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under In Vivo Conditions

Meer Basharat, Nandita M. deSouza, Harold G. Parkes, and Geoffrey S. Payne*

Purpose: To estimate the exchange rates of labile 1H in citrate

and spermine, metabolites present in prostatic secretions, to
predict the size of the citrate and spermine CESTeffects in vivo.
Methods: CEST z-spectra were acquired at high-field [11.7 Tesla

(T)] from citrate and spermine solutions at physiological pH (6.5)
using saturation power 6 mT. CEST was performed at different

temperatures to determine exchange regimes (slow, intermediate
or fast). For low pH solutions of spermine, exchange rates were
estimated from resonance line width, fitting z-spectra using the

Bloch equations incorporating exchange, and using quantifying
exchange using saturation time experiments (QUEST). These rates
were extrapolated to physiological pH.

Results: Citrate showed little CEST effect at pH 6.5 and tempera-
ture (T)¼ 310 K (maximum 0.001% mM-1), indicating fast exchange,

whereas spermine showed greater CEST effects (maximum 0.2%
mM-1) indicating intermediate-to-fast exchange. Extrapolating data
acquired from low pH spermine solutions predicts exchange rates

at pH 6.5 and Tof 310 K of at least 2� 104s-1.
Conclusion: Citrate and spermine show minimal CEST effects at

11.7T even using high saturation power. These effects would be
much less than 2% at clinical field-strengths due to relatively faster
exchange and would be masked by CEST from proteins. Magn
Reson Med 76:742–746, 2016. VC 2015 The Authors. Magnetic
Resonance in Medicine published by Wiley Periodicals, Inc.
on behalf of International Society for Magnetic Resonance in
Medicine. This is an open access article under the terms of
the Creative Commons Attribution License, which permits
use, distribution and reproduction in any medium, provided
the original work is properly cited.
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INTRODUCTION

MRI examinations typically create contrast between tissues
in the body by exploiting the different NMR relaxation times
of water 1H nuclei. An alternative contrast mechanism is

chemical exchange saturation transfer (CEST), which inter-
rogates 1H nuclei in molecules such as metabolites and pro-
teins (pool s), which are exchanging with 1H nuclei in water
(pool w). CEST contrast is produced by applying a saturation
pulse at the resonance frequency of the 1H in pool s (ns). The
saturated 1H nuclei in pool s then exchange with unsaturated
1H nuclei in water at rate ksw. After successive saturation-
and-exchange events the water signal is attenuated.

CEST contrast is advantageous for measuring low-
concentration 1H pools because the water signal attenuation
may be tens or hundreds fold larger than the inherent MR
signal from these nuclei. CEST has been applied to image
the distributions of myo-inositol (1), creatine (2) and gluta-
mate (3) in humans. In the prostate, CEST effects have previ-
ously been attributed to the 1H nuclei of protein amides (4).
However, the glandular metabolites citrate and spermine
(normal concentrations of 40 mM and 10 mM (5), and con-
taining labile -OH and –NHx groups, respectively, see Sup-
porting Figure S1, which is available online) are large
potential CEST sources in the prostate. While the concentra-
tions of these metabolites decrease significantly from normal
in benign and malignant prostate disease (6), it is not always
easy to visualize them using MR spectroscopy due to spec-
tral overlap and lipid contamination. Because characteriza-
tion, evaluation, and optimization of the CEST effects of
citrate and spermine have not yet been reported, in this
study the exchange conditions and estimates of the chemi-
cal exchange rates of 1H in citrate and spermine with water
were determined. This then provides predictions for CEST
behaviors at physiological pH and temperature and relevant
field-strengths.

METHODS

Theoretical Background

The amount of CEST that occurs from a 1H species
depends on its concentration, chemical exchange rate
with 1H in water and the relaxation rates. Very slow
exchange causes little CEST. CEST is also diminished at
high exchange rates at which the resonances of exchang-
ing 1H species coalesce because the CEST saturation pulse
is unable to selectively saturate pool s without some direct
saturation of pool w. The chemical exchange rate for
coalescence is given by (7)

ksw ¼ 2�
1=2pDn � 2:22Dn [1]

where Dn is the chemical shift difference, ns - nw. The
greatest CEST effects, therefore, occur for 1H with
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intermediate exchange rates, ksw < 2.22Dn (8). For exam-
ple, at field-strength 7 Tesla (T) the 1H exchange rate in
glutamate [ksw ¼ 875s-1 (3)] is nearly optimal for CEST
(at 7T, Dn ¼ 894s-1, so ksw ¼ 0.98Dn).

Methods to measure the chemical exchange rates of slowly-

exchanging 1H include measurement of the resonance line-

width (9), fitting the Z spectra of the full Bloch equations

including exchange (10), and using the method of quantifying

exchange using saturation time (QUEST, see below) (9).

Exchange rates at different pH values can be estimated using

(11);

kswðpHÞ ¼ k0 þ ka10ð�pHÞ þ kb10ðpH�pKwÞ [2]

where k0 is the spontaneous exchange rate, ka is the acid-

catalyzed exchange constant, kb is the base-catalyzed

exchange constant, and pKw is the water ionization

constant [13.62 at 310 K (12)]. ksw has a minimum value

at pH ¼ 1=2(log10(ka/kb)þpKw), which commonly occurs at

pH 3–4 (13), and increases for all other pH values.

Quantifying Exchange Using Saturation Time

Under many conditions, the asymmetric magnetization
transfer ratio (MTRasym) can be shown to have the form (9):

MTRasym ¼ ðSwð�DÞ – SwðþDÞÞ =S0w ¼ pð1� e�qtÞ [3]

where p and q are constants, t is the saturation pulse

length and Sw(D) is the attenuated water signal due to sat-

uration at frequency offset D. Parameter q is dependent on

ksw, the water relaxation rate (R1w) and the relative num-

bers of 1H in pool i involved in exchange at irradiation

frequency offset D (9);

kswðDÞ ¼ ðqðDÞ � R1wÞ � ðnw=nsðDÞÞ: [4]

Exchange must be relatively slow. In the QUEST method

(9) Sw(D) is measured at a range of saturation durations,

t, with D set to the frequency of the exchanging hydro-

gens (and to the corresponding frequency on the other

side of water). Fitting Eq. [3] to the data yields parameter

q; ksw is obtained using Eq. [4].

Experimental Procedures

Spectra were acquired using a 5 mm BBO probe in a 500

MHz vertical bore system (Bruker) to exploit the high

values of Dn and so increase the signal change from the

CEST effect. Chemical shift offsets are given relative to

water unless otherwise stated.

Resonance Offset Determination

A total of 100 mM citrate was scanned at 310 and 277 K,

pH 6.5 and 2.0, with 64 repetitions and 16k complex

points over 10 kHz bandwidth. The 20 mM spermine

was scanned at 301 K, pH 3.1 and 4.3, with 128 repeti-

tions and 16k complex points over 6 kHz bandwidth.

Exchange Regime Determination

To determine the exchange regime (slow, intermediate or

fast), the relationship of chemical exchange rate with

temperature was exploited. At constant pH, ksw increases

with increasing temperature (Eyring equation). Increased

ksw produces more CEST if ksw is slow at the lower tem-

perature, but reduced CEST if already in intermediate

exchange and the coalescence condition is approached.
Solutions of 100 mM citrate and 20 mM spermine tetra-

hydrochloride were studied at physiological pH [6.5 (14)]

using sodium hydroxide to achieve the required pH.

CEST effects were measured using a saturation time of 1 s

and temperatures of 280 K, 295 K and 310 K. A total of

100 mM citrate was also investigated at pH 2.0, 310 K,

and with 4 s saturation. Acquisition parameters included

16 repetitions, 20 s repetition time, 16 k complex points,

and 6 kHz bandwidth. Saturation was achieved using a

continuous-wave block saturation pulse with amplitude 6

mT (255 Hz). The saturation pulse amplitude was verified

by measuring the pulse length required for a 90-degree

pulse. Sw(D) was measured by integrating the absorption

signal from þ0.5 to -0.5 ppm relative to water. The attenu-

ation due only to CEST was determined by cancelling

out the symmetric direct saturation component of each

z-spectrum by calculating the asymmetric magnetization

transfer ratio (Eq. [3]).
Average MTRasym was calculated between þ1.2 ppm to

0 ppm for citrate (hydroxyl groups expected at approxi-

mately þ0.8 to þ0.6 ppm), and from þ5.0 ppm to 0 ppm

for spermine (amine groups expected at þ3 to þ4 ppm).

Average MTRasym is analogous to the MTRasym integral

used in others studies (15,16) but more intuitively

describes the amount of CEST occurring.

Exchange Rate Measurements on Spermine

Exchange rates were estimated from solute peak line-

widths, fitting z-spectra to the full Bloch equations using

exchange, and using the QUEST method. Spermine solu-

tions at pH 3.1 and 4.3 were measured. These were

lower than that of prostatic fluid [pH approximately

6.5 (14)] with the intention of achieving slower exchange

rates that are more readily measured.
Linewidth measurements were made using pulse-

acquire spectra without water suppression (repetition

time of 5.7s, 128 repetitions, other parameters as above).

The exchange rate was calculated using (9);

ksw ¼ p:LWs–R2s: [5]

Z-spectra were acquired by measuring the amplitude of

the bulk water signal, Sw(D), after applying saturation at

offset frequencies D from þ5.0 to -5.0 ppm relative to

water, in 0.2 ppm increments. The saturation duration

was 4 s. S0w was found by performing the measurement

using a saturation pulse with offset frequency D ¼ þ20

ppm. Resulting z spectra were fit using the full Bloch

equations including exchange [based on (10) but modi-

fied to run in IDL]. B1 and saturation times were fixed

at the values specified above, while the chemical shift

offsets, relaxation parameters and exchange rate were fit-

ted to the data. To reduce the number of free parameters,

it was assumed that both amine pools had the same val-

ues of T1, T2, and exchange life time.
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For QUEST measurements, water spectra were acquired

with saturation durations of 0, 0.5, 1.0, 2.0, 4.0, 8.0 and

12.0 s at frequency offsets of 63.0 ppm relative to water,

corresponding to the position of the main resonance peak

observed in the pulse-acquire spectra. Plots of MTRasym

versus saturation time t were fitted in IDL to find values

for p and q using Eq. [3].
R1w was measured by performing inversion-recovery

experiments using inversion times, TI, of 1 s to 20 s in 1 s

increments, and recovery delay of 15s. Data were fitted using

Sw=S0w ¼ 1� a:eð�R1w :TIÞ: [6]

A 3-mm tube in the 5-mm probe was used to minimize

the effects of radiation damping.

Estimation of Exchange Rates at pH 6.5

Exchange rates were extrapolated to pH 6.5 by using

ksw(pH 3.1) and ksw (pH 4.3) to determine k0 and kb in

Eq. [2]. The ka term was omitted because only chemical

exchange rates for pH > 3 were considered.

RESULTS

Citrate

No peaks were visible in pulse-acquire spectra of citrate

at pH 6.5 and at pH 2.0 except for that from water, even

at 277 K. This suggests either fast exchange, or a

hydroxyl peak that is within the linewidth of the water

resonance. Simulations based on standard exchange line-

shape analysis [e.g., Gunther (17)] show that a separate

100 mM resonance at 1 ppm offset, intrinsic linewidth 1

Hz, B0 ¼ 11.7T, broadens to invisibility for ksw larger

than �2000 Hz.
A total of 100 mM citrate solution at pH 6.5 and temper-

ature (T) ¼ 310 K, 295 K, and 280 K demonstrated negligi-

ble CEST, with average MTRasym of 0.1% < 0.01%, and

< 0.01%, respectively. All these measurements of CEST in

citrate are effectively zero, with no significant difference

between them. This is consistent with chemical exchange

in citrate being in the fast exchange regime at 11.7T and

pH 6.5. Likewise, no CEST effects were observed for 100

mM citrate at pH 2.0 and T ¼ 310 K, where the exchange

rates should have been substantially lower than at pH 6.5

and the same temperature. Because no peaks or CEST

effect were observed at any temperature or pH measured,

the determination of ksw was not attempted.

Spermine

Pulse-acquire spectra of 20 mM spermine at 310 K and

pH 3.1 and 4.3 are shown in Figure 1. The amine

resonances are seen at approximately 3.0 and 3.7 ppm

relative to water (giving exchange coalescence limits of

approximately 3300 and 4100 Hz, respectively). At pH

4.3, the linewidths are 187 Hz and 177 Hz, respectively.

Given that R2s is expected to be similar to that of the

water (� 1 s-1) the linewidth is dominated by the

exchange rate, which using Eq. [5] can be estimated as

approximately 590 Hz and 570 Hz, respectively. At pH

3.1, the corresponding estimated exchange rates are

470 Hz and 440 Hz, respectively. The water line widths

in these samples were in the range 9.5 to 12.5 Hz.
The 20 mM spermine at pH 6.5 and T ¼ 310 K demon-

strated a broad CEST effect with average MTRasym ¼
1.36% (Fig. 2). The amount of CEST from spermine at pH

6.5 increased with decrease in temperature, with average

MTRasym ¼ 18.7% at T ¼ 295 K and average MTRasym ¼
24.0% at T ¼ 280 K. This increase in CEST with reducing

temperature (and hence exchange rate) indicates that

chemical exchange in spermine is in the intermediate-to-

fast regime at pH 6.5 and field-strength 11.7T.
A full z-spectrum of spermine at pH 4.3 and 310 K using

saturation pulses of duration 4 s is shown in Figure 3. The

resulting calculated exchange rates were 461 Hz (pH 3.1)

and 676 Hz (pH 4.3).
The chemical exchange rates for spermine at an offset

frequency of 3.0 relative to water were calculated using

QUEST at pH 3.1 and 4.3, with T ¼ 310 K. The fitted

curves are shown in Figure 4. Equation [6] yielded R1w

as 0.207 s-1 and 0.208 s-1 at pH 3.1 and 4.3, respectively

(and “a” as 1.99). With fitted q values of 0.525 and

0.661, and a ratio (nw/ns) of 110000/120 (i.e., assuming 6

FIG. 1. Pulse-acquire 1H NMR spectra of spermine at pH 3.1 and
4.3, showing the chemical shift offsets of the amine resonances

(relative to TMS; peak positions relative to water are approxi-
mately 3.0 and 3.7 ppm). Acquisition parameters included temper-
ature ¼ 310 K, spectral width 6009 Hz, 16 k complex points, TR

¼ 5.73 s, 128 repetitions.

FIG. 2. MTRasym plots from z-spectra acquired from 20 mM solu-

tions of spermine at pH 6.5. The increasing CEST effect at lower
temperature (reducing ksw) indicates chemical exchange in the

intermediate-to-fast regime at T ¼ 310 K

744 Basharat et al.



hydrogen nuclei involved in exchange in 20 mM sperm-

ine at this offset) this results in ksw of 291 and 416 Hz,

respectively.
The exchange rates measured using the three different

methods are summarized in Table 1, together with the pre-

dicted exchange rates at pH 6.5 obtained by extrapolation.

DISCUSSION

In this study, no resonance peaks or CEST effects were

observed for citrate, even when pH was reduced to 2.0

and temperature to 277 K This is consistent with fast

exchange. It is also possible that the resonance peak was

so close to water that no peaks could be observed.
For spermine, by decreasing the pH the exchange rate

was measured in the slow exchanging regime, and then

extrapolated to physiologic pH and faster exchange

regimes, using the known ksw(pH) relationship. Results

indicated that chemical exchange in spermine is in the

intermediate-to-fast exchange regime at 11.7T, for pH 6.5

and temperature of 310 K, with an extrapolated exchange

rate of at least 2 � 104 s-1 (Table 1). This is roughly 10

times faster than chemical exchange rates observed in cre-

atine [950 s-1 (2)] and glutamate [875s-1 (3)], and well

above the coalescence limit (3300 and 4100 Hz for the 3.0

and 3.7ppm peaks, respectively). Such rapid exchange is

consistent with the small CEST profile observed for

spermine at 310 K (Fig. 2).
In consequence of their rapid exchange rates, neither

citrate nor spermine will be likely to contribute to CEST

effects in the prostate at clinical field-strengths, as at

lower fields the rate of exchange relative to the chemical
shift difference between the 1H nuclei in pools s and w,
will be even larger, with greater coalescence of peaks.
CEST effects from exchanging nuclei in other molecules
such as proteins are, therefore, predicted to completely
conceal the small CEST effects from citrate and spermine
in the prostate in vivo.

Conditions which affect the CEST effect from metabo-
lites include saturation power and duration, tissue pH,
and relaxation times. A lower saturation power than used
in this study (6 mT) would probably reduce the CEST
effect but may also reduce direct saturation of the water.
The pH of the prostate does vary, but pH 6.5 is at the
acidic end of the measured physiological range for pros-
tatic fluid: 6.2–8.0 (14), 6.7 (18), and 6.6 (19); more alka-
line pH will elicit faster chemical exchange and even less
CEST. While the difference in relaxation characteristics in
vivo compared with our solutions will have some effect
on the amount of CEST signal anticipated, spermine and
citrate are primarily located in the prostatic ducts and
are, therefore, relatively mobile with expected relaxation
times not greatly different to those in solution.

The three different methods for measuring spermine
exchange rates produced values of a similar magnitude
but with the QUEST method producing much lower val-
ues. The reason for this may be related to the QUEST cal-
culation assuming instantaneous equilibrium (9), a
condition which will not be quite valid for metabolites in
dilute solution for which T2s is expected to be relatively
long. The small uncompensated direct saturation of water
may also contribute, as the water linewidths (approxi-
mately 10 Hz) suggest that R2w is larger than the 6 Hz
limit suggested in (9) to not require correction. However,

FIG. 3. Z-spectrum obtained from 20 mM spermine at pH 4.3 and
at 310 K. Water signals at each time point were acquired with
spectral width 6009 Hz, 16 k complex points, repetition time ¼
22.73 s, and 4 repetitions. The fitted curve was obtained using a
3-pool CEST fitting routine described in Woessner et al (10) but

modified for use in IDL.

FIG. 4. Quantifying Exchange using Saturation Time (QUEST) fits
of spermine CEST at D¼ þ3.0 ppm, pH values of 3.1 and 4.3, and

at 310 K. Due to base-catalyzed chemical exchange, exchange
and CEST are greater at pH 4.3 than at pH 3.1.

Table 1
Summary of Measured Spermine Exchange Rates (pH 3.1 and 4.3), with Extrapolation to pH 6.5a

ksw (Hz) Fitted kb Fitted k0

Method pH 3.1 pH 4.3 pH 6.5 (extrapolated) (Hz) (Hz)

Linewidth 453 572 20,580 2.65 x1011 445
Fit to z spectrum 461 676 36,820 4.79 x1011 447

QUEST 291 416 21,430 2.79 x1011 283

aThe ksw values calculated from the linewidth measurements were averaged over the two peaks.
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the use of MTRasym rather than the proton transfer ratio

(9) in the measurement should partially compensate for

this. The z-spectrum method uses eight fitted parameters,

and is, therefore, probably over-fitted. A full analysis of

the interaction of the various parameters in the fit has not

been performed, but while the chemical shift offsets are

fairly well defined by the minima in the curve, the

remaining curvature will include contributions from all

relaxation rates as well as the exchange rate, reducing the

expected accuracy in each of these. Given these limita-

tions, the simple linewidth measurement may, therefore,

be the most accurate. However, all values predict that at

physiological pH spermine is unlikely to produce signifi-

cant CEST signals at clinical field strengths. Because no

significant CEST signals were seen in either spermine or

citrate solutions at 11.7T and 310 K (Fig. 2), it is not

expected that they would be seen in vivo even at field

strengths available for preclinical studies.

CONCLUSIONS

Citrate and spermine are glandular metabolites of interest

for probing prostate diseases. Both contain labile 1H

groups which in principle may create CEST contrast.

Experiments at 11.7T and pH 6.5 found that the CEST

effect was less than 0.2% mM-1 for spermine, and was

unmeasurable for citrate. Chemical exchange was deter-

mined to be in the fast and intermediate-to-fast exchange

regimes for citrate and spermine respectively at 11.7T,

under physiological conditions. At clinical field-

strengths such as 7T and 3T, these CEST effects would

be further reduced due to coalescence of the exchanging
1H peaks with the bulk water peak. In vivo, these CEST

effects are expected to be obscured by CEST from 1H in

proteins and other metabolites.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of
this article.
Supporting Figure S1. Structures of citrate (a) and spermine (b) showing
protonation at physiologic pH, i.e., citrate has exchanging 1H-O, expected
to resonate just downfield of water (the hydroxyls in myo-inositol resonate
at 10.8 to 10.6 ppm relative to water 20 for example), and spermine has
ten exchanging 1H nuclei which resonate at approximately 3.0 and 3.7 ppm
relative to water (see Figure 1).
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