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Background: Elevated APOBEC3B expression in tumours correlates with a kataegic pattern of localised hypermutation. We
assessed the cellular phenotypes associated with high-level APOBEC3B expression and the influence of p53 status on these
phenotypes using an isogenic system.

Methods: We used RNA interference of p53 in cells with inducible APOBEC3B and assessed DNA damage response (DDR)
biomarkers. The mutational effects of APOBEC3B were assessed using whole-genome sequencing. In vitro small-molecule
inhibitor sensitivity profiling was used to identify candidate therapeutic vulnerabilities.

Results: Although APOBEC3B expression increased the incorporation of genomic uracil, invoked DDR biomarkers and caused cell
cycle arrest, inactivation of p53 circumvented APOBEC3B-induced cell cycle arrest without reversing the increase in genomic
uracil or DDR biomarkers. The continued expression of APOBEC3B in p53-defective cells not only caused a kataegic mutational
signature but also caused hypersensitivity to small-molecule DDR inhibitors (ATR, CHEK1, CHEK2, PARP, WEE1 inhibitors) as well
as cisplatin/ATR inhibitor and ATR/PARP inhibitor combinations.

Conclusions: Although loss of p53 might allow tumour cells to tolerate elevated APOBEC3B expression, continued expression of
this enzyme might impart a number of therapeutic vulnerabilities upon tumour cells.

The APOBEC (apolipoprotein B editing enzyme catalytic
polypeptide-like) family of polynucleotide cytidine deaminase
enzymes fulfil various physiological functions in humans,
varying from antibody gene diversification to innate immunity
(Harris and Liddament, 2004; Conticello, 2008). APOBECs

function in innate immunity by deaminating single-stranded
DNA (ssDNA) replication intermediates of viral pathogens
(retro-, hepadna-, papilloma-viruses), inhibiting the retro-
transposition of L1 and Alu elements and mediating the
clearance of foreign DNA through deamination-dependent
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mechanisms (Jarmuz et al, 2002; Burns et al, 2015). In addition
to these functions in normal physiology, APOBEC enzymes
have also been implicated in cancer pathogenesis. The expres-
sion levels of several APOBEC enzymes, including APOBEC3B,
are altered in tumours (Ding et al, 2011; Nik-Zainal et al, 2012a;
Burns et al, 2013a; Alexandrov et al, 2013; Leonard et al, 2013;
Henderson et al, 2014; Rebhandl et al, 2014; Saraconi et al,
2014; The Cancer Genome Atlas Research Network, 2014).
Upregulation of APOBEC3B in tumours has been associated
with localised clusters of strand-specific cytosine to thymine
(C-to-T) or cytosine to guanine (C-to-G) mutations (kataegic
mutations) that tend to occur within TCW sequence motifs
(W¼ adenine or thymine) and at rearrangement breakpoints
(Nik-Zainal et al, 2012a; Roberts et al, 2012; Burns et al, 2013a,
b; Drier et al, 2013). This kataegic mutational signature has been
identified in multiple cancers, including bladder, breast, cervix,
head/neck, thyroid, lung, and several of the blood (Nik-Zainal
et al, 2012a; Alexandrov et al, 2013). It seems likely that the
ability of APOBEC3B to deaminate cytosine residues to uracil
(C-to-U) in ssDNA contributes to this kataegic process
(Helleday et al, 2014; Chan and Gordenin, 2015; Swanton
et al, 2015). It has been suggested that APOBEC3B-induced
mutagenesis occurs primarily within lagging strand templates
arising during DNA replication (Bhagwat et al, 2016;
Haradhvala et al, 2016; Hoopes et al, 2016; Seplyarskiy et al,
2016) or on stretches of ssDNA exposed during the resection
stage of double-strand break repair or at stalled or collapsed
replication forks (Nik-Zainal et al, 2012a; Roberts et al,
2012). The subsequent repair of uracil residues can lead to
C-to-T transition mutations or C-to-G transversions, depending
on the DNA repair pathway used to process the uracil lesions
(Simonelli et al, 2005; Roberts et al, 2012). Kataegic clustering of
C-to-T and C-to-G mutations in the APOBEC3B-preferred
TCW motif has been recapitulated in yeast cells expressing
human APOBEC3B (Nik-Zainal et al, 2012a; Taylor et al, 2013)
and C-to-T mutations accumulate in breast tumour cell lines
with upregulated APOBEC3B expression (Burns et al, 2013a;
Akre et al, 2016).

The causes of elevated APOBEC3B expression are not
fully understood, but it is now established that in human
papillomavirus (HPV)-positive cancers of the head/neck and
cervix, the HPV E6/E7 oncoprotein causes upregulation of
APOBEC3B both at the mRNA and enzymatic activity level
(Ohba et al, 2014; Vieira et al, 2014). BK polyomavirus has
also been shown to upregulate APOBEC3B in kidney cells,
which might explain elevated APOBEC3B levels in urothelial
cancers (Verhalen et al, 2016). Furthermore, amplification
of the ERBB2 oncogene and loss of PTEN tumour-suppressor
function in breast tumours has been proposed to cause
replicative stress, which in turn causes an increase in
APOBEC3B transcription via an ATR/CHEK1-dependent path-
way (Kanu et al, 2016). Finally, the protein kinase C/NFKB
pathway can also induce transcriptional upregulation of
APOBEC3B (Leonard et al, 2015).

Here we show that, while induction of APOBEC3B expression
elicits a DNA damage response (DDR) and G2/M cell cycle
arrest, the cell cycle arrest can be abrogated by loss of p53
function, formally identifying p53 dysfunction as a molecular
route by which tumour cells might tolerate APOBEC3B
activity. Using whole-genome sequencing (WGS), we also show
that, in p53-defective cells, APOBEC3B expression drives
an increase in the genomic uracil load and causes kataegic-
like mutational signatures. Finally, we show that high-level
APOBEC3B expression causes hypersensitivity to small-
molecule inhibitors that target the DDR, suggesting that
APOBEC3B overexpression can impart targetable vulnerabilities
upon cells.

MATERIALS AND METHODS

Cell lines. 293-A3B and 293-GFP cell lines have been previously
described (Akre et al, 2016). Parental 293-A3B cells were infected
with GIPZ TP53 shRNA lentivirus (Dharmacon, GE Healthcare,
Little Chalfont, UK) to generate constitutive silencing of TP53
mRNA in the cells. Seventy-two hours after viral infection, cells
were selected in 1mg ml� 1 puromycin to remove non-transduced
cells, and clones were isolated after single-cell sorting with BD
FACSAria II SORP (BD Biosciences, San Jose, CA, USA).

CRISPR/Cas9-mediated gene knockout. A single guide RNA
(sgRNA) was designed to target the 50-ACTTCCTGAAAA-
CAACGTTC-30 site in exon 3 of TP53 (Supplementary Figures
S3B–E). The sgRNA was ligated into a lentiviral CRISPR vector,
which allows for dual expression of the sgRNA and Cas9
endonuclease using the protocol from the Zhang Laboratory
(Sanjana et al, 2014). This construct was cloned by annealing oligos
50-CACCGACTTCCTGAAAACAACGTTC-30 and 50-GAAC-
GAACGTTGTTTTCAGGAAGTC-30. This vector was used to
produce transducing virus and create a 293-A3B-Dp53 clone
following a previously described protocol (Anderson and Harris,
2015).

Clonogenic survival assay. 293-A3B and 293-A3B-Dp53 cells
were seeded into six-well plates (500 cells per well) (Supplementary
Figures S3C and D). The cells were treated with either mock (H2O)
or doxycycline (dox; 1 mg ml� 1) 8 h after plating. Once colonies of
450 cells formed in the 293-A3B mock-treated wells (B9 days),
the plates were washed with PBS and stained with 50% methanol
and 0.5% crystal violet, and the colonies were counted by hand.

Western blotting. Cells were collected, washed with PBS and
resuspended in lysis buffer containing 1 mM sodium vanadate,
20 mM sodium fluoride, 1% Igepal CA-630, 0.0225% Triton X,
1� cOmplete ULTRA EDTA-free protease inhibitor cocktail tablet
(Roche, Welwyn Garden City, UK) and 1� PhosSTOP phospha-
tase inhibitor cocktail tablet (Roche). To enhance cell lysis,
sonication was used. The insoluble fraction was removed by
centrifugation. Protein concentration was measured with Bio-Rad
Protein Assay (Bio-Rad, Cambridge, UK) to ensure equivalent total
protein load per lane. Proteins were denatured by boiling for
10 min and resolved under reducing conditions on 4–12% Bis-Tris
gels (NuPAGE, Thermo Fisher Scientific, Paisley, UK). Proteins
were transferred to nitrocellulose membrane (Amersham Protran,
GE Healthcare, Little Chalfont, UK). Membranes were blocked
with either 5% (w/v) non-fat dried milk or mixture of 1% (w/v)
non-fat dried milk and 1% (w/v) bovine serum albumin. Primary
antibodies used were: gH2AX (Ser139, Cell Signaling, Danvers,
MA, USA; used at 1 : 3000 (v/v) dilution), pRPA32 (S4/S8, Bethyl
Laboratories, Montgomery, TX, USA; 1 : 1000), APOBEC3B (5210-
87-13, (Leonard et al, 2015), 1 : 1000 and Abcam, Cambridge, UK;
1 : 5000), GFP (Cell Signaling, 1 : 5000), pCHK1 (Ser345, Cell
Signaling, 1 : 1000), pCHK2 (Thr68, Cell Signaling, 1 : 1000), CHK1
(Santa Cruz, Santa Cruz, CA, USA 1 : 1000), CHK2 (Cell Signaling,
1 : 1000), PARP1 (Santa Cruz, 1 : 1000), p-p53 (Ser15, Cell
Signaling, 1 : 1000), p53 (DO-I clone, Sigma, 1 : 1000), RPA1
(RPA-70, Abcam, 1 : 1000), Histone H3 (Cell Signaling, 1 : 1000),
Actin (Sigma, Poole, UK; 1 : 10 000), or b-tubulin (1 : 10 000,
Sigma). After applying horseradish peroxidase-coupled secondary
antibodies (Amersham Pharmacia Biotech, Little Chalfont, UK),
immunoreactive bands were visualised by ECL chemiluminescence
reagent (Novex, Thermo Fisher Scientific, Little Chalfont, UK), and
images were developed onto Amersham Hyperfilm (GE Health-
care, Little Chalfont, UK). Expression levels were quantified by
using the Image J 1.50i software (NIH, Bethesda, MD, USA). In
Supplementary Figure S3B, cells were collected, washed with PBS,
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and resuspended in 100 ml reducing sample buffer per one million
cells (0.5M Tris-HCl pH 6.8, 1% 2-mercaptoethanol, 10% sodium
dodecyl sulfate, 50% glycerol). Proteins were denatured by boiling
samples for 20 min, and resolved by SDS–polyacrylamide gel
electrophoresis. Proteins were transferred to a PVDF-FL
membrane (Millipore, Watford, UK) and blocked in 5% milk in
phosphate-buffered saline (PBS). Primary antibodies were
incubated in PBS.0.1% Tween 20, and secondary antibodies were
incubated in PBS.0.1% Tween 20.0.2% SDS. The membrane was
imaged using a LI-COR Odyssey instrument. The primary
antibodies used were: p53 (DO-1 clone, Santa Cruz, 1 : 1000) and
b-actin (Cell Signaling, 1 : 2000). The secondary antibodies used
were: IRDye 800CW goat anti-rabbit (LI-COR, Cambridge, UK;
1 : 10 000) and Alexa Fluor 680 goat anti-mouse (Molecular Probes,
Paisley, UK, 1 : 10 000).

Uracil incorporation assay. DNA was purified using the Mas-
terPure Complete DNA and RNA Purification Kit and the DNA
Clean & Concentrator-5 Kit (Zymo Research, Irvine, CA, USA)
from 292-A3B and 293-A3B-p53 cells exposed to 100 and
1000 ng ml� 1 ml� 1 dox (72 h). DNA was prepared according to
the manufacturer’s instructions. Uracil quantifications for the 293-
A3B and 293-A3B-p53 DNA samples were performed as in
described in Rona et al (2016).

Cell cycle analysis. 293-A3B and 293-A3B-p53 cells were either
exposed to 0 or 100 ng ml� 1 dox for 48 h before fixing in 70% (v/v)
EtOH. Cells were stained for DNA synthesis using the Click-iT
EdU Alexa Fluor 647 Flow Cytometer Assay Kit (Molecular
Probes, Thermo Fisher Scientific, Loughborough, UK), according
to the manufacturer’s protocol. In addition, the cells were stained
with anti-phospho-Histone H3 (Ser10) antibody that specifically
recognises M phase cells (1 : 200, Merck Millipore, Watford, UK).
Fluorescence labeling was done with a Per-CP conjugated antibody
(1 : 30, Stratech, Newmarket, UK). The nucleotide analogue 5-
ethynyl-20-deoxyuridine (EdU) was conjugated with Alexa Fluor
647 azide and DNA content was measured by addition of 40,6-
diamino-2-phenylindole (DAPI, 1 : 10 000, Molecular Probes,
Thermo Fisher Scientific). Measurements took place on a BD
LSR II SORP flow cytometer (BD Biosciences) equipped with a
404 nm violet laser, a 488 nm blue laser and a 633 nm red laser. Cell
population was gated in a FSC/SSC dot plot and doublets were
gated out based on a DAPI area/width dot plot. The single-cell
populations were further analysed regarding its cell distribution.
G1, S and G2/M phase cell populations were defined in a DAPI/
EdU-Alexa Fluor 647 dot plot and G2/M phase cells were further
separated in a DAPI/Per-CP dot plot. For quantification, BD
FACSDiva software (BD Biosciences) was used.

Whole-genome sequencing. 293-A3B-p53 cells were exposed to
either 0 or 1000 ng ml� 1 dox for 14 days followed by single-cell
sorting with BD FACSAria III (BD Biosciences). Clones were
expanded in normal growth media. DNA from pelleted cells was
isolated using the Puregene Cell and Tissue DNA Isolation Kit
(Qiagen, Manchester, UK) and WGS of DNA samples was
performed by the Beijing Genome Institute (BGI). Libraries were
sequenced using a HiSeq X Ten sequencer (Illumina, San Diego,
CA, USA), acquiring approximately 600 million 150 bp paired-end
reads per sample. Sequences were aligned to the human reference
genome (GRCh37) using bwa-mem (http://arxiv.org/abs/
1303.3997). PCR duplicates were removed prior to further
processing and variant detection. Median depth of coverage
ranged from 27 reads to 32 reads and 497.9% of the mappable
genome was covered by five reads or more. Base quality
recalibration and realignment was performed using the GATK
(v3) (https://software.broadinstitute.org/gatk/). Mutation calling
was performed using Mutect (https://software.broadinstitute.org/
gatk/). Data were deposited on NCBI Short Read Archive (http://

www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi) using the accession
number SRP090739.

Small-molecule inhibitor assays. 293-A3B-p53 cells were plated
on six-well plates (500 cells per well) 24 h before starting small-
molecule inhibitor exposure and inducing APOBEC3B with dox.
Medium containing 0 or 1000 ng ml� 1 dox was added with
inhibitors. Small-molecule inhibitors were supplied by Selleck-
chem, Munich, Germany, with the exception of CCT241533
(Tocris Bioscience, Bristol, UK), SAR020106 (the kind gift of
Professor Ian Collins, ICR) and cisplatin (Sigma). Inhibitors and
dox-containing media was changed every 3 days, and cell viability
was estimated after 14 days using CellTiter-Glo reagent (Promega,
Madison, WI, USA).

RT-qPCR analysis. RNA was isolated using Qiagen RNeasy Mini
Kit (Qiagen, Manchester, UK) according to the manufacturer’s
instructions, and cDNA was generated by reverse transcription
reaction using the Omniscript Kit (Qiagen) according to the
manufacturer’s instructions. TaqMan gene expression assay was
used to analyse relative APOBEC3B mRNA expression levels.
APOBEC3B expression was normalised to GAPDH mRNA
expression (Applied Biosystems, ThermoFisher Scientific, Lough-
borough, UK).

Statistical analysis. Two-sided t-test was used for single inhibitor
tests and two-way ANOVA for the dose/response curves.
Statistics were calculated using GraphPad Prism version 6.00 for
Mac OS X (GraphPad Software, La Jolla, CA, USA; http://
www.graphpad.com).

RESULTS

Inactivation of TP53 abrogates the cell cycle checkpoints elicited
by APOBEC3B expression. To explore the molecular phenotypes
associated with elevated APOBEC3B expression, we used human
(HEK) 293 cells encompassing a chromosomally integrated dox-
inducible APOBEC3B-GFP fusion cDNA construct (293-A3B
cells (Akre et al, 2016)). Consistent with previous reports (Burns
et al, 2013a; Lackey et al, 2013; Taylor et al, 2013; Akre et al,
2016), we found that APOBEC3B expression caused induction of
a DDR characterised by gH2AX and RPA phosphorylation,
biomarkers of replication fork stress, which was absent from dox-
exposed 293-GFP cells lacking APOBEC3B construct (Figure 1A).
We also noted increased levels of CHEK2 Thr68 phosphorylation
normally associated with the G2/M cell cycle checkpoint
(Reinhardt and Yaffe, 2009), as well as CHEK1 Ser345
phosphorylation upon induction of APOBEC3B expression
(Supplementary Figures S1, S2A and B). Consistent with these
observations, we found that induction of APOBEC3B reduced
EdU incorporation (Figure 1B; 10.6% EdU-negative cells in
APOBEC3B-positive cells vs 1.8% in EdU-negative cells),
suggesting that replication in S phase was impaired. Over-
expression of APOBEC3B also resulted in G2/M cell cycle arrest
(Figure 1B); in the absence of APOBEC3B 7.6% of cells were in
G2 cells and 1.4% in M phase, while the expression of APOBEC3B
caused these proportions to rise to 21% (G2) and 5.7% (M phase)
(Figure 1B). This induction of APOBEC3B expression also
impaired the proliferative capacity of cells (Figure 1C).

DDR often results in the induction of p53 activity and
apoptosis (Lakin et al, 1999; Tibbetts et al, 1999). We found that
APOBEC3B induction in 293-A3B cells led to elevated p53 levels
and increased phosphorylation of p53 at residue Ser15 and
PARP1 cleavage, indicative of an apoptotic response (Kaufmann
et al, 1993) (Figure 1D, Supplementary Figures S2C and D). To
assess whether inhibition of cell proliferation caused by
APOBEC3B expression was mediated by p53 activity, we depleted
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Figure 1. TP53 silencing abrogates APOBEC3B-induced cell cycle arrest and cell death. (A) Induced APOBEC3B expression results in elevated
phosphorylation of gH2AX(Ser139) and RPA32(S4/8) in 293-A3B cells. 293-GFP cells were included as a negative control and express GFP but not
APOBEC3B upon dox exposure. (B) Induced APOBEC3B expression results in replication stress and arrests cells in G2/M phase. FACS profiles in
cells labelled with EdU (left panels) or anti-phospho histone H3 antibody (‘histone H3’, right panels) are shown. Fraction (%) of cells in non-active
S phase are shown in the left-hand panels. Fraction (%) of anti-phospho histone H3 þ ve and � ve cells are shown in the right-hand panels.
(C) APOBEC3B induction drives cell inhibition in vitro, which can be rescued by TP53 silencing. Growth curves of 293-A3B and 293-A3B-p53 cells
treated with DMSO and 100 or 1000 ng ml� 1 of dox, was measured using CellTiter-Glo reagent are shown. Cell growth was analysed on the
indicated day after inducing APOBEC3B-GFP expression. Each data point represents eight replicates. Two-way ANOVA was used to calculate
P-values. Error bars indicate s.d. for each measured group. (D) Induced APOBEC3B expression activates the apoptotic pathway. APOBEC3B
induction results in an increase in cleaved PARP1 and phosphorylated p53 on Ser15 levels 48–72 h after dox induction in 293-A3B cells as shown
by western blotting. (E) TP53 silencing abolishes p53 expression while maintaining inducible APOBEC3B and GFP expression, leading to elevated
phosphorylation of H2AX (Ser139, gH2AX) and RPA32 (S4/8) in 293-A3B-p53 cells 48–72 h and also 5 days after inducing APOBEC3B with
0.1–1000 ng ml� 1 of dox. (F) TP53 silencing alleviates APOBEC3B-driven replication stress and G2/M arrest in 293-A3B-p53 cells as shown by
FACS profiling. Legend as per panel (B). (G) APOBEC3B-GFP induction increases genomic uracil (P¼0.0009) in 293-A3B-p53 cells when
compared with non-induced 293-A3B-p53 cells. Each data point represents the mean of at least six replicates. A two-sided Student’s t-test was
used to estimate statistical significance. Error bars indicate s.d. for each measured groups. Method described in (Rona et al, 2016). In panels
(A, B and D), APOBEC3B was induced with 1 and 100 ng ml� 1 of dox for 48 or 72 h, DMSO was used as control (0 ng ml� 1).
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p53 in 293-A3B cells using constitutively expressed shRNA,
generating a 293-A3B-p53 clone. In 293-A3B-p53 cells, the
induction of APOBEC3B did not cause a proliferative defect, as it
did in cells expressing p53 (Figure 1C), but still caused a DDR, as
measured by induction of gH2AX and phosphorylation of RPA
(Figure 1E). The level of APOBEC3B and gH2AX expression
induction was similar over a range of concentrations of dox used
(10–1000 ng ml� 1 of dox, Supplementary Figure S3A). We also
found that inactivation of p53 in 293-A3B cells, via CRISPR-
Cas9-mediated mutagenesis, also reversed the proliferative defect
caused by APOBEC3B induction (Supplementary Figures S3B–E),
confirming the observations made in 293-A3B-p53 cells. Con-
sistent with the absence of a proliferative defect, APOBEC3B
expression in 293-A3B-p53 cells did not induce G2/M arrest

(Figure 1F). However, we found that induction of APOBEC3B
expression caused similar levels of uracil incorporation into
genomic DNA in 293-A3B and 293-A3B-p53 cells (Figure 1G),
suggesting that the failure to observe cell cycle arrest in 293-A3B-
p53 cells was not due to reduced APOBEC3B activity. Taken
together, this data formally demonstrated that loss of p53
function allows cells to tolerate elevated APOBEC3B expression
in the face of an on-going DDR.

APOBEC3B expression increases APOBEC signature mutations
and a kataegis-like process in p53-defective cells. 293-A3B-p53
cells continued to proliferate in the presence of high-level
APOBEC3B expression, despite displaying elevated levels of
genomic uracil incorporation and on-going activation of DDR
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biomarkers. This led us to assess whether APOBEC3B expression
in p53-defective cells would ultimately lead to a kataegis-like DNA
mutational pattern. To do this, we exposed 293-A3B-p53 cells to
1000 ng ml� 1 of dox for 14 continuous days to chronically
upregulate APOBEC3B and then isolated three individual
subclones (clones 1–3) from single cells as well as a control
subclone isolated from 293-A3B-p53 cells cultured for 14 days in
the absence of dox/APOBEC3B induction (control clone). Each of

these clones was subjected to WGS (average depth of 30� ). The
genomic sequence in the control clone was used as the reference
genome. Using these data, we identified mutations that had arisen
in 293-A3B-p53 clones 1–3 but were absent in the control clone;
variant calls for clones 1–3 are presented in Supplementary Tables
S1–S3. We then estimated the extent of kataegis by calculating
intermutational distances (IMD; Nik-Zainal et al, 2012a) for each
clone, illustrating this data as rainfall plots (Figure 2A and
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Supplementary Figure S4). A computational definition of a
kataegic mutational cluster is where six or more consecutive
mutations occur with an IMD of r1000 bp (Nik-Zainal et al,
2012b). Our IMD analysis identified a kataegic-like signature in all
three clones derived from long-term APOBEC3B expression, when
compared with the control clone (Figure 2A, Supplementary Figure
S4). In general, we observed an average ninefold increase in
kataegic mutational clusters in clones 1–3 when compared with the
control clone. Altogether 348–422 kataegic events (IMDr1000 bp)
with mean IMD 155.50–175.34 bp were analysed for clones 1–3

(clone 1: 369 events with mean IMD 155.50 bp; clone 2: 348 events
with mean IMD 175.34 bp; clone 3: 422 events with mean IMD
166.17 bp). These kataegic mutations represented 4.6–5.6%
of all mutated cytosines. The most frequent cytosine mutation
events in clones 1–3 were C-to-T transitions (445% in Figure 2B;
Supplementary Figure S5A) characteristic of APOBEC3B
overexpression. This was more pronounced in kataegic mutational
clusters, (IMDr1000 bp) where 457% of the mutated cytosines
were C-to-T transitions (Figure 2C; Supplementary Figures
S5B and S6).
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We also noted that chronic APOBEC3B expression in 293-A3B-
p53 cells resulted in enrichment of cytosine mutations in the
APOBEC3B-preferred TCG motif (Burns et al, 2013a; Burns et al,
2013b; Leonard et al, 2013) and kataegic TCW trinucleotide motif
(Nik-Zainal et al, 2012a). Surprisingly, an enrichment of C-to-A
mutations in these motifs was also seen. This is not characteristic
of APOBEC3B-induced mutations and could be explained by other
mutational processes occurring, such as transcription-coupled
nucleotide excision repair, which has been associated with
mutational signatures dominated by C-to-A mutations
(Alexandrov et al, 2013). It is therefore possible that other
mutational processes are active in the APOBEC3B-induced 293-
A3B-p53 cells. Most of the mutated cytosines in clones 1–3 were
C-to-T transitions (45.4–46.6% of C-to-T mutations compared
with 35.2–36.1% of C-to-A and 17.3–18.8% of C-to-G mutations;
Figure 2B, Supplementary Figure S5A) enriched in TCG motifs, a
characteristic of APOBEC-mediated mutagenesis (Fisher’s exact
test for mutated cytosines in TCG context: clone 1, P¼ 1.1� 10� 3,
OR¼ 2.42; clone 2, P¼ 1.0� 10� 7, OR¼ 3.31; clone 3 P¼ 9.0
� 10� 5, OR¼ 2.28). Furthermore, C-to-G and C-to-A mutations
were enriched in kataegic TCW trinucleotides (Fisher’s exact test
for mutated cytosines in TCW motif: C-to-A, P¼ 4.70� 10� 9–
5.57� 10� 13; C-to-G, P¼ 3.65� 10� 4–8.95� 10� 8; C-to-T
P¼ 1.00 for all DOX1–3; Figure 2D, Supplementary Figure S7
and Supplementary Table S4). Taken together, our data suggested
that prolonged APOBEC3B expression in p53-defective cells results
in a kataegic-like mutational signature.

APOBEC3B expression sensitises cells to small-molecule DDR
inhibitors. Although inactivation of p53 allowed cells to tolerate
APOBEC3B expression, we hypothesised that the ongoing DDR
caused by APOBEC3B (Figure 1E) might make cells vulnerable to
small-molecule inhibitors that further perturb replication or inhibit
processes connected to DNA repair and/or replication fork
integrity. Hydroxyurea (HU) stalls replication forks and targets
cells with existing replicative stress by inhibiting deoxyribonucleo-
tide production and delaying replicative DNA polymerase
progression (Zeman and Cimprich, 2014). We exposed 293-A3B-
p53 cells to 50 mM HU and found that APOBEC3B expression
caused a fourfold increase in the sensitivity to HU (Figure 3A;
Po0.0001, two-sided Student’s t-test). We also found that
induction of APOBEC3B in 293-A3B-p53 cells caused sensitivity
to previously validated small-molecule inhibitors of either ATR
(VX-970 (Hall et al, 2014) or AZD6738 (O’Connor, 2015), CHEK1
(SAR020106 (Walton et al, 2010)), WEE1 (AZD1775 (O’Connor,
2015)) or CHEK2 (CCT241533 (Anderson et al, 2011)) (Figures
3B–F, ANOVA Po0.0001 in each case). We also titrated dox-
induced APOBEC3B expression and confirmed that even lesser
degrees of induction of APOBEC3B expression caused sensitivity
to the CHEK2 inhibitor CCT241533 (1–1000 ng ml� 1 dox;
Figure 3G; ANOVA Po0.0001 in each case). Many clinical PARP
inhibitors cause cytotoxicity by ‘trapping’ PARP1 on DNA (Murai
et al, 2012; Pettitt et al, 2013; Hopkins et al, 2015), an effect that
likely impairs the progress of replication forks. We found that the
expression of APOBEC3B caused moderate sensitisation to two
chemically distinct clinical PARP inhibitors, olaparib (Figure 4A;
ANOVA Po0.0001) and talazoparib (aka BMN 673, Figure 4B;
ANOVA Po0.0001).

We next assessed whether drug combination strategies designed
to target cells with replicative stress might also selectively target
cells with elevated APOBEC3B expression. To do this, we assessed
whether elevated APOBEC3B might sensitise cells to a platinum
salt, cisplatin used in combination with an ATR inhibitor (Wang
et al, 2012) or a PARP inhibitor used in combination with either an
ATR or WEE1 inhibitor. We found that cells with induced
APOBEC3B expression exhibited an enhanced level of sensitivity
to each of these combinations. For example, the induction of

APOBEC3B caused a 44000-fold increase in the sensitivity to a
cisplatin/ATR inhibitor combination (Figures 5A and B; ANOVA
Po0.0001 in each case), 440 000-fold increase in the sensitivity to
an ATR/PARP inhibitor combination (Figure 5C; ANOVA
Po0.0001 in each case) and 148-fold change in the sensitivity to
PARP inhibitor/WEE1 inhibitor combination (Figure 5D; ANOVA
Po0.0001 in each case). The profound sensitivity to the ATR/
PARP inhibitor combination caused by APOBEC3B expression in
293-A3B-p53 cells led us to assess this combination in HCC1143
breast tumour cells, which exhibit a high level of APOBEC3B
expression (Supplementary Figure S8). Compared with non-
tumour breast epithelial MCF10A cells, HCC1143 cells were
significantly more sensitive to ATR/PARP inhibitor combination
(Supplementary Figure S9; ANOVA Po0.001 in each case). We do
note, however, that although APOBEC3B expression was sig-
nificantly elevated in HCC1143 cells compared with MCF10A cells
(Supplementary Figure S8), factors other than APOBEC3B
expression might explain the differences in ATR/PARP inhibitor
sensitivity. Taken together, our observations suggested that
elevated APOBEC3B expression might cause vulnerabilities in
tumour cells that can be exploited by drugs targeting DDR kinase
enzymes.

DISCUSSION

Here we show that the proliferative defects imparted upon a cell
by high-level APOBEC3B expression can be abrogated by
inactivation of p53. It seems reasonable to suggest that this
might explain why cancers with high levels of APOBEC3B
expression and/or an APOBEC3-mutational signature frequently
exhibit TP53 mutations (Burns et al, 2013a; Henderson et al,
2014; Silwal-Pandit et al, 2014). We also show that once the
G2/M cell cycle arrest caused by elevated APOBEC3B is reversed
via loss of p53, cells with prolonged APOBEC3B expression
develop a kataegic mutational signature. Akre et al (2016)
recently described the mutational consequences of intermittently
induced APOBEC3B expression in 293 cells with active p53,
rather than continuously expressed APOBEC3B in p53-defective
293-A3B-p53 cells, described here. In 293-A3B cells, Akre et al
(2016) found that intermittent APOBEC3B expression caused an
increase in C-to-T mutations in TCG motifs and an increase in
the frequency of mutations at A/T base pairs. These observations
are consistent with the hypothesis that genomic uracil residues
caused by APOBEC3B activity might be repaired by error-prone,
and thus mutation-inducing, processes. Furthermore, Akre et al
(2016) found an enrichment for C-to-G mutations within TCW
motifs in cells with intermittent APOBEC3B expression. Each of
these observations are consistent with the mutational spectrum
we observed in 293-A3B-p53 cells with induced APOBEC3B
expression, notably the increase in C residue mutations within
TCW motifs (Figure 2, Supplementary Figures S4–S7). In our
293-A3B-p53 cells with chronic APOBEC3B expression, we
observed an increase in a kataegic mutational pattern, with a
ninefold increase in clustered mutations (IMDr1000 bp), the
majority of these being C-to-T transitions (Figure 2,
Supplementary Figure S4). In comparison, while pulsed
APOBEC3B expression in 293-A3B cells clearly caused an
increase in mutations likely caused by APOBEC3B, the kataegic
clustering of mutations was not as profound. It is possible that
this difference might be due to the loss of p53 in 293-A3B cells,
with the loss of p53 either allowing cells to tolerate clustered
mutations or the processes that cause these. However, we also
note that there are important differences in experimental design
in the work described in Figure 2, compared with the
experiments described in Akre et al (2016) that might also
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explain the somewhat distinct mutational profiles. For example,
in Akre et al (2016), the mutational spectrum in cells was
assessed after 10 rounds of dox exposure; in the work presented
here, we describe mutational consequences after continuous
14-day dox exposure.

Despite the proliferative capacity of p53-inactivated cells, we
also found that p53-defective cells with elevated APOBEC3B
expression are vulnerable to small-molecule DDR inhibitors,
including ATR, WEE1, CHEK1 and CHEK2 inhibitors. The
CHEK1 inhibitor sensitivity caused by APOBEC3B expression seen
in this work is consistent with a correlation between APOBEC3B
mRNA expression and sensitivity to the CHEK1 inhibitor
CCT244747 in tumour cell lines, observed elsewhere (Kanu et al,
2016). The most notable drug vulnerabilities associated with
APOBEC3B expression were DDR inhibitor combinations, includ-
ing a combination of ATR plus PARP inhibitor now being assessed
clinically (NCT02264678).

One simple model to explain our observations is that, while p53
inactivation allows cells to proliferate in the face of high-level
APOBEC3B expression, APOBEC3B still causes a form of DNA
damage, which under certain conditions such as the presence of
DDR inhibitors might impair the fitness of cells. It seems possible
that the gH2AX and RPA phosphorylation we observe in cells with
elevated APOBEC3B, both when cells are p53 proficient or p53
defective (Figure 1), is indicative of replication fork stress caused
by the excessive APOBEC3B activity, possibly on lagging strand
DNA (Hoopes et al, 2016). Recent work has suggested that
APOBEC3B activity is induced by replication fork stress (Kanu
et al, 2016); our work suggests that APOBEC3B expression/activity
might also contribute to replication fork stress as well as being
caused by it. Replication fork stress, especially in the absence of p53
function, might generate an enhanced reliance upon DNA repair
kinases such as ATR and CHEK1 that instigate signalling cascades
that stabilise and repair replication forks, as well as inhibiting of
processes such as new fork origin firing or the further accumula-
tion of ssDNA that would otherwise exacerbate replication fork
stress (Shechter et al, 2004; Petermann et al, 2010). This reliance on
DNA repair kinases might extend to WEE1 and CHEK2, given
their roles in preventing premature entry through the cell cycle in
the face of a deleterious level of DNA damage (O’Connell et al,
1997; Reinhardt and Yaffe, 2009).

Whether these DNA repair kinase vulnerabilities extend to
human tumours with elevated APOBEC3B expression remains to
be seen, but we note that some of the inhibitors we describe here
are already undergoing clinical trial assessment, including the ATR
inhibitors AZD6738 (e.g., clinical trial identifiers NCT01955668,
NCT02223923, NCT02264678), VX970 (NCT02567409,
NCT02487095, NCT02567422) and the WEE1 inhibitor
AZD1775 (e.g., NCT01164995 and others summarised in
O’Connor, 2015), suggesting that retrospectively assessing
tumoural APOBEC3B expression in these trials might be
worthwhile. We also note that, although we have identified DDR
inhibitor vulnerabilities associated with high-level APOBEC3B
expression in 293-A3B-p53 cells, subsequent validation is required
to extend these observations and to optimise how DDR inhibitors
might be used to deliver profound, long-lasting antitumour
responses in a significant proportion of patients with tumours
with elevated APOBEC3B expression. Such a validation process
might involve modulating APOBEC3B levels in relatively large
panels of tumour cell lines and in in vivo models of cancer and
then assessing drug sensitivity. Given the central role of p53 in
controlling the cell cycle and DDR, it is also possible that the lack
of p53 in 293-A3B-p53 cells influences some of the DDR inhibitors
responses we have observed; it remains to be seen whether tumour
cells without p53 dysfunction but which tolerate high-level
APOBEC3B expression by other means also exhibit similar drug
sensitivities.
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