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We demonstrate a versatile phase-change sub-micron contrast agent providing three modes of contrast
enhancement: 1) photoacoustic imaging contrast, 2) ultrasound contrast with optical activation, and 3)
ultrasound contrast with acoustic activation. This agent, which we name ‘Cy-droplet’, has the following
novel features. It comprises a highly volatile perfluorocarbon for easy versatile activation, and a near-

Keywords: infrared optically absorbing dye chosen to absorb light at a wavelength with good tissue penetration. It is
Phase-change contrast agent manufactured via a ‘microbubble condensation’ method. The phase-transition of Cy-droplets can be
DfOPIEt optically triggered by pulsed-laser illumination, inducing photoacoustic signal and forming stable gas
xl‘tcr:;';:jgzle bubbles that are visible with echo-ultrasound in situ. Alternatively, Cy-droplets can be converted to

microbubble contrast agents upon acoustic activation with clinical ultrasound. Potentially all modes offer
extravascular contrast enhancement because of the sub-micron initial size. Such versatility of acoustic
and optical ‘triggerability’ can potentially improve multi-modality imaging, molecularly targeted
imaging and controlled drug release.

© 2017 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY license

Photoacoustic

Optical/acoustic vaporisation
Multispectral optoacoustic tomography
(MSOT)

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Microbubble ultrasound contrast agents have been widely used
as a valueable imaging tool in clinical radiology and cardiology [1].
At the same time there continues to be extensive research efforts
focusing on new paradigms for contrast-enhanced ultrasound
imaging (CEUS) [2,3], and microbubble-mediated therapy [4,5].
However, these micron-sized microbubbles are limited to the
intravascular space [6]. As a means of exploring the extravascular
space, sub-micron phase-change droplets show widespread
interest [7,8]. They can potentially extravasate the ‘leaky’ cancerous
vasculature into interstitium [9] prior to vaporisation, providing
extravascular contrast enhancement upon the phase transition of
droplets to echogenic microbubbles. Vaporisation can be triggered
either acoustically or, for droplets containing an optical absorber,
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Imperial College London, London, SW7 2AZ, UK.
E-mail address: mengxing.tang@imperial.ac.uk (M.-X. Tang).
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optically. The optical activation of phase-change droplets can
provide photoacoustic contrast enhancement [10].

Existing studies on such dual-modality contrast agents have
demonstrated the generation of both optical and ultrasound
contrast after optical activation [ 10-16]. However these studies did
not explore the option of acoustic activation. This would add
versatility of vaporisation triggering, offering new possibilities in
dual mode imaging, molecular imaging and drug delivery.
Furthermore, high boiling point (b.p.) perfluorocarbons were used
in these studies, i.e., perfluoropentane (b.p.29°C)[10-12,17,18] and
perfluorohexane (b.p. 56 °C) [13,14,19]. Alow b.p. may be preferred,
to minimise un-wanted bioeffects [20], especially when activating
in deeper tissues. Although Dove et al. [21] engineered optically
triggered droplets using a low b.p. perfluorocarbon (decafluor-
obutane, DFB, b.p. —2 °C), the optical absorber employed (i.e. gold
spheres) may limit the imaging depth due to the weakly
penetrating plasmonic resonance wavelength (i.e. 535 nm).

In this study, we have employed an easily vaporisable sub-
micron, phase-shift droplet made with a highly volatile

2213-5979/© 2017 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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perfluorocarbon and formulated via condensation of pre-formed,
lipid-shelled microbubbles. This has previously shown great
promise as an extravascular contrast agent for diagnostic and
therapeutic ultrasound [6,8,22-26], including promise for eventual
clinical translation [27,28]. In this paper, we provide the first
demonstration of its potential for photoacoustic imaging, and thus
as a versatile three-mode agent. We developed and characterised a
new sub-micron phase-change droplet (Cy-droplets) by incorpo-
rating a near-infrared (NIR) optical absorber, i.e., a Cyanine7.5
bioconjugate, into the precursor microbubble membranes before
condensation. Cyanine?7.5 has a peak absorption at a wavelength of
788 nm, offering relatively good tissue penetration [29]. Here we
demonstrate that the Cy-droplet phase transition can either be
triggered by a pulsed laser to produce substantial photoacoustic
signal enhancement as well as subsequent ultrasound contrast, or
be triggered acoustically using clinical ultrasound pulses to
provide conventional ultrasound contrast.

2. Methods
2.1. Cyanine?.5 bioconjugation synthesis

Cyanine7.5 NHS ester (Lumiprobe GmbH, Germany) was
conjugated to the amine terminus of a commercially available
phospholipid with a PEG2000 spacer (DSPE-PEG(2000)-NH,) via a
NHS-mediated coupling reaction to afford the target Cyanine7.5
dye-functionalised phospholipid (DSPE-PEG(2000)-Cyanine7.5)
after purification by dialysis. DSPE-PEG(2000)-Cyanine7.5
(Fig. 1) was characterised by various analytical and spectroscopic
techniques (see Supporting information, Figs. S1-S2). In a typical
reaction, DSPE-PEG(2000)-NH, (3.0mg, 1.1 wmol) and 6 pL of
triethylamine were dissolved in 120 wL of dry DMSO. To this
solution, 120 L of DMSO containing Cyanine7.5 NHS ester (1.7 mg,
2.2 pmol) was added dropwise. The resulting mixture was allowed
to react at room temperature overnight under continuous stirring.
Distilled water was then added to the reaction mixture. The
solution was centrifuged, and the supernatant was passed through
a 0.45 wm filter to remove insoluble traces. The supernatant was
then dialysed using a Spectra-Por®™ Float-A-Lyzer™ G2 (Sigma-
Aldrich, Milwaukee, Wis) (MW cutoff of 3.5-5kDa) against water
(3 x500mL). The dialysate, containing the pure product, was
lyophilised and the residue dried in vacuo over P,0s. All lipids used
in this study were purchased from Avanti Polar Lipids, Inc., USA.

2.2. Cy-droplets synthesis

The lipid-coated, DFB-filled precursor Cy-microbubbles were
manufactured using a modified formulation described by Sheeran
et al. [6]. Briefly, the lipid mixture consisted of 1,2-dipalmitoyl-sn-
glycero-3-phosphocholine (DPPC), 1,2-dipalmitoyl-sn-glycero-3-
phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000]

(16:0 PEG2000 PE) and DSPE-PEG(2000)-Cyanine7.5 9:0.8:0.2
(Fig. 2), m:m:m (total lipid concentration of 0.85 mg/mL) dissolved
in a solution of propylene glycol, glycerol, and phosphate-buffered
saline (PBS) (15/5/8, v/v/v). The Cyanine7.5 concentration in the
lipid solution was 13 nM. Next, 1 mL of the resulting lipid solution
was sealed in a 2 mL glass vial and the headspace was then purged
with DFB at room temperature. The amount of DFB used to
synthesise the Cy-droplets (Fig. 2) was approximately 8.8 x 10~1°
mL per particle. The precursor Cy-microbubbles were produced via
mechanical agitation. Finally, the Cy-droplet emulsion was
obtained by condensing Cy-microbubbles using the method of Li
et al. [22].

2.3. Controls

Control samples included six groups: (1) precursor Cy-micro-
bubbles, (2) blank-microbubbles, (3) blank-droplets, (4) Cy-
solution, (5) blank-droplets in Cy-solution, (6) deionised water
(used to dilute all the experiment samples). The lipid-shell
compositions of both blank-microbubbles (precursor) and blank-
droplets were prepared in an identical fashion except for the lipid
composition, which consisted of DPPC, 16:0 PEG2000 PE in a molar
ratio of 9:1. The Cy-solution was prepared using a similar
procedure to the precursor Cy-microbubble lipid solution, by
substituting the lipid mixture with Cyanine7.5 NHS ester powder
and dispersing in the aforementioned propylene glycol, glycerol,
and phosphate-buffered saline diluent mixture. The concentration
of Cyanine7.5 dye was kept the same across all the controls and Cy-
droplet emulsion.

2.4. Characterisation of precursor Cy-microbubbles and Cy-droplets

The precursor Cy-microbubbles and Cy-droplets were observed
using both bright-field optical and confocal microscopy. Confocal
microscopy (Leica SP5 DMI 6000 CS, 60 x objective) was operated
to locate the fluorescence from precursor Cy-microbubbles and Cy-
droplets. Due to resolution limitations of those microscopes, only
size outliers of Cy-microbubbles and Cy-droplets could be
visualised to determine optical appearance and the location of
fluorescence. One hundred p.L aliquots of diluted (1:100) stock Cy-
microbubbles and Cy-droplet samples were imaged at a plane
through the cross section of the samples. The imaging slice
thickness was set to 0.76 pm. For bright-field microscopy (Nikon
Eclipse 50i, 40 x objective), 10 wL diluted samples were first
introduced into a haemocytometer and then sized and counted
according to the protocol detailed in Sennoga et al. [30]. The size
distribution of Cy-droplets was measured using dynamic light
scattering (DLS, Malvern Nano ZetaSizer, UK). Before measure-
ment, the DLS was calibrated using Latex particles with a mean
diameter of 750 nm. Following calibration, 10 wL of the stock
Cy-droplet emulsion sample was diluted in 90 pL milliQ water
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Fig. 1. Structure of the functionalised DSPE-PEG (2000)-Cyanine7.5 phospholipid.
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Fig. 2. Schematic showing the composition of Cy-droplet contrast agent.

(milliQ, Canada) in order to measure the droplet size. The ab-
sorption spectra of the Cy-droplet lipid solutions were then mea-
sured using a UV/VIS spectrometer (Lambda 25, PerkinElmer, UK).

2.5. Preparation of tissue mimicking phantom for in-vitro experiments

Two types of tissue mimicking (TM) agar phantoms were
prepared for optical vaporisation experiments. A Tubing-TM
phantom (Fig. 3(1)) was used for photoacoustic signal acquisition
by embedding a semi-transparent silicone tube (ID=1.5mm
OD=1.9mm, Harvard Apparatus, UK) in the centre of the
cylindrical agar-intralipid TM phantom (diameter=15mm,
length =10 cm). The agar-intralipid gel was manufactured follow-
ing the protocol adapted from Madsen et al. [31]. Briefly, the agar-
intralipid solution was made of 1.5% w/v agar powder (Fisher
Scientific, UK) and 1% v/v intralipid (20% emulsion, Sigma, UK) in
deionised and distilled water. Another dispersion-TM phantom
(Fig. 3(2)) with the same geometry was used for ultrasound

Tubing-TM phantom
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contrast measurements before and after laser illumination. It was
formulated by dispersing the Cy-droplet emulsion at 0.25% v/v in
agar-intralipid gel at 36 °C before gelation. The immobility of Cy-
droplets in the dispersion-TM phantom allowed separate ultra-
sound imaging before and after laser scan, necessary because the
MSOT system employed was incapable of ultrasound imaging.

2.6. Photoacoustic and ultrasound imaging experiment setup

For the photoacoustic imaging with optical vaporisation, the TM
agar phantoms were scanned with the MSOT system (inVision 256-
TF, iThera Medical). Cy-droplets and the six controls described
previously were diluted to 10% relative to stock solution in the
distilled/deionised water so as to keep the concentrations of
Cyanine7.5 dye identical. The temperature of the water bath was
held constant at 34°C throughout all optical vaporisation experi-
ments. The diluted Cy-droplet solution was introduced into the
tubing-TM phantom, and the cross-sections were scanned at three
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Fig. 3. (1) Schematic of the tubing-TM phantom used for photoacoustic signal acquisition (not to scale). (2) Ultrasound imaging and MSOT laser illumination with the
dispersion-TM phantom. (3) Experimental setup for acoustic activation of Cy-droplets and blank-droplets.
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positions (20 mm apart) along the longitudinal direction (Fig. 3
(1)). At each position, photoacoustic imaging was performed at a
single wavelength 788 nm (peak absorption of Cyanine7.5) with a
fluence of 22.6 mJ/cm? using one pulse (10ns pulses, 10 Hz pulse
repetition frequency) per image, resulting in 30's acquisition time.
For accurate ultrasound contrast assessment before and after laser
illumination, the problem of imaging a potentially mobile Cy-
droplet solution had to be overcome. To achive this, the dispersion-
TM phantom was imaged twice (Fig. 3 (2)). To activate Cy-droplets
laden in the phantom, half of the dispersion-TM phantom was
scanned longitudinally (along the phantom’s cylindrical axis) with
5s pulsed laser illumination at each position, with approximately
5 cm total scanning distance and 2 mm step size. The other half of
the phantom was used as control. Cross-sectional ultrasound
imaging of both halves of the same phantom was performed with a
Verasonics V1 system (Verasonics, USA) equipped with an L7-4
(ATL, USA) probe.

For ultrasound imaging with acoustic vaporisation, focused
pulses (8 MHz, 10-cycles, 3.39 MPa, mechanical index (MI)=1.2,
pulse-repetition-frequency = 14.3 kHz, total duration of exposure is
8.8 ms) transmitted from a clinical linear array probe L12-5 (ATL,
USA) were applied to activate the Cy-droplets. The ultrasound
contrast enhancement was quantified using a custom designed
‘imaging-activation-imaging’ sequence [22,32] on a Verasonics
Vantage 256 research platform. Single cycle, low amplitude
ultrasound at 4.5MHz (plane-waves of 15-angle spatial com-
pounding, 106.1 kPa, MI=0.05) was used at each imaging step to
estimate the ultrasound signal level from the contrast agent before
and after Cy-droplet activation. The same amount of stock Cy-
droplet and blank-droplet emulsion was introduced into a 2L water
tank (Fig. 3 (3)) filled with water and equilibrated to 37 °C [33] to
achieve a final concentration of approximately 10° droplets/mL.
Before each acquisition, the water was mixed to achieve a relatively
uniform distribution of droplets. Acoustic absorbers were used to
line the water tank to reduce ultrasound reflections.

2.7. Photoacoustic image beamforming

The photoacoustic images were presented after beamforming
the raw radiofrequency (RF) data extracted from the MSOT
ultrasound transducer using a customised Matlab (Mathworks,
USA) program. An image was formed by applying a temporal delay
for each channel according to different positions along the 270°
concave ultrasound transducer array followed by summing each
image component over all the 256 channels. The geometry
parameters were applied according to the MSOT ultrasound
transducer design described by Dima et al. [34].

2.8. Data analysis

For the photoacoustic experiment, both the raw RF data and the
beamformed photoacoustic images were used to measure the
relative photoacoustic signal levels. The first-pulse response of the
photoacoustic signal was presented along with six controls. In the
case of the beamformed images, the maximum pixel magnitude in
the region of interest (ROI) was used as a measure of the relative
photoacoustic image signal generated by Cy-droplet vaporisation.

For ultrasound echo signal evaluation, the mean image pixel
magnitude in the selected ROI was used to compare the echo signal
level before and after the activation of Cy-droplets. For ultrasound
imaging with acoustic activation, an ROI was chosen within the Cy-
droplet activation area (the focal zone) and used for analysing the
signal both before and after activation. The difference in mean pixel
magnitude within the ROI before and after the activation was
calculated.

For statistical analysis, each experimental result was produced
by at least three acquisitions. Student's t-test was used to compare
the statistical difference between groups with p>0.05 considered
to be not significantly different.

3. Results
3.1. Cy-droplet and precursor Cy-microbubble characterisation

The stock precursor Cy-microbubble solution (Fig. 4b) yielded a
concentration of ~5 x 10° microbubbles/mL, and a mean bubble
diameter of 1.02+0.40 wm. DLS (Fig. 4e) revealed an average
hydrodynamic diameter of approximately 400nm for both
Cyanine-droplets (Fig. 4c) and normal-droplets, with relatively
narrow size distributions (polydispersity index=0.986 and 0.509,
respectively). The Cy-droplets are metastable in the liquid state
under physiological conditions due to the energy barrier for
homogeneous nucleation [35], with a vaporization temperature of
75°C [36], even though they are superheated. Fig. 5(a and b) show
representative confocal microscopic images used to verify the
location of fluorescent lipid on precursor Cy-microbubbles and Cy-
droplets. The majority of Cy-droplets were beyond resolution
limits. The Cyanine7.5 lipid on microbubbles appeared as a circular
rim while the Cy-droplets that could be seen demonstrated
fluorescence throughout their projected area. The uneven circular
projected appearance of Cy-droplets was possibly due to the lipid
monolayer of the Cy-microbubble being ‘folded’ or ‘buckled’ after
condensation [37]. Fig. 5(c and d) show bright-field micrographs of
Cy-microbubbles and large Cy-droplets respectively (again, most
Cy-droplets were beyond the resolution limits). The absorption
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Fig.4. Cy-droplet emulsion preparation and characterisation. (a) 1 mL of Cy-droplet lipid solution with DFB gas sealed in a 2 mL glass vial, (b) precursor Cy-microbubbles after
mechanical agitation from Cy-droplet lipid solution, (c) Cy-droplet emulsion after Cy-microbubble condensation, (d) absorption spectrum of the Cy-droplet suspension
showing a peak absorption at 788 nm, and (e) size distribution obtained by DLS of the Cy-droplets revealing an average diameter of approximately 400 nm.



30 S. Lin et al./ Photoacoustics 6 (2017) 26-36

Cy-microbubble

Confocal
fluorescence
| C >
.
Brightfield ¢ o 5
microscopy b

Cy-droplets

Fig. 5. Microscopy of outlier precursor Cy-microbubbles and outlier Cy-droplets (those large enough to be resolvable), presented to illustrate the location of fluorescent lipid.
(a, b) Confocal fluorescence of Cy-microbubble and Cy-droplets. (c, d) Bright-field microscopy of Cy-microbubble and Cy-droplets. The scale bars are 10 pm.

spectrum of the Cy-droplet lipid solution had a peak at around
788 nm (half-maximum waveband ~710-840 nm) (Fig. 4d).

3.2. Photoacoustic signals and imaging contrast of Cy-droplets and
controls

The raw photoacoustic signal was plotted as a function of fast
time, which was the one-way time-of-flight calculated by using
sampling point number of each channel (i.e. 2030 points) and data
acquisition sampling frequency (40 MHz) [38]. Fig. 6 plots the
mean of the raw photoacoustic signal from 256 channels for the
first-pulse response of the Cy-droplets and six controls, with the
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Fig. 6. Amplitude of the raw (channel level) photoacoustic signal averaged over 256
elements of the ultrasound ring array, for the first laser pulse illuminating a 10%
diluted Cy-droplet solution and six controls. The photoacoustic signal generated
from the optical vaporisation of Cy-droplets (black line) produced more than an
order of magnitude (maximum mean amplitude 14.5 a.u.) higher signal amplitude
than six control groups. The black line and shaded error bar show the mean, and
plus and minus one standard deviation, respectively, over three measurements.

shaded error bar from three repeats (acquired at three positions
showed in Fig. 3(1)). The signal started to rise at about 25 s
corresponding to the position of the tubing-TM phantom. The Cy-
droplets produced more than an order of magnitude (maximum
mean amplitude 14.5 a.u.) higher signal amplitude than the noise
level, whereas none of the six controls produced a detectable
photoacoustic signal.

Typical beamformed photoacoustic images of Cy-droplets and a
control are demonstrated in Fig. 7. A 10% diluted Cy-droplet
suspension resulted in a 56.3 dB higher enhancement of the spatial
maximum imaging signal than six controls. Fig. 8 presents the
beamformed photoacoustic imaging signal for the first ten laser
pulses. The very first laser pulse vaporised most of the Cy-droplets
in the tube, generating substantial photoacoustic signal, while all
subsequent pulses produced little signal, possibly because few Cy-
droplets were left and suggesting that the enhanced signal was
produced by the vaporisation process. Fig. 9 demonstrates that the
photoacoustic signal induced by the vaporisation of Cy-droplets
(0.25% v/v) immobilised in the dispersion-TM phantom produced
8.1dB higher signal magnitude than the control (a ‘blank’ TM
phantom).

3.3. Photoacoustic signal and Cy-droplet concentration

For eventual in vivo use, an understanding is needed of the
relationship between the concentration of Cy-droplets and the
generated photoacoustic signal. Referring to Fig. 10, varying the
relative concentration of Cy-droplet solution produced a substan-
tial and significant increase in the first-pulse (vaporisation)
photoacoustic signal between 5% and 10% (relative to the stock
Cy-droplet solution) but no significant change from 10% to 25%.

3.4. Ultrasound echo enhancement via optical vaporisation

From the dispersion-TM phantom cross-sectional imaging, the
ultrasound echo signal was 11 dB higher where the Cy-droplets had
been exposed to pulsed laser illumination (Fig. 11a) than where
they had not (Fig. 11b). In Fig. 11c, the longitudinal view of the Cy-
droplet laden phantom demonstrates a distinct transition in echo
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Fig. 7. Beamformed photoacoustic images of (a) the first-pulse response of 10% diluted Cy-droplets and (b) that of a representative image of all six controls. The ‘white dashed
circle’ shows the ROI for data analysis, which outlines the external circumference of the tubing-TM phantom.
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Fig. 8. Normalised beamformed photoacoustic image signal amplitude within the analysis ROI for 10% diluted Cy-droplet solution and six controls, showing results for the
first ten laser pulses. The first laser pulse vaporised most of the Cy-droplets in the tube, generating substantial photoacoustic signal, while the following pulses, in contrast,
produced little signal because few Cy-droplets remained. None of the six controls produced a detectable photoacoustic signal.

strength at the boundary, indicated by the white dashed overlaid
vertical line, between the region that had been (Fig. 11c.left) and that
which had not been (Fig. 11 c.right) exposed to the laser. An equivalent
phantom with no droplets or particles of any kind embedded (Fig. 11d,
e, f) provided confirmation of the lack of echo signal from the
background material of the phantom, and that this did not change with
exposure to the laser. The echo signal layer at the bottom of images
was due to the reflection from an acoustically absorbing pad on which
the phantom was placed, used to reduce acoustic reverberations.

3.5. Ultrasound imaging with acoustic vaporisation of droplets

Fig. 12 shows representative ultrasound images before and after
acoustic vaporisation of droplets. Increased echo signal after

acoustic vaporisation appeared around the pre-set focusing depth
(16 mm) of the vaporising pulses and generated an average of
11.98 and 14.39-fold echo amplitude enhancement for Cy-
droplets (Fig. 12a, b) and blank-droplet controls (Fig. 12¢, d)
respectively, where the quantitative comparison is provided by
Fig. 13. There was no significant difference in the results
between Cy-droplets and control blank-droplets (p > 0.05). A few
echoes were seen before acoustic vaporisation, usually deep in
the water tank (Fig. 12a, c), and outside the focal depth after
vaporisation, most frequently immediately below the focal zone
(Fig. 12b, d).

Data underlying this article is available on request: please
contact ultrasound-imaging-group@imperial.ac.uk. A general li-
cence applies to all users of the data.
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Fig. 10. Means of the temporal maximum values across all transducer elements of
the magnitude of the first-pulse RF photoacoustic signal, for four different Cy-
droplet relative concentrations in the tubing-TM phantom. Clear saturation of the
photoacoustic signal occurs above a relative concentration of 10%.

4. Discussion
4.1. Overall results

When viewed in totality, the results demonstrate that the Cy-
droplets represent a new dual-triggerable and dual-modality sub-
micron phase-change contrast agent, which can be activated by a
pulsed laser or by diagnostic ultrasound pulses to offer both
photoacoustic and ultrasound signal enhancement via optical
vaporisation or by ultrasound echo imaging of the resultant
gaseous bubbles. Further work is needed to investigate aspects of
the results in more detail and to determine optical, acoustic and
signal processing parameters for optimised use.

4.2. Comparison with other optically activated phase change and dual-
mode agents

Other optically activated phase change agents that produce
dual-mode (photoacoustic and ultrasound) imaging include those
of Hannah et al. [11], who incorporated indocyanine green (ICG)

into the albumin shells of nanodroplets, and Wei et al. [19], who
used a nanoemulsion in which shell-less droplets were coated with
gold nanospheres. The advantages and disadvantages of each
approach have yet to be fully uncovered and studied. ICG seems to
be required in ~mM amounts (2 mM ICG was used in [11]) but has
the advantage that it is already approved for clinical use, and the
short lifetime (a few s [19]) of the cavitation bubbles generated
by pulsed illumination of the nanoemulsion may not be ideal for
ultrasound imaging. Ours is the first investigation of whether a
combined photoacoustic and ultrasound contrast agent can be
generated by condensing precursor fluorescent microbubbles
containing a low b.p. perfluorocarbon (i.e. DFB). In principle, any
suitable dye (or nanoparticle) could act as the optical absorber in
the precursor microbubble shell. Here we used Cyanine7.5
attached by bioconjugation. In combination with DFB, this
provided highly efficient triggering of vaporisation by a commer-
cially available photoacoustic imaging system, with only ~nM
amounts of the dye (13nM in this work). The system is also
versatile; our use of commercially available DSPE-PEG(2000)-NH,
for bioconjugation enables easy attachment of targeting ligands
(e.g. folate for intracellular delivery [39]) and/or complementary
imaging units (e.g. Gadolinium(IlI)-DOTA) to incorporate addi-
tional functionalities. Finally, as noted in [39], the use of DFB also
enables efficient use in the third imaging mode, acoustic triggering
of vaporisation, at an FDA approved MI consistent with clinical use.
All other published microbubble or droplet based dual contrast
agent studies that we could find have very different objectives and
modes of action, involving fluorescent dyes to provide either dual
ultrasound-fluorescence imaging (e.g. [40,41]) or dual fluorescence
and magnetic resonance imaging (e.g. [42]), making direct
comparison with the present work inappropriate.

4.3. Concentration dependence

Changing the Cy-droplet relative concentration from 5% to 10%
nearly doubled the photoacoustic signal enhancement (Fig. 10),
probably because a greater number of Cy-droplets yielded more
optical vaporisation events [22] producing a higher density of
acoustic sources. Further study is required to determine the
linearity and concentration range of this dependence. Saturation of
the photoacoustic signal enhancement above a relative concen-
tration of 10% is not at present fully understood, and requires
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Fig. 11. Ultrasound echo enhancement produced by optical activation of Cy-droplets immobilised in the dispersion-TM phantom, and comparison with the control phantom
(no droplets). (a, d) cross-sectional echo images of the Cy-droplet laden phantom and control phantom after pulsed laser illumination. (b, e) Cross-sectional images of the Cy-
droplet phantom and control where there had been no laser irradiation. (c, f) Longitudinal images of the Cy-droplet phantom and control, in which the white dashed vertical
line indicates the boundary between the regions exposed and not exposed to the laser. The band of echoes at the bottom of the images was due to the reflection from an anti-
reverberation pad. White dashed overlaid circles highlight the phantom cross-sectional area and the ROI for data analysis. Scale bar is 5 mm.
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Fig. 13. Quantitative comparison of relative ultrasound echo strength before and
after acoustic vaporisation of Cy-droplets and blank-droplets (no dye) in water at
37°C. There was no significant difference (‘ns’) between the echo strength from Cy-
droplets and blank-droplets, either before (p=0.46) and after (p=0.56) acoustic
vaporisation. Vaporisation caused more than a ten-fold increase in echo strength.

further study, but may be associated with signal saturation within
the photoacoustic detection system.

4.4. Optical activation threshold energy

It is helpful to know that, as demonstrated here, standard laser
pulses used for photoacoustic imaging were sufficient to activate
the Cy-droplets, and that this was achieved with a laser fluence
that was below the safe limit (100mJ/cm?) for human skin
exposure [12]. Nevertheless, further lowering of the threshold for
vaporisation, while preserving general stability, is preferable to
enable deep tissue optical activation. More detailed studies are
needed of the dependence of the optical vaporisation threshold on
laser exposure parameters such as fluence, and on droplet
properties. For example, the larger the droplet the lower the laser
fluence needed to achieve phase transition [12]. In this study, a
polydispersed precursor microbubble size distribution produced
polydispersed droplets. In future studies it would be desirable to
select the size of droplets [28], to investigate the optical activation
threshold energy as a function of size. It is also important to
optimise the amount of Cyanine7.5 on the lipid membrane of
precursor microbubbles, since this will affect the optical activation
threshold. Further tuning may be achieved by altering the boiling
point of the gas, or combinations of gases, in the precursor bubbles
[43]. Finally, the lipid composition of the shell, particularly lipid
acyl chain length, can affect phase-change activation energy [36],
suggesting opportunities, for example, to replace 1,2-dipalmitoyl-
sn-glycero-3-phosphocholine (DPPC, C16) with a lipid possessing a
shorter acyl chain, e.g., 1,2-dimyristoyl-sn-glycero-3-phosphocho-
line (DMPC, C14).

4.5. Selection of optical absorber and possibilities for “droplet
recognition imaging”

The peak absorption wavelength of Cyanine7.5 (788 nm) is
within the ‘imaging optical window’ of biological tissue (600-
1300 nm) [44] with minimal tissue attenuation that enables deep
penetration of light, making the Cy-droplets amenable to
enhancing the sensitivity of whole body small animal vascular
and molecularly targeted imaging. Although ICG also has absorp-
tion in this window, with the additional advantage that it is
approved for clinical use, it has poor photostability, a molar
absorption coefficient [29] that is much lower than that of
Cyanine7.5 (over 200,000mol 'ecm~'L) and its fluorescence

emission is of no value in the present context which uses only
the absorbed energy (the relatively low quantum yield of
Cyanine7.5 contributes to its efficient transfer of optical energy
to heat for vaporisation). Finally, Cyanine7.5 was shown to have
quite a narrow absorption spectrum (710-840nm). This may
provide opportunities for future work to explore whether the
optical vaporisation threshold can be adjusted so that only a
narrow range of wavelengths will induce a phase change and thus
elicit a photoacoustic or ultrasound signal enhancement. If this were
shown to be the case, it brings about two important possibilities.
First, changing the optical wavelength may allow a limited form of
vaporisation spectroscopy for photoacoustic imaging of the agent
(e.g. starting at wavelengths not expected to cause a phase
transition), so that the method may go beyond simple signal
enhancement to agent recognition imaging, by analogy to the way
that nonlinear (e.g. pulse-inversion) techniques have taken
conventional microbubble ultrasound imaging beyond simple blood
echo signal enhancement. Admittedly, such tissue background-
suppressed imaging of the agent might be achieved (in the absence
of significant tissue motion) also by vaporisation contrast subtrac-
tion imaging, but there may be advantages in combining both
temporal and wavelength subtraction approaches. Second, the
whole cyanine dye family (e.g. from Cyanine3 to Cyanine7.5) is
commercially available, offering a range of peak absorption wave-
lengths and raising the tantalising possibility of co-administering
various Cy-droplet types into the blood stream, each with different
activation wavelengths for differential droplet recognition. This may
be useful if, for example, each droplet type were functionalised to
bind to a different molecular target. These features make cyanines
very promising candidates for the optical absorber, particularly
during this research phase of the work. Although cyanines have not
been approved by FDA for clinical use, other dyes, or nanoparticles,
could be easily substituted and may offer similar possibilities.

4.6. Synergistic effect of combining ultrasound and optical energy for
lowering the vaporisation threshold

Previous studies have shown that the simultaneous deposition
of optical (laser illumination) and acoustic (ultrasound rarefac-
tional pressure) energy can lower exposure thresholds to achieve
enhanced photoacoustic and/or acoustic signal from various
contrast agents [45-47]. Future work will involve investigating
the vaporisation thresholds of Cy-droplets excited with a
nanosecond laser pulse coinciding with various phases of an
ultrasound activation wave. In particular, based on the observation
in [48], that vaporisation microbubbles can emerge from droplets
through the first rarefactional phase of an ultrasound pulse, we
hypothesise that the vaporisation threshold can be most reduced
by aligning laser pulses to a rarefactional phase. Such synergism
could be harnessed to improve vaporisation imaging depth, as well
as sensitivity and specificity of targeted molecular imaging and
therapy using Cy-droplets.

4.7. Acoustic vaporisation thresholds

Echoes seen before acoustic vaporisation (Fig. 12a, c¢), suggest
spontaneous vaporisation of some droplets. These were usually
spotted deep in the water tank, and therefore may correspond to
larger droplets which would more readily undergo spontaneous
phase change. This would be consistent with the echoes that
appeared outside the focal depth after vaporisation, which most
frequently appeared immediately below the focal zone (Fig.12b, d),
i.e., they were possibly due to acoustic vaporisation of the largest
droplets which would have had the lowest acoustic vaporisation
thresholds compared with the majority of droplets. Future studies
are required to fully characterise the acoustic vaporisation.
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5. Conclusion

In this study, we have demonstrated the development and
characterisation of an optically and acoustically triggerable sub-
micron phase-change contrast agent ‘Cy-droplets’ manufactured
with a highly volatile perfluorocarbon via the ‘microbubble
condensation’ approach. For optical droplet activation, Cy-droplets
generated substantial photoacoustic transient signal from the
vaporisation light pulse, and gas bubble formation thereafter
provides stable enhanced ultrasound signal. For acoustic activa-
tion, Cy-droplets can be vaporised using external acoustic energy
with clinical diagnostic ultrasound pulse parameters, offering
ultrasound echo imaging contrast. This versatility offers photo-
acoustic-ultrasound dual imaging and high selectivity, which
would benefit cancer molecular imaging and targeted drug
delivery using Cy-droplets.
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