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Abstract 48 
 49 

Acquired drug resistance impacts the majority of patients being treated with tyrosine kinase 50 

inhibitors (TKIs) and remains a key challenge in modern anti-cancer therapy. The lack of 51 

clinically effective therapies to overcome resistance represents an unmet need. 52 

Understanding the signalling that drives drug resistance will facilitate the development of 53 

new salvage therapies to treat patients with secondary TKI resistance. In this study, we 54 

utilise mass spectrometry to characterise the global phosphoproteomic alterations that 55 

accompany the acquisition of resistance to two FDA-approved TKIs, pazopanib and 56 

dasatinib, in the A204 rhabdoid tumour cell line. Our analysis finds that only 6% and 9.7% of 57 

the quantified phosphoproteome is altered upon the acquisition of pazopanib and dasatinib 58 

resistance respectively.  Pazopanib resistant cells display elevated phosphorylation in 59 

cytoskeletal regulatory pathways while dasatinib resistant cells show an upregulation of the 60 

insulin receptor/IGF-1R signalling pathway. Drug response profiling rediscovers several 61 

previously reported vulnerabilities associated with pazopanib and dasatinib resistance and 62 

identifies a new dependency to the second generation HSP90 inhibitor NVP-AUY-922. This 63 

study provides a useful resource detailing the candidate signalling determinants of acquired 64 

TKI resistance; and reveals a therapeutic approach of inhibiting HSP90 function as a means 65 

of salvage therapy to overcome pazopanib and dasatinib resistance.     66 

 67 
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Significance 83 

Pazopanib and dasatinib are tyrosine kinase inhibitors (TKIs) approved for the treatment of 84 

multiple cancer types. Patients who are treated with these drugs are prone to the 85 

development of drug resistance and consequently tumour relapse. Here we use quantitative 86 

phosphoproteomics to characterise the signalling pathways which are enriched in cells that 87 

have acquired resistance to these two drugs. Furthermore, targeted drug screens were used 88 

to identify salvage therapies capable of overcoming pazopanib and dasatinib resistance.  89 

This data advances our understanding of the mechanisms of TKI resistance and highlights 90 

candidate targets for cancer therapy. 91 

 92 

Introduction 93 

Tyrosine kinase inhibitors (TKIs) have emerged as a major class of anti-cancer agents that 94 

display efficacy in a range of tumour types including lung cancer, chronic myeloid leukaemia 95 

(CML) and gastrointestinal stromal tumours (GIST) [1, 2]. However efficacy is often short-96 

lived with the majority of patients going on to develop acquired resistance and tumour 97 

recurrence after prolonged drug treatment [3]. Studies in cell line models have revealed 98 

several major mechanisms of resistance that have been clinically observed, including the 99 

acquisition of drug resistant mutations in the target kinase, activation of bypass signalling 100 

pathways and phenotypic alterations such as epithelial-mesenchymal-transition (EMT) [3-6]. 101 

These drug resistant cells arise either from selection of pre-existing clones within a 102 

heterogeneous tumour cell population or through the adaptation and subsequent evolution of 103 

drug-tolerant persister cells [7, 8]. Given that most patients who progress on TKI treatment 104 

have limited options for subsequent lines of therapy, there is an urgent need to develop 105 

effective salvage therapies to treat patients whose tumours relapse as a result of acquired 106 

drug resistance. 107 

 108 

Pazopanib and dasatinib are multi-target TKIs that inhibit a distinct but overlapping spectrum 109 

of tyrosine kinases [9-12].  Pazopanib is approved for advanced soft tissue sarcoma and 110 
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renal-cell carcinoma [13, 14] while dasatinib is licensed for the treatment of CML and 111 

Philadelphia chromosome-positive acute lymphoblastic leukaemia (ALL) [15, 16]. Of note, 112 

the mechanisms of acquired resistance to pazopanib are poorly characterised in part 113 

because there are very few cell line models that harbour intrinsic sensitivity to this drug [17]. 114 

Despite the largely distinct target selectivity profiles of these two drugs, we have recently 115 

demonstrated that in the context of the SMARCB1-deficient rhabdoid tumour cell line A204, 116 

acquired resistance to these two compounds is associated with the downregulation of a 117 

common target PDGFRα [12]. This acquired resistance could be overcome by the inhibition 118 

of bypass signalling initiated by the FGFR1 kinase with inhibitors such as BGJ398, AZD4547 119 

and ponatinib as salvage therapy [12].   120 

 121 

Although our laboratory was able to identify common molecular alterations in PDGFRα and 122 

FGFR1 in the dasatinib- and pazopanib-resistant A204 cell lines, gene expression and copy 123 

number analyses of these cells have revealed clear differences between their molecular 124 

profiles [12]. For instance, the dasatinib-resistant cells harboured additional gains on 125 

chromosome 17 and losses in chromosome 13 which were not observed in the pazopanib-126 

resistant line [12]. These differences suggest that there are likely to be additional 127 

dependencies associated with acquired resistance to dasatinib and pazopanib which can be 128 

exploited for cancer therapy. Furthermore, the phosphotyrosine (pTyr)-based proteomics 129 

employed in our previous study was only able to identify <5 tyrosine phosphorylated proteins 130 

that were upregulated in the two TKI resistant cell lines [12], limiting our ability to determine 131 

the signalling pathways enriched as a result of acquired drug resistance. The lack of 132 

significantly upregulated pTyr-containing proteins raises the possibility that the major 133 

alterations associated with drug resistance in the A204 cells may instead be driven by 134 

phosphoserine (pSer) and phosphothreonine (pThr) signalling events.  135 

 136 

In this study we employ a global phosphoproteomics analysis strategy to identify pSer/pThr 137 

signalling alterations enriched in the pazopanib- (PazR) and dasatinib-resistant (DasR) A204 138 
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cell lines.  In addition, we perform a targeted drug profiling analysis to determine new 139 

vulnerabilities associated with pazopanib and dasatinib resistance in these cells; with the 140 

goal of identifying additional salvage therapy candidates to treat patients who have acquired 141 

resistance to these drugs. Phosphoproteomics has been extensively used to reveal 142 

signalling pathways driving resistance to multiple TKIs including the approved drugs 143 

erlotinib, lapatinib, imatinib and sorafenib among others [18-23]. More recently, the value of 144 

utilising small panels of targeted drugs directed against key regulators of cancer cell survival 145 

to screen for combinations to overcome acquired drug resistance has been successfully 146 

demonstrated in lung cancer [24].  Here we utilise these two approaches to determine the 147 

signalling pathways which are enriched in pazopanib- and dasatinib-resistant cells and 148 

uncover a new vulnerability to the HSP90 inhibitor NVP-AUY-922 which has utility in 149 

overcoming acquired resistance to these TKIs. 150 

 151 

Methods  152 

Cell culture and derivation of acquired resistant sublines 153 

Cells were cultured in DMEM media supplemented with 10% FBS, 2mM glutamine, 154 

100units/ml penicillin and 100mg/ml streptomycin in 95% air, 5% CO2 atmosphere at 37°C. 155 

For SILAC experiments, A204 cells and resistant sublines were cultured in SILAC DMEM 156 

media (Thermo Fisher Scientific) supplemented with light lysine and arginine (R0K0) (Sigma) 157 

and heavy lysine and arginine (R10K8) (Goss Scientific), respectively. To generate resistant 158 

sublines, A204 cells were grown initially in DMEM media containing Dasatinib and 159 

Pazopanib (LC laboratories) at a concentration of 500nM [12]. The drug was incremented 160 

when the cells had proliferated to near confluency alongside minimal visible cell death. Drug 161 

concentration was incremented from 2µM to 3µM and 5µM in a stepwise manner over 6 162 

weeks. A final drug concentration of 5µM was maintained in resistant cells. Media and drug 163 

were replenished twice weekly. 164 

 165 

 166 
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 167 

Cell Viability Assays 168 

Cells (2,000/well) were seeded in a 96-well plate and treated with inhibitors at the indicated 169 

drugs and doses for 72 hr prior to assessment of cell viability using Cell Titre Glo (Promega), 170 

following the manufacturer’s recommendations. IC50 data were generated from dose-171 

response curves fitted using a four-parameter regression fit in GraphPad Prism 6 software. 172 

Inhibitors used in this study include Gefitinib, Rociletinib, Lapatinib, Neratinib, Sorafenib, 173 

Ceritinib, Crizotinib, Pazopanib, Sunitinib, Dasatinib, Ponatinib, AZD4547, Bosutinib, 174 

BEZ235, Trametinib, NVP-AUY-922, Imatinib (LC laboratories) AZD9291, PF-562271, 175 

Palbociclib, BGJ398, MK2206, AZD5363 (Selleck Chemicals), BX-795, MRT67307 (Sigma-176 

Aldrich), JQ1 (Cayman Chemical Company), DDR1-in-1 (Tocris), CCT244747 (ICR). 177 

 178 

Colony formation assays 179 

Cells were seeded at low density (10,000 / well) in 6 well plates and after 24h were treated 180 

with inhibitors at the indicated doses for a duration of 2 weeks. Media containing inhibitors 181 

was replenished every 72h. Following this, cells were fixed using Carnoy’s Fixative (3:1 182 

methanol: acetic acid) and stained with 1% crystal violet solution (Sigma-Aldrich). 183 

 184 

Phosphoproteomic enrichment and sample preparation 185 

Phosphoproteomic analysis was performed as previously described [25] with the following 186 

modifications: SILAC labelled cells (biological triplicates) were lysed in 8M urea and equal 187 

amounts of heavy (DasR or PasR cells) and light (parental cells) lysates were mixed prior to 188 

reduction, alkylation and trypsin digestion. Peptides were desalted on a C18 cartridge, eluted 189 

with 25% acetonitrile and lyophilised to dryness. The sample was reconstituted with 400 µl of 190 

IP buffer (100 mM Tris, 100 mM NaCl, 0.3% NP-40, pH 7.4) and the pH was adjusted to 7.4. 191 

After immuno-precipitation with pTyr100, pTyr1000 (Cell Signaling Technology) and 4G10 192 

(Merck Millipore) for the phosphotyrosine-containing peptides, which were used in a prior 193 

study [12], the supernatant was subjected to phosphopeptide enrichment. 2 mg of cell lysate 194 
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from the supernatant was enriched for phosphopeptides using sequential immobilized metal 195 

affinity chromatography (IMAC) on FeCl3 charged NTA beads as previously described [25].  196 

 197 

A further 2 mg of cell lysate from the supernatant was separately enriched for 198 

phosphopeptides using TitanSphere Phos-TiO2 spin tips (GL Sciences). Spin tips were 199 

conditioned using 2 x 20 µl 80% acetonitrile/0.4% trifluoroacetic acid solution, followed by 200 

equilibration at with 20 µl 60% acetonitrile/0.3% trifluoroacetic acid/25% lactic acid. Tips 201 

were spun at 3000 x g for 2 minutes between each conditioning or equilibration step. The 202 

starting peptide sample was vacuum dried and reconstituted in 50 µl 0.1% trifluoroacetic 203 

acid solution. The reconstituted sample was mixed with 150 µl 60% acetonitrile/0.3% 204 

trifluoroacetic acid/25% lactic acid, added to an equilibrated spin tip and spun at 1000 x g for 205 

10 mins. The flow through was collected and applied an additional two more times to the 206 

same spin tip to enhance adsorption of phosphopeptides. Following this, the flow through 207 

was then applied to a new spin tip and the same enrichment process was followed and 208 

analysed separately. After binding of phosphopeptides, spin tips were rinsed twice with 20 µl 209 

60% acetonitrile/0.3% trifluoroacetic acid/lactic acid and five times with 20 µl of 80% 210 

acetonitrile/0.4% trifluoroacetic acid and spun at 3000 x g for 2 minutes between each step. 211 

Phosphopeptides were eluted using 2 x 50 µl of 5% NH4OH solution and 1 x 50 µl 212 

pyrrolidine. Eluates were combined and vacuum dried before LC-MS/MS analysis. 213 

 214 

Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) 215 

For IMAC-enriched samples, reversed phase chromatography was performed on eluted 216 

peptides using a Dionex UltiMate 3000 RSLC nano system (Thermo Fisher Scientific). The 217 

phosphopeptide-enriched eluates were analysed as 6 µL injections, and loaded on to a 218 

Acclaim PepMap100 C18 trap cartridge trap cartridge at 8 µL/min 2% acetonitrile/0.1% 219 

trifluoroacetic acid (0.5 mm i.d. x 5 mm, 5 µm bead size, 100 Å pore size; loaded in a bi-220 

directional manner). Peptides were then resolved on a 75 µm I.D. 15 cm C18 packed emitter 221 
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column (3 µm particle size; NIKKYO TECHNOS CO.,LTD). Phosphopeptide-enriched 222 

samples were run over 125 min using a three-step gradient of 96:4 to 65:35 buffer A:B (t = 0 223 

min 4% B, 5 min 4% B, 14 min 10% B, 118 min 35% B, 125 min 50% B) at 250 nL/min. 224 

Peptides were ionised by electrospray ionisation using 1.8 kV applied immediately pre-225 

column via a microtee built into the nanospray source. Sample was infused into an LTQ 226 

Velos Orbitrap mass spectrometer (Thermo Fisher Scientific) directly from the end of the 227 

tapered tip silica column (6-8 µm exit bore). The ion transfer tube was heated to 275°C and 228 

the S-lens set to 60%. MS/MS were acquired using data dependent acquisition based on a 229 

full 30,000 resolution FT-MS scan with preview mode disabled and no internal lock mass 230 

was used. The top 10 most intense ions were fragmented using enhanced ion trap scans. 231 

Precursor ions with unknown or single charge states were excluded from selection. 232 

Automatic gain control was set to 1,000,000 for FT-MS and 30,000 for IT-MS/MS, full FT-MS 233 

maximum inject time was 500 ms and normalised collision energy was set to 35% with an 234 

activation time of 10 ms. Total lysate peptides were subjected to wideband activation to co-235 

fragment precursor ions undergoing neutral loss of up to -20 m/z from the parent ion, 236 

including loss of water/ammonia. Multistage activation (MSA) was used to target 237 

phosphoserine/threonine peptides by fragmenting precursor ions undergoing neutral loss of 238 

32.70, 49.00, 65.40 and 98.00 m/z, corresponding to neutral loss of phosphate, if observed 239 

in the top 3 most intense fragment ions. MS/MS was acquired for selected precursor ions 240 

with a single repeat count acquired after 8 s delay followed by dynamic exclusion with a 10 241 

ppm mass window for 45 s based on a maximal exclusion list of 500 entries.   242 

The equivalent of 2 µg of total lysate was also run according to the above conditions to 243 

measure the total proteome for subsequent normalisation of phosphoproteomic data. The 244 

total lysates were run over 245 min using a three-step gradient of 96:4 to 65:35 buffer A:B (t 245 

= 0 min 4% B, 5 min 4% B, 45.0 min 10% B, 230.0 min 35% B, 245.0 min 50% B) and the 246 

top 20 most intense ions were fragmented by collision-induced dissociation and analysed 247 

using normal ion trap scans as described above. 248 
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For TiO2-enriched samples, peptides were resolved on a 75 µm I.D. 50 cm C18 Easy-Spray 249 

packed emitter column (2 µm particle size; PepMap RSLC, Thermo Fisher Scientific) over 250 

240 min using a multi-step gradient of buffers A:B (t=0 min 5% B, t=5.5 min 4% B, t= 45 min 251 

10% B, t = 175 min 25% B, t = 245 min 50% B, t= 250 min, 95% B, t= 255 min, 95% B, t = 252 

260 min 4% B, t= 280 4% B) (buffer A: 2% acetonitrile/0.1% formic acid; buffer B: 80% 253 

acetonitrile/0.1% formic acid) at 250 nL/min.  Peptides were ionised by electrospray 254 

ionisation using 2.3 kV applied using the Easy-Spray ion Source.  Sample was infused into a 255 

Q-Exactive HF mass spectrometer (Thermo Fisher Scientific) directly from the packed 256 

emitter (5 µm exit bore).  The ion transfer tube was heated to 275°C and the S-lens set to 257 

50%.  MS/MS were acquired using data dependent acquisition based on a full FT-MS scan 258 

from 350 to 1850 m/z at 120,000 resolution, with a target Automatic Gain Control (AGC) 259 

value of 3,000,000 and a maximum injection time of 50 ms.  No internal lock mass calibrant 260 

was used.  The top 15 most intense ions were fragmented by higher energy collision-261 

induced dissociation (HCD) and dynamically excluded for 30 s.  The normalised collision 262 

energy was set to 32 with an activation time of 10 ms.  Precursor ions with unknown or 263 

single charge states were excluded from selection.  Fragmented ions were scanned in the 264 

FT-Orbitrap at 60,000 resolution (selected first mass at 100 m/z) with a target AGC value of 265 

50,000 and a maximum injection time of 100 ms. 266 

 267 

Data analysis 268 

The data were processed with MaxQuant [26] (version 1.5.5.1) and the peptides were 269 

identified (maximal mass error = 6 ppm and 20 ppm for precursor and product ions, 270 

respectively) from the MS/MS spectra searched against human UniProt database using 271 

Andromeda [27] search engine. The following peptide bond cleavages: arginine or lysine 272 

followed by any amino acid (a general setting referred to as Trypsin/P) and up to two missed 273 

cleavages were allowed. SILAC based experiments in MaxQuant were performed using the 274 

built-in quantification algorithm [26] with minimal ratio count = 2 and enabled ‘Requantify’ 275 

feature. For each of the three biological replicate experiments, two technical replicates of the 276 
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IMAC-phosphopeptide enrichment; two technical replicates of the TiO2-phosphopeptide 277 

enriched samples; and three technical replicates of the total proteome were analysed. 278 

Cysteine carbamidomethylation was selected as a fixed modification whereas methionine 279 

oxidation; deamidation of asparagine and glutamine; glutamine to pyro-glutamic acid; 280 

acetylation of protein N-terminus; with phospho (STY) as variable modifications for 281 

phosphoproteome searches. The false discovery rate was set to 0.01 for peptides, proteins 282 

and sites. Other parameters were used as default in the software. “Unique and razor 283 

peptides” mode was selected to allow identification and quantification of proteins in groups. 284 

Data were further analysed using Microsoft Office Excel 2010 and Perseus [28] (version 285 

1.5.5.3). Both phosphoproteomic and proteomic data were filtered to remove potential 286 

contaminants and IDs originating from reverse decoy sequences. Proteomic data was also 287 

filtered to exclude proteins only identified by site. To account for deviations from a 1:1 mix of 288 

heavy:light starting material, the median H/L ratio across the entire proteome dataset was 289 

used to normalize the phosphoproteomic dataset. The log2 values of the H/L ratios were then 290 

determined. Phosphorylation sites (STY) were filtered to include only high confidence 291 

phosphosite IDs (localization probability ≥ 75%). The dataset was then filtered for only valid 292 

quantifiable IDs in at least two out of three biological replicates. The mass spectrometry 293 

proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE 294 

[29] partner repository with the dataset identifier PXD005536. 295 

 296 

Bioinformatic analysis 297 

Biological replicate overlap and phosphorylated amino acid distribution were analysed within 298 

Perseus (1.5.5.1) [28]. The phosphoproteome dataset was then annotated with the 299 

PhosphositePlus known sites database [30]. The online tool Venny 2.1 300 

(http://bioinfogp.cnb.csic.es/tools/venny/) was used to generate Venn diagrams and 301 

GraphPad Prism 7.02 was used to generate the pie charts. 302 

 303 

http://bioinfogp.cnb.csic.es/tools/venny/
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One sample t-tests were performed on SILAC log2 ratios to determine significantly different 304 

regulated phosphosites; where the null hypothesis was that the phosphopeptide abundances 305 

were unchanges and the Log2 SILAC ratio was equal to 0. Those phosphosites that were 306 

either two-times up-regulated in the A204 parental (t-test difference < -1) or up-regulated in 307 

the PazR or DasR (t-test difference > 1) cells and significantly different (p < 0.05) were 308 

analysed for enrichment. These data are presented as volcano plots generated in GraphPad 309 

Prism 7.02 where the statistical significance (p < 0.05) was –log10 transformed (y-axis) and 310 

plotted against the t-test difference (x-axis). 311 

 312 

Enrichment analysis was performed using DAVID Bioinformatics Resources 6.8 [31] with 313 

human genome as a background dataset. KEGG (Kyoto encyclopedia of genes and 314 

genomes) [32], Uniprot keyword and sequence feature categories [33], Interpro protein 315 

function analysis [34], SMART (Simple Modular Architecture Research Tool) protein domain 316 

[35] and COG (Clusters of Orthologous Groups) Analysis Ontology [36]  annotation 317 

databases were used for analysis. Protein annotation enrichment analysis of the 318 

phosphoproteome dataset was performed using the DAVID functional annotation tool and a 319 

modified Fisher Exact Test called EASE (Expression Analysis Systematic Explorer) score, 320 

comparing up-regulated phosphorylated proteins of PazR and DasR with their corresponding 321 

up-regulated phosphorylated proteins in the A204 parental cell line. A statistical cut off of 322 

0.005 was applied. Multiple hypothesis testing was controlled using a Benjamini-Hochberg 323 

FDR threshold of 0.1. An intersection size of 3 or more was considered to be enriched. A bar 324 

chart of the data was then generated within GraphPad Prism 7.02. Additionally, the DAVID 325 

enrichment analysis was subjected to network mapping for visualisation using the application 326 

EnrichmentMap 2.2.1 within the Cytoscape 3.4.0 software [37]. Lists of phosphoproteins 327 

from enrichment clusters were generated and further investigated using the online 328 

application STRING 10.5 [38] to construct protein networks and analyse their associations. If 329 

necessary, 5 additional STRING interactors were imputed to the networks to propose 330 
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possible intact, but not measured, systems. The network images were generated from the 331 

STRING output of proteins and their interaction score using Cytoscape 3.4.0. 332 

 333 

For drug screen analysis, clustering was performed and heat maps generated within 334 

Perseus as described above across each dose of drug (100 or 500 nM) and cell line (A204 335 

parental, DasR and PazR) using cell viability values normalised to DMSO control (n=2 or 3). 336 

 337 

Results 338 

Characterisation of the phosphoproteome in parental and acquired resistant A204 cells 339 

Pazopanib resistant (PazR) and dasatinib resistant cells (DasR) were previously derived 340 

from the A204 parental cell line by long-term escalating dose treatment with drug [12] 341 

(Figure 1A). Briefly, A204 cells were initially grown in media containing 500nM of pazopanib 342 

or dasatinib and the drug dose increased when the cells proliferated to near confluency 343 

alongside minimal visible cell death. Drug concentration was then increased from 2µM to 344 

3µM and then 5µM in a stepwise manner over 6 weeks. A final drug concentration of 5µM 345 

was maintained in resistant cells. We subjected the cell lines to stable isotope labelling with 346 

amino acids in cell culture (SILAC) with the PazR and DasR cells being ‘heavy labelled’ and 347 

the parental A204 cell line being ‘light labelled’ (Figure 1A).  Cells were lysed, combined in a 348 

1:1 ratio and lysates digested with trypsin. We have performed an analysis of the pTyr 349 

phosphoproteome of these cells using phosphopeptide immunoprecipitation of the SILAC 350 

labelled cell lysates in a previously reported study [12]. In this current study, the supernatant 351 

from this pTyr immunoprecipitation was subjected to either immobilised metal affinity 352 

chromatography (IMAC) or titanium dioxide (TiO2) phosphopeptide enrichment prior to 353 

single-shot liquid chromatography tandem mass spectrometry (LC-MS/MS) in biological 354 

triplicates (Figure 1B). The mass spectrometry data from both phosphopeptide enrichment 355 

strategies were combined and analysed together using the MaxQuant algorithm [26]  356 

 357 
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Collectively, we identified 7214 unique phosphorylation sites on 2372 proteins in the 358 

PazR/A204 comparison and 7548 unique phosphosites on 2494 proteins in the DasR/A204 359 

comparison across all three biological replicates (Figure 1C and Table S1 and S2). In both 360 

sets of experiments, analysis of the distribution of phosphorylated residues shows the 361 

expected classical distribution of pSer:pThr:pTyr ratios (~90:10:1) as previously reported 362 

(Figure S1A) [39].  We observed pTyr sites (~1% of all phosphosites) in the analysis despite 363 

prior pTyr phosphopeptide enrichment (Figure S1A), indicating that immunoprecipitation did 364 

not deplete all the pTyr-containing peptides in the lysate.  This may be the result of 365 

previously reported restricted pTyr motifs recognised by anti-phosphotyrosine antibodies 366 

used in the immunoprecipitation [40]. Consistent with this idea, a comparative analysis of the 367 

identified pTyr sites from the previous immunoprecipitation and the current IMAC/TiO2 368 

enrichment shows the overlap of only 1 phosphorylation site between the two datasets 369 

(Figure S2). Comparing our phosphoproteomic datasets with the PhosphoSitePlus database 370 

showed that 389 and 394 novel phosphosites were identified in the PazR/A204 and 371 

DasR/A204 experiments, respectively (Figure S1B, Table S1 and S2) [30]. The total number 372 

of phosphosites identified in our dataset is comparable with previous phosphoproteomic 373 

studies (ranging from 2000-5000 phosphosites) where single-shot sample injection into the 374 

mass spectrometer was carried out with no additional fractionation [41-45]. 375 

 376 

Quantitative phosphoproteomic analysis of pazopanib resistance   377 

5420 phosphosites on 1950 proteins were quantified in two or more replicates in the 378 

PazR/A204 experiments (Figure 2A). To determine the cellular localisation of 379 

phosphorylated proteins which are significantly upregulated in PazR or parental A204 cells, 380 

we interrogated our dataset using the Uniprot Keyword database and found that with the 381 

exception of the nucleus, phosphorylated proteins across multiple subcellular compartments 382 

were increased in PazR cells versus the parental A204 line (Figure 2B). 198 phosphorylation 383 

sites on 112 proteins (3.7% of the phosphoproteomic dataset) were significantly upregulated 384 

more than 2-times (>log2 +1) in PazR cells compared to parental A204 cells (Figure 2A). 385 
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These phosphoproteins that were upregulated in PazR cells were subjected to ontology 386 

enrichment analysis which revealed the enrichment of a number of ontology terms 387 

associated with cytoskeletal organisation (Figure 2C).  These included “actin-binding”, “LIM 388 

domain containing”, and “Calponin homology (CH) domain containing” proteins (Figure 3A) 389 

[46-49]. LIM domain-containing proteins comprise AJUBA, CRIP2, LASP1, LMP7, MICALL1, 390 

PDLIM7 and TGFB1l1 whilst CH-domain proteins include FLNA, LMO7, MICALL1, NAV2, 391 

PLEC and SPECC1 (Figure 3B).  This gene ontology enrichment analysis suggests that 392 

PazR cells upregulate multiple actin cytoskeletal-regulatory pathways which may play a role 393 

in maintaining its drug resistant state.  394 

 395 

122 phosphosites on 71 proteins (2.3% of the dataset) were found to be significantly 396 

upregulated (<log2 -1) in the parental A204 cells compared to the PazR cells (Figure 2A) with 397 

up to 40% being nuclear proteins (Figure 2B). Ontology analysis of these phosphorylated 398 

proteins identified an enrichment of proteins involved in transcription regulation including the 399 

ontology terms “transcription regulation”, “transcription”, “transcription activator” and 400 

“transcription repressor” (Figure 2C and Figure 3A).  These include the transcription factors 401 

ETV6, SOX5, SOX6, KLF3, NFIX and DNA binding proteins DNMT1, CDH8, CDH9 and 402 

VGLL4 (Figure 3B). Upon interrogation with the STRING database [38], a subset of these 403 

proteins showed a well annotated protein-protein interaction network centred around the 404 

HDAC1 protein (Figure 3C).  The discovery that the phosphorylation of multiple transcription 405 

factors is upregulated in SMARCB1-deficient parental A204 rhabdoid tumour cells is 406 

consistent with the role of SMARCB1 in organising nucleosome structures surrounding 407 

transcriptional start sites in a genome-wide manner [50]. 408 

  409 

Quantitative phosphoproteomic analysis of dasatinib resistance 410 

5899 phosphosites on 2086 proteins were quantified in two or more biological replicates in 411 

the DazR/A204 experiments (Figure 4A). In contrast to the PazR/A204 dataset, both the 412 

DasR and parental A204 cell lines show comparable distribution of upregulated 413 
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phosphorylated proteins across multiple cellular compartments (Figure 4B). The exception is 414 

the nuclear compartment where the parental A204 cells have a slight increase in enrichment 415 

over the DasR cells. 279 phosphorylation sites on 157 proteins (4.7% of the dataset) were 416 

significantly upregulated more than 2-times in DazR cells compared to parental A204 cells 417 

(Figure 4A).  Subjecting these upregulated phosphosites to gene ontology enrichment 418 

analysis (Figure 4C) finds that the DasR cells shows a distinct spectrum of ontology terms 419 

compared to the PazR cells with the enrichment of insulin - and IGF-1R signalling pathway 420 

components and PDZ domain containing proteins. The insulin signalling pathway cluster 421 

includes the proteins ACACA, ARAF, FASN, IRS1, PRKAR1B, PRKAR2B, RPS6KA1, 422 

RPS6KB1 and SHC1 which together form a functional protein-protein interaction network 423 

(Figure 5).  PDZ domain containing proteins that are upregulated in DasR cells include 424 

proteins with a range of cellular functions such as cell migration regulation (AHNAK, 425 

AHNAK2, SCRIB), cytoskeletal and tight junction proteins (MYO18A and TJP2), and the 426 

sodium/hydrogen exchange cofactor SLC9A3R1 (Figure 5A and B).  427 

 428 

294 phosphorylation sites on 157 proteins (5% of the dataset) were found to be upregulated 429 

in the parental A204 versus the DasR cells (Figure 4A). Enriched ontology terms include 430 

SH3 domain containing proteins (Figure 4C) which play a role in small GTPase regulation 431 

and comprise key signalling proteins ARHGEF26, ASAP1, ASAP2, FNBP1L and SRGAP1 432 

(Figure 5A and B). Similar to the PazR/A204 dataset, there was an enrichment of 433 

transcriptional regulatory terms which include “transcription repressor” and “interferon 434 

regulatory factor” (Figure 4C). These include the transcription factors ETV6, NFATC1, 435 

ZNF521 and transcriptional repressors NCOR1, TLE4 and SUDS3 (Figure 5).  A subset of 436 

these proteins feature as part of a protein-protein interaction network centred around the 437 

HDAC3 protein (Figure 5C). The observation that protein-protein interaction networks 438 

involving the histone deacetylases (HDACs) are enriched in A204 parental cells in both the 439 

PazR/A204 and DasR/A204 experiments  (Figure 3C and 5C) is consistent with recent 440 
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preclinical reports that HDAC inhibitors have therapeutic utility in reducing the proliferation of 441 

rhabdoid tumour cells including the A204 line [51-53]. 442 

 443 

Comparison of PazR and DasR phosphoproteomic datasets 444 

A comparison between the two phosphoproteomic datasets revealed a 70.5% overlap with 445 

4683 phosphorylation sites quantified across both resistant cell lines (Figure 6A). Taken 446 

together, we find that 21.6% of the phosphoproteome is significantly altered upon the 447 

acquisition of secondary resistance in PazR and/or DasR sublines versus the parental A204 448 

cells (Figure 6B). Supporting our hypothesis that pazopanib and dasatinib induce different 449 

cellular reprogramming effects in the A204 cells, only 2.8% and 1.9% of observed 450 

phosphosites are similarly up- and down-regulated, respectively, in both datasets (Figure 451 

6B). The 34 upregulated and 36 downregulated phosphosites are detailed in Figure 6C-D.  452 

 453 

Drug response profiling identifies new vulnerabilities in drug resistant cells 454 

Inspired by a recent targeted screen to identify drugs capable of overcoming bypass 455 

signalling pathways associated with acquired TKI resistance in lung cancer [24], we 456 

subjected both resistant lines and the parental A204 cells to short term treatment with a 457 

focused panel of 28 small molecule inhibitors at two different doses and measured cell 458 

viability. This panel comprised of kinase inhibitors targeting the major cellular signalling 459 

pathways important for cancer cell survival as well as inhibitors that target the BET 460 

bromodomain proteins (JQ1) and the HSP90 protein (NVP-AUY-922) which are currently in 461 

advanced clinical trials.  462 

 463 

Two-way hierarchical clustering of the cell viability data demonstrates that the PazR and 464 

DasR cells share a more similar drug response profile compared to parental A204 cells 465 

(Figure 7A). As shown in our previous study, the two resistant cell lines are highly sensitive 466 

to ponatinib treatment [12]. The screen also showed that the dual mTOR/PI3K inhibitor BEZ-467 

235 sensitized both DasR and PazR which recapitulates the findings of a recent report on 468 
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the use of this drug to overcome pazopanib resistance in patient-derived soft tissue sarcoma 469 

cells [54]. We also identify several inhibitors that are only effective in the DasR cells 470 

including the MEK inhibitor trametinib and to a lesser extent the CDK4/6 inhibitor palbociclib.  471 

MEK inhibitors have been shown to overcome drug resistance induced by the paradoxical 472 

activation of the MEK/ERK pathway through the weak binding of dasatinib to BRAF and 473 

CRAF [55]. The ability of our targeted screen to rediscover several previously identified 474 

vulnerabilities associated with pazopanib and dasatinib resistance provides confidence of 475 

the broad applicability of this strategy to identify salvage therapies to sensitize TKI-resistant 476 

cells.   477 

 478 

This screen also uncovered a previously undescribed vulnerability of both PazR and DasR 479 

cells to the second generation HSP90 inhibitor NVP-AUY-922 which clustered together with 480 

ponatinib [56].  Dose response analysis confirms that PazR and DasR cells are sensitive to 481 

treatment with NVP-AUY-922 with IC50 values of 45.3 ± 14.3 nM and 28.4 ± 5.9 nM, 482 

respectively (Figure 7B and C). Long-term colony formation assays show that low dose 483 

NVP-AUY-922 (5nM) is capable of not only sensitizing both PazR and DasR cells but also 484 

killing parental A204 cells (Figure 7D and E), suggesting that HSP90 inhibitors may be an 485 

effective option both as first-line and salvage therapy in rhabdoid tumours.   486 

 487 

Discussion 488 

This study is, to our knowledge, the first phosphoproteomic analysis of acquired resistance 489 

to pazopanib and dasatinib. We show that A204 cells that have acquired secondary 490 

resistance to pazopanib (PazR) harbour an enrichment of phosphoproteins that play a role in 491 

the regulation of actin cytoskeleton dynamics (Figure 3). These include the LIM domain 492 

family of proteins CRIP2, LASP1, MICALL1 and PDLIM7 which have previously been shown 493 

to be localised in focal adhesion complexes and play important roles in 494 

mechanotransduction signalling [46, 57, 58].  In addition, phosphoproteins that contain the 495 

CH domain, a 100 amino acid residue domain that binds to actin filaments, are similarly 496 
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enriched in PazR cells [48, 49]. Published phosphoproteomic studies have found that 497 

melanoma cells with acquired resistance to BRAF inhibitors display elevated levels of 498 

phosphoproteins that function in cytoskeletal regulatory pathways [59, 60]. It remains to be 499 

determined if the upregulation of cytoskeletal pathways observed in our current study and in 500 

the previous melanoma reports is a cause or consequence of the acquisition of drug 501 

resistance.  However given that this class of proteins is poorly explored as oncology drug 502 

targets [61], these phosphoproteomic studies provides a rich source of new candidates for 503 

target validation and drug development to overcome drug resistance. In contrast to the PazR 504 

cells, acquired resistance to dasatinib in the DasR subline leads to the upregulation of 505 

components of the insulin receptor/IGF-1R signalling pathway compared to parental A204 506 

cells (Figure 5). Activation of IGF-1R signalling is a well-established bypass mechanism of 507 

resistance to many kinase inhibitors including EGFR, HER2, MEK and BRAF inhibitors [62-508 

66].  Furthermore, intrinsic resistance to dasatinib in a panel of non-small-cell lung cancer 509 

cell lines has been causally linked to the upregulation of Insulin-like growth factor (IGF)-510 

binding protein-2 (IGFBP2) which act as carrier proteins for the IGF ligands [67]. Our data 511 

suggests that the Insulin receptor/IGF-1R pathway is an actionable target for salvage 512 

therapy and further investigation to dissect the contribution of components of this pathway to 513 

acquired dasatinib resistance is planned.  514 

 515 

One limitation of our study is the relatively modest number of phosphorylation sites identified 516 

in our analysis. We quantified ~7000 phosphorylation sites in our experimental dataset 517 

(Figure 1B) which is comparable with published reports on single-shot unfractionated 518 

samples [42, 44, 45]. In addition, increased precursor ion complexity associated with SILAC 519 

labelling results in a decrease in unique phosphopeptide identification [68]. Greater depth of 520 

coverage in the phosphoproteome can be achieved with additional pre-fractionation steps 521 

[42, 44, 45], and combining orthogonal phosphopeptide enrichment strategies [69, 70]. 522 

Another limitation of the study is the focus on phosphoproteomic analysis without accounting 523 

for protein abundance changes. In the absence of a deep proteome analysis of the resistant 524 



19 
 

and sensitive cell lines, we are unable to distinguish if the phosphorylation changes 525 

observed in our dataset are due to alterations in protein phosphorylation stoichiometry or at 526 

the level of total protein expression. Notwithstanding these limitations, our study 527 

demonstrates that candidate resistance signalling pathways can be readily identified with 528 

this approach.   529 

 530 

Our phosphoproteomic analysis finds that acquired resistance to pazopanib and dasatinib 531 

leads to a 6.0% and 9.7% change, respectively, in the quantified phosphoproteome 532 

compared to parental A204 cells (Figure 2A and 4A).  A recent study by Nagata et al., 533 

showed that acquired resistance to the TKI imatinib in a GIST cell line displayed alterations 534 

in ~75% of the phosphoproteome when compared to the parental sensitive cell line [21].  In 535 

contrast, a phosphoproteomic analysis by Lee et al., of acquired resistance to the TKI 536 

lapatinib in a gastric cancer cell line showed that 5% of the phosphoproteome was 537 

significantly altered versus the parental cells from which resistance was derived [20].  The 538 

low percentage of phosphorylation changes observed in our study may be due to a number 539 

of factors.  One reason could be that the depth of phosphoproteome coverage is less 540 

comprehensive in our analysis and that we are only sampling the most abundant 541 

phosphoproteins in the cell, although this is unlikely given that the study by Nagata et al., 542 

identified ~1000 phosphoserine/threonine sites with a 75% difference observed while Lee et 543 

al., quantified 6500 phosphosites with only 5% alterations seen. Another contributing factor 544 

is that the underlying genomic drivers of the cell lines used in the different studies are 545 

distinct.  Unlike the GIST and gastric cell lines used in the previous studies, the A204 546 

rhabdoid tumour cell line has a very simple genome where the loss of the SWI/SNF 547 

chromatin remodelling subunit SMARCB1 is the only known cancer-associated driver [12, 548 

71-74]. It is plausible that loss of SMARCB1 may be sufficient to drive acquired TKI 549 

resistance with limited alterations in the phosphoproteome.  Finally it is also possible that 550 

different TKIs reprogram cellular signalling networks to achieve drug resistance using distinct 551 

mechanisms [4, 75, 76]. 552 
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 553 

The targeted drug profiling analysis identified the HSP90 inhibitor NVP-AUY-922 as a novel 554 

means to overcome pazopanib and dasatinib resistance (Figure 7). The small molecule 555 

inhibitor panel that we employed was designed to block a range of distinct bypass pathways 556 

that have previously been associated with TKI resistance [24].  We show that AUY-922 is 557 

capable of not only overcoming acquired resistance in the form of salvage therapy, but also 558 

has utility when applied in the first-line setting (Figure 7C). HSP90 inhibitors have been 559 

deployed as salvage therapy in clinical trials for TKI-resistant lung cancer and GIST with 560 

varying results [77, 78]. The rationale for this approach is based on pre-clinical evidence that 561 

cancer cells are dependent on HSP90 for stabilising client proteins such as TKI resistance-562 

associated mutants and kinases responsible for driving bypass signalling in cancer cells [79, 563 

80]. Consequently inhibition of HSP90 has the potential to simultaneously block multiple 564 

resistance mechanisms in the context of salvage therapy [80].  The mechanism for the 565 

activity of AUY922 in sensitizing the PazR and DasR cells and the specific client proteins 566 

involved in mediating drug sensitivity remain unclear and will be the focus of future studies.    567 

 568 

In summary, we have performed a phosphoproteomic analysis to determine the signalling 569 

pathways associated with acquired resistance to pazopanib and dasatinib. We also 570 

demonstrate that PazR and DasR cells are sensitive to the HSP90 inhibitor NVP-AUY-922. 571 

This study provides a useful resource for future studies investigating the determinants of 572 

pazopanib and dasatinib resistance; and identifies a new therapeutic strategy of inhibiting 573 

HSP90 function for further evaluation as a means of overcoming pazopanib and dasatinib 574 

resistance and tumour recurrence in multiple cancer types.     575 
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 796 

Figure Legends 797 

Figure 1. Experimental outline and phosphoprotome dataset overview. (A) Dose 798 

response curve of A204 parental and PazR cells to pazopanib and A204 parental and DasR 799 

cells to dasatinib respectively. (B) Schematic of sample preparation workflow. Pazopanib 800 

and dasatinib resistant A204 cell lines (PazR & DasR respectively) were generated and 801 

heavy SILAC labelled as previously described [12]. A204 parental cells were light SILAC 802 

labelled. After cell lysis, either heavy PazR or DasR were mixed 1:1 with light A204 parental 803 

lysate then reduced, alkylated and trypsin digested. The resulting peptides underwent 804 

phospho-tyrosine (pTyr) peptide immunoprecipitation, data previously published [12]. The 805 

supernatant from the immunoprecipitation was further enriched with immobilised metal 806 

affinity chromatography (IMAC) or titanium dioxide (TiO2) prior to liquid chromatography 807 

tandem mass spectrometry analysis (LC MS/MS). (C) Venn diagrams show distribution of 808 

phosphorylation sites across three biological replicates (R1, R2 and R3) in PazR/A204 and 809 

DasR/A204 experiments.. 810 

 811 



27 
 

Figure 2. Phosphoproteomic profile of PazR versus A204 parental cells. (A) Volcano 812 

plot depicting the phosphoproteome of PazR versus A204 parental cells. All ratios were 813 

median-normalised and log2 transformed. A one sample t-test was performed where the null 814 

hypothesis was equal to 0. The statistical significance was –log10 transformed (y-axis) and 815 

plotted against the t-test difference (x-axis). Phosphosites that display at least 2-times 816 

increase in PazR (red) or increase in A204 parental (blue) with p < 0.05 are indicated. 817 

Legend shows percentage of phosphosites that were up-regulated in PazR cells or A204 818 

parental cells as well as phosphosites that displayed no change between the two cell lines. 819 

(B) Uniprot keyword annotation terms linked to either statistically significant PazR or A204 820 

parental up-regulated phosphoproteins generated using the DAVID functional annotation 821 

tool [31]. (C) Annotation enrichment analysis of phosphoproteins up-regulated in either the 822 

PazR or A204 parental cells compared against the human genome using DAVID. The 823 

resultant p values of each term were –log10 transformed. Multiple hypothesis testing was 824 

controlled using a Benjamini-Hochburg FDR threshold of 0.1.  825 

 826 

Figure 3. Biological function analysis of PazR versus A204 parental cells. (A) 827 

Annotation enrichment analysis of PazR and A204 parental up-regulated phosphoproteins 828 

using the DAVID functional annotation tool. Network maps represent clusters of annotation 829 

terms from different databases with associated function. Nodes represent each term and the 830 

connecting line their association; line thickness is number of overlapping proteins. The inner 831 

and outer nodes are PazR and A204 parental datasets respectively. Node size represents 832 

the number of proteins annotated with that term. The colour intensity of the node represents 833 

the significance of enrichment and grey depicts no proteins. (B) Heat map of proteins in 834 

network cluster based on the Log2(PazR/A204) SILAC ratio. (C) An association network of 835 

proteins from the ‘transcription’ cluster analysed through the STRING application. Blue 836 

coloured proteins are from the cluster list and grey are added STRING interactors. Line 837 

thickness portrays the STRING calculated association confidence. 838 

 839 
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Figure 4. Phosphoproteomic profile of DasR versus A204 parental cells. (A) Volcano 840 

plot depicting the phosphoproteome of DasR versus A204 parental cells. All ratios were 841 

median-normalised and log2 transformed. A one sample t-test was performed where the null 842 

hypothesis was equal to 0. The statistical significance was –log10 transformed (y-axis) and 843 

plotted against the t-test difference (x-axis). Phosphosites that display at least 2-times 844 

increase in DasR (red) or increase in A204 parental (blue) with p < 0.05 are indicated. 845 

Legend shows percentage of phosphosites that were up-regulated in DasR cells or A204 846 

parental cells as well as phosphosites that displayed no change between the two cell lines.  847 

(B) Uniprot keyword annotation terms linked to either statistically significant DasR or A204 848 

parental up-regulated phosphoproteins generated using the DAVID functional annotation 849 

tool [31]. (C) Annotation enrichment analysis of phosphoproteins up-regulated in either the 850 

DasR or A204 parental cells compared against the human genome using the DAVID 851 

application. The resultant p values of each term were –log10 transformed. Multiple hypothesis 852 

testing was controlled using a Benjamini-Hochburg FDR threshold of 0.1.  853 

 854 

Figure 5. Biological function analysis of DasR versus A204 parental cells. (A) 855 

Annotation enrichment analysis of DasR and A204 parental up-regulated phosphoproteins 856 

using the DAVID functional annotation tool. Network maps represent clusters of annotation 857 

terms from different databases with associated function. Nodes represent each term and the 858 

connecting line their association; line thickness is number of overlapping proteins. The inner 859 

and outer node are DasR and A204 parental datasets respectively. Node size represents the 860 

number of proteins annotated with that term. The colour intensity of the node represents the 861 

significance of enrichment and grey depicts no proteins. (B) Heat map of proteins in network 862 

cluster based on the Log2(DasR/A204) SILAC ratio. (C) An association network of proteins 863 

from the ‘insulin signalling’ and ‘transcription’ clusters were analysed through the STRING 864 

application. Red or blue coloured proteins are from the cluster lists and grey are added 865 

STRING interactors. Line thickness portrays the STRING calculated association confidence. 866 
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Figure 6. Comparative assessment of PazR and DasR cells. (A) Venn diagram to show 868 

overlap of phosphosites between the PazR and DasR datasets in at least 2 out of 3 869 

biological replicates. (B) A pie chart distribution using only overlapping phosphosites of both 870 

PazR and DasR. Categories include: ‘Up’ (at least 2-times up-regulated versus parental), 871 

‘down’ (at least 2-times down-regulated versus parental) and ‘no change’ (less than 2-times 872 

up-regulated and more than 2-times down-regulated). A statistical significance cut-off (p-873 

value < 0.05) was then applied and the overlap between (C) up- or (D) down-regulated (at 874 

least 2-times) in PazR and DasR lines compared to A204 parental cells phosphorylation 875 

sites are shown.  876 

 877 

 878 

Figure 7. Drug profiling analysis of in A204 parental and resistant cell lines. 879 

(A) Heatmap depicting two-way hierarchical clustering of cell viability data in drug screen. 880 

A204 parental, pazopanib resistant and dasatinib cell lines were seeded in 96 well plates 881 

and viability was measured using Cell Titer Glo following 72h of treatment with 28 small 882 

molecule inhibitors at 100nM and 500nM (or 10nM and 50nM for NVP-AUY-922). Two-way 883 

hierarchical clustering using Euclidean distance was performed. (B) Dose response curve of 884 

PazR cells to pazopanib or NVP-AUY-922 treatment. (C) Dose response curve of DasR cells to 885 

dasatinib or NVP-AUY-922 treatment. For (A), (B) and (C) cell viability is normalised to DMSO 886 

control and values represent mean ± SD (n=2 or 3). Colony formation assays comparing (A) 887 

A204 parental and pazopanib resistant and (B) A204 parental and dasatinib resistant cell lines in 888 

the presence of drug. Cell lines were seeded at low density (10,000 cells / well) in a 6 well plate. 889 

After 2 weeks of treatment with inhibitors at the indicated doses, cells were fixed and colonies 890 

were stained using crystal violet for visualisation. 891 

  892 
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