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Abstract	

	

Over	the	past	decade,	precision	cancer	medicine	has	driven	major	advances	in	the	

management	of	advanced	solids	tumours	with	the	identification	and	targeting	of	

putative	driver	aberrations	transforming	the	clinical	outcomes	across	multiple	cancer	

types.	Despite	pivotal	advances	in	the	characterization	of	genomic	landscape	of	

glioblastoma,	targeted	agents	have	shown	minimal	efficacy	in	clinical	trials	to	date,	

and	patient	survival	remains	poor.	Immunotherapy	strategies	similarly	have	had	

limited	success.	Multiple	deficiencies	still	exist	in	our	knowledge	of	this	complex	

disease,	and	further	research	is	urgently	required	to	overcome	these	critical	issues.	

This	review	traces	the	path	undertaken	by	the	different	therapeutics	assessed	in	

glioblastoma	and	the	impact	of	precision	medicine	in	this	disease.	We	highlight	

challenges	for	precision	medicine	in	glioblastoma,	focusing	on	the	issues	of	tumour	

heterogeneity,	pharmacokinetic-pharmacodynamic	optimization	and	outline	the	

modern	hypothesis-testing	strategies	being	undertaken	to	address	these	key	

challenges.	

	

	



Background		

	

Glioblastoma	(GBM,	WHO	Grade	IV	glioma)	is	the	most	common	primary	malignant	

tumour	of	the	CNS,	accounting	for	12-15%	of	all	intracranial	tumours	and	50-60%	of	

gliomas	1.	It	is	an	aggressive	and	incurable	disease	with	an	annual	age-adjusted	

incidence	rate	of	3.2	per	100,000	individuals	in	the	United	States	2,3	and	a	median	

survival	of	only	12	to	15	months,	even	with	optimal	treatment	4,5.	Current	standard	

of	care	involves	maximal	safe	surgical	resection,	followed	by	adjuvant	chemotherapy	

with	temozolomide	combined	with	radiotherapy	6,7.	Due	to	its	infiltrative	and	

invasive	nature,	the	disease	invariably	recurs,	and	progression	typically	occurs	after	

six	to	nine	months	5.	On	relapse,	treatments	options	are	limited,	with	minimal	

clinical	efficacy	7,	and	only	approximately	3-5%	of	patients	survive	longer	than	3	

years	8.	

	

Despite	recent	significant	progress	in	our	understanding	of	the	molecular	pathology	

of	gliomagenesis	and	the	epigenetics	of	GBM9,	as	yet	this	has	not	translated	

successfully	to	improved	clinical	outcomes.	There	is	extensive	inter-patient	cellular	

and	genetic	heterogeneity	in	GBM,	but	also	significant	intra-tumoral	heterogeneity,	

which	may	contribute	to	therapeutic	failure10–13.		Analysis	of	data	from	The	Cancer	

Genome	Atlas	(TCGA),	offering	insights	into	genetic	regulation	of	GBM,	has	led	to	the	

stratification	of	GBM	into	major	molecular	subgroups	with	recognised	signaling	

pathways	and	differing	prognostic	significance	14,15.		These	subgroups	-	proneural,	

classical,	and	mesenchymal	-	were	identified	using	transcriptional	tumour	profiling,	



and	are	based	on	dominant	genes	expressed	in	each	group.		The	classical	subgroup	is	

marked	by	amplifications	or	mutations	in	the	epidermal	growth	factor	receptor	

(EGFR)	in	over	95%	of	cases,	with	high	rates	of	concordant	amplification	in	

chromosome	7	and	deletions	of	chromosome	10	(93%),	and	a	complete	absence	of	

TP53	mutations	14,15.		The	proneural	subset	by	contrast	is	commonly	associated	with	

TP53	mutations	(54%)	and	isocitrate	dehydrogenase-1	(IDH-1)	mutations,	whilst	the	

mesenchymal	subtypes	have	a	high	rate	of	aberrations	in	NF1	signalling.		Overall,	the	

TCGA	data	demonstrated	that	most	GBMs	tumours	were	found	to	harbour	

alterations	in	common	oncogenic	pathways	receptor	tyrosine	kinase	(RTK)	signalling	

through	mutations/amplifications	in	receptors	such	as	EGFR	and	PDGFRA,	mutations	

in	downstream	partners	of	AKT	pathway	such	as	PI3K	and	PTEN	and	apoptosis	

signalling	through	mutations	in	p53,	and	cell	cycle	control	signalling	through	

alterations	in	CDKs	14,15.	Indeed,	57%	of	GBM	showed	evidence	of	mutation,	

rearrangement,	altered	splicing	and/or	focal	amplification	of	EGFR	14,15.			

	

However,	despite	evidence	of	biologically	distinct	transcriptional	profiles,	the	clinical	

relevance	of	these	subgroups	is	questionable.		Apart	from	the	observation	that	most	

secondary	GBMs	represent	the	proneural	subtype,	the	clinical	outcomes	of	each	

subgroup	are	similar,	with	a	slight	observed	survival	advantage	with	chemo-

radiotherapy	in	the	proneural	subgroup.		The	reality	is	that	the	impact	on	treatment	

and	prognoses	of	these	GBM	subgroups,	is	limited	by	genetic	landscape	of	these	

tumours	continually	evolving	at	a	remarkably	rapid	pace	16–18,	and	generating	an	

incredible	degree	of	cellular	complexity	and	heterogeneity	within	a	single	tumour	19–

21.	GBM	tumours	are	complex;	they	are	not	usually	defined	by	a	single	genetic	or	



molecular	alteration.		Consequently,	isolating	signalling	pathways	responsible	for	

GBM	oncogenesis	has	been	difficult,	and	therapeutic	outcomes	from	single-agent	

targeted	therapies	have	been	modest.		

Of	course,	further	glioma	classification	systems	exist,	and	as	of	the	2016	edition	of	

the	WHO	classification,	gliomas	are	classified	based	not	only	on	histopathologic	

appearance,	but	also	on	well-established	molecular	parameters	22.	The	incorporation	

of	molecular	features	has	most	notably	impacted	the	classification	of	astrocytic	and	

oligodendroglial	tumors,	which	are	now	grouped	together	as	diffuse	gliomas,	on	the	

basis	of	growth	pattern,	behavior,	and	shared	IDH-1	status.	Mutations	in	IDH1	and,	

less	commonly,	IDH2,	are	a	defining	feature	of	the	majority	of	WHO	grade	II	and	III	

diffuse	astrocytic	and	oligodendroglial	tumors	and	confer	significantly	improved	

prognosis	compared	with	IDH-wildtype	tumors23–25.		Meanwhile,	IDH-wildtype	GBM,	

WHO	grade	IV,	are	densely	cellular,	pleomorphic	tumors	with	either	microvascular	

proliferation	or	necrosis,	or	both,	and	include	a	number	of	histologic	variants,	

including	giant	cell	GBM,	gliosarcoma,	and	epithelioid	GBM	22.		IDH-mutant	GBMs	

conversely	comprise	approximately	10	percent	of	all	GBMs,	and	while	they	are	

histologically	similar	to	IDH-wildtype	GBM,	they	are	more	likely	to	contain	cells	with	

oligodendroglial	morphology	22,	occur	in	younger	adults	(mean	age	45	years)	and	

have	a	more	favorable	prognosis26,27.		This	recent	progress	in	the	classification	of	the	

different	types	of	glioma	is	indeed	encouraging,	and	while	these	advances	are	crucial	

to	ensure	that	gliomas	are	diagnosed	and	treated	accurately,	the	hope	is	that	these	

advances	in	classification	will	eventually	translate	into	improved	outcomes	for	

patients.	



	

The	recent	remarkable	success	of	immunotherapy	agents	in	other	cancer	subtypes,	

together	with	the	considerable	medical	need	in	the	absence	of	approved	targeted	

therapies	in	GBM,	has	led	to	the	questioning	of	the	previously-held	belief	that	the	

central	nervous	system	(CNS)	is	immune-privileged,	and	thus	inaccessible	to	

antitumor	immunity.		Encouraging	pre-clinical	data	in	experimental	models	has	led	

to	therapies	targeting	immune	checkpoints	reaching	the	clinic,	and	an	invigorated	

interest	in	the	immunotherapy	of	GBM.	Here,	we	describe	the	current	state	of	play	

in	the	development	of	molecularly	targeted	agents	and	immunotherapies	in	GBM.	

We	summarise	the	data	on	current	clinical	trials	for	these	systemic	treatments	in	

GBM	and	and	address	the	successes,	pitfalls,	and	opportunities	of	precision	medicine	

in	this	disease.		

	

Angiogenesis	inhibition	

	

The	path	to	the	era	of	personalized	medicine	in	GBM	was	first	paved	by	the	

recognition	of	MGMT	hypermethylation	as	a	valid	prognostic	and	predictive	marker	

in	patients	undergoing	treatment	with	temozolomide	9.		Subsequent	progress	in	this	

era	of	molecularly	targeted	strategies	has	been	characterised	by	promising	

discoveries,	with	a	failure	to	translate	to	clinically	meaningful	improved	outcomes	

for	patients.	

	

One	of	the	initial	molecularly	targeted	strategies	for	GBM	was	with	angiogenesis	

inhibitors,	in	light	of	the	fact	high-grade	gliomas	(HGGs)	are	highly	vascularized	



tumour	28,29.	In	particular,	the	vascular	endothelial	growth	factor	receptor	(VEGF)	

family	of	receptors	have	been	identified	as	the	main	molecular	driver	of	

angiogenesis,	although	other	targets	including	adhesion	molecules	such	as	integrins,	

have	also	been	identified	30.		Preclinical	studies	had	shown	that	GBMs	express	high	

levels	of	vascular	endothelial	growth	factor	(VEGF)31,	with	the	degree	of	

overexpression	correlating	with	tumour	aggressiveness32.		Several	mechanisms	for	

the	potential	activity	of	antiangiogenic	therapies	in	GBM	have	been	posited	including	

normalisation	of	tumour	vasculature	33	and	improving	tumour	oxygenation34,	

thereby	increasing	the	efficacy	of	chemotherapy	and	radiotherapy.			

		
The	initial	suggestion	that	VEGF	inhibitors	may	be	of	benefit	in	GBM,	came	in	2005,	

when	a	response	rate	of	43%	was	observed	in	a	single-arm	study	with	bevacizumab	

combined	with	irinotecan35.		Subsequent	studies	suggested	that	most,	if	not,	all	of	

the	benefit	of	this	combination	could	be	attributed	to	bevacizumab	36.		Multiple	

single-arm	studies	subsequently	confirmed	unprecedented	response	rates	in	the	

recurrent	GBM	setting28.		These	unprecedented	response	rates,	prompted	

accelerated	FDA	approval	for	the	use	of	bevacizumab	in	the	recurrent	setting,	the	

commencement	of	two	large	clinical	trials	in	the	first-line	setting	as	well	as	the	

development	of	a	host	of	other	anti-angiogenic	agents37–40.		Unfortunately,	the	initial	

promise	of	high	response-rates	did	not	lead	to	a	clear	survival	benefit,	with	a	large	

meta-analysis	demonstrating	consistently	improved	progression-free	survival	(PFS)	

without	a	correlating	overall	survival	(OS)	benefit29.		These	results	have	not	only	

called	into	question	the	validity	of	PFS	as	an	appropriate	endpoint	in	GBM	trials,	but	

have	also	illuminated	the	difficulties	in	neuro-imaging	assessment,	in	particular	with	



the	use	of	anti-angiogenic	agents	which	may	reduce	contrast-enhancement	resulting	

in	a	pseudo-response41.		More	recently,	randomised	data	has	even	called	into	

question	the	utility	of	bevacizumab	in	the	recurrent	setting,	with	no	evidence	of	a	

survival	benefit	compare	to	chemotherapy42.		Additionally,	although	bevacizumab	is	

widely	noted	to	have	a	steroid	sparing	effect28,	two	large	randomised	controlled	

trials	demonstrated	discrepancies	with	regards	to	the	quality-of-life	benefit	of	

bevacizumab	in	the	adjuvant	setting37,38.		The	lack	of	efficacy	of	bevacizumab	has	

been	mirrored	in	the	results	of	other	antiangiogenic	therapies	in	GBM,	with	negative	

trials	with	cilengitide,	an	integrin	inhibitor43,44	and	cediranib,	a	small	molecule	pan-

VEGF	inhibitor39.	

	

Nevertheless,	despite	the	purported	lack	of	survival	benefit,	recent	efforts	have	

focused	upon	identifying	a	population	of	likely	to	derive	a	benefit	from	anti-

angiogenic	therapy.		Sandmann	et	al,	demonstrated	a	survival	benefit	of	

bevacizumab	in	patients	with	proneural,	IDH-1	wild-type,	GBM45.	Other	markers	

potentially	correlating	with	bevacizumab	response	include	a	microRNA	profile46,	as	

well	as	imaging	biomarkers	such	as	cerebral	blood	volume47.		Although	these	

biomarkers	are	promising,	they	are	in	need	of	clinical	validation	prior	to	more	

widespread	adoption.	

	

The	Epidermal	Growth	Factor	Receptor	

	

More	recent	efforts	have	focused	on	targeting	genetic	alterations	in	GBM.		The	

underlying	genetic	landscape	of	GBM	is	complex,	however,	there	are	a	number	of	



recurring	alterations	in	the	PI3K/MAPK,	p53	and	Rb	pathways48.		More	recently,	TERT	

promoter	alterations	have	also	been	identified	as	comprising	a	significant	subset	of	

genomic	alterations	in	GBM24.		Of	these	pathways,	alterations	(mutations,	and/or	

amplifications)	in	EGFR	are	found	in	more	than	50%	of	GBM48,	and	therefore	

represent	a	particularly	attractive	therapeutic	target,	particularly	in	light	of	the	

clinically	validated	benefit	of	inhibition	of	the	epidermal	growth	factor	receptor	

(EGFR)	mediated	pathways	in	other	tumour	types49.		In	particular,	50-60%	of	

tumours	found	to	have	EGFR	amplification	in	GBM	also	contain	the	mutant	EGFR	

gene,	EGFRvIII,	which	is	a	truncating	mutation	characterised	by	the	deletion	of	exons	

2	to	750.		This	causes	an	in-frame	deletion	of	267	amino	acids	in	the	extracellular	

domain,	which	results	in	functional	changes	leading	to	ligand	independent	

constitutive	tyrosine	kinase	activity51.	

	

Preclinical	data	supporting	EGFR	kinase	inhibition	as	a	viable	therapeutic	option,	

particularly	in	tumours	co-expressing	EGFRvIII	and	PTEN	52,	rapidly	led	to	the	

commencement	of	multiple	clinical	trials	of	erlotinib	in	GBM.		Despite	promising	

results	in	non-randomised	studies53,	a	large	negative	randomised	phase	II	trial	in	the	

recurrent	setting	found	a	lack	of	discernible	clinical	activity54.		A	study	evaluating	

gefitinib,	a	first	generation	EGFR	tyrosine	kinase	inhibitor	(TKI)	after	at	least	five	days	

of	continuous	oral	daily	dosing	prior	to	planned	surgery,	shed	more	light	on	the	

difficulties	targeting	this	pathway	in	GBM55.		This	study	demonstrated	that	gefitinib	

penetrated	the	blood-brain	barrier	and	reached	concentration	in	tumour	tissue	

similar	to	that	achieved	in	non-small	cell	lung	cancer,	caused	decreased	

phosphorylation	of	the	EGFR,	but	did	not	significantly	reduce	downstream	signal	



transductors,	a	finding	which	was	replicated	in	a	xenograft	model	but	not	in	a	cell	

line	model55.			

	

In	part,	lack	of	sensitivity	to	kinase	inhibition,	may	be	due	to	the	fact	that	the	most	

common	mutant	found	in	GBM,	EGFRvIII	mutation,	is	found	in	the	extracellular	

domain	of	the	EGFR51,56.		Indeed,	one	key	difference	between	EGFR	in	GBM	and	lung	

cancer	is	the	distribution	of	mutations	within	the	EGFR	coding	sequence;	EGFR	

mutations	in	lung	cancer	are	located	in	the	intracellular	kinase	domain,	whereas	

EGFR	mutations	in	GBM	cluster	in	the	extracellular	domain,	and	include	in-frame	

deletions	(such	as	the	common	EGFRvIII	mutation	(and	missense	mutations)	57.	It	has	

been	proposed	instead,	that	these	GBM	mutants	are	preferentially	inhibited	by	EGFR	

inhibitors	that	can	only	be	accommodated	by	the	inactive	conformation	of	the	EGFR	

catalytic	pocket	due	to	their	bulky	aniline	substituents	(lapatinib)58,59.			Given	the	lack	

of	single	agent	activity	observed	with	EGFR	TKIs,	multiple	early	phase	combination	

trials	were	performed	with	chemotherapy,	mTOR	inhibitors	and	anti-angiogenic	

were	also	performed	which	failed	to	show	any	significant	clinical	activity60.		

	
	
Nevertheless,	given	the	frequent	amplification	of	EGFR	in	GBM,	novel	therapeutic	

strategies	targeting	this	pathway	have	recently	been	developed.				The	two	most	

clinically	advanced	strategies	have	been	the	development	of	a	therapeutic	conjugate	

peptide	vaccine,	rindopepimut61,	targeting	EGFRviii	and	the	antibody-drug	conjugate	

ABT-41447.		Rindopepimut,	is	a	peptide	vaccine	targeting	the	neo-epitope	created	by	

a	13	amino	acid	sequence	unique	to	EGFRvIII,	chemically	conjugated	to	the	carrier	

protein	KLH	to	induce	an	immune	response62.	Promising	initial	results63,	culminated	



in	the	ACT	III	clinical	trial,	a	single-arm	study	in	newly	diagnosed	GBM,	which	

resulted	in	an	unprecedented	median	overall	survival	of	21.8	months,	suggesting	

clinical	activity64.	These	results	prompted	the	FDA	to	grant	breakthrough	status	to	

rindopepimut.		Unfortunately,	the	randomized	phase	III	study,	ACT	IV,	failed	to	

confirm	the	survival	benefit	of	this	compound;	median	OS	with	rindopepimut	was	

20.4	months	compared	with	21.1	months	in	the	control	arm65	(HR=1.01;	p=0.93),	

with	no	substantial	differences	in	progression-free	survival	(PFS).			

	

Cetuximab	and	Nimotuzumab,	both	unconjugated	antibodies	that	bind	the	

extracellular	domain	of	EGFR	and	suggested	to	cause	internalization	of	EGFRvIII,	

have	little	benefits	in	patients	regardless	of	their	EGFR	gene	amplification	status	66,67.	

The	antibody-drug	conjugate	ABT-414	consists	of	a	unique	antibody	targeting	active	

EGFR	or	mutant	EGFRvIII	linked	to	a	potent	anti-microtubule	agent	and	has	shown	

promising	results	in	initial	phase	I	studies68.	Multiple	phase	II	and	III	trials	are	

currently	ongoing	evaluating	this	therapy,	but	it	remains	to	be	seen	as	to	whether	

the	elusive	goal	of	a	clinically	effective	therapy	targeting	EGFR	in	GBM	can	be	

achieved.	

	

Novel	approaches	

In	addition	to	EGFR	amplification,	other	genetic	events	are	commonly	found	in	

GBMs.		Of	note,	TCGA	data	has	shown	a	high	prevalence	of	mutations	affecting	PTEN	

in	GBM14.		Preclinical	data	have	shown	a	strong	association	between	mutations	in	

PTEN	and	reduced	homologous	recombination	function69,	giving	a	strong	preclinical	

rationale	for	synthetic	lethality	with	poly-ADP	ribose	polymerase	(PARP)	



inhibitors70,71	.		This	combined	with	possible	synergy	between	PARP	inhibition	and	

two	of	the	core	components	of	standard	GBM	management,	temozolomide	and	

radiation72,73,	has	led	to	the	commencement	of	clinical	trials	of	PARP	inhibitors	in	

GBM	which	are	currently	recruiting.	

	

Isocitrate	dehydrogenases	1	and	2	(IDH1,	IDH2)	are	frequently	mutated	in	low-grade	

glioma	(LGG)	and	are	found	in	12%	of	GBM;	they	comprise	a	large	proportion	of	

secondary	GBM	and	are	rarely	found	concomitantly	with	EGFR	mutations27.		In	

glioma	pathogenesis,	the	IDH	genes	are	strongly	correlated	with	the	CpG	island	

methylator	phenotype,	which	is	markedly	associated	with	improved	survival	

clinically74.	Moreover,	although	IDH1	is	strongly	implicated	in	glioma	pathogenesis,	it	

has	been	unclear	what	role	it	plays	in	progression.		A	recent	study	demonstrated	

that	IDH1/2	mutations	induce	a	homologous	recombination	(HR)	defect	rendering	

tumor	cells	exquisitely	sensitive	to	PARP	inhibitors	75;	this	IDH1-dependent	PARP	

inhibitor	sensitivity	was	demonstrated	in	a	range	of	clinically	relevant	models,	

including	primary	patient-derived	glioma	cells	in	culture	and	genetically	matched	

tumor	xenografts	in	vivo,	providing	the	basis	for	a	possible	therapeutic	strategy	

exploiting	the	biological	consequences	of	mutant	IDH,	rather	than	attempting	to	

block	2HG	production,	by	targeting	the	2HG-dependent	HR-deficiency	with	PARP	

inhibition75.		Another	recent	study	demonstrated	in	paired	initial	LGG	tumour	

samples	and	post-progression	samples	that	IDH1	mutation	is	preserved,	suggesting	

that	it	plays	a	role	not	only	in	tumour	initiation,	but	also	in	tumour	maintenance76.		

These	preclinical	data	have	led	to	the	clinical	development	of	IDH1	inhibitors	which	



are	currently	in	the	process	of	undergoing	phase	I	clinical	trials	and	have	already	

shown	promising	activity77.	

	

Viral	strategies		
	
Oncolytic	viruses	(OVs)	are	an	emerging	class	of	experimental	treatments	for	

malignant	glioma,	currently	under	investigation	in	the	clinic,	following	the	recent	

successes	of	talimogene	laherparepvec	(T-vec)	in	malignant	melanoma	78.		Progress,	

in	GBM	has,	however,	been	more	muted.		OVs	are	live	viruses	that	are	selectively	

toxic	to	cancer	cells;	as	well	as	their	direct	oncolytic	properties,	OVs	are	also	

considered	a	form	of	immunotherapy,	as	they	can	induce	effective	anti-viral	and	

anti-tumour	immune	responses,	although	many	of	these	immune-mediated	

mechanisms	are	being	recognised79.		Several	OVs	have	been	investigated	for	glioma	

in	the	preclinical	setting,	including	poliovirus,	HSV,	adenovirus,	reovirus,	parvovirus,	

Newcastle	disease	virus,	measles	virus	(MV),	and	retrovirus80.		While	clinical	trials	

involving	OVs	in	GBM	as	single	agents	have	largely	been	safe,	demonstrated	

acceptable	toxicity,	and	in	certain	studies,	shown	signs	of	efficacy	by	radiological	

evaluation	and	the	presence	of	live	virus	in	tumor	biopsies	a	week	or	more	after	

treatment	81–83,	the	overall	efficacy	of	single-agent	OV	therapy	has	at	best	been	

modest	at	best.			

	

Combination	strategies	involving	checkpoint	inhibitors	are	currently	being	explored;		

CAPTIVE	(NCT02798406),	which	explores	the	Combination	of	Adenovirus	and	

Pembrolizumab	to	Trigger	Immune	Virus	Effects	is	one	such	study.			Other	oncolytic	

viruses	currently	in	the	process	of	undergoing	clinical	trials	include	the	oncolytic	



polio	virus,	which	utilizes	the	aberrant	expression	of	the	poliovirus	receptor,	CD155,	

in	solid	tumours	to	mediate	viral	cell	entry84.			

	
	
Immunotherapy	
	
Immunotherapy	is	a	new	paradigm	in	cancer	care,	and	recent	advances	in	the	field	of	

immune	checkpoint	blockade	have	led	to	dramatic	results,	most	notably	with	the	

inhibition	of	the	programmed	cell	death—1	(PD-1)	and	programmed	cell	death	

ligand	-1	(PD-L1)	interaction.	Immunotherapy	of	HGGs	has	been	hindered	by	poor	

definition	of	relevant	antigens	and	selective	measures	to	target	the	central	nervous	

system	(CNS),	but	this	has	evolved	in	recent	years.	Driven	by	the	high	medical	need	

in	the	absence	of	approved	targeted	therapies,	we	now	have	novel	neuro-oncology-

specific	concepts,	providing	new	approaches,	with	individualized	immunotherapy	

trials.	

	

CNS	Immunology	

A	major	determinant	of	cancer	pathogenesis	is	the	interaction	of	tumour	cells	with	

the	immune	system.	The	central	nervous	system	(CNS),	in	large	part	due	to	the	

protective	nature	of	the	blood-brain-barrier	(BBB),	was	traditionally	believed	to	be	

an	immune-privileged	site.		However,	the	discovery	that	lymphatic	vessels	exist	in	

the	CNS85–87	and	that	immune	cells	can	cross	the	BBB	88	radically	changed	this	

assumption.		Recent	data	indicate	that	leukocytes	can	traffic	to	the	CNS,	even	in	the	

presence	of	an	intact	BBB89,90,	and	the	flow	of	CSF	connects	the	CNS	to	lymphatics	by	

draining	into	cervical	and	nasal	lymph	nodes,	providing	another	route	for	antigen	



and	immune	cell	circulation91,92.	Taken	together,	these	findings	suggest	that	the	

immune	system	can	combat	gliomas,	in	addition	to	other	tumour	types	(Figure	1).	

An	immune	response	to	cancer	occurs	through	a	series	of	precise	and	stepwise	

actions	beginning	with	tumor	antigen	presentation	by	antigen-presenting	cells	

(APCs)	and	progressing	through	to	priming	and	activation	of	T	cells,	trafficking	of	

cytotoxic	T	cells	(CD8+	cells)	to	tumors,	and	ultimately	the	killing	of	tumor	cells93.		

This	interaction	is	regulated	by	immune	checkpoints,	which	can	be	inhibitory	or	

stimulatory.	PD-1	and	its	ligand	PD-L1,	represent	an	inhibitory	immune	checkpoint	at	

the	tissue	level,	wherein	PD-L1	expressed	on	tumour	tissue	binds	PD-1	on	cytotoxic	T	

cells	and	leads	to	T-cell	anergy94,95.	Targeting	this	checkpoint	has	proven	successful	

in	other	tumour	types96–102	and	its	activity	in	GBM	is	currently	being	explored.			

In	HGGs	however,	it	is	not	known	whether	glioma	antigen	cross-presentation	occurs	

peripherally	or	within	the	CNS;	is	also	debateable	which	cell	types	are	most	

responsible	for	glioma-antigen	presentation.	Preclinical	models	have	shown	that	

microglia	are	capable	of	cross-presenting	tumor	antigens	to	CD8-positive	T	cells;	

microglia	however,	even	when	activated	express	less	MHC	and	co-stimulatory	

markers	than	similarly	activated	dendritic	cells	(DCs)103.		Tumour-infiltrating	DCs,	

macrophages,	and	pericytes	are	also	candidates	for	antigen	presentation	within	the	

tumour	bed104,105.		Tumour	antigens	could	also	potentially	drain	outside	the	CNS	to	

the	peripheral	lymphatics	for	antigen	presentation.	

Higher	grade	gliomas,	typically	associated	with	BBB	disruption	and	tumour	necrosis,	

result	in	antigen	expulsion,	and	have	increased	numbers	of	immune	cells	throughout	

the	tumour	bed106.		Although	higher	numbers	of	tumour-infiltrating	leukocytes	may	



theoretically	suggest	a	more	robust	immune	reaction	within	the	microenvironment	

of	high-grade	versus	low-grade	gliomas,	this	does	not	necessarily	correlate	with	

better	clinical	outcomes107.	It	is	possible	that,	despite	increased	leukocyte	access	to	

HGGs,	other	tumour-related	factors	may	diminish	the	immune	response.	

Generalized	immunosuppression	has	long	been	an	established	feature	in	patients	

with	GBM,	and	it	has	been	well	documented	that	gliomas	have	various	mechanisms	

to	suppress	the	immune	system.	Numerous	mechanisms	lead	to	a	suppressed	

immune	response	in	patients	with	GBM108.		Individuals	with	GBM	have	reduced	

response	to	pro-inflammatory	signals	and	impaired	T	cells	with	reduced	proliferative	

potential108,109.	Glioma	cells	can	also	down-regulate	their	own	MHC	I	complexes	

making	them	invisible	to	immune	cells110,	and	in	the	presence	of	glioma,	

proinflammatory	cytokines,	such	as	interleukin	12	(IL-12),	IL-18,	and	interferon	c	

(IFN-c),	are	notably	reduced	while	soluble	inhibitory	molecules	are	abundant	

(including	IL-10,	VEGF,	and	transforming	growth	factor)103.	A	subclass	of	dendritic	

cells,	plasmacytoid	DCs,	secrete	large	amounts	of	IFN-α	in	the	periphery	which	

provokes	effector	T-cell	maturation;	a	recent	murine	study,	however,	demonstrated	

that	plasmacytoid	DCs	within	the	glioma,	lacked	IFN-a	secretion	and	were	associated	

with	immune	tolerance111.	Regulatory	T	cells	(Tregs),	which	are	thought	to	

downregulate	the	immune	response,	have	also	been	identified	throughout	gliomas,	

and	there	are	data	which	indicate	that	a	higher	tumor-infiltrating	CD8-positive	T-

cell/Treg	ratio	is	clinically	favorable112.	Furthermore,	glioma	cells	express	surface	

proteins	that	bind	to	leukocyte	receptors	–	this	leads	to	secondary	signaling	

pathways,	further	dampening	lymphocyte	activation,	such	as	PD-L1,	which,	as	



reported	previously,	leads	to	an	increase	in	the	Treg/	effector	T-cell	ratio113.	

Immunotherapeutic	strategies	can	be	broadly	divided	into	four	major	classes;	

checkpoint	inhibitors,	adoptive	strategies	such	as	using	chimeric	antigen	receptor	

(CAR)	T	cells,	active	immunotherapy	such	as	with	cancer	vaccines	and	immune	

stimulatory	gene	therapy	and	passive	immunotherapies	utilising	antibodies.	

	

Checkpoint	Inhibitors	

Tumours	can	manipulate	the	central	function	of	the	immune	system	to	maintain	

self-tolerance,	to	prevent	autoimmunity	and	thus	escape	immune-driven	

destruction.	The	two	most	intensely	investigated	co-inhibitory	checkpoints	in	this	

new	era	of	cancer	immunotherapy	are	Cytotoxic	T-lymphocyte-associated	protein	4	

(CTLA-4)/B7	and	PD-1/PD-L1.		CTLA-4,	expressed	on	APCs,	interacts	with	B7,	on	T	

cells,	resulting	in	inhibition	of	clonal	expansion	of	naïve	T	cells113.		Conversely,	PD-1	

on	activated	T-cells	interacts	with	PD-L1	expressed	in	target	tissue	to	result	in	T-cell	

anergy112.	PD-1	has	an	additional	ligand,	PD-L2	which	has	limited	expression.		This	

receptor-ligand	interaction,	via	down-stream	signalling	advances	apoptosis	of	

antigen-specific	T-cells,	and	decreases	apoptosis	of	Tregs113.	As	such,	the	ligands	for	

these	immunosuppressive	checkpoints,	often	overexpressed	in	the	GBM	

microenvironment	to	inhibit	T-cell	response	against	tumor	cells,	have	become	the	

targets	for	therapies,	and	pre-clinical	efforts	aimed	at	inhibiting	the	PD-1/PD-L1	

pathway	have	shown	promising	results113.		A	pre-clinical	glioma	study	using	the	

GL261	mouse	model,	for	example,	demonstrated	the	combination	of	anti-PD-1	



antibodies	and	radiotherapy	doubled	median	overall	survival	and	resulted	in	long-

term	survival	in	15–40%	of	mice	compared	with	either	treatment	alone114.		

Whether	this	success	can	be	replicated	in	the	clinic,	is	currently	being	addressed	by	a	

large	number	of	ongoing	clinical	trials	–	indeed	there	has	been	a	veritable	explosion	

in	the	number	of	clinical	trials	for	both	newly	diagnosed	and	recurrent	HGG	(Table	

1).		Reardon	et	al	previously	presented	safety	and	efficacy	data	from	the	Checkmate-

143,	a	study	of	nivolumab	alone	versus	nivolumab	plus	ipilimumab	for	recurrent	

GBM115.	This	demonstrated	that	nivolumab	was	well	tolerated	with	tolerability	

profiles	consistent	with	observations	in	other	tumor	types,	and	OS	was	reported	as	

an	encouraging	40%	at	12-months.		However,	90%	of	patients	who	received	

combination	therapy	had	grade	3	or	4	treatment-related	adverse	events	(TRAE),	and	

50%	of	patients	in	that	arm	had	to	discontinue	treatment	early	due	intolerability115.	

Disappointingly	however,	CheckMate-143	did	not	meet	its	primary	endpoint	of	

improved	overall	survival	(OS),	as	presented	by	Reardon	et	al	at	World	Federation	of	

Neurooncology	Societies	(WFNOS)	2017	116.		The	reported	median	OS	was	9.8	

months	with	nivolumab	[95%	CI	8.2,	11.8]	and	10.0	months	with	bevacizumab116;	12-

month	OS	rate	was	42%	in	both	arms	and	PFS	medians	were	1.5	months	with	

nivolumab	and	3.5	months	bevacizumab116.		Furthermore,	documented	response	

rates	were	lower	with	nivolumab	than	bevacizumab,	in	spite	of	the	more	durable	

responses	noted	with	nivolumab116.	

	

Reardon	et	al	previously	presented	encouraging	data	on	the	single	agent	activity	of	

checkpoint-inhibitor	pembrolizumab	at	the	Annual	Society	of	Neuro-oncology	(SNO)	



Meeting	2016	117.		KEYNOTE-028	(NCT02054806)	evaluated	the	safety	and	efficacy	of	

the	anti–PD-1	monoclonal	antibody	pembrolizumab	in	20	advanced	solid	tumor	

types.	In	the	GBM	cohort,	pembrolizumab	demonstrated	a	manageable	safety	

profile with	grade	3–4	TRAEs	observed	in	15.4%	of	patients	(lymphopenia,	type	2	

diabetes	mellitus,	arthritis,	and	syncope).	Promising	anti-tumour	activity	was	noted;	

while	only	1	partial	response	(PR)	was	observed,	12	patients	(46%)	experienced	

stable	disease	(SD)	at	a	median	duration	of	39.4	weeks	(95%	CI:	7.1–85.9),	median	

PFS	2.8	months	(95%	CI:	1.9–9.1),	and	median	OS	14.4	months	(95%	CI:	10.3–not	

reached).	Furthermore,	durable	response	was	suggested	in	4	patients	who	continued	

therapy	>54	weeks	following	enrolment.	

Further	encouraging	preliminary	safety	and	efficacy	data	from	the	ongoing	phase	II	

study	of	the	anti–PD-L1	antibody	MEDI4736	(durvalumab)	(NCT02336165)	were	

presented	for	the	recurrent	bevacizumab-naïve	GBM	patients118.	In	these	31	patients	

treated	with	durvalumab	monotherapy,	no	grade	4/5	serious	TRAEs	were	observed;	

grade	3	TRAEs	were	reported	in	9.7%118.	Response	rate	was	13%,	median	PFS	was	

13.9	weeks	(95%	CI:	8.1–24.0),	and	6-month	PFS	was	20%	(90%	CI:	9.7–33.0)	with	5	

of	these	6	patients	remaining	progression	free	at	1	year118.	It	is	the	durability	of	

response	in	this	cohort	which	is	most	exciting;	all	six	patients	who	were	progression-

free	at	6	months	remain	progression-free	for	over	a	year,	suggesting	that	perhaps	

with	this	PD-L1–targeting	immunotherapeutic	for	recurrent	GBM,	there	is	a	tail	of	

the	curve	which	has	been	witnessed	in	other	cancers	–	a	subset	of	patients	who	are	

having	a	remarkably	durable	benefit.		The	study	is	also	investigating	immuno-

correlative	biomarkers	with	the	aim	of	better	identifying	those	responders.		



The	majority	of	glioma	checkpoint-inhibitor	trials	are	in	early	phases,	but	two	further	

phase	III	studies	are	assessing	nivolumab	in	GBM:	CheckMate-498	and	CheckMate-

548,	evaluating	the	combination	of	nivolumab	with	radiation	therapy	with	or	

without	temozolomide	in	O6-methylguanine-DNA	methyltransferase	(MGMT)-

unmethylated	and	methylated	patients.		Active	checkpoint-inhibitor	trial	information	

obtained	from	clinicaltrials.gov	are	summarized	in	Table	1.	

The	lack	of	survival	benefit	demonstrated	in	the	CheckMate-143	trial	is,	of	course,	

discouraging116.		A	proposed	hypothesis	as	to	why	gliomas	display	a	reduced	

sensitivity	to	checkpoint	inhibition	alone	is	thought	to	be	due	to	a	relatively	low	

mutational	load.	Checkpoint	inhibition	releases	mutation-specific	T	cell	responses119,	

and	gliomas	typically	contain	40–80	non-synonymous	single-nucleotide	variations	

(nsSNVs),	which	is	comparatively	lower	than	in	melanoma	or	small-cell	lung	cancer,	

both	of	which	tend	to	respond	well	to	single-agent	checkpoint	inhibition120.	

Supporting	this	hypothesis	are	the	exceptional	case	reports	of	significant	clinical	

responses	to	nivolumab	seen	in	two	siblings	with	biallelic	MisMatch	Repair	Deficient	

(bMMRD)	recurrent	multifocal	GBM,	both	of	which	exhibited	very	high	mutational	

loads121.	

PD-L1	is	expressed	not	only	in	the	tumor	microenvironment	of	gliomas112,122,123,	but	

also	elevated	in	circulating	antigen	presenting	cells	(APCs)	in	glioma	patients124.		This	

of	course	may	indicate	biological	activity,	even	if	the	therapeutic	antibody	does	not	

reach	sufficient	intra-tumoral	levels.	As	such,	anti-PD-L1	anti-bodies	such	as	

atezolizumab	represent	an	appealing	strategy,	where	intratumoral	or	even	

peripheral	PD-L1	expression	may	serve	as	a	biomarker125,126.	



Chimeric	Antigen	Receptors	

Chimeric	antigen	receptors	(CARs)	are	a	novel	type	of	adoptive	T-cell	transfer	

currently	garnering	interest	in	immuno-oncology.		CARs	involve	the	extraction	of	T-

cells	from	a	patient	and	subsequently	transducing	the	cells,	using	a	lentiviral	vector,	

to	express	a	modified	T-cell	receptor	with	specific	affinity	to	a	tumour	surface	

antigen127.	A	weakness	of	adoptive	T-cell	transfer	is	that	effective	tumour	antigen-

induced	T-cell	activation	can	be	hindered	by	weak	affinity	of	the	T-cell	receptor	to	

the	peptide/MHC	complex;	subsequent	tumour	cells	have	a	tendency	to	down-

regulate	their	MHC	expression127.		CAR-T	cells	are	activated	independent	of	MHC,	

and	as	such,	avoid	the	difficulty	of	MHC	restriction.		One	concern	is	the	damage	that	

can	occur	to	normal	tissues	if	the	antigen	expression	is	not	tumor	specific;	thus	it	is	

essential	to	select	targets	that	show	tumour-restricted	expression.	

Clinically,	adoptive	T-cell	therapy	has	demonstrated	its	effectiveness	with	CAR-based	

treatment	for	B-cell	malignancies128,	and	dramatic	results	have	been	achieved	in	

early	clinical	studies	in	relapsed	acute	lymphoblastic	leukaemia	(ALL),	with	one	phase	

I	dose-escalation	trial	examining	CD19	CAR	T	cells	for	refractory	ALL	demonstrating	a	

remarkable	70%	complete	response	(CR)129.	The	effects	of	CAR-T	cells	have	been	

further	investigated	in	renal	cell	carcinoma	and	neuroblastoma130–133.			In	brain	

tumours,	using	CARs	as	a	therapeutic	strategy	was	first	tested	by	the	Jensen	group,	

who	showed	that	intratumoral	delivery	of	IL-13	zetakine	CAR	eliminated	orthotopic	

human	glioma	tumors	in	immune	compromised	mice134.	The	clinical	trial	assessing	

the	safety	and	feasibility	of	this	therapy	in	patients	with	recurrent	GBM	involved	

autologous	cytotoxic	T	cells	with	CARs	that	bind	to	IL13Ra2	(a	protein	overexpressed	



in	more	than	one-half	of	GBMs)	being	directly	inserted	into	the	resected	tumor	

cavity.		This	therapy	resulted	in	minimal	side	effects,	and	two	of	the	three	patients	

who	received	repeated	intracranial	infusions	experienced	transient	anti-glioma	

immune	responses135.		Indeed,	Brown	et	al	recently	updated	the	results	of	one	of	

these	patients	and	reported	their	remarkable	findings	in	the	New	England	Journal	of	

Medicine136.		In	one	patient	who	received	weekly	intra-cavitary	infusions	of	cytotoxic	

T	cells	with	CARs	that	bind	to	IL13Ra2,	regression	of	all	intracranial	and	spinal	tumors	

was	observed,	along	with	corresponding	increases	in	levels	of	cytokines	and	immune	

cells	in	the	CSF136.		This	response	was	sustained	for	7.5	months;	however,	recurrence	

did	eventually	occur	and	preliminary	results	suggest	that	tumours	downregulated	IL-

13α2	expression	at	progression136.	

HER2-specific	CAR	T	cells	have	also	been	investigated,	and	in	xenograft	mouse	GBM	

model	this	led	to	tumour	regression	and	a	HER2-dependent	anti-tumour	response	

with	increased	production	of	IFN-	γ	and	IL-2137.	A	phase	I	trial	is	currently	ongoing	

and	will	test	the	safety	and	efficacy	of	using	HER2-specific	CARs	in	patients	with	

recurrent	GBM	(NCT02442297).	The	Rosenberg	group	at	NCI	(NCT01454596)	and	the	

University	of	Pennsylvania/Novartis	(NCT02209376)	are	also	testing	the	safety	and	

feasibility	of	administering	T	cells	expressing	anti-EGFRvIII	CAR	to	patients	with	

gliomas	expressing	EGFRvIII.		

The	most	common	and	severe	side	effect	of	CAR	T-cell	therapy	is	cytokine	release	

syndrome	(CRS),	a	life-threatening	complication	involving	the	release	of	cytokines	

from	leukocytes;	this	manifests	clinically	as	fever,	headache,	nausea,	dyspnea,	

tachycardia,	hypotension,	and	rash138.		The	acute	inflammatory	reaction	can	cause	



vascular	permeability	and	multi-organ	failure;	it	has	been	observed	in	almost	two-

thirds	of	patients	receiving	CAR	T-cells,	typically	days	after	the	infusion.		As	such,	

while	there	is	excitement	in	this	developing	field,	the	risk	involved	in	CAR	T-cell	

therapy	is	not	insignificant,	and	as	always,	recognition	of	adverse	events	is	

paramount,	given	that	CRS	can	be	rapidly	reversed	with	corticosteroids	and/	or	

anticytokine	agents.		

Cancer	Vaccines	–	Active	immunotherapy	

With	the	aim	of	stimulating	adaptive	immune	responses	that	target	tumor-specific	

antigens,	cancer	vaccine	strategies	currently	used	include	delivery	of	tumor-

associated	antigens,	administration	of	tumor	antigen	loaded	DCs	and	tumor	cell	

vaccines.		

DC	Vaccination	

DC-based	vaccine	therapy	involves	the	extraction	of	DCs	from	the	patient,	harvested	

in	culture	while	being	exposed	to	tumour	lysate	or	particular	tumor	antigens,	and	

then	returned	to	the	patient	to	promote	a	T-cell–mediated	reaction.	Currently,	there	

are	two	anticipated	ongoing	phase	III	DC	vaccine	trials	for	newly	diagnosed	GBM,	the	

most	advanced	using	an	autologous	DC	vaccine-	DCVax-L	(NCT00045968).	This	

vaccine	was	investigated	in	two	phase	I/II	studies139;	20	patients	with	newly	

diagnosed	GBM	and	19	with	recurrent	tumors	received	biweekly	vaccines	followed	

by	monthly	booster	injections.		The	long-term	survival	analysis	was	encouraging:	

33%	of	patients	achieved	a	median	survival	of	at	least	48	months,	and	27%	achieved	

a	median	survival	of	at	least	72	months139.	



ICT-107,	targets	6	GBM	markers,	and	is	the	current	DC	vaccine	ongoing	phase	III	

investigation(NCT02546102).	Targeting	absent	in	melanoma	2	(AIM-2),	melanoma-

associated	antigen	1	(MAGE-1),	tyrosine-related	protein	2	(TRP-2),	glycoprotein	100	

(gp100),	HER-2,	and	interleukin	13	receptor	a2	(IL-	13Ra2),	and	previous	phase	II	

data140	of	ICT-107	for	newly	diagnosed	GBM	also	was	promising.		ICT-107	was	well	

tolerated,	and	it	was	associated	with	a	two-month	increase	in	PFS	and	a	trend	

toward	improved	OS140.		

	

	Challenges	
	
The	power	of	molecular	targeted	therapy,	and	how	to	practically	implement	

precision	medicine	in	GBM,	has	been	limited	by	diverse	factors,	ranging	from	the	

complex	molecular	biology	underlying	gliomagenesis	to	challenges	such	as	CNS	

penetration	of	agents,	target	selection	and	evaluation	of	treatment	response.			

	

Firstly,	although	many	agents	have	therapeutic	potential	for	GBM,	few	of	these	

agents	have	been	clinically	used	because	of	concerns	of	its	ability	to	penetrate	the	

blood-brain	barrier	and	patients	with	brain	tumours	have	also	been	historically	

excluded	from	the	majority	of	early	experimental	trials	of	novel	agents.	This	thinking	

is	now	largely	archaic,	on	a	number	of	fronts.	We,	and	others,	have	shown	that	

patients	with	primary	malignant	brain	tumours	who	meet	standard	strict	phase	I	

eligibility	criteria	and	are	enrolled	onto	trials	of	appropriately	chosen	compounds,	

successfully	meet	phase	I	end	points,	such	as	safety	and	toxicity141.	Furthermore,	

surgical	and	radiological	studies	have	shown	that	the	blood-brain	barrier	is	disrupted	



in	all	GBM	patients142.	This	has	important	implications	clinically,	as	drugs	that	do	not	

show	pre-clinical	brain	penetration,	may	in	fact	have	utility	in	patients	with	GBM.		

For	example,	the	PARP	inhibitor,	olaparib,	penetrates	both	core	and	margins	of	

recurrent	GBM	despite	failing	to	penetrate	the	intact	blood	brain	barrier143,	and	is	

now	in	Phase	II	combination	studies	with	temozolomide	and	radiation144.		

Additionally	as	we	understand	the	CNS	cancer	immunity	cycle,	antigen	presentation	

and	the	generation	of	an	active	immune	response	is	likely	to	take	place	peripherally	

within	lymphatic	system	and	as	such	drugs	targeting	various	facets	of	the	anti-cancer	

immune	response	may	not	need	to	penetrate	the	brain	at	all.		

	

Secondly,	as	discussed	in	considerable	detail	earlier,	genomic	heterogeneity	

represents	a	major	challenge	for	precision	medicine	in	GBM.		Molecular	studies	to	

date	use	small	samples,	typically	one	slide	from	initial	surgical	resection	samples	or	

diagnostic	biopsies	and	are	insufficient	to	comprehensively	integrate	temporal	or	

spatial	tumour	evolution	data.	The	key	question	arising	is	whether	critical	molecular	

drivers	are	being	missed	given	a	randomly	selected	single	slide	is	used	for	molecular	

stratification	at	diagnosis.	Treatment-mediated	selective	pressure	is	likely	to	

subsequently	facilitate	the	selection	of	the	resistant	clone	or	clones,	but	given	the	

inherent	risks	of	repeat	neurosurgical	procedures,	patients	with	GBM	almost	never	

have	further	tissue	sampling.		

	

Circulating	biomarkers	such	as	circulating-free	DNA	(cfDNA)	and	circulating	tumour	

cells	(CTC)	are	promising	sources	for	obtaining	tumour	genomic	material	through	a	

minimally	invasive	form	of	a	liquid	biopsy	that	can	be	repeated	over	time	to	account	



for	tumour	evolution,	and	are	now	in	use	in	translational	clinical	studies	for	multiple	

solid	tumours,	for	example	in	breast	and	prostate	cancer145,146.		Circulating	tumour	

cells	from	GBM	tumours	do	cross	the	blood-brain-barrier,	and	can	be	detected	

peripherally;	work	is	currently	ongoing	to	refine	various	platforms	for	their	

detection147.	ctDNA	has	been	reported	to	be	more	abundant	than	circulating	tumour	

cells,	and	can	certainly	be	detected	in	patients	with	GBM	where	targeted	next-

generation	sequencing	for	IDH1	for	example	has	been	performed148.	This	poses	the	

exciting	possibility	of	remote	monitoring	of	the	evolution	of	brain	tumours	in	

response	and	resistance	to	treatment	for	patient	care.	These	molecular	profiles	can	

be	further	complemented	with	the	molecular	analysis	of	nucleic	acids,	lipids	and	

proteins	contained	within	extracellular	vesicles,	such	as	exosomes	which	may	

contain	a	higher	amount	of	clinically	relevant	key	signalling	components149	(Figure	

1),	and	thus	be	used		as	a	tumour	biomarker	for	tracking	cancer	progression,	and	as	

a	potential	therapeutic	target/delivery	system.		Given	that,	intriguingly,	exosomes	

may	play	a	role	in	a	range	of	biological	processes	within	the	progression	of	GBM	

150,151it	is	no	surprise	that	targeting	exosome-mediated	cellular	interactions	is	

becoming	an	area	of	interest	for	therapeutics.	Indeed,	dendritic	cell-derived	

exosomes	appear	to	express	both	MHC	class	I	and	II,	and	given	the	role	of	exosomes	

in	modulating	immune	response,	the	appliance	of	immunotherapy	utilizing	

exosomes	for	the	treatment	of	gliomas,	while	still	in	its	infancy	152,	is	a	thought-

provoking	concept.		

		

Prioritizing	the	numerous	available	therapies,	and	biomarkers	that	may	be	detected,	

requires	creative	efficient	clinical	testing	platforms.	INSIGhT	[INdividualized	



Screening	Trial	of	Innovative	GBM	Therapy]	(NCT02977780)	is	the	first	GBM	umbrella	

trial	where	patients	are	assessed	for	multiple	pre-specified	genetic	aberrations	using	

NGS	or	other	platforms,	and	then	randomised	to	either	standard	therapies	or	

matched	to	biomarker-based	targeted	treatment	arms	agents	that	is	currently	

ongoing153.		

	

The	greater	challenge	moving	forward	is	how	to	integrate	the	potentially	

complementary	fields	of	both	targeted	therapies	and	immunotherapies,	to	improve	

precision	cancer	treatments	for	patients	with	GBM.	Emerging	biology	is	unraveling	

the	myriad	of	ways	in	which	tumour	oncogenic	drivers	can	modulate	the	tumour	

microenvironment,	and	how	targeted	therapies	can	therefore	impact	the	host	

immune	response147.	For	example,	PTEN	loss	has	been	shown	to	increase	PD-L1	

expression	in	gliomas148	and	has	also	been	associated	with	resistance	to	immune	

checkpoint	inhibitors	in	other	tumours	settings154,	supporting	the	evaluation	of	

combinatorial	strategies	targeting	the	PI3K-AKT	pathway	to	increase	the	efficacy	of	

immunotherapy.	The	interaction	between	EGFR-driven	cancers	and	the	immune	

system	is	much	less	clear,	with	patients	with	NSCLC	harbouring	EGFR	mutations	

having	poor	outcomes	with	immunotherapy155.		

	
	
Conclusions	

In	this	era	of	precision	medicine,	the	sluggish	progress	in	the	advancement	of	

therapy	in	GBM	is	insupportable.	Results	from	single	agent	targeted	therapy	trials	

have	been	modest,	and	the	success	of	single	agent	immunotherapeutic	agents	to	

date	has	been	mixed,	although	encouragingly	there	are	a	multitude	of	ongoing	trials.			



	

Future	successes	in	molecularly	targeted	agents	and	immunotherapies	in	neuro-

oncology	will	likely	depend	on	the	development	of	rationally	designed	combination	

trials	–	trials	incorporating	both	surgical	arms,	allowing	for	further	tumour	molecular	

characterization	and	creative	biomarker	selection	and	development.		However,	given	

the	innumerable	permutations	of	possible	combination	regimens	with	targeted	

agents,	chemotherapy,	radiation	and	immunotherapy,	a	deep	understanding	of	the	

cancer	biology	of	GBM,	and	its	interaction	with	the	immune	system	must	underpin	

robust	biology-driven	approaches.		

	

Glioblastoma	tumours	are	profoundly	complex.	While	there	is	unlikely	to	be	a	single	

“magic	bullet”	for	GBM,	there	is	much	to	be	hopeful	about	as	we	focus	on	innovative	

biomarker-driven	trial	designs	with	greater	collaborations	between	academic	and	

industry	partners	to	truly	achieve	precision	medicine	for	glioblastoma.		
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FIGURE 1 Molecular Characterisation of Gliblastoma
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