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Titration of signalling output: insights into clinical
combinations of MEK and AKT inhibitors
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Background: We aimed to understand the relative contributions of inhibiting MEK and AKT on cell growth to guide
combinations of these agents.
Materials and methods: A panel of 20 cell lines was exposed to either the MEK inhibitor, PD0325901, or AKT inhibi-
tor, AKT 1/2 inhibitor. p-ERK and p-S6 ELISAs were used to define degrees of MEK and AKT inhibition, respectively.
Growth inhibition to different degrees of MEK and AKT inhibition, either singly or in combination using 96-h sulphorhoda-
mine assays was then studied.
Results: A significantly greater growth inhibition was seen in BRAFM and PIK3CAM cells upon maximal MEK (P = 0.004)
and AKT inhibition (P = 0.038), respectively. KRASM and BRAF/PIK3CA/KRASWT cells were not significantly more likely to
be sensitive to MEK or AKT inhibition. Significant incremental growth inhibition of the combination of MEK + AKT over
either MEK or AKT inhibition alone was seen when MEK + AKT was inhibited maximally and not when sub-maximal
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inhibition of both MEK + AKT was used (11/20 cell lines versus 1/20 cell lines; P = 0.0012).
Conclusions: KRASM cells are likely to benefit from combinations of MEK and AKT inhibitors. Sub-maximally inhibiting
both MEK and AKT within a combination, in a majority of instances, does not significantly increase growth inhibition com-
pared with maximally inhibiting MEK or AKT alone and alternative phase I trial designs are needed to clinically evaluate
such combinations.
Key words: combination, MEK inhibitor, AKT inhibitor

introduction
MEK and AKT are important nodes in signal transduction path-
ways critical to growth and function of cancer cells and normal
tissue (supplementary Figure S1, available at Annals of Oncology
online). Early clinical studies of MEK and AKT inhibitors have
shown that it is possible to achieve therapeutic drug levels and
modulate the respective targets [1–6]. Combining MEK and
AKT inhibitors for the treatment of cancer is of interest for mul-
tiple reasons. First, inhibition of either MEK and AKT would
only partially inhibit signalling output, resulting in sub-optimal
growth inhibition of cancer cells [7]. Secondly, in defined
models, pharmacological inhibition of MEK causes an increase
in signalling through AKT [8, 9]. Thirdly, there is growing evi-
dence of intra-tumoral heterogeneity within cancers [10] and
this could lead to areas of a tumour that are differentially sensi-
tive to an MEK or AKT inhibitor alone. There is pre-clinical
evidence of the activity of MEK inhibitor + AKT inhibitor
combinations [11] and, more generally, of drugs inhibiting the
RAS-RAF-MEK and PI3K-AKT-m-TOR axis [12–14]. Early
clinical activity of these combinations has been demonstrated
[15, 16] and combinations of MEK and AKT inhibitors have
now entered biomarker integrated targeted therapy studies such
as BATTLE-2 (NCT-01248247), which uses an adaptive
randomization design to use the combination in the setting of
non-small-cell lung cancer.
The individual toxicities of MEK and AKT inhibitors are now

fairly well defined, with ocular toxicities being limited to MEK
inhibitors [1–3] and hyperglycaemia limited to AKT inhibitors
[4, 6, 17, 18]. Overlapping toxicities include rash and diarrhoea
[1–4, 6, 17, 18]. Thus, there are considerable challenges in com-
bining these agents [16]. It is possible to circumvent such toxici-
ties by altering the scheduling of both agents [19].
Over-arching questions that govern combinations of MEK

and AKT inhibitors are: (i) which tumours are susceptible to
combinations of MEK and AKT inhibitors; (ii) is combined
maximal inhibition of MEK or AKT better than maximal MEK
or AKT inhibition alone; (iii) does sub-optimally inhibiting sig-
nalling due to overlapping toxicity compromise the chances of
success of combinations of MEK and AKT inhibitors? We
aimed to answer these three questions in pre-clinical models.

materials andmethods

cell lines
Source, authentication, mutations and tissue of origin of cell lines are docu-
mented in the supplementary Data and Table S1, available at Annals of
Oncology online.

Details of the drugs used and ELISAs carried out to quantify inhibition of
signalling are in the supplementary Data, available at Annals of Oncology online.

definition of inhibition of MEK and AKT
ELISA readings were normalized to the DMSO control being assessed as 0%
and the maximal inhibition of signalling output achieved as 100%. The drug
concentration required to cause 25%, 50%, 75% and 100% of maximal reduc-
tion of p-S6 or p-ERK levels was then calculated. GraphPad Prism (v6.0,
GraphPad Software, Inc., La Jolla, CA) was used for the analysis. 100%, 75%,
50%, 25% inhibition of MEK was defined as maximal reduction in levels of
p-ERK or 75%, 50%, 25% of maximal reduction of levels of p-ERK. 100%,
75%, 50%, 25% inhibition of AKT was defined as maximal reduction in
levels of p-S6 or 75%, 50%, 25% of maximal reduction of levels of p-S6.

growth inhibition assays
Each of the 20 cell lines was exposed for 96 h to concentrations of
PD0325901 and AKT 1/2 kinase inhibitor to inhibit signalling of p-S6 and
p-ERK by different degrees, as specified in each experiment. Growth inhib-
ition was calculated using sulphorhodamine assays, as described previously
[20]. A similar experiment was done in one randomly chosen cell line from
each group (BRAFM, PIK3CAM, KRASM and BRAF/PIK3CA/KRASWT) using
a clinically used MEK inhibitor (AZD6244) and AKT inhibitor (AZD5363).

statistical analysis
Differences between growth inhibition upon being exposed to concentrations
that maximally inhibited MEK and AKT in a given cell line were analysed
using a t-test. A one-way ANOVA was carried out to detect differences
between maximal growth inhibition caused by inhibiting MEK by 100% and
combinations such as inhibition of MEK 100%+AKT 25%, MEK
100%+AKT 50%, MEK 100%+AKT 25% and MEK 100%+AKT 100%.

Post hoc Dunnett’s tests were carried out only if the ANOVA showed a signifi-
cant difference. Similar analysis was carried out while testing differences
between growth inhibition caused by 100% AKT inhibition and combinations
of 100% AKT inhibition and increasing concentrations of MEK inhibition. A
one-way ANOVA was also conducted to detect differences between 100%
MEK or AKT inhibition and sub-optimal combinations of MEK and AKT,
post hoc Dunnett’s tests were carried out only if the ANOVA showed a signifi-
cant difference. Differences between the number of cell lines categorized by
mutation or degrees of inhibition were carried out using Fisher’s exact test.
GraphPad Prism (v6.0, GraphPad Software, Inc.) was used for the analysis.

results
A panel of 20 cell lines (5 BRAFM, 5 PIK3CAM, 5 KRASM, 5
BRAF/PIK3CA/KRASWT), was exposed to a concentration of
PD0325901 and AKT1/2 kinase inhibitor that caused maximal
MEK and AKT inhibition, respectively, for 96 h and growth in-
hibition compared with a DMSO-treated control was analysed
(Figure 1A) . The ED50 concentrations of PD0325901 and AKT
1/2 kinase inhibitors to inhibit MEK and AKT are documented
in supplementary Table S2, available at Annals of Oncology
online. Six of 17 cell lines showed more significantly greater
growth inhibition upon maximal MEK inhibition compared
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with maximal AKT inhibition and 11/17 showed significantly
greater inhibition upon maximal AKT inhibition compared
with maximal MEK inhibition. Three cell lines were equally sen-
sitive to maximal MEK and AKT inhibition (Figure 1B).
BRAFM and PIK3CAM cells were more sensitive to growth in-
hibition by maximal MEK inhibition; P = 0.0004 and maximal
AKT inhibition; P = 0.038, respectively. KRASM and BRAF/
PIK3CA/KRASWT cells were not significantly more likely to be
sensitive to MEK or AKT inhibition.
Four cell lines, i.e. SKMEL-28 (BRAFM), T47D (PIK3CAM),

A549 (KRASM) and A2780 (BRAF/PIK3CA/KRASWT), were

exposed to a clinically used MEK inhibitor (AZD6244) and

AKT inhibitor (AZD5363) that caused maximal MEK and AKT

inhibition, respectively, and this caused growth inhibitory pat-

terns similar to that caused by PD0325901 and AKT 1/2 kinase

inhibitor (supplementary Data, available at Annals of Oncology

online). This suggests that the growth inhibitory patterns seen

of PD0325901 and AKT 1/2 kinase inhibitor unlikely to be due

to off target effects.
The panel of cell lines was then exposed to maximal inhibition

of MEK, in addition to increasing degrees of AKT inhibition (i.e.
25%, 50%, 75% and 100%) (Figure 2A). Only 1/5 BRAFM cells had
incremental growth inhibition by the addition of AKT inhibition
to the maximal MEK inhibition. The panel of cells was also
exposed to maximal inhibition of AKT in addition to increasing
degrees of MEK inhibition (i.e. 25%, 50%, 75% and 100%)
(Figure 2B). Of the PIK3CAM lines, 3/5 cell lines showed significant
incremental benefit of the addition of MEK inhibition to maximal
AKT inhibition. The findings are summarized in Figure 2C. In
the 20 cell line panel studied, maximal MEK + AKT inhibition

caused greater growth inhibition than maximal inhibition than
either maximal MEK or maximal AKT in 11/20 cell lines.
Next, the panel was exposed to different combinations of sub-

maximal inhibition of MEK + AKT (25% + 25%, 50% + 50%
and 75% + 75%) (Figure 3A). Only 1/20 cell lines showed sig-
nificantly greater growth inhibition upon sub-maximal inhib-
ition of MEK + AKT compared with either maximal MEK or
maximal AKT inhibition.
Thus, in the cell line panel studied, in 11/20 cell lines,

maximal MEK + AKT inhibition caused significantly greater
growth inhibition compared with maximal inhibition cause by
singly inhibiting MEK or AKT; however, a sub-maximal inhib-
ition of MEK + AKT caused superior growth inhibition caused
by singly maximally inhibiting MEK or AKT in only 1/20 cell
lines; P = 0.0012 (Figure 3B).
Interestingly, in both HUVEC and Ker-CT cells (representing

non-cancer ‘normal’ cells) sub-optimal inhibition of MEK or
AKT did not cause significantly more growth inhibition com-
pared with maximal AKT or MEK inhibition alone (whichever
the cell line was sensitive to, or both, if the cell line was sensitive
to both if the cell line was equally sensitive to MEK and AKT in-
hibition) (details in supplementary Data and Figure S2, available
at Annals of Oncology online).

discussion
Currently, there are eight ongoing phase I studies of MEK and
AKT inhibitors in combination or which have recently com-
pleted recruitment (http://clinicaltrials.gov/ct2/results?term=
mek+akt). There is an urgent and unmet need to understand the
relative contributions of inhibition of both these targets on cell
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growth in order to optimize these combinations because overlap-
ping toxicities make them difficult to deliver [16, 19].
The cell lines with different mutations have been selected

from various tumour types. It is now emerging that context spe-
cificity is important to feedback loops in signalling pathways
[21], and future work will be better done in specific disease con-
texts. We considered a variety of methods that could potentially
be used to understand individual contributions of MEK and
AKT signalling. We chose to study p-ERK as a downstream
readout of MEK inhibition as it downstream of MEK. We did
not choose p-AKT Ser473 to study AKT inhibition as allosteric
and ATP competitive drugs used to inhibit AKT caused diamet-
rically opposite effects on phosphorylation at this site [4, 22].
We were not able to get consistent results showing reduction of
p-m-TOR following AKT inhibition thus chose p-S6. This study

could be potentially strengthened by in vivo experiments but
would require an extremely large cohort of animals so was
deemed as not justified. Our study did not to study feedback
loops activating receptor tyrosine that can be caused by MEK or
AKT inhibition as this has been done before [23].
When MEK and AKT inhibitors were used as single agents,

the findings that BRAFM and PIK3CAM cell lines in the panel
were significantly more sensitive to MEK and AKT inhibitors,
respectively. However, KRASM cell lines in the panel were either
significantly more sensitive to AKT (H23, H441) or MEK
(SW620) inhibition in some instances or equally sensitive to
MEK and AKT inhibition (A549, H1734), suggesting that it is
likely that cells with KRAS mutations are not predominantly de-
pendant on MEK or AKT signalling alone for cell growth. Our
findings that KRASM cancers could respond to combinations of
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Figure 3. Percentage growth inhibition caused by combinations of MEK and AKT inhibitors: Effects of sub-maximal inhibition. Cell lines were exposed to
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MEK +AKT inhibitors is interesting and other groups have
shown MEK + AKT inhibitors could be effective in cells with
mutations both in KRAS and PIK3CA [24].
All five BRAFM cell lines that were significantly more sensitive

to MEK inhibition and only 1/5 BRAFM cell lines showed incre-
mental growth inhibition by addition of maximal AKT inhibition
to maximal MEK inhibition. The cell line SKMEL-5 was shown
to be sensitive to MEK inhibition but additive growth inhibition
was observed upon AKT inhibition. SKMEL-5 cells are known
to have a BRAF mutation but no PTEN loss [25] and previous
studies have suggested signalling through IGFR-1 is a potential
mechanism of resistance to MEK inhibitors in this cell line [9].

Our findings are interesting and show that, for the first time,
combinations of MEK +AKT inhibitors are unlikely to be of
added benefit to MEK inhibitors alone in cell line models studied
which have only BRAF mutations. It is possible that cell lines
with BRAF and PIK3CAmutations may benefit from the combin-
ation. The findings contradict pre-clinical studies that suggest
melanomas with BRAF mutation may benefit from inhibition of
dual MEK and PI3K pathway inhibition [13, 26]. All the
PIK3CAM cell lines studied were more sensitive to AKT inhib-
ition and PIK3CAM sensitizing cells to AKT mutation has been
shown before [27]. However, 3/5 PIK3CAM cell lines in our study
showed significantly more growth inhibition with the combin-
ation of maximal AKT +MEK inhibition suggesting that the
combination of MEK +AKT inhibition may be of benefit to
PIK3CAM cancers.
Crucially, our studies show for the first time that in only 1/20

cell lines did a combination of sub-maximal inhibition of
MEK + AKT cause a significantly greater growth inhibition
compared with growth inhibition caused by maximal MEK or
AKT inhibition alone (whichever the cell line was sensitive to,
or both, if the cell line was equally sensitive to MEK and AKT
inhibition). This is particularly relevant as it is often difficult to
deliver full does of combinations of MEK and PI3K pathway
inhibitors in the clinic [16]. However, the effect of sub-optimal
inhibition of signal transduction on evolution of resistant clones
has not been explored in the present study and such experi-
ments may provide further insights into the use of combinations
of MEK and AKT inhibitors. The dependence on the degree of
inhibition of p-ERK to clinical response in BRAFM cancers has
been previously described and supports our findings [28].
Currently, clinical trials exploring these combinations often
started with sub-optimal inhibitory doses of both MEK and
AKT inhibitors. The present pre-clinical data suggest that it is
preferable to start with the dose of the MEK or AKT inhibitor
which causes maximal pharmaco-dynamic inhibition and then
add progressively higher doses of the second drug, with the aim
of reaching the maximal doses of both drugs (Figure 4). If it is
not possible to clinically achieve maximal inhibition of one or
both pathways as continuous dosing schedules, intermittent
schedules could be considered [19].
Experiments in this manuscript also attempted to answer the

effects of inhibition of MEK and AKT on normal tissue and
thus potential toxicity experienced by patients. Importantly,
sub-optimal MEK or AKT inhibition in combination when
compared with maximal MEK and AKT alone did not cause
more growth inhibition in both HUVEC and Ker-CT cell lines,
suggesting no additional toxicity once MEK or AKT is com-
pletely inhibited if a second inhibitor is added. In clinical prac-
tice that is not true as we struggle to deliver full doses of
combinations of both drugs. It is possible that this is due to the
selective susceptibility of different cell types that make up
normal tissue such as skin and the gut.
This study provides insights into ways of clinically combining

MEK and AKT inhibitors.
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