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Abstract  

 

Vascular endothelial growth factor A (VEGF-A), is considered one of the most important 

factors in tumor angiogenesis, and consequently a number of therapeutics have been 

developed to inhibit VEGF signalling. Therapeutic strategies to target brain malignancies, 

both primary brain tumors, particularly in pediatric patients, and metastases, are lacking, but 

targeting angiogenesis may be a promising approach. 

Multiparametric MRI was used to investigate the response of orthotopic SF188luc pediatric 

glioblastoma xenografts to small molecule pan-VEGFR inhibitor cediranib; and the effects of 

both cediranib and cross-reactive human/mouse anti-VEGF-A antibody B20-4.1.1 in 

intracranial MDA-MB-231 LM2-4 breast cancer xenografts over 48 hours. 

All therapeutic regimens resulted in significant tumor growth delay. In cediranib-treated 

SF188luc tumors this was associated with lower Ktrans (compound biomarker of perfusion and 

vascular permeability) than in vehicle-treated controls. Cediranib also induced significant 

reductions in both Ktrans and apparent diffusion coefficient (ADC) in MDA-MB-231 LM2-4 

tumors associated with decreased histologically-assessed perfusion. B20-4.1.1 treatment 

resulted in decreased Ktrans but in the absence of a change in perfusion; a non-significant 

reduction in vascular permeability, assessed by Evans blue extravasation, was observed in 

treated tumors. The imaging responses of intracranial MDA-MB-231 LM2-4 tumors to 

VEGF/VEGFR pathway inhibitors with differing mechanisms of action are subtly different. 

We show that VEGF pathway blockade resulted in tumor growth retardation and inhibition of 

tumor vasculature in preclinical models of pediatric glioblastoma and breast cancer brain 

metastases, suggesting that multiparametric MRI can provide a powerful adjunct to accelerate 

the development of antiangiogenic therapies for use in these patient populations. 
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Introduction 

 

Angiogenesis, the development of new blood vessels in order to provide a nutritive blood 

supply, is considered essential for expansive tumor growth in the brain [1]. Stimulated by the 

secretion of numerous growth factors by tumor cells, endothelial cells and tumor-associated 

macrophages [2], angiogenesis in tumors results in structurally irregular vessels that are more 

tortuous, fragile, dilated and hyper-permeable than normal blood vessels [3]. Vascular 

endothelial growth factor A (VEGF-A) is considered one of the most important factors in 

tumor angiogenesis [4]. Consequently a number of therapeutic strategies, including small 

molecules that inhibit VEGF receptor tyrosine kinase activity (e.g. cediranib) and 

neutralizing antibodies that specifically bind VEGF-A (e.g. bevacizumab), have been 

developed [5, 6]. 

Pediatric high grade gliomas (pHGG) have a very poor clinical outcome, with a median 

overall survival of 9-18 months [7]; effective treatment strategies are urgently required for 

these patients. Although it is now clearly recognized that pHGGs have distinct underlying 

biology compared with histologically similar tumors arising in older adults [8, 9], many key 

features and pathways are commonly dysregulated. Microvascular endothelial cell 

proliferation is a key feature of grade IV glioma, glioblastoma, in the WHO classification 

system, which, along with evidence of necrosis, distinguishes them from grade III tumors, 

which show evidence of anaplasia and have a high mitotic index. Consequently, with the 

exception of pilocytic astrocytoma, a highly vascular grade I astrocytoma, tumor vascularity 

is associated with higher grade [10]. VEGF-A is highly expressed in pediatric brain tumors 

and is thought to be partly responsible for the loss of blood brain barrier integrity during 

tumor growth [11]. 
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Brain metastases occur in approximately 30% of patients with breast cancer and are an 

important cause of cancer morbidity and mortality [12]. Highly proliferative breast tumors, 

such as those negative for the estrogen, progesterone, and Her2/neu receptors, have enhanced 

angiogenesis that supports rapid growth and early metastasis, and express high levels of 

VEGF [13]. Therefore, patients with breast tumors expressing high levels of VEGF may be at 

a higher risk of developing metastases in the brain, hence antiangiogenic agents may also 

represent promising agents for the treatment of such tumors.  

Magnetic resonance imaging (MRI) enables the visualization of detailed anatomical features 

with high resolution due to its exquisite soft tissue image contrast, and is the gold standard 

non-invasive method for the diagnosis, surgical planning and monitoring of brain tumors 

[14]. However, imaging cannot at present replace biopsy for the accurate histological grading 

of tumors. Furthermore, advances in functional MRI can provide quantitative biomarkers that 

inform on biologically relevant structure-function relationships, their heterogeneous 

distribution, and treatment response/resistance in brain tumors [15, 16]. The Response 

Assessment in Neuro-Oncology (RANO) guidelines, based on evaluations of adult HGGs, 

aim to provide more specific and standardized imaging protocols incorporating assessment of 

non-enhancing components of tumors [17]. The Response Assessment in Pediatric Neuro-

Oncology (RAPNO) working group was subsequently established to address the unique 

challenges associated with pediatric neuro-oncology, for example the more heterogeneous 

group of diseases arising  in children, with a higher prevalence of low grade, infratentorial 

and brainstem tumors, and the relatively small numbers of cases available for clinical trials 

[18, 19]. 

In this study, we undertook a multiparametric MRI approach to investigate the response of 

orthotopic SF188 pediatric glioblastoma xenografts, and highly malignant MDA-MB-231 

LM2-4 human triple negative breast carcinoma (TNBC) xenografts implanted in the brain, to 
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cediranib, a small molecule pan-VEGFR inhibitor. This approach was also used to assess the 

effect of B20-4.1.1, a cross-reactive human/mouse derivative of bevacizumab, on intracranial 

MDA-MB-231 LM2-4 xenografts.   



7 
 

Materials and Methods  

 

Cell Culture 

SF188 pediatric glioblastoma cells were maintained in Dulbecco’s modified Eagle’s medium 

Hams F12 mixture (Sigma-Aldrich, Gillingham, UK) supplemented with 10% (v/v) fetal 

bovine serum (Invitrogen, Life Technologies, Paisley, UK) [20]. SF188 cells were engineered 

to stably express luciferase by transduction with the luc-2 gene (cloned from pGL4.10[luc2] 

(Promega, Madison, MI)) cloned into pCDH-CMV-CMS-EFI-hygro, a HIV lentiviral-based 

vector (System Biosciences, Mountain View, CA) and enriched for in vivo tumorigenicity via 

four sequential intracranial passages (SF188luc). Luciferase-expressing MDA-MB-231 LM2-4 

highly malignant human TNBC cells isolated from a lung metastasis [21] (provided by Dr. R. 

Kerbel, University of Toronto, Canada) were maintained in Dulbecco’s modified Eagle’s 

medium (Invitrogen, Life Technologies) supplemented with 10% (v/v) fetal bovine serum. 

Both cell lines were authenticated by short tandem repeat (STR) profiling and tested negative 

for mycoplasma infection at the time of tumor implantation. 

 

Tumor Implantation 

All experiments were performed in accordance with the local Animal Welfare and Ethical 

Review Board, the UK Home Office Animals (Scientific Procedures) Act 1986, the United 

Kingdom National Cancer Research Institute guidelines for the welfare of animals in cancer 

research [22] and the ARRIVE (animal research: reporting in vivo experiments) guidelines 

[23].  

SF188luc (2x105) or MDA-MB-231 LM2-4 (5x103) cells were implanted supratentorially in 

the brains of 6 week old female athymic (NCr-Foxn1nu) mice (Charles River Ltd, Margate, 

UK), as previously described [24]. 
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Bioluminescence Imaging 

Tumor establishment and growth was monitored using a Xenogen IVIS® 200 system coupled 

with LivingImage software (Caliper Life Sciences, Runcorn, UK). Luciferin (150mg/kg, 

Caliper Life Sciences) was administered intraperitoneally 10 minutes before imaging. Total 

photon flux was established for automatically drawn ROIs at a constant threshold. A 

bioluminescence signal that represented a tumor volume of approximately 25mm3 had 

previously been established for each cell line; once this signal was reached animals were 

enrolled in MRI experiments. This starting volume was chosen to provide an experimental 

timeframe with minimal risk of mice developing adverse neurological symptoms prior to 

study end. 

 

MRI and Drug Treatment Schedules 

Tumor-bearing mice were randomized prior to MRI into control and treatment cohorts as 

follows:  

SF188luc 

i. MRI prior to and after 48h treatment with 6mg/kg cediranib (AZD2171, AstraZeneca) 

(n=6) or vehicle (1% polysorbate-80 in water) (n=5) daily. 3 oral doses were given over 

48h: i) following recovery from anesthesia for pre-treatment imaging, ii) 24h later, iii) a 

further 24h later immediately prior to post-treatment imaging.  

MDA-MB-231 LM2-4  

i. MRI prior to and after 48h treatment with either 6mg/kg cediranib (n=6) or vehicle 

(n=5), as described above. 

ii.  MRI prior to and 48h after a single intraperitoneal 10mg/kg dose of B20-4.1.1 

(Genentech) (n=7) or an isotype-matched control antibody (anti-Ragweed:1428) (n=6). 

 



9 
 

Treatment and imaging regimens are depicted in supplementary Figure S1 with cohort sizes, 

time from tumor implantation to study start and mean pre-treatment tumor volume. 

 

Magnetic Resonance Imaging (MRI) 

Anesthesia was induced with a 10ml/kg intraperitoneal injection of fentanyl citrate 

(0.315mg/ml) plus fluanisone (10mg/ml (Hypnorm; Janssen Pharmaceutical Ltd. High 

Wycombe, UK)), midazolam (5mg/ml (Hypnovel; Roche, Burgess Hill, UK)), and sterile 

water (1:1:2). A lateral tail vein was cannulated with a 27G butterfly catheter (Venisystems, 

Hospira, Royal Leamington Spa, UK) to enable the remote administration of gadopentetate 

dimeglumine (Gd-DTPA, Magnevist™; Schering, Berlin, Germany) or ultrasmall 

paramagnetic iron oxide (USPIO) particles (P904; Guerbet, Villepinte, France). Anesthetized 

mice were then positioned prone in a 3cm birdcage coil within a 7T Bruker horizontal bore 

microimaging system (Ettlingen, Germany). Core body temperature was maintained by warm 

air blown through the magnet bore. All images were acquired over a 2.5cm x 2.5cm field of 

view. 

 

Anatomical T2-weighted, Diffusion-Weighted and Dynamic Contrast-Enhanced MRI  

Magnetic field homogeneity was optimized by shimming over the entire brain using an 

automated shimming routine (FASTmap). A rapid acquisition with relaxation enhancement 

(RARE) T2-weighted sequence (repetition time (TR)=4500ms, effective echo time 

(TEeff)=36ms, 4 averages, RARE factor=8, 256×256 matrix, 20×1mm thick contiguous axial 

slices) was used for localization of the tumor and measurement of tumor volume. Diffusion-

weighted (DW) images were then acquired using an echo-planar imaging (EPI) sequence 

(TR=1500ms, TE=32ms, 10 b-values; b=0, 30, 60, 100, 150, 200, 300, 500, 750, 1000s/mm2, 

4 averages, 128×128 matrix, 3x1mm thick axial slices through the tumor). 



10 
 

Dynamic contrast-enhanced (DCE) MRI data were acquired using an inversion recovery (IR) 

true fast imaging with steady-state precession (trueFISP) sequence with one baseline scan 

(TE=1.2ms, TR=2.4ms, scan TR=10s, 50 inversion times spaced 29ms apart (TI=25-1451ms), 

8 averages, flip angle=60°, matrix=128x96, 1x1mm thick slice) and 60 dynamic scans 

(TE=1.2ms, TR=2.4ms, scan TR=10s, 8 inversion times spaced 116ms apart (TI=109-924ms), 

1 average, flip angle=60°, temporal resolution=20s). A bolus of Gd-DTPA (0.1mmol/kg 

Magnevist™ i.v., 2ml/kg 50mM solution) was administered at 2ml/minute using a power 

injector 3 minutes after the start of the dynamic sequence [25]. 

This imaging protocol was performed in mice bearing SF188luc or MDA-MB-231 tumors at 

baseline and after 48h treatment with 6mg/kg cediranib, or vehicle, given orally daily, and 

mice bearing MDA-MB-231 LM2-4 tumors before and 48h following a single intraperitoneal 

dose of 10mg/kg B20-4.1.1 or isotype control Ragweed:1428 (see supplementary Figure S1). 

 

Susceptibility Contrast MRI 

Magnetic field homogeneity was optimized and T2-weighted images were acquired. Multi 

gradient-recalled echo (MGE) images (TR=1000ms, TE=6.2-31.1ms, 8 echoes, 2 averages, 

256x256 matrix, 3x1mm thick slices) were acquired for quantification of relaxation rate R2*. 

USPIO particles were then administered as a bolus (150µmol Fe/kg P904 i.v.) and allowed to 

circulate for two minutes in order to equilibrate before a second set of MGE images were 

acquired. 

This imaging protocol was performed in mice bearing MDA-MB-231 LM2-4 tumors at 

baseline and after 48h treatment with 6mg/kg cediranib, or vehicle, given orally daily 

(additional n=5/group; see supplementary Figure S1). 
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MRI Analysis 

Parameter estimation was undertaken using a Bayesian maximum a posteriori algorithm, 

which took into account the Rician distribution of noise in magnitude MR data in order to 

provide unbiased parameter estimates [26]. Estimates of the apparent diffusion coefficient 

(ADC), a measure of Brownian water diffusion within tissue and surrogate biomarker of 

cellularity and edema, were determined from the DW-MRI data (using 5 b-values; 200-

1000s/mm2). The dual relaxation rate sensitivity of the IR-trueFISP sequence was utilized, 

providing estimates of native T1 and T2 relaxation times. DCE-MRI data were analysed by 

incorporating the Tofts and Kermode pharmacokinetic model, from which the volume 

transfer constant (Ktrans, minute−1), the rate of flux of contrast agent into the extracellular 

extravascular space within a given volume, and a compound biomarker of vascular 

permeability and blood flow, was calculated. In addition, model-free analysis was used to 

derive the initial area under the gadolinium concentration curve at 60 seconds after injection 

(IAUGC60, mmol Gd.minute) [25]. 

Estimates of the MRI transverse relaxation rate R2* were calculated from MGE data. The 

change in R2* following delivery of USPIO (∆R2*) was also evaluated, from which fractional 

blood volume (fBV, %) was estimated [27]. Voxels corresponding to a fBV exceeding 17% 

(the limit value for the linearity between ∆R2* and fBV) were excluded [28]. 

All data were fitted on a pixel-by-pixel basis using in-house software (ImageView, developed 

in IDL, ITT Visual Information Systems, Boulder, CO, USA). The median value of each 

parameter in each tumor was determined and the distribution of data values was assessed. 
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Histological Analysis 

Tumor bearing mice were administered with 15mg/kg of the perfusion marker Hoechst 33342 

(Sigma-Aldrich) intravenously through a lateral tail vein. After 1 minute, animals were killed, 

and whole brains were rapidly excised, snap-frozen and stored in liquid nitrogen [25]. 

Hoechst 33342 fluorescence signals from frozen whole brain sections (10µm, three per 

tumor) were recorded at 365nm using a motorized scanning stage (Prior Scientific 

Instruments, Cambridge, UK) attached to a BX51 microscope (Olympus Optical, London, 

UK), driven by CellP (Soft Imaging System, Münster, Germany). In addition, composite 

images from the tumor region and 40x magnification snapshots of the tumors were acquired.  

The same sections were then processed for the detection of vascular endothelial marker CD31 

(all tumors) and pan cytokeratin (MDA-MB-231 LM2-4 tumors only). Sections were first 

incubated with 2% (w/v) BSA/5% (v/v) goat serum in PBS for 1 hour to block any non-

specific antibody binding, and then with goat anti-mouse CD31 antibodies (MEC 13.3, BD 

Biosciences, Oxford, UK, 1:100) overnight at 4ºC. Sections were washed with 0.1% (v/v) 

Tween-20 in PBS, then incubated with Alexa 546-conjugated goat anti-rat secondary 

antibodies (Invitrogen, 1:500) ± FITC-conjugated mouse monoclonal anti-pan cytokeratin 

antibodies (Clone C-11, Sigma-Aldrich, 1:100) at 37ºC for 4 hours, protected from light. 

Following washing the sections were imaged under PBS. CD31 expression was detected at 

510-560nm and cytokeratin positive tumor cells were detected over the whole brain at 450-

490nm using the same fluorescence microscope system and stage co-ordinates. Composite 

images of the brain, tumor and individual 40x snapshots were recorded, allowing the CD31 

images to be subsequently overlaid on the Hoechst 33342 images. The cytokeratin images 

were used to draw the MDA-MB-231 LM2-4 tumor regions of interest (ROI) used in the 

analysis of the Hoechst 33342 and CD31 data.  
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The sections were then stained with hematoxylin and eosin (H&E), and composite images 

were acquired using the same microscope system and co-ordinates with bright-field 

illumination. These images were used to draw the tumor ROIs used in the analysis of the 

Hoechst 33342 and CD31 data in SF188luc tumors.  

Fluorescent particles were detected above a constant threshold and the area of the tumor 

section with Hoechst 33342 or CD31 fluorescence was determined and expressed as a 

percentage of the whole tumor section. Co-localization of Hoechst 33342 (perfused vessels) 

and CD31 (total vessels) was also assessed and expressed as percentage total vessels perfused 

and a total perfused vessel area.  

 

A separate cohort of mice bearing MDA-MB-231 LM2-4 tumors treated with B20-4.1.1 or 

isotype-matched control antibodies (n=4/group) were administered intravenously with 

50mg/kg Evans blue (Sigma-Aldrich) in PBS. Evans blue readily binds to albumin, and hence 

can be used to visualize and quantify vascular permeability [29, 30]. After 30 minutes 

Hoechst 33342 was administered as described above; 1 minute later the animals were killed, 

and the brains rapidly excised and snap-frozen. Hoechst 33342 and Evans blue fluorescent 

signals were recorded from frozen sections at 365nm and 510-560nm, respectively. Sections 

were then blocked with 2% (w/v) BSA/5% (v/v) goat serum in PBS for 1 hour and incubated 

with FITC-anti-pan cytokeratin antibodies as above. Following washing the sections were 

imaged under PBS. Fluorescent particles were detected above a constant threshold and the 

area of the tumor section with Hoechst 33342 or Evans blue fluorescence was determined and 

expressed as a percentage of the whole tumor section, as determined using cytokeratin 

staining. 
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Statistical Analysis 

Statistical analysis was performed with GraphPad Prism 7 (GraphPad Software, La Jolla, 

USA). The mean of median values for all the quantitative MR imaging parameters, and the 

mean values for tumor volume and the fluorescent area fractions were used for statistical 

analysis. Results are presented as the mean ± 1 standard error of the mean (s.e.m.). 

Significance testing used paired or unpaired Student’s t-tests with a 5% confidence level. 
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Results 

 

Representative anatomical T2-weighted images, and associated parametric ADC and Ktrans 

maps, acquired from mice bearing intracranially implanted SF188luc or MDA-MB-231 LM2-

4 tumors, prior to and following treatment with either cediranib, B20-4.1.1, or the appropriate 

control, are shown in Figures 1, 3 and 5, along with summaries of the quantitative data 

obtained for each tumor model and treatment regimen investigated. Orthotopic SF188luc 

tumors presented as moderately homogeneous hyperintense lesions with relatively well 

defined borders on T2-weighted MRI images (Figure 1a) and were observed to be well 

defined masses with sparse foci of infiltrative cells by H&E staining (supplementary Figure 

S2). Intracranial MDA-MB-231 LM2-4 tumors were more heterogeneous with less well 

defined boundaries on T2-weighted images (Figures 3a and 5a), and H&E staining shows 

partially well circumscribed masses with substantial local invasion, principally occurring 

along blood vessels, with evidence of edema (supplementary Figure S2) [16, 24]. 

Treatment of mice bearing orthotopic SF188luc pediatric glioblastomas with cediranib 

significantly inhibited tumor progression compared with vehicle-treated controls (p<0.01, 

Figure 1a&b). Tumor ADC was not significantly altered over 48 hours in either treatment 

group (Figure 1b). In the cediranib-treated SF188luc cohort DCE-MRI consistently showed a 

marked reduction in contrast agent uptake after treatment, resulting in non-significant 53%  

and 59% reductions in Ktrans (Figure 1b) and IAUGC60 (data not shown), respectively. The 

mean post-treatment Ktrans was significantly lower in the cediranib-treated cohort than in the 

vehicle-treated controls (p<0.05). Frequency histograms of individual voxel ADC and Ktrans 

values in five equally sized bins were also used to evaluate any treatment-induced changes in 

data distribution (Figure 1c). Differences in the distribution of Ktrans values prior to and 

following treatment with cediranib were apparent, including a marked increase in the 
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proportion of voxels with values of 0-0.02min-1 and a significant reduction in values of 0.02-

0.04min-1 (p<0.05). Histological assessment of Hoechst 33342 perfused area, CD31 positive 

total vessel area, and their co-localization in SF188luc tumors treated with either vehicle or 

cediranib revealed no significant difference in vascular perfusion, total vascular area or the 

percentage of vessels perfused at the time of Hoechst 33342 injection between treatment 

groups (Figure 2). 

Treatment of intracranially-implanted MDA-MB-231 LM2-4 tumors with cediranib resulted 

in significant growth delay compared with vehicle-treated controls (p<0.05, Figure 3a&b). 

This response was associated with a statistically significant 9% reduction in ADC in the 

cediranib-treated cohort (p<0.05), accompanied by significant 49% and 52% decreases in 

Ktrans (Figure 3b) and IAUGC60 (data not shown), respectively (p<0.05). There was no 

significant change in DW- or DCE-MRI parameters over 48h in the vehicle-treated cohort. 

Frequency histograms showed that the reduction in ADC following cediranib treatment was 

associated with a decrease in the proportion of voxels with values of 900-1200x10-6mm2s-1 

(p<0.05) and 1200-1500x10-6mm2s-1 (p=0.08), and increases in the number of voxels in the 

300-600 and 600-900x10-6mm2s-1 bins (p=0.08) (Figure 3c). The reduction in Ktrans in the 

cediranib-treated tumors was associated with a non-significant increase in the proportion of 

voxel values of 0-0.2min-1 and reductions in the size in all other bins.  Histological 

assessment of Hoechst 33342 uptake demonstrated that cediranib-treated MDA-MB-231 

LM2-4 tumors were significantly less well perfused than vehicle-treated tumors (p<0.05, 

Figure 4). CD31 positive total vessel area was also lower in the treated tumors, but the 

difference did not reach statistical significance (p=0.052). Assessment of the co-localization 

of Hoechst 33342 and CD31 revealed that the percentage of vessels perfused at the time of 

Hoechst 33342 injection was significantly lower in the cediranib-treated cohort (p<0.05). 

Susceptibility contrast MRI revealed no significant treatment-induced change in the fractional 
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blood volume (fBV) of the MDA-MB-231 LM2-4 tumors (pre vehicle 5.0±0.4%, 48h vehicle 

4.7±0.1%; pre cediranib 5.1±0.3%, 48h cediranib 5.1±0.4%). 

Treatment with a single dose of B20-4.1.1 significantly inhibited the growth of intracranial 

MDA-MB-231 LM2-4 tumors over 48 hours compared with controls (p<0.01, Figure 5a&b). 

There was no significant change in ADC in the B20-4.1.1-treated tumors but growth 

inhibition was associated with significant 41% and 53% reductions in Ktrans (Figure 5b) and 

IAUGC60 (data not shown), respectively (p<0.05). No quantitative MRI parameters changed 

over 48 hours in the control tumors. Despite there being no significant change in overall 

tumor ADC in response to B20-4.1.1, a change in the distribution of the data was apparent, 

with a significant reduction in the proportion of voxels with ADC values of 900-1200x10-

6mm2sec-1 and a significant increase in voxels with values of 300-600x10-6mm2sec-1 (both 

p<0.05). The reduction in Ktrans in the B20-4.1.1-treated cohort was attributable to a 

significant increase in the number of voxels with a value of 0-0.02min-1 and significant 

reductions the proportion of voxels with values between 0.2-0.4min-1 and 0.4-0.6min-1 (all 

p<0.05, Figure 5c). Histological assessment of Hoechst 33342 uptake, CD31 expression and 

their co-localization in MDA-MB-231 LM2-4 tumors treated with either B20-4.1.1 or control 

antibodies revealed no difference in vascular perfusion (Figure 6), total vascular area or the 

percentage of perfused vessels between treatment groups (data not shown). A markedly lower 

uptake and distribution of the permeability marker Evans Blue was apparent in the B20-4.1.1-

treated tumors compared with the control cohort (B20-4.1.1 22±5%, control 34±2%, 

p=0.068).  
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Discussion 

 

In this study multiparametric MRI was used to assess the response of intracranial tumors to 

drugs targeting the VEGF/VEGFR pathway. Specifically, the efficacy of the pan-VEGFR 

small molecule inhibitor cediranib in orthotopic SF188luc pediatric glioblastoma xenografts 

and intracranial MDA-MB-231 LM2-4 TNBC xenografts was assessed alongside the 

response of MDA-MB-231 LM2-4 tumors to the human/mouse cross-reactive anti-VEGF-A 

monoclonal antibody B20-4.1.1. Anatomical T2-weighted MRI and functional DW- and 

DCE-MRI were used to assess any treatment-induced changes in tumor progression, 

cellularity and edema, and vascular permeability/perfusion, respectively. An acute time point 

of 48h was chosen because early imaging changes have been detected in glioblastoma, breast 

cancer and other solid tumors, including extracranial breast cancer metastases, following 

cediranib, bevacizumab and axitinib treatment [15, 31, 32]. In addition, response to 

bevacizumab at just 96h, as well as 4 weeks, was predictive of improved PFS in recurrent 

glioma [33]. 

Treatment of orthotopic SF188luc pediatric glioblastoma xenografts with cediranib resulted in 

significant growth delay over 48 hours. DW-MRI revealed no significant change in water 

diffusivity following treatment with cediranib in SF188luc tumors; these tumors were densely 

cellular and there was no edema present (supplementary Figure S2), exemplified by baseline 

ADC values being considerably lower in SF188luc than MDA-MB-231 LM2-4 tumors (mean 

pre-treatment ADC; SF188luc 621x10-6mm2s-1, MDA-MB-231 LM2-4 827x10-6mm2s-1). 

Paired comparisons of mean DCE-MRI data acquired from the same tumors prior to and post 

treatment did not reveal any significant anti-vascular effect. However, assessment of the 

distribution of Ktrans values revealed a shift towards lower values in the treated tumors. The 

lack of an overall significant response is likely a consequence of the wide dynamic range of 
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pre-treatment Ktrans values measured in the cediranib-treated group. The average post-

treatment Ktrans was, however, significantly lower in the cohort treated with cediranib 

compared with the vehicle-treated tumors, suggestive of an anti-vascular effect. 

Adult patients with glioblastoma treated with bevacizumab, alone or in combination with 

chemotherapy (most commonly irinotecan), have demonstrated reductions in MRI contrast 

enhancement and vasogenic edema resulting in significant improvements in progression-free 

survival [15, 34]. Bevacizumab in combination with radiotherapy and temozolomide has also 

been shown to extend progression free survival in newly diagnosed glioblastoma [35, 36]. A 

phase I clinical trial assessing cediranib as a single agent in children with recurrent and 

refractory primary central nervous system tumors has recently been completed, in which 

decreased diffusivity and perfusion were observed in responding tumours [37]. The efficacy 

of bevacizumab in combination with chemotherapy or radiotherapy is currently being 

assessed in the same patient population [38], with functional MRI included in at least one 

such trial [19].   

Growth of intracranial MDA-MB-231 LM2-4 tumors was significantly suppressed over the 

duration of 48 hours treatment with cediranib. The sensitivity of the parental MDA-MB-231 

cell line to cediranib has previously been shown in vitro and in vivo in subcutaneous 

xenografts [5]. Here, cediranib-induced growth delay in intracranial MDA-MB-231 LM2-4 

tumors was associated with significant reductions in both Ktrans, measured in vivo by DCE-

MRI, and perfused vessel area assessed histologically. Interestingly, susceptibility contrast 

MRI using an intravascular USPIO particle-based contrast agent revealed no significant 

difference in tumor fractional blood volume (fBV) in response to cediranib. Contrary to 

gadolinium-chelated contrast agents such as Magnevist, high molecular weight USPIO 

particles do not leak as readily from the blood vessels, hence quantitation of fBV represents 

an imaging biomarker of more patent vasculature. The differential response of Ktrans and fBV 
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observed herein therefore suggests that cediranib is targeting permeable neovasculature in the 

intracranial MDA-MB-231 LM2-4 tumors. Indeed, previous studies of anti-VEGF 

therapeutics have shown that the reduction in Ktrans is associated with pruning of immature 

vessels [15]. Treatment with cediranib also elicited a significant reduction in tumor ADC, 

consistent with the resolution of edema following pruning of hyperpermeable vessels and the 

resulting reduction in fluid extravasation; which has been observed in both preclinical models 

of glioblastoma and patients with brain tumors [15, 39]. The reduction in edema, and 

therefore intracranial pressure, is thought to have a significant role in increased survival 

following VEGF blockade [15, 39].  

Cediranib is primarily a potent pan-VEGFR inhibitor, but at the dose used in this study also 

elicits marked activity against c-kit and platelet-derived growth factor receptor (PDGFR)-α 

and -β [40], whose inhibition may also contribute to the anti-tumor and anti-vascular effects 

observed. Amplification of PDGFRA, and less commonly PDGFRB, is observed in pediatric 

high grade glioma [41-43], indeed SF188luc cells overexpress PDGFRβ [44]. Overexpression 

of PDGFRα is also an adverse prognostic factor in advanced breast cancer [45, 46].  

MDA-MB-231 LM2-4 tumors were also treated with B20-4.1.1, a cross-reactive 

human/mouse anti-VEGF-A monoclonal antibody, that allows the simultaneous targeting of 

VEGF-A produced by human-derived tumor cells and mouse-derived stromal cells. Whilst 

the relative contributions of tumor- and stroma- derived VEGF-A differ between in vivo 

tumor models [47], targeting both recapitulates patient response more accurately than 

targeting tumor-derived VEGF alone. Similar to the response following treatment with 

cediranib, B20-4.1.1 elicited significant growth delay in MDA-MB-231 LM2-4 tumors 

relative to isotype-matched antibody-treated mice. Treatment with B20-4.1.1 also resulted in 

a significant reduction in Ktrans. This was however not associated with a reduction in Hoechst 

33342 perfusion, total CD31 positive vessel area or percentage of vessels perfused, 
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suggesting that the change in Ktrans may predominantly reflect a reduction in vascular 

permeability. The uptake of Evans blue, an azo dye with high affinity for albumin used to 

assess the degree of tumor vascular permeability, and unable to pass through the blood brain 

barrier, was lower in B20.4.1.1-treated tumors, but values did not reach statistical 

significance. Whilst the mean of individual tumor median ADC values did not change in 

response to treatment with B20-4.1.1, a change in the distribution of the data, with a shift 

towards lower values, was observed, suggesting some alteration in the degree of water 

diffusion with the tumors post treatment, again possibly as a result of resolution of edema.  

The imaging response of intracranial MDA-MB-231 LM2-4 tumors to VEGF/VEGFR 

pathway inhibitors with differing mechanisms of action are subtly different, with perfused 

vessel area and degree of water diffusion not significantly changing in response to B20-4.1.1, 

but being altered by cediranib treatment.  

In a recent phase II study, patients with parenchymal brain breast metastases who responded 

to bevacizumab in combination with carboplatin demonstrated improved cerebral blood flow, 

pruning of macroscopic vessels and increased oxygen saturation as a result of vascular 

normalization [48]. Reduced tumor vessel perfusion/permeability has also been observed 

following bevacizumab treatment in previously untreated patients with inflammatory or 

locally advanced breast cancer [31].  

SF188luc tumors grow as well defined masses with sparse foci of infiltrative cells, therefore 

not accurately modelling the heterogeneity of pHGG growth with infiltrative regions, 

however these tumors model the angiogenic component of the tumors that VEGF pathway 

inhibition targets. Similarly, whilst intracranial implantation of MDA-MB-231 LM2-4 cells 

does not strictly model brain breast cancer metastasis, these tumors grow as partially well 

circumscribed, partially invasive, tumors with lower vascular permeability in invasive regions 
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[16] and provide a reproducible model of intracranial tumor growth in which to perform 

imaging investigations. 

The vascular and diffusion parameters reported herein did not change in any control cohort, 

all of which exhibited a larger change in volume over 48h than the treated tumors, 

demonstrating that these biomarkers are not affected by tumor volume over this size range. 

DCE-MRI-derived estimates of Ktrans using a low molecular weight gadolinium-chelated 

contrast agents represents a compound biomarker of both tumor perfusion and permeability 

[49], and changes in Ktrans in response to vascular-targeted therapies can be challenging to 

correctly interpret [50]; VEGF pathway blockade has been shown to partially restore the 

compromised blood brain barrier in human glioblastomas resulting in reduced tumor 

detectability by Gd-DTPA enhanced MRI [51].  In DCE-MRI studies of human brain tumors, 

Ktrans is often reported as a measure of permeability alone, due to the high flow rate and low 

permeability of brain blood vessels [52]. Alternative imaging strategies are therefore 

continually being evaluated for the assessment of brain tumor perfusion and its response in 

vivo [53, 54]. Dynamic susceptibility MRI, acquired during the first circulatory pass of Gd-

DTPA, can provide a measure of cerebral blood flow (CBF, ml/100g/min), which has been 

reported to decrease in response to cediranib in glioma patients [15].  

We show here that in preclinical models of pediatric glioblastoma and breast cancer brain 

metastases VEGF pathway blockade resulted in tumor growth retardation and inhibition of 

tumor vasculature. These data suggest that antiangiogenic therapy, alone or in combination, 

may be beneficial and is worth pursuing in patients with brain metastases and in pediatric 

brain tumor patients, both of which are patient populations with limited therapeutic options. 

The use of multiparametric MRI to monitor such regimens may also inform on expedient 

therapy switching in the event of poor response and may provide a powerful adjunct to 
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accelerate the development of new antiangiogenic therapies for use in these patient 

populations. 
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Figure Legends 

 

Figure 1. Anatomical, diffusion-weighted and dynamic contrast-enhanced MRI of 

orthotopic SF188luc tumors treated with cediranib. 

a) T2-weighted MRI images, and associated parametric apparent diffusion coefficient (ADC) 

and Ktrans maps, from representative orthotopic SF188luc pediatric glioblastomas prior to and 

following 48 hours treatment with either vehicle or cediranib, as indicated. b) Quantification 

of the change in tumor volume over the 48h treatment period, and of ADC and Ktrans prior to, 

and following, treatment with vehicle (n=5) or cediranib (n=6). c) Frequency distributions of 

all tumor ADC and Ktrans voxels. Distributions were divided into 5 equally sized bins for each 

dataset, using 0-300, 300-600, 600-900, 900-1200, 1200-1500x10-6mm2sec-1 for ADC and 0-

02, 0.2-0.4, 0.4-0.6, 0.6-0.8, 0.8-0.1min-1 for Ktrans. ##p<0.01, #p<0.05, unpaired Student’s t-

test between vehicle and cediranib-treated cohorts. *p<0.05, paired Student’s t-test. 

 

Figure 2. Histological assessment of perfusion and vascular density in orthotopic 

SF188luc tumors in response to cediranib. 

a) Representative fluorescence images of the uptake of the perfusion marker Hoechst 33342 

(blue), and immunohistochemical detection of the vascular endothelial marker CD31 (red), 

acquired from whole brain sections from mice bearing orthotopic SF188luc tumors treated 

with vehicle or cediranib. Composite Hoechst 33342 and CD31 images acquired at 40x 

magnification are also shown, demonstrating both co-localisation and mismatch of the 

vascular markers. Tumor ROIs are shown in green, T denotes tumor region on the composite 

images. b) Quantification of Hoechst 33342 perfused area, CD31 positive vessel area, and the 

percentage of vessels perfused. Three sections per tumor were assessed and the mean for each 

tumor is represented. 
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Figure 3. Anatomical, diffusion-weighted and dynamic contrast-enhanced MRI of 

intracranial MDA-MB-231 LM2-4 tumors treated with cediranib. 

a) T2-weighted MRI images, and associated parametric ADC and Ktrans maps, from 

representative intracranial MDA-MB-231 LM2-4 tumors prior to, and following, 48 hours 

treatment with either vehicle or 6mg/kg cediranib daily, as indicated. b) Quantification of the 

change in tumor volume over the 48h treatment period, and of ADC and Ktrans prior to, and 

following, treatment with either vehicle (n=5) or cediranib (n=6). c) Frequency distributions 

of all tumor ADC and Ktrans voxels. Distributions were divided into 5 equally sized bins for 

each dataset, using 0-300, 300-600, 600-900, 900-1200, 1200-1500x10-6mm2sec-1 for ADC 

and 0-02, 0.2-0.4, 0.4-0.6, 0.6-0.8, 0.8-0.1min-1 for Ktrans. #p<0.05, unpaired Student’s t-test 

between vehicle and cediranib-treated cohorts. *p<0.05, paired Student’s t-test.  

 

Figure 4. Histological assessment of perfusion and vascular density in intracranial 

MDA-MB-231 LM2-4 tumors in response to cediranib. 

a) Representative fluorescence images of the uptake of the perfusion marker Hoechst 33342 

(blue), and immunohistochemical detection of the vascular endothelial marker CD31 (red), 

acquired from whole brain sections from mice bearing intracranial MDA-MB-231 LM2-4 

tumors treated with vehicle or cediranib. Composite Hoechst 33342 and CD31 images 

acquired at 40x magnification are also shown, demonstrating both co-localisation and 

mismatch of the vascular markers. Tumor ROIs are shown in green, T denotes tumor region 

on the composite images. b) Quantification of Hoechst 33342 perfused area, CD31 positive 

vessel area, and the percentage of vessels perfused. Three sections per tumor were assessed 

and the mean for each tumor is represented. #p<0.05, unpaired Student’s t-test. 
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Figure 5. Anatomical, diffusion-weighted and dynamic contrast-enhanced MRI of 

intracranial MDA-MB-231 LM2-4 tumors treated with B20-4.1.1. 

a) T2-weighted MRI images, and associated parametric ADC and Ktrans maps, from 

representative intracranial MDA-MB-231 LM2-4 tumors prior to and 48 hours after a single 

10mg/kg dose of isotype-matched control antibody Ragweed:1428 (control) or B20-4.1.1, as 

indicated. b) Quantification of the change in tumor volume over the 48h treatment period, 

and of Ktrans and ADC, prior to, and following, treatment with control antibody (n=6) or B20-

4.1.1 (n=7). c) Frequency distributions of all tumor ADC and Ktrans voxels. Distributions were 

divided into 5 equally sized bins for each dataset, using 0-300, 300-600, 600-900, 900-1200, 

1200-1500x10-6mm2sec-1 for ADC and 0-02, 0.2-0.4, 0.4-0.6, 0.6-0.8, 0.8-0.1min-1 for Ktrans. 

##p<0.01, unpaired Student’s t-test between control and B20-4.1.1-treated cohorts; *p<0.05, 

paired Student’s t-test.  

 

Figure 6. Histological assessment of vascular perfusion and permeability in intracranial 

MDA-MB-231 LM2-4 tumors in response to B20-4.1.1. 

a) Representative fluorescence images of the uptake of the perfusion marker Hoechst 33342 

(blue), and the permeability marker Evans blue (red), acquired from brain sections taken from 

mice bearing intracranial MDA-MB-231 LM2-4 tumors treated with either isotype-matched 

control antibody Ragweed:1428 (control, n=4) or B20-4.1.1 (n=4). Tumor ROIs are shown in 

green. b) Quantification of Hoechst 33342 perfused area and Evans blue positive area. Three 

sections per tumor were assessed and the mean for each tumor is represented.  

 

Supplementary Figure S1. Schematic of experimental design 

Tumor-bearing animals were randomized into experimental groups when bioluminescence 

signal reached a level representing a tumor volume of ~25mm3. Mean days after implantation 
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at study start and mean tumor volume (derived from pre-treatment T2-weighted MRI) ± s.e.m. 

are shown for each cohort. 6mg/kg cediranib or equivalent volume of vehicle was given 

daily; a single 10mg/kg dose of B20-4.1.1 or isotype control Ragweed:1428 was given. 

MRI protocols used diffusion-weighted (DW) and dynamic contrast-enhanced (DCE) MRI or 

susceptibility-contrast (SC) MRI. 

 

Supplementary Figure S2. Hematoxylin and eosin staining of intracranial SF188luc and 

MDA-MB-231 LM2-4 tumors. 

Representative hematoxylin and eosin (H&E) stained 5µm thick formalin-fixed paraffin-

embedded (FFPE) brain sections from untreated mice bearing SF188luc or MDA-MB-231 

LM2-4 tumors; lower panel x200 magnification. Note the dense cellularity and minimal 

invasion in the SF188luc tumor, and the invasion associated with the blood vessels (open head 

arrow) and edema (closed head arrow) present in the MDA-MB-231 LM2-4 tumor. 
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