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Acquiring evidence for precision prostate

cancer care

In the current issue of Annals of Oncology, Romero-Laorden et al.

[1] report the case of a patient with metastatic castration-resistant

prostate cancer (mCRPC) who achieved a significant tumour re-

sponse to the PARP inhibitor veliparib administered as a single

agent. Molecular studies on this patient’s primary and metastatic

tumour tissue samples revealed a homozygous deletion of BRCA2

as the putative mechanism determining PARP inhibitor sensitivity,

although the authors describe genomic heterogeneity for this event

within the primary tumour.

The use of PARP inhibitors against BRCA1/BRCA2 defective

tumours, based on applying the biological concept of synthetic

lethality to cancer treatment, has been a clinically important ad-

vance in precision cancer medicine [2–4]. Defects in DNA repair

genes, particularly in those involved in double-strand error-free

homologous recombination (HR) mediated repair (i.e. BRCA1,

BRCA2, ATM, PALB2, CDK12, FANCA and others), have been

identified in a proportion of advanced prostate cancers [5, 6].

While this disease is primarily driven by androgen-signalling,

emerging data over the last few years indicate that BRCA1/2-

defective metastatic prostate cancers, representing �10–14% of

the overall mCRPC population, could respond to alternative

approaches such as PARP inhibitors or platinum chemotherapy

[7, 8]. Tumour responses in cases harbouring other HR gene aber-

rations have also been described. Some of these mutations have

been also reported to confer worse prognosis from prostate cancer

[9, 10]. These data are currently being explored in several clinical

trials with four different compounds, and the PARP inhibitor ola-

parib has been given Breakthrough Designation by the FDA based

on data in this disease.

Despite multiple recent advances in prostate cancer care, with

several new therapies approved for advanced disease based on sur-

vival benefit in randomized trials, molecular stratification strat-

egies have not been incorporated into prostate cancer patient care

so far. Presently, stratification of patients for Androgen Receptor

(AR)-targeting agents based on AR aberrations [11–14] and treat-

ment with DNA repair targeting agents for patients harbouring

DNA repair defects constitute two promising opportunities for

more precise care of advanced prostate cancer. Randomized trials

need now to prove the benefit of such approaches to transfer these

into clinical practice. Implementation of such multiplexed mo-

lecular testing to patient care does however present challenges that

will have to be addressed towards guaranteeing clinical qualifica-

tion of these biomarkers.

The first challenge arises from the need for rigorous validation

of assays used at each centre and homogenization of biomarker

assays across centres. Panel or more comprehensive whole exome

sequencing requires laborious bioinformatic analyses, which are

not yet standardized. Collaboration between regulatory agencies,

academics and industry is critical for success, and all parts need

to be involved in the design of clinical trials focused on testing

precision medicine approaches. In the particular case of DNA re-

pair defects and prostate cancer, we envision a multiplexed bio-

marker assay may be necessary, as different genes have been

shown to associate with sensitivity to PARP inhibition. The FDA

has already started considering how to adapt the regulatory

framework to this new scenario and how to efficiently integrate

post-marketing data review [15].

Intra-patient genomic heterogeneity represents a second major

challenge for precision medicine [16]. Molecular studies to date

predominantly using single site tissue biopsies, either from the

primary tumour or metastases, are insufficient to comprehen-

sively integrate temporal or spatial tumour evolution data. In the

case reported here, the authors identified a somatic BRCA2

homozygous deletion in bone metastatic tissue sample by tar-

geted next-generation sequencing. They then studied the prosta-

tectomy specimen collected 2.5 years before and identified areas

of homozygous and heterozygous loss of the BRCA2 gene region

by FISH. The questions arising then are: would the BRCA2 loss

have been missed if this patient had been assessed based on stand-

ard random biopsies of the original prostate tumour? Moving

forward, can we rely on archival prostate tumour samples, nor-

mally small blocks that have been in paraffin for years, to stratify

mCRPC patients for somatic DNA repair defects?

Primary prostate cancers are essentially multifocal tumours, so

spatial genomic heterogeneity in primary tumours is inherent

[17] Treatment-mediated selective pressure before, or during, the

development of metastatic disease facilitates the selection of the

resistant clone or clones [18]. Also, polyclonal seeding and seed-

ing between metastases has been described and may contribute to

this selection process [19]. All these elements may confer a lower

degree of heterogeneity for advanced disease, but this would still

be a relevant feature to consider when stratifying patients.

Circulating biomarkers such as circulating-free DNA (cfDNA)

and circulating tumour cells (CTC) are promising sources for ob-

taining tumour genomic material through a minimally invasive

form of a liquid biopsy that can be repeated over time to account

for tumour evolution. Sequencing of cfDNA can provide muta-

tional data from different metastases represented in cfDNA and

can be used to monitor evolution in response and resistance to
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treatment [11, 20]. However, only a fraction of cfDNA comes

from tumour cells, and therefore in cases with low tumour con-

tent, particularly in earlier stages of the disease, assessment can be

challenging, particularly for copy number alterations. Assay de-

velopment should permit, within a few years, the addressing of

these issues. Circulating tumour cell analyses also permits single-

cell molecular characterization and therefore represent another

possible biomarker for spatial heterogeneity assessment; how-

ever, the costs and complexity of these assays still prevent

population-wide testing outside academic institutions.

Moreover, not all clones or metastases may be contributing

equally to circulating tumour genomic material. The key ques-

tion then is: how much of this heterogeneity is clinically relevant

in defining sensitivity to a certain treatment?

In conclusion, this case reported by Romero-Laorden et al. is

in line with previously published data, supporting evidence that a

molecularly defined subset of prostate cancer patients could

benefit from PARP inhibitors. Large clinical trials are ongoing to

validate these promising data. This case also highlights some of

the challenges that need to be addressed to successfully advance

the more precise care of mCRPC patients. We envision sequenc-

ing circulating tumour genomic material, in the forms of cfDNA

and CTC, to circumvent the limitations of single site biopsies.
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