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Abstract

Introduction: The efficacy of radiation therapy treatments for pancreatic cancer is compromised by abdominal
motion which limits the spatial accuracy for dose delivery - especially for particles. In this work we investigate the
potential of worst case optimization for interfractional offline motion mitigation in carbon ion treatments of
pancreatic cancer.

Methods: We implement a worst case optimization algorithm that explicitly models the relative biological
effectiveness of carbon ions during inverse planning. We perform a comparative treatment planning study for seven
pancreatic cancer patients. Treatment plans that have been generated using worst case optimization are compared
against (1) conventional intensity-modulated carbon ion therapy, (2) single field uniform dose carbon ion therapy, and
(3) an ideal yet impractical scenario relying on daily re-planning. The dosimetric quality and robustness of the resulting
treatment plans is evaluated using reconstructions of the daily delivered dose distributions on fractional control CTs.

Results: Idealized daily re-planning consistently gives the best dosimetric results with regard to both target coverage
and organ at risk sparing. The absolute reduction of D95 within the gross tumor volume during fractional dose
reconstruction is most pronounced for conventional intensity-modulated carbon ion therapy. Single field uniform
dose optimization exhibits no substantial reduction for six of seven patients and values for D95 for worst case
optimization fall in between. The treated volume (D > 95 % prescription dose) outside of the gross tumor volume is
reduced by a factor of two by worst case optimization compared to conventional optimization and single field
uniform dose optimization. Single field uniform dose optimization comes at an increased radiation exposure of
normal tissues, e.g. ≈ 2 Gy (RBE) in the mean dose in the kidneys compared to conventional and worst case
optimization and ≈ 4 Gy (RBE) in D1 in the spinal cord compared to worst case optimization.

Conclusion: Interfractional motion substantially deteriorates dose distributions for carbon ion treatments of
pancreatic cancer patients. Single field uniform dose optimization mitigates the negative influence of motion on
target coverage at an increased radiation exposure of normal tissue. Worst case optimization enables an exploration
of the trade-off between robust target coverage and organ at risk sparing during inverse treatment planning beyond
margin concepts.
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Introduction
Even though the incidence of pancreatic cancer remains
rather low with around twelve cases per 100,000 [1], pan-
creatic cancer is the fourth leading cause of cancer death
in developed countries with two- and five-year survival
rates between 40–50% and 5–20%, respectively [2, 3]. The
standard of care in pancreatic cancer is surgical resection
of the primary tumor. This approach, however, is often
impossible due to vessel involvement making definitive
or neoadjuvant therapies indispensable to achieve tumor
control or tumor shrinkage before a potential resection.
Besides systemic therapies, radiation therapy plays an
important role in this context.
The effectiveness of irradiation for locally advanced

pancreatic cancer is limited by the tolerance doses of
adjacent normal tissues. Even though the development
of intensity-modulated radiation therapy provided con-
siderable improvements regarding dose conformity and
enabled the application of integrated boost concepts, fur-
ther dose escalation is desired to enhance efficacy. First
studies in this regard with carbon ion therapy [4], that
might also exhibit a benefit in relative biological effective-
ness (RBE) [5], showed promising clinical results [6].
In pancreatic cancer treatments, the high spatial accu-

racy of radiation therapy is contrasted by anatomical
variations due to varying organ filling, tissue shrinkage or
expansion, and respiratory motion [7]. These motion phe-
nomena are especially critical for the application of par-
ticle therapy [8, 9]. However, sophisticated online motion
compensation strategies as currently exercised for pho-
tons [10, 11] remain impractical for particle therapy in
today’s clinical practice due to hardware limitations.
In this work we investigate the potential of worst case

optimization for interfractional offline motion mitigation
in treatments of pancreatic cancer. So far, worst case opti-
mization [12–14] has only been applied for photon and
proton therapy with a focus on range and setup uncertain-
ties. It has been shown that worst case optimization can
minimize the sensitivity to range or setup uncertainties
and reduces the normal tissue dose compared to conven-
tional margin concepts [15–17]. Li et al. [18] investigated
the role of worst case optimization with regard to anatom-
ical changes for lung cancer patients treated with proton
beams. They concluded that the dose variations due to
anatomy changes can be reduced yet still re-planning
might be necessary in some cases.
Here, we present the first implementation of worst case

optimization [12] in combination with an effect-based
model to account for the RBE of carbon ions [19]. Fur-
thermore we investigate the potential to use worst case
optimization based on range and setup uncertainties to
compensate for motion and deformation phenomena. We
evaluate the robustness of the treatment plans that have
been generated on recontoured fractional control CTs,

i.e., an independent test set. The results are interpreted in
comparison to conventional intensity-modulated carbon
ion therapy, single field uniform dose carbon ion ther-
apy, and an ideal yet impractical scenario relying on daily
re-planning, i.e., adaptive intensity-modulated carbon ion
therapy.

Methods
We performed a comparative treatment planning study
for seven pancreatic cancer cases. Imaging data and
corresponding segmentations of the patient cohort are
explained in “Patient characteristics”, the considered treat-
ment planning strategies are explained in “Treatment
planning strategies”, and the metrics used for comparison
are explained in “Comparison criteria”. All treatment plan-
ning approaches facilitate an optimization strategy that is
directly based on the biological effect to account for the
RBE of carbon ions, as explained in “Effect-based inverse
planning”.

Patient characteristics
The patient cohort consists of seven pancreatic cancer
patients with one planning CT and three to four frac-
tional control CTs at the same spatial resolution and image
quality (30 data sets in total). Fractional control CTs were
rigidly registered to the planning CT by matching the
position of the spinal column.
For all patients, the gross tumor volume (GTV) was

segmented by physicians on all CTs. According to [20],
the planning target volume (PTV) was directly generated
through uniform expansion of the GTV by 15mm. In
agreement with the National Comprehensive Cancer Net-
work guidelines, the prescribed dose was 54Gy (RBE) in
27 fractions. Besides target volumes, also kidneys, spinal
cord, liver, stomach, and intestine were segmented by
physicians on all 30 CTs.

Effect-based inverse planning
Clinical treatment planning with carbon ions requires an
explicit modeling of the RBE on top of the physically
absorbed dose. Therefore, we perform inverse planning
for all treatment planning strategies based on an objec-
tive function F that directly depends on the biological
effect ε [19]

F(ε) =
∑

v∈Targets

(
pUv F

U
v (ε) + pOv F

O
v (ε)

)
+

∑

v∈OAR
pOv F

O
v (ε).

(1)

The superscripts U and O denote under-effect and
over-effect; pU/O

v is the penalty factor for volume v for
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under- and over effect. The components of the objective
function are defined as

FO
v (ε) =

∑

i∈v

[
εi − εOv

]2
+ (2)

FU
v (ε) =

∑

i∈v

[
εUv − εi

]2
+ (3)

where εOv /εUv are thresholds for the desired maxi-
mum/minimum effect in v and εi denotes the actual effect
in voxel i. The positivity operator ensures that only vio-
lated thresholds contribute to the objective function, i.e.,
[x]+ = x for x > 0 and [x]+ = 0 otherwise.
The effect εi = αidi + βid2i depends not only on the

dose di in voxel i but also on the radiation sensitivity
parameters of the linear quadratic model (LQM) αi and βi.
As different carbon ion pencil beams with different radi-
ation qualities superimpose in voxel i, the optimization
facilitates a synergistic effect [21] according to

εi(w) = αi(w)di(w) + βi(w)d2i (w)

=
N∑

j=1
αijDijwj +

⎛

⎝
N∑

j=1

√
βijDijwj

⎞

⎠
2

(4)

where the matrices Dij and αij/βij specify the dose con-
tribution from pencil beam j to voxel i and the LQM
parameters of pencil beam j in voxel i. wj denotes the
weight of pencil beam j; consequently the dose in voxel i
is given by di = ∑

j Dijwj. For our simulations we assume
βij to be constant [19].
The effect-based optimization is performed with our

in-house treatment planning software KonRad [22]. αij
matrices are computed based on tabulated data stemming
from simulations of the local effect model I [23] assuming
a constant α/β = 2 for all tissues for technical rea-
sons. The carbon ion dose calculation relies on a pencil
beam algorithm facilitating a double Gaussian parameter-
ization in lateral direction to accurately account for the
low dose halo beyond the Bragg peak [24]. Due to the large
lateral low dose extend of the individual pencil beams,
we implemented a dose-dependent voxel sampling strat-
egy following [25] to reduce the memory requirements to
store the Dij and αij matrices.

Treatment planning strategies
Our study compares four treatment planning strategies

1. Conventional intensity-modulated carbon ion
therapy.

2. Single field uniform dose (SFUD) carbon ion therapy.
3. Worst case optimized intensity-modulated carbon

ion therapy.
4. Adaptive intensity-modulated carbon ion therapy.

which are explained in detail in “Conventional intensi-
ty-modulated carbon ion therapy” to “Adaptive intensi-
ty-modulated carbon ion therapy”; a schematic overview
is given in Fig. 1. All generated treatment plans apply two
dorsal fields aiming for the gap between the spinal cord
and the kidneys corresponding to gantry angles around
330° and 30°. To avoid range uncertainties emerging from
a partial irradiation through the patient couch, we assume
the patient to be in prone position. The lateral spot dis-
tance was 4mm. The penalties and maximum/minimum
dose input parameters for the objective function (1) can
be found in Table 1. Note that the penalty factors for tar-
get volumes were carefully adjusted individually for every
treatment planning method (but kept the same for dif-
ferent patients) to achieve similar target coverage in the
planning scenario for conventional intensity-modulated
carbon ion therapy, SFUD carbon ion therapy, and worst
case optimization (compare Fig. 2).

Conventional intensity-modulated carbon ion therapy
For conventional intensity-modulated carbon ion therapy
we optimize a treatment plan based on the planning CT
for every patient. Potential uncertainties are accounted for
by creating a PTV with a uniform margin as detailed in
“Patient characteristics”. The optimizer has the full flex-
ibility to distribute the dose over the individual beams.
This may result in a pronounced modulation of the two
individual fields that only together yield a homogeneous
RBE weighted dose within the target volume.

Single field uniform dose carbon ion therapy
For SFUD1 carbon ion therapy we optimize a treatment
plan based on the planning CT for every patient. Poten-
tial uncertainties are accounted for by creating a PTV
with a uniform margin as detailed in “Patient character-
istics”. The optimizer is restricted to construct a homoge-
neous RBE weighted dose within the target volume with
fields that - taken alone - also yield a homogeneous RBE-
weighted dose in the target volume ([26], Chapter 8.C).
Due to the explicit RBE dependence, we have to apply the
LQM to adjust the prescription doses for the individual
beams to achieve the desired target dose as detailed in
Appendix A.

Worst case optimized intensity-modulated carbon ion
therapy
Worst case optimization uses a modified objective func-
tion

F̃(ε(w)) = F(εnom(w)) + pwc · F(εwc(w)) (5)

during inverse planning [12]. Besides the nominal effect
εnom also a worst case effect εwc is considered within an
additional term in the objective function. pwc denotes the
relative weighting of the worst case effect; we set pwc =
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Fig. 1 Treatment planning study. Schematics of the four treatment planning approaches. While the conventional, worst case, and SFUD approaches
only perform one optimization on the planning CT (pCT), the adaptive approach facilitates a re-optimization on every fractional CT (f1,. . . ).

Consequently, we only have one set of pencil beamweightswpCT
j for the conventional, worst case, and SFUD approach that are used to compute the

fractionally delivered dose on every CT. For the adaptive approach, we have multiple sets of pencil beam weights {wpCT
j ,wf1

j , . . . } - one for each CT

1 [12]. Six worst case scenarios corresponding to lateral
shifts of the carbon ion beams and over- and underestima-
tion of the carbon ion range within the patient are com-
puted. The worst case effect εwc is constructed in every
iteration of the optimization through voxelwise combina-
tion of the minimum effect in the target volumes and the
maximum effect in the OARs observed in the nominal
treatment scenario or in one of the six worst case scenar-
ios [12, 27]. Since each voxel is considered independently,
the worst case effect distribution is nonphysical, but it
serves as a lower bound of the plan quality [12].Worst case
optimization does not rely on PTV margins. Worst case
optimization only considers the GTV definition; the high
dose region that guarantees adequate target coverage is
automatically determined by the optimizer according to a

Table 1 Objective function parameters for all volumes v

v dO [Gy(RBE)] dU [Gy(RBE)] pv

GTV 54 54 Individual

Spinal Cord 10 – 200

Kidneys 5 – 250

Stomach 15 – 15

Intestine 15 – 15

Liver 15 – 15

Normal Tissue 15 – 5

dO/U hresholds for over- and under-dose, respectively. Note that the dose values
have to be converted into thresholds in over- and under-effect according to the LQM
for effect-based optimization. For the target volumes, the penalties pv were adjusted
individually for all four treatment planning strategies but kept the same for OARs

priori specified range and setup uncertainties. We assume
15mm setup and 15mm range uncertainties for our sim-
ulations, which corresponds to the PTV margin used
for conventional and SFUD planning (compare “Patient
characteristics”).

Adaptive intensity-modulated carbon ion therapy
For adaptive intensity-modulated carbon ion therapy,
we optimize a treatment plan before every treat-
ment fraction based on up-to-date imaging data, i.e.,
the fractional control CTs. We assume perfect knowl-
edge about the patient anatomy and plan directly on
the GTV without safety margin. This approach is
clinically unrealistic but serves as a valuable upper
bound regarding dosimetric treatment quality in our
study.

Comparison criteria
The quality of the individual treatment plans is analyzed
based on dose volume histogram (DVH) statistics of the
dose calculations on the planning and fractional control
CTs. We use D95 to quantify target coverage. Dose deliv-
ered to OARs is evaluated based on the mean dose for
the kidneys, liver, stomach and intestine and D1 for the
spinal cord, liver, stomach and intestine. V95 is used as a
measure for the treated volume outside of the GTV and
consequently target conformity, V107 is used as a mea-
sure for the volume of hot spots inside the GTV, and the
homogeneity index HI = (D5 − D95)/Dmean is used as a
measure of dose homogeneity within the GTV. Statistical
significance (p < 0.05) is tested with a paired, two-sided
Wilcoxon signed rank test.



Steitz et al. Radiation Oncology  (2016) 11:134 Page 5 of 11

p1 p2 p3 p4 p5 p6 p7
0

0.1

0.2

0.4

0.8

GTV (HI)

p1 p2 p3 p4 p5 p6 p7

G
y(

R
B

E
)

20

30

40 

48

50

52

54
GTV (D

95
)

(a) (b)

Fig. 2 a D95 and (b) target homogeneity index HI within the GTV and for adaptive (red), conventional (green), SFUD (blue), and worst case (black)
optimization for all patients (p1 – p7). The planning scenario corresponds to the cross (x), the mean of all dose recalculations on fractional control
CTs corresponds to the minus sign (–), and the shaded area around the mean indicates ± one standard deviation. Observe the interrupted y axis

Results
Treatment plans for all planning approaches were opti-
mized and recalculated with our in-house research treat-
ment planning software KonRad [22]. The voxel resolu-
tion was 2.62 × 2.62 × 2.62 mm3 resulting in dose influ-
ence and α matrices comprising up to 120GB. The run
time for inverse planning including dose calculation was
up to 20 h for the worst case optimization and 2 hours for
the conventional optimization. Both the dose calculation
and optimization algorithm facilitate a single-threaded
implementation that has not been optimized for speed.
Figure 2a shows the stability of the dose distribution

within the GTV over multiple fractions. The prescribed
dose was 54Gy (RBE) delivered over 27 fractions. Using
adaptive re-planning, it is possible to guarantee an ade-
quate target coverage over all fractions for all patients. All
other treatment planning approaches yield a clear decline
in D95 in the fractionally reconstructed dose distributions
as compared to the original planning scenario. For con-
ventional IMPT optimization, the average D95 minus one
standard deviation (D̄95 − σ ) drops below 51.3 Gy (RBE),
i.e., 95 % of the prescribed dose, for five patients. For
worst case optimization, D̄95 − σ drops below 51.3 Gy
(RBE) for three patients. For SFUD optimization, D̄95 − σ

drops below 51.3 Gy (RBE) for one patient. The abso-
lute reduction inD95 is most pronounced for conventional
IMPT (except patient p3); SFUD exhibits no substan-
tial reduction in D95 for six of seven patients. Values for
D95 for worst case optimization fall between conventional
and SFUD optimization (except patient p3). The observed
differences in D95 between conventional IMPT and
worst case optimization, between conventional IMPT and
SFUD, and between worst case optimization and SFUD
are statistically significant (p = 5.8 · 10−5, p = 5.8 · 10−5,
and p = 8.3 · 10−4, respectively). Target homogeneity
is visualized in Fig. 2b. While there is barely a differ-
ence between the planning scenario and the fractionally
reconstructed dose in target homogeneity index HI for
adaptive re-planning, the biggest detoriation is observed

for conventional IMPT. For SFUD, we observe a moderate
increase in HI; values for worst case optimization usu-
ally fall between conventional IMPT and SFUD (except
patient p3). The spatial pattern of the underdosage within
the GTV is shown in Fig. 3. While the cold spots within
the GTV occur at the edges for worst case and SFUD opti-
mization, we also see cold spots appearing in the middle
of the GTV for conventional IMPT optimization.
Note that it was not possible to achieve adequate tar-

get coverage using offline techniques only for patient p4.
Both an SFUD concept using conventional margins and
the worst case optimization fail as the observed motion
greatly exceeds the considered margins and uncertainties
in caudal cranial direction.
The treated volume with D ≥ 51.3 Gy (RBE), i.e. 95 %

of the prescribed dose, outside of the GTV is depicted
in Fig. 4a. Here, we see a very consistent behavior:
Even though worst case optimization facilitates the same
assumptions about the underlying uncertainty as the mar-
gin based approaches, it yields a reduction of the high dose
volume around the GTV of about 50 % (which roughly
corresponds to about 100 cm3) compared to SFUD and
conventional optimization. This can also be seen on the
transversal dose distributions in Fig. 3. The observed dif-
ferences in the high dose volume outside of the GTV
between conventional IMPT and worst case optimization
and between SFUD and worst case optimization are sta-
tistically significant (p = 1.7 · 10−6 and p = 1.7 · 10−6);
the differences between conventional IMPT and SFUD
are not statistically significant (p = 0.090). The risk of
undesired hot spots can be reduced using worst case opti-
mization as depicted in Fig. 4b. Note that the numbers
reflect fractional recalculations. Considering an accumu-
lated dose over the entire treatment, these effects might
be moderated by averaging effects.
Figures 5 and 6 depict mean and maximum dose statis-

tics for selected OARs. As expected, the idealized adap-
tive treatment planning approach yields the best sparing
of OARs in the planning scenarios as well as the best
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Fig. 3 Example dose distributions for three tested optimization methods for different patients. The left column shows the conventional optimization
which shows pronounced hot/cold spots. Themid column shows the worst case optimization, which generates a smaller high dose region around
the GTV without pronounced hot/cold spots. The right column shows the SFUD optimization also without pronounced hot/cold spots
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and the shaded area around the mean indicates ± one standard deviation

stability of the dose statistics over multiple fractions. For
the other treatment planning strategies, we see that con-
ventional IMPT and worst case optimization usually yield
superior sparing of OARs compared to SFUD optimiza-
tion. This can be explained by the additional constraint
that every individual field has to deliver a homogeneous
target dose for SFUD. Hence, it is not possible to use
intensity-modulation to down-regulate parts of one beam
and up-regulate parts of another field to spare OARs at
constant target coverage.
This issue especially compromises sparing of the kid-

neys for SFUD optimization, as depicted in Fig. 5. For the

majority of patients, the additional freedom in intensity-
modulation for conventional IMPT and worst case opti-
mization enables a reduction of more than 2 Gy (RBE)
in the mean doses in the kidneys when compared to
SFUD optimization. The observed mean dose differences
for both the left and right kidney between conventional
IMPT and worst case optimization, between conventional
IMPT and SFUD, and between worst case optimization
and SFUD are statistically significant (Left kidney: p =
0.0243, p = 1.7 · 10−6, and p = 1.7 · 10−6, respectively.
Right kidney: p = 0.017, p = 1.7 ·10−6, and p = 1.7 ·10−6,
respectively.).
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The maximum dose in the spinal cord resulting from
worst case optimization is lower than the maximum dose
resulting from conventional and SFUD optimization for
all patients except patient p2. This applies to both the
planned dose distribution as well as the fractionally recon-
structed doses. Due to the lack of a fixed PTV margin,
worst case optimization may adjust the high dose region
around the target to better spare this OAR in the beam
path. The observed differences in D1 in the spinal cord
between conventional IMPT and worst case optimization
as well as between between worst case optimization and
SFUD are statistically significant (p = 5.3 · 10−5 and
p = 1.7 · 10−6, respectively); differences between con-
ventional IMPT and SFUD are not statistically significant
(p = 0.544).
For liver, stomach, and intestine, worst case optimiza-

tion consistently yields lower mean dose and D1 for both
the planning scenario and the fractionally reconstructed
dose compared to conventional IMPT and SFUD. This
behavior can again be explained by the additional free-
dom of the optimizer to balance an expansion of the high
dose region around the GTV against OAR sparing. How-
ever, these observations should be interpreted with care as
liver, stomach, and intestine are given substantially lower
weight during the optimization (compare Table 1).

Discussion
This paper presents the first implementation of effect-
based worst case optimization for carbon ion therapy. The
clinical potential of this optimization strategy is evaluated
in a treatment planning study focusing on pancreatic can-
cer patients. To benchmark worst case optimization, our
study also considers treatment plans that were generated
by conventional intensity-modulated carbon ion therapy
optimization and SFUD optimization based on the plan-
ning CT. The robustness of the resulting treatment plans
is evaluated by dose recalculations on fractional control
CTs. Hence, we provide an evaluation of competing offline
motion compensation strategies on an independent test
set with anatomical motion stemming from different
treatment days. Furthermore, our results are interpreted
in the context of an idealized treatment planning approach
that facilitates daily re-planning on fractional control CTs.
With worst case optimization becoming a commer-

cially available treatment planning option [28], our paper
addresses the clinical need for an independent evalua-
tion of the underlying algorithmic concepts. We make
an important contribution to the understanding of worst
optimization for clinical treatment planning and high-
light the implications of inverse planning without a PTV
margin.
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Overall we observe a substantial improvement in
robustness of target coverage for treatment plans facilitat-
ing worst case optimization compared to treatment plans
facilitating conventional optimization. SFUD optimiza-
tion is the most robust approach with regard to target cov-
erage (leaving the technically infeasible approach of daily
re-planning without PTVmargin aside) but it comes at an
increased radiation exposure of normal tissues. This has
to be attributed to the additional condition that the opti-
mizer cannot modulate the intensity of individual fields to
spare OARs in the beam path, e.g. the kidneys as depicted
in Fig. 3. The increased exposure of normal tissues for
conventional and SFUD optimization is also caused by the
fixed PTV margin around the target. While these opti-
mization techniques inevitably fill the PTV margin with
the prescription dose, worst case optimization has the
possibility to trade any potential expansion of the high
dose region beyond the target volume off against sparing
of adjacent normal tissues. Using objective function (1) in
combination with the parameters detailed in Table 1, this
resulted in a reduction of the volume irradiated at doses
above 95 % of the prescribed dose of about 100 cm3 in our
treatment planning study. We want to point out that a dif-
ferent choice of optimization parameters would yield not
only a different volume irradiated at more than 95 % of the
prescription dose but also a different trade-off with regard
to treatment plan robustness. Just like conventional PTV
margin concepts have been carefully validated for pho-
tons [29], a widespread clinical application of worst case
optimization demands a thorough understanding of the
influence of objective function parameters on the trade-
off in treatment plan robustness. While it is feasible to
develop site-specific robustness recipies for worst case
optimization [30], it remains unclear how a generalized
parameter recipe for worst case optimization could look
like making further research - also considering alternative
approaches [31, 32] - necessary.
Our work is in agreement with previous studies demon-

strating that range and setup uncertainties can be used
within worst case optimization to make treatment plans
more robust against anatomical variations [33]. Further-
more, we reconfirm that offline motion compensation
alone does not yield the one ideal treatment plan that
can be applied over all treatment fractions. Spontaneous
motion phenomena in the order of cm as regularly occur-
ring within the abdomen make daily re-planning highly
desirable in clinical practice [33].
Technically, our study only considers interfractional

motion. However, as both the planning CT and the frac-
tional control CTs stem from different intrafractional
motion phases, the results of our studymay also generalize
towards motion during the treatment.
Our study reports dose statistics from the recalcu-

lated fraction doses. We refrain from interfractional dose

accumulation to rule out potential uncertainties emerg-
ing from deformable image registration which is subject
to pronounced uncertainty given the low contrast in the
soft tissue within the abdomen [34]. While it is possi-
ble to identify anatomical structures on the control CTs
for experienced clinicians, automated image processing
requires higher contrast, which could be provided in the
future through the application of daily MR guidance [35].
The presented algorithm is the first robust optimization

method that explicitly takes the three-dimensional RBE of
carbon ions into account. As such it yields a homogeneous
RBE-weighted dose distribution within the target. This is
also achieved by applying a more homogeneous RBE dis-
tribution within the target as depicted in Fig. 7.While RBE
values for conventional RBE optimization range from 3.3
to 4.6, RBEs for worst case optimization range from 3.7 to
4.4 which is comparable to SFUD optimization. Note that
adaptive re-planning generally yields higher RBE values
within the target. Due to the absence of margins, high LET
values from the target edges move into the GTV, making
margin reductions additionally attractive for carbon ion
therapy.

Conclusion
Our study confirmed that interfractional motion substan-
tially deteriorates dose distributions for carbon ion treat-
ments of pancreatic cancer patients. Single field uniform
dose optimization proved to be an adequate means to
mitigate the negative influence of interfractional motion
on target coverage. However, the increased robustness
was associated with an increased radiation exposure of
normal tissues when compared to conventional IMPT
optimization.
Furthermore we presented and evaluated the first

implementation of effect-based worst case optimization
for carbon ion therapy. Within our treatment planning
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Fig. 7 RBE volume histogram for patient p6 within the GTV. Worst
case (black) and SFUD (blue) optimization yield more homogeneous
RBE distributions within the target volume compared to the
conventional (green) and adaptive optimization (red)
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study, we showed that worst case optimization can be a
suited tool to balance treatment plan robustness, target
coverage, and sparing of normal tissues. In contrast to
conventional optimization and single field uniform dose
optimization, which both rely on a fixed margin concept,
worst case optimization can freely adjust the high dose
region around the target during inverse planning. This
enables an exploration of the trade-off between robust
target coverage and organ at risk sparing during inverse
treatment planning. For carbon ion treatments for pancre-
atic cancer that resulted in improved robustness of target
coverage at reduced normal tissue dose compared to con-
ventional optimization. Compared to single field uniform
dose optimization, worst case optimization enabled sub-
stantial reductions of normal tissue dose at a moderate
decrease in robust target coverage.
Idealized considerations with regard to daily adaptation

of a carbon ion treatment plan, however, demonstrated
that worst case optimization based on the planning CT
does not suffice to deliver the best possible dose distribu-
tion for every patient on every treatment day.

Endnote
1 SFUD optimization is also often called “single beam

optimization”.

Appendix A
Prescription for SFUD optimization
Effect-based SFUD optimization requires a non-linear
adjustment of the dose to be applied by the individual
fields. According to the LQM, the effect for a fractionated
radiation treatment is given by

E = n
(
αd + βd2

) = αD + βDd (6)

with the fraction dose d, the total dose D, and the num-
ber of fractions n. Considering two different fractionation
schemes a and b with the same number of fractions and
identical effect, we have

Da
Db

= db + α/β

da + α/β
. (7)

Postulating that Db is applied in n · η equal fractions (with
the number of fields η) and thatDa is applied in n ·1 equal
fractions (i.e., with a single field), we obtain

da
ηdb

= db + α/β

da + α/β
(8)

which can be rearrangened to yield the dose to be applied
by an individual field of an SFUD treatment with η beams

db = − α

2β
±

√
α2

4β2 + da
η

(
da + α

β

)
. (9)

The solution considering the minus sign can be discarded
as it would yield an unphysical negative dose db. In com-
bination, the η fields will yield approximately a homoge-
neous RBE-weighted dose da in the target volume for one
fraction.
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