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Abstract

The intravoxel incoherent motion (IVIM) model for diffusion-weighted imaging (DWI)

MRI data bears much promise as a tool for visualizing tumours and monitoring treatment

response. To improve the currently poor precision of IVIM, several fit algorithms have

been suggested. In this work, we compared the performance of two Bayesian IVIM fit

algorithms and four other IVIM fit algorithms for pancreatic cancer imaging. DWI data

were acquired in 14 pancreatic cancer patients during two MRI examinations. Three dif-

ferent measures of performance of the fitting algorithms were assessed: (i) uniqueness

of fit parameters (Spearman’s rho); (ii) precision (within-subject coefficient of variation,

wCV); and (iii) contrast between tumour and normal-appearing pancreatic tissue. For

the diffusivity D and perfusion fraction f, a Bayesian fit (IVIM-Bayesian-lin) offered the

best trade-off between tumour contrast and precision. With the exception for IVIM-

Bayesian-lin, all algorithms resulted in a very poor precision of the pseudo-diffusion

coefficient D* with a wCV of more than 50%. The pseudo-diffusion coefficient D* of the

Bayesian approaches were, however, significantly correlated with D and f. Therefore,

the added value of fitting D* was considered limited in pancreatic cancer patients. The

easier implemented least squares fit with fixed D* (IVIM-fixed) performed similar to

IVIM-Bayesian-lin for f and D. In conclusion, the best performing IVIM fit algorithm was

IVM-Bayesian-lin, but an easier to implement least squares fit with fixed D* performs

similarly in pancreatic cancer patients.
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Introduction

The intravoxel incoherent motion (IVIM) model for diffusion-weighted imaging (DWI) data

obtained by MRI bears much promise as a tool to both visualise and characterize tumours and

to monitor treatment response (e.g. in radiotherapy or chemotherapy) [1–3]. Contrary to the

classical DWI model, in which signal attenuation is modelled monoexponentially as a function

of diffusion-weighting (b-value), the IVIM model predicts a biexponential decay, probing both

tissue diffusion and perfusion. Since the introduction of the IVIM model [4], the non-mono-

exponential behaviour of DWI data in the pancreas was confirmed in multiple studies [1–3]

and related to the interplay between diffusion and perfusion [5,6]. Consequently, the IVIM

model has been used to delineate pancreatic cancer [3], characterise pancreatic lesions [1,2]

and enabled treatment response monitoring in other organs [7,8].

One major challenge for IVIM is the limited precision of its parameters and relatively noisy

perfusion maps [9–12]. To improve precision and obtain more homogenous maps, multiple

algorithms for fitting IVIM model have been proposed. The performance of IVIM fit algo-

rithms has been investigated in simulations [13–16] and volunteers[13,16] as well as several

pathologies, such as brain[17], breast[18,19], rectum[20] and prostate[21] cancers.

For abdominal imaging, including pancreatic imaging, it was shown that the Bayesian fit,

originally suggested by Neil and Bretthorst [22], gives the best results [23,24]. However, all

pancreatic studies comparing fit algorithms were based either on simulations[16], healthy vol-

unteer measurements [24] or in the healthy appearing liver tissue of patients with liver metas-

tasis [23]. In data from pancreatic cancer patients, fitting may be more challenging due to the

limited size of the tumour compared to the entire organ, lowered perfusion [1–3], and echo

planar imaging (EPI) artifacts that occur as a result of e.g. air–tissue boundaries, intratumoral

fiducials [25] or biliary stents [26]. Furthermore, the suggested Bayesian approaches are based

on a data-driven prior. As the prior is joint over the separate model parameters, it can drive

fits to certain combinations of fit parameter values, leading to strong artificial correlations

between parameters. Furthermore, it can drive data to the more frequent occurring values in

the prior (i.e. obtained in the larger healthy tissue), which has the potential to mask certain

(smaller) pathologies, resulting in i.e. a decreased tumour contrast [15,16]. Therefore, it is

important to assess the performance of such algorithms in cancer patients.

The objective of this exploratory study was to compare the performance of two Bayesian fit-

ting algorithms with four other established IVIM fitting algorithms for pancreatic cancer

imaging. We defined three criteria. First, for fitting parameters to render salient information,

they should render unique information and, hence, have a limited correlation between each

other. Second, in order to assess treatment response, the parameters from the fits should be

precise [13,18,19]. Third, to delineate/detect tumours, a parameter with a high contrast

between tumour and normal pancreatic tissue is desirable [27,28]. Prior-driven correlations

between fit parameters should be picked-up by testing the uniqueness. If Bayesian algorithms’

prior drives the parameters (in the tumour) to mean values (from healthy tissue), it will have a

decreased contrast. Finally, for Bayesian algorithms to have added value in monitoring treat-

ment response they should show increased precision.

Materials and methods

This prospective study (NCT01995240) was approved by the independent medical ethics com-

mittee of the Academic Medical Center Amsterdam (The Netherlands). All patients gave written

informed consent. Inclusion criteria were: histopathological confirmed locally advanced or met-

astatic pancreatic ductal adenocarcinoma, normal kidney function (eGFR>60) and no contra-

indication to undergoing MRI. Sixteen consecutive patients fulfilling these criteria and willing
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to participate were included. Patients were scanned on a 3T scanner (Philips Ingenia, Best, The

Netherlands; maximum gradient strength: 45 mT/m; maximum slew rate: 200T/m/s.) between

October 2014 and March 2016 at our institute. Data were acquired with a 16-channel phased-

array coil anterior 10-channel phased-array coil posterior to the patient. One patient dropped

out between scan sessions, and for one patient, the scans were stopped due to patient discom-

fort. Thus, data from fourteen patients were analysed (eight females, mean age 67 years old,

range 52–78, six males, mean age 70 years old, range 56–77). The same patient cohort was used

to assess the precision of competing DWI models, using least squares fitting [29].

Data acquisition

To enable assessment of inter-session and intra-session repeatability, all patients were scanned

three times during two separate sessions (average: 4.5 days apart, range: 1–8 days). To mini-

mise bowel motion hyoscine bromide (Buscopan, Boehringer, Ingelheim, Germany; 20 mg

IV) was administered directly before the first DWI acquisition in each session. The data from

the second acquisition within a session, for which no additional hyoscine bromide was admin-

istered right before scanning, were used for the intra-session analysis only.

For each patient, we acquired 2D multi-slice diffusion-weighted EPI data and contrast-

enhanced (CE) T1-weighted multi-echo spoiled gradient echo (T1W GE) data with Dixon

reconstruction (Table 1 shows imaging parameters). The T1W GE data were acquired 35s

after Gadovist 1.0 (Bayer Healthcare, Leverkusen, Germany) administration (0.1ml/kg; 5ml/s,

followed by 15 ml saline flush). DWI data were acquired in isotropic distributed directions per

b-value. A small FOV was used to improve bandwidth of the sequence and minimise deforma-

tions of the anatomy. As the TE (and hence signal to noise ratio) of all b-value acquisitions is

determined by the highest b-value acquisition, we chose to only acquire up to b = 600 s/mm2.

This choice was based on previous work[9] and is justified by the short T2 of pancreatic tissue

and the fact we are concentrating on the perfusion related effects on the signal present in signal

from b<150 s/mm2.

Table 1. Sequence parameters.

DWI T1W GE

FOV (RL × AP) (mm2) 432 × 108 400 × 353

Acquisition matrix 144 × 34 236 × 208

Slices 18 56

Slice thickness/gap (mm) 3.7/0.3 1.7/-

TR1/TE/ ΔTE (ms) >2200/45/- 4.7/1.15/1.0

FA (˚) 90 10

BW (Hz/voxel) 59 (phase direction) 1602 (frequency)

Parallel imaging 1.3 (AP) 2/1.5 (RL/AP)

Partial Fourier 0.8 no

Respiratory compensation Respiratory trigger (navigator) 1 breath hold

Fat saturation Gradient reversal during slice selection + SPIR Dixon reconstruction

b-values (s/mm2) and directions (between brackets)2 0 (15), 10 (9), 20 (9), 30 (9), 40 (9), 50 (9), 75 (4), 100 (12), 150 (4), 250 (4), 400 (4) and 600 (16)

Diffusion times δ/Δ (ms) 10.1/22.6

1TR of the DWI acquisition was determined by the respiratory trigger interval, but it was at least 2200 ms.
2 numbers between brackets indicate number of directions.

DWI, diffusion-weighted imaging; FOV, Field of view; RL, right-left; AP, anterior-posterior; ΔTE, increase in TE; FA, flip angle; BW, bandwidth per voxel; SPIR,

spectral presaturation with inversion recovery; δ, diffusion gradient time; Δ delay time between diffusion gradient onsets.

https://doi.org/10.1371/journal.pone.0194590.t001
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Post processing

All data analysis, fitting and statistical tests were performed in Matlab 2013a (MathWorks,

Natick, U.S.A.), except for the IVIM-Bayesian-log algorithm, which was implemented in DTI-

Tools for Mathematica [30], Mathematica 10.4.1 (Wolfram Research, Champaign, U.S.A.).

All DWI images were denoised using a Rician adaptive non-local means filter [31], devel-

oped for spatially varying noise due to i.e. parallel imaging, and registered in Elastix [32,33] S1

File for details).

We tested two Bayesian algorithms: IVIM-Bayesian-log [23,34] and IVIM-Bayesian-lin [24].

The IVIM-Bayesian-log was an implementation from the Bayesian approach described in detail

by Orton et al.[23], which we implemented in Mathematica (‘BayesianIVIMFit2’ from DTITools

[30], available at https://github.com/mfroeling/DTITools). The IVIM-Bayesian-lin used the

Matlab scripts from Barbieri et al. [24]. Both algorithms are described in detail in the referenced

articles. For IVIM-Bayesian-log the prior was defined over the transformed parameters f = log

(F)-log(1-F), d = log(D) and d� = log(D�), in order to constrain the parameters to a physical

domain. The prior was then set as a multivariate Gaussian distribution over these parameters.

For IVIM-Bayesian-lin, no log transformation was taken and the joint prior probability was set

to a uniform distribution over the restricted parameter space while no Gaussianity was assumed.

The Bayesian approaches were compared with four alternative fitting algorithms: IVIM-

free, IVIM-adaptive [35], IVIM-MLE [36] and IVIM-fixed (Table 2 for details). The IVIM-free

and IVIM-fixed fitting algorithms were implemented in Matlab using the ‘fit’ function from

the curve fitting toolbox. The ‘NonlinearLeastSquares’ method was used to apply a voxel-wise

non-linear least squares fit of the IVIM model to the DWI data. The IVIM-MLE used the

‘fit_mri’ function from the ‘fit MRI package’ toolbox from Poot et al. in Matlab [36] to apply a

voxel-wise maximum likelihood estimator based fit of the IVIM model to the DWI data.

All IVIM model fit algorithms converted the IVIM signal fractions into blood volume

fractions using the formula by Lemke et al. [6] (formula 2 in reference). This conversion

required using our TE = 45 ms and assuming a TR = 5000 ms (typical respiratory cycle), T1

= 725 ms and T2 = 43 ms for the pancreas and T1 = 1932 ms and T2 = 275 ms for blood

[37,38]. To improve precision [13], fit parameters were constrained in all fits as follow:

0.5×10−3<D<6×10−3 mm2/s, 6×10−3 <D�<200×10−3 mm2/s, 0.1<f<99%. D had no con-

straints in the IVIM-adaptive approach; IVIM-Bayesian-log had the following constraints:

D>0 mm2/s, D�>0 mm2/s and 0%<f<100%.

An abdominal radiologist (M.R.W.E., 9 years’ experience) and an abdominal imaging

researcher (R.K. 3 years’ experience) drew regions of interest (ROIs) in consensus using 3D

Slicer [39]. ROIs had a minimum size of 100 voxels and comprised a minimum of three slices.

Table 2. Fit algorithms.

Name Fit

IVIM-Bayesian-log

[23,34]

Data-driven Bayesian algorithm for which the prior is a fitted Gaussian in log-space to

confine parameters to relevant values

IVIM-Bayesian-lin [24] Data-driven Bayesian algorithm using boxcar functions with support over pre-defined

ranges as weakly informative priors.

IVIM-free Levenberg-Marquardt algorithm for a least squares fit

IVIM-adaptive [35] Adaptive threshold segmented fit

IVIM-MLE [36] Maximum likelihood estimator algorithm which assumed Rician noise

IVIM-fixed Levenberg-Marquardt algorithm for a least squares fit, except that D� was fixed to

70×10−3 mm2/s, which resulted in more stable fits in healthy volunteers [9] (value based

on volunteer data).

https://doi.org/10.1371/journal.pone.0194590.t002
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For each patient, two ROIs were created per scan, one containing pancreatic tumour tissue and

one containing normal-appearing pancreatic tissue. The ROIs were drawn on an ADC-map,

generated from b = 0 s/mm2 and 600 s/mm2, under the guidance of CE T1W GE images. ROIs

were drawn freely and care was taken to include as much tumour or normal pancreatic tissue in

the ROI as could be reliably determined based on imaging characteristics. The mean value of

the voxel-wise fits within the ROIs was calculated. Figs 1–3 shows an example of an ROI.

In the data-driven Bayesian algorithms used, fits were done per patient and their priors

were defined using all voxels within the ROI used for fitting. If the entire FOV would be

included, the prior would consist of a lot of different tissue types and the prior might be con-

taminated with other types of tissue. Therefore a new ROI was defined within which the Bayes-

ian algorithms were plotted. To incorporate sufficient voxels within this ROI to estimate the

prior, a researcher (O.J.G) delineated a very rough outline of the entire pancreas and tumour,

including parts of the neighbouring organs, to be fitted by the Bayesian algorithms. After fit-

ting to data within the rough ROI, the abovementioned well-defined ROIs, delineated in con-

sensus by the experienced radiologist, were applied.

Comparison of methods

To spot any shortcoming the Bayesian approaches might display, we quantitatively evaluated

the performance of the six IVIM model fitting algorithms for pancreatic cancer imaging con-

sidering the following three factors. To identify any prior-driven correlations between fit

parameters we assess parameter uniqueness. To evaluate whether Bayesian algorithms could

have added value in monitoring treatment outcome, it’s precision is tested. Finally, to test

whether Bayesian algorithms prior drives parameters to a mean value, the contrast between

tumour and normal-appearing pancreatic tissue is assessed.

Uniqueness. We used a Spearman’s rank correlation test between the fit parameters to

examine the unique nature of the fit parameters (significance level α = 0.05). For this purpose,

only fit parameters from the first acquisition per patient are considered. Fit parameter combi-

nations with significant Spearman’s rho indicate both parameter values are significantly corre-

lated and hence determining both parameters has limited added value.

Precision. From the repeated measures we calculated the inter- and intra-session within-

subject coefficient of variation (wCV) of the tumour ROI as a measure of precision [40]. A low

wCV indicates stable parameter values without intervention, which is desirable for treatment

response monitoring. Per parameter, Wilcoxon signed-rank tests tested whether the remaining

parameters had significantly higher wCV than the parameter with lowest wCV. The Wilcoxon

signed-rank test was performed over the squared differences of the repeated measure (m1 and

m2), divided by the squared mean (μ) of the population for that parameter: (m1-m2)2/μ2 (sig-

nificance level α = 0.05).

Tumour contrast. As noise is poorly defined in an IVIM model parameter map, it

was challenging to obtain contrast to noise ratio. Therefore, contrast was calculated as the

difference in parameter value between the tumour and normal-appearing pancreas. To

normalize the contrast to some reference, such that contrast in D (in the order of 10−4)

can be compared with contrast in f (in the order of 0.1), the difference is divided by the

mean parameter value and multiplied by 100%. Hence, contrast was defined as the per-

centage difference in parameter value between tumour and normal-appearing pancreas

tissue. A higher tumour contrast indicates a parameter enables for better distinguishing

between tumour and normal-appearing pancreatic tissue. To test whether parameters had

significantly lower contrast than the parameter with the highest contrast, a Wilcoxon

signed-rank test was performed over the contrasts per patient (significance level α = 0.05).

Comparison of six fit algorithms for IVIM in pancreatic cancer patients
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Finally, we plotted precision (inter-session wCV) as a function of contrast.

Results

In two out of forty-two acquisitions it was not possible to delineate the tumour in the repeated

intra-session scan. Therefore, intra-session wCVs were determined using twelve patients. In

Fig 1. Example parameter maps from a pancreatic cancer patient. Axial parameter maps of the fit parameters of six

IVIM model fit algorithms in a 60-year-old female with pancreatic adenocarcinoma in the pancreas tail. ROIs containing

pancreatic tumour are shown. The CE T1W GE is added as a reference. Note that for the Bayesian approaches, not all

voxels were fitted, as including more voxels will influence the prior. This patient had D, f and D� between 1.1–1.5×10−3

mm2/s, 1.1–2.1% and 116–989×10−3 mm2/s respectively. The yellow highlights the high D� values fitted in IVIM-Bayesian-

log, compared to the other fit algorithms.

https://doi.org/10.1371/journal.pone.0194590.g001
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one patient, no normal-appearing pancreatic tissue was present in all repeated images and in

two patients no normal-appearing pancreatic tissue was present in one of the scan sessions.

Therefore, tumour contrast was based on thirteen patients (of which 2 had only healthy tissue

in 1 scan session). The mean mask sizes were 7.6 cm3 = 210 voxels, range 3.0–23.5 cm3) for the

Fig 2. Example parameter maps from a pancreatic cancer patient. Axial parameter maps of the fit parameters of six IVIM

model fit algorithms in a 61-year-old female with pancreatic adenocarcinoma in the pancreas corpus. ROIs containing

pancreatic tumour are shown. The CE T1W GE is added as a reference. Note that for the Bayesian approaches, not all voxels

were fitted, as including more voxels will influence the prior. This patient had D, f and D� between 1.3–1.5×10−3 mm2/s,

2.1–6.6% and 43–98×10−3 mm2/s respectively. The green arrow highlights the higher f found in IVIM-Bayesian compared to

the other algorithms.

https://doi.org/10.1371/journal.pone.0194590.g002
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tumour ROIs and 4.2 cm3 = 118 voxels, range 1.3–8.1 cm3) for the normal-appearing pancre-

atic tissue ROIs.

Parameter maps were generated for all fit algorithms (Figs 1–3). Table A in S3 File shows

the average fitted parameter values. The IVIM-Bayesian-log algorithm gave different

Fig 3. Example parameter maps from a pancreatic cancer patient. Axial parameter maps of the fit parameters of six

IVIM model fit algorithms in a 71-year-old male with pancreatic adenocarcinoma in the pancreas tail. ROIs containing

pancreatic tumour are shown. The CE T1W GE is added as a reference. Note that for the Bayesian approaches, not all

voxels were fitted, as including more voxels will influence the prior. This patient had D, f and D� between 1.0–1.3×10−3

mm2/s, 2.0–14.9% and 15–70×10−3 mm2/s respectively. The green arrow highlights the higher f found in IVIM-Bayesian

compared to the other algorithms. The blue arrows highlight the lower f in IVIM-Bayesian-lin and IVIM-fix.

https://doi.org/10.1371/journal.pone.0194590.g003
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parameter values than the other algorithms, in particular for f and D�. For example, f from

IVIM-Bayesian-log was 7.56%, whereas it was 2.56–4.98% for all other algorithms in tumour

tissue (highlighted i.e. by the green arrow in Figs 2 and 3) and D� was 208×10−3 mm2/s (i.e.

highlighted by the yellow arrow in Fig 1), compared to 61.1–83.5×10−3 mm2/s for all other

algorithms. Furthermore, f was often lower in IVIM-fixed and IVIM-Bayesian-lin than in the

other algorithms (i.e. blue arrows in Fig 3).

Uniqueness

There was a significant correlation for D&D� and f&D� of IVIM-Bayesian-log, IVIM-Baye-

sian-lin and IVIM-adaptive, indicating that the D� parameter is of limited added value in these

algorithms (Table 3, Fig 4). There were no significant D&D� and f&D� for the IVIM-free and

IVIM-MLE approach. D&f showed no significant correlation for any of the fit algorithms.

Despite being non-significant for D&f (p = 0.084–0.104), Spearman’s rho was up to a factor

five higher for D&f from the Bayesian algorithms (absolute values 0.45–0.48) compared to

D&f from the non-Bayesian algorithms (absolute values 0.09–0.22).

Precision

The inter-session wCVs (Table 4) were on average 30% larger than the intra-session wCVs

(Table B in S3 File), indicating a larger test-retest variation when scans are repeated on sepa-

rate days compared to repeated in the same scan session. IVIM-Bayesian-lin had most repeat-

able f and D�, and the wCV for D was not significantly higher (worse) than the best wCV for D

(IVIM-fixed; Table 4). IVIM-fixed had most repeatable D, and its f did not have significantly

worse repeatability than IVIM-Bayesian-lin.

Tumour contrast

IVIM-Bayesian-lin showed the highest contrast for both D and f, with f having significantly

more contrast (contrast = 93.7%) than f from all other algorithms (Table 5). For all algorithms

the contrast in f was much (7–96 times) larger than the contrast in D. The contrast in D� was

highest in IVIM-adaptive but of the same order of magnitude as the inter-session wCV of D�.

Ideally, a parameter has a high contrast and a low wCV. When wCV is plotted as function

of contrast (Fig 5), it is apparent that f from IVIM-Bayesian-lin has the overall best relation

between contrast and wCV, followed closely by f from IVIM-fix. When D is of interest, again

IVIM-Bayesian-lin shows the overall best trade-off between wCV and contrast. D� shows a

poor trade-off between wCV and contrast. It is interesting to note that IVIM-Bayesian-lin has

a relatively low wCV and contrast in D� compared to the other algorithms.

Table 3. Uniqueness.

Spearman’s rho p-value

D&f D&D� f&D� D&f D&D� f&D�

IVIM-Bayesian-log -0.48 0.68 � -0.81 � 0.084 0.009 <0.001

IVIM-Bayesian-lin 0.45 0.61 � 0.67 � 0.104 0.022 0.011

IVIM-free -0.09 0.45 0.24 0.762 0.112 0.417

IVIM-adaptive 0.12 0.57 � 0.59 � 0.682 0.035 0.030

IVIM-MLE 0.10 0.37 0.47 0.739 0.192 0.904

IVIM-fixed 0.22 0.454

� = significant correlation (p<0.05)

https://doi.org/10.1371/journal.pone.0194590.t003
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Discussion

We evaluated the performance of two Bayesian fit algorithms for the IVIM model and com-

pared them with four other fit algorithms in patients with pancreatic cancer. We established

the uniqueness and precision of the fit parameters, and the contrast between tumour and nor-

mal-appearing pancreatic tissue. Considering both D and f, the IVIM-Bayesian-lin performed

best as it exhibited the highest contrast for both parameters and had the highest precision for f

while having similar precision for D compared to the other algorithms. IVIM-Bayesian-lin

showed a significant correlation between D� and the other fit parameters. Yet, for all other

algorithms, the added value of pseudo-diffusion coefficient D� was also limited, as the preci-

sion was low (IVIM-Bayesian-log, IVIM-free, IVIM-adaptive and IVIM-MLE) and/or the

parameter was correlated to f and D (IVIM-Bayesian-log, IVIM-Bayesian-lin and IVIM-adap-

tive). The other Bayesian algorithm (IVIM-Bayesian-log) performed worst of all considering

uniqueness (D&f, D&D�, f&D�), precision (D, f, D�) and contrast (f). This stresses the impor-

tance of testing fit algorithms in patient data before implementing them clinically. The best

algorithm, IVIM-Bayesian-lin, did not significantly outperform IVIM-fixed, the second best

algorithm, considering both precision and contrast of f and D. So, all in all, IVIM-Bayesian-lin

is preferred, however, IVIM-fixed might be a strong, easier to implement, alternative to the

Bayesian algorithm.

For all IVIM fit algorithms, the tumour contrast was more prominent in the perfusion frac-

tion f, whereas diffusivity D was more precise. Whether D� has an added value for IVIM of

pancreatic cancer patients is debatable. For all non-Bayesian algorithms the precision of D� is

very poor and D� images look very noisy (Table 4, Figs 1–3). For all Bayesian algorithms, D�

had strong correlations with the other fit parameters (Table 3, Fig 4). This implies a limited

added value of D�. However, from Fig 4 suggests that to distinguish between tumour and

Fig 4. Correlations between fit parameters. Correlation between fit parameters D&f (left column), D&D� (middle

column) and f&D� (right column). For the parameter pairs with significant correlation according to Spearman’s rank

correlation, a linear regression line is plotted to the data from pancreatic cancer. The correlations were only tested using

pancreatic cancer tissue (dark red dots). Note that the D�-axis of IVIM-Bayesian-log is stretched to fit all data and hence

highlighted in red.

https://doi.org/10.1371/journal.pone.0194590.g004

Table 4. Precision of parameters.

Inter-session wCV p-value

Fit algorithms D f D� D f D�

IVIM-Bayesian-log 12.6 52.2 � 159.4 � 0.104 0.035 0.035

IVIM-Bayesian-lin 7.2 25.7 24.2 0.153 Best Best

IVIM-free 10.0 � 40.9 50.5 �� 0.030 0.463 0.007

IVIM-adaptive 8.5 � 34.4 51.9 � 0.020 0.104 0.017

IVIM-MLE 8.4 � 35.8 52.7 � 0.042 0.268 0.011

IVIM-fixed 6.7 28.7 Best 0.761

wCV, within-subject coefficient of variation.

In the left four columns show the wCV of the different parameters. The parameter with lowest wCV is printed bold. Stars indicate the parameters that were significantly

(�: p<0.05, ��: p<0.01)

worse (Wilcoxon signed-rank) than the best scoring parameter of the three groups (D, f, and D�).

The right three columns list the p-values of the Wilcoxon signed-rank test between the algorithm with lowest wCV (Best) of each parameter and the other algorithms.

Bold values indicate p-values belonging to significantly worse values.

https://doi.org/10.1371/journal.pone.0194590.t004
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healthy tissue, the combination of D� and f might help, where high D�+f relate to normal-

appearing tissue and low D�+f relate to tumours.

From the fit algorithms tested, IVIM-Bayesian-lin performed best considering precision

and tumour contrast (Tables 4 and 5, Fig 5). IVIM-Bayesian-lin showed the highest precision

for f and D� compared to the other algorithms, and the precision of D was not significantly

lower compared to the algorithm with the highest precision of D (IVIM-fixed). Furthermore,

the contrast between tumour and normal-appearing pancreatic tissue generated by f was sig-

nificantly higher than in all other algorithms. These findings are in agreement with earlier pub-

lished simulations and volunteer measurements [24].

Table 5. Contrast.

Contrast (%) p-value

Fit algorithms D f D� D f D�

IVIM-Bayesian-log 4.3 30.8 �� 36.4 0.080 <0.001 0.414

IVIM-Bayesian-lin 4.7 93.7 17.2 �� Best Best <0.001

IVIM-free 0.7 56.7 �� 50.5 0.305 <0.001 0.787

IVIM-adaptive 2.7 70.8 �� 52.9 0.685 <0.001 Best

IVIM-MLE 4.3 61.0 �� 47.8 0.216 <0.001 0.191

IVIM-fixed 0.9 87.8 �� 0.787 0.003

In the left four columns show the contrast between the pancreatic tumour and the normal-appearing tissue for the different parameters. The parameter with lowest

contrast is printed bold. Stars indicate the parameters that were significantly

(��: p<0.01)

worse (Wilcoxon signed-rank) than the best scoring parameter of the three groups

(D, f, and D�).

The right three columns list the p-values of the Wilcoxon signed-rank test between the algorithm with lowest wCV (Best) of each parameter and the other algorithms.

Bold values indicate p-values belonging to significantly worse values.

https://doi.org/10.1371/journal.pone.0194590.t005

Fig 5. wCV vs contrast. Plots of the inter-session wCV as a function of contrast between tumour and pancreatic tissue for the diffusion-related

parameter (blue) and other fit parameters (red, green). Bottom right graph has zoomed to low wCV and contrast to illustrate the trade-off for D.

https://doi.org/10.1371/journal.pone.0194590.g005
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However, IVIM-Bayesian-lin is not widely implemented. Therefore, IVIM-fixed may be a

good alternative (Tables 4 and 5, Fig 5). IVIM-fixed showed the highest precision of D, and the

precision in f was second best and not significantly worse than IVIM-Bayesian-lin. Also, the

contrast in f was second best, and though significant, it was only 7% lower than IVIM-Baye-

sian-lin. A disadvantage of IVIM-fixed is that no information on D� is obtained.

IVIM-Bayesian-log scored worst of all algorithms. We believe there are two reasons for

the discrepancy between the performances of both Bayesian approaches. First, contrary to

IVIM-Bayesian-lin, IVIM-Bayesian-log fitted a Gaussian distribution to the data-driven

prior which could centre the prior on parameter values typical for other tissues contained in

the ROI (i.e. around normal-appearing pancreatic values instead of tumorous values). Sec-

ondly, the log transforms in IVIM-Bayesian-log decrease the probability of low parameter

values as they are spread out in log space and, ultimately, a value of 0 will be impossible as it

translates to infinity in log-space. As pancreatic cancer is poorly perfused, this could have

played a large role in these patients. This is reflected in the relative high perfusion fraction

found for IVIM-Bayesian-log compared to the other fit algorithms and can be seen in Figs 2

and 3 (green arrow). In previous studies[15,23] IVIM-Bayesian-log performed better than

in our study. Compared with these studies, our in vivo perfusion fractions were low. In par-

ticular, the study by Orton et al. [23] showed the performance of IVIM-Bayesian-log only in

well perfused liver. Potentially, IVIM-Bayesian-log can perform better in well-perfused

tumours.

When one desires to perform treatment evaluation and response monitoring, two aspects

must be taken into account. First, the relevant model parameter needs to be measured with

high precision and hence a low wCV. Second, there should be a change in the parameter of

interest as a result of the treatment. Tissue diffusion has been reported as a good biomarker for

treatment response for e.g. responders to chemotherapy of colorectal hepatic metastasis had

increased diffusivity (1.41×10−3 mm2/s vs 1.15×10−3 mm2/s) [41]. The parameter with lowest

wCV was D of the IVIM-fixed fit approach (Table 4). The inter-session wCV of D from

IVIM-Bayesian-lin was similar (i.e. non-significant, 13% worse). Perfusion-related parameters

may be more sensitive to probe angiogenic changes as a result of therapy [7,8]. In such a situa-

tion, f or D� might probe changes. As D� was poorly repeatable or not unique in the tested

algorithms, f is considered here. IVIM-Bayesian-lin had the best precision in f (inter-session

wCV = 26%); however, IVIM-fixed had a very similar value (inter-session wCV = 26%). Both

are relatively high. Hence, when monitoring individual treatment response, one should be

aware of the limited precision of the perfusion-related parameters.

Bayesian algorithm for fitting may introduce a bias to the results [15,42]. From simulations

it was shown that the bias in IVIM-Bayesian-lin [24] as well as IVIM-Bayesian-log [16] was

low. In our results, we find that IVIM-Bayesian-lin gives parameter values in a similar range of

the parameter values from the non-Bayesian algorithms (Table A in S3 File) both in tumorous

tissue and normal-appearing pancreatic tissue. However, the IVIM-Bayesian-log gives very

different parameter values than the other tested algorithms (Table A in S3 File, green and yel-

low arrows in Figs 1–3). Therefore, we believe that IVIM-Bayesian-log can cause bias in the

results for pancreatic cancer patients. This is most likely a result of the Gaussian prior from the

log-transformed parameters, which made it hard to result in very low f. As a result, where f, in

reality, might be zero, the Bayesian fit will force it to non-zero values. To account for the fit

being forced bi-exponentially (non-zero f) while data might be described better mono-expo-

nentially, D� is increased by the fit algorithm. This is illustrated in Fig 4 (top right graph),

where low f data points have very high D� values, whereas patients with higher f values have

D� values similar to other algorithms.
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It was previously shown that fit constraints can improve the precision of fits [13]. To

have a fair comparison between fitting algorithms, we kept the fit constraints similar for

most algorithms. In IVIM-adaptive, D is determined only by a mono-exponential fit to

high b-values and hence more stable; therefore it was not constrained. In IVIM-Bayesian-

log the constraints are imposed by single, or double logarithmic transformations of the fit

parameters, limiting the constraint range. Our constraints were chosen heuristically. D was

not strongly constrained as this parameter has good precision. The constraints of f were

0.1–99%, as these values naturally occurred in the tissue. We constrained D� more sternly

(6×10−3–200×10−3 mm2/s). With the chosen lowest non-zero b-value of 10 s/mm2, we are

not able to accurately distinguish D�>200×10−3 mm2/s. The lower end of D� coincided

with the maximum for D. Potentially, parameters could have been constrained more than

in this work, to better guide the fits and find more reproducible results. For example, there

is a continuous set of options between fully fixing D� (IVIM-fix) and constraining it to a

narrower set within IVIM-free. Finding the ideal constraints falls outside the scope of this

research.

We believe that the good performance of IVIM-Bayesian-lin can be generalized to other

tumour sites. For the IVIM-Bayesian-lin approach, it was illustrated that it outperformed

several fit algorithms in healthy abdominal organs [24]. As the Bayesian approaches used

data-driven priors, the homogeneity of healthy organs can be favourable for these algo-

rithms. Although the heterogeneity of tumours could potentially decrease the performance,

we did not encounter such issues in this study. We believe this illustrates that it would be

the preferred algorithm for imaging of most tumour sites. A note needs to be added that

IVIM-Bayesian-lin might fail for very small tumours, as the contribution of the tumour to

the prior might be limited. In this case, the prior could be defined from data from multiple

patients. For larger organs, such as the liver, including the entire organ and its surroundings

to the prior (as done in pancreas patients, Figs 1–3) might cause the prior to be overly deter-

mined by non-tumorous tissue, which could also influence the performance.

Note that there was a large spread in parameter values among all algorithms, including

among the non-Bayesian algorithms, in particular for f (overall mean f: 2.60–4.98%). Specially,

in Fig 3 one can see a patient for which IVIM-Bayesian-log gives a very large f (14.9%; green

arrow) whereas the IVIM-fixed and IVIM-Bayesian-Lin give a low f (2.0–2.2%, blue arrows).

The other algorithms had intermediate f (4.4%–5.1%). This should be considered when com-

paring results from different studies using different fit algorithms.

Limitations

A limitation of this study was that the ROI delineations were based on CE T1W GE and ADC

maps from b = 0 and 600 s/mm2. Therefore, the tumorous ROI contained regions with low

perfusion (CE T1W GE, ADC-map) and, potentially, diffusion restriction (ADC-map). How-

ever, so far, this is considered the best way to delineate pancreatic tumours.

In this study, we chose to assess six fit algorithms. However, this list is not conclusive and

there are multiple other fit algorithms available. We believe the main streams of fit algorithms

are discussed in this work and we do not think other algorithms will greatly improve the

results compared to the ones presented in this work.

Furthermore, there are multiple competing models that might better describe DWI data in

the tumour than IVIM. It was shown that two mono-exponential fits worked equally well as a

bi-exponential fit for detecting treatment associated changes in parameter values after radio-

therapy of pancreatic cancer patients [29]. This was partially attributed to the fact that the bi-

exponential fit had poorer precision. However, this research was conducted using least squares
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fitting only and using Bayesian approach might improve the precision enough to detect more

significant changes.

Finally, we have only assessed the parameters in tumorous tissue and normal-appearing

pancreatic tissue. Possibly other tissues should be considered too when deciding which algo-

rithm to use, such as cystic and necrotic regions, and pancreatic or bile ducts.

Conclusions

The data-driven Bayesian algorithm IVIM-Bayesian-lin gives the best results for IVIM model-

ling of pancreatic cancer DWI data. This fit approach performed best considering the preci-

sion and contrast of most of the fit parameters. However, the added value of the D� estimate is

limited as it is strongly correlated to the values of D and f. Therefore, the easier implemented

least squares fit where D� is set to a fixed value prior to fitting the IVIM model to the DWI

data is a strong alternative as it had similar precision and contrast. The other tested Bayesian

fit algorithm, IVIM-Bayesian-log, performed worst of all tested algorithms. This result stresses

the importance of testing a Bayesian algorithm on the desired pathology before implementing

it clinically.
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