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Abstract 

Overexpression of fatty acid synthase (FASN), a key regulator of the de novo synthesis of fatty acids, 

has been demonstrated in a variety of cancers and is associated with poor prognosis and increased 

multidrug resistance. Inhibition of FASN with the anti-obesity drug orlistat has been shown to have 

significant anti-tumorigenic effects in many cancers, notably breast and prostate. In this study, we 

investigated whether FASN inhibition using orlistat is an effective adjunctive treatment for ovarian 

cancers that have become platinum resistant using a cisplatin-resistant ovarian tumour xenograft 

model in mice. Mice were treated with orlistat or cisplatin or a combination and metabolite analysis 

and histopathology were performed on the tumours ex vivo. Orlistat decreased tumour fatty acid 

metabolism by inhibiting FASN, cisplatin reduced fatty acid β-oxidation, and combination treatment 

delayed tumour growth and induced apoptotic and necrotic cell death in cisplatin-resistant ovarian 

cancer cells over and above that with either treatment alone. Combination treatment also decreased 

glutamine metabolism, nucleotide and glutathione biosynthesis and fatty acid β-oxidation. Our data 

suggest that orlistat chemosensitized platinum-resistant ovarian cancer to treatment with platinum and 

resulted in enhanced efficacy. 
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Introduction 

In cancer cells, the increased genesis of membranes demands an increase in lipogenesis.
1
 This need 

is met by increased de novo fatty acid (FA) biosynthesis, which has been reported in a large number 

of human malignancies, such as prostate, ovarian, and breast.
2-5

 The process is regulated mainly by 

fatty acid synthase (FASN) as it catalyses the synthesis of long-chain fatty acids from acetyl-CoA, 

malonyl-CoA, and NADPH precursors.
6
 FASN expression levels are therefore elevated in tumours

7
 

and high levels have been associated with cancer progression, aggressiveness, poor prognosis, high 

risk of disease recurrence
8-10

 as well as with drug resistance.
11, 12

  

Orlistat, a pancreatic lipase inhibitor, approved by the US Food and Drug Administration as an anti-

obesity drug inhibits FASN, and produces antitumor effects in a variety of cancers, including ovarian 

cancer.
13, 14

 It acts as an irreversible inhibitor that forms a covalent adduct with the active serine of the 

thioesterase domain of FASN
15

 and has been shown to halt cell proliferation in several prostate 

cancer cell lines in vitro and inhibit prostate tumour growth in murine xenografts.
16

 It also reduces 

proliferation and promotes apoptosis in HER2-overexpressing breast cancer, ovarian cancer and B16-

F10 mouse metastatic melanoma cells,
17-19

 accelerates apoptosis in NUGC-3 gastric cancer cells in 

vitro, and increases survival rates of gastric tumour-bearing mice.
20

 However, its effects in overcoming 

resistance to chemotherapy remain unexplored. 

In ovarian cancer, development of platinum resistance signals the onset of difficulties to control 

disease, so that novel therapeutic approaches are much needed. In the present study, we aimed to 

investigate whether the effects of FASN inhibition by orlistat could overcome cisplatin resistance in 

ovarian cancer by using it in combination with cisplatin in a cisplatin-refractory ovarian carcinoma 

xenograft mouse model and validating the tumour response on histopathology. Magnetic resonance 

spectroscopy (MRS) also was performed to assess the metabolic changes caused by inhibition of lipid 

synthesis.  
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Materials and Methods 

Cell culture. Cisplatin-resistant A2780cis (ECACC 93112517) human ovarian carcinoma cells were 

obtained from European Collection of Authenticated Cell Cultures and maintained in RPMI 1640 

culture medium (Sigma-Aldrich, Dorset, UK)) supplemented with 2 mM L-glutamine and 10% (v/v) 

fetal bovine serum  (Life Technologies) and in a humidified atmosphere with 5% CO2 at 37 °C. In 

order to retain resistance, 1µM cisplatin (Enzo Life Sciences) was added to the media for every other 

passage. Cells were tested negative for mycoplasma infection using LookOut Mycoplasma PCR 

(Sigma-Aldrich), and Short Tandem Repeat (STR) profiling was performed using a GenePrint 10.0 kit 

(Promega) to authenticate the cell line before the in vivo experiments. 

Animals and tumours. Animal experiments were performed in accordance with the local ethical 

review panel, the UK Home Office Animals (Scientific Procedures) Act 1986, and with the UK National 

Cancer Research Institute Guidelines for the Welfare and Use of Animals in Cancer Research.
21, 22

 

Female NCr nude mice, 6 to 8 weeks old, were injected with 5 × 10
6
 A2780cis cells in 0.1 ml serum-

free medium subcutaneously into the right flank. Callipers were used to measure the tumour length 

(L), width (W) and depth (D) and the volume was calculated assuming an ellipsoid shape using the 

formula: (π/6) × L × W × D. Approximately 2 to 3 weeks after cell inoculation, when tumours reached 

a mean volume of approximately 200 mm
3
, mice were randomly divided into six treatment cohorts (n 

= 6 per cohort). 

Mice in each cohort where treated intraperitoneally for five days with either: a) a daily dose of 100µl 

vehicle (VEH, saline with 10% ethanol), b) a single dose of 5 mg kg
−1

 cisplatin administered at day 0 

(CIS D0) or c) at day 2 (CIS D2), d) a daily dose of 240 mg kg
-1

 orlistat (ORL, Cayman Chemical) 

freshly dissolved in vehicle, e) combination of daily doses of orlistat and single dose of cisplatin at day 

0 (ORL/CP D0) or f) at day 2 (ORL/CP D2). A diagram with the treatment doses in each cohort is 

shown in Figure 1a. Tumours were excised 4 h after the last orlistat dose at day 4, cut in half and 

snap frozen. 

High-resolution 
1
H and 

31
P magnetic resonance spectroscopy of tumour extracts. One half of 

each excised tumour was finely crashed in liquid nitrogen using a mortar and a pestle and extracted 

by dual phase extraction procedures as previously described.
23

 The water-soluble extracts were 
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freeze-dried, reconstituted in 580 µl deuterated water (D2O, Sigma Aldrich) and 20 µl of 0.75% 

sodium 3-trimethylsilyl-2,2,3,3-tetradeuteropropionate (TSP) in D2O (Sigma Aldrich) was added to the 

samples for chemical shift calibration and quantification. 500 µl of the extract solution was transferred 

to a 5 mm NMR tube and sample pH was adjusted to 7 using perchloric acid or potassium hydroxide. 

1
H-MRS of the tumour extracts was performed on a Bruker 500 MHz nuclear magnetic resonance 

system (Bruker Biospin, Coventry, United Kingdom) and spectra were acquired using a pulse and 

collect NMR sequence with water suppression with 7500Hz spectral width, 32K time domain points, 

relaxation delay 2.7s, 256 scans, temperature 298K. After 
1
H MRS, EDTA (50 µL, 60 mmol/L) was 

added to each sample for chelation of metal ions and methylene diphosphonic acid (MDP) (50 µL, 5 

mmol/L) was added to samples for 
31

P chemical shift calibration and quantitation. The pH was again 

adjusted to 7 and 
31

P MRS was performed with 12000Hz spectral width, 32K time domain points, 

relaxation delay 5s, 3000 scans, temperature 298K.  

Lipid extracts were reconstituted in 450 µL deuterated chloroform (Sigma Aldrich) and 150 µL of 0.1% 

tetramethylsilane (TMS) in deuterated chloroform (Sigma Aldrich) was added to the samples for 

chemical shift calibration and quantification. 
1
H-MRS of the lipid extracts was performed with 7500Hz 

spectral width, 32K time domain points, relaxation delay 2.7s, 256 scans, temperature 298K. 

Spectral processing was carried out using the Bruker Topspin-2 software package (Bruker Biospin, 

Coventry, UK) and spectral assignments were based on literature values.
24, 25

 Water-souble 

metabolites measured by 
1
H and 

31
P MRS were quantified relative to TSP or MDP, respectively, and 

normalised to tumour weight.
23

  Lipid metabolite levels were expressed as peak-area ratio relative to 

the reference TMS and normalised to tumour weight.
23

  

Histology. The remaining half of each excised frozen tumour was used for histological analysis. 

Frozen tumour sections (10 µm thick) were cut axially from two regions for each tumour, one in the 

centre of the tumour and one 1mm apart. To assess apoptosis, acetone fixed sections were stained 

with a rabbit polyclonal anti-cleaved caspase-3 antibody (1/20, Abcam, Cambridge, UK) and Alexa 

Fluor 546 goat anti-rabbit secondary antibody (1/1000, Invitrogen, Paisley, UK). To access FASN 

expression, paraformaldehyde fixed and permeabilized sections were stained with a rabbit 

monoclonal anti-FASN antibody [EPR7465] (1/200, Abcam) and Alexa Fluor 488 goat anti-rabbit 

secondary antibody (1/1000, Invitrogen). Non-immune-specific rabbit IgG was used in the same 

Page 5 of 28

John Wiley & Sons, Inc.

International Journal of Cancer

This article is protected by copyright. All rights reserved.



6 

 

concentrations with the anti-cleaved caspase-3 antibody and the anti-FASN antibody, as negative 

isotype controls. Fluorescent staining was visualised using a motorised scanning stage (Prior 

Scientific Instruments, Cambridge, UK) attached to a BX51 microscope (Olympus Optical, London, 

UK) driven by CellP (Soft Imaging System, Munster, Germany) to record digital composite images of 

whole tumour sections. To quantify the degree of necrosis, sections were also stained with 

haematoxylin and eosin (H&E), dehydrated through a series of alcohols and xylene and visualized 

using bright-field microscopy. Tumour necrotic areas were defined by the presence of microscopic 

coagulative necrosis with homogeneous clusters and sheets of degenerating and dead cells; necrotic 

tissue appeared lighter in H&E stained sections due to lack of nuclei. The image analysis software 

ImageJ
26

 was used for blinded (to the time of treatment) post-processing of all digital composite 

tumour images. ROIs encompassing the whole tumour sections were defined and the area of the 

tumour section with fluorescent staining or with necrosis was expressed as a percentage of the whole 

tumour section area, as previously described.
27

 

Statistical analysis. Data were analysed using GraphPad Prism 7 (GraphPad Software Inc., La Jolla, 

CA, USA). Statistical significance of differences was determined by Student’s t-test or one-way 

ANOVA with Bonferroni post-test, with a 5% level of significance. Results are presented as mean +1 

standard error of the mean (SEM).  
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Results 

Addition of orlistat to cisplatin chemotherapy caused significant tumour growth delay in 

cisplatin-resistant ovarian carcinoma xenografts. A2780cis tumours had a doubling rate of 3.3 ± 

0.6 days based on independent tumour volume growth curves for each of the mice used in this study. 

The mean tumour volume at treatment onset was 227 ± 20 mm
3
. Both cisplatin (CP) and orlistat 

(ORL) monotherapies induced a small tumour growth delay in comparison with vehicle-treated 

tumours, but the delay was significant only when the two drugs were used in combination (Figures 1b, 

c).  

To access whether the effect of cisplatin is depended on whether the tumours have been pre-exposed 

to orlistat or not, cisplatin was administered either at the beginning of the treatment (CP D0) or after 

few days (CP D2) of the mice being treated with orlistat. However, the time point at which cisplatin 

was administered, either day 0 or day 2, did not affect the growth of the combination-treated tumours. 

As shown in Figure 1c, the volume of the vehicle-treated (VEH) tumours increased by 119 ± 51% at 

day 4, while the volume of the combination-treated cohorts increased only by 29 ± 29% and 48 ± 32% 

respectively for ORL/CP D0 (P < 0.01 compared to VEH) and ORL/CP D2 (P < 0.05 compared to 

VEH). Moreover, while cisplatin alone (CP D0) did not delay tumour growth – tumour volume 

increased by 109 ± 43% – addition of orlistat (ORL/CP D0) to the treatment led to significant growth 

delay (P < 0.05). Despite orlistat and cisplatin combinations having an effect on tumour growth, no 

significant weight losses were observed in any of the drug-treated mice compared with vehicle-treated 

mice. Weight loss was less than 5% of the initial body weight across all cohorts of mice (Figure 1d); 

indicating that the treatment dosages and schedules used in this study were well tolerated.  

 

Orlistat treatment led to decreased fatty acid production and glutamine metabolism in 

A2780cis tumours. 
1
H-MRS was performed on day 4 tumour extracts to analyse levels of water 

soluble metabolites and lipids (Figures 2 and 3, respectively). The relative to vehicle percentages of 

the quantified levels of low molecular weight water-soluble and lipid metabolites from the A2780cis 

tumour extracts are shown in figure 4a and 4b respectively. Tumours from mice treated with orlistat 

showed a decrease in alanine (P =0.02), glutamine (P=0.04), creatine (P=0.02), glutathione (trend, 

P=0.06) and also lactate (trend, P=0.06) when compared with vehicle (Figure 4a). Tumours from 

cisplatin-treated mice had lower levels of β-hydroxybutyrate (P=0.02), alanine (P=0.05), carnitine 
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(P=0.009) and lactate (trend, P=0.07) (D0 cohort), or reduced glutamate (P=0.04), glutamine 

(P=0.02), carnitine (P=0.008) and β-hydroxybutyrate (trend, P = 0.06) levels (D2 cohort) when 

compared with the vehicle cohort. Glutamate (P=0.04), glutamine (P=0.004), glutathione (P=0.03), 

carnitine (P=0.03), creatine (P=0.001), β-hydroxybutyrate (P = 0.01), ADP (P=0.04) and alanine 

(trend, P=0.07) were decreased in the ORL/CP D2 tumours when compared with VEH group, 

whereas no significant changes were observed in the ORL/CP D0 cohort (Figure 4a). Apart from the 

decrease in ADP in the ORL/CP D2 combination group (P=0.04) when compared to control, no 

significant changes were seen in the 
31

P-MRS spectra of the water-soluble metabolites between the 

different treatment cohorts (Supplementary Figure 1).  

Unsaturated fatty acids (P=0.02), cholesterol (P=0.02), -CH2-CH2-(Ch2)n- fatty acids (P=0.05), and –

CH3 fatty acids (P=0.04) were decreased in tumours from orlistat treated mice compared with vehicle, 

whereas triacylglycerol (P=0.05) and --(CH2)n- fatty acids (trend, P=0.06) were elevated in the 

ORL/CP D2 combination group when compared with vehicle (Figure 4b). Increased unsaturated fatty 

acids (P=0.003), triacylglycerol (P=0.0008), cholesterol (P=0.02), -CH2-CH2-(Ch2)n- fatty acids 

(P=0.04), -(CH2)n- fatty acid (P=0.02) and –CH3 fatty acids (P=0.01) were found in the ORL/CP D2 

combination group when compared with orlistat alone (Figure 4b). Unsaturated fatty acids (P=0.03), 

cholesterol (trend, P=0.06) and –CH3 fatty acids (trend, P=0.07) were also elevated in ORL/CP D0 

combination group when compared with orlistat alone (Figure 4b). 

 

Cisplatin induced tumour necrosis in A2780cis tumours whereas cisplatin and orlistat 

combination led to apoptosis. Figure 5 shows representative histological sections of excised 

tumours at day 4 after treatment with vehicle or combination of cisplatin and orlistat (ORL/CP D2 

cohort), stained with H&E (Figure 5a), cleaved caspase-3 antibody (Figure 5b), and FASN antibody 

(Figure 5c). Quantification of tumour necrosis using the H&E stained sections at day 4 after treatment 

is shown in Figure 6a. Cisplatin administered at day 2 either as monotherapy or in combination 

caused a significantly higher degree of necrosis (16 ± 4%, P < 0.05 and 24 ± 8%, P < 0.0001) 

compared with vehicle-treated tumours (6 ± 8 %) (Figure 6a). Cleaved caspase-3 staining in the 

cisplatin monotherapy groups (3% for CP D0 and 4% for CP D2) was similar to vehicle controls of 4%, 

whereas with the addition of orlistat significantly increased cleaved caspase-3 staining was found in 

the combination groups (8% in the ORL/CP D0 cohort and 7% in the ORL/CP D2 cohort) when 
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compared with their respective monotherapy (P < 0.0001 for ORL/CP D0 and P < 0.001 for ORL/CP 

D2) and with the vehicle controls (P < 0.0001 for ORL/CP D0 cohort and P < 0.0001 in the ORL/CP 

D2 cohort) (Figure 6b). 

 

Treatment with orlistat alone or in combination with cisplatin led to a decrease in FASN 

expression. FASN staining was 15% in the vehicle cohort, whereas it decreased to 7% when orlistat 

was given as monotherapy (P < 0.0001), and to 5% (P < 0.0001) or 9% (P < 0.0001) when orlistat 

was given in combination with cisplatin at day 0 or day 2, respectively (Figure 6c). FASN staining was 

significantly reduced in the combination groups when compared to their respective cisplatin 

monotherapy (P < 0.0001 for ORL/CP D0 and P < 0.001 for ORL/CP D2). A small decrease in FASN 

staining was also seen in the CP D2 cohort when compared to vehicle controls (P < 0.01). However, 

when the FASN staining was measured only in the viable tissue, in order to remove the bias of 

necrotic tissue, no differences in FASN staining where observed in the cisplatin-treated tumours when 

compared with vehicle controls (Figure 6d). The viable tissue fraction was calculated using the 

necrotic fraction (viable tissue fraction= 1-necrotic fraction). A significant decrease in FASN staining in 

the viable tissue fraction was found in tumours treated with the FASN inhibitor orlistat alone or in 

combination with cisplatin when compared with vehicle controls (P < 0.0001 for ORL, ORL/CP D0 and 

P < 0.001 for ORL/CP D2). Moreover, FASN staining was also reduced in the ORL/CP D0-treated 

tumours when compared to cisplatin-treated (CP D0) tumours (P < 0.0001). 

  

Page 9 of 28

John Wiley & Sons, Inc.

International Journal of Cancer

This article is protected by copyright. All rights reserved.



10 

 

Discussion 

In this study, we have explored the use of the FASN inhibitor orlistat as a way of overcoming 

resistance to cisplatin in cisplatin-refractory ovarian cancer and examined their effects as 

monotherapies or as a combination, on tumour metabolism. The administered doses of both cisplatin 

and orlistat were based on previous publications and were well tolerated in the current study. Cisplatin 

was used at its maximum tolerated dose of 5 mg kg
−1

, which has elicited cytotoxic effects in ovarian 

cancer xenografts.
28-30

 Orlistat was used at a daily dose of 240 mg kg
−1

, which has been shown to 

induce tumour growth delay in human prostate cancer xenografts in nude mice.
16

 Orlistat therapy led 

to no significant weight loss (<5%) across all treatment groups. This is in agreement with a previous 

study on mice with subcutaneous human prostate tumours, where the tumorigenic effect of orlistat 

treatment, at the same daily dose as in our study, was not accompanied by body weight loss.
31

  In 

contrast, the FASN inhibitors cerulenin and C75, are known to lead to severe decrease of food intake 

and induction of weight loss in mice.
32-34

 Hence, orlistat appears to be a preferable FASN inhibitor in 

tumours, as it does not cause weight loss, which would be a significant limiting factor in often 

cachectic cancer patients. 

Orlistat has been shown to induce tumour growth delay in preclinical mouse tumour models, such as 

models of prostate cancer, melanoma, colorectal adenocarcinoma and oral tongue squamous cell 

carcinoma.
18, 31, 35, 36

 Moreover, using proteomic tools in SKOV3 cells, orlistat has been identified, as a 

potential inhibitor of human ovarian cancer.
37

 Other FASN inhibitors can also exhibit tumorigenic 

effects on ovarian cancer models. Pizer et al
38

 has shown that cerulenin can lead to regression of the 

multiply drug-resistant OVCAR-3 human ovarian carcinoma in nude mice. C75 inhibited growth of 

SKOV3 xenografts grown intraperitoneally in severe combined immunodeficient mice.
34

 In our study, 

we showed a significant growth delay of cisplatin-resistant A2780cis tumours following treatment with 

a combination of orlistat and cisplatin which was greater than that with either drug alone.  

Orlistat in combination with cisplatin induced apoptosis in our tumours. Previous studies have 

indicated that orlistat treatment results in G1/S stage arrest of cell proliferation and decreased DNA 

synthesis followed by receptor-mediated apoptosis via caspase-8 activation.
39

 Pre-treatment of MCF-

7 mammary carcinoma cells with orlistat for 24h also sensitized the cells to TRAIL-induced apoptosis. 

The apoptotic effect of FASN inhibition results from upregulation of the stress response gene DDIT4 
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(DNA damage-inducible transcript 4), which negatively regulates the mTOR pathway.
40

 Yang et al
19

 

have also shown in ovarian cancer cells that DDIT4 suppressed mTOR to stimulate orlistat-induced 

cell death via caspase-2 activation. In our study, the apoptotic effect of orlistat was significant only 

when orlistat was used in combination with the cytotoxic agent, cisplatin. Cisplatin treatment on the 

other hand, induced necrosis either as monotherapy or as combination when administered at day 2, 

but not when administered at day 0. This is probably because the necrotic effect was more profound 

when the mice were killed 2 days after the cisplatin administration, whilst the tumours had not yet time 

to recover, rather than 4 days after treatment. It may well be that cisplatin treatment has an initial 

temporary cytotoxic effect in cisplatin-resistant A2780cis tumours, and  that FASN inhibition acts 

synergistically to further delay tumour growth and induce apoptosis in the remaining cell population. 

Moreover, if FASN is involved in the repair process following the initial cellular damage caused by 

cisplatin treatment by providing lipids for the de novo membrane synthesis, FASN inhibition would 

lead to a shortage of lipids for generating replacement cells.  

Recent studies have linked FASN overexpression in cancer with multidrug resistance, which partially 

explains the association between FASN expression and poor prognosis. FASN blockade reverses the 

acquired resistance to trastuzumab in breast and ovarian cancer cells
41, 42

 and can sensitize breast 

cancer cells to doxorubicin, docetaxel, paclitaxel and vinorelbine chemotherapy.
11, 12

 A combination of 

cerulenin and 5-fluorouracil displayed a schedule-dependent synergistic effect in breast carcinoma 

cells with maximum efficacy when cells were exposed to 5-fluorouracil prior to cerulenin.
43

 A 

proteomic analysis of cisplatin-resistant mouse mammary tumours identified FASN as a predictive 

marker for cisplatin resistance; inhibition of FASN sensitized resistant cells to cisplatin.
44

 Inhibiting key 

metabolic enzymes in the fatty acid synthesis pathway led to significant cell death in cisplatin-resistant 

lung cancer cells.
45

 In addition, combination treatment of C75 and cisplatin resulted in growth 

inhibition of epithelial ovarian carcinoma xenografts in nude mice.
46

. Sequential cerulenin/cisplatin 

treatment reduced cisplatin’s half maximal inhibitory concentration in cisplatin-resistant ovarian cancer 

cells, suggesting platinum (re)sensitization.
47

 In a mouse model of Dalton’s lymphoma, cisplatin 

exhibited a maximal effect on tumour growth retardation when cisplatin was administered following 

pre-exposure to orlistat. The same study has also shown that orlistat administration in vivo not only 

resulted in reduced FASN expression and activity, but also reduced the expression of multidrug 

resistance protein (MDR) and multidrug resistance associated protein-1 (MRP-1).
48

 Thus, this study 
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suggested that one of the mechanisms by which orlistat makes tumour cells susceptible to cisplatin 

cytotoxicity is by inhibiting multidrug resistance regulating molecules. In the present study, we have 

shown that while cisplatin on its own could not slow the growth of A2780cis ovarian tumours, inhibition 

of FASN with orlistat sensitized the cisplatin-resistant tumours to cisplatin. The delay in tumour growth 

was not affected by the time of cisplatin administration despite the differences observed in the tumour 

metabolic profiles, which were more profound when cisplatin was given at day 2 rather than day 0, 

probably due to the transient nature of metabolic changes. 

In this study, we found cisplatin treatment alone leads to decreases in carnitine and β-hydroxybutyrate 

in cisplatin resistant ovarian tumours, indicating that β-oxidation of fatty acids is impaired following 

cisplatin treatment.  Carnitine is a non-essential amino acid involved in the transport of fatty acids 

across the mitochondrial membrane for β-oxidation.
49

 β-hydroxybutyrate is a ketone body and a 

product of fatty acid oxidation.  Therefore, a reduced level of carnitine in tumours could lead to a 

subsequent reduction in β-oxidation of fatty acids and ketone body production. Our finding is 

consistent with a previous report in which L-carnitine was used to inhibit cisplatin-induced injury in 

kidney and small intestine where there are very high level of carnitine transporters.
50

  Decreased 

glutamine and glutamate levels were observed only in tumours treated with cisplatin for 2 days (CP 

D2) and not after 4 days (CP D0), this may indicate the change in glutamine metabolism is an acute 

effect, which normalises after a longer period of time.   

Treatment of orlistat alone led to decreased cholesterol, saturated and unsaturated fatty acids in 

tumours together with reduced FASN expression, confirming the mechanism of drug action.  Previous 

studies have also seen a reduction in FASN expression in mouse metastatic melanoma cells and in 

human glioblastoma cells.
18, 51

 This could be either due to decreased expression in a translational 

level or increased degradation of the FASN protein. When orlistat was combined with cisplatin (at 

either time point), MRS-measured lipid levels in the tumours are increased when compared with 

orlistat alone despite the FASN expression remaining supressed.  This is due to the fact that the 

combination treatment caused tumours to undergo apoptosis (measured by cleaved caspase-3 

staining), and increases in lipids were previously reported as one of the metabolic features for 

apoptosis.
52-54

 As orlistat reduced tumour lipids on one hand and apoptosis caused elevation of lipid 

levels on the other, this could lead to lipid levels becoming normalised as observed in the orlistat and 
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cisplatin combination treated-tumours compared with the vehicle treated-tumours. Altered lipid 

metabolism is a common consequence of apoptosis and various apoptosis-inducing treatments are 

known to increased NMR-visible lipid signals. The majority of the lipid signals is produced by lipids 

located in cytoplasmic lipid droplets/bodies. 
55

 The lipid body formation in apoptosis could be due to 

increased catabolism of membrane phospholipids, which produces free fatty acids that are converted 

to triacylglycerols and stored in lipid bodies. Another potential source of mobile lipids could by the 

breakdown of mitochondrial membranes or the inhibition of phospholipid biosynthesis, which leads to 

accumulation of diacylglycerols and triacylglycerols. 
56, 57

  

Glutamine is required to sustain cancer cell growth and for cell survival under stress.
58

 It is 

transported into cells by transporters such as SLC1A5, and it is then converted to glutamate by the 

enzyme glutaminase. Glutamate is then further metabolised to α-ketoglutarate in the TCA cycle in the 

mitochondria to be further utilised for protein, nucleotide and lipid synthesis. Along with reduced lipid 

metabolites, orlistat treatment alone also caused decreases in alanine, glutamine, creatine and lactate 

with unchanged glucose level when compared with vehicle controls, suggesting that glutamine 

metabolism/glutaminolysis is downregulated.
59

 The unchanged levels of β-hydroxybutyrate and 

carnitine in orlistat-treated tumours when compared with vehicle controls indicates β-oxidation of fatty 

acids is unaffected by orlistat as a single agent. The tumours could continue to undergo β-oxidation of 

fatty acids to maintain tumour bioenergetics (ATP level), despite a reduction in glutamine 

metabolism/glutaminolysis following orlistat treatment.  

Reductions in glutamate, glutamine, glutathione, carnitine, creatine, β-hydroxybutyrate and ADP were 

found in tumours treated with the combination of orlistat and cisplatin (ORL/CP D2), indicating that 

fatty-acid β-oxidation and glutamine metabolism are compromised in these tumours which could result 

in reduced nucleotide and glutathione production.  The observed induction of apoptosis in the 

combined orlistat and cisplatin-treated groups could be the result of reduced nucleotides and/or 

glutathione synthesis.  Glutathione is an important antioxidant and its depletion could cause an 

increase in reactive oxygen species and oxidative damage, which could lead to induction of 

apoptosis. Our data is consistent with a recent study showing the platinum-resistant ovarian cancer 

cells can be re-sensitised to platinum treatment by targeting glutamine metabolism.
60

 Our study has 

shown that combining cisplatin treatment with FASN inhibition caused downregulation of glutamine 
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metabolism/glutaminolysis and β-oxidation, which then lead to reduction in nucleotides and 

glutathione synthesis. 

In conclusion, we have demonstrated that a combination of cisplatin and orlistat resulted in enhanced 

treatment efficacy in cisplatin-resistant ovarian cancer with increased tumour growth delay and 

induction of apoptotic and necrotic cell death. A combination of these two drugs also led to decreases 

in glutamine metabolism/glutaminolysis, biosynthesis of nucleotides and glutathione and fatty acid β-

oxidation. The combined effects of these metabolic changes may play a role in the improved efficacy.  

Hence, FASN inhibitors, such as orlistat, are promising anticancer agents that lead to 

chemosensitization and enhanced efficacy when used as part of a combination treatment regime. 
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Figure legends 

Figure 1 The anti-tumour effects of orlistat and cisplatin combination therapy in A2780cis 

human ovarian carcinoma xenografts. (a) Diagram of dosing schedule for each mouse cohort 

(vehicle: saline with 10% ethanol, cisplatin: 5 mg kg
−1

, orlistat: 240 mg kg
-1

). (b) Tumour volume 

changes over the course of treatment and (c) tumour volume at day 4 relative to day 0 (%) showing 

an increase in tumour volume in the vehicle-treated cohort, while drug combination (orlistat and 

cisplatin) induced significant tumour growth delay (dashed line indicates tumour volume at day 0). (d) 

Mouse body weight relative to day 0 of treatment. Data are mean +/- 1 SEM for n = 6 tumours per 

group (*P < 0.05, **P < 0.01).  

Figure 2 Representative 
1
H MRS spectra of water soluble metabolites in tumour extracts 

treated with (a) vehicle, (b) orlistat, (c) cisplatin at day 2 and (d) combination at day 2. Spectral 

assignments: 1: β-Hydroxybutyrate; 2: Lactate; 3: Alanine; 4: Acetate; 5: Glutamate; 6: Succinate; 7: 

Glutamine; 8: Glutathione; 9: Aspartate; 10: Creatine; 11: Carnitine; 12: Choline; 13: Phosphocholine; 

14: Glycerophosphocholine; 15: Taurine; 16: Glycine; 17: Myo-inositol. 

Figure 3 Representative 
1
H MRS spectra of lipid metabolites in tumour extracts from mice 

treated with (a) vehicle, (b) orlistat, (c) cisplatin at day 2 and (d) combination at day 2. Spectral 

assignments: 1: Cholesterol and ester; 2: -CH3 Fatty acid; 3: -(CH2)n-  Fatty acid; 4: -CH2-CH2-

(CH2)n-; 5: -CH2-CH2-CH=; 6: -CH2-CH2-CO2-; 7: =CH-CH2-CH=; 8: Phosphatidylcholine; 9: 

Triacylglycerol; 10: -CH=CH-. 

Figure 4 The effect of cisplatin and orlistat treatment in A2780cis xenografts on 
1
H MRS-

detectable metabolites. Changes relative to vehicle (VEH) in the 
1
H MRS-detectable (

31
P MRS-

detectable for ADP) water-soluble metabolites (a) and lipid metabolites (b) of tumour extracts from 

mice following cisplatin, orlistat or combination therapy. ADP: adenosine diphosphate, UFA: 

unsaturated fatty acids, FA: fatty acids. Data are mean +1 SEM for n = 6 tumours per group (*P ≤ 

0.05, **P < 0.01, ***P < 0.001, 
#
P< 0.08). 

Figure 5 Histological assessment of A2780cis xenografts at day 4 after treatment with vehicle 

(VEH) and drug combination (ORL/CP D2). (a) Composite images of H&E-stained sections 
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indicating necrotic regions and magnified image of a necrotic area. (b) Composite images from frozen 

tumour sections stained with the apoptotic marker cleaved caspase-3 detected using an Alexa-546-

conjugated secondary antibody that fluoresces red. (c) Composite images from whole frozen tumour 

sections and magnified areas stained with an anti-FASN antibody detected using an Alexa-488-

conjugated secondary antibody that fluoresces green.  

Figure 6 Quantification of histological markers in tumour xenografts. (a) Necrotic area, (b) 

cleaved caspase-3 positive area, (c) FASN positive area and (d) FASN positive area in viable tissue. 

Results are means +1 SEM of two sections per tumour for n = 6 per group (**P < 0.01, ***P < 0.001, 

****P < 0.0001). 
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Figure 1 The anti-tumour effects of orlistat and cisplatin combination therapy in A2780cis human 
ovarian carcinoma xenografts. (a) Diagram of dosing schedule for each mouse cohort (vehicle: saline 

with 10% ethanol, cisplatin: 5 mg kg−1, orlistat: 240 mg kg-1). (b) Tumour volume changes over the course 

of treatment and (c) tumour volume at day 4 relative to day 0 (%) showing an increase in tumour volume in 
the vehicle-treated cohort, while drug combination (orlistat and cisplatin) induced significant tumour growth 
delay (dashed line indicates tumour volume at day 0). (d) Mouse body weight relative to day 0 of treatment. 

Data are mean +/- 1 SEM for n = 6 tumours per group (*P < 0.05, **P < 0.01).  
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Figure 2 Representative 1H MRS spectra of water soluble metabolites in tumour extracts treated 
with (a) vehicle, (b) orlistat, (c) cisplatin at day 2 and (d) combination at day 2. Spectral 

assignments: 1: β-Hydroxybutyrate; 2: Lactate; 3: Alanine; 4: Acetate; 5: Glutamate; 6: Succinate; 7: 

Glutamine; 8: Glutathione; 9: Aspartate; 10: Creatine; 11: Carnitine; 12: Choline; 13: Phosphocholine; 14: 

Glycerophosphocholine; 15: Taurine; 16: Glycine; 17: Myo-inositol.  
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Figure 3 Representative 1H MRS spectra of lipid metabolites in tumour extracts from mice treated 
with (a) vehicle, (b) orlistat, (c) cisplatin at day 2 and (d) combination at day 2. Spectral 

assignments: 1: Cholesterol and ester; 2: -CH3 Fatty acid; 3: -(CH2)n-  Fatty acid; 4: -CH2-CH2-(CH2)n-; 

5: -CH2-CH2-CH=; 6: -CH2-CH2-CO2-; 7: =CH-CH2-CH=; 8: Phosphatidylcholine; 9: Triacylglycerol; 10: -

CH=CH-.  
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Figure 4 The effect of cisplatin and orlistat treatment in A2780cis xenografts on 1H MRS-
detectable metabolites. Changes relative to vehicle (VEH) in the 1H MRS-detectable (31P MRS-detectable 

for ADP) water-soluble metabolites (a) and lipid metabolites (b) of tumour extracts from mice following 

cisplatin, orlistat or combination therapy. ADP: adenosine diphosphate, UFA: unsaturated fatty acids, FA: 
fatty acids. Data are mean +1 SEM for n = 6 tumours per group (*P ≤ 0.05, **P < 0.01, ***P < 0.001,# 

P 
< 0.08).  
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Figure 5 Histological assessment of A2780cis xenografts at day 4 after treatment with vehicle 
(VEH) and drug combination (ORL/CP D2). (a) Composite images of H&E-stained sections indicating 

necrotic regions and magnified image of a necrotic area. (b) Composite images from frozen tumour sections 

stained with the apoptotic marker cleaved caspase-3 detected using an Alexa-546-conjugated secondary 
antibody that fluoresces red. (c) Composite images from whole frozen tumour sections and magnified areas 

stained with an anti-FASN antibody detected using an Alexa-488-conjugated secondary antibody that 
fluoresces green.  
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Figure 6 Quantification of histological markers in tumour xenografts. (a) Necrotic area, (b) cleaved 
caspase-3 positive area, (c) FASN positive area and (d) FASN positive area in viable tissue. Results are 
means +1 SEM of two sections per tumour for n = 6 per group (**P < 0.01, ***P < 0.001, ****P < 

0.0001).  
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