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Purpose: 3D ultrasound (US) images of the uterus may be used to adapt radio-

therapy (RT) for cervical cancer patients based on changes in daily anatomy. This

requires accurate on-line segmentation of the uterus. The aim of this work was to

assess the accuracy of Elekta’s “Assisted Gyne Segmentation” (AGS) algorithm in15

semi-automatically segmenting the uterus on 3D transabdominal ultrasound images

by comparison with manual contours.

Materials & methods: Nine patients receiving RT for cervical cancer were im-

aged with the 3D Clarity R© transabdominal probe at RT planning, and 1 to 7 times

during treatment. Image quality was rated from unusable (0) - excellent (3). Four20

experts segmented the uterus (defined as the uterine body and cervix) manually and

using AGS on images with a ranking > 0. Pairwise analysis between manual con-

tours was evaluated to determine interobserver variability. The accuracy of the AGS

method was assessed by measuring its agreement with manual contours via pairwise

analysis.25

Results: 35/44 images acquired (79.5%) received a ranking > 0. For the manual

contour variation, the median [interquartile range (IQR)] distance between centroids

(DC) was 5.41 [5.0] mm, the Dice similarity coefficient (DSC) was 0.78 [0.11], the

mean surface-to-surface distance (MSSD) was 3.20 [1.8] mm, and the uniform margin

of 95% (UM95) was 4.04 [5.8] mm. There was no correlation between image qual-30

ity and manual contour agreement. AGS failed to give a result in 19.3% of cases.

For the remaining cases, the level of agreement between AGS contours and manual

contours depended on image quality. There were no significant differences between

the AGS segmentations and the manual segmentations on the images that received a

quality rating of 3. However, the AGS algorithm had significantly worse agreement35

with manual contours on images with quality ratings of 1 and 2 compared with the

corresponding interobserver manual variation. The overall median [IQR] DC, DSC,

MSSD, and UM95 between AGS and manual contours was 5.48 [5.45] mm, 0.77 [0.14],

3.62 [2.7] mm, and 5.19 [8.1] mm, respectively.

Conclusions: The AGS tool was able to represent uterine shape of cervical cancer40

patients in agreement with manual contouring in cases where the image quality was

excellent, but not in cases where image quality was degraded by common artifacts

such as shadowing and signal attenuation. The AGS tool should be used with caution
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for adaptive RT purposes, as it is not reliable in accurately segmenting the uterus

on ‘good’ or ‘poor’ quality images. The interobserver agreement between manual45

contours of the uterus drawn on 3D US was consistent with results of similar studies

performed on CT and MRI images.

a)Electronic mail: sarah.mason@icr.ac.uk
b)Electronic mail: emma.harris@icr.ac.uk
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I. INTRODUCTION

Uterine motion reduces the accuracy of external beam radiotherapy (RT) for cervical

cancer,1,2 with positional changes ranging from 2 to 60 mm between treatments2–5. To50

compensate for this positional uncertainty of the uterus, the planning target volume (PTV)

for the primary tumor site (i.e. excluding nodal disease) is commonly generated by expanding

the clinical target volume (CTV) by 6 - 40 mm6. This leads to increased dose to surrounding

normal tissues and incidence of adverse effects (such as both chronic and acute bladder,

gastrointestinal, and hematological toxicities) and in addition, may not be sufficient for55

adequate uterus coverage in some cases2,7–11.

At present, most verification schedules rely on either megavoltage portal imaging or cone

beam CT (CBCT) imaging of the bony anatomy. These images are commonly reviewed

immediately prior to radiation delivery, and are used to correct for random errors by shifting

the couch to align the patient’s bony anatomy position during treatment with its position60

during planning (i.e. position in the CT simulation [SIM] image)12. However, a perfect

bone-match does not guarantee correspondence between the soft-tissues; residual uncertainty

regarding the shape and position of the uterus remains.1,2. One approach to correct for this

uncertainty uses fiducial markers as a surrogate for soft-tissue imaging. Markers can be

inserted into the uterus and imaged with x-ray based modalities, though this is invasive and65

not always reliable as the fiducials can migrate6,13,14.

The Clarity R© ultrasound-guided RT (USGRT) system (Elekta Ltd., Stockholm, Sweden)

has been developed to provide soft-tissue imaging to improve the accuracy of RT for gyne-

cological cancer compared with bony anatomy-based image guidance. Briefly, the Clarity R©

system may be used to acquire ultrasound images in the planning CT room (US-SIM) and70

treatment room (US-Tx) frame of reference using an infrared-tracked transducer that is spa-

tially calibrated to the treatment co-ordinate system15. In the context of cervical cancer RT,

this technology allows the user to localize the uterus on US with respect to the isocenter

of the RT treatment room. This could enable: (i) soft-tissue-based couch shifts, and/or

(ii) adaptive RT, where the uterine shape at the time of treatment is explicitly taken into75

account. Although soft-tissue based couch shifts resulting from USGRT may improve the

alignment of the uterine centroid with the treatment room isocenter, they do not address

the issue of healthy-tissue sparing because large margins to account for organ deformation
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are still required. Adaptive RT is therefore an attractive alternative because the RT beam

aperture can be modified according to the shape and position of the target at the time of80

RT delivery to ensure adequate target coverage whilst minimizing the organ at risk (OAR)

radiation exposure. Segmentation of the uterus could allow for automated selection of the

plan-of-the-day from a library of pre-defined treatment plans, or for on-line treatment re-

planning according to the patient’s anatomy at each treatment fraction.5,16,17.

Manual contouring by an expert can be considered a gold standard for organ segmenta-85

tion, though this is too time consuming to be a feasible option for on-line adaptive RT18,19.

On-line segmentation must be achieved on a timescale of minutes so that the additional

time that the patient spends on the treatment couch during segmentation does not result in

patient discomfort and/or movement, a delay in the clinical workflow, or significant natural

changes in internal anatomy (such as bladder filling) that would displace the uterus from its90

position when it was first imaged. For such applications a rapid method of capturing the

3D uterine outline at treatment time is greatly needed.

One method of localizing regions of interest (ROIs) at treatment is to incorporate a priori

knowledge of ROI shape and size, which can be obtained from US-SIM. The Clarity R© sys-

tem implements this approach by requiring a user to manually shift a Reference Positional95

Volume ([RPV] - the set of rigid manual ROI contours drawn on the US-SIM image) to best

match the apparent position of the ROI as visualized by US-Tx. This allows for estimation

of the ROI centroid position for soft-tissue based patient setup. However, in the context of

adaptive RT, this approach requires that the ROI undergo little or no deformation through-

out the course of treatment so that the RPV is still a valid representation of the patient’s100

anatomy at the time of radiotherapy delivery. Since the large amount of deformation oc-

curring in the uterus violates this constraint, rigid registration-based techniques (including

Clarity’s R© RPV method) for localizing the uterus at the time of treatment are not suitable

for adaptive radiotherapy, as shown in Figure 128.

An alternative to manual contouring is to use a segmentation algorithm to automatically105

or semi-automatically (i.e. where user-interaction is required) contour the uterus in 3D in

place of an expert. To our knowledge, Elekta is the first to develop an automated solution

for segmenting the uterus on 3D transabdominal US images via the “Assisted Gyne Seg-

mentation” (AGS) tool20. However, similarly to the RPV method, the AGS tool is currently

only used to guide soft-tissue based couch shifts according to the apparent centroid position110
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FIG. 1. Example of rigid registration ROI localization technique, where a Reference Positional

Volume (RPV) from SIM is used to localize the uterus as visualized by US at treatment (US-

Tx). Note that the RPV is often a poor representation of the uterus at the time of treatment

(particularly at US-Tx1 and US-Tx14) due to the large amount of uterine deformation.

at treatment.

There may be considerable patient benefit in adaptive RT from employing a method

that can automatically, and hence rapidly, segment the 3D uterine shape on 3D US images.

However, neither the AGS tool nor any other method for automatically segmenting the

uterus has yet been assessed for its accuracy and hence potential for application in adaptive115

RT. In this work, the following research questions were addressed:

1. What is the accuracy of the AGS tool in segmenting the uterus on 3D transabdominal

US images? This was quantified by pairwise comparison with corresponding manual

contours, which led to the secondary research question:
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2. What is the interobserver variability in contouring the uterus on 3D transabdominal120

US images? This variability was used as a reference for the ideal accuracy of a semi-

automated segmentation method.

3. What is the effect of image quality on both (1) AGS tool accuracy and (2) interobserver

contour variation.

All analyses were performed on 3D transabdominal US images acquired from nine cervical125

cancer patients.

II. MATERIALS & METHODS

A. Data Acquisition

Nine patients receiving radiotherapy for cervical cancer were included in this study: six

from Herlev Hospital, Copenhagen, Denmark (23 US images acquired) and three from the130

Royal Marsden NHS Foundation Trust, London, UK (21 US images acquired). Ethical

approval for these studies was obtained from the ‘De Videnskabsetiske Komiteer’ and the

‘NHS Research Ethics Committees (reference: 15/LO/1438)’ respectively. Median patient

age was 49.5 years (range 36 - 65 years), median body mass index (BMI) was 27.6 (range 21.5

- 40.7), and median FIGO cervical cancer stage was IIB (range IIB - IIIB). The six patients135

from Herlev were instructed not to pass urine approximately one hour prior to RT treatment.

The three patients from the Royal Marsden Hospital were asked to drink 200mL of liquid

and to refrain from passing urine in the hour prior to treatment. After being positioned on

the couch, 3D transabdominal US images of the uterus were acquired for each patient at 2 to

8 times (once at US-SIM and 1-7 times at US-Tx) during the course of treatment. All scans140

were acquired with the Clarity R© USGRT system (Clarity R© Model 310C00, Elekta, Montreal,

Canada), using a 3D mechanically swept convex 5 MHz transducer (m4DC7-3/40), with the

pressure between the US transducer and the patient’s skin as low as possible to minimize

soft-tissue displacement.
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B. Segmentation145

Manual Segmentation: Four experts (two clinical oncologists (IMW and SL), one ra-

diologist (KD), and one researcher trained by an oncologist (SAM)) manually contoured

the uterus in the sagittal plane on a RayStation 5.0 workstation (RaySearch Laboratories,

Stockholm, Sweden) for all US-SIM and US-Tx images analyzed. In this study, the ‘uterus’

is referred to as a single structure containing both the uterine body and cervix.150

AGS segmentation: The core of the AGS tool is a discrete dynamic contouring (DDC)

algorithm, which is a gradient-based segmentation technique commonly used in prostate

segmentation applications22. Elekta have adapted the methods employed by Ladak et al.18,

Hu et al.23, and Ghanei et al.24, such that the algorithm semi-automatically segmented the

uterus on US. The same four experts who performed the manual uterine segmentations used155

the AGS tool to segment the uterus on all US image volumes. This required an initialization

step where four hint points were placed on uterine features (the uterine fundus, both isthmus

points, and base of the cervix) on a central sagittal slice (Figure 2).

FIG. 2. (a) Snapshot of AGS tool user interface and (b) resulting segmentation, where the place-

ment of 4 anatomical hint points is required to initialize AGS segmentation. The hint points are

the uterine fundus and base of the cervix (yellow squares), and the anterior and posterior isth-

mus points (green circles). The resulting segmentation is shown in yellow on three slices from the

coronal, transversal, and sagittal planes, respectively
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TABLE I. Scale used to rate image quality of transabdominal US uterine scans

Rating Criteria

0 - Unusable Impossible to identify any structures in the US image

1 - Poor
Uterine boundaries blurred in the majority of planes and slices.

Imaging artefacts severe and/or prevalent

2 - Good

Uterine boundaries may be partially obscured or difficult to discern

due to moderate imaging artifacts, but still visible in the

majority of slices and anatomical planes

3 - Excellent
Clearly defined uterine boundaries in all three anatomical planes.

Subtle or no imaging artifacts present

C. Data Analysis

1. Image Quality rating160

Each 3D US image was rated twice on a 4-point scale according to the criteria listed in

Table I by one observer (SAM), with at least 10 days in between ratings of the same image.

Any image receiving a rating of 0 at least once was excluded from further analysis. The final

rating for the remaining images was calculated as the mean rating for each image, rounded

to the nearest integer.165

2. Contour Agreement

Interobserver manual contouring variation was assessed by measuring the pairwise agree-

ment between the four manual contours drawn on each US image; i.e each observer contour

was compared with the other 3 observers’ contours giving 12 pairwise comparisons per im-170

age. The accuracy of the AGS tool was quantified by measuring its agreement with manual

contours via pairwise analysis; blue i.e. each AGS contour was compared with each manual

contour, giving 16 pairwise comparisons per image. In some instances, the AGS algorithm

did not produce a contour at all; these cases were referred to as failed segmentation attempts,

and were excluded from the quantitative analyses. The AGS segmentation attempts that175

failed were reported as a percentage of all AGS segmentations attempted. In all cases,
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‘contour agreement’ was assessed using the following 4 metrics, where A and B represent

hypothetical 3D contours:

1. The Euclidian distance between the centroids (DC) of A and B. The centroid of the

uterus (a point identified by its x, y, and z coordinates in the treatment room frame180

of reference) is currently used in the Clarity R© workflow to suggest soft-tissue-based

couch shifts; discrepancies between A and B were considered to be setup errors in the

patient position. A perfect DC was defined as 0 mm.

2. The 3D Dice similarity coefficient (DSC), defined as (2|A ∩ B|)/(|A| + |B|), where

a DSC of 0 and a DSC of 1 indicate zero and perfect overlap respectively. Good185

agreement (across a range of anatomical sites and imaging modalities) was considered

to be ∼> 0.7525–27.

3. The mean surface-to-surface distance (MSSD) was defined as the mean of the Euclidean

distances between every vertex on the surface of A and its nearest neighboring vertex

on the surface of B. Like the DSC, the MSSD is a measure of segmentation accuracy,190

though it is more sensitive to strong local deviations in shape. A perfect MSSD was

defined as 0 mm, and good contour agreement (across a range of anatomical sites and

imaging modalities) was considered to have an MSSD of ∼ 3 mm or less28–31.

4. The Uniform Margin of 95% (UM95)28 was defined as the margin required (in mm)

to uniformly expand A to create A’, such that at least 95% of the volume of B was195

included in the volume of A’. The UM95 was used to indicate the contribution of

localization accuracy to the overall treatment margin required in RT.

3. Statistical analyses

Interobserver manual contour agreement: A Wilcoxon rank sum test with Bonferroni

correction was used to test for differences in DC, DSC, MSSD and UM95 between manual200

contours in each image quality rating group (1,2, and 3) to see whether agreement between

observers increased with improving image quality.

AGS segmentation accuracy: A Wilcoxon rank sum test was used to test for differences

in DC, DSC, MSSD and UM95 between AGS and manual contours for all images, and
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when the images where grouped according to image quality (ratings 1, 2, and 3). The205

interobserver manual contour agreement was used as a benchmark to gauge the performance

of semi-automatic segmentation methods; ideally, the agreement between an algorithmically-

derived contour and a manually-derived contour should be the same as the variation in

agreement between manual contours. To investigate whether better image quality improved

AGS segmentation performance, a Wilcoxon rank sum test with Bonferroni correction was210

used to test for differences in DC, DSC, MSSD, and UM95 within each group (image quality

ratings of 1, 2, and 3).

III. RESULTS

Image Quality Rating : 35 of the 44 US images acquired had an image quality rating of

1 or higher, and were included in subsequent quantitative analyses: 6/35, 18/35, and 11/35215

US images received ratings of 1, 2, and 3, respectively.

Interobserver manual contour agreement : The median [interquartile range (IQR)] DC,

DSC, MSSD, and UM95 results for the interobserver manual contouring variation are given

in Table II, and Figure 3. The overall medians [IQR] for the DC, DSC, MSSD and UM95

were 5.41 [5.0] mm, 0.78 [0.11], 3.20 [1.8] mm, and 4.04 [5.8] mm respectively. Images with220

a quality rating of 2 had a significantly lower (p < 0.05) DC, DSC, and MSSD than images

with a quality ratings of 1 or 3 in every metric but UM95 (Table II). There was no statis-

tical difference between images with a ranking of 1 and 3 in any of the agreement metrics

considered.

AGS contours acquired : Out of 140 attempts at using the AGS tool to segment the uterus225

(35 US images ∗ 4 observers), 113 AGS contours were successfully obtained (80.7%), whereas

the algorithm failed to return a result in 27 cases (19.3%). The 27 cases with no result were

excluded from the quantitative analysis.

AGS segmentation accuracy : The median [IQR] DC, DSC, MSSD, and UM95 results

for the AGS segmentation accuracy are given in Table II. The AGS segmentations had a230

significantly better accuracy (i.e agreement with manual contours) on images with a rating

of 3 than images rated 1 or 2. However, there was no difference in segmentation performance

between Rating 1 images and Rating 2 images. The AGS algorithm agreed with manual

contours on images that received a rating of 3, as there was no significant difference between
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TABLE II. Col 3 : Agreement (median [IQR]) between manual contours from different observers and

Col 4 : accuracy of the AGS tool, measured by pairwise analysis with manual contours. Symbols

indicate statistical differences (p < 0.05) between image ratings within a particular group: γ

- statistically different to Rating 1, δ - statistically different to Rating 2, and φ - statistically

different to Rating 3. Note that the AGS tool accuracy was significantly better in Rating 3 images

than Rating 2 images (all cases) and rating 1 images (DSC, MSSD, UM95). (Abbreviations: DC

= distance between centroids, DSC = Dice similarity coefficient, MSSD = mean surface-to-surface

distance and UM95 = uniform margin of 95%.)

Image

Quality

Inter-observer

variability

(manual contours)

AGS tool

accuracy

DC (mm)

All Images 5.41 [5.0] 5.48 [5.45]

Rating 1 4.33 [2.9] 5.46 [2.8]

Rating 2 6.03 [6.7]γ, φ 6.29 [7.0]

Rating 3 5.26 [4.3] 4.64 [5.12]δ

DSC

All Images 0.78 [0.11] 0.77 [0.14]

Rating 1 0.79 [0.08] 0.74 [0.11]

Rating 2 0.76 [0.13] γ, φ 0.71 [0.16]

Rating 3 0.81 [0.09] 0.81 [0.09]γ, δ

MSSD (mm)

All Images 3.20 [1.8] 3.62 [2.7]

Rating 1 3.13 [0.08] 4.47 [2.1]

Rating 2 3.33 [1.0] φ 4.38 [2.8]

Rating 3 3.06 [1.5] 2.58 [1.4] γ, δ

UM95 (mm)

All Images 4.40 [5.8] 5.19 [8.1]

Rating 1 4.33 [4.0] 8.08 [8.5]

Rating 2 4.62 [6.9] 6.35 [8.7]

Rating 3 4.01 [5.8] 2.89 [5.2]γ, δ

them in all metrics considered (Figure 3). However, the AGS algorithm was less accurate235

in segmenting the uterus on Rating 1 images according to all metrics considered, and also

less accurate on Rating 2 images according to DSC, MSSD, and UM95. Overall, the AGS
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FIG. 3. Boxplot showing interobserver variability between manual contours (shaded boxes) and

the accuracy of the AGS algorithm as measured by agreement with manual contours (white boxes).

The asterisks denote statistical differences between manual and AGS segmentations (p < 0.05).

Note that there were no significant differences between the AGS and manual segmentations in

images with a quality rating of 3 (excellent) on any metric considered. Also note the that the

AGS segmentations were significantly different from manual contours on rating 1 (poor) quality

images for every metric considered. Abbreviations: DC = distance between centroids, DSC = Dice

similarity coefficient, MSSD = mean surface-to-surface distance, and UM95 = uniform margin of

95%

algorithm was statistically equivalent to manual contouring in terms of DC and DSC, but

not in terms of MSSD and UM95.
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IV. DISCUSSION240

Image quality rating : Low bladder volume and high BMI can increase the attenuation

of US and reduce image quality32,33. Not only does a full bladder help with tissue sparing

in RT treatment for cervical cancer, but it has the added benefit of providing an acous-

tic “window” to the uterus, as urine has a low US attenuation coefficient compared with

surrounding tissues. Patients with a high BMI are likely to have a greater amount of adi-245

pose tissue through which the US must travel, which may be important because fat has a

relatively low speed of sound and its presence can cause image aberrations due to acous-

tic refraction, wave aberration, reverberations, steering errors, focusing errors and spatially

dependent image scale mis-calibration. These factors may explain why eight of the nine

of the unusable images (i.e. received an image rating of ‘0’) were acquired from patients250

who did not follow a stringent drinking protocol (the Herlev cohort), and why four of the

nine unusable images were obtained from the same patient, who had the highest BMI (36.5)

of the patients included in this study. Additionally, care was taken to apply low pressure

to the abdomen when acquiring the US images to avoid internal soft-tissue displacement;

though this is crucial for RT applications, this comes at the cost of poorer image quality255

as contact between the transducer and the skin surface is decreased34,35. A larger study is

needed to investigate methods of overcoming these challenges associated with implementing

US guidance in adaptive RT to reduce the risk of obtaining an unusable image. One poten-

tial solution could be to ensure an adequate level of bladder filling at the time of treatment

by enforcing a stringent drinking protocol, or by finding ways to compensate for variables260

such as poor hydration over the previous twenty four hours prior to treatment or reduced

bladder capacity often occurring during treatment. Another solution could be establishing

inclusion/exclusion criteria to identify good candidates for transabdominal US scanning.

However, it should be noted that even without such measures in place, approximately 80%

of the US images acquired in this study were used to successfully identify the position and265

shape of the uterus at the time of RT treatment.

Interobserver manual contour agreement : The DC, DSC, and MSSD values reported here

(medians of 5.4 mm, 0.78, and 3.20 mm respectively) are consistent with those reported in

similar studies, though a direct comparison was not possible due to differences in: imaging

modalities used, the disease status of the cohort investigated, the anatomical site contoured,270
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and the number of observers. Baker et al. reported a median DC of 6.0 mm between contours

of two observers in manually delineating the uterus on 3D US on a healthy volunteer cohort36.

In the literature, reported values of the DSC between manual contours drawn on CT and

MRI images for a variety of anatomical sites ranged from ∼ 0.7 - 0.9825,26,37,38 with ∼ 0.7-

0.8 generally considered acceptable25–27. The MSSD between manual contours drawn on275

US, CT, and MRI images reported in the literature for a variety of anatomical sites ranged

from ∼ 1 - 5 mm26,31,39,40. The fact that the UM95 required to overcome interobserver

contouring variability in this study (median [IQR] of 4.04 [5.8] mm) was much smaller than

the interfractional uterine motion commonly observed, (which can be as much as 60 mm)

supports the idea that USGRT could reduce the size of the margins needed to compensate280

for organ motion, even in the presence of contouring uncertainties5.

As shown in Figure 4, common areas of disagreement between manual contours observed

in this study arose from determining the left-right extent of the uterus, and distinguishing

the base of the cervix from the top of the vagina. This may be attributed to problems

associated with contouring in the sagittal plane. The agreement between manual contours285

did not correlate with improving image quality, despite the uterine boundary becoming

sharper in higher quality images. This may be due to the experts’ abilities to infer the

boundary of the uterus in places where it was obscured using prior knowledge of uterine

shape and/or relative orientation of other anatomical landmarks in the US field of view. Even

in the presence of these sources of disagreement, the manual contour agreement reported290

here is comparable with previous contouring variability studies, indicating that the uterus

can be visualized with 3D transabdominal US at the time of RT treatment. Furthermore,

USGRT could be dosimetrically beneficial to cervical cancer patients as the component of

the margin needed to compensate for contouring variability (represented by the UM95) is

still much smaller than the margin that is needed to compensate for uterine motion without295

any form of soft-tissue guidance.

AGS tool performance: When applied to images acquired from cervical cancer patients at

RT treatment, the AGS tool failed to return a result in nearly 20% of segmentation attempts,

which is unacceptable for use in adaptive RT considering that an ideal segmentation method

should produce a result in 100% of segmentation attempts. This occurred in cases where the300

image quality rating was 2 or lower, indicating that a clearly defined boundary in all three

anatomical planes is required to ensure that the AGS tool functions. Potential solutions
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FIG. 4. Heatmaps showing interobserver manual contour variability displayed on the uterine

isosurface. Dark blue indicates 0mm deviation, and yellow indicates > 10mm deviation. The scale

of the heatmap is different for each image. Note that the largest deviations tend to be in the

left-right uterine edges and the base of the cervix (red arrows). The orientation of the uterus is

given by axes in bottom right corner (A = anterior, S = superior, and L = left) Labels in bottom

left corner of each image indicate the patient number (P2, P7, or P8) and time point where image

was obtained (week = wk). For corresponding US image, see row 1 of Figure 5.

for improving the image quality such that the probability of AGS returning a result is

increased may include introducing a selection criteria at baseline to identify patients who

have characteristics conducive to obtaining excellent US images (e.g. low BMI), or applying305

US image processing/acquisition techniques such as speckle reduction or image compounding

to improve the contrast to noise ratio between the uterus and background tissues42–44.

In the 80% of cases where a result was returned, the values of DC, DSC, and MSSD be-

tween AGS and manual contours were dependent on image quality. The agreement between

the AGS algorithm and manual contours was statistically equivalent to the interobserver310

agreement between manual contours for images with a rating of 3; this indicates that the

AGS algorithm can accurately segment the uterus on US images containing virtually no

imaging artifacts/imperfections. This is shown in column 1 of Figure 5, where the AGS

(red) segmentations agree well with the manual (green) segmentations in on the US images

with distinct, continuous uterine boundaries. Note that in these cases, the patients all had315
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FIG. 5. Examples of manual (green) and AGS (red) contours superimposed over a central slice of

corresponding 3D US images. Images are grouped by column according to image quality rating.

Labels in bottom left corner indicate the patient number (P1-P9) and time point where image was

obtained (week = wk and SIM = ultrasound acquired at CT simulation). Arrows indicate artifacts

in the US image that have led to errors in the AGS algorithm. White arrows = shadowing, yellow

arrows = signal attenuation, and cyan arrows = misinterpretation of other anatomical boundaries as

the uterine boundary (e.g. the endometrium in P1 SIM and the bladder in P7 wk4). Red asterisks

indicate number of times where the AGS algorithm failed to give a result for the corresponding

image.

full bladders extending across the length of the uterus. However, the majority of the US

images acquired in this study had some form of image artifact partially obscuring the true
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uterine boundary (image quality ratings 1 and 2). In these cases, the AGS algorithm per-

formance was significantly poorer than its manual segmentation counterpart on all metrics

considered (with the exception of the DC on rating 2 images), which may be attributed to320

the fact gradient-based algorithms are susceptible to errors due to the speckle, shadowing,

and signal variation with ultrasound beam angle commonly present in US images taken of

cervical cancer patients during RT treatment18, as shown in columns 2 and 3 of Figure 5.

In these examples, the image artifacts either caused the AGS contour to deviate from the

true uterine boundary (as defined by the manual segmentations), or confounded the US325

image to the extend that the resulting shape of the uterus defined by the AGS tool was ei-

ther corrupted, or unobtainable, despite good agreement between the corresponding manual

contours. Furthermore, the statistical analyses performed to check for differences in AGS

algorithm accuracy between image rating groups showed that AGS segmentations on images

with a rating of 3 were significantly better than AGS segmentations on images with ratings330

1 or 2.

When comparing the overall performance of the AGS algorithm with the interobserver

manual contours, there were significant differences in MSSD and UM95, but no significant

differences in DC or DSC. Note that (1) DC doesn’t take shape into account and (2) the DSC

is only sensitive to changes in shape if that shape is accompanied by changes in the volume335

of overlap; for example, thin extrusions of the contour produced by the AGS algorithm in

the presence of shadowing or speckle had little effect on the DSC, (3) the MSSD is a direct

measure of contour surfaces, and therefore much more sensitive to local deviations in shape,

and (4) the UM95 represents the volume expansion needed to account for contouring errors.

Taking this into account, the statistical results were interpreted to mean that even though340

the AGS tool may be sufficient in terms of centroid position and volume, it’s overall shape

was often incorrect. This is of great concern when considering adaptive RT, which aims to

modify the beam aperture such that it conforms to the boundary of the target. Furthermore,

this difference in shape manifested itself in an increase in the UM95, suggesting that AGS

segmentation errors would likely have a dosimetric effect.345

Future Work: This work highlights that there remains a need for a segmentation tech-

nique that is capable of conforming to the uterine boundaries at the time of treatment to

accurately represent the position and shape of the RT target. Although the AGS tool is

capable of achieving this in US images with excellent image quality, it is inaccurate and

18



unreliable in images where the uterine boundary is blurred or partially obstructed. To over-350

come some of the pitfalls of the AGS tool, a new algorithm is being developed that is less

dependent on image gradient to semi-automatically segment the uterus; one potential solu-

tion includes incorporating shape models into a gradient-based segmentation framework to

overcome errors associated with US shadowing29,45. Additional work will investigate meth-

ods of improving US image quality, image processing techniques to further distinguish the355

uterus from surrounding tissues, quantitative methods of directly comparing other imaging

modalities (such as MRI, CT, and CBCT) with US in the ability to accurately represent

the uterus, and dosimetric studies assessing the relationship between uterine segmentation

accuracy and target coverage and OAR sparing41.

V. CONCLUSIONS360

The good agreement between manual contours when compared with results from other

imaging modalities such as CT and MRI supports the use of transabdominal US to visualize

the uterus prior to RT treatment for cervical cancer patients. The AGS tool was able

to accurately determine the uterine shape of cervical cancer patients as well as manual

contouring in cases where the image quality was excellent, but not in cases where image365

quality was degraded by common artifacts such as shadowing and signal attenuation. The

AGS tool should be used with caution for adaptive RT purposes, as it is not reliable in

accurately segmenting the uterus on ‘good’ or ‘poor’ quality images. However, there may

be potential to improve the performance of the AGS algorithm if the US image quality

is improved. The unreliable performance of the AGS tool highlights a continuing need370

for a rapid method of segmenting the uterus at treatment to obtain both uterine position

and shape; this is a critical step in implementing US-guided adaptive RT for patients with

cervical cancer.
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37B. E. Nelms, W. A. Tomé, G. Robinson, and J. Wheeler, “Variations in the contouring of

organs at risk: Test case from a patient with oropharyngeal cancer,” International Journal

of Radiation Oncology Biology Physics 82, 368–378 (2012).510

38E. L. Lorenzen, C. W. Taylor, M. Maraldo, M. H. Nielsen, B. V. Offersen, M. R. Andersen,

D. O’Dwyer, L. Larsen, S. Duxbury, B. Jhitta, S. C. Darby, M. Ewertz, and C. Brink,

“Inter-observer variation in delineation of the heart and left anterior descending coronary

artery in radiotherapy for breast cancer: A multi-centre study from Denmark and the

UK,” Radiotherapy and Oncology 108, 254–258 (2013).515

39V. K. Reed, W. A. Woodward, L. Zhang, E. A. Strom, G. H. Perkins, W. Tereffe, J. L.

Oh, T. K. Yu, I. Bedrosian, G. J. Whitman, T. A. Buchholz, and L. Dong, “Automatic

Segmentation of Whole Breast Using Atlas Approach and Deformable Image Registration,”

International Journal of Radiation Oncology Biology Physics 73, 1493–1500 (2009).

40X. A. Li, A. Tai, D. W. Arthur, T. A. Buchholz, S. Macdonald, L. B. Marks, J. M. Moran,520

L. J. Pierce, R. Rabinovitch, A. Taghian, F. Vicini, W. Woodward, and J. R. White,

“Variability of Target and Normal Structure Delineation for Breast Cancer Radiother-

apy: An RTOG Multi-Institutional and Multiobserver Study,” International Journal of

Radiation Oncology Biology Physics 73, 944–951 (2009).

41C. F. Behrens, T. B. Andreasen, H. Lindberg, S. K. Buhl, A. Vestergaard, U. V. Elstrøm,525
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