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Abstract

Voluntary inspiration breath hold (VIBH) for left breast cancer patients has been

shown to be a safe and effective method of reducing radiation dose to the heart.

Currently, VIBH protocol compliance is monitored visually. In this work, we establish

whether it is possible to gate the delivery of radiation from an Elekta linac using the

Microsoft Kinect version 2 (Kinect v2) depth sensor to measure a patient breathing

signal. This would allow contactless monitoring during VMAT treatment, as an alter-

native to equipment–assisted methods such as active breathing control (ABC).

Breathing traces were acquired from six left breast radiotherapy patients during

VIBH. We developed a gating interface to an Elekta linac, using the depth signal

from a Kinect v2 to control radiation delivery to a programmable motion platform

following patient breathing patterns. Radiation dose to a moving phantom with gat-

ing was verified using point dose measurements and a Delta4 verification phantom.

60 breathing traces were obtained with an acquisition success rate of 100%. Point

dose measurements for gated deliveries to a moving phantom agreed to within

0.5% of ungated delivery to a static phantom using both a conventional and VMAT

treatment plan. Dose measurements with the verification phantom showed that

there was a median dose difference of better than 0.5% and a mean (3% 3 mm)

gamma index of 92.6% for gated deliveries when using static phantom data as a ref-

erence. It is possible to use a Kinect v2 device to monitor voluntary breath hold

protocol compliance in a cohort of left breast radiotherapy patients. Furthermore, it

is possible to use the signal from a Kinect v2 to gate an Elekta linac to deliver radia-

tion only during the peak inhale VIBH phase.
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1 | INTRODUCTION

Breast cancer is the most common malignancy in women in the UK,

with more than 40,000 new cases diagnosed each year.1 Surgery fol-

lowed by radiotherapy improves local control and survival such that

rates of local tumor relapse in the breast are now approximately 3%

at 5 yr.2,3 However, breast radiotherapy is also associated with a 1%

increase in nonbreast-cancer-related deaths at 15 yr, 90% of which

are cardiovascular in origin.4,5 Given the increasing incidence of

breast cancer, and the large numbers of survivors in the population,

it is imperative that the improvements in breast cancer mortality are

not compromised by nonbreast-cancer deaths. This may be achieved

by reducing the radiation dose to the heart from radiotherapy. One

approach to achieving this is deep inspiration breath-hold, using

either equipment-assisted or voluntary inspiration breath-hold (VIBH)

techniques.6,7

VIBH techniques are straightforward and cost-effective to imple-

ment, as they use equipment already available in the radiotherapy

treatment room. This includes the field light indicators and lasers

used to aid patient setup. The field lights or lasers plus skin refer-

ence marks are viewed via CCTV cameras in the control areas and

provide confidence that the patient is holding her/his breath in a

reproducible way during radiotherapy delivery.

More complex approaches to delivering radiotherapy such as

Volumetric Modulated Arc Therapy (VMAT) are likely to become

standard treatments for selected groups of patients.8 There is poten-

tial for the light fields/lasers to be occluded from view by the gantry

if used for these treatments, which may inhibit visual monitoring of

VIBH, hence requiring equipment-assisted methods to be used. In

addition, the visual monitoring method, whilst shown to be safe and

effective,9 does not allow for automatic gating of the linac in the

event of a sudden patient movement such as a cough. We propose

using the Microsoft Kinect version 2 (Kinect v2) device as a simple,

low cost, noncontact monitoring method as a potential solution.

The Kinect v2 was originally designed as a motion-tracking

peripheral for the Microsoft Xbox One games console. The sensor

contains a standard high definition (HD) camcorder, an infrared

transmitter and receiver and an array of microphones for positional

sound detection. An infrared time-of-flight (TOF) technique is used

to estimate the distance from the camera to objects in the room.

The Kinect v2 has significantly better performance characteristics

than the older Kinect v1 sensor that has been in the literature for

several years, including a higher resolution depth sensor

(512 9 424 vs. 320 9 240), higher resolution color sensor

(1920 9 1080 vs. 640 9 480) and wider field of view (70° H, 60°

V vs. 57° H 43° V).

The Kinect v2 has already been used for external head motion

tracking in brain PET scans,10 respiratory motion correction in PET

scans11 and respiratory motion tracking in radiotherapy using a mar-

ker-based system.12 Previous work has shown that the sensor has

distance accuracy and precision of 1 to 2 mm after calibration, which

is sufficient for breath-hold monitoring where changes are 5 to

10 mm in magnitude.10,11,13–15 In our previous work,13 we

demonstrated that the Kinect v2 can be used safely in a radiation

environment without image distortions caused by the radiation

beam. The work reported here can be divided into two components:

1. We performed the first clinical study using the Kinect v2 in

breast radiotherapy, with markerless tracking. This was a clinical

feasibility study of observational design. Six breast cancer radio-

therapy patients were monitored in a standard supine treatment

position while performing a VIBH breathing protocol. Distance

information was extracted using the Kinect v2, and used to

obtain breathing traces from the patients.

2. We developed a gating interface to an Elekta linac, using the

depth signal from a Kinect v2 to control the delivery of radiation

to a programmable motion platform. Patient breathing traces

obtained from part 1) were used as movement patterns for the

motion platform, to verify that radiation was correctly delivered

while the gating system was in use.

One aim of this work is to demonstrate that it is possible to

monitor compliance with the VIBH protocol and acquire breathing

traces from patients using the Kinect v2. The second aim is to show

that it is possible to gate radiation delivery based on a signal from a

Kinect v2, derived from patient motion patterns applied to a pro-

grammable motion platform.

2 | MATERIALS AND METHODS

2.A | Clinical study protocol and recruitment

The clinical study design was observational, noninterventional, and

nonrandomized. The study was designed to test the hypothesis that

repeated VIBHs can be monitored with a non contact device (Kinect

v2 system) in a cohort of patients in the supine treatment position

on an angled breast board, on a radiotherapy treatment unit during

the procedure for both standard two field whole breast and VMAT

radiotherapy.

The primary end point was the percentage of planned breath

holds for which complete monitoring traces were acquired using

Kinect v2. A complete trace was defined by a sequence of free

breathing, followed by 20 s of breath hold, followed by free breath-

ing. The secondary end point was the percentage of planned breath

holds for which complete traces were acquired at each of the

defined time points of the setup and treatment phases over

the patient cohort. The purpose of this end point was to identify

the time point(s) in the process where failure of data collection

occurred. Figure 1 shows a diagram of the patient pathway used in

this study.

46 monitored breath-holds from five patients were required for

90% power for an expected 99% success rate, ruling out any rate

<90% at 5% significance level. The final required sample size of 50

breath holds allowed for any patients who were not willing/able to

hold their breath at any of the time points in the process. The moni-

toring method was considered feasible if there were no more than

one unsuccessful collection of a complete trace. Patients who had
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previously been treated with left breast radiotherapy using a VIBH

breathing protocol as participants in the UK HeartSpare trial were eli-

gible for this feasibility study.6,9 Local and external ethics approval

was obtained from the Leicester South NRES East Midlands Research

Ethics Committee and 10 patients were invited to participate.

2.B | Clinical study experimental setup

A Kinect v2 was setup on a tripod system in an Elekta treatment

bunker as shown in Fig. 2. In previous work, a calibration procedure

for the Kinect v2 was established, and the temperature stability of

the device was investigated.13 The clinical study protocol was then

followed according to Fig. 1, and breath hold data were acquired

using the Kinect v2 sensor. The light field was also used to monitor

breath holds visually, as per clinical practice.

To acquire breath hold data from the Kinect v2, custom C++

software was written using the free Kinect for Windows Software

Development Kit (SDK) 2.0 (see Fig. 3). Patient volunteers were

F I G . 1 . Workflow diagram for clinical study.

F I G . 2 . Diagram of clinical study experimental setup. A Kinect v2
sensor was connected to a dedicated control laptop in the treatment
room control area using a 12 m USB 3.0 active repeater cable.
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setup on the couch with a breast board, according to the parameters

in their original treatment plans. Two experienced radiographers per-

formed the patient setup procedure. Patients were setup to their

original treatment tattoos, with their peak inhale voluntary breath-

hold position marked on the skin.

2.C. | Gating study

A separate set of experiments was carried out to investigate

whether the depth signal from a Kinect v2 system could be used

to gate an Elekta linac via the previously tested Elekta Response TM

gating interface.16,17 See Fig. 4 for a diagram of the experimental

setup.

Patient breathing traces acquired as described in Section 2.B

were used as input to the motion platform. In order to avoid exceed-

ing the physical constraints of the motion platform, some modifica-

tions to the patient breathing traces were required:

1. A Savitzky-Golay smoothing filter was applied to avoid velocities

greater than the motion platform’s limit of 3 cm/s.

2. The Kinect v2 measured a 1D signal dKinect, the scalar distance

between the patient’s chest and the sensor. In order to accu-

rately reproduce this signal with the motion platform, it had to

be resolved into a 2D signal to move the platform along its x and

z axes simultaneously. Since the Kinect v2 was angled at 45°

from horizontal during recording, it sufficed to use

x; z ¼ dKinect=
ffiffiffi

2
p

.

3. All amplitudes were reduced by 20% to avoid exceeding the plat-

form’s maximum z axis motion range of 5 cm.

Three situations were investigated:

1. A 200 MU 10 9 10 cm2 single beam delivery for 0.3 min with

the gantry fixed at 0°(ionization chamber point dose in a solid

water phantom).

2. A 250 MU 20 9 20 cm2 simple conformal arc delivery for

0.9 min with the gantry rotating counter- clockwise between

140° and �50° at constant dose rate (ionization chamber point

dose in a solid water phantom).

3. A clinical VMAT plan to treat whole breast and superclavicular

nodes, with a single clockwise arc from 333 to 179 with 484 MU

per fraction. Beam-on time was 1.7 min. The solid water phan-

tom was replaced by a Delta4 4D verification phantom [Scandi-

dos, Uppsala, Sweden]. This was to enable a spatial comparison

of dose between ungated delivery to a static phantom, and gated

deliveries using the 2D dose maps provided by the phantom.

For each modified breathing trace:

1. The motion platform was allowed to move until it reached the

peak inhale position of the first breath hold, and was then held

fixed.

2. Couch adjustments were used to move the solid water phantom

surface to 100 cm SSD with the ionization chamber at 5 cm

deep/Delta4 phantom to the clinical plan isocenter.

3. Radiation was delivered with the motion platform in this fixed

reference position, and accumulated charge was recorded using

the electrometer to obtain a reference point dose measurement.

This was repeated three times. (Delta4 reference was obtained

for the clinical VMAT delivery)

F I G . 3 . Screenshot of custom C++ software used to record Kinect
depth data. Software controls for manipulating depth frame data are
shown in the top left (blue rectangle). A patient is visible on the
couch, supported by a breast board. The entire depth frame from
the sensor is recorded at a resolution of 512 9 424 pixels and
frame rate of 30 fps into a lossless binary file for later analysis. The
user selects a ROI (red rectangle) on the patient’s upper sternum
region, with an area of approximately 300 pixels. The mean distance
from the Kinect v2 to this ROI is then calculated as a function of
time to form a breathing trace signal.

F I G . 4 . Experimental apparatus for gating experiment. A Kinect v2
sensor was setup as in Fig. 2. An in-house, high-precision
programmable motion platform was placed on the treatment couch.
A solid water phantom was positioned on the motion platform, with
a NE2571 Farmer chamber inserted inside. A NE2560 electrometer
was used in conjunction with the Farmer chamber to make point
dose measurements. The control laptop was connected directly to
the linac gating interface using a USB-to-serial connection. For the
Delta4 experiments, the solid water phantom was replaced by a
Delta4 phantom connected to a control PC via an Ethernet
connection.
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4. Our in-house software was used to select a rectangular region of

interest (ROI) with an area of 300 pixels on the surface of the

solid water/Delta4 phantom to obtain dKinect at peak inhale. This

was used to manually select a gating window of dKinect � s mm

using our software. We chose a maximum allowable value of

s = 5 mm to prevent overlap between free breathing and breath

hold signals. When the motion platform moved outside of this

gating window, an inhibit signal was sent by our software to the

linac gating interface over a USB-to-serial connection, preventing

radiation delivery.

5. The motion platform was then reset and allowed to move freely

following the input modified breathing trace. Radiation was deliv-

ered with gating active. Accumulated charge was recorded using

the electrometer. This was repeated three times.

For each case, the breathing trace acquired from the patients

during simulated VMAT treatment was used for dose verification

purposes. Gamma analysis parameters produced by the Delta4 soft-

ware were used to compare ungated with gated doses.

3 | RESULTS

3.A | Clinical study

10 patients were contacted and six responded favorably and partici-

pated in the study. All patient data were collected in a single day.

Both the primary and the secondary end points of the clinical study

were met as traces at all planned time points were successfully

acquired with the Kinect v2, giving a total of 60 breath hold traces.

Figure 5 shows the breathing traces extracted from the Kinect

v2 depth data acquired for a single patient, using three different ROI

selections. It can be seen that the traces are sensitive to the exact

position of the ROI used. Figure 5 also shows all three breathing

traces extracted for patient 6 for the three different gantry positions

recorded. Empirically, the “central” ROI was found to be the most

consistent and easy to locate in the patient depth images, so this

was used for each patient in all further analysis.

3.B | Gating study

See Fig. 6 for an example of Kinect v2-monitored, gated radiation

delivery to the solid water phantom. The Kinect v2 was successfully

able to track the motion platform, and gating signals were sent at

the correct times. See Table 1 for a comparison of accumulated

charge between gated and ungated deliveries. All gated deliveries

agreed with the reference data to within 0.5%, suggesting that radia-

tion was delivered correctly, when the motion phantom was within

the preselected gating window only. Traces from patients 5 and 6

were excluded because it was not possible to complete a successful

radiation delivery with a threshold value s < 5 mm without the linac

terminating due to an extended period of beam inactivity.

Table 2 shows a comparison of dose distributions between gated

and ungated radiation deliveries as measured by the Delta4 system.

In all cases, dose distributions from the static phantom with ungated

delivery were used as a reference point in the Delta4 software, and

the gated dose distributions were compared with these references.

Median dose differences were better than 0.5% in all cases, and the

mean (3% 3 mm) gamma index was 92.6%.

4 | DISCUSSION

As previously reported,13 the Kinect v2 is able to track motion pat-

terns with a root mean squared accuracy of approximately 1.5 mm.

Hardware latency causes a delay between a beam on signal and the

F I G . 5 . Top: Example breathing traces extracted from VMAT data
for patient 6, using three different ROIs, drawn on the left breast,
right breast and central chest region between the breasts
respectively. A 5 9 5 square selection of pixels was used for all
three ROIs. This figure demonstrates the sensitivity of the extracted
breathing trace to the exact position of the selected ROI. Bottom:
Comparison of breathing traces extracted from breath hold data for
patient 6 using a central ROI. The breath hold data was recorded
with the gantry in the lateral and medial treatment positions, and
while the gantry was rotating to simulate a VMAT treatment. All
breathing traces appear inverted, because dKinect decreases as the
patient inhales and moves closer to the sensor.
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commencement of radiation delivery, and vice versa for beam off.

Previous studies have found beam-on delays ranging between

220 ms18 and nearly 1 s.17 This raises questions about the dosimet-

ric consequences of gating an Elekta linac during free breathing. For-

tunately, for our application, where radiation is delivered only during

breath holds that last approximately 20 s, the impact of this latency

is negligible. This is confirmed by our point dose measurements,

which show agreement between gated and nongated deliveries of

better than 99.5%.

The Delta4 dose distribution data showed a range of agreements

between the gated and ungated radiation deliveries, with the major-

ity being clinically acceptable. This work was a proof of principle,

and an in–depth investigation of the reasons for the variations would

be required if this approach was to be considered for patient

treatment.

In this work, we used a rather large total gating window width of

�0.5 cm. In the course of our experiments, we discovered that

dKinect to a completely stationary target could vary by as much as

7 mm as the gantry was rotated during a simulated VMAT delivery.

This is probably due to the infrared scatter from the linac head as it

rotates into the sensor’s field of view. With an angular-dependent

calibration, it would be possible to correct the sensor’s output to

take account of this effect. In turn, it would be possible to reduce

the size of the gating window used. A gating window of �2 mm

would be realistic. Colgan et al. showed that measurable movement

from movie loops recorded during treatment in breath hold did not

exceed 3mm and the median displacement was 1.5 mm.9

It is still common not to define a PTV margin explicitly in stan-

dard whole breast radiotherapy although where this is done margins

are typically 10 mm; for complex treatments (e.g., VMAT for breast

and involved nodes) they may be reduced to 5 mm. A gating win-

dow of �2 mm is reasonable in this context.

In Fig. 5, it can be seen that there is some lack of consistency

for breathing traces recorded for patient 6 during three different

simulated treatments. Either this is a result of natural variations in

the patient’s breathing pattern, or the effect of fatigue following

multiple repeated breath holds in a short time period. This is the

subject of further investigation.

We found that dKinect is very sensitive to the position of the

selected ROI on the patient’s chest. Selecting the ROI poorly leads

to large fluctuations in the measured breath hold signal, which

makes selecting an appropriate gating window challenging. We

found that the optimal ROI position for a stable signal was centrally

on the upper torso, just below the breasts. Currently, this ROI has to

be identified and drawn manually by the software operator. A

method to define this ROI automatically is a subject of further

research.

F I G . 6 . Example of Kinect v2-monitored radiation delivery during
breath hold to a motion platform with gating active. Corresponding
beam state signal is also shown.

TAB L E 1 Top: Comparison of gated vs. ungated charge recorded
by electrometer for a 200 MU static beam delivery. Bottom:
Comparison of gated vs. ungated charge recorded by electrometer
for a 250 MU simple conformal arc with a 20 9 20 cm2

field size.

Trace
Ungated

charge (nC)
With

gating (nC)
Ratio

(gated/ungated)

1 37.534 37.340 0.995

2 37.508 37.523 1.000

3 37.689 37.745 1.002

4 37.636 37.614 0.999

1 45.248 45.161 0.998

2 45.195 45.164 0.999

3 45.312 45.219 0.998

4 45.229 45.164 0.999

TAB L E 2 Measured dose data from the Delta4 system. Median
dose difference and gamma index (3% 3 mm) are shown. In each
case, the ungated radiation deliveries were used as the reference
data and compared to the gated radiation deliveries, so the
percentages in this table represent percentage agreement between
gated and ungated deliveries. Breathing traces for each patient were
used. One whole breast radiotherapy (WBRT) standard two-field
plan is included for comparision with the more complex VMAT
plans. The “free breathing” trace was a sinusoid with an amplitude of
10 mm and period of 1 s. The gamma index result for patient 6 was
poor because this patient had a particularly noisy breathing trace,
which caused the breathing signal to jump in and out of the gating
threshold rapidly.

Plan type Case
Median dose
difference (%) Gamma index (%)

VMAT 1 �0.1 98.0

VMAT 2 0.2 100.0

VMAT 3 0.5 80.8

VMAT 4 0.0 98.7

VMAT 5 0.0 95.6

VMAT 6 �0.1 68.4

WBRT 1 �0.1 99.0

“Free breathing” 0.2 100.0
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The position of the Kinect v2 sensor in the treatment room also

requires optimization. We positioned the sensor on a tripod at the

end of the couch, but a clearer view of the patient’s chest region

may be obtained by mounting the sensor on the ceiling, directly in

front of the gantry above the couch. This may also assist with opti-

mal ROI selection.

In this work, gating signals were triggered using the raw, unfil-

tered and unsmoothed breathing trace data. It is possible that noise

in the breathing traces can cause the trace signal to momentarily

enter the gating window and trigger an instantaneous gate on/off

signal at an undesirable point in the breathing cycle. This issue can

be avoided by applying a smoothing filter to the incoming breathing

signal, or building in a hysteresis function which will only trigger gat-

ing if the signal remains inside the gating window for a predefined

amount of time.

There is already a wide variety of commercial optical and infrared

surface imaging systems available for radiotherapy. These include

VisionRT,19 NDI Polaris20 and C-RAD Catalyst.21 These systems

have benefits both for breath hold control and for patient setup. For

example, they can be used for checking and correcting the relative

positions of the breast and thorax in larger breasted patients.

The main advantage of a commodity depth sensor such as the

Kinect v2 is one of cost, with a sensor, control laptop and all other

hardware required available for around $1,400. The equivalent com-

mercial systems can cost upwards of $250,000. Of course, the

Kinect v2 has not gone through the required regulatory process to

be certified as a medical device, which may complicate its wide-

spread deployment in a clinical environment. However, it provides a

very cost-effective alternative to the commercial systems for the

purposes of research and development. It could also be used as a

quality assurance tool for gated techniques which are triggered by

other devices. The low cost of the Kinect sensor also makes it fea-

sible to have multiple units installed in the treatment room, which

may allow full 3D reconstructions of the patient’s body surface

contour in the future.

5. | CONCLUSION

We have performed a proof–of–concept study using the Kinect v2

for patient monitoring in radiotherapy, and developed a gating inter-

face using the Kinect v2 to control radiation delivery with an Elekta

linac. It is possible to use a Kinect v2 device to monitor voluntary

breath hold protocol compliance in a cohort of left breast radiother-

apy patients. Furthermore, it is possible to use the signal from a

Kinect v2 to gate an Elekta linac to deliver radiation only during the

peak inhale VIBH phase.
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