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Multiple myeloma risk variant at 7p15.3 creates
an IRF4-binding site and interferes with CDCA7L
expression
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Genome-wide association studies have identified several risk loci for multiple myeloma

(MM); however, the mechanisms by which they influence MM are unknown. Here by using

genetic association data and functional characterization, we demonstrate that rs4487645

G4T, the most highly associated variant (P ¼ 5.30� 10� 25), resides in an enhancer element

47 kb upstream of the transcription start site of c-Myc-interacting CDCA7L. The G-risk allele,

associated with increased CDCA7L expression (P¼ 1.95� 10� 36), increases IRF4 binding and

the enhancer interacts with the CDCA7L promoter. We show that suppression of CDCA7L

limits MM proliferation through apoptosis, and increased CDCA7L expression is associated

with adverse patient survival. These findings implicate IRF4-mediated CDCA7L expression in

MM biology and indicate how germline variation might confer susceptibility to MM.
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G
enome-wide association studies (GWAS) have frequently
identified statistically significant associations within
noncoding regions of the genome; however, the causal

DNA sequence and their functional effects have only been
determined in a few instances1.

GWAS have so far identified 17 risk loci for multiple myeloma
(MM), with the association signal at 7p15.3 containing CDCA7L
(cell division cycle-associated seven-like protein) being shown to
be highly robust and not confined to a particular MM subtype2–5.
CDCA7L represents an attractive candidate for the functional
basis of the 7p15.3 association because of its role as a MYC-
interacting protein, acting as a binding partner of LEDGF/p75
(lens epithelium-derived growth factor) and potentiating MYC-
mediated transformation events6–9. Given that deregulation of
MYC typifies plasma cell neoplasms, CDCA7L therefore
represents an attractive functional basis of the 7p15.3 association.

Here we report the identification of the rs4487645 variant as
the potential functional basis of the 7p15.3 association for MM.
We demonstrate that through differential IRF4 binding
rs4487645 influences expression of c-Myc-interacting CDCA7L.
Increased CDCA7L expression was associated with increased cell
proliferation and poorer patient survival. These findings provide
insight into the mechanistic basis of germline susceptibility to MM.

Results
Fine mapping and epigenomic profiling of the risk locus. We
have analysed a large meta-analysis of six MM GWAS conducted
in European populations totalling 9,866 cases and 239,188 con-
trols5. Imputation of these GWAS including use of 1000 Genomes
Project and UK10K data as reference5 confirmed the previously
identified single-nucleotide polymorphism (SNP) rs4487645 as
providing the strongest association signal at the 7p15.3 risk locus2

(P¼ 5.30� 10� 25, odds ratio¼ 1.24; logistic regression followed
by fixed-effects meta-analysis, risk allele frequency¼ 0.65; Fig. 1).
In addition, we have excluded the existence of multiple
independent statistical signals at the 7p15.3 risk locus by
performing association testing conditional on rs4487645
genotypes, observing no additional significant variants.
Previously, we demonstrated an expression quantitative trait
locus (eQTL) signal between rs4487645 and CDCA7L (ref. 10),
with the risk allele associated with increased expression of
CDCA7L. To further substantiate this eQTL, we analysed mRNA
expression data on CD138-purified plasma cells from 1,449 MM
cases from three independent series. Besides confirming that the
association of rs4487645 with CDCA7L was the strongest 7p15.3
eQTL (P¼ 1.95� 10� 36; linear regression followed by fixed-
effects meta-analysis; Supplementary Table 1 and Supplementary
Fig. 1), conditional analysis provided no evidence for additional
independent signals10.

To further prioritize candidate MM risk variants, we
examined the regulatory potential of SNPs in linkage disequili-
brium (r2

Z0.8) with rs4487645. We prioritized credible
candidate risk variants by their regulatory potential inferred
from B-cell-specific DNase I hypersensitivity (HS), formalde-
hyde-assisted isolation of regulatory elements (FAIRE),
promoter-/enhancer-associated histone marks and chromatin
immunoprecipitation sequencing (ChIP-seq; Fig. 1 and Supple-
mentary Table 2)11. SNP rs4487645 resides within a 1 kb active
enhancer region as predicted by ChromHMM, supported by
open chromatin analysis (DNase HS and FAIRE), as well as
H3K4Me1, H3K4Me3 and H3K27Ac peaks. ENCODE ChIP-seq
data confirmed that rs4487645 localizes within an IRF4/PU.
1-binding motif ETS/ISRE (ETS/interferon-stimulated-
response-element composite DNA motif)-consensus element
(EICE; 50-G[G/T]AANNGAAA-30).

No other candidate MM risk variant at the 7p15.3 locus
showed the unique combination of highly significant GWAS and
eQTL signal, open chromatin, active enhancer localization and
transcription factor binding. By analysing the germline exomes of
463 MM cases, we only identified one CDCA7L mutation
(S197Y) in one sequenced individual12, thus excluding the
possibility that the 7p15.3 association signal is a consequence of
linkage disequilibrium with a rare disease-causing coding variant.
Collectively, these data suggest that rs4487645 is the single best
causal SNP candidate for the 7p15.3 association.

SNP rs4487645 modulates IRF4-binding affinity. Using Find
Individual Motif Occurrences, we assessed the genomic sequence
overlapping rs4487645 with the DNA-binding position weight
matrices of multiple human transcription factors13. In this
analysis, the IRF4 position weight matrix was the strongest
match for the sequence overlapping rs4487645, with a preference
for the risk-associated G-allele (G-allele Q value¼ 9.39� 10� 5;
T-allele Q value¼ 0.017; Fig. 2a). To examine for differential IRF4
binding between the G and T alleles of rs4487645 and its binding
motif, we performed ChIP–qPCR (quantitative PCR) in the
GM11992 lymphoblastoid cell line, which is heterozygous for
rs4487645. The G-allele of rs4487645 showed significant
preferential binding to IRF4 (two-tailed t-test, P¼ 0.0014;
Fig. 2b), supporting a role for rs4487645 in modulating IRF4-
binding affinity on the site of overlap.

SNP rs4487645 is localized within an enhancer element. We
next performed luciferase reporter assays to determine the effect
of rs4487645 on enhancer activity in the MM cell line KMS11.
Transfection of constructs containing the risk G-allele showed
significant enhancement of normalized luminescence compared
with the T-allele (two-tailed t-test, P¼ 0.031; Fig. 2c,d), consistent
with a model in which the causal risk variant is associated with
increased CDC7AL expression.

rs4487645 shows long-range interaction with CDCA7L promoter.
Physical interactions between regulatory elements and promoters
have a major role in regulating gene expression14,15. Following on
from our observation that rs4487645 is within an IRF4-bound
enhancer element, and that rs4487645 and the CDCA7L promoter
retain active regulatory chromatin marks (Fig. 2e)16, we
interrogated using 3C-qPCR whether rs4487645 physically
interacts with the CDCA7L promoter in GM11992 and KMS11.
The genomic region to which rs4487645 maps was demonstrated
to form a chromatin-looping interaction with the CDCA7L
promoter in both cell lines (Fig. 3a,b), suggesting a mechanism by
which IRF4-bound rs4487645 regulates CDCA7L expression.

IRF4 regulates CDCA7L expression. CDCA7L expression is
significantly correlated with IRF4 expression in CD138-purified
MM cells (Mann–Whitney–Wilcoxon test, P¼ 0.0012; Supple-
mentary Fig. 2). To establish a direct relationship between IRF4
and CDCA7L expression, we performed small interfering RNA
(siRNA) experiments in KMS11. Knockdown of IRF4 was
accompanied by a significant reduction in CDCA7L mRNA
(two-tailed t-test, P¼ 0.0038; Fig. 3c and Supplementary Fig. 3).
Collectively, these data are consistent with CDCA7L being a
downstream target of IRF4 in MM, with increased binding of
IRF4 at the G-risk allele of rs4487645 leading to increased
CDCA7L expression.

CDCA7L affects myeloma proliferation and patient survival.
SNP rs4487645 and the CDCA7L promoter localize to H3K27Ac
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and H3K4Me3 chromatin marks and are enriched for MYC
and RNA polymerase II binding in MM1.S cells (Fig. 2e). Since
high levels of MYC were associated with high levels of CDCA7L
in MM (Mann–Whitney–Wilcoxon test, P¼ 1.32� 10� 4;
Supplementary Fig. 4), this implies a potential network involving
MYC, IRF4 and CDCA7L at the 7p15.3 association region. A
significant correlation between CDCA7L expression and cellular
proliferation was shown as evidenced by the GPI in German
(n¼ 658) and US (n¼ 608) MM data sets (Pearson’s product–
moment correlation, Po1.0� 10� 16; Supplementary Fig. 5).
To directly investigate the effect of CDCA7L expression on
malignant phenotype, we knocked down CDCA7L levels in

KMS11 using short hairpin RNA (shRNA; Supplementary Fig. 6).
Reduction of CDCA7L expression was associated with reduced
cell proliferation (two-tailed t-test, Po0.05; Fig. 4a,b) and
increased apoptosis (two-tailed t-test, Po0.05; Fig. 4c,d). We
observed a 39% and 71% increase of apoptotic cells in the
shRNA-CDCA7L-1 and shRNA-CDCA7L-2 knockdown cell
lines, respectively, relative to control. In contrast, there was no
difference between the proportions of cells at different stages of
the cell cycle between CDCA7L knockdown and control cell lines
(Supplementary Fig. 7). Following on from this we examined the
impact of CDCA7L expression on MM patient outcome in five
independent series totalling 1,573 cases. High levels of CDCA7L
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Figure 1 | Genetic mapping and epigenetic landscape at the 7p15.3 locus. Manhattan plot of 7p15.3 is shown with genotyped (triangles) and imputed

(circles) SNPs. � log10 P values (y axis) of the SNPs are shown according to their chromosomal positions (x axis; NCBI build 37 of the human genome). The

top genotyped SNP (rs4487645) is labelled with a large triangle. The colour intensity of each symbol in the Manhattan plot reflects the extent of linkage

disequilibrium with rs4487645, from white (r2¼0) to dark red (r2¼ 1.0). Genetic recombination rates are estimated using HapMap Utah residents of

Western and Northern European ancestry (CEU) samples, and shown with a light blue line. The relative positions of DNAH11 and CDCA7L transcripts

mapping to 7p15.3 are shown. The chromatin state of the DNAH11–CDCA7L gene locus in GM12878 is detailed with H3K4Me1, H3K4Me3, H3K27Ac, FAIRE,

DNaseI HS studies and chromatin state segmentation track (ChromHMM), with called peaks on two replicates of IRF4 ChIP-seq in GM12878 shown below

accessed from the UCSC Genome Browser. Position of rs4487645 is highlighted with grey line.
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Figure 2 | SNP rs4487645 shows allele-specific binding of IRF4 and confers enhancer regulatory activity in multiple myeloma cells. (a) rs4487645 is

located in an IRF4 DNA-binding motif predicted by Find Individual Motif Occurrences (FIMO). Shown below is the IRF4 position weight matrix generated by

HOCOMOCO. G-risk allele is highlighted in red. (b) ChIP–qPCR using either the anti-IRF4 or isotype control antibody was performed on GM11992

heterozygous for rs4487645. The ChIP–qPCR signal is based on the abundance of allele-specific amplicons for rs4487645 in the immunoprecipitated

DNA, relative to input DNA. Also shown is the relative abundance of intergenic control region. ChIP data show differential binding of IRF4 for the risk

G-allele relative to the T-allele. Data shown are mean±s.e.m. from three biological replicates and assessed by two-tailed t-test. Each qPCR reaction was

performed with three technical replicates. (c) An B1 kb putative regulatory sequence flanking rs4487645 (G/T) was cloned upstream of the SV40

promoter in the pGL3-promoter vector for testing luciferase reporter gene activity. (d) The resultant reporter constructs were transiently transfected into

KMS11, and the relative luciferase activity was measured for each reporter gene construct. The luminescence ratio of the experimental vector to the Renilla

internal control, pRL-SV40, was normalized to the backbone pGL3-SV40 promoter vector. Data shown are mean±s.e.m. from four biological replicates and

assessed by two-tailed t-test. (e) The chromatin state of the DNAH11–CDCA7L gene locus is detailed with RNA polymerase II (RNAPII), MYC, H3K4Me3

and H3K27Ac ChIP-seq data from MM cell line MM1.S (GSE36354). ChIP-seq data in four MM patients (labelled 1–4) show MM-unique H3K4Me3-

occupied regions compared with normal bone marrow plasma cells (GSE53215).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms13656

4 NATURE COMMUNICATIONS | 7:13656 | DOI: 10.1038/ncomms13656 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


expression were associated with poorer overall survival in MM
patients (Cox regression, P¼ 3.55� 10� 4, hazard ratio¼ 1.52,
95% confidence interval: 1.21–1.90; Supplementary Fig. 8).

Discussion
Collectively, our data demonstrate that the underlying molecular
mechanism for the 7p15.3 MM risk locus is mediated through
rs4487645, which resides within a transcriptional enhancer and
disrupts an IRF4 transcription factor-binding site. Our data are
compatible with the rs4487645 G-allele, conferring an increased
MM risk through increased IRF4-mediated expression of
CDCA7L. Furthermore, epigenetic and 3C data are consistent
with rs4487645 localizing within a chromatin contact domain
and forming a ‘loop domain’, which is expected to bring the

region into physical contact with the promoter of CDCA7L.
Mechanistically, our data also provide linkage between the G-risk
allele, which is associated with higher expression of CDCA7L in
MM, with effects on cell proliferation and response to apoptosis.
In patients the increased tumour proliferation is reflected in a
clinical phenotype characterized by adverse survival.

Importantly, our study highlights a previously unknown
functional interaction between CDCA7L and IRF4 in MM. IRF4
is a key transcriptional regulator in B-cell development with
critical functions in plasma cells. Moreover, IRF4 is an essential
MM gene directing a broad expression programme; knockdown
of IRF4 induces rapid non-apoptotic cell death17. IRF4 and MYC
also form a positive regulatory loop in MM, reinforcing
expression of each other. We demonstrate a correlation
between MYC and CDCA7L expression in MM patients, and
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Figure 3 | Physical interaction between SNP rs4487645 and CDCA7L promoter and the regulation of IRF4 on CDCA7L. Long-range interactions

detected between fragments mapping to rs4487645 and the CDCA7L promoter in GM11992 (a) and KMS11 (b). Relative interaction frequencies between

rs4487645 and target regions B70 kb upstream were determined by 3C-qPCR, comparing the relative abundance of ligation products formed between the

fragment mapping to rs4487645 and each of the target fragments±s.e.m., normalized to the relative abundance of intersite control region. Each qPCR

reaction was performed with three technical replicates. The assay was performed independently for three times in both GM11992 and KMS11. (c) qPCR

analysis of the siRNA knockdown of IRF4. Data shown are the mean IRF4 and CDCA7L mRNA levels±s.e.m. relative to the GAPDH reference mRNA level,

normalized to control siRNA (NC siRNA). Data also show relative mRNA level of IRF4 and CDCA7L for mock transfection without siRNA oligos. Each qPCR

reaction was performed with three technical replicates. P values were determined with two-tailed t-test over three biological replicates.
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Figure 4 | CDCA7L knockdown induces cell apoptosis and suppresses cellular proliferation. (a) Data shown are the mean cell counts of viable Trypan-

blue-negative cells±s.e.m. for three biological replicates at 24, 48 and 72 h after addition of doxycycline (final concentration 1 mg ml� 1). Data were

normalized to initial seeding number at 0 h when doxycycline was added to cells. (b) P values assessing the differences in normalized cell counts between

CDCA7L and control knockdowns at 72 h were determined using two-tailed t-test. (c) Cell viability at 72 h after addition of doxycycline was assessed with

FACS using Annexin V-APC and 4,6-diamidino-2-phenylindole. Representative fluorescence-activated cell sorting data show four subgroups of cells: the

lower left quadrant (Q3; unstained) represents the viable cell population; the lower right (Q4; Annexin V-APCþ DAPI� ) contains early apoptotic cells;

the upper right quadrant (Q2; Annexin V-APCþ DAPIþ ) represents late apoptotic cells; the upper left (Q1; Annexin V-APC� DAPIþ ) represents

necrotic cells. (d) The percentages of apoptotic cells of shRNA-CDCA7L-1, shRNA-CDCA7L-2 and shRNA-NSC are shown at 72 h after addition of

doxycycline. Data shown are mean±s.e.m. for three biological replicates. P values were determined with two-tailed t-test.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms13656

6 NATURE COMMUNICATIONS | 7:13656 | DOI: 10.1038/ncomms13656 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


show that MYC binds to the CDCA7L promoter. CDCA7L has
been shown to be oncogenic in several cancers, in which MYC
physically interacts and induces expression of CDCA7L (refs 8,9).
Moreover, CDCA7L potentiates MYC-transforming activity, and
can complement a transformation-defective MYC mutant6.

In conclusion, we provide compelling evidence of the causal
molecular mechanism for the 7p15.3 association for MM,
implicating a more extensive pathway linking CDCA7L, IRF4
and MYC in the development of this malignancy. The importance
of enhancer-mediated CDCA7L expression in MM demonstrates
the potential of translating basic mechanistic insights of tumour
initiation towards development of therapeutic strategies. Indeed,
downregulation of IRF4 in MM has been shown to be central to
potent antitumour activities by immunomodulatory drugs18,19.
Similarly, bromodomain inhibition of the transcriptional co-acti-
vators CBP/EP300 is seen as a therapeutic strategy to target the
IRF4 network in MM20. Conclusively, the molecular interactions
behind the 7p15.3 association potentially represent new targetable
components of the MM oncogenesis pathway.

Methods
Ethics. Collection of patient samples and associated clinicopathological informa-
tion was undertaken with written informed consent and relevant ethical review
board approval at respective study centres in accordance with the tenets of the
Declaration of Helsinki. Specifically, the MRC Leukaemia Data Monitoring
and Ethics committee (MREC 02/8/95, ISRCTN68454111, MREC 17/09/09,
ISRCTN49407852), University of Heidelberg Ethical Commission (229/2003,
S-337/2009, AFmu-119/2010) and the University of Arkansas for Medical Sciences
Institutional Review Board (IRB 202077).

ENCODE and chromatin state dynamics. To explore the epigenetic profile of
association signals, we used DNAse HS, FAIRE, transcription factor ChIP-seq data,
histone modifications (H3K4Me1, H3K4Me3 and H3K27Ac) and chromatin state
segmentation (ChromHMM) from the ENCODE project in GM12878 (ref. 11). We
used HaploReg21 and RegulomeDB22 to examine whether any of the SNPs or
their proxies (that is, r2

Z0.8 in the 1000 Genomes EUR reference panel) annotates
putative transcription factor binding or enhancer elements. We assessed sequence
conservation using GERP23 and PhastCons24. We accessed RNA polymerase II,
MYC, H3K27Ac and H3K4Me3 ChIP-seq data performed on MM1.S from
GSE36354 data set, and MM-unique H3K4Me3 ChIP-seq data in four MM patients
compared with normal bone marrow plasma cells from GSE53215 data set.

Expression quantitative trait loci analysis. eQTL analyses were performed for
genes within 1 MB of rs4487645 for CD138-purified plasma cells from 183 MRC
Myeloma IX trial patients (GSE21349), 658 Heidelberg patients (E-MTAB-2299)
and 608 US patients (GSE2658, GSE31161) using Affymetrix Human Genome
U133 2.0 Plus Array10 (Supplementary Table 3). Briefly, German, UK and US
data were pre-processed separately, followed by analysis using a Bayesian
approach to probabilistic estimation of expression residuals to infer broad variance
components, accounting for hidden determinants influencing global expression
(for example, copy number, translocation status and batch effects). The association
between genotype of the sentinel SNP and gene expression of genes within 500 kb
either side of rs4487645 was evaluated based on the significance of linear regression
coefficients. We pooled data from each of the three studies under a fixed-effects
model, controlling for false discovery rate (FDR) and calling significant associations
with FDRr0.05. Conditional analysis was performed as described previously10.

GPI. To investigate the relationship between CDCA7L expression and proliferation
of MM plasma cells, we calculated GPI as recently described25 using GC-RMA
(GeneChip Robust Multiarray Averaging)-normalized German (n¼ 658) and US
(n¼ 608) expression data.

Relationship between gene expression. We assessed the relationship between
IRF4 and CDCA7L gene expression (log2-transformed) in five independent MM
data sets GSE9782 (n¼ 265), GSE2658 (n¼ 559), GSE19784 (n¼ 320),
E-MTAB-372 (n¼ 246) and GSE21349 (n¼ 183). The CDCA7L expression in
patients within upper and lower quartiles of IRF4 expression was compared
using Mann–Whitney–Wilcoxon test for each data set. To assess the relationship
between MYC and CDCA7L, CDCA7L expression in patients from the top and
bottom quartiles of MYC expression in the five independent data sets was
analysed by Mann–Whitney–Wilcoxon test. P values from the five patient data
sets were combined by Fisher’s Method. Statistical tests were conducted using
the R software version 3.1.3.

Cell lines. Human MM cell line KMS11 was obtained from the American Type
Culture Collection (ATCC) and grown in Advanced RPMI 1640 Medium (RPMI)
supplemented with GlutaMAX and 10% heat-inactivated fetal bovine serum (FBS).
Human lymphoblastoid cell lines GM11992 and GM12878 were obtained from
Coriell Institute and grown in RPMI 1640 culture medium supplemented with 15%
FBS. HEK293-T17 were obtained from ATCC and grown in DMEM supplemented
with 10% heat-inactivated FBS. Cell culture media were obtained from Life
Technologies (Carlsbad, CA, USA) and FBS from PAA Laboratories (Pasching,
Austria). Cells were cultured at 37 �C, 100% relative humidity and 5% CO2. Cell
lines used were confirmed to be mycoplasma-free (PCR Mycoplasma Test Kit I/C,
PromoCell, Heidelberg, Germany). Genotype of rs4487645 in KMS11, GM11992
and GM12878 was confirmed by Sanger sequencing using sequencing primers
detailed in Supplementary Table 4.

ChIP–qPCR assay. Chromatin from GM11992 was immunoprecipitated with the
ChIP-IT Express Enzymatic Kit (Active Motif, Carlsbad, CA, USA), using 3 mg
anti-IRF4 (sc-6059X; Santa Cruz Biotechnology, TX, USA) and 3 mg normal goat
IgG antibodies (sc-2028; Santa Cruz Biotechnology) per immunoprecipitation (IP)
reaction. Immunoprecipitated chromatin was subjected to real-time qPCR using
SYBR Green PCR Master Mix (Life Technologies). qPCR was conducted as follows:
50 �C 2 min, 95 �C 10 min, 40 cycles of 95 �C 15 s, 64 �C 1 min, end cycle 95 �C 15 s,
60 �C 15 s and 95 �C 15 s. Each IP was analysed with primers for rs4487645 (G/T)
and intergenic control detailed in Supplementary Table 4. Primer efficiencies were
corrected with a standard curve from serial dilutions of GM11992 genomic DNA.
Data from IRF4 IP and control IP were presented as enrichment relative to input
DNA. Each qPCR reaction was performed in three technical replicates, and
the statistical significance was calculated over three biological replicates using
two-tailed t-test.

Plasmid construction and luciferase assays. An B1 kb regulatory region with
the non-risk allele of rs4487645 was amplified from human genomic DNA using
primers detailed in Supplementary Table 4. Gel-purified PCR products (Qiagen,
Hilden, Germany) were A-tailed using 2 U Thermoprime DNA polymerase
(ThermoFisher Scientific, Waltham, USA) and 200 mM dATP for 30 min at 70 �C.
The product was cloned into the PCR8/GW/TOPO vector and transformed into
Escherichia coli. Single bacterial colonies containing the vector were cultured and
purified (Qiagen Mini-prep Kit). The risk allele of rs4487645 was generated with
site-directed mutagenesis using Quick Change XL (Agilent, Santa Clara, USA).
Regulatory regions with both non-risk and risk alleles were cloned into pGL3
luc2-promoter vector using Gateway LR Clonase II (ThermoFisher Scientific).
pGL3 luc2 constructs were amplified in E. coli followed by purification of
plasmid DNA using the QIAfilter Plasmid Midi Kit (Qiagen). Inserts and site-
directed mutagenesis changes were Sanger-sequenced using primers detailed in
Supplementary Table 4. The reporter constructs were introduced into KMS11 using
nucleofection. In all, 5� 106 cells were resuspended in 100 ml Cell Line Nucleo-
fector Solution V with 3 mg reporter constructs and 60 ng of internal control
plasmid (pRL-SV40). Nucleofections were performed using Amaxa Nucleofector
I (X-01 programme; Lonza, Basel, Switzerland). Transiently transfected cells were
cultured for 24 h, following which the luciferase assay was performed using the
Dual-Luciferase Reporter Assay System (Promega, Madison, USA) as per the
manufacturer’s recommendations. Firefly and Renilla luciferase luminescence were
measured sequentially on a Fluoroskan Ascent FL plate reader (ThermoFisher
Scientific). The ratio of luminescence from the experimental reporter to the
luminescence from the control reporter was calculated for each sample, defined
as the relative luciferase activity. Statistical significance was calculated using
two-tailed t-test over three biological replicates.

In situ chromosome conformation capture. 3C library preparation was
performed as described in ref. 14 but with the following modifications. In all,
25� 106 crosslinked GM11992 were resuspended in 1 ml of the Hi-C buffer for
45 min, followed by douncing with a 2 ml dounce homogenizer. Altogether,
25� 106 crosslinked KMS11 cells were resuspended in 13 ml of the 4C lysis
buffer26 and incubated for 30 min on ice. DNA was digested overnight with
rotation with 2,000 U Csp6I restriction enzyme (ThermoFisher Scientific).
Restriction fragment overhangs were not filled or marked with biotin as described
in ref. 14. Digestion reaction was aliquoted into 1.2 ml ligation reactions by
combining 250 ml digestion mix with 950 ml ligation master mix in each. Each
ligation reaction contained 6,000 U T4 DNA ligase (New England Biolabs,
Ipswich, USA) for GM11992 or 10,000 U T4 DNA ligase for KMS11. Ligation
was performed at 16 �C overnight at 900 r.p.m. After reverse crosslinking, DNA
was extracted with phenol:chloroform:isoamyl alcohol (25:24:1) and precipitated
in ethanol. RNAse (Roche, Basel, Switzerland) treatment was performed
subsequently. Library quantity was assessed with the Qubit dsDNA BR Assay Kit
(Life Technologies). Control library was made from RP11-163E10 BAC clone
(Source Bioscience, Cambridge, UK). E. coli containing the BAC clone was re-
streaked, picked and cultured. Following Maxiprep (Qiagen) purification, the BAC
clone was further purified with phenol:chloroform:isoamyl alcohol (25:24:1) and
ethanol precipitation. BAC clone (10 mg) was digested with 250 U Csp6I in 500ml
reaction, followed by ethanol precipitation. Digested DNA (20 mg) was randomly
ligated with 7,600 U T4 DNA ligase (16 �C at 900 r.p.m. overnight), with
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additional ligase and ATP next day (16 �C at 900 r.p.m.) as per the protocol
with modifications27. Finally, the ligated BAC library was purified with
phenol:chloroform:isoamyl alcohol.

Chromatin-looping was interrogated between fragments mapping to rs4487645
and the CDCA7L promoter generated from Csp6I digestion using SYBR Green
PCR Master Mix (Life Technologies). Forward primers were designed over the
ligation junction of a ligation product, with a constant reverse primer from the
fragment mapping to rs4487645. Primer sequences are given in Supplementary
Table 4. qPCR was conducted as follows: 95 �C 10 min, 40 cycles of 95 �C 30 s,
68 �C 30 s, end cycle 95 �C 15 s, 60 �C 15 s, 95 �C 15 s. Primer normalization was
done using the randomly ligated BAC control template. Primers were designed for
a region between two Csp6I cut sites (intersite control) to control for loading of
each 3C experimental library. Each qPCR reaction was performed with three
technical replicates, and the data presented were the average of three biological
replicates for each cell line.

siRNA knockdown. siRNA targeting IRF4 and control siRNA (NC siRNA)
were obtained from Eurofins Genomics (Wolverhampton, UK) and detailed in
Supplementary Table 4. KMS11 cells were transfected with either 200 nM siRNA or
no siRNA (Mock transfections) using nucleofection as described in luciferase
assays. Total RNA was extracted 24 h post-transfection using the RNeasy Plus Mini
Kit (Qiagen) and reverse-transcribed using the SuperScript First Strand Synthesis
Kit (Life Technologies) according to the manufacturer’s recommendations.
Knockdown efficiency was assessed using qPCR (1:20 dilution of cDNA as
template) and western blotting using the standard protocols. Antibodies against
IRF4, CDCA7L and b-actin for western blots are described below. Transcript levels
of IRF4 and CDCA7L expression were quantified using SYBR Green PCR Master
Mix (Life Technologies) and normalized to GAPDH. A standard curve of serial
dilutions of KMS11 cDNA was used to normalize for primer efficiencies. qPCR was
conducted as follows: 50 �C 2 min, 95 �C 10 min, 40 cycles of 95 �C 15 s, 60 �C
1 min, end cycle 95 �C 15 s, 60 �C 15 s and 95 �C 15 s. Each qPCR reaction was
performed with three technical replicates. Statistical significance was calculated
using two-tailed t-test over three biological replicates. Primer sequences are
detailed in Supplementary Table 4.

Lentiviral transduction of shRNAs. Lentivirus constructs were produced by
transient transfection of HEK293-T17 cells as described previously28,29. Briefly,
HEK293-T17 was co-transfected with the pTRIPZ-based shRNA vectors,
pCMVR8.47 and pMD2.G by calcium phosphate precipitation. pTRIPZ-based
doxycycline-inducible lentiviral vectors, V2THS_26553 (shRNA-CDCA7L-1 in
Fig. 4) and V2THS_26555 (shRNA-CDCA7L-2) for CDCA7L knockdown, and
non-silencing negative control RHS4743 (shRNA-NSC) were obtained from GE
Healthcare Dharmacon (Little Chalfont, UK). The lentivirus particles were
harvested, concentrated with Lenti-X Concentrator (Clonetech, Mountain View,
USA) and used to infect KMS11. Transduced KMS11 were selected with
1 mg ml� 1 puromycin. The shRNA was induced from a tetracycline-inducible
promoter with 1 mg ml� 1 doxycycline (Sigma, St Louis, USA). Expression of
CDCA7L was assessed using qPCR and western blotting every 24 h post induction
with doxycycline, with the optimal knockdown efficiency observed at 72 h.

Western blotting. Transduced KMS11 from IRF4 or CDCA7L knockdown were
collected and lysed in RIPA buffer (1% w/v sodium deoxycholate, 1% v/v Triton
X-100, 1% v/v Nonident P-40, 0.1% SDS, 150 mM NaCl, 50 mM Tris pH 8.0 and
30 mM NaF) supplemented with Complete Protease inhibitor cocktail (Roche).
Protein concentrations were determined with the BCA Protein Assay Kit
(ThermoFisher Scientific). Ten micrograms of each protein lysate were loaded
on NuPAGE Novex 10% Bis-Tris Protein Gels (ThermoFisher Scientific) and
run in 1�NuPAGE MOPS SDS Buffer (ThermoFisher Scientific). Proteins were
transferred to polyvinylidene difluoride membranes in iBlot2 Transfer Stacks
(ThermoFisher Scientific) using the P0 programme of the iBlot2 Blotting System
(ThermoFisher Scientific) according to the manufacturer’s recommendations.
Western blotting was performed with anti-IRF4 (1:500 in 5% milk; sc-6059;
Santa Cruz Biotechnology), anti-CDCA7L (1:2,000 in 5% BSA; A300-846A;
Bethyl Laboratories, Montgomery, USA) or anti-b-actin (1:10,000 in 5% BSA;
A5441; Sigma), and then with either anti-goat-HRP (horse radish peroxidase;
1:10,000 in 5% milk; ab97110; Abcam, Cambridge, UK), anti-mouse-HRP
(1:5,000 in 5% milk; 7076S; New England Biolabs) or anti-rabbit-HRP (1:5,000
in 5% milk; 7074S; New England Biolabs). The EZ-ECL Chemiluminescence
Detection Kit for HRP (Gene Flow, Lichfield, UK) was used for protein detection
on the Fujifilm LAS-4000 Luminescent Image Analyser (GE Healthcare).

Cell viability assays. KMS11 transduced with shRNA-CDCA7L-1, shRNA-
CDCA7L-2 or shRNA-NSC were plated at 30,000 cells ml� 1. shRNA expression
was induced with the addition of 1 mg ml� 1 doxycycline at t¼ 0 h. Cell viability
was measured every 24 h by Trypan Blue exclusion and cytometry. In transduced
KMS11 cells apoptosis was estimated using Annexin V/DAPI double staining
assay Kit I (BD Biosciences, San Jose, USA) after 72 h induction following the
manufacturer’s recommendations. Samples were analysed using a BD LSRII flow
cytometer (BD Bioscience).

Cell cycle analysis. After 72 h doxycycline induction-transduced KMS11 cells
were fixed in 1 ml ice-cold 70% ethanol for 15 min, and then washed and resus-
pended in 860ml PBS, 100ml RNase (1 mg ml� 1; Sigma) and 40ml PI (1 mg ml� 1;
Sigma). After incubation at 37 �C for 25 min, cells were analysed on a BS LSRII flow
cytometer (BD Bioscience).

Association between CDCA7L expression and patient outcome. To examine
the relation between CDCA7L expression and patient outcome, we made use of
data from five independent patient cohorts GSE9782 (n¼ 265), GSE2658
(n¼ 559), GSE19784 (n¼ 320), E-MTAB-372 (n¼ 246) and GSE21349 (n¼ 183).
For each data set, the patients were grouped by their CDCA7L expression (upper
and lower quartiles). Analysis was performed using the log-rank test to estimate
expression-associated hazard ratio and the 95% confidence interval. Overall
tatistical significance tests were performed by combining the results for each data
set under a fixed-effects model. Statistical test was conducted on R software
version 3.1.3.

Data availability. Existing patient expression data that support the findings of this
study are deposited in GEO with accession codes GSE21349, GSE2658, GSE31161,
GSE9782, GSE19784, and in EMBL-EBI with accession code E-MTAB-2299,
E-MTAB-372.

ChIP-seq data that support the findings of this study are deposited in GEO with
accession codes: GSE36354, GSE53215, GSE32465 and GSE29611.

Epigenomic profiling data that support the findings of this study are deposited
in GEO with accession codes: DNaseI HS and FAIRE: GSE40833,ChromHMM:
GSE38163.

Sequence data that support the findings of this study are deposited in EGA with
accession code: EGAS00001001147. The remaining data are available within the
Article and Supplementary Information files or available from the authors upon
request.
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