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Abstract  

Introduction: PARP inhibitors (PARPi) have been developed clinically as a 

treatment for cancers with defects in the DNA repair processes controlled by 

the BRCA1 and BRCA2 tumour suppressor genes. Although the path from 

initial pre-clinical proof of concept through to clinical approval for PARPi in 

breast cancer has not been straightforward, recent clinical trial data suggests 

that some of the initial enthusiasm for developing these drugs in this disease 

is starting to return. Areas covered:  Here, we review published pre-clinical 

and clinical data pertaining to the use of PARPi in breast cancer, including: 

the mechanism of action of PARPi; predictive biomarkers associated with 

drug sensitivity; clinical trials of PARP inhibitors in breast cancer, and 

mechanisms of drug resistance and drug combination strategies. Expert 

commentary: The recent publication of promising phase III clinical trial data 

describing a progression free survival benefit in breast cancer patients with 

BRCA gene mutations treated with a PARP inhibitor suggests that the 

comparative drought of clinical data in this setting is coming to an end. The 

task ahead is now to optimise PARPi therapy, in terms of identifying the ideal 

drug combinations to use with these agents as well as establishing the 

optimal stage and scheduling that should be used to achieve maximum 

benefit and manage the emergence of resistance. 
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1. Introduction 

 

1.1 PARP inhibitors: mechanism of action and predictive 

biomarkers  

 

The principal target of most clinical PARP inhibitors (PARPi) is PARP1, an 

abundant and largely nuclear protein that detects and signals DNA damage 

([1] and references therein). PARP1 binds in milliseconds to sites of single 

and double stranded DNA breaks, whereupon it synthesises long chains of 

poly(ADP-ribose) (PAR) using -NAD+ as a substrate [2]. The long, negatively 

charged PAR polymers that form recruit effectors of DNA repair, such as 

XRCC1, and ultimately promote dissociation of PARP1 from the damage site 

so that repair can occur [2, 3]. PARP1 activity is crucial for the repair of single 

stranded DNA breaks (SSBs) and DNA lesions caused by alkylating agents 

such as dimethyl sulphate [4], observations that in part provided the rationale 

for the discovery of drug-like PARP1 inhibitors that could potentially be used 

to enhance chemo- or radiotherapy responses in cancer [5]. PARP inhibitors 

also alter the behaviour of vascular cells and inflammatory processes 

(reviewed in [6]), both of which could conceivably modulate the anti-tumor 

efficacy of these agents, as well as potentially providing the rationale for using 

PARP inhibitors to target non-cancer related diseases [7].  

 

The later discovery that tumour cells with mutations in either the BRCA1 or 

BRCA2 breast and ovarian cancer susceptibility genes are extremely 

sensitive to small molecule PARPi provided the rationale for developing these 

agents for treating for BRCA gene mutant (BRCA1 or BRCA2; BRCAm) 

breast or ovarian cancers [8-10]. When cells enter S phase with a high load of 

unresolved DNA damage caused by PARPi exposure, this leads to replication 

fork stalling and collapse, generating DNA lesions that are normally resolved 

by homologous recombination (HR). HR, a DNA repair process that is 

mediated by the RAD51 DNA recombinase, relies upon BRCA1 and BRCA2. 

Therefore cells without functional BRCA1, BRCA2 or indeed other proteins 
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that mediate HR, cannot effectively process the DNA damage caused by 

PARP1 inhibitors, making them exquisitely sensitive to these agents.  

 

Auto-PARylated PARP1 is unable to bind damaged DNA [11] whereas 

unmodified PARP1 can bind to sites of damage under conditions where PAR 

synthesis is inhibited [1, 4, 12], observations consistent with the hypothesis 

that auto-PARylation of PARP1 is required for PARP1 to dissociate from DNA, 

and that PARP inhibitors could result in stabilisation of PARP binding to 

damaged DNA. More recently this has become known as the trapping 

hypothesis, and the differing cytotoxic potencies of different clinical PARP 

inhibitors have been shown to correlate with their differing ability to “trap” 

PARP1 on damaged DNA [13, 14]. Taken together, this has been interpreted 

as reflecting inhibited PARP1 being stably bound to sites of DNA damage, 

unable to synthesise the PAR chains that would otherwise allow PARP1 to 

recruit repair factors and eventually dissociate from the damage site. This 

"trapped" PARP1 is likely to severely impede replication fork progression and 

preclude repair of the DNA damage by any other pathway, and therefore 

represents a potentially cytotoxic DNA lesion. In support of this hypothesis, 

much of the cytotoxicity of clinical PARP inhibitors observed in BRCA1/2 wild 

type cells can be prevented by loss of PARP1, suggesting that PARP1 itself is 

required for PARPi-mediated cytotoxicity [13, 15]. 

 

Although the original rationale for using PARP inhibitors to treat breast cancer 

was based on the sensitivity of BRCA1 and BRCA2 mutant tumour cells to 

these drugs, the utility of PARP inhibitors could extend beyond BRCA1/2 

mutant patients. One year after the identification of BRCA/PARP synthetic 

lethality, McCabe et al demonstrated that defects in other DNA repair genes 

commonly found in human cancers, including those involved in DSB detection 

and repair (e.g. ATM, RAD51, RAD54, DSS1, RPA1, NBS1, ATR, ATM, 

CHK1, CHK2, FANCD2, FANCA, or FANCC), also conferred PARPi 

sensitivity upon cells [16], observations later confirmed and extended in 

genome-scale genetic screens where defects in additional DNA repair related 

genes mutated in ovarian cancers, such as CDK12, were found to cause 

PARPi sensitivity [17]. These observations were consistent with the 
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“BRCAness” hypothesis, which postulates that a subset of cancers in patients 

without germline BRCA1 or BRCA2 mutations display histopathological, 

molecular and clinical similarities, including drug sensitivity phenotypes, with 

germline BRCAm cancers (recently reviewed in [18]). This BRCAness 

concept seems to be relevant in terms of clinical PARP inhibitor sensitivity; in 

high-grade serous ovarian cancers (HGSOvCa), clinical responses to PARP 

inhibitor have been seen in patients with loss of function RAD51C or RAD51D 

mutations [19, 20]. Furthermore, up to a fifth of advanced prostate cancers 

have germline or somatic mutations in DNA repair genes that could potentially 

cause PARP inhibitor sensitivity [21] and clinical responses to PARPi have 

been observed in patients with metastatic, castration-resistant, prostate 

cancers with mutations in BRCAness-associated genes including FANCA, 

PALB2 and ATM [22].  

 

In addition to using germline or somatic gene mutations to explain clinical 

PARPi responses, some clinical trials have started to assess the potential for 

using tumour-specific patterns of mutation to predict PARPi responses. 

Tumours in individuals with BRCA1 or BRCA2 germline mutations tend to 

exhibit mutations and chromosomal aberrations (e.g. large scale loss of 

heterozygosity (LOH) effects) that are somewhat reflective of the use of error-

prone forms of repair in the absence of functional homologous recombination; 

similar mutational patterns also exist in tumours, including breast tumours, 

with somatic BRCA1 or BRCA2 mutations and in tumours without detectable 

BRCA gene dysfunction [23-25]. These observations suggest that such 

mutational signatures could be used to direct the use of therapies, such as 

PARP inhibitors, that target homologous recombination defects. The recently 

described ARIEL3 phase III trial of rucaparib in advanced ovarian cancer [26] 

included a prospective assessment of LOH as measured by a tumour DNA 

sequencing assay (Foundation Medicine T5 assay [27]) and found greater 

benefit for BRCA wild type patients with high LOH compared to those with low 

LOH, although both groups showed improved progression-free survival (PFS) 

compared to placebo. The RUBY trial phase II trial of rucaparib in metastatic 

breast cancer (NCT02505048) will also assess a genomic signature to predict 

the response to a PARP inhibitor. 
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1.2 Regulatory approvals for PARP inhibitors in 

gynaecological cancers 

 

Several PARP inhibitors have now been approved for use in patients with 

gynaecological cancers. In general, these approvals allow PARP inhibitors to 

be used in patients after the use of classical chemotherapies, including 

platinum-based treatments (Table 1). The first PARP inhibitor to be approved 

for use was olaparib (Lynparza, KuDOS/AstraZeneca); this was first approved 

for use by the European Medicines Agency (EMA) in 2014 as a treatment for 

platinum-sensitive, relapsed, BRCA1 or BRCA2-mutated (germline and/or 

somatic) high grade serous epithelial ovarian, fallopian tube, or primary 

peritoneal cancers (Table 1). This approval was swiftly followed by a similar 

Federal Drug Agency (FDA) approval that allowed olaparib to be used in 

patients with deleterious germline BRCA-mutated advanced ovarian cancer 

who have been treated with three or more prior lines of chemotherapy. These 

decisions heralded the first approval of a synthetic lethal treatment for cancer, 

the first approval of a cancer drug for an inherited cancer predisposition 

syndrome, as well as the first approval of a cancer treatment with a 

companion predictive genetic biomarker test, namely the assessment of 

BRCA1/2 gene DNA sequence [10]. On the basis of SOLO-2 trial results [28, 

29], the approved use of olaparib was recently expanded to allow patients 

with recurrent epithelial ovarian, fallopian tube or primary peritoneal cancer, 

who are in a complete or partial response to platinum-based chemotherapy to 

receive olaparib as a maintenance treatment after platinum-based therapy – 

regardless of whether they have a confirmed BRCA gene mutation. Rucaparib 

(RUBRACA, Clovis Oncology Inc.) was granted accelerated approval for the 

treatment of advanced ovarian cancers with germline or somatic BRCA 

mutations in 2016 based on ARIEL2 and other phase II data [20, 30, 31]. 

Niraparib (Zejula, Tesaro Inc.) was also approved for use this year, based on 

results from the NOVA trial [28] as a maintenance therapy for recurrent 

epithelial ovarian, fallopian tube or peritoneal cancer. 
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Veliparib (ABT-888, AbbVie Inc.) has yet to be approved for the treatment of 

cancer, but has been given orphan drug designation for the treatment of 

advanced squamous non-small-cell lung cancer (NSCLC). Veliparib is 

noteworthy for its relative lack of PARP1 "trapping" properties compared to 

other clinical PARP inhibitors, despite being an effective catalytic inhibitor of 

the protein [13, 14]. Another PARP inhibitor that is still in early stage trials, 

talazoparib [32], displays opposite characteristics: high trapping and 

cytotoxicity relative to its effect on PARP1 catalysis [14]. How these properties 

affect clinical efficacy and the deleterious side-effect profile of this class of 

drugs, remains to be determined. Finally, some trials carried out prior to 2011 

used iniparib, a drug that was designed as a PARP inhibitor but has been 

subsequently shown to have limited PARP1 inhibitory activity [33]. 

 

Recently, the PARP inhibitor olaparib was approved by the FDA for use in 

breast cancer. This application is based largely on the results from the 

OlympiAD phase III clinical trial, discussed below. This review will focus on 

recent clinical and preclinical studies of PARP inhibitors in breast cancer that 

have led to this approval. Earlier PARP inhibitor clinical trials have been 

reviewed extensively, particularly in the case of ovarian cancer where PARPi 

clinical development is most advanced [34]. 
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Table 1. PARP inhibitors in clinical use and development 

 

Drug Other names Company First 

Approval 

FDA Approved 

indication(s) 

PARP1 IC50 (nM) Trapping potency 

Olaparib Lynparza® 

AZD2281 

KU0059436 

AstraZeneca 2014 Maintenance 

treatment of 

recurrent platinum 

sensitive 

epithelial, ovarian, 

fallopian tube, 

peritoneal cancer; 

Advanced 

gBRCAm ovarian 

cancer after three 

or more lines of 

chemotherapy; 

Metastatic 

gBRCAm, HER2-

negative breast 

cancer after 

chemotherapy or 

endocrine therapy 

(as appropriate for 

hormone receptor 

status). 

5 + 

Rucaparib RUBRACA® 

AG-014699 

PF-01367338 

Clovis 

Oncology Inc. 

2016 Advanced 

gBRCAm ovarian 

cancer after two or 

more lines of 

chemotherapy 

1.4 + 

Niraparib ZEJULA  

MK-4827 

Tesaro Inc. 2017 Maintenance 

treatment of 

recurrent 

platinum-sensitive 

epithelial, ovarian, 

fallopian tube, 

peritoneal cancer. 

3.8 + 

Veliparib ABT-888 Abbvie 2016 Orphan 

designation for 

NSCLC 

5.2 – 

Talazoparib BMN-673 Pfizer – – 0.57 ++ 
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2. Clinical trials of PARPi in breast cancer 

 

2.1 Initial Trials – highlights and hang ups 

Soon after the identification of BRCA/PARP synthetic lethal effect in pre-

clinical models [8, 9], phase I and II clinical trials confirmed that this effect also 

had considerable clinical potential. A phase I trial of olaparib, identified a 

number of significant and sustained anti-tumour responses in heavily pre-

treated patients with BRCA gene mutant (BRCAm) advanced breast cancer; 

these clinical responses were also achieved with a less severe and more 

manageable side effect profile, when compared to classical chemotherapy.  

[35]. For example, of three BRCA2 mutant breast cancer patients included in 

this trial, one exhibited a complete radiological response, while a second 

experienced prolonged disease stabilisation when treated with olaparib. A 

subsequent phase II trial (ICEBERG) using 400 mg olaparib twice daily in 

patients with BRCAm advanced breast cancer, elicited an impressive 41% 

objective response rate (ORR, [36]), which was comparable to a response 

rate of 33 % in a similarly treated BRCAm advanced ovarian cancer phase II 

clinical trial [37]. In the phase II breast cancer trial, responses to olaparib were 

seen in patients with either estrogen receptor (ER) positive or negative 

tumours, suggesting that estrogen receptor status was less important in 

determining PARP inhibitor synthetic lethality in breast cancer than BRCA 

gene status. Within the same clinical trial, another cohort of patients received 

100 mg olaparib twice daily and had a slightly lower ORR (22%), suggesting 

that the higher olaparib dose be used for subsequent clinical trials.  

 

Despite this promising data, a subsequent phase II trial of olaparib that 

included both breast and ovarian cancer patients observed no objective 

responses amongst eight BRCAm breast cancer patients, despite shrinkage 

of the target lesion in six cases and encouraging results in the ovarian cancer 

patients - 41% of BRCAm ovarian cancer patients responded, and the 

response rate was also high in non-BRCA mutants [38]. A more recent phase 

II study investigating different methods (intravenous compared to oral) and 
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scheduling of rucaparib dosing also included both breast and ovarian patients, 

and again observed that objective responses were limited to the ovarian 

cancer patients, with stable disease being the best outcome in breast cancer 

patients (9/23 patients, [39]). A larger phase II trial, which included 62 

germline BRCAm (gBRCAm) breast cancer patients, did report responses but 

at a lower rate than the ICEBERG trial of 12.9% when patients received 400 

mg twice daily olaparib (Study 42, [40]). Taken together, these phase II results 

for PARP inhibitors in breast cancer were somewhat disappointing when 

viewed in the context of the higher response rate in ovarian cancer patients. 

 

 

2.2 Phase III single agent studies: OlympiAD  

Results from the OlympiAD study, the first phase III trial of a PARP inhibitor in 

advanced breast cancer patients with BRCAm, were recently reported [41]. 

This randomised, open-label, trial in 302 BRCAm metastatic breast cancer 

patients compared olaparib monotherapy to physician's choice of 

conventional standard of care chemotherapy (capecitabine, eribulin, or 

vinorelbine). Eligibility criteria for this trial included a germline BRCA gene 

mutation and the absence of ERBB2 oncogene amplification/overexpression 

(HER2-negativity). BRCA gene mutation status was assessed using the 

Myriad BRACAnalysis test. Twenty-nine per cent of patients had previously 

received platinum chemotherapy - this was permitted by the criteria provided 

that there was no evidence of progression on platinum (in the metastatic 

case) or there had been at least 12 months since the last dose in the 

neoadjuvant or adjuvant setting. The primary endpoint of the trial was to 

assess progression-free survival (PFS). 

 

Median PFS was significantly longer in the olaparib-treated cohort of patients, 

at 7.0 months, compared to 4.2 months in chemotherapy-treated patients 

(Hazard Ratio (HR) = 0.58). The response rate was also higher in the 

olaparib-treated cohort (59.9% vs 28.8%). The OlympiAD study also provided 

direct evidence of the favourable side effect profile of olaparib, when 

compared to chemotherapy in this patient population: the olaparib-treated 

cohort had a lower incidence of severe adverse events (Grade 3+ 36.6% 
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olaparib compared to 50.5% for chemotherapy-treated patients) and a lower 

frequency of treatment discontinuation related to toxicity (4.9% compared to 

7.7%). 

 

2.3 Overall survival and potential confounder effects 

The OlympiAD trial did not show an increase in overall survival (OS), although 

it should be noted that this was not a primary endpoint and this trial was not 

designed to detect such a difference. Further long-term studies will be 

required to show whether PARPi treatment can prolong OS in breast cancer 

or whether the lack of OS improvement seen in OlympiAD could be due to 

additional factors not directly related to the overall effectiveness of a PARP 

inhibitor. For example, the OS of patients in a study such as OlympiAD is of 

course influenced by the treatments patients receive after completing the trial 

treatment regimen. A higher proportion of patients who received 

chemotherapy in the OlympiAD study received a platinum salt or a PARPi 

after leaving the OlympiAD study, compared to those who received olaparib 

as part of OlympiAD; it seems reasonable to think such a difference could 

influence OS estimates in open label trial designs such as OlympiAD. Notably 

the OlympiAD trial did include, although not as a primary endpoint, an 

analysis of investigator-assessed time to second progression or death (PFS2) 

which suggested that the olaparib treated group did have a better outcome 

after patients had completed the study, even though this did not ultimately 

result in an overall survival advantage (Median PFS2 13.2 months compared 

to 9.3, HR = 0.57, P = 0.0033). Even in a double blind ovarian cancer trial, the 

signal for OS benefit - assessed as a secondary outcome - was not 

statistically significant [42]. This may also be confounded by a large number of 

BRCA mutant patients in the placebo group later receiving PARPi therapy 

outside the scope of the trial after unblinding on progression [43]. 

 

2.4 EMBRACA 

Results of the EMBRACA phase III trial of talazoparib in metastatic breast 

cancer were presented at the 2017 San Antonio Breast Cancer Symposium 

[44]. Trials for talazoparib have progressed at a faster pace than for olaparib. 

An ORR of 50% was observed in gBRCAm breast cancer patients in a phase 
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I study [45], followed closely by the ABRAZO phase II study, which reported 

an ORR of 21% and 37% in gBRCAm, platinum pre-treated and platinum-free 

breast cancer patients respectively [46].  

 

The design of the EMBRACA study had many design similarities to the 

OlympiAD trial and was larger (431 patients compared to 302 for OlympiAD). 

Eligibility criteria included HER2-negative, metastatic or locally advanced 

cancer with a germline BRCA mutation. As with OlympiAD, hormone receptor 

positive patients were eligible provided they had received prior adjuvant 

therapy if appropriate, and slightly more such patients were recruited 

compared to OlympiAD (54% hormone receptor positive compared to 50%). 

Prior platinum treatment was also permitted (18% of patients, lower than the 

28% of patients in OlympiAD). Patients in the two studies were of similar 

median age (OlympiAD: 44 years, EMBRACA: 46). EMBRACA included a 

slightly higher proportion of BRCA2 mutant patients (55%) relative to BRCA1 

– in OlympiAD this was reversed (57% BRCA1). Patients were randomised in 

a 2:1 ratio between talazoparib and physician’s choice chemotherapy. 

Choices in the chemotherapy arm were the same as in the OlympiAD study, 

with the addition of gemcitabine. However, as in OlympiAD, most patients in 

the chemotherapy group received capecitabine or eribulin. Serious (grade 3/4) 

adverse effects occurred at similar frequencies in both talazoparib and 

chemotherapy groups (25.5% compared to 25.4%). 

 

As for OlympiAD, the primary endpoint of EMBRACA was PFS, and the 

results for this endpoint were similar. PFS was a median of 8.6 months in the 

talazoparib group compared to 5.6 months in the chemotherapy group (HR = 

0.54, p < 0.0001). Unlike OlympiAD, EMBRACA was designed to detect 

differences in overall survival between groups. An interim analysis after 51% 

of projected events did not show a significant difference (HR 0.76, p = 0.105) 

although there was a trend towards improved survival with talazoparib at later 

times. It will be interesting to see if this continues in the final OS analysis. A 

planned subgroup analysis showed that the benefit of talazoparib was 

apparent for all subgroups, although as for OlympiAD the prior platinum-



PARP inhibitors in breast cancer                                                    13 

treated subgroup had a wide confidence interval, suggesting that this group 

may contain some patients resistant to PARPi.  

 

 

2.5 PARP inhibitors in breast vs. ovarian cancer – biological differences 

or clinical differences? 

 

In discussing PARPi in breast cancer, it seems pertinent to discuss the 

differences in clinical responses and trial designs in BRCA gene mutant 

breast, as opposed to ovarian, cancer. Where similar clinical trials have been 

performed, for example in the ICEBERG1 (BRCAm advanced breast cancer, 

[36]) and ICEBERG2 phase 2 trials (BRCAm advanced ovarian cancer, [37]), 

response rates to olaparib were relatively comparable: 41% in breast 

cancer and 33% in ovarian cancer. However, beyond these two clinical 

trials, comparisons in the two diseases become somewhat difficult to 

interpret. For example, with the exception of rucaparib, where regulatory 

approval was granted based on phase II trial data [20, 31] subject to clinical 

benefit being shown in phase III ARIEL3 [26] and 4 trials, most ovarian cancer 

clinical trials using PARPi (and especially those that have supported FDA 

approvals) have compared PARPi treatment in patient populations with 

residual disease after chemotherapy, to a placebo treatment. These trials all 

showed improvements in PFS for PARPi treated BRCAm patients compared 

to those treated with a placebo, with Hazard Ratios ranging from 0.2-0.3 [26, 

28, 29] in the respective BRCAm patient populations. In comparison, in 

advanced breast cancer, randomised clinical trials have always compared 

PARPi treated patients to a chemotherapy-treated comparator group - for 

example, capecitabine, eribulin, or vinorelbine treated patients in OlympiAD, 

where the HR was 0.58 in favour of olaparib. Insofar as clinical trials can be 

compared between different cancer types, a better comparison may be some 

of the earlier, non-maintenance therapy, ovarian cancer trials in which a 

measure of response rate is available. These trials include "study 12" [47], 
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which observed an ORR of 25-31% in BRCA mutant recurrent ovarian cancer;  

a trial of olaparib used in combination with the antiangiogenic cediranib (47% 

ORR in the olaparib-only arm of a population comprising about 50% BRCA 

mutant patients) [48] and the Gelmon study where an ORR of 41% was 

observed in the BRCA mutant ovarian cancer patients [38]. When examined 

in this light, the response rate seen in the breast cancer trial, OlympiAD 

(59.9%), compares favourably.  

  

It is also important to point out the differences in how patients are selected for 

PARPi clinical trials in the two diseases. Although patient populations in 

ovarian vs. breast cancer clinical trials for PARPi share some unifying 

characteristics, such as a BRCA1/2 mutation and advanced, metastatic, 

disease, the clinical histories of ovarian vs. breast cancer patients are very 

different. Most ovarian cancer patients who received PARPi in a clinical trial 

setting will have previously received at least two lines of platinum-based 

chemotherapy and are often selected for PARPi treatment by nature of their 

platinum salt sensitivity [49]. The importance of using prior platinum salt 

sensitivity as an enriching factor lies in the growing understanding that PARPi 

and platinum chemotherapies share some similarities in terms of mechanism 

of action. Both platinum salts and PARPi cause DNA lesions that stall 

replication forks and require BRCA1 and BRCA2 for their repair, interstrand, 

covalent, DNA crosslinks (ICLs) in the case of platinum salts and trapped 

PARP1 in the case of PARPi. Accordingly, platinum salts are also selectively 

cytotoxic to cells with homologous recombination defects, as HR is required 

as part of the pathway to restart replication forks during bypass of ICLs [50, 

51]. Moreover, restoration of BRCA1 or BRCA2 gene function, by reason of 

reversion mutations in either of these two genes, causes clinical resistance to 

both PARPi and platinum salts [52-55]. Since the clinical trials that have led to 

PARPi approvals have all been carried out in patients with platinum sensitive 

ovarian cancer, it seems possible that this would enrich for patients likely to 

respond to a PARP inhibitor; at present, a similar strategy for enriching breast 

cancer patients by success of prior platinum salt response has not been 

extensively tested.  
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3. Resistance to PARP inhibitors 

Several mechanisms by which cells can become resistant to PARP inhibitor 

cytotoxicity have been reported in the literature [15, 53, 56-60]. However, so 

far there is convincing clinical evidence for only one of these: secondary 

mutation of the original mutation causing the HR defect. These are often 

referred to as reversion mutations, although this term strictly refers to a 

mutation that restores the sequence to its unmutated state. More commonly, a 

compensating frameshift mutation is observed that restores the open reading 

frame of the gene; this does not necessarily result in the original nucleotide or 

protein sequence but can restore sufficient function to overcome the HR 

defect [10].  

 

This mechanism of PARPi resistance was first described in pancreatic tumour 

cell lines with BRCA2 mutation that were exposed to PARPi until resistant 

clones were isolated [53]. These mutant clones were also resistant to 

cisplatin. Secondary mutations of BRCA1 and BRCA2 that restored the 

reading frame of the respective gene were also observed in cell lines and 

ovarian cancers that had become cisplatin resistant [20, 54, 55]. A later report 

suggested that these mutations in cisplatin resistant tumours also caused 

cross-resistance to PARPi [61]. A BRCA2 secondary mutation was also found 

in a tumour from a PARPi resistant male breast cancer patient [52]. More 

recently, secondary mutations have been found in several other tumour 

suppressor genes causing HR defects and BRCAness in ovarian cancer - 

RAD51C, RAD51D and BRCA1 - suggesting that the principle of restoring 

function of the gene behind the original HR defect is a general feature of 

clinical PARPi resistance [19]. Circulating tumour DNA (ctDNA) analysis has 

identified secondary mutations in ovarian (in BRCA1 and RAD51C), breast 

and prostate cancer patients (PALB2 and BRCA2 secondary mutations; [62-

64]). This is significant as it raises the possibility of easily monitoring patients 

for the emergence of these resistance-causing mutations in the course of their 

treatment. 

 

As PARP inhibitors move from being used in clinical trials in advanced 

disease to more routine use earlier in treatment, the development of 
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resistance mechanisms should be monitored. The propensity and 

consequence of reversion is likely to depend on exactly which pathogenic 

BRCAness mutation is present. As more cases of reversion are documented, 

other mechanisms of resistance may become apparent. The recent ctDNA 

studies demonstrate that multiple secondary mutations that restore the 

reading frame can occur in the same patient; there may also be mutation 

events in other genes present that were not observed in these studies. BRCA 

reversions were not detected in all patients in these studies (for example, 2/5 

BRCA mutant breast patients had a detectable reversion – in both cases this 

was a germline BRCA2 mutation [62]), so other mechanisms may be at work 

in some cases. Different mechanisms of acquired resistance may result in 

different secondary drug sensitivities and thus be important in determining the 

choice of future therapy. For example, Wee1 inhibitors may be effective in 

BRCA mutant tumours with secondary mutations that restore HR [65].  

 

4. PARP inhibitor combination therapy in breast cancer 

 

Although there is ample evidence of the activity of PARPi in BRCA mutant 

cancers from single agent trials, it is clear that resistance eventually emerges 

in many cases. Management of this resistance will be key to obtaining 

prolonged responses when using PARPi. An appropriate combination therapy 

could be effective if it could be designed to target resistant clones as they 

emerge. Furthermore, as well as providing an approach to targeting PARPi 

resistant tumour subclones, combination approaches involving PARPi could 

also be used to extend the utility of PARPi beyond those patients with BRCA 

gene mutations.  

 

4.1 Potentiating the molecular effects of PARP inhibitors 

One potential strategy to enhance the therapeutic effect of PARPi and thus 

potentially expand their use to patients without BRCA gene mutations is to 

use them in combination with DNA damaging agents. Several classes of 

genotoxic DNA damaging agents, some of which are used clinically, are 

known to synergise with PARP inhibitors in cell line studies. These include 

alkylating agents, topoisomerase I inhibitors and ionizing radiation [66, 67].  
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4.1.1 DNA damaging agents 

Temozolomide is the prototypical DNA alkylating agent that causes extreme 

sensitisation to PARP inhibitors. Alkylation damage to the bases of DNA is 

removed by damage specific glycosylases, eventually forming single stranded 

breaks that are detected and bound by PARP1. Agents that increase the 

number of SSBs increase the amount of cellular damage that needs to be 

processed by PARP1-mediated repair, as well as providing substrates for 

cytotoxic PARP1 trapping. Some trials have been carried out using 

temozolomide in combination with PARPi; however these combinations are 

poorly tolerated [68]. In the recent BROCADE trial (see below), the response 

rate in the veliparib/temozolomide group was also inferior to 

veliparib/carboplatin/paclitaxel (ORR 28.6% c.f. 61.3%; [69]).  

 

Topoisomerase I inhibitors also synergise with PARPi, but by a slightly 

different mechanism. Here, PARP catalytic activity is required to remove 

trapped topoisomerase I-DNA complexes [70]. Again, in this case the 

potentiation is unlikely to be specific to HR-deficient tumour cells, although 

cells lacking other pathways of topoisomerase I clearance may be 

differentially sensitive. A phase I trial of topotecan in combination with 

veliparib observed high toxicity, necessitating the use of very low doses of 

both agents [71]. 

 

Some studies have also been carried out using PARP inhibitors in 

combination with platinum salts. Rather than causing SSBs, platinum-induced 

ICLs stall the passage of replication forks, resulting in collapse and single-

ended double strand break structures. These are not as likely to induce PARP 

trapping to the same extent as SSBs, and the combinatorial effects of PARPi 

plus platinum are probably additive rather than synergistic [70]. However, a 

phase II trial in platinum sensitive ovarian cancer found a significant PFS 

increase when olaparib was added to a paclitaxel/carboplatin chemotherapy 

regimen, and also continued as a maintenance therapy [72]. Toxicity prevents 

continuous treatment at normal single agent doses of PARPi, resulting in the 
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use of intermittent dosing, perhaps reflecting the somewhat overlapping 

actions of these agents [73]. 

 

 

4.1.2 PARP inhibitors with platinum in breast cancer – BROCADE and 

Brightness 

 

The BROCADE trial [69, 74] is a randomised phase II trial assessing the 

addition of veliparib to either carboplatin and paclitaxel combination therapy, 

or temozolomide, an alkylating agent, in locally recurrent or metastatic breast 

cancer with deleterious germline BRCA1 or BRCA2 mutation. HER2+ patients 

were excluded, and around 40% of patients had triple negative breast cancer 

(TNBC). Patients that had received prior platinum or PARPi therapy were also 

excluded. The dose of veliparib used (120 mg twice daily) is lower than would 

typically be used in single agent studies - this reflects the slightly different 

hypothesis being tested in this trial: that veliparib can potentiate the effects of 

DNA damaging chemotherapy in HR deficient cancer. In contrast to the 

ovarian trials described above, the BROCADE study did not show an increase 

in adverse effects when PARPi was combined with carboplatin, but also did 

not use full single agent PARPi MTD and used a similar intermittent schedule 

(PARPi given only on days 1-7 of the three-week carboplatin cycle). 

BROCADE also used veliparib rather than olaparib, therefore another 

possible explanation for these differences is that the increased toxicity in 

combination is specific to inhibitors with stronger trapping activity. 

 

Patients in the BROCADE trial were randomised evenly to one of three 

groups: veliparib/carboplatin/paclitaxel, placebo/carboplatin/paclitaxel or 

veliparib/temozolomide. There was a significant increase in objective 

response rate (ORR) in the veliparib group compared to placebo (77.8% 

compared to 61.3%), but no significant difference in progression-free survival 

[69]. A larger phase III trial (BROCADE 3, NCT02163694) is now underway 

with PFS as the primary endpoint. The ORR observed in BROCADE (phase 

II) in both carboplatin/paclitaxel groups (with veliparib or placebo) is high for 

this patient population, likely due to activity of carboplatin in BRCA mutant 
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cancers. An analysis of data from the I-SPY2 trial also found a 

veliparib/carboplatin response rate of 75% in patients with a BRCAness 

signature (Mammaprint High1/High2 +PARPi7, [75]) compared to 35% in 

patients lacking one of these signatures [76].  

 

A related study, the “Brightness” trial (NCT02032277), used a similar 

randomisation setup to BROCADE to study the addition of veliparib and/or 

platinum to standard chemotherapy in the neoadjuvant setting in early TNBC. 

This is notable for being the only completed randomised phase III trial using a 

PARP inhibitor in early breast cancer. However, the addition of veliparib to 

carboplatin and paclitaxel (followed by standard doxorubicin and 

cyclophosphamide chemotherapy) did not increase the pCR rate beyond that 

achieved by adding carboplatin alone to paclitaxel [77]. This suggests that the 

activity in these patients is primarily due to carboplatin. These patients were 

not selected by BRCA mutation status, so it will be interesting to see whether 

the activity of veliparib beyond carboplatin is maintained in the BROCADE 

phase III trial where patients will all have a deleterious BRCA mutation. In 

early-stage breast cancer, a phase II trial investigating the addition of 

rucaparib to cisplatin prior to surgery (following standard neoadjuvant 

chemotherapy) is also underway; this trial will include TNBC patients 

regardless of BRCA status, as well as ER/PR-positive patients with known 

BRCA mutations (NCT01074970). 

 

The PARTNER trial, currently underway, will assess paclitaxel/carboplatin 

with and without olaparib in the neoadjuvant setting in triple negative and/or 

gBRCA mutant breast cancer (NCT03150576). 

 

4.1.3 Potentiation: activity and toxicity 

 

The main issue with the use of agents that directly potentiate PARPi 

cytotoxicity is that this effect may not be specific to the HR-deficient tumour 

cells. Accordingly, the potentiating agent is likely to also worsen some of the 

on-target side effects of PARP inhibitors, and potentiating agents may not 

affect the "therapeutic window" - the relative difference in drug concentration 
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required to kill tumour and normal cells - even though the addition of a 

potentiating agent means that lower concentrations of PARPi are required. 

Since extremely potent PARPi are now available, the use of potentiating 

agents may not be necessary to achieve a therapeutic effect. 

 

One exception to this principle of potentiating agents also causing increased 

toxicity is the use of PARPi as radiosensitisers. Although PARPi also sensitise 

non-tumour cells to ionising radiation, radiation can be localised somewhat to 

the tumour cells so it may be possible to circumvent any increased toxicity. A 

phase I trial of olaparib in combination with radiotherapy is being carried out in 

inoperable breast cancer (NCT02227082). 

 

One class of drugs that is of interest in potential PARPi combination treatment 

is ATR inhibitors. ATR is a kinase involved in the DNA damage response and 

in the control of HR [78]. ATR gene silencing sensitises cells to PARPi [16], 

likely due to its role in promoting replication fork stability. Many cancer cells 

show high levels of "replication stress", a phenotype characterised by an 

increased frequency of fork stalling and mitotic abnormalities arising from 

under-replication of DNA. There is preclinical evidence that ATR inhibition in 

tumours that have high levels of replicative stress can sensitise cells to killing 

by PARP inhibitors, cisplatin, topotecan or gemcitabine [79]. Interestingly 

PARPi sensitisation with ATR inhibition was also seen in BRCA1 depleted or 

BRCA2 mutant cells beyond the PARPi sensitivity caused by the loss of HR 

function. It is possible that the use of ATR inhibitors will sensitise non-BRCAm 

TNBC, which may have BRCAness phenotypes with less severe HR defects 

and/or high levels of replicative stress, to killing by PARPi. There may also be 

single agent activity, as ATR inhibitors have also been shown to be selectively 

toxic to cancer cells that have activated the alternative lengthening of 

telomeres (ALT) pathway [80]. Clinical trials to test these hypotheses are 

currently being designed. 

 

A better approach to combinations with PARPi might be to target other 

pathways, besides replication stress and SSB repair, that are still essential in 

the HR-deficient tumour cells, thus preserving the "therapeutic window" 
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between tumour and normal cells. These targets would not necessarily have 

to be based on the HR deficiency. Such agents would also likely have a 

different side effect profile, and perhaps be better tolerated. Orthogonal 

targets may also present an opportunity to target emerging PARPi resistance. 

Restoration of HR via a secondary BRCA mutation, for example, might still 

leave the cells with other defects related to their history of defective HR - not 

least the copy number variation and aneuploidy that is typical of BRCA 

defective cancer genomes. Targeting such an aspect of the tumour cells with 

an appropriate combination may result in a greater therapeutic effect that is 

still specific to the tumour cells. For example, recent work suggests that 

despite PARPi resistance, BRCA1 mutant breast tumour cells with reversion 

mutations still retain sensitivity to inhibition of the WEE1 mitotic checkpoint 

kinase, probably because of their p53 defect and extensive genomic 

rearrangements [65]. Although PARP inhibitor treatment enhances the clonal 

expansion of BRCA1 revertant clones in heterogeneous in vitro cell cultures 

and tumour xenografts, treatment with the clinical WEE1 inhibitor AZD1775 

suppresses this; this might suggest that periodic WEE1 inhibitor treatment, 

used either in combination with or subsequent to a PARP inhibitor could be 

more effective than PARPi treatment alone [65]. 

 

4.2 Combinations with orthogonal mechanisms of action  

 

4.2.1 Endocrine therapy 

Although BRCA1 mutant breast cancers are predominantly hormone-receptor 

negative, a significant proportion of BRCA2m breast cancers (70%) express 

the estrogen receptor (ER), the target of endocrine therapies such as 

tamoxifen [81]. In clinical trials in advanced breast cancer, patients have 

disease that has progressed on prior therapy, including endocrine therapy. 

For example, in the OlympiAD study, 50% of patients were ER or 

Progesterone Receptor (PR) positive. In a subgroup analysis of the OlympiAD 

study, hormone receptor positivity was associated with a poorer outcome 

compared to TNBC in terms of progression-free survival (HR 0.82 compared 

to 0.43). Interestingly, in the subgroup analyses of the EMBRACA trial, 
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hormone receptor-positive patients appeared to have a good outcome, similar 

to the TNBC subgroup (HR = 0.47). If confirmed this would be an important 

difference between olaparib and talazoparib, although the basis for such a 

difference is unclear. As more trials of PARPi in the early stages of disease 

treatment are completed, there may be an opportunity to combine PARPi with 

endocrine therapy in the adjuvant setting for BRCAm tumours that are ER or 

PR positive. Since endocrine therapy would be expected to have an 

orthogonal mechanism of action to the PARPi, these could potentially be 

combined without leading to unacceptable toxicity or even mechanisms of 

cross resistance. 

 

4.2.2 Immunotherapies 

As in many areas of oncology, there is substantial interest in whether immune 

checkpoint inhibitors (e.g., anti-CTLA4, anti-PD-1 or anti-PD-L1 antibodies) 

may be effective in breast cancers and/or in combination with PARP 

inhibitors. In terms of rationalising why DNA repair inhibitors should be 

combined with immunotherapies, several arguments have been proposed. 

Some immunotherapies rely upon tumours expressing neo antigens that are 

recognised as non-self by the immune system. Such tumours depend critically 

on evading detection by the immune system, for example via activation of the 

PD-1/PD-L1 immune checkpoint, and thus are particularly vulnerable to 

blocking of this interaction by therapeutic antibodies. This may explain why 

many of the impressive immunotherapy responses thus far in are tumours 

with high mutational loads: melanoma, non-small cell lung cancer and 

mismatch repair deficient colorectal cancer [82-84]. 

 

A study in high grade serous ovarian cancer suggested that BRCA1/2 

mutation status or functional HR deficiency is associated with a higher 

predicted neoantigen load [85]. There was also a prognostic advantage of 

high neo-antigen load that was independent of BRCA mutation status. As 

such, one proposal is that an elevated neoantigen load in BRCA mutant 

tumours could enhance immunotherapy responses.  
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PARP inhibitors ultimately kill HR deficient cells by several rounds of cell 

division in the presence of persistent DNA damage [8, 86]. Such cell death 

could, in principle, result in shedding of damaged DNA and thus be 

immunogenic [87]. This is another reason to think that immunotherapy 

approaches may synergise with PARPi induced tumour cell death. This might 

also preserve the therapeutic window, as the PARPi cell death should also be 

specific to HR-deficient cells in this case. 

 

PARPi treatment may also affect the immune system independently of its 

effects on DNA repair. Investigation of these effects is still at an early stage, 

and there are reports of different effects in different model systems. A recent 

report has shown that PD-L1 expression levels in breast cell lines are 

upregulated in response to PARP inhibitor exposure [88]. This attenuates T-

cell killing of PARPi exposed cells, which can be restored by anti-PD-L1 

exposure. If this effect occurs in tumours, this could provide another 

mechanism by which combination of PARPi with agents targeting the immune 

checkpoint. A syngeneic mouse study using talazoparib has been shown to 

promote immune cell infiltration in the tumour microenvironment [89]. Finally, 

a study has shown synergy between anti-CTLA4 and veliparib in the same 

syngeneic mouse ovarian cancer model [90]. 

 

Several trials are underway in breast cancer to test whether addition of 

immunotherapies provide an advantage over single agent PARPi. These are 

listed in Table 2. 
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Trial Drugs Patient population Clinicaltrials.gov ID 

MEDIOLA (ph. I/II) Durvalumab + 

olaparib and/or 

cediranib 

gBRCA, HER2-

negative TNBC (and 

other solid tumours) 

NCT02484404 

DORA (ph. II) Olaparib +/– 

durvalumab 

Platinum sensitive 

TNBC 

NCT03167619 

TOPACIO (ph. I/II) Niraparib + 

pembrolizumab 

Advanced/metastati

c TNBC 

NCT02657889 

NCT02849496 (ph. II) Atezolizumab and 

veliparib (alone or in 

combination) 

HR-deficient TNBC NCT02849496 

 

Table 2. Clinical trials studying the effect of PARPi in combination with 

immunotherapy drugs in breast cancer patients. 

 

5. Ongoing breast trials  

At the time of writing there are 41 ongoing studies assessing PARP inhibitors 

in breast cancer (clinicaltrials.gov). Some of these are combination therapy 

trials, referred to above, while other are assessing new PARP inhibitors. As 

well as OlympiAD and EMBRACA, there are other phase III trials underway 

that have reached their final data collection point for primary endpoint and for 

which results can be expected soon (Figure 2). These include BRAVO 

(niraparib compared to physician's choice chemotherapy, germline BRCA; 

NCT01905592) and BROCADE 3 (NCT02163694), assessing 

paclitaxel/carboplatin with or without veliparib. 

 

The question of whether the unique PARP-trapping properties of talazoparib 

translate into better outcomes for patients, or just a reduced maximum 

tolerated dose (MTD) compared to other PARPi, has been partly addressed 

by the recent results of OlympiAD (assessing olaparib) and EMBRACA 

(assessing talazoparib). Indeed, the dose of talazoparib used is much lower (1 
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mg daily in EMBRACA) than other PARP inhibitors (typically in the hundreds 

of mg). Both of these trials showed a similar scale of benefit for their 

respective PARP inhibitor over chemotherapy. Talazoparib did have a higher 

relative frequency of adverse effects relative to chemotherapy when 

compared with to the OlympiAD data, but still was well-tolerated compared to 

chemotherapy, and both trials reported significant improvements in their 

respective quality of life measures with PARPi compared to chemotherapy. It 

is difficult to make a direct comparison of these data between these two trials 

but it seems that the drugs have broadly similar effects despite their differing 

trapping properties. Trapping potency could affect certain combinations with 

DNA damaging agents, however [70]. There are other subtle differences 

between the different PARP inhibitors that could potentially affect outcomes 

[91], but a trial to compare these directly seems unlikely at this point. 

 

Another interesting question is whether PARP inhibitors will be of benefit 

when used earlier in the course of the disease. Most trials so far have been in 

advanced breast cancer. The OlympiA (NCT02032823) and Neo-Olympia 

trials aim to assess olaparib in the adjuvant and neoadjuvant setting 

respectively. Another recent development has been two "window" studies in 

which early stage breast cancer patients are treated with PARP inhibitors prior 

to surgery and monitored for evidence of a response. One pilot study 

observed a decrease in tumour volume in all BRCA mutant patients (n = 13) 

treated with talazoparib and has now progressed to a larger study [92]. The 

RIO study (ISRCTN92154110) will also apply this strategy using rucaparib in 

TNBC.  

 

 

6. Expert Commentary 

With the publication of encouraging phase III results demonstrating PFS 

benefit from the OlympiAD and EMBRACA trials, and other phase III trials due 

to report in the near future, the comparative drought of clinical data regarding 

PARPi response in breast cancer compared to ovarian cancer is coming to an 

end. It is likely that further encouraging results from these trials will result in 

breast cancer approvals for other PARP inhibitors. The task will then be to 
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optimise PARPi therapy, in terms of combination, stage and scheduling to 

achieve maximum benefit and manage the emergence of resistance. 

 

 

7. Five-year view 

Given the wealth of phase III clinical trials that are reaching their endpoints, 

the next five years are likely to see further practice-changing approvals of 

PARP inhibitors for some of these indications. The EMBRACA trial results 

suggest that talazoparib will receive a similar approval to olaparib, and given 

that niraparib is already approved in ovarian cancer it is likely that this drug 

will also find utility in breast cancer, subject to results of the BRAVO trial. The 

overall evidence for PARPi activity in advanced gBRCAm breast cancer is 

now unequivocal, and we may soon see the use of PARPi in early disease, 

based on the upcoming window and neoadjuvant studies. There is also 

possibility of renewed interest in preventative strategies for BRCA carriers, 

given their high risk and the continuing good results showing long-lasting 

protection from ER-positive disease in high-risk individuals afforded by 

periods of prophylactic endocrine therapy [93, 94]. There are legitimate 

concerns about the potential for PARP inhibitors to induce DNA damage, but 

the combination of more data from advanced cancer patients receiving long 

term treatment and data from window studies that shed light on the response 

of early stage disease may lead to reconsideration of the chemoprevention 

approach. 

 

8. Key Issues 

 Recent data from phase III trials of single agent PARP inhibitors in 

advanced gBRCAm breast cancer has resolved doubts about the 

activity of PARP inhibitors in this disease.  

 The OlympiAD trial data have supported the first regulatory approval of 

a PARP inhibitor, olaparib, for breast cancer. Olaparib treated patients 

had a median progression-free survival of 7.0 months, compared to 4.2 

months in chemotherapy-treated patients (Hazard Ratio (HR) = 0.58). 



PARP inhibitors in breast cancer                                                    27 

There was no significant difference in overall survival, although the 

study was not designed to detect this. 

 Similar trials for other PARP inhibitors are reaching completion for 

talazoparib (EMBRACA trial, recently reported) and niraparib (BRAVO 

trial). Since the designs of these phase III trials are similar, they may 

allow hypotheses about the relative merits of the different drugs to be 

formulated and tested. 

 Although a number of potential PARPi resistance mechanisms have 

been described in laboratory studies, the only confirmed mechanism of 

clinical resistance described so far has been through secondary 

mutations that restore function of the mutated homologous 

recombination gene. 

 Data from various combination therapy trials are likely to be key to 

expanding the utility of PARP inhibitors beyond gBRCAm and/or 

dealing with single agent resistance, which has already been observed. 

 PARP inhibitors and platinum salts have overlapping mechanisms of 

action and resistance mechanisms to some extent. It will be necessary 

to interpret PARP inhibitor trial results in the context of ongoing trials of 

platinum therapy. 
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