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Summary:  

Genes whose function is selectively essential in the presence of cancer 

associated genetic aberrations represent promising targets for the 

development of precision therapeutics. Here we present CancerGD 

(www.cancergd.org), a resource that integrates genotypic profiling with large-

scale loss-of-function genetic screens in tumor cell lines to identify such 

genetic dependencies. CancerGD provides tools for searching, visualizing, 

and interpreting these genetic dependencies through the integration of 

functional interaction networks.  

 
  



	 2	

Highlights: 
 

• Integrating loss of function screens with sequencing identifies genetic 

dependencies 

• CancerGD facilitates searching and visualizing dependencies from 

multiple sources 

• CancerGD aids the interpretation of dependencies by integrating 

interaction networks 

 

Main Text: 

The ability to inhibit tumors in molecularly defined cohorts of patients is a 

cornerstone of precision cancer treatment. A successful approach has been 

the development of drugs that inhibit proteins specifically required in tumors 

harboring aberrations in recurrently altered cancer ‘driver genes’ (Luo et al., 

2009). For example, oncogene addiction effects, such as the increased 

sensitivity of ERBB2 (HER2) amplified breast tumors to ERBB2 inhibitors 

(Hynes and Lane, 2005), can be clinically exploited, as can non-oncogene 

addiction effects, such as the synthetic lethal relationship between 

BRCA1/BRCA2 mutations and PARP inhibitors (Lord et al., 2015). To identify 

additional cancer genetic dependencies (CGDs) that may ultimately be 

exploited therapeutically, multiple groups have performed large-scale loss-of-

function genetic screens in panels of tumor cell lines (Brough et al., 2011b; 

Campbell et al., 2016; Cheung et al., 2011; Cowley et al., 2014; Marcotte et 

al., 2012; Marcotte et al., 2016; Wang et al., 2017). Integrating the results of 

these screens with molecular profiling data creates hypothesis-generating 

resources where the hypotheses are of the form ‘tumor cells with a mutation 
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in gene X are sensitive to inhibition to of gene Y’. These hypotheses are 

typically tested in subsequent experiments – for example, in larger panels of 

cell lines, using orthogonal mechanisms of gene inhibition, and/or in mouse 

models – to ensure they are not statistical or experimental artefacts. Recent 

examples of novel CGDs discovered through genetic screening approaches 

include an increased sensitivity of ARID1A mutant cell lines to inhibition of the 

ARID1A paralog ARID1B (Helming et al., 2014), of PTEN mutant breast tumor 

cell lines to inhibition of the mitotic checkpoint kinase TTK (Brough et al., 

2011b), and of MYC amplified breast tumor cell lines to inhibition of multiple 

distinct splicing components (Hsu et al., 2015).  

 

Although the results of loss-of-function screens are typically made publically 

available, their integration with genotypic data remains challenging for those 

without bioinformatics skills. Sequencing and copy number data must be 

processed to identify likely functional alterations, cell line names matched 

between different data sources, and statistical analysis performed to identify 

associations between the alteration of driver genes and an increased 

sensitivity to inhibition of target genes. To address these challenges we have 

developed CancerGD (www.cancergd.org), a resource that integrates multiple 

loss-of-function screens (Campbell et al., 2016; Cowley et al., 2014; Marcotte 

et al., 2012; Marcotte et al., 2016; Wang et al., 2017) with genotype data 

(Forbes et al., 2015; Iorio et al., 2016; Yang et al., 2013) to identify CGDs 

associated with a panel of cancer driver genes (Figure 1).  
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CancerGD currently facilitates the searching, visualization, and interpretation 

of CGDs (Figure 1) associated with 53 driver genes (Table S1). These genes 

were selected based on their identification as driver genes in multiple 

independent analyses (Campbell et al., 2016; Forbes et al., 2015; Vogelstein 

et al., 2013) and due to their alteration in at least three tumor cell lines 

featured in one or more of the included loss-of-function screens. Driver gene 

associated CGDs are identified both across cell lines from multiple histologies 

(‘Pan Cancer’) and within tumor cell lines arising from specific primary sites 

(e.g. ‘Breast’). With an intuitive search interface it is thus possible to retrieve 

CGDs associated with ERBB2 amplification across cell lines from all tissue 

types or specifically associated with ERBB2 amplification in breast tumor 

models (Figure 2A). The data supporting every CGD can be visualized in an 

interactive box plot (Figure 2B) and downloaded for reference.  

 

Aside from oncogene addiction effects (Luo et al., 2009), which represent a 

tiny minority of the dependencies stored in CancerGD, the mechanistic 

interpretation of CGDs remains challenging. Why would mutation of one gene 

result in an increased dependency upon another? In yeast, the interpretation 

of such relationships has been greatly aided by the integration of protein-

protein interaction networks with genetic screens (Kelley and Ideker, 2005). 

Following a similar model, to aid the interpretation of CGDs in CancerGD we 

integrate functional interactions from the STRING database (Szklarczyk et al., 

2015). This facilitates the rapid identification of CGDs involving gene pairs 

with known functional relationships. For instance in the Campbell et al dataset 

(Campbell et al., 2016) ERBB2 amplification is associated with an increased 



	 5	

dependency upon the ERBB2 protein interaction partners JAK2 and ERBB3, 

as well as the ERBB2 downstream effector PIK3CA (Figure 2A). Similarly in 

the Cowley et al dataset (Cowley et al., 2014) loss or mutation of the BAF 

complex subunit ARID1A is associated with an increased dependency upon 

the ARID1A paralog and BAF complex member ARID1B (Helming et al., 

2014). Such dependencies may make more promising candidates for follow 

on experiments as they are supported by existing functional relationships in 

addition to the genetic association.  

 

In addition to identifying known functional interactions between the driver 

gene and associated dependency, it can be helpful to understand the 

relationships between all of the CGDs associated with a given driver gene.  

For instance we previously found that cell lines with a deletion or mutation of 

the tumor suppressor SMAD4 display a strong dependency upon the mitotic 

checkpoint kinase CHEK1 (Campbell et al., 2016). Considered in isolation it is 

not clear whether this CGD relates to a specific function of CHEK1 or a more 

general sensitivity to inhibition of the mitotic checkpoint. However, by 

analysing all of the dependencies associated with SMAD4 we found that they 

were densely connected on the protein interaction network and primarily 

involved in the mitotic checkpoint (Campbell et al., 2016), suggesting a more 

general sensitivity to perturbation of this pathway. To facilitate the 

identification of such pathway-level dependencies CancerGD provides 

network visualizations of the functional interactions between CGDs associated 

with each driver gene (Figure S1).  
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In contrast to the results of drug screening efforts in panels of tumor cell lines 

(Barretina et al., 2012; Basu et al., 2013; Daemen et al., 2013; Garnett et al., 

2012; Iorio et al., 2016; Yang et al., 2013), the CGDs identified in loss-of-

function screens include targets that have no inhibitors available and 

consequently may serve as the rationale for the development of new small-

molecule inhibitors. To facilitate the identification of CGDs that may be more 

readily exploited with available inhibitors CancerGD integrates drug-gene 

interaction relationships from DGIdb (Griffith et al., 2013). 

 

It has previously been highlighted that many CGDs identified in one loss-of-

function screen are not evident in additional datasets (Brough et al., 2011a; 

Downward, 2015). This could indicate that these CGDs are context specific 

(Lord et al., 2015) but can also be explained by a variety of technical factors. 

Different screens feature different coverage of gene libraries (e.g. kinome vs 

genome-wide), different coverage of cancer types (e.g. only melanoma in one 

vs only breast in another) and different coverage of driver genes (e.g. many 

BRAF mutant cell lines in one screen vs none in another). These technical 

factors can result in the identification of CGDs in one screen that cannot be 

observed in a second screen. Furthermore in any given screen there may be 

false positives resulting from the off-target effects of gene targeting reagents 

(Jackson and Linsley, 2010) and false negatives resulting from variation in the 

knockdown efficiencies of different gene targeting reagents (Kaelin, 2012). 

There are thus a number of explanations for why a CGD observed in one 

dataset may not be evident in another. Nonetheless, the CGDs that are 

observed in multiple datasets may be of particular interest as they are 
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perhaps less likely to result from the off-target effects of gene targeting 

reagents and also less likely to be highly context-specific. In CancerGD we 

provide functionality to identify and filter those CGDs observed independently 

in multiple datasets.  

 

CancerGD can incorporate datasets generated using different experimental 

and computational pipelines and is not restricted to loss-of-function screens 

generated using any specific method (shRNA / siRNA / CRISPR). The main 

requirement for inclusion is that a dataset must contain the results of screens 

in a panel of cell lines (a minimum of ten cell lines) and provide some 

quantitative measurement of the sensitivity of each cell line to the inhibition of 

each gene screened. Currently the resource includes three genome-scale 

shRNA screens (Cowley et al., 2014; Marcotte et al., 2012; Marcotte et al., 

2016), one kinome-wide siRNA screen (Campbell et al., 2016), and one 

genome-wide CRISPR screen (Wang et al., 2017). As additional screens 

become available we will incorporate their results into the resource (see 

methods for instructions on how to format screens for easy inclusion in 

CancerGD).  

 

A tutorial demonstrating the full functionality of CancerGD is provided in 

Document S1. We believe that CancerGD will be a useful resource to aid a 

wider group of cancer researchers to benefit from the information generated in 

large-scale loss-of-function screens.  
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Figure 1. CancerGD overview  

Loss-of-function screens from multiple sources are integrated with exome and 

copy number profiles from the GDSC resource. Cell lines are annotated 

according to the mutational status of a panel of driver genes. Statistical 

analysis is then performed to identify associations between the presence of 

driver gene alterations and sensitivity to reagents targeting specific genes. 

These CGDs are filtered such that only those with nominal significance 

(p<0.05) and moderate common language effect sizes (≥ 65%) are retained.  

Finally all CGDs are annotated according to whether they occur between 

driver-target pairs with known functional relationships (STRING) and whether 

there is an inhibitor available for the target gene (DGIdb).  
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Figure 2 
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Figure 2. Genetic dependency exploration and visualization 

A) The principle view of the database. Each row represents a gene identified 

as a dependency associated with ERBB2 amplification in Campbell et al 

(Campbell et al., 2016) across all tumor types (Pan cancer). Columns display 

experimental details along with the p-value, common language effect size and 

difference in median sensitivity score for each dependency. Genes identified 

as dependencies in multiple datasets are indicated in the ‘Multiple Hit’ column. 

Genes with a known functional relationship to the driver gene (e.g. PIK3CA) 

are indicated in the ‘String interaction’ column and drugs known to inhibit the 

target gene indicated in the ‘Inhibitors’ column. Toggles/search boxes permit 

easy filtering of interactions – e.g. to select only those genes with an 

associated inhibitor available. 

B) Example boxplot showing an increased sensitivity of ERBB2 amplified cell 

lines to inhibition of MAP2K3. Each data point represents the sensitivity of a 

particular cell line to RNAi reagents targeting MAP2K3. Cell lines are grouped 

according to ERBB2 amplification status with the wild-type group on the left 

and amplified group on the right. Cell lines are coloured according to site of 

origin and toggles on the right permit the hiding/showing of cell lines from 

specific sites. Hovering over a given data point provides the cell line’s name, 

the primary site, and the score associated with the RNAi reagent in that cell 

line. An overlapped box-whisker plot displays the interquartile range and the 

median for each group. High-resolution PNG images for each box plot can be 

downloaded along with a CSV file containing all of the data presented in the 

box plot. Links to the target gene (MAP2K3) on additional sites are provided 

at the bottom of the plot. 
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Figure S1 
 

 

 
Figure S1. Visualizing the known interactions between all CGDs 
associated with a specific driver gene. Related to Figure 2. 
 
High confidence STRING functional interactions between CGDs associated 

with ERBB2 amplification in Campbell et al are shown. 
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Table S1 

Gene Studies Tissues CGDS 
ACVR2A	 1	 2	 676	
AFDN	 1	 1	 396	
AFF4	 1	 1	 268	
APC	 1	 2	 905	
ARID1A	 4	 5	 2336	
ARID1B	 2	 2	 273	
ASXL1	 2	 2	 1648	
B2M	 1	 1	 294	
BCOR	 1	 2	 389	
BRAF	 1	 2	 562	
BRCA1	 1	 1	 798	
BRCA2	 2	 3	 1685	
CCND1	 3	 3	 1264	
CCNE1	 1	 1	 930	
CDH1	 3	 2	 1761	
CDKN2A	 5	 8	 4074	
CDKN2C	 1	 3	 1148	
CTNNB1	 1	 2	 455	
EGFR	 2	 2	 460	
EP300	 2	 3	 1698	
ERBB2	 4	 3	 2523	
EZH2	 1	 1	 587	
FANCA	 1	 2	 707	
FBXW7	 1	 2	 440	
GNAS	 2	 3	 1434	
HEY1	 1	 1	 643	
KDM6A	 1	 3	 743	
KRAS	 3	 4	 2205	
MAP2K4	 2	 2	 1048	
MDM2	 1	 1	 224	
MSH2	 1	 1	 172	
MSH6	 1	 2	 651	
MYC	 3	 5	 1782	
NCOA3	 1	 1	 931	
NCOR1	 1	 2	 540	
NF1	 3	 4	 1271	
NRAS	 2	 2	 1232	
PIK3CA	 4	 5	 2800	
PIK3R1	 1	 2	 372	
PPM1D	 3	 1	 1156	
PTCH1	 1	 1	 197	
PTEN	 4	 4	 2176	
PTPRK	 1	 1	 289	
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RB1	 3	 3	 1602	
RNF43	 2	 3	 1787	
RPL22	 1	 2	 836	
SKP2	 1	 1	 1095	
SMAD4	 3	 4	 1863	
SMARCA4	 2	 2	 437	
SPOP	 1	 1	 738	
STK11	 2	 2	 341	
TP53	 5	 9	 3690	
UBR5	 1	 2	 677	

 
Table S1. Driver genes currently included in CancerGD. Related to 
Figure 1 
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STAR Methods 
 
 
CONTACT FOR REAGENT AND RESOURCE SHARING  
 
Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead Contact, Colm J. Ryan 

(colm.ryan@ucd.ie) 

 

METHOD DETAILS 

Genotype data 

Exome data for ~1,000 cell lines are obtained from the GDSC resource (Iorio 

et al., 2016; Yang et al., 2013). We use this data to annotate ~500 driver 

genes (Campbell et al., 2016) according to whether they feature likely 

functional alterations.  For oncogenes we consider recurrent missense or 

recurrent in frame deletions/insertions to be likely functional alterations, where 

recurrence is defined as at least 3 previous mutations of a particular site in the 

COSMIC database (Forbes et al., 2015). In addition to recurrent missense or 

indel events, for tumor suppressors we consider that all nonsense, frameshift 

and splice-site mutations are likely functional alterations. For copy number 

analysis we use the gene level copy number scores from COSMIC for the 

same set of cell lines (which are derived from PICNIC analysis of Affymetrix 

SNP6.0 array data) (Forbes et al., 2015; Garnett et al., 2012; Iorio et al., 

2016; Yang et al., 2013). An oncogene is considered amplified if the entire 

coding sequence has 8 or more copies while a tumor suppressor is 

considered deleted if any part of the coding sequence has a copy number of 0 

as per Garnett et al (Garnett et al., 2012). For the majority of driver genes we 

integrate the two sources together. For all tumor suppressors we consider a 
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functional alteration to be either a deletion (derived from copy number 

profiles) or a presumed loss-of-function mutation (as identified in the exome 

data). For most oncogenes we consider a functional alteration to be either an 

amplification or a recurrent mutation/indel. For a small number of oncogenes 

(ERBB2, MYC, MYCN) we consider only amplifications as functional events, 

while for another group (KRAS, BRAF, NRAS, HRAS) we only consider 

recurrent mutations/indels.   

 

Loss of function screens 

Four large-scale RNAi datasets and one CRISPR dataset are currently 

included in CancerGD (Campbell et al., 2016; Cowley et al., 2014; Marcotte et 

al., 2012; Marcotte et al., 2016; Wang et al., 2017). These include a kinome 

focussed siRNA screen covering a panel of 117 cell lines from diverse 

histologies (Campbell et al., 2016), a genome-scale shRNA screen focussed 

on 77 breast tumor cell lines (Marcotte et al., 2016), a genome-scale shRNA 

screen focussed on 72 breast, ovarian and pancreatic cell lines(Marcotte et 

al., 2012), a large-scale shRNA screen covering 216 cell lines from diverse 

histologies (Cowley et al., 2014), and a genome-scale CRISPR screen 

covering 14 AML cell lines(Wang et al., 2017). Cowley et al (Cowley et al., 

2014) is largely a superset of a previous screen from the same lab (Cheung et 

al., 2011) and hence the two resources are not included separately. Similarly 

the kinome siRNA screen from Cambell et al (Campbell et al., 2016) contains 

the majority of the breast tumor cell lines screened in a previous breast 

cancer kinome siRNA screen from the same lab (Brough et al., 2011b) and 

hence they are not included separately. The breast cell lines in (Marcotte et 
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al., 2016) are a superset of those included in (Marcotte et al., 2012) and 

consequently we do not store breast specific dependencies from (Marcotte et 

al., 2012). 

 

Cell line naming  

Internally we follow the naming convention established by the Cancer Cell 

Line Encyclopedia (Barretina et al., 2012). The CCLE naming convention is 

the cell line name (containing only numbers and upper case letters) followed 

by an underscore, followed by the tissue/primary site in upper case. The cell 

line names are taken from (Iorio et al., 2016), converted to uppercase and 

punctuation removed. Where possible we use the same tissue types as the 

CCLE, in a small number of cases where a tissue was absent from the CCLE 

(e.g. CERVIX) we have created a new tissue type. Having the tissue type in 

the cell line name facilitates filtering the boxplots (e.g. to show the gene 

inhibition sensitivities for cell lines from a specific tissue) in the browser 

without having to perform additional database queries. Furthermore two of the 

published loss-of-function screens already follow this naming convention 

(Campbell et al., 2016; Cowley et al., 2014) while a third features only breast 

cell lines and was trivially converted (Marcotte et al., 2016). In instances 

where the same cell line is featured in two datasets but there is a naming 

disagreement (e.g. H1299_LUNG in Campbell et al (Campbell et al., 2016) is 

NCIH1299_LUNG in our genotype set) we manually rename the screen 

dataset to match the genotype data. 
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Gene identification 

CancerGD provides links to multiple external sources that use a variety of 

different gene identifiers. Consequently for each gene in the database we 

store multiple identifiers (Entrez Gene ID, Ensembl Gene identifiers, HUGO 

Gene Names, Ensembl Protein IDs). We also store synonyms for each gene 

to facilitate easy gene look up (e.g. ERBB2 can be identified by searching for 

HER2). These synonyms are obtained from the HGNC resource (Gray et al., 

2015). 

 

Drug target annotations 

Drug-gene relationships are obtained from the Drug-Gene Interaction 

Database (DGIdb), which integrates drug-gene relationships from multiple 

sources (Wagner et al., 2016). Only inhibitor relationships are retrieved, as we 

are interested in drugs that inhibit the products of specific genes, rather than 

drugs whose efficacy is associated with the mutation of specific genes. 

Results from DGIdb sourced from MyCancerGenome and 

MyCancerGenomeClinicalTrial are excluded for the same reason.  

 

Functional interactions 

Functional interactions are obtained from STRING. We store all interactions 

that are medium confidence (STRING score > 0.4) or higher. Cut-offs to 

identify interactions as ‘Medium’, ‘High’ and ‘Highest’ confidence are those 

defined by STRING. For displaying the functional interactions between the 

dependencies associated with each driver gene we use the STRING API 

(Szklarczyk et al., 2015). 
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Implementation 

CancerGD is implemented in Python using the Django framework and follows 

a model/view/controller architecture. JQuery is used for Javascript processing 

in the browser interface.  MySQL is used by default for data storage but 

SQLite can be used for development / testing purposes with minimal 

documented changes. The application is currently hosted on the 

PythonAnywhere system, a generic Python web services host, suggesting 

that the application is portable.  

 

Formatting screens for CancerGD 

To enable easy inclusion of future screens in CancerGD we request that data 

be provided as a tab-delimited table with each row representing a particular 

cell line and each column representing reagents targeting a specific gene. 

Cell line names should preferably follow the Cancer Cell Line Encyclopaedia 

naming convention described above, but COSMIC IDs are also acceptable. 

Genes should preferably be identified using ENTREZ IDs but other unique IDs 

(ENSEMBL Gene IDs) are acceptable. Due to regular changing and updating, 

gene symbols alone should not be used as unique gene identifiers. We favour 

SYMBOL_ENTREZID (e.g KRAS_3846) for ease of use but this is not 

required. In cases where multiple distinct scores are provided for a specific 

gene, as happens with scores from the ATARIS algorithm, we request that 

they be identified using distinct suffixes (e.g. KRAS_3846_1, KRAS_3846_2). 
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Individual entries in the table should be quantitative scores indicating how 

sensitive a specific cell line is to perturbation of a particular gene. As different 

scoring procedures are used to quantify the results of screens using different 

experimental approaches (e.g. ATARIS (Shao et al., 2013) and zGARP 

(Marcotte et al., 2012) for shRNA screens, Z-score for siRNA screens 

(Campbell et al., 2016)) we do not require the scores to be in any standard 

format or range. However, we follow the convention in the field and suggest 

that increasingly negative scores should indicate greater inhibition of cell 

growth. A sample screen from Campbell et al (Campbell et al., 2016) is 

provided in the appropriate format here: 

http://www.cancergd.org/static/gendep/Campbell_cancergd.txt 

  

QUANTIFICATION AND STATISTICAL ANALYSIS 

We use R for all statistical analysis. For each driver gene / target gene 

combination we compare cell lines harbouring a likely functional alteration in 

the driver gene to cell lines with no alteration in that gene and test if the cell 

lines with the functional alteration are more sensitive to RNAi reagents that 

inhibit that gene. This is tested using a one-sided Mann-Whitney U test. A 

variety of alternative two-sample tests have been used in previous 

publications, including median permutation tests (Brough et al., 2011b; 

Campbell et al., 2016) and mutual information based measures (Cowley et al., 

2014). The Mann-Whitney U test has a number of advantages for CancerGD 

– it is rapid to calculate and it does not assume that the scores for each gene 

are normally distributed. The latter is important as it means the test can be 

used uniformly on loss-of-function screens from multiple sources that use 
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different scoring schemes. For all screens we use the authors’ provided 

scoring scheme (zGARP for Marcotte et al (Marcotte et al., 2012; Marcotte et 

al., 2016), ATARIS phenotype score for Cowley et al (Cowley et al., 2014), 

robust Z-score for Campbell et al (Campbell et al., 2016), and CS score for 

Wang et al (Wang et al., 2017)). As in (Marcotte et al., 2012) we apply Z-

score normalization to the zGARP scores from (Marcotte et al., 2012) to 

enable reasonable comparison of scores across cell lines. In addition to the p-

value from the Mann-Whitney U test we calculate a common language effect 

size (CLES) for each dependency. The CLES is equivalent to the Area under 

the ROC curve and the Probability of Superiority and indicates the probability 

that a cell line with an alteration in a particular driver gene is more sensitive to 

a given RNAi reagent than a cell line without that alteration. In the database 

we store all nominally significant dependencies (p<0.05) with a CLES ≥ 0.65. 

In a small number of instances multiple ATARIS scores are presented for a 

single gene – when storing CGDs we incorporate the ATARIS score with the 

lower p-value. 

 

DATA AND SOFTWARE AVAILABILITY 

Source code for the entire project (R/Python/Javascript/HTML) is publicly 

available on GitHub (https://github.com/cancergenetics/cancergd). Detailed 

instructions on how to run the statistical analysis, install the web application 

and populate the database are also provided in the GitHub repository 

(CancerGD_Manual_v1.1.doc).  
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Document S1 
 
Document S1. CancerGD short tutorial (20 mins) 
 
Overview: 
 
CancerGD.org provides a search interface for genetic dependencies identified 
in loss-of-function screens in panels of tumor cell lines. A genetic dependency 
is identified when there is a statistical association between the presence of a 
particular mutation and increased sensitivity to the inhibition of a specific 
gene. These dependencies are identified by integrating large-scale loss-of-
function screens in panels of cell lines with genotype data for the same cell 
lines. In CancerGD we store all nominally significant dependencies (P < 0.05) 
with a common language effect size > 65% (see 
http://www.cancergd.org/faq/#effectsize for an explanation). A goal of this 
resource is to help understand genetic dependencies in the context of known 
functional interaction networks (e.g. protein-protein interactions). Towards this 
end we have developed simple functionality to identify those genetic 
dependencies that occur within pathways (i.e. where the driver gene and the 
target dependency belong to the same pathway) and between pathways (i.e. 
where the dependencies associated with a given driver gene belong to the 
same complex or pathway as each other).  To further facilitate follow on 
studies we have also annotated all dependencies in the database according 
to the availability of inhibitors for the target genes. 
 
Here we provide a simple tutorial that takes the user through the main 
functionality of www.cancergd.org. We show how CancerGD can be used to 
browse and analyse the dependencies associated with ERBB2 amplification 
in the Campbell et al paper published in Cell Reports (2016). This tutorial 
should take approximately 20 minutes to complete. 
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Step 1 – retrieving the dependencies associated with a driver gene 
 
Navigate to http://www.cancergd.org/ in your internet browser. You will see a 
search box resembling the below image. In the Driver gene field type 
‘ERBB2’, in the Tissue type dropdown select ‘Pan cancer’ and in the Study 
dropdown please select ‘Campbell(2016)’.  Click the Search button 
 

 
 
You will be presented with a table of results resembling the below image. The 
top of the page provides details (gene synonyms, a gene description, links to 
the gene on external resources) for the selected driver gene (ERBB2). The 
bottom of the page is a table displaying all of the nominally significant 
dependencies associated with the selected driver gene (ERBB2) in the 
selected tissue (pan-cancer, i.e. across all tissue types) from the selected 
study (Campbell et al).   
 

 
 
Clicking on any gene name in the ‘Dependency’ column will present the user 
with a view of the evidence supporting that dependency. Click on MAP2K3 to 
proceed to the next step 
 
 
 
 
 



	 28	

 
 
Step 2 – viewing the data supporting individual dependencies 
 
You will be presented with a window resembling the below image. This view 
presents the data supporting the association between ERBB2 amplification 
and sensitivity to RNAi reagents targeting MAP2K3. 
 

 
 
This is an interactive box plot (http://www.cancergd.org/faq/#boxplots) that 
displays the sensitivity of cell lines partitioned according to ERBB2 status to 
RNAi reagents targeting MAP2K3. The cell lines featuring an alteration of 
ERBB2 are displayed on the right and the cell lines without the alteration are 
on the left. Each colored shape represents a cell line and the position along 
the y-axis indicates how sensitive that cell line is to the RNAi reagents 
targeting the gene indicated (MAP2K3). A lower position on the y-axis 
indicates greater sensitivity. The colors indicate the tissue of origin for each 
cell line, as indicated in the legend on the right hand side. Toggles in the 
legend facilitated hiding or displaying cell lines from specific histologies. To 
see how the dependency between ERBB2 and MAP2K3 appears when breast 
cell lines are removed uncheck the box beside ‘Breast’ in the legend.  
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To download a high-resolution copy of this image click ‘Download boxplot as 
PNG image’. To download the raw data supporting this dependency in a 
comma separated text file, click ‘Download boxplot as CSV file’. This can be 
opened with Microsoft Excel or similar applications.  
 
To see the details associated with a specific cell line hover your cursor over 
the shape corresponding to that cell line (e.g. above we hover over the cell 
line with the greatest sensitivity to MAP2K3 inhibition). 
 
Click the X in the top right to close this image and return to the table that lists 
genetic dependencies. 
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Step 3 – filtering dependencies with a known functional relationship to 
the driver gene 
 
One of the goals of this resource is to facilitate the interpretation of genetic 
dependencies and to develop filters to prioritize promising candidates for 
follow up studies. The simplest approach is to focus on dependencies that 
have a known relationship (e.g. a protein-protein interaction) with the driver 
gene. To identify these - choose 'Any' in the 'String Interaction' column. This 
will filter the table to show only the genetic dependencies that have a 
functional relationship (e.g. protein-protein interaction) with ERBB2 as 
displayed below. 
 

 
 
This identifies the ERBB2 downstream effector PIK3CA and the ERBB2 
binding partner ERBB3 among others. These functional relationships are 
obtained from the STRING database (http://string-db.org/). Clicking on text 
inside the String Interaction column (e.g. Highest) will bring the user to the 
STRING database where the data supporting the functional interaction 
between the driver gene and the dependency will be displayed.  
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Step 4 – identifying interactions between the dependencies associated 
with a driver gene 
 
An alternative to identifying the known functional interactions between a driver 
gene and its dependencies is to try to understand the relationship between all 
of the dependencies associated with a given driver gene. In this way it may be 
possible to identify pathways or protein complexes that the driver gene is 
associated with an increased dependency upon. For this analysis we again 
rely on the STRING database (http://string-db.org/). To view all of the 
interactions between the dependencies associated ERBB2 click on 
the 'Stringdb Image' button above the dependencies table.  
 

 
 
 
This will take a moment to retrieve an image similar to that below showing 
high-confidence functional interactions between the genes identified 
as ERBB2 dependencies. You can see that ERBB2 amplification is 
associated with an increased dependency upon a group of kinases 
functionally related to ERBB2 and PI3K signaling, as well as a group of genes 
involved in map kinase signaling.  
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By selecting ‘Stringdb Interactive’ instead of ‘Stringdb image’ you can view 
an interactive version of this network on the STRING website. This will allow 
you to view the evidence supporting each functional interactions, to alter the 
layout of the network, and to filter the network in different ways. Click the X in 
the top right of the Stringdb image to close the image and return to the table 
listing dependencies. 
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Step 5 – identifying dependencies that can be exploited with existing 
inhibitors 
 
A further goal of CancerGD is to facilitate follow on experimentation. One 
means to further explore or validate a dependency is to see if the same effect 
is observed using small molecule inhibitors rather than RNAi reagents. To that 
end we annotate all of our dependencies according to the availability of 
inhibitors. To view genes with available inhibitors, select ‘Any’ in the 
‘Inhibitors’ column toggle. You will see a view resembling the below.  
 

 
 
This filters the dependencies so that only those genes with known inhibitors 
are presented. The mapping from genes to inhibitors is taken from the DGIdb 
resource (http://dgidb.genome.wustl.edu/). Clicking on any inhibitor name in 
the Inhibitors column will bring the user to DGIdb, where details on the 
inhibitor are provided. For some genes there are more inhibitors available 
than can be presented in the Inhibitors column. These are indicated with the 
text [more]. Clicking on [more] in any entry in the Inhibitors column will display 
the full list of inhibitors associated with that gene in a window like that shown 
below : 
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Clicking any inhibitor name within this window will bring the user to DGIdb, 
where details on the inhibitor are provided. Click the X to close this window. 
 
  



	 35	

Step 6 – identifying dependencies that have been observed in multiple 
datasets 
 
A dependency observed in any one screen may be a statistical artefact, a 
context specific dependency, or a false positive resulting from the off-target 
effects of gene targetting reagents. Those dependencies observed in multiple 
independent datasets may make more promising candidates as they are less 
likely to be artefacts or false positive effects. To prioritise these for further 
validation, CancerGD allows easy filtering of the dependencies observed 
independently in multiple datasets. To view dependencies that have been 
associated with the same driver gene in the same tissue type, select ‘Yes’ in 
the ‘Multiple Hit’ column toggle. You will see a view resembling the below.  
 

 
 
Hover over the ‘Yes’ text in the “Multiple Hit” column to see the details of the 
screens that a specific gene has been identified as a dependency in. 
 
Conclusion 
 
You have now completed a tour of the main www.cancergd.org functionality. 
Further information is available on the FAQ (http://www.cancergd.org/faq/)  
page. We welcome feedback through the contact page 
(http://www.cancergd.org/contact/). 
 


