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Abstract  

Objectives: To determine the ability of multi-parametric, endogenous contrast MRI to detect and quantify 

fibrosis in a chemically-induced rat model of mammary carcinoma. 

Methods: Female Sprague-Dawley rats (n=18) underwent chemical induction with N-methyl-N-nitrosourea; 

resulting mammary carcinomas underwent 9-b-value diffusion-weighted (DWI), ultrashort-echo (UTE), and 

magnetisation transfer (MT) magnetic resonance imaging (MRI) on a clinical 1.5T platform, and associated 

quantitative MR parameters were calculated. Excised tumours were histologically assessed for degree of 

necrosis, collagen, hypoxia, and microvessel density. Significance level adjusted for multiple comparisons 

was p=0.0125. 

Results: Significant correlations were found between MT parameters and degree of picrosirius red staining 

(r>0.85, p<0.0002 for ka and δ, r<-0.75, p<0.001 for T1 and T1s, Pearson), indicating that MT is sensitive to 

collagen content in mammary carcinoma. Picrosirius red also correlated with the DWI parameter fD* 

(r=0.801, p=0.0004) and conventional gradient-echo T2* (r=-0.660, p=0.0055). Percentage necrosis 

correlated moderately with ultrashort/conventional-echo signal ratio (r=0.620, p=0.0105). Pimonidazole 

adduct (hypoxia) and CD31 (microvessel density) staining did not correlate with any MR parameter 

assessed. 

Conclusions: Magnetisation transfer MRI successfully detects collagen content in mammary carcinoma; 

supporting inclusion of MT imaging to identify fibrosis, a prognostic marker, in clinical breast MRI exams. 
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Key Points  

Magnetisation transfer imaging is sensitive to collagen content in mammary carcinoma. 

Magnetisation transfer imaging to detect fibrosis in mammary carcinoma fibrosis is feasible. 

IVIM diffusion does not correlate with microvessel density in preclinical mammary carcinoma. 

 

Abbreviations 

ADC: Apparent Diffusion Coefficient 

ARRIVE: Animal Research: Reporting In Vivo Experiments 

CoV: Coefficient of Variation 

DCE: Dynamic Contrast-Enhanced 

DWI: Diffusion-Weighted Imaging 

EPI: Echo-Planar Imaging 



 3 

FID: Free Induction Decay 

FITC: Fluorescein Isothiocyanate 

GRE: Gradient Echo (also mGRE: multiple gradient echo) 

H&E: Haematoxylin & Eosin 

IVIM: Intravoxel Incoherent Motion 

LOOCV: Leave-one-out Cross-validation 

LV: Latent Variable 

LR: Linear Regression 

MCMC: Markov Chain Monte Carlo 

MNU: N-methyl-N-nitrosourea 

MRI: Magnetic Resonance Imaging 

MT: Magnetisation Transfer 

MTR: Magnetisation Transfer Ratio 

MVD: Microvessel Density 

NRMSE: Normalised Root Mean Square Error 

PLSR: Partial Least Squares Regression 

ROI: Region Of Interest 

TMJ: Temporomandibular Joint 

UTE: Ultrashort Echo Time 
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Introduction 

 

Breast cancer development and growth is strongly influenced by the crosstalk of tumour cells with the 

surrounding extracellular matrix/stroma [1–3]. The stroma can make up a significant proportion of a breast 

carcinoma [4], and differs from normal stroma, bearing closer resemblance to granulation tissue and wound 

healing, with a high number of fibroblasts, deposition of type I collagen and fibrin, and the infiltration of 

inflammatory cells [5]. The presence of a fibrotic focus, a central scar-like area within a carcinoma, that 

represents a focus of exaggerated reactive tumour stromal formation, was first proposed as an indicator of 

increased tumour aggressiveness in invasive ductal breast cancer by Hasabe et al [6], and has since been 

linked to early disease relapse, lymph node and osteolytic bone metastasis, and reduced long term survival 

[7–9]. Hypoxia has also been associated with the formation of fibrotic foci [5].  

 

Advanced MRI techniques provide a means of defining non-invasive quantitative biomarkers to inform on 

biologically relevant structure-function relationships in tumours, thereby enabling an understanding of their 

behaviour and heterogeneous distribution [10]. Imaging biomarkers for assessing tumour pathophysiology 

require evaluation before being routinely deployed in clinical trials; in particular, imaging-pathology 

correlation, and thus whether the imaging biomarker reflects underlying pathology, is important to establish, 

but can often only meaningfully be studied in animal models [11]. 

 

Several MRI biomarkers have the potential to detect breast cancer fibrosis. The fibrous nature of collagen 

may increase the non-monoexponential contribution to the diffusion-weighted MRI (DWI) signal, arising 

from the propensity of water molecules to diffuse along the fibres, combined with reduced diffusivity from 

encountering more barriers to random diffusion, compared to surrounding tissue [12–14]. Increased 

macromolecular collagen fibre content may also yield a greater destruction of signal arising from 

magnetisation transfer (MT) MRI from off-resonance saturation [15], and the short-lived signal of collagen 

(T2*~500µs) may be detectable with ultrashort-echo time (UTE) sequences [16]. Dynamic contrast-enhanced 

(DCE) MRI remains a standard technique used in breast cancer MRI protocols and may be suitable for 

fibrosis detection in some tissues [17], but the use of contrast adds complexity to clinical studies and can be 

contraindicated in certain patients.  

 

This study aims to determine the ability of multi-parametric MRI incorporating several endogenous contrast 

mechanisms, such as DWI, MT-MRI and UTE-MRI, performed on a clinical imaging platform, to detect and 

quantify fibrosis in a chemically-induced rat model of mammary carcinoma previously shown to produce 

heterogeneous tumours with a range of fibrosis severity [18]. 
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Materials and Methods 
 

Animal Procedures 

This study was performed in accordance with the local ethical review panel, United Kingdom National 

Cancer Research Institute guidelines for animal welfare in cancer research, and the ARRIVE (animal 

research: reporting in vivo experiments) guidelines [19, 20]. Female Sprague-Dawley rats (200-250g, n=18; 

Charles River, Margate, UK) were injected with 37.5mg.kg−1 of refrigerated N-methyl-N-nitrosourea (MNU, 

Sigma-Aldrich, Poole, UK) intraperitoneally, resulting in tumours that spontaneously developed at various 

sites associated within the mammary fat-pad [18]. Tumour formation was detected by palpation and growth 

was monitored by calliper measurement; animals were imaged when tumours reached approximately 3cm3 

(using ellipsoid volume formula, (π/6)×L×W×D).  

Animals were anaesthetised using 4ml.kg-1 intraperitoneal injection of fentanyl citrate (0.315mg.ml-1) plus 

fluanisone (10mg.ml-1 (Hypnorm; Janssen Pharmaceutical Ltd. High Wycombe, UK)), midazolam (5mg.ml-1 

(Hypnovel; Roche)), and water (1:1:2). Prior to imaging, an intraperitoneal injection of 60mg.kg-1 

pimonidazole (Hypoxyprobe, Burlington, USA) in phosphate buffered saline was given, in preparation for 

histological staining for hypoxia.  

 

Magnetic Resonance Imaging  

MR imaging was performed on a MAGNETOM Avanto 1.5T clinical scanner (Siemens Healthcare, 

Erlangen, Germany), to validate clinical sequences and support methodological transfer. For MRI, the 

animal was secured supine, using an insulating vacuum beanbag to both retain body heat and prevent 

excessive movement; the animal was placed with the tumour centred on top of a small-loop 

temporomandibular joint (TMJ) coil, itself centred within the multi-element head receiver coil [21]. 

Elements of the head coil array were used in parallel with the small-loop coil during all acquisitions. Scans 

were performed in the coronal plane, with full tumour coverage. Morphological T2-weighted fast spin-echo 

images were obtained for anatomical localisation. Diffusion-weighted MRI (DWI), ultrashort-echo time 

(UTE) MRI, and magnetisation transfer (MT) data were acquired centred on the lesion.   

 

UTE data were acquired with a prototype 3-dimensional multiple gradient echo (mGRE) sequence with 

1.1mm isotropic resolution; the first echo acquired was on the free induction decay (FID) immediately 

following the read pulse, followed by 4 regular gradient echoes. This acquisition was repeated in order to 

acquire four ultrashort-echo times (70–560µs). DWI was based on a clinical patient protocol (9 b-values, 0–

800mm-2s; see Table 1) acquired in free-breathing using a fat-suppressed 2D single-shot prototype EPI 

sequence. MT data were acquired as a series of matched 3D GRE acquisitions, with 1.0mm isotropic voxels, 

and 2 flip angles with/without a MT pulse set at 1.5kHz offset. Detailed sequence parameters are given in 

Table 1, and were adapted from clinical imaging sequences; the total acquisition time was approximately 1 

hour. 
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MR Image Analysis  

MRI analysis was performed using proprietary software (ADEPT, The Institute of Cancer Research, London, 

UK). All MR images were reviewed, and regions of interest (ROIs) were independently drawn by two 

observers, MR scientists (NPJ and DJC) with 5 and 32 years’ experience in conducting preclinical MR 

studies respectively. Repeatability of ROI delineation was assessed using the Sørenson-Dice similarity 

coefficient. Each ROI was drawn around the tumour on the imaging slice that macroscopically matched the 

histological section stained, and MR parameters were calculated on a voxel-by-voxel basis, and are reported 

as the average value for repeated ROI median values per slice analysed together with calculation of repeat-

measures coefficient of variation (CoV). 

For DWI analysis, the perfusion-insensitive apparent diffusion coefficient (ADC) was estimated using 

images for b=200mm-2s and above [22], with a single-exponential model (Equation 1). All b-values were 

used for intravoxel incoherent motion (IVIM) fitting using a bi-exponential model (Equation 2) to 

simultaneously derive estimates of pseudodiffusion fraction (f), pseudodiffusion coefficient (D*), and tissue 

diffusivity (D). The compound parameter fD* was also calculated. Initial estimate values for IVIM fitting 

were found using the segmented approach[22], by estimating D using a monoexponential fit of images with 

b=200mm-2s and above (as per ADC) and f from the observed S0 relative to the intercept of this curve at 

b=0mm-2s. 

 

 

 

 

Where the observed signal intensity at a given b-value is denoted Sb, and S0 is the corresponding signal at 

b=0mm-2s (equal to the total available signal Stotal modulated by the apparent T2 and the acquisition echo 

time, S0=Stotal.exp(-TE/T2app) [23]. 

For UTE imaging, T2* short was calculated using the first (ultrashort, <1ms; see Table 1 for values) echo from 

successive imaging acquisitions, and the conventional T2* long using the remaining (i.e. not ultrashort) echoes 

from all acquisitions, using separate mono-exponential models (Equation 3); the ratio of the calculated signal 

arising, analogous to f in the IVIM DWI model, from each of the two relaxation constants was also 

calculated. All DWI and UTE fitting was performed using a Markov Chain Monte Carlo (MCMC) Bayesian 

statistical approach [24] as a robust least-squares estimator, with no data filtering.  

 

 

 

MT acquisition images were used for calculation of magnetisation transfer ratio (MTR) (Equation 4) [25, 

26], longitudinal relaxation constants in the presence/absence of the MT pulse using the variable flip angle 

(VFA) method [27] (T1 and T1s, respectively), and B1-independent magnetisation transfer saturation (δ) and 

apparent magnetisation transfer rate (ka) (Equations 5 and 6) [26, 28]. 
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Where Sref and SMT are signal amplitudes from identical sequences acquired with and without the MT pulse, 

TR is the acquisition repetition time, R1app is the spin-lattice relaxation rate (or T1
-1), αnom is the nominal 

acquisition flip angle in radians, and the small flip angle approximation is used [26]. 

 

Histological Staining and Analysis 

Following MR imaging animals were sacrificed by cervical dislocation, the tumour excised and fixed in 10% 

formalin. Fixed tumours were cut through the centre, and embedded in paraffin blocks, with orientation 

matched to the geometry of the imaging slices to facilitate subsequent image correlation.  

Tumour sections (5µm) were stained with haematoxylin & eosin (H&E), to allow assessment of necrosis and 

tumour grade, and picrosirius red, to assess collagen I/III deposition (fibrosis). Immunohistochemistry 

visualised using DAB was performed using FITC-conjugated mouse monoclonal antibodies against 

pimonidazole adducts, followed by rabbit anti-FITC antibodies, for the detection of hypoxic regions or rabbit 

monoclonal antibodies against CD31 (EP3095; Millipore, Watford, UK) to assess vascular endothelial cells 

as a proxy for perfusion. Whole tumour images were acquired using a motorised scanning stage (Prior 

Scientific Instruments, Cambridge, UK) attached to a BX51 microscope (Olympus Medical, Southend-on-

Sea, UK) driven by CellP (Soft Imaging System, Munster, Germany). Snapshots at x200 magnification were 

also acquired from CD31-stained sections.  

Tumour grade and degree of necrosis (semi-quantitative assessment) were evaluated by an expert pathologist 

(AN). Percentage area of each tumour section displaying pimonidazole adduct or picrosirius red positivity 

was measured using pixel counts from a customised routine operating on a Lab colour-space separation into 

stain and non-stain classes (Mathworks, Natick, USA) of a digital image, and visually confirmed for 

accuracy. Microvessel density was assessed by counting CD31-positive vessels from 6 random fields (x200) 

distributed across the section and the number converted to vessels/mm2.  

 

Statistics 

MRI-derived parameters are given as the median of the ROI voxels in each observation/analysis, in order to 

minimise the contribution of outliers arising from partial volume effects. Correlations between MRI markers 

and histological analyses acquired from matched slices were assessed using Pearson correlation coefficients 

(r); Bonferroni correction for multiple comparisons against the different histological markers was applied, 

with results considered significant at p<0.0125. A partial least-squares regression (PLSR) approach was 

applied to derived MR parameters for the response variable of picrosirius red stain, to assess the relative 
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performance of a multiparametric approach. Leave-one-out cross validation (LOOCV) was used to derive 

normalised root-mean-square error (NRMSE) as a proxy for goodness of response variable prediction. 
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Results 

 

Tumour Cohort 

Tumours developed in a heterogeneous manner in the mammary fat pad of fifteen rats, with imaging 

performed at an average tumour volume of 3.6±2.1cm3 (average ROI slice area for analysis 338±168mm2) 

over a wide timeframe post-injection of MNU (median 421 days, range 105-471). One animal 

simultaneously developed two tumours; both were imaged and analysed. Histology from two tumours was 

not satisfactorily matched to the imaging plane and was excluded from the analysis. A small sub-cohort 

(n=4) of the largest tumours was sectioned in two places, into equally sized sections (>5mm thick), making 

18 matched MR and histological data sets for analysis, from 14 tumours in 13 rats (1 animal with 2 tumours, 

and 2 distinct regions each from 4 tumours). 

 

Histological Slice Matching and Analysis 

Representative anatomical and functional images from two tumours are shown in Figure 1, highlighting the 

varying contrast and resolution (including a typical ROI for analysis) obtained for each biomarker using the 

multiparametric MRI approach. The use of different slice thicknesses meant that the MR slice locations were 

not identical, but in each case were the closest match for the associated histology. Visual matching of the 

MRI with the corresponding histological sections was good, as demonstrated in Figure 2 (same tumours as 

shown in Figure 1). 

 

Colour segmentation of picrosirius red staining and pimonidazole adduct immunohistochemistry successfully 

and robustly separated the desired stain from the remaining tissue and background (Supplementary Figure 

S1), with repeated segmentation for picrosirius red staining giving essentially identical results (correlation 

0.98, p > 0.0001). Details of the tumour cohort, including time from MNU injection to imaging (days) and 

tumour volume alongside histologically assessed tumour grade, degree of necrosis, microvessel density 

(MVD), percentage pimonidazole adduct formation and percentage picrosirius red staining, are given in 

Table 2.  

 

Repeatability of ROIs and MR Parameters 

The Sørenson-Dice similarity coefficients of the ROIs drawn by the two observers ranged between 0.72 – 

0.96, with a median of 0.89 across all ROIs and no less than 0.88 within each MR modality, which 

demonstrates excellent agreement between observers. Repeat-measures percentage coefficients of variation 

(CoV) for positive-constrained MR-derived parameters were calculated using log-transformed values [29]. 

Excellent repeatability was shown for all MR parameters, with CoV values ranging from 1.5 % to 8.6 % (see 

Table 3), with the notable exception of IVIM f and D* which are known to display poor repeatability [30]. 
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Diffusion-weighted Imaging 

Scatter graphs of the diffusion parameters derived from both the ADC and IVIM models, plotted against the 

histological markers, are shown in Figure 3 alongside example fitted parameter maps; a correlation of 

r=0.801 (p=0.0004) was found between the pseudodiffusion-related parameter fD* and picrosirius red; 

correlation of picrosirius red with the pseudodiffusion fraction f was non-significant under multiple 

comparison correction (r=0.556, p=0.0314). The IVIM D and monoexponential ADC parameters, notionally 

reporting on the same true diffusion phenomenon, were highly correlated (r=0.97, p<0.001) as expected; 

both showed negative correlation with picrosirius red stain (r=-0.574 and -0.568 respectively; significance 

was not achieved under Bonferroni correction), but not with any other marker. IVIM pseudodiffusion 

parameters also correlated with percentage necrosis, though none were significant after multiple comparison 

correction (f: r=-0.607, p=0.0165; D*: r=0.556, p=0.0313; fD*: r=-0.552, p=0.033). The challenge of 

repeatably fitting pseudodiffusion parameters is reflected in the larger CoV. Correlation coefficients and p-

values for comparisons of all MR parameters with histological markers are given in Table 3. 

 

Ultrashort-Echo Time Imaging 

Typical parameter maps and data from UTE are shown in figure 4; there were no significant correlations 

with either CD31 or pimonidazole adduct staining; significant correlation was observed only for T2* long with 

picrosirius red (r=-0.660, p=0.0055). 

 

Magnetisation Transfer Imaging 

Correlations of the magnetisation transfer parameters with histological markers are given in Figure 5, 

alongside typical parameter maps; there were significant correlations for all MT parameters, excluding the 

B1-dependent measure MTR, with the percentage of picrosirius red staining. T1 and T1s show similar 

negative correlations (r=-0.758 and -0.831 respectively, p<0.001), with decreased T1 correlated to increased 

picrosirius red stain. MTR had the weakest positive correlation (r=0.575, p=0.0198), whereas accounting for 

B1-dependence in δ gave a stronger correlation (r=0.869, p=0.0001). The apparent magnetisation transfer 

rate constant ka was significantly correlated with picrosirius red also (r=0.857, p=0.0001). CD31 and 

estimated necrosis also correlated with δ, (r=-0.537, p=0.0391 and r=-0.521, p=0.0387 respectively) but 

these were weaker and not significant following multiple comparison correction. 

 

Multiparametric Partial Least Squares Regression Analysis 

The normalised root-mean-squared error (NRMSE) from leave-one-out cross-validation (LOOCV) of linear 

regression for each of the MT parameters are presented in Table 4, and correspond to the observed 

correlations (Figure 5). Conducting a PLSR analysis using all five MT parameters yielded a single-variable 

model, with loadings corresponding to the observed correlations, and a comparable NRMSE indicating that 

combinations of MT parameters do not necessarily outperform individual correlations. The corresponding 

PLSR using parameters across all MR modalities similarly gave a single LV model with a NRMSE that did 
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not benefit from inclusion of other MR modalities, although DWI parameters ADC and D contributed to 

LV1. Loadings plots are shown in Supplementary Figure S2 for both analyses. 
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Discussion 

 

The presence of a histologically-confirmed fibrotic focus has been shown to be a predictor of increased 

tumour aggressiveness, relapse, metastasis and poor long term survival in breast cancer [6–9]. Fibrotic foci 

are also associated with tumour hypoxia, an independent indicator of poor treatment response and prognosis 

[5, 18, 31–33]. The ability to detect fibrosis within mammary carcinomas non-invasively would be of great 

value in helping guide personalised treatment. The validation of appropriate MRI techniques with potential 

to inform on fibrosis, using preclinical models with matched histology can directly guide development of 

imaging studies in the clinical setting.  

 

In this study, a range of endogenous MR imaging contrasts were measured in chemically-induced mammary 

carcinomas arising in rats injected with MNU; the tumours were highly heterogeneous and presented with a 

range of fibrosis levels as previously observed in this model and typical of the clinical setting [18, 34]. The 

imaging performed in the study used exclusively clinical hardware, conferring greater translational relevance 

to the study, and the scanning was performed within a clinical timeframe using standard and prototype (UTE 

and DWI) sequences developed by the manufacturer for use on the clinical platform. It has previously been 

shown that this platform is suitable for preclinical work of this nature [21, 35], and can return functional MR 

parameters with good measurement repeatability across several imaging biomarkers. Repeated analysis by 

independent observers showed excellent repeatability of ROI positioning and all derived MR parameters 

except the pseudo-diffusion parameters from the IVIM diffusion model. 

 

The results from the MT measurements were striking in their significance, with the presence of increased 

collagen leading to significant reductions in T1 measurements, as well as increased ka and δ. After correcting 

for multiple comparisons, the correlations of these remain significant (p<0.0125). The magnetisation transfer 

ratio parameter, MTR, was correlated to picrosirius red stain fraction but fell short of significance. The 

similar parameter δ, less dependent on the influence of B1 [26], showed a stronger correlation and indicated 

that B1 effects should be accounted for when analysing MT data. The fibrous macromolecule collagen has a 

much shorter spin-lattice relaxation time T1 compared to normal tissue, and through magnetisation transfer to 

water protons reduces the apparent T1 of an imaging voxel dependent on the partial volume of collagen. The 

presence of the magnetisation transfer pulse saturates the collagen protons, and with transfer to the 

interacting water molecules an additional and greater reduction occurs, giving much lower T1s. The apparent 

magnetisation transfer rate constant for the destruction of the water signal by the MT saturation, ka, is an 

empirical rather than a true rate constant [28] but does relate to the amount of collagen present, giving the 

observed correlation. Combining MT parameters using a PLSR analysis demonstrated a prediction error 

similar to that given from cross-validation using each parameter alone, indicating that different MT 

parameters provide statistically similar information on how collagen affects the tumour microenvironment. 

These results indicate that the MT measurement as performed was sensitive to the presence and proportion of 

collagen in the tumour, and can provide a non-invasive assessment of collagen content. 
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In diffusion-weighted imaging, the presence of collagen fibres will modify the diffusion characteristics of 

water molecules, providing additional barriers to free diffusion. In this study, the ADC and D values were 

negatively correlated with the picrosirius red staining, although with p-values short of significance 

(p=0.0274 and 0.0253 respectively), suggesting that the measurement of true diffusion is affected by the 

presence of fibrosis in line with observations in hepatic fibrosis [36, 37]. These parameters were also found 

to contribute in the latent variables of the PLSR analysis, alongside MT parameters, although this model did 

not outperform the best individual MT parameters. The fibrous nature of collagen may also introduce 

heterogeneity to the diffusion hindrance, manifesting as a non-Gaussian diffusion component captured as a 

significant positive correlation of collagen presence with the pseudo-diffusion parameter fD*. The data for 

the pseudo-diffusion volume fraction f, often considered related to perfusion, showed no correlation with the 

endothelial marker CD31, which is likely reflective of the inherent difficulty in reliably fitting IVIM data, 

but also the complexity of tumour perfusion [30, 38]. In contrast, the non-significant correlation of f with 

necrosis (r=-0.607, p=0.0165) may suggest that f does not solely capture vascular fraction [23] and may be 

related to the degree of non-Gaussian diffusion introduced by the presence of collagen fibres [14]. The high 

CoV values associated with the pseudo-diffusion parameters, however, indicates that caution is required in 

interpreting these results. 

 

In this study, the use of ultrashort echoes in order to visualise collagen did not give rise to a significant 

correlation. The conventional measurement of T2* long, using echo times longer than the relaxation time of 

collagen, showed a correlation to picrosirius red marker, suggesting that the overall voxel T2* is sensitive to 

the presence of fibrosis, and decreases with increasing collagen content. 

 

The design of this study includes several limitations, which are nonetheless linked to its strengths. The use of 

clinical scanner hardware and imaging sequences means that while the scanner was not optimised for small 

animal studies, the techniques used were shown to be immediately translatable to clinical work. The 

carcinoma model used in this work yielded tumours that varied considerably in presentation, growth rate, 

and composition; this reflects the clinical presentation of mammary carcinoma and supporting the potential 

of these results for translation into clinical assessments. 

 

We have demonstrated the use of a multi-contrast MRI protocol to investigate the properties of chemically-

induced mammary carcinoma in a preclinical setting, and have shown the potential of a clinical 

magnetisation transfer sequence to detect the presence of fibrosis non-invasively. Results from magnetisation 

transfer parameters outperformed those from multiple-b-value diffusion-weighted imaging and ultrashort-

echo time imaging in detecting and quantifying intratumoural collagen, potentially providing information of 

biological relevance to support clinical assessment. Given that the presence of fibrosis is known to be a 

prognostic factor in mammary carcinoma, and may be induced following radiation therapy [39, 40], the 
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results of this study support the inclusion of magnetisation transfer protocols in clinical breast MRI 

examinations. 
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Tables 
 

Table 1: MR Imaging parameters for anatomical imaging (T2w), diffusion-weighted imaging (DWI), ultrashort-echo 
time imaging (UTE), and magnetisation transfer imaging (MT). Total protocol time: approx. 1 hour. 

Modality T2w DWI UTE MT 
Sequence Type TSE 2D EPI 3D mGRE 3D GRE 

Slices 24 18 96 30 

FOV (mm) 120x72 150x105 103x103 128x96 

Slice Thickness (mm) 1 1.5 1.07 1 

Matrix Size 256x152 102x72 96x96 128x96 

TR (ms) 800 2100 42 15 

TE(ms) 9.6 60.8 7.16, 11.64, 16.12, 20.60 2.52 

UTE (ms) - - 0.07, 0.14, 0.28, 0.56 - 

NSA 1 18 1 8 

iPAT GRAPPA 2 GRAPPA 2 - GRAPPA 2 

Fat Sat. No Yes Yes No 

b-values (mm-2s) - 
0, 20, 40, 60, 80, 

100, 200, 400, 800 
- - 

Variable Flip  
Angles (°) 

- - - 4°, 24° 

MT pulse - - - without/with (1.5kHz) 

Time (min:sec) 4:54 15:58 4 x 5:36 4 x 2:28 

 

 

 
 
 

Table 2: Cohort characteristics for animals with MNU-induced mammary carcinoma 

Animal Section Days at Scan 
Volume 
(cm3) 

Tumour 
Grade 

Necrosis 
(%) 

Microvessel density 
(vessels/mm2) 

Pimonidazole 
(%) 

Picrosirius Red 
(%) 

1 
1 

105 5.3 
1 5 115 27.7 23.1 

2 1 5 104 28.5 9.8 

2 
1 

126 7.3 
1 15 128 17.2 12.0 

2 1 10 121 14.9 12.1 

3 
1 

129 4.5 
2 5 60 28.0 7.8 

2 2 5 150 21.2 9.8 

4  189 0.9 1 20 38 23.2 10.4 

6  332 4.8 1 1-2 65 23.2 52.3 

7  372 2.6 3 5 114 19.9 16.8 

8 
1 

421 3.6 
1 0 68 32.1 28.1 

2 1 1-2 120 33.6 32.2 

10  436 2.3 2 5 176 47.4 7.2 

11  436 1.8 2 15 62 44.1 35.9 

12  449 5.6 2 1-2 100 21.6 32.8 

13-1   
457 

2.9 2 0 45 27.9 19.3 

13-2  2.8 2 0 69 27.7 50.0 

14  470 0.6 2 0 45 14.5 80.4 

15  471 0.3 3 5 116 12.8 27.1 
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Table 3: Correlation Coefficients, r, between MR and histological parameters of matched slices 
 

MR 
Modality 

MR parameter 
(repeatability CoV, %) 

Histological Parameter 
(p-value in parenthesis; bold indicates significance, p<0.0125) 

  Necrosis MVD Pimonidazole adduct Picrosirius Red 

DWI 

ADC (6.14) 0.328 (0.232) 0.185 (0.5104) -0.078 (0.7833) -0.568 (0.0274) 

D (5.18) 0.309 (0.2627) 0.207 (0.4587) -0.099 (0.7244) -0.574 (0.0253) 

f (39.82) -0.607 (0.0165) -0.269 (0.3325) 0.134 (0.6349) 0.556 (0.0314) 

D* (58.42) 0.556 (0.0313) -0.070 (0.8045) -0.172 (0.5407) -0.035 (0.9026) 

fD* (22.24) -0.552 (0.033) -0.449 (0.0933) 0.071 (0.8021) 0.801 (0.0004) 

      

UTE 

T2* long (5.69) 0.240 (0.3701) 0.409 (0.1303) 0.203 (0.4501) -0.660 (0.0055) 

T2*short (8.58) -0.274 (0.3038) 0.305 (0.269) 0.085 (0.7537) -0.092 (0.734) 

ratio (1.77) 0.62 (0.0105) 0.291 (0.2927) 0.155 (0.567) -0.290 (0.2764) 

      

MT 

MTR (1.57) -0.219 (0.4142) -0.362 (0.1851) 0.06 (0.8241) 0.575 (0.0198) 

T1 (1.49) 0.418 (0.1075) 0.377 (0.1661) 0.455 (0.0763) -0.758 (0.0007) 

T1s (7.75) 0.363 (0.1673) 0.363 (0.1832) 0.340 (0.1981) -0.831 (0.0001) 

ka (7.88) -0.367 (0.1623) -0.357 (0.1912) -0.234 (0.3831) 0.857 (0.0001) 

δ (6.70) -0.521 (0.0387) -0.537 (0.0391) -0.209 (0.4364) 0.869 (0.0001) 

 

 

Table 4: Comparison of single MT parameters (1-5) with PLSR analysis of i) all MT, and ii) all 
MR-derived parameters (latent variable details in supplementary figure S2) 

Variable Model parameter LOOCV NRMSE 

1 MTR 0.3231 
2 T1 0.1930 
3 T1s 0.1677 
4 ka 0.1663 
5 δ 0.1581 

All MT (n=5) LV1 0.1731 
All MR (n=11) LV1 0.2513 
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Figure 1: Representative anatomical and functional images from two MNU-induced rat mammary 

carcinomas, showing the variation in tumour presentation and typical images from the multiparametric MRI 

strategy used herein: a) T2-weighted morphological imaging (T2w), b) Diffusion-weighted imaging (DWI; 

b=0 mm-2s), c) ultrashort-echo time imaging (UTE; TE=0.07ms), and d) magnetisation transfer imaging 

(MT; flip angle 4°, with MT pulse). 

 

 

Figure 2: Representative images from the same tumours as shown in Figure 1 (upper row tumour 1, section 

1, and lower row tumour 3 section 2, see Table 2 for analysis) showing matching of MRI with histology, (left 

to right) T2-weighted MRI, H&E staining, picrosirius red staining for collagen I/III, pimonidazole adduct 

immunohistochemistry for hypoxia. 
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Figure 3: Example maps (top row) for the fitted IVIM functional parameters, with a binary mask to exclude 

pure noise, alongside scatter graphs of diffusion-weighted imaging parameters determined using the ADC 

and IVIM models plotted against percentage pimonidazole adduct formation (middle row) and picrosirius 

red (bottom row) staining. Correlation coefficients and p-values are given with each plot, with significant 

correlations (defined as p<0.0125, corrected for multiple comparisons) found between IVIM fD* and 

picrosirius red (unbroken green lines). The combined plot for ADC and D indicates corresponding values; 

for clarity, only the regression line for D is shown. 
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Figure 4: Example maps (top row, with binary mask around animal) from fitting monoexponential model for 

T2* using conventional (T2* long) and ultrashort-echoes (T2* short). T2* parameters derived from ultrashort-echo 

time imaging, plotted against percentage pimonidazole adduct (middle row) and picrosirius red (bottom row) 

staining. Correlation coefficients and p-values are inset on each plot (significance defined as p<0.0125, 

corrected for multiple comparisons, also indicated by an unbroken green regression line). The T2* long, 

calculated from images with TE>7 ms, shows correlation with picrosirius red staining. 
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Figure 5: Example magnetisation transfer parameter maps (top row, with binary mask around animal), with 

corresponding scatter plots with percentage pimonidazole adduct (middle row) and picrosirius red (bottom 

row) staining, including correlation coefficients and p-values (inset). Significant (p<0.0125, corrected for 

multiple comparisons) correlations were found for all MT parameters (unbroken green regression lines) 

except MTR with percentage picrosirius red staining. 
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Supplementary Figure S1: Results of semi-automated segmentation and colour analysis of histological 

slices showing (left-to-right, for two tumours as per figures 1 and 2): picrosirius red stain, isolated picrosirius 

red stain, pimonidazole adduct stain, isolated pimonidazole adduct stain. The calculated stain maps are a 

binary mask, with false colour included only for display. 

 

 

Supplementary Figure S2: Loadings plots from PLSR analysis using (left panel) all MT parameters, and 
(right panel) all MR parameters for collagen stain prediction. In both cases, the regression favours a single 
latent variable (LV1) with loadings corresponding to observed correlations. The NRMSE for both models is 
comparable to individual MT parameters, although inclusion of ADC and D (individually non-signifcant) 
suggests complementary information may be available from DWI. 
 


