.686	-0.008	0.070	9.07E-01
Pituitary	CHID1	rs12420667	888533	T	G	0.505	-0.007	0.063	9.07E-01
Adrenal Gland	CD151	rs7924806	833668	T	C	0.688	-0.008	0.069	9.07E-01
Spleen	CD151	rs7924806	833668	T	c	0.688	-0.008	0.069	9.07E-01
Small Intestine Terminal Ileum	CD151	rs7924806	833668	T	C	0.688	-0.008	0.069	9.07E-01
Muscle Skeletal	POLR2L	rs6591	840363	T	C	0.533	0.007	0.064	$9.11 \mathrm{E}-01$
Heart Atrial Appendage	CHID1	rs7125550	883479	C	G	0.495	0.007	0.063	9.11E-01
Pancreas	RNH1	rs10751659	437559	T	C	0.799	-0.008	0.077	9.14E-01
Esophagus Mucosa	POLR2L	rs7117701	835622	G	A	0.690	-0.007	0.068	9.14E-01
Esophagus Mucosa	CD151	rs1130276	831809	G	T	0.743	-0.007	0.071	9.25E-01
Heart Left Ventricle	CD151	rs1130276	831809	G	T	0.743	-0.007	0.071	9.25E-01
Cells EBV-transformed lymphocytes	CD151	rs1130276	831809	G	T	0.743	-0.007	0.071	9.25E-01
Breast Mammary Tissue	CD151	rs1130276	831809	G	T	0.743	-0.007	0.071	9.25E-01
Brain Spinal cord cervical c-1	CD151	rs1130276	831809	G	T	0.743	-0.007	0.071	9.25E-01
Brain Hippocampus	CD151	rs1130276	831809	G	T	0.743	-0.007	0.071	9.25E-01
Skin Not Sun Exposed Suprapubic	POLR2L	rs5030778	836008	C	T	0.691	0.006	0.068	9.27E-01
Heart Atrial Appendage	PTDSS2	rs12418264	524371	T	C	0.124	0.008	0.094	$9.28 \mathrm{E}-01$
Esophagus Mucosa	CHID1	rs7479057	879081	C	T	0.485	0.006	0.063	9.30E-01
Lung	RNH1	rs12421266	537120	T	C	0.129	0.008	0.094	9.30E-01
Brain Putamen basal ganglia	CD151	rs61876748	833262	G	T	0.736	-0.006	0.071	9.32E-01
Cells Transformed fibroblasts	EFCAB4A	rs61876748	833262	G	T	0.736	-0.006	0.071	9.32E-01
Heart Left Ventricle	PTDSS2	rs61877780	531165	C	A	0.098	0.007	0.094	9.43E-01
Stomach	CD151	rs6762	838722	C	T	0.258	0.005	0.071	9.47E-01
Muscle Skeletal	PTDSS2	rs61877795	537502	T	C	0.129	0.006	0.094	9.47E-01
Thyroid	CD151	rs7947543	833728	G	A	0.688	-0.004	0.069	9.55E-01
Esophagus Muscularis	CD151	rs7947543	833728	G	A	0.688	-0.004	0.069	9.55E-01
Small Intestine Terminal Ileum	CHID1	rs36002505	859915	T	C	0.506	-0.003	0.063	9.63E-01
Colon Transverse	PIDD	rs7121646	800485	A	T	0.542	-0.003	0.064	$9.64 \mathrm{E}-01$
Heart Atrial Appendage	CD151	rs28448654	833898	C	T	0.689	-0.003	0.069	9.67E-01

$\begin{array}{lll}0.228 & 0.038 & 1.56 \mathrm{E}-09\end{array}$ $\begin{array}{lll}-0.245 & 0.042 & 7.57 \mathrm{E}-09\end{array}$ $0.173 \quad 0.025 \quad 3.01 \mathrm{E}-12$ $\begin{array}{lll}0.356 & 0.051 & 4.74 \mathrm{E}-12\end{array}$ $0.373 \quad 0.063 \quad 3.48 \mathrm{E}-09$ $\begin{array}{lll}-0.646 & 0.054 & 1.37 \mathrm{E}-33\end{array}$ $\begin{array}{lll}-0.262 & 0.039 & 2.51 \mathrm{E}-11\end{array}$ $-0.233 \quad 0.035 \quad 5.07 \mathrm{E}-11$ $\begin{array}{lll}-0.363 & 0.045 & 7.12 \mathrm{E}-16\end{array}$ $\begin{array}{lll}-0.321 & 0.045 & 8.22 \mathrm{E}-13\end{array}$ $-0.199 \quad 0.028 \quad 1.09 \mathrm{E}-12$ $-0.269 \quad 0.049 \quad 3.44 \mathrm{E}-08$ $\begin{array}{llll}0.532 & 0.094 & 1.45 \mathrm{E}-08\end{array}$ $0.294 \quad 0.053 \quad 3.67 \mathrm{E}-08$ $\begin{array}{lll}0.384 & 0.029 & 4.30 \mathrm{E}-40\end{array}$ $\begin{array}{lll}0.744 & 0.089 & 4.66 \mathrm{E}-17\end{array}$ $\begin{array}{lll}0.396 & 0.055 & 6.01 \mathrm{E}-13\end{array}$ $\begin{array}{lll}0.811 & 0.065 & 1.18 \mathrm{E}-35\end{array}$ $0.679 \quad 0.066 \quad 7.32 \mathrm{E}-25$ $0.407 \quad 0.047 \quad 8.63 \mathrm{E}-18$ $-0.196 \quad 0.026 \quad 3.34 \mathrm{E}-14$ $-0.244 \quad 0.044 \quad 2.96 \mathrm{E}-08$ $\begin{array}{lll}0.369 & 0.062 & 2.40 \mathrm{E}-09\end{array}$ $\begin{array}{lll}0.333 & 0.030 & 2.63 \mathrm{E}-29\end{array}$ $\begin{array}{lll}0.790 & 0.052 & 2.85 \mathrm{E}-52\end{array}$ $0.501 \quad 0.043 \quad 7.05 \mathrm{E}-31$ $\begin{array}{lll}0.894 & 0.102 & 2.25 \mathrm{E}-18\end{array}$ $0.259 \quad 0.033 \quad 6.06 \mathrm{E}-15$ $\begin{array}{lll}0.640 & 0.088 & 3.73 \mathrm{E}-13\end{array}$ $0.522 \quad 0.075 \quad 4.06 \mathrm{E}-12$ $\begin{array}{lll}0.191 & 0.028 & 1.01 \mathrm{E}-11\end{array}$ $\begin{array}{lll}-0.435 & 0.067 & 1.06 \mathrm{E}-10\end{array}$ $0.333 \quad 0.038 \quad 1.62 \mathrm{E}-18$ $\begin{array}{lll}-0.320 & 0.039 & 1.71 \mathrm{E}-16\end{array}$ $\begin{array}{lll}0.762 & 0.083 & 5.97 \mathrm{E}-20\end{array}$ $\begin{array}{lll}0.515 & 0.066 & 7.18 \mathrm{E}-15\end{array}$ $\begin{array}{lll}-0.410 & 0.073 & 1.83 \mathrm{E}-08\end{array}$ $\begin{array}{lll}-0.496 & 0.053 & 6.73 \mathrm{E}-21\end{array}$ $-0.287 \quad 0.053 \quad 4.86 \mathrm{E}-08$ $0.820 \quad 0.038 \quad 5.64 \mathrm{E}-105$ $\begin{array}{lll}0.589 & 0.035 & 6.52 \mathrm{E}-65\end{array}$ $\begin{array}{lll}0.414 & 0.074 & 1.87 \mathrm{E}-08\end{array}$ $\begin{array}{lll}0.231 & 0.037 & 2.84 \mathrm{E}-10\end{array}$ $0.642 \quad 0.051 \quad 1.16 \mathrm{E}-36$
$\begin{array}{llll}-0.045 & 0.292 & 8.77 \mathrm{E}-01 & 5.31 \mathrm{E}-01\end{array}$ $\begin{array}{llll}0.057 & 0.378 & 8.80 \mathrm{E}-01 & 7.99 \mathrm{E}-01\end{array}$ $-0.054 \quad 0.382 \quad 8.87 \mathrm{E}-01 \quad 9.93 \mathrm{E}-01$ -0.027 $0.193 \quad 8.91 \mathrm{E}-01 \quad 9.98 \mathrm{E}-01$ $-0.025 \quad 0.184 \quad 8.91 \mathrm{E}-01 \quad 1.00 \mathrm{E}+00$ $\begin{array}{llll}-0.015 & 0.110 & 8.93 \mathrm{E}-01 & 1.00 \mathrm{E}+00\end{array}$ $0.032 \quad 0.250 \quad 8.99 \mathrm{E}-01 \quad 6.33 \mathrm{E}-01$ $\begin{array}{llll}-0.036 & 0.282 & 8.99 \mathrm{E}-01 & 2.70 \mathrm{E}-01\end{array}$ $0.030 \quad 0.248 \quad 9.05 \mathrm{E}-01 \quad 7.43 \mathrm{E}-01$ $0.023 \quad 0.196 \quad 9.05 \mathrm{E}-01 \quad 9.80 \mathrm{E}-01$ $0.038 \quad 0.315 \quad 9.05 \mathrm{E}-01 \quad 9.10 \mathrm{E}-01$ $0.028 \quad 0.234 \quad 9.05 \mathrm{E}-01 \quad 9.96 \mathrm{E}-01$ $0.026 \quad 0.215 \quad 9.05 \mathrm{E}-01 \quad 9.98 \mathrm{E}-01$ $0.026 \quad 0.219 \quad 9.06 \mathrm{E}-01 \quad 6.40 \mathrm{E}-01$ $\begin{array}{llll}-0.021 & 0.183 & 9.07 \mathrm{E}-01 & 9.94 \mathrm{E}-01\end{array}$ -0.011 0.095 9.07E-01 $1.00 \mathrm{E}+00$ $0.019 \quad 0.160 \quad 9.07 \mathrm{E}-01 \quad 9.87 \mathrm{E}-01$ $-0.010 \quad 0.085 \quad 9.07 \mathrm{E}-01 \quad 9.99 \mathrm{E}-01$ $-0.012 \quad 0.101 \quad 9.07 \mathrm{E}-01 \quad 1.00 \mathrm{E}+00$ $\begin{array}{llll}0.020 & 0.169 & 9.07 E-01 & 1.00 \mathrm{E}+00\end{array}$ $0.037 \quad 0.329 \quad 9.11 \mathrm{E}-01 \quad 9.99 \mathrm{E}-01$ $\begin{array}{llll}-0.029 & 0.259 & 9.11 \mathrm{E}-01 & 6.82 \mathrm{E}-01\end{array}$ $-0.023 \quad 0.209 \quad 9.14 \mathrm{E}-01 \quad 6.28 \mathrm{E}-01$ $0.022 \quad 0.205 \quad 9.14 \mathrm{E}-01 \quad 9.99 \mathrm{E}-01$ $0.009 \quad 0.090 \quad 9.25 \mathrm{E}-01 \quad 9.96 \mathrm{E}-01$ $-0.013 \quad 0.142 \quad 9.25 \mathrm{E}-01 \quad 9.98 \mathrm{E}-01$ $-0.008 \quad 0.080 \quad 9.25 \mathrm{E}-01 \quad 9.98 \mathrm{E}-01$ $0.026 \quad 0.276 \quad 9.25 \mathrm{E}-01 \quad 9.97 \mathrm{E}-01$ $\begin{array}{llll}-0.011 & 0.112 & 9.25 \mathrm{E}-01 & 9.76 \mathrm{E}-01\end{array}$ $-0.013 \quad 0.137 \quad 9.25 \mathrm{E}-01 \quad 9.70 \mathrm{E}-01$ $\begin{array}{llll}0.032 & 0.353 & 9.27 \mathrm{E}-01 & 9.69 \mathrm{E}-01\end{array}$ $\begin{array}{llll}-0.019 & 0.217 & 9.28 \mathrm{E}-01 & 7.34 \mathrm{E}-01\end{array}$ $0.017 \quad 0.189 \quad 9.30 \mathrm{E}-01 \quad 9.23 \mathrm{E}-01$ $\begin{array}{lllll}-0.026 & 0.295 & 9.30 \mathrm{E}-01 & 8.11 \mathrm{E}-01\end{array}$ $-0.008 \quad 0.094 \quad 9.32 \mathrm{E}-01 \quad 9.99 \mathrm{E}-01$ $\begin{array}{llll}-0.012 & 0.139 & 9.32 \mathrm{E}-01 & 9.96 \mathrm{E}-01\end{array}$ $-0.016 \quad 0.229 \quad 9.43 \mathrm{E}-01 \quad 9.08 \mathrm{E}-01$ $\begin{array}{llll}0.010 & 0.144 & 9.47 \mathrm{E}-01 & 9.98 \mathrm{E}-01\end{array}$ $-0.022 \quad 0.329 \quad 9.47 \mathrm{E}-01 \quad 6.92 \mathrm{E}-01$ $-0.005 \quad 0.084 \quad 9.55 \mathrm{E}-01 \quad 1.00 \mathrm{E}+00$ $\begin{array}{llll}-0.007 & 0.117 & 9.55 \mathrm{E}-01 & 1.00 \mathrm{E}+00\end{array}$ $\begin{array}{llll}-0.007 & 0.153 & 9.63 \mathrm{E}-01 & 9.67 \mathrm{E}-01\end{array}$ $\begin{array}{lllll}-0.013 & 0.279 & 9.64 \mathrm{E}-01 & 8.39 \mathrm{E}-01\end{array}$ $-0.004 \quad 0.107 \quad 9.67 \mathrm{E}-01 \quad 9.98 \mathrm{E}-01$

Pituitary	CD151	rs28448654	833898	C	T	0.689	-0.003	0.069	9.67E-01	0.803	0.072	3.74E-29	-0.003	0.086	9.67E-01	9.99E-01
Adipose Subcutaneous	POLR2L	rs28448654	833898	C	T	0.689	-0.003	0.069	$9.67 \mathrm{E}-01$	-0.163	0.021	$1.88 \mathrm{E}-15$	0.017	0.421	$9.67 \mathrm{E}-01$	$1.00 \mathrm{E}+00$
Brain Cerebellar Hemisphere	CD151	rs28448654	833898	C	T	0.689	-0.003	0.069	$9.67 \mathrm{E}-01$	0.498	0.075	$2.43 \mathrm{E}-11$	-0.006	0.138	$9.67 \mathrm{E}-01$	9.53E-01
Brain Substantia nigra	CD151	rs28448654	833898	C	T	0.689	-0.003	0.069	9.67E-01	0.791	0.120	$4.79 \mathrm{E}-11$	-0.004	0.087	9.67E-01	7.92E-01
Whole Blood	POLR2L	rs28448654	833898	C	T	0.689	-0.003	0.069	9.67E-01	-0.159	0.024	$4.04 \mathrm{E}-11$	0.018	0.432	9.67E-01	$1.00 \mathrm{E}+00$
Whole Blood	IFITM3	rs10398	308180	G	A	0.193	0.003	0.080	9.70E-01	0.525	0.064	$1.74 \mathrm{E}-16$	0.006	0.153	9.70E-01	8.50E-01
Adrenal Gland	PIDD	rs7117921	800486	T	C	0.542	-0.002	0.065	$9.76 \mathrm{E}-01$	0.323	0.044	$1.69 \mathrm{E}-13$	-0.006	0.200	$9.76 \mathrm{E}-01$	7.22E-01
Heart Left Ventricle	PIDD	rs7117921	800486	T	C	0.542	-0.002	0.065	$9.76 \mathrm{E}-01$	0.244	0.037	$4.44 \mathrm{E}-11$	-0.008	0.265	$9.76 \mathrm{E}-01$	8.61E-01
Breast Mammary Tissue	RPLP2	rs7117921	800486	T	C	0.542	-0.002	0.065	$9.76 \mathrm{E}-01$	0.127	0.023	$1.86 \mathrm{E}-08$	-0.015	0.507	$9.76 \mathrm{E}-01$	7.96E-01
Brain Hypothalamus	CD151	rs74194353	833138	T	C	0.687	0.002	0.069	$9.76 \mathrm{E}-01$	0.536	0.091	4.35E-09	0.004	0.128	$9.76 \mathrm{E}-01$	9.38E-01
Adipose Visceral Omentum	TMEM80	rs7928305	695842	A	G	0.175	-0.001	0.060	9.82E-01	0.697	0.054	3.08E-38	-0.002	0.086	9.82E-01	9.49E-01
Spleen	TMEM80	rs7928305	695842	A	G	0.175	-0.001	0.060	9.82E-01	0.926	0.086	$9.14 \mathrm{E}-27$	-0.001	0.065	9.82E-01	9.12E-01
Brain Nucleus accumbens basal ganglia	EPS8L2	rs76431003	707025	A	G	0.204	0.002	0.082	$9.84 \mathrm{E}-01$	0.632	0.104	$1.24 \mathrm{E}-09$	0.003	0.130	9.84E-01	9.35E-01
Cells Transformed fibroblasts	DRD4	rs72844713	606770	T	C	0.079	0.002	0.126	9.90E-01	-0.617	0.101	8.78E-10	-0.002	0.203	9.90E-01	6.62E-01
Nerve Tibial	DRD4	rs72844713	606770	T	C	0.079	0.002	0.126	9.90E-01	-0.453	0.073	$4.92 \mathrm{E}-10$	-0.003	0.277	9.90E-01	6.05E-01
Skin Sun Exposed Lower leg	RIC8A	rs1976848	201584	A	T	0.214	-0.001	0.052	9.90E-01	-0.236	0.033	8.46E-13	0.003	0.221	9.90E-01	1.75E-02

Supplementary Table 9: Heritability estimates computed using GCTA and PCGC.

GCTA estimate of heritability ascribed to common variation across all autosomes

Chromosomes	German-GWAS		USA-GWAS		Meta-analysis			
	$h^{2}(\pm$ S.E.)	P value	$\mathrm{h}^{2}(\pm$ S.E.)	P value	$\mathrm{h}^{2}(\pm$ S.E.)	P value	1^{2}	$\mathrm{P}_{\text {het }}$
Autosomes	0.336 (± 0.058)	3.30E-09	0.237 ($\pm 0.054)$	4.94E-06	0.279 (± 0.044)	$3.14 \mathrm{E}-10$	20.68	$2.62 \mathrm{E}-01$

S.E., standard error.

GCTA estimate of heritability ascribed to common variation across all autosomes adjusted for incomplete LD between causal SNPs and those used to compute tI

MAF threshold	German-GWAS		USA-GWAS		Meta-analysis			
	$\mathrm{h}^{2}(\pm$ S.E.)	P value	$\mathrm{h}^{2}(\pm$ S.E.)	P value	$\mathrm{h}^{2}(\pm$ S.E.)	P value	1^{2}	$\mathrm{P}_{\text {het }}$
0.5	0.326 ($\pm 0.058)$	4.94E-06	0.237 ($\pm 0.054)$	4.94E-06	0.279 (± 0.044)	3.06E-10	20.58	$2.62 \mathrm{E}-01$
0.4	$0.308(\pm 0.058)$	4.74E-06	0.241 ($\pm 0.054)$	4.74E-06	0.273 ($\pm 0.040)$	5.34E-12	0.00	3.98E-01
0.3	$0.301(\pm 0.056)$	7.46E-06	$0.232(\pm 0.053)$	7.46E-06	0.265 ($\pm 0.039)$	6.56E-12	0.00	$3.71 \mathrm{E}-01$
0.2	0.294 ($\pm 0.051)$	$1.31 \mathrm{E}-06$	$0.238(\pm 0.050)$	$1.31 \mathrm{E}-06$	0.265 ($\pm 0.036)$	1.53E-13	0.00	$4.36 \mathrm{E}-01$
0.1	0.217 ($\pm 0.040)$	$1.65 \mathrm{E}-03$	$0.118(\pm 0.040)$	$1.65 \mathrm{E}-03$	0.168 ($\pm 0.049)$	6.92E-04	67.45	7.96E-02

S.E., standard error.

GCTA estimate of heritability ascribed to common variation on each autosome

Chromosome	German-GWAS		USA-GWAS		Meta-analysis			
	$\mathrm{h}^{2}(\pm$ S.E.)	P value	$\mathrm{h}^{2}(\pm$ S.E.)	P value	$\mathrm{h}^{2}(\pm$ S.E.)	P value	1^{2}	$\mathrm{P}_{\text {het }}$
1	0.035 ($\pm 0.018)$	NA	0.000 (± 0.015)	NA	0.016 ($\pm 0.018)$	3.53E-01	57.14	$1.27 \mathrm{E}-01$
2	$0.021(\pm 0.018)$	NA	$0.041(\pm 0.017)$	NA	$0.031(\pm 0.012)$	9.67E-03	0.00	4.06E-01
3	$0.035(\pm 0.017)$	NA	$0.026(\pm 0.015)$	NA	0.030 (± 0.011)	7.62E-03	0.00	6.84E-01
4	$0.010(\pm 0.015)$	NA	$0.009(\pm 0.014)$	NA	$0.009(\pm 0.010)$	$3.52 \mathrm{E}-01$	0.00	9.37E-01
5	$0.000(\pm 0.014)$	NA	$0.020(\pm 0.014)$	NA	$0.010(\pm 0.010)$	$3.31 \mathrm{E}-01$	0.00	3.30E-01
6	$0.036(\pm 0.016)$	NA	$0.000(\pm 0.008)$	NA	$0.016(\pm 0.018)$	$3.73 \mathrm{E}-01$	75.10	4.51E-02
7	$0.051(\pm 0.016)$	NA	$0.001(\pm 0.013)$	NA	0.026 (± 0.025)	$3.08 \mathrm{E}-01$	83.49	$1.39 \mathrm{E}-02$
8	$0.000(\pm 0.012)$	NA	$0.025(\pm 0.014)$	NA	$0.012(\pm 0.012)$	3.40E-01	45.99	$1.74 \mathrm{E}-01$
9	$0.005(\pm 0.013)$	NA	$0.011(\pm 0.012)$	NA	$0.008(\pm 0.009)$	$3.60 \mathrm{E}-01$	0.00	7.49E-01
10	$0.024(\pm 0.015)$	NA	$0.000(\pm 0.012)$	NA	0.010 ($\pm 0.012)$	$3.73 \mathrm{E}-01$	35.66	2.13E-01
11	$0.001(\pm 0.013)$	NA	$0.018(\pm 0.012)$	NA	0.009 ($\pm 0.009)$	$2.88 \mathrm{E}-01$	0.00	3.33E-01
12	$0.023(\pm 0.014)$	NA	$0.002(\pm 0.012)$	NA	$0.011(\pm 0.010)$	$2.92 \mathrm{E}-01$	22.09	2.57E-01
13	$0.015(\pm 0.012)$	NA	$0.009(\pm 0.011)$	NA	$0.012(\pm 0.008)$	$1.54 \mathrm{E}-01$	0.00	7.21E-01
14	$0.008(\pm 0.012)$	NA	$0.013(\pm 0.010)$	NA	$0.011(\pm 0.008)$	$1.64 \mathrm{E}-01$	0.00	7.21E-01
15	$0.014(\pm 0.011)$	NA	$0.004(\pm 0.010)$	NA	$0.009(\pm 0.007)$	2.29E-01	0.00	$4.92 \mathrm{E}-01$
16	$0.031(\pm 0.012)$	NA	$0.016(\pm 0.010)$	NA	$0.022(\pm 0.008)$	6.02E-03	0.00	3.61E-01
17	$0.001(\pm 0.011)$	NA	$0.014(\pm 0.009)$	NA	$0.008(\pm 0.007)$	$2.38 \mathrm{E}-01$	0.00	3.37E-01
18	$0.013(\pm 0.011)$	NA	$0.022(\pm 0.011)$	NA	$0.017(\pm 0.008)$	$3.31 \mathrm{E}-02$	0.00	5.63E-01
19	$0.000(\pm 0.009)$	NA	$0.004(\pm 0.008)$	NA	$0.002(\pm 0.006)$	$7.08 \mathrm{E}-01$	0.00	7.52E-01
20	$0.000(\pm 0.010)$	NA	$0.000(\pm 0.009)$	NA	$0.000(\pm 0.007)$	9.79E-01	0.00	9.82E-01
21	$0.007(\pm 0.008)$	NA	$0.006(\pm 0.007)$	NA	$0.007(\pm 0.005)$	$2.08 \mathrm{E}-01$	0.00	9.26E-01
22	$0.002(\pm 0.008)$	NA	$0.005(\pm 0.007)$	NA	$0.004(\pm 0.005)$	4.61E-01	0.00	8.20E-01

S.E., standard error. GCTA does not compute P-values for individual chromosomes.

PCGC estimate of heritability ascribed to common variation across all autosomes

Chromosomes	German-GWAS		USA-GWAS		Meta-analysis			
	$\mathrm{h}^{2}(\pm$ S.E.)	P value	$\mathrm{h}^{2}(\pm$ S.E.)	P value	$\mathrm{h}^{2}(\pm$ S.E.)	P value	$1{ }^{2}$	$\mathbf{P}_{\text {het }}$
Autosomes	0.349 ($\pm 0.070)$	NA	0.185 (± 0.061)	NA	0.263 (± 0.082)	$1.32 \mathrm{E}-03$	68.03	7.69E-02

S.E., standard error. PCGC does not compute P-values.

Supplementary Table 10: Individual variance in risk associated with meningioma SNPs.

SNP	Reported	Locus	RAF	OR	\% risk
rs11012732	Previously reported	10 p12.31	0.35	1.31	2.68
rs2686876	First reported in this study	$11 p 15.5$	0.90	1.44	1.74
Total					4.42

$\overline{R A F}$, risk allele frequency; OR, odds ratio derived with respect to the risk allele.

[^0]: ${ }^{\text {a }} 7,720$ controls were sampled at random from 49,495 post-QC controls to ensure 1:10 case-control ratio

[^1]: Highlighted cells correspond to $P<2.01 \times 10^{-5}$, corresponding to $P<0.05$ with a Bonferroni correction for 2,491 tests (53 genes across 47 tissues).

